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Abstract

With growing consumer demand and expectations, companies are attempting to

achieve cost-efficient and faster delivery operations. The integration of autonomous

vehicles, such as aerial and ground drones, in the last-mile network design, could

curtail many operational challenges and provide a competitive advantage. This dis-

sertation deals with the problem of delivering orders to a set of customer locations

using multiple drones that operate in conjunction with a single truck. Four variants

of the problem are considered. The first variant takes advantage of the drone fleet by

parallelizing the delivery tasks via concurrently dispatching the drones from a truck

parked at a focal point (ideal drone launch location) to the nearby customer locations.

The key decisions to be optimized are the partitioning of delivery locations into small

clusters, identifying a focal point per cluster, and routing the truck through all focal

points such that the customer orders in each cluster are fulfilled either by a drone

or truck. The first problem variant restricts each focal point to one of the customer

locations, while the second addresses the same delivery problem when allowing truck

viii



stops to be anywhere in the delivery area (i.e., a customer or non-customer loca-

tion). Mathematical programming models are developed to jointly optimize both the

clustering and routing decisions.

The third variant suggests allowing the usage of non-customer locations (referred to

as flexible sites) as truck stops for drone launch and recovery operations (LARO). This

relaxes a common constraint in the literature restricting the drone LARO to customer

locations. The proposed variant also accounts for three key decisions - (i) assignment

of each customer location to a vehicle, (ii) routing of truck and UAVs, and (iii)

scheduling drone LARO and truck operator activities at each stop, which are always

not simultaneously considered in the literature. A mixed integer linear programming

(MILP) model is formulated to jointly optimize the three decisions. Furthermore, to

handle large problem instances, we develop an optimization-enabled two-phase search

algorithm by hybridizing simulated annealing and variable neighborhood search. The

fourth variant in this dissertation proposes utilizing a network of docking stations and

repositioning of drones to enhance the efficacy of delivery operations. In particular,

such stations are used for drone docking before and after delivery operations to avoid

both loading all required drones to the truck at the depot and waiting of the truck on

its route to recover drones. A MILP model is formulated to optimize the management

of this setting of facilities and delivery operations. Finally, extensive computational

experiments are conducted in this dissertation for the four variants to obtain several

insights aiding the logistics practitioners in decision making.

ix



Chapter 1

Introduction

In the era of online shopping, several components of e-commerce experience, such

as marketing and transaction processing, have dramatically transformed. However,

the dependency on delivery vans or trucks for the last-mile operation has remained

unchanged for decades. This traditional process of delivering goods is not efficient in

the long-run due to increasing traffic congestion and growing customer expectations

[1, 2]. Over 70% of the consumers across the globe are price sensitive and are reluctant

to pay for faster delivery [3]. Yet, a majority expects reliable as well as quick delivery

of goods. As a result, companies are competing to achieve cost-efficient and faster last-

mile delivery operations. The integration of emerging technology, such as unmanned

aerial and ground vehicles or drones, in the last-mile network design could overcome

these challenges and provide a competitive advantage.
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1.1 Industrial background and challenges

The last-mile delivery market is projected to have a compounded annual growth

rate of 16% during the next five years, primarily due to the proliferation of e-commerce

transactions [4]. Consequently, the traffic congestion and greenhouse gas emissions are

expected to increase by 21% and 32%, respectively, in the absence of an effective last-

mile intervention strategy [5]. On the other hand, companies are also striving to meet

the faster delivery expectations of the consumer and gain a competitive advantage. A

potential approach to transform the last-mile delivery is to adopt emerging logistics

technologies, namely drones, as they can circumvent ground-based traffic congestion

and parallelize delivery operations [6]. In particular, an aerial drone can surmount

its limited payload capacity and flying range by collaborating with a truck that can

serve as a moving depot and recharging (or battery-swap) platform [7, 8, 9, 10, 11].

Similarly, a ground vehicle can collaborate with a truck to perform the last-mile

delivery tasks, especially at congested areas [12, 13, 14, 15, 16].

Owing to their relatively low operating cost and congestion-free aerial and side-

walk routes, drones are an attractive alternative for performing last-mile delivery

operations [17]. Besides, drones provide an environmentally friendly mode of delivery

if low-carbon electricity sources are used to charge batteries [18, 19]. Due to rapid

growth in Business-to-Consumer (B2C) transactions, where packages are smaller,

drones are viable to deliver most customer orders [20]. Recently, the application of

2



drones in delivery logistics has emerged prominently, especially after the initiatives of

big corporations such as Amazon [21], Google [22], and DHL [23]. Figure 1.1 exhibits

some models of aerial and ground drones used for last-mile delivery operations.

Figure 1.1: Some drone models of big companies working in last-mile delivery operations. [Source:
[24, 25, 26, 27]]

On the regulatory aspect, several countries across the globe are relaxing rules to

3



adopt commercial drones in the low altitude airspace. For instance, the Federal Avi-

ation Administration (FAA) in the United States is now allowing small-sized drones

to fly over people and operate beyond visual line of sight (BVLOS), even at night,

thereby removing significant barriers to their widespread use [28]. Similarly, the Eu-

ropean Union Aviation Safety Agency (EASA) has standardized drone regulations

for all its member states, and provides authorization for BVLOS operations [29].

Despite the potential benefits, drones have two major technical restrictions - (i)

limited flight/travel range or distance and (ii) restricted payload capacity [30]. These

two drawbacks impede the possibility of adopting a stand-alone drone shipment as

an alternative to traditional truck delivery. Nevertheless, a drone-truck combination

could be used for efficient delivery, where a truck carries a set of drones and customer

orders to a stop that is within the flight range. In that way, drones can be employed

to transport multiple low-weight orders [31, 32]. This would allow drones to ship most

e-commerce orders as they are typically within the payload capacity. For instance,

86% of packages shipped by the e-commerce retailer, Amazon, weigh less than 3 kg

(6.5 pounds) [20], which is less than the drone’s common payload capacity [30]. Thus,

the necessity of using drones in delivery logistics is evident from different perspectives.

However, most attempts by companies and research studies focus on using just a

single drone in tandem with a truck [9, 33, 34]. Hence, the current challenge is to

effectively operate multiple drones and a truck to achieve cheaper and quicker delivery.

4



Figure 1.2: Models of hybrid truck-drone vehicles [Source: [5, 35]]

Figure 1.3: A top-view of a truck carrying six aerial drones on its roof for last-mile delivery tasks

Realizing the potential of hybrid truck-drone systems spurred several companies to

develop proof-of-concept technologies for embracing the idea (e.g., Mercedes Vision

Van with automated cargo space management and drone deployment [35]). Also,

pilot experiments of truck-drone deliveries have been conducted [36, 37]. For example,

Workhorse, a delivery company in Ohio, tested residential deliveries using a hybrid

truck-drone system [37]. Figure 1.2 exhibits three models of hybrid trucks working

in tandem with drones and Figure 1.3 illustrates the top-view of a specially designed

truck equipped with six aerial drones on its roof for last-mile delivery tasks.

5



1.2 Research objective

This dissertation considers the problem of delivering orders to a set of customer

locations using multiple drones that operate in tandem with a single truck. Four

variants of the problem is considered as shown in Fig. 1.4. The first variant takes

advantage of the drone fleet by parallelizing the delivery tasks via concurrently dis-

patching the drones from a truck parked at a focal point (ideal drone launch location)

to the nearby customer locations. The focal points are restricted to customer loca-

tions in consistent with the most previous research in the literature. The following

research objectives pertaining to the first variant are considered.

• Optimize the following key decisions of delivery operations by drones - (i) total

drones to be employed per truck, (ii) number of focal points (or truck stops)

required and their locations, (iii) assignment of delivery locations to a focal

point and (iv) truck route that covers all the stops.

• Develop an efficient solution method for the policy of restricting the drone-

dispatch locations to the customer locations (or depot).

• Develop a holistic joint optimization model for the clustering af customer lo-

cations and hybrid drone-truck routing to minimize total operational cost and

delivery completion time.

• Formulate a multi-criteria model to achieve the best trade-off between total cost

and delivery completion time.

6
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• Integrate several characteristics necessary for the real-life implementation of

truck-drone delivery, such as payload-dependent flight range, allowing the de-

pot to be a potential drone dispatch point, and situations requiring delivery

only by a truck.

The second variant allows the focal points to be anywhere in the delivery area

(i.e., a customer or non-customer location). It shares the same research objectives of

the first variant while considering the respective policy of locating focal points. The

third variant suggests allowing the usage of feasible non-customer locations (referred

to as flexible sites) as truck stops for drone launch and recovery operations (LARO).

This relaxes a common constraint in the literature restricting the drone LARO to

customer locations. The research objectives of the third variant are as follows.

• Quantify and demonstrate the impact of using flexible sites rather than restrict-

ing the drone LARO to customer locations.

• Consider three key decisions - (i) assignment of each customer location to a vehi-

cle, (ii) routing of truck and UAVs, and (iii) scheduling drone LARO and truck

operator activities at each stop, which are always not simultaneously considered

in the literature.

• Formulate a mathematical programming model to jointly optimize the three

decisions.

• Develop an optimization-based heuristic to efficiently solve problem instances at

8



scale.

The fourth variant in this dissertation proposes utilizing a network of docking

stations and repositioning of drones to enhance the efficacy of delivery operations by

truck-drone tandems. In particular, such stations are used for drone docking before

and after delivery operations to avoid both loading all required drones to the truck at

the depot and waiting of the truck on its route to recover drones. The fourth variant’s

research objectives are as follows.

• Quantify and demonstrate the impact of operating a network of docking stations

stations in enhancing the performance of last-mile delivery tasks.

• Formulate a mathematical model to optimize the delivery operations while uti-

lizing a network of docking stations.

• Consider the tradeoff, in delivery by truck and drones, between operating tradi-

tional trucks versus hybrid trucks accommodating drones.

• Provide insights on how to select the locations of docking stations and the char-

acteristics of optimal solutions.

In general, this dissertation aims at bridging the knowledge gaps of optimizing op-

erations pertaining to the emerging technology of using drones in delivery operations.
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1.3 Dissertation outline

The remainder of this dissertation is organized as follows. Chapter 2 describes

different problem configurations of last-mile delivery by drones and provides a de-

tailed review of the relevant literature and research gaps. In Chapter 3, an integer

programming (IP) model is formulated for the policy of restricting truck-drone stops

to be customer locations. Two objectives are considered in the IP model, minimiz-

ing total cost and delivery completion time. Next, an extensive set of test instances

is generated and solved to demonstrate the proposed model. Similar to Chapter 3,

a mathematical programming model is developed in Chapter 4 but for the policy

of allowing the truck-drone stops to be anywhere in the delivery area (i.e., a cus-

tomer or non-customer location). Due to the complexity of relaxing the locations

of truck-drone stops, the model is formulated initially as a mixed integer non-linear

programming (MINLP) model and then a linearization procedure is presented. Fur-

ther, new strategies to accelerate the solution time of the computationally expensive

optimization model are presented.

In Chapter 5, a MILP programming model is formulated to optimize delivery

operations while using flexible sites for drone LARO. Furthermore, an optimization-

enabled two-phase search algorithm is developed, to handle large problem instances,

by hybridizing simulated annealing and variable neighborhood search. Next, rigorous

computational experiments are presented to demonstrate the impact of using flexible
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sites and the effect of critical parameters on the delivery operations performance.

Chapter 6 presents a MILP model for the delivery tasks while utilizing a set of docking

stations. In addition, it provides several insights for the utilization of such a delivery

system setting. Finally, Chapter 7 presents conclusions and directions for future

research.
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Chapter 2

Literature Review

2.1 Motivation

Drones, or unmanned aerial/ground vehicles, can be employed for a variety of

civilian applications, such as security and surveillance [38], disaster management [39],

agriculture [40], photography [41]. Among these applications, last-mile delivery by

drones is promising in replacing (or substantially collaborating with) the traditional

trucks in the delivery operations. Owing to the aerial/sidewalk travel and relative low

cost, drones are viable for such operations from both research and industrial perspec-

tives. In practice, numerous companies around the globe have initiated projects to

incorporate drones in their delivery operations, such as Amazon [21], DHL [23], UPS

[42], FedEx [43], and Alibaba [44]. However, there are two technical issues inhibit the
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usage of stand-alone drones in delivery tasks. First, there is a limited flight/travel

range of drones as opposed to trucks. Second, drones are characterized by limited

payload capacity. Nevertheless, employing trucks to work in tandem with drones

can solve the first issue, where a truck can transport both packages and drones until

the customer location becomes within the drone flight/travel range. Many models of

hybrid truck-drone systems are developed, such as the Vision Van by Mercedes-Benz

[35]. Furthermore, the vast majority of packages in the era of business-to-consumer

transactions are under the typical capacity of drones. For instance, 86% of Amazon’s

orders weigh less than 3 kg [20], which is less than the common payload capacities of

drones [30].

Although the prospect of using drones in delivery operations were sporadically

suggested throughout the last two decades, the Amazon’s announcement in 2013 of

using drones for delivering their packages increased the attention in both industrial

and research arenas [33]. The aim of this review is to survey the growing litera-

ture in delivery by drones, specifically in the area of routing and scheduling delivery

operations. The problem of last-mile delivery by drones (LMDD) have different con-

figurations based on five characteristics:

• Vehicles involved and heterogeneity: Stand-alone drones can be employed

for delivery logistics or other vehicles, such as trucks, are involved. Furthermore,

the fleet of vehicles can be identical or heterogeneous.
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• Relative motion of vehicles and interaction level: If other vehicles than

drones are used, they all may move simultaneously or not. Moreover, drones

may rendezvous other vehicles to enable wider coverage of delivery area or not.

• Stationary facilities and network connectivity: The network under consid-

eration may involve a single or multiple hubs for providing supplies and fueling.

Further, some locations, such as islands and mountains, can be non-reachable

by some kinds of vehicles.

• Capacity of vehicles: Drones can carry a single or multiple units and with

respect to a limited payload weight. Similarly, truck capacity may be relatively

limited or it can be sufficient to carry all designated orders.

• Drone launching and landing locations: Based on technical and operational

considerations, drones can be allowed to launch and land at specific locations.

Next, the state of the art in terms of solution methodologies developed for the LMDD

problem are reported. Finally, the literature is analyzed and research gaps are listed.

2.2 Review methodology

This literature review is specialized in the LMDD problem, which distinguishes

it from other literature reviews handling diverse civilian applications of drones. For

readers with interests in such general overview, we refer them to Otto et al. [30] and
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Chung et al. [45], who included topics such as area coverage, search operations, and

task assignment to employ drones in different applications, such as agriculture, disas-

ter management, environmental monitoring, security, and entertainment. Our review

methodology starts with a material collection process, and then a descriptive analysis

is conducted. Next, in Sections 2.3 and 2.4, we classify the content of the selected

material based on the problem configuration and solution methodology, respectively.

Finally, literature analysis and gaps are presented in Section 2.5.

2.2.1 Material collection

To guarantee a comprehensive coverage of relevant articles in the LMDD problem,

a structured search is conducted on Scopus. The search was not restricted to specific

year bounds, but the resulting articles are expected to be published in recent years.

The required material is collected based on the following inclusion and exclusion

criteria.

2.2.1.1 Inclusion criteria

To quantify the literature size, we started the search by “drone”, “robot”, “ground

vehicle”, “unmanned aerial vehicle”, or “UAV” in the title and by “delivery” or

“logistics” in the abstract. Note that we allowed other words that share the same

root throughout the material collection process; for example, searching by “logistics”
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implies also “logistic” and “logistical”. This stage results in 5,522 papers. The

resulting articles were further refined by considering one of the following keywords to

be in the abstract as well, “customer”, “package”, “parcel”, “courier”, “truck”, “last

mile”, “route”, or “schedule”. By adding these keywords, the Scopus search included

1,241 papers.

2.2.1.2 Exclusion criteria

The 1,241 papers are filtered on three consecutive stages to exclude irrelevant

material - (i) subject area (e.g., physics or chemistry), (ii) source title (i.e., title of

journal or conference), and (iii) paper title. Table 2.1 exhibits the description of the

three criteria and the remaining papers after each stage. In summary, the material

after the filtration is 712 papers. However, among them, 72 relevant papers are

selected for review based on manual scrutiny.

2.2.2 Descriptive analysis

The majority of the selected papers were published in or after 2015 with an expo-

nential increase, as shown in Figure 2.1, indicating the growing interest in this topic.

Also, it is noticed that many of these papers have been published in high-quality and

peer-reviewed journals as shown in Table 2.2. Furthermore, Table 2.3 illustrates that

the United states dominates the highest proportion of papers, where many big corpo-
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Table 2.1: Exclusion stages of irrelevant papers

Exclusion criteria Description Remaining papers
after exclusion

Subject area “Physics and Astronomy”, “Material science”,
“Earth and Planetary Sciences”, “Immunology
and Microbiology”, “Agricultural and Biological
Sciences”, “Chemical Engineering”, “Chemistry”,
and “Biochemistry, Genetics and Molecular Biol-
ogy”

1,054

Source title “military”, “defence”, “aerospace”, “aerody-
namic”, “aeronautic”, “aviation”, “robot”, “elec-
tric”, “electronic”, “micro”, “dynamic”, “digi-
tal”, “telematics”, “cyber”, “mechanic”, “mecha-
tronic”, “wireless”, “radio”, “signal”, and “sen-
sor”

798

Paper title “communicate”, “wireless”, “navigate”, “detect”,
“sensor”, “trajectory”, “risk”, “disaster”, “agri-
culture”, and “traffic”

712

rations such as Amazon and FedEx are headquartered and demanding this research

for their operations. In addition, the table shows that research in delivery operations

by drones is of interest to many researchers in more than different 60 countries.

Table 2.2: Number of papers per journal

Journal Number of papers

Transportation Research part C 18
Networks 14
European Journal Of Operational Research 10
Computers and Operations Research 9
Transportation Research part E 7
Transportation Research part D 6
Others (57 journals) ≤5
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Figure 2.1: Number of papers per year starting 2015

2.3 Problem configuration of last-mile delivery by drones

The LMDD problem have different configurations based on five characteristics.

Table 2.4 categorizes alternative characteristics that can form different problem con-

figurations, and then Table 2.5 lists the problem configuration in some surveyed ar-

ticles.

2.3.1 Vehicles involved and heterogeneity

Many research studies considered employing a fleet of drones simultaneously for

delivery operations [7, 32, 33, 46, 56]. Due to the travel range restriction, most of these
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Table 2.3: Number of papers per country

Country Number of papers

United States 194
China 110
Germany 52
South Korea 43
United Kingdom 35
India 31
Italy 30
Australia 28
France 28
Canada 26
Others (52 countries) ≤25

Table 2.4: Abbreviations of different problem characteristics

Category Abbreviation Details

Vehicles involved and SD Single drone
heterogeneity MD Multiple drones

NT No-trucks
ST Single truck
MT Multiple trucks
ID Identical drones
HD Heterogeneous drones
IT Identical trucks
HT Heterogeneous trucks

Relative motion of EO Either drones or trucks can be operated at a time
vehicles and interaction BO Both vehicles can be operated simultaneously
level NR Drones do not rendezvous trucks

DR Drones rendezvous trucks

Stationary facilities and SH Single hub
network connectivity MH Multiple hubs (or stationary facilities)

RN Reachable nodes by any vehicle (i.e., drone or
truck)

NN Some nodes are non-reachable by a specific vehicle
type (i.e., drone or truck)

Capacity of vehicles SU Single unit capacity of drones
MU Multiple units capacity of drones
LC Limited capacity of trucks
UC Unlimited capacity of trucks

Drone launching and AC Launching only from customer locations or hubs
landing AS Launching only from stationary stations or hubs

AA Launching from anywhere
ZC Landing only from customer locations or hubs
ZS Landing only from stationary stations or hubs
ZA Landing from anywhere
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Table 2.5: Summary of problem configuration of surveyed papers

Paper Vehicles
involved and
heterogeneity

Relative motion
of vehicles and
interaction level

Stationary facilities
and network
connectivity

Capacity
of

vehicles

Drone launching
and landing

locations

Coelho et al.
(2017) [46]

MD-NT-HD - MH MU AS-ZS

Hong et al. (2018)
[7]

MD-NT-ID - MH - AS-ZS

Murray and Chu
(2015) [33]

variant 1 SD-ST BO-DR SH-RN SU-UC AC-ZC
variant 2 MD-ST-ID BO-NR SH-NN SU-UC AS-ZS

Agatz and Bouman
(2018) [47]

SD-ST BO-DR SH-RN SU-UC AC-ZC

Ha et al. (2018)
[34]

SD-ST BO-DR SH-RN SU-UC AC-ZC

Yurek and Oz-
mutlu (2018)
[48]

SD-ST BO-DR SH-RN SU-UC AC-ZC

Gonzalez-R et al.
(2020) [49]

SD-ST BO-DR SH-RN MU-UC AC-ZC

Dell’Amico et al.
(2019) [50]

SD-ST BO-DR SH-RN SU-UC AC-ZC

Dell’Amico et al.
(2020) [51]

MD-ST-ID BO-NR SH-NN SU-UC AS-ZS

Ferrandez et al.
(2016) [31]

MD-ST-ID EO-DR SH-NN SU-UC AA-ZA

Chang and Lee
(2018) [32]

MD-ST-ID EO-DR SH-NN SU-UC AA-ZA

Salama and Srini-
vas (2020) [11]

variant 1 MD-ST-ID EO-DR SH-RN SU-UC AC-ZC
variant 2 MD-ST-ID EO-DR SH-RN SU-UC AA-ZA

Karak and Abdel-
ghany (2019) [7]

MD-ST-ID EO-DR MH-NN MU-UC AS-ZS

Murray and Raj
(2019) [52]

MD-ST-HD BO-DR SH-RN SU-UC AC-ZC

Poikonen and
Golden (2020) [53]

MD-ST-HD BO-DR SH-RN MU-UC AS-ZS

Ham (2018) [54] MD-MT-HD-HT BO-NR MH-NN SU-UC AS-ZS
Wang and Sheu
(2019) [55]

MD-MT-ID-IT BO-NR MH-RN MU-UC AC-ZS

Kitjacharoenchai
et al. (2019) [56]

MD-MT-ID-IT BO-DR SH-RN SU-UC AC-ZC

Sacramento et al.
(2019) [57]

MD-MT-ID-IT BO-DR SH-RN SU-LC AC-ZC
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studies proposed establishing a set of stations for charging drone batteries [7, 46]. The

charging stations can be stationary or mobile based on the spatiotemporal dynamics

of delivery orders. Furthermore, the fleet of drones can be identical [32, 33, 56], or

heterogeneous [46, 52, 53, 54]. For instance, some drones are equipped with avoidance

sensors to suit urban areas, as opposed to less costly drones for rural areas [33].

To avoid the cost of establishing stations, numerous studies investigated the use

of trucks to work in tandem with drones [32, 33, 47, 56]. It is not only to overcome

the travel range restriction but also to deliver the orders with weights exceeding the

drone payload capacity. The fleet of trucks can be also identical or heterogeneous

based on capacity, speed, and accessibility to specific locations. Furthermore, since

the delivery by drones is recently introduced, the proportion of truck fleet that can

launch and receive drones would be gradually growing.

2.3.2 Relative motion of vehicles and interaction level

There are two common approaches for employing drones in tandem with trucks. A

conservative approach prevents the truck to move from the drone launching locations

until all drones are recollected [8, 11, 31, 32]. This is justified by the fear of road

traffic uncertainty that may cause a different location of truck in a designated time.

The second approach is more common, which suggests that both drones and trucks

can move simultaneously [33, 47, 49]. In that way, drones can be launched from a
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truck at a specific location and then the truck move to deliver packages to customers

at different location(s) before rendezvousing the drone again. In case of employing

multiple trucks, some studies assumed that launching and receiving each subset of

drones is assigned to a specific truck [57]. Another practical perspective, yet complex,

is allowing drones to be dispatched from a truck and received by another [56].

2.3.3 Stationary facilities and network connectivity

A typical network for delivery operations may contain a single depot [32, 33, 47, 57]

or multiple hubs [54, 55]. Although similar forms of networks are observed for the

LMDD problem, the function of stationary stations may be limited to charging or

swapping batteries to extend the drone flight range [7]. The stationary facilities

can be established for the sake of incorporating drones in delivery operations [7].

Alternatively, many studies consider adapting the existing network of stores in a city

for that function [46].

A common assumption in generic routing problems is that all network nodes are

reachable by the used vehicles. Some research in the LMDD problem adopted the

same network attribute for both drones and trucks [33, 47, 57]. In contrast, others

determined either a specific set of nodes to be visited only by trucks due to the limited

drone flight range [51], or visited only by drones due to the geographical barriers such

as the locations in islands or on mountains [58]. Lastly, a few studies assumed that
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packages can be delivered only by drones [8, 31, 32].

2.3.4 Capacity of vehicles

Most developed models consider that drones are capable of carrying a single pack-

age [32, 33, 34, 47, 48, 52, 56]. Nevertheless, a few models adopt the case of drones

carrying multiple packages [8, 53, 55]. The capacity of trucks are categorized into

a proportion for packages and another for drones. Typically, they are separated as

aerial drones are mounted on the truck roof while ground drones are docked in the

bottom half of the truck [8, 35]. However, if drones share the same space inside

the truck, the capacity of packages is considered simultaneously with the number of

allowable drones on the truck [55].

2.3.5 Drone launching and landing locations

Technically, most commercial drones can be launched from anywhere. However,

some studies assumed that the launching should be conducted from the depot or

stationary stations [7, 8, 51, 54], while others assumed that the launching are from

customer locations [47, 48, 52]. On the other hand, a few articles considered that

drones can be launched from anywhere in the delivery area [32], or along the truck

route [45]. Similarly, three cases of drone landing are considered in the literature.
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First, drones should land only in the depot or stationary location [7, 8, 51, 54, 55].

Second, the landing can be on truck waiting at customer locations [47, 48, 52]. Finally,

the drone can rendezvous the truck anywhere in the delivery area [32].

2.4 Solution methodologies

In this section, a detailed review of the LMDD models are presented. Research

on employing drones in delivery operations has gained a lot of attention in recent

years. Some studies considered direct drone delivery from distribution centers by

using a network of recharging stations to overcome the travel range limitation [7]. To

circumvent the cost of establishing such stations, a truck collaborating with drones

is considered in many other studies, in which a truck carries both drone and order

until the customer location is within the drone travel range [32, 33, 34]. Hence, the

truck functions as a moving depot, as stated by Hong et al. [7]. The literature on

coordinating the logistics operations using a truck-drone combination focused pre-

dominantly on extending classical routing problems - a variant of traveling salesman

problem with drones (TSP-D) [9, 33, 34, 47, 48, 59, 60], and a generalization of vehicle

routing problems to include drones (VRP-D) [55, 57, 61, 62, 63].
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2.4.1 Traveling salesman problem with drones (TSP-D)

In TSP-D, a set of customer locations are served either by a drone or truck. The

truck carrying a single drone starts from, and returns to, a depot exactly once. Be-

sides, a drone can only be launched from, and recovered at, customer locations. The

truck can continue delivery after dispatch, as the drone may return to a site that is

different from the original dispatch location. Prior research has adopted different ap-

proaches to solving the TSP-D. One of the earliest studies on the truck-drone routing

was presented by Murray and Chu [33], who developed a mixed integer linear pro-

gramming (MILP) model along with simple heuristics to minimize the overall delivery

completion time. They found the MILP model to be computationally expensive as

it could not achieve optimality even after a 30-min runtime, whereas their heuristics

were able to produce better solutions in less time. To overcome the drawback of not

achieving optimality using the MILP model, subsequent works adopted different ap-

proaches for the TSP-D. Agatz et al. [47] developed an integer programming model

as well as several fast route-first cluster-second heuristics to solve the TSP-D. They

achieved optimality for 12 customer instances within a two-hour run time, while their

heuristics yielded near-optimal solutions quickly. Besides, their experimental analysis

indicated a substantial reduction in delivery completion time when using truck-drone

in tandem as opposed to truck-only delivery. However, they assumed drones to follow

the road network, which diverges from previous works that consider Euclidean drone
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travel. To further expedite the time to optimality, Yurek and Ozmutlu [48] proposed

an iterative algorithm based on a decomposition approach for the TSP-D. Their model

was able to achieve the optimal solution for 12 customer instances with an average

solution time of 15 min. While all the above-mentioned research on TSP-D aimed

at minimizing completion time, Ha et al. [34] developed MILP formulation and two

heuristics to minimize total operational costs. The authors found that minimizing

cost has a significant improvement in drone utilization, but also increases the overall

delivery completion time. Although this research above is similar to our work in the

aspect of using truck and drone in tandem for delivery, there are many stark differ-

ences. In particular, all the aforementioned literature considers only a single drone,

while our problem involves the use of multiple drones. In a recent study, Campbell et

al. [64] demonstrated the effectiveness of using multiple drones per truck in minimiz-

ing the operational cost. While previous models on TSP-D aim to minimize either

delivery completion time or operational costs, the current research considers both the

objectives to unveil their independent impact and best trade-offs.

2.4.2 Vehicle routing problem with drones (VRP-D)

The VRP-D is an extension of the TSP-D, where a fleet of homogeneous trucks,

each carrying a fixed number of drones, is used in package delivery to a set of cus-

tomers [57, 61, 63]. Wang et al. [63] introduced the VRP-D to minimize completion
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time and presented a theoretical study to compare the optimal objective value with

and without using drones. They considered different settings and concluded that

integrating drones in the delivery process has substantial time savings. Particularly,

they found two factors that impact the completion time - number of drones per truck

and the drone speed (relative to the truck speed). However, the authors assumed

rectilinear travel paths for both trucks and drones and unlimited drone battery-life.

Poikonen et al. [61] extended their work by relaxing these two assumptions. In ad-

dition, they related the VRP-D to the close-enough VRP (CEVRP), where a truck

need not visit the actual location but achieve close proximity. In contrast to the

previous two articles on VRP-D, Sacramento et al. [57] presented a MILP model to

minimize the total operational costs, while considering capacity and completion time

constraints. The authors compared their formulation with the truck-only approach

and concluded that using drones can achieve up to 30% cost savings. However, they

assume that each truck is equipped with only a single drone. Wang and Sheu [55]

dealt with this limitation by formulating an arc-based model for VRP-D to minimize

total fixed and operational costs. Their results show a 20% reduction in total cost,

besides reducing the average delivery time by five minutes per customer. Nonetheless,

they assume an unlimited supply of drones and restrict them to land only at a service

hub or depot, but not at a customer location. The main commonality between our

work and the VRP-D literature is the use of multiple drones for last-mile delivery

operations. However, unlike this paper, all the previous work on VRP-D uses only a
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specific set of locations for launching and recovering drones.

2.4.3 Clustering of customer locations and routing of truck and drones

Another category of hybrid drone-truck routing for optimizing last-mile delivery

involves the coordination of multiple drones working in tandem with a single truck

[8, 31, 32]. This can be conducted by clustering of customer locations and routing of

truck and drones. It is therefore analogous to the traditional truck and trailer routing

problem (TTRP). In TTRP, some customers must be served only by a truck, while the

remaining customers can be visited by a single truck or a truck-trailer combination

[65, 66, 67]. Akin to TTRP, we route two types of vehicles (a truck and drone instead

of a truck and trailer) to different sets of customers (those who require truck-only

delivery, and others who can be served either by a truck or drone). Nonetheless,

our problem allows the truck and drone to operate independently, while a trailer

cannot move without a truck in TTRP. On the other hand, our solution strategy is

vaguely similar to the ring star problem (RSP), which considers a set of nodes (retailer

locations) and a central depot with the goal of identifying a subset of retailers that can

also act as small depots. The selected small depots are interconnected (ring structure)

and supplied by the central depot, whereas the remaining retailers are served by the

closest small depot (star topology) [68]. The RSP is similar to our work in the sense

that both problems require the identification of focal points that serves neighboring
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locations. But, the RSP establishes several small depots in the network, while our

problem locates truck stops. However, in contrast to our research, the RSP restricts

each small depot to be one of the existing nodes (retailers). Besides, RSP focuses

only on constructing a route connecting the focal nodes (small depots) and assigning

the remaining nodes to exactly one of the focal nodes. Our research accomplishes

the same, but additionally considers the delivery of orders from the focal point to its

assigned nodes. Also, RSP assumes a single-vehicle, whereas our problem involves

multiple drones working in tandem with a truck.

Recently, Karak and Abdelghany [8] considered such an arrangement for mini-

mizing the total operational cost of pick-up and drop-off services, where a set of

customers are visited (for order pick-up and/or delivery) by drones that are deployed

from a truck halted at a station. Their research shares the following aspects with our

work in chapters 3 and 4. A single truck carrying multiple drones is departed from,

and returned, to a depot. Along its route, it visits a number of truck stops (defined

as stations in their study and cluster focal points in our work) and waits to dispatch

and recollect drones. Yet, the truck stops are assumed to be known apriori by Karak

and Abdelghany [8], while our approach seeks to establish their optimal locations.

Furthermore, we consider both truck and drone to be capable of serving a customer,

whereas Karak and Abdelghany [8] do not use the truck for delivering customer or-

ders. On the other hand, we are aware of only two works that adopt a clustering-based

method to minimize the completion time of last-mile deliveries with one truck and
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several identical drones [31, 32]. Both papers proposed a similar multi-phase sequen-

tial approach. First, the delivery locations are grouped into non-overlapping clusters.

Subsequently, a truck stop per cluster is located for launching and recovering multi-

ple drones that simultaneously serve the customers in that cluster. Finally, the best

truck (carrying multiple drones and customer orders) route is established such that

the truck starts from the depot, visit each truck stop exactly once, and then returns

to the depot. Such an approach would also lower the operating cost compared to the

truck-only delivery since the cost of using drones is significantly less than trucks [55].

In particular, Ferrandez et al. [31] used an unsupervised machine learning approach,

k-means algorithm, to partition the network into clusters, where the centroid of a

cluster would serve as a truck stop for drone dispatch. Consequently, the authors de-

veloped a genetic algorithm to determine the best truck route covering all the cluster

centroids. They compared the truck-drone operation with a truck-only delivery and

concluded that a significant reduction in delivery completion time is possible only

when employing two or more drones per truck. Chang and Lee [32] improvised their

approach by using the classical TSP model to find the shortest truck route through

all the cluster stops. Besides, the authors shifted the cluster centroids (truck stops)

towards the depot using a computationally intensive non-linear mathematical model

to further reduce the delivery completion time.
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2.5 Literature analysis and gaps

Employing drones in last-mile deliveries is recently introduced in the literature

and practice, and therefore there are many future research directions. The relevant

literature is limited since the research and commercial attention is driven by the recent

Amazon’s announcement in 2013 to use drones in delivering their packages. Based on

the problem configurations of surveyed papers in Table 2.5, many research gaps can

be identified by creating different combinations of attributes. In this dissertation, the

following research gaps are addressed.

• The clustering of customer locations and routing of truck and drones is tackled

in the literature using sequential heuristics. Such an approach allows solving

realistic problem instances but only achieves sub-optimal solutions as the deci-

sions are interrelated. Therefore, an efficient joint optimization approach should

be able to handle realistic instances and produce better solutions.

• All surveyed articles in optimization of hybrid truck-drone systems consider the

truck stop to be a customer or a predefined location. This critical restriction

can be avoided in practice, which potentially allows better delivery schedules.

However, limiting truck stops to customer locations can be a managerial pol-

icy. Therefore, two operational policies should be offered for decision makers −

allowing the truck stops to be a customer or non-customer locations.

• The number of drones per truck is fixed irrespective of the input data of customer
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locations. Such an approach would affect drone utilization and also increase the

operational cost. Hence, the number of drone mounted on each truck should be

optimized.

• The compromise between minimizing delivery completion time and operational

costs was not investigated in the literature of delivery by truck-drone hybrid

systems. Commercial companies aim at achieving a balance between customer

satisfaction by minimizing delivery time and the operational cost.

• Each drone is assumed to perform a single sortie in each cluster of customer

locations. If multiple sorties are allowed, the fleet of drones can be utilized

better which results in less operational costs.

• Drones are assumed to be loaded on truck at the depot, and the truck must

recover them before returning back to the depot. This results in less utilization

of the available fleet of drones and slower delivery operations, as the truck must

frequently wait to recover the drones. Using a network of stations for docking of

drones may potentially enhance the efficacy of delivery operations.
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Chapter 3

Joint optimization of customer

location clustering and truck-drone

routing with restricted stops

3.1 Problem description

This chapter considers the delivery of goods from a depot (l0) to N customer

locations by using a truck and fleet of identical drones, where L = {l0, l1, l2, . . . lN}

denotes the set of delivery network vertices. The truck can dock up to G drones,

where each drone has a restricted payload capacity. As a result, some customer
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orders require a truck-only delivery. Thus, a subset of customer locations can be

served either by a drone or truck (LD ⊂ L), whereas the remaining locations must

be visited only by a truck (LT = L − LD). The maximum drone travel range (Fl) is

negatively associated with the outbound shipping weight, and therefore dependent on

the delivery location [9, 58, 69]. Besides, Fl is set to null for orders exceeding drone

payload capacity (i.e., Fl = 0,∀l ∈ LT ).

The delivery problem necessitates the customer locations to be partitioned into

non-overlapping clusters, where each cluster has a focal point (or truck stop) defined

by two-dimensional coordinates. To perform the delivery operations, the truck (car-

rying the drones), traveling at a speed of V T , must start from the depot, visit every

cluster stop exactly once to fulfill the orders within each cluster, and finally return to

the same depot. If a cluster has more than one location assigned to it, then multiple

drones are dispatched from the truck stop to parallelize shipping operations. The

drone travels with a velocity V D, unloads the package at the customer location in Sl

time units, and then returns to the truck waiting at the same focal point.

Theoretically, the number of clusters established ranges from 1 to N . A single

cluster indicates that the drones are directly dispatched from, and returned to, the

depot, and therefore does not require a truck. On the other hand, a network with

N clusters, where each cluster contains exactly one location, corresponds to a truck

visiting each delivery location - a classical TSP which does not require any drones
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Figure 3.1: Illustrative example of delivery using: (a) truck only; (b) truck with drones dispatched
from customer locations

(Figure 3.1(a)). Finally, if the number of clusters is between 1 and N , then it would

require both truck and drones to cover all delivery locations (Figures 3.1(b)). In this

research, we consider the maximum number of allowable clusters (K̂) as a param-

eter so that it can be controlled by the decision-maker based on operational needs.

However, among the K̂ possible clusters, a cluster k ∈ K is formed if and only if it

contains at least one delivery location.

Thus, given the set of delivery locations (L = LD ∪ LT ), vehicles (a truck and

up to G drones) along with their velocities (V T and V D) and maximum allowable

clusters (K̂), the objectives of our problem are to (i) independently minimize the total
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operational cost and completion time required to deliver all customer orders either

by a drone or truck and (ii) obtain efficient trade-off solutions by simultaneously

considering both the objectives. The proposed approach will optimize the objective

by concurrently determining the following decisions - (i) total drones to deploy (g)

given a capacity restriction of G drones, (ii) number of clusters to establish and

their locations, (iii) delivery locations assigned to each truck stop, and (iv) the truck

route. In this chapter, we consider the policy of restricting truck stops to be customer

locations (Figure 3.1(b)).

To formulate the optimization models for the problem under consideration, the

following operating conditions are assumed.

• The drones are fully charged before leaving the truck.

• The drone launch sequence from a truck stop follows the farthest travel distance

first policy within a cluster.

• The velocity of drone is independent of its payload.

• Drones carry only one delivery package at a time.

• Each drone makes at most one delivery per cluster.

• Drones travel between a cluster focal point (truck stop) and delivery location

based on the Euclidean metric, while truck travels from one focal point to another

on a rectilinear metric.

• The truck has sufficient capacity to accommodate all the customer orders. In
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the B2C delivery operations, where the vast majority of orders (more than 85%)

weigh less than 5 lb, the trucks seldom run out of capacity as indicated by

Sacramento et al. [57].

To address the problem presented above, we propose an integer programming

(IP) model to jointly optimize delivery locations clustering and truck-drone routing

(JOCR) with the objective of minimizing the total cost, namely, fixed cost of drones

and travel costs of truck and drones. In this chapter, the cluster focal points are

restricted to coincide with a delivery location (min-cost JOCR-R). An overview of the

research methodology is provided in Figure 3.2. A collection of input parameters are

used to model the JOCR-R policy as an integer program (IP). Besides, two variants

are proposed to control the model characteristics - using an alternative objective

function and dealing with two conflicting objectives.

3.2 Integer programming model

The min-cost JOCR-R model is formulated using the following notation (indices

and sets, parameters, and decision variables).
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Indices and Sets

l, l′ ∈ L set of depot and customer (or delivery) locations, L =

{l0, l1, l2, l3, . . . lN}, where l0 denotes the depot location

l ∈ LD subset of delivery locations that can be served by drones or truck,

LD ⊂ L

l ∈ LT subset of delivery locations that must be served only by a truck,

LT ⊂ L

Parameters

N number of customer locations

K̂ maximum allowable number of clusters

G maximum number of drones that can be docked on the truck

CD
1 fixed cost for employing a drone (in $/drone)

CD
2 travel cost of drone (in $/mile)

CT travel cost of truck (in $/mile)

(Al, Bl) coordinates of delivery location l ∈ L

DE
l′l Euclidean distance (in miles) between delivery locations l′ ∈ L and l ∈ L,

where DE
l′l =

√
(Al′ − Al)2 + (Bl′ −Bl)2

DR
l′l rectilinear distance (in miles) between delivery locations l′ ∈ L and l ∈ L,

where DR
l′l = |Al′ − Al|+ |Bl′ −Bl|
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Fl maximum travel range of a drone (in miles) serving delivery location

l ∈ L

Decision variables

g number of drones carried by the truck

xll 1 if a delivery location l ∈ L acts as a focal point for its cluster, 0

otherwise

xl′l 1 if a delivery location l′ ∈ L is assigned to a focal point l ∈ L, 0

otherwise

yl′l 1 if truck travels from cluster focal point l′ ∈ L to another focal point

l ∈ L, 0 otherwise

ul order in which cluster focal point l ∈ L is visited by the truck

CRJOCR total cost for the JOCR-R policy

The JOCR-R model is mathematically formulated as follows.

Minimize CRJOCR = CD
1 g+CD

2

∑
l′∈L

∑
l∈L

xl′l×(2DE
l′l)+CT

∑
l′∈L

∑
l∈L

yl′lD
R
l′l (3.1)
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S.t.

∑
l∈L

xll ≤ K̂ (3.2)

xl′l ≤ xll ∀l′, l ∈ L (3.3)∑
l∈L

xl′l = 1 ∀l′ ∈ L (3.4)

xll = 1 ∀l ∈ L 3 l = {l0} (3.5)∑
l′∈L

xl′l ≤ g + 1 ∀l ∈ L (3.6)

g ≤ G (3.7)

xl′lD
E
l′l ≤ Fl′ ∀l′, l ∈ L (3.8)∑

l′∈L,l′ 6=l

yl′l = xll ∀l ∈ L (3.9)

∑
l∈L,l 6=l′

yl′l = xl′l′ ∀l′ ∈ L (3.10)

ul − ul′ + (K̂ − 1)yll′ + (K̂ − 3)yl′l ≤ (K̂ − 2) ∀l, l′ ∈ L\{lo}, l′ 6= l (3.11)

xl′l, yl′l ∈ {0, 1} ∀l′, l ∈ L (3.12)

The objective function (3.1) minimizes the total cost of operating the truck and

set of drones for the JOCR-R policy. Constraint (3.2) restricts the total truck stops

to be capped by the maximum allowable clusters. Constraint (3.3) allows a delivery

location l′ ∈ L to be assigned to another location l ∈ L only if the latter serves as

a focal point. Further, constraint (3.4) ensures that every delivery location l′ ∈ L is
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assigned to exactly one cluster focal point location l ∈ L. Constraint (3.5) forces the

depot (lo ∈ L) to be a focal point so that it can dispatch drones to nearby locations.

In addition, this constraint also guarantees a truck visit to the depot (i.e., the final

stop). Since a drone is assumed to make a single trip per cluster, constraint (3.6)

ensures that the number of drone-supplied locations in each cluster cannot exceed

the total drones carried by the truck (g). The truck has a capacity restriction of G

drones on its roof, and this condition is guaranteed using constraint (3.7). Constraint

(3.8) stipulates that a location served by a drone is assigned to a cluster focal point

only if the distance between them is within the travel range. Constraints (3.9) and

(3.10) specify the truck route by confining its stops to cluster focal points (i.e., when

xll = 1) and limiting the number of truck visits to each focal point to one. In addition,

constraint (3.11) eliminates sub-tours to ensure a single trip of the truck to visit all

focal points before returning to the depot. Finally, the binary restriction on decision

variables xl′l and yl′l are specified by constraint (3.12).

3.2.1 Alternative objective function

While minimizing total operational cost is an important objective from a com-

pany’s perspective, faster delivery is seen as a key priority to customers. Therefore,

the objective of minimizing the delivery completion time is commonly adopted in the

literature of last-mile deliveries [9, 33, 48, 63]. The proposed min-cost JOCR-R model
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can be easily adapted to minimize the delivery completion time. We introduce the

following additional notation to represent the alternative objective function.

Sl service time at a delivery location l ∈ L

V D average velocity (in mph) of the drone

V T average velocity (in mph) of the truck

T RJOCR delivery completion time for the JOCR-R policy

The min-time JOCR-R model can be formulated by replacing objective function

(3.1) with (3.13).

Minimize T RJOCR =
∑
l∈L

max
l′∈L

(xl′l × (2DE
l′l/V

D + Sl′)) +
∑
l′∈L

∑
l∈L

yl′l ×DR
l′l/V

T

(3.13)

However, objective function (3.13) requires the minimization of the maximum

drone flight time within each cluster, thereby leading to a non-linear term. An exact

linearization of this minmax term can be achieved by introducing a new variable tl

to represent the maximum drone completion time per cluster, and adding constraint

(3.14). Thus, the objective function (3.13) can be rewritten as in function (3.15).

43



tl ≥ xl′l × (2DE
l′l/V

D + Sl′) ∀l′, l ∈ L (3.14)

Minimize T RJOCR =
∑
l∈L

tl +
∑
l′∈L

∑
l∈L

yl′l ×DR
l′l/V

T (3.15)

3.2.2 Dealing with multiple conflicting objectives

Minimizing total cost and delivery completion time are two conflicting objectives

for the problem under study. For instance, if minimizing delivery completion time

is the sole objective, the JOCR model may utilize all available drones to exploit

simultaneous order fulfillment. While this may shorten the overall completion time,

it increases the fixed cost of using drones. Thus, given the conflicting nature, it is

essential to obtain the set of best trade-off or Pareto optimal solutions, in which an

improvement in one objective is not possible without degrading the other. In this

section, we use the ε-constraint method, one of the best-known techniques to handle

multi-objective problems, to obtain the Pareto-optimal solutions [70]. The method is

based on optimizing one of the objectives (e.g., minimizing total cost), while the other

is bounded from above by an additional constraint. A straightforward application can

be the minimization of total cost while maintaining a desired completion time (e.g.,

shift hours of driver). The following model solves the min-cost JOCR-R model after

adding constraint (3.16), where ε is the upper bound on the delivery completion time.
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Minimize CRJOCR

S.t. constraints (3.2− 3.12)

T RJOCR ≤ ε (3.16)

3.3 Computational experiments

In this section, we conduct extensive numerical analysis to evaluate the effective-

ness of the proposed JOCR-R models. Numerous test instances of different sizes are

generated to evaluate the proposed models and compare their performance with a

sequential heuristic method proposed in the literature [32]. However, the sequential

heuristic assumes unrestricted truck-drone stops. Therefore, we intend to compare

the optimal solution for the restricted case as opposed to near-optimal solutions for

the unrestricted case by the heuristic. Also, we illustrate the possibility of obtaining

Pareto-optimal solutions (cost and time trade-off) in the case of conflicting objectives.

The proposed IP model has been developed using the General Algebraic Modeling

System (GAMS 24.5.6) and solved using CPLEX 12.8 optimizer, while the heuristic

algorithms were coded and solved using Python programming language. Further, all

the computational instances were executed on a computer with Intel Core-i7 @ 3.9

GHz processor and 8 GB RAM.

45



3.3.1 Experimental setup of test instances

We create test instances by varying the number of customer locations (N) from 20

to 35 in increments of 5. To ensure a robust evaluation, ten replications are generated

for each test instance. Besides, each instance requires 10% of the total customers to

be served only by a truck (ξ = 10%). Therefore, if N is divisible by 5 and not

10, then 50% of the replications will have (N + 5) × ξ truck-only locations and the

remaining replications will require (N − 5)× ξ truck-only locations to ensure ξ to be

10% on average across all replications. The coordinates of the delivery locations are

considered to be randomly distributed within an area of 30×30 miles2. Consistent

with the parameters in recent literature, the average velocity of both drone (V D) and

truck (V T ) is set as 25 mph [34, 55], and the maximum drone flight range (Fl) is

restricted to 10 miles (for all delivery locations that can be served by drones) [57, 71].

The truck can accommodate up to six drones on its roof (i.e., G = 6), and every drone

carried by truck is assumed to incur a fixed cost (CD
1 ) of $3. On the other hand, the

operating cost of drone (CD
2 ) is set at $0.15 per mile, while the truck operating cost

(CT ) is set at $1.25 per mile [64]. The average service time at each location (Sl) is

assumed to be one minute.
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3.3.2 Evaluation of test instances

To evaluate the test instances and understand the impact of each objective, we

solve the JOCR-R model by considering a single objective (i.e., independently min-

imizing cost and completion time). In addition, to benchmark our JOCR-R model,

we consider an approach developed by Chang and Lee [32] for a similar problem.

Their method involves the use of a sequential heuristic for clustering and routing

decisions, but with unrestricted focal point locations (referred to as SHCR-U in this

dissertation). This heuristic includes three sequential steps - (i) partitioning delivery

locations that can be served by drones into non-overlapping clusters using a k-means

clustering algorithm, (ii) optimizing cluster focal points by shifting the centroids of

clusters, obtained from the first step, towards the depot, and (iii) routing the truck

via all cluster focal points by using the standard TSP model. Since we force 10%

of the customers to be served by a truck, their locations are included in the truck

routing step of the heuristic.

Table 3.1 provides a comparison of the average total cost and delivery completion

time across 10 replications for the JOCR-R and SHCR-U models. In addition, the

table also summarizes the percentage difference in cost (Cgap(R−U)
JOCR−SHCR=

CRJOCR−C
U
SHCR

CUSHCR
×

100%) and time (T gap(R−U)
JOCR−SHCR=

T R
JOCR−T

U
SHCR

T U
SHCR

× 100%) between the joint optimization

approach for the restricted truck-drone stops policy and sequential heuristic for the

unrestricted policy that is proposed in the literature. The results show that the
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gap between employing the proposed JOCR-R models and the SHCR-U heuristic is

positive for N = 20. However, as N increases, the gap decreases for the total cost

and reversed (i.e., negative gap) for the delivery completion time. Thus, the efficiency

of the proposed JOCR-R models improves versus the SHCR-U heuristic when larger

number of customer locations is involved. The JOCR-R model is fast since the running

time is always in the order of seconds for all the evaluated instances. Specifically, it

takes, on average, up to 163 and 138 seconds for the objective of minimizing cost and

delivery completion time, respectively.

Table 3.1: Average minimum total cost and minimum total completion time of test instances

Total cost Delivery completion time

N CUSHCR CRJOCR Cgap(R−U)
JOCR−SHCR T U

SHCR T R
JOCR T gap(R−U)

JOCR−SHCR

20 122.2 135.3 10.7% 5.4 5.8 7.4%
25 138.6 143.4 3.5% 6.6 6.5 -1.5%
30 159.4 161.6 1.4% 7.3 7.2 -1.4%
35 169.2 170.5 0.8% 7.8 7.5 -3.8%

3.3.3 Influence of objective functions on clustering and routing decisions

In this section, we visually illustrate the influence of objective functions on cluster-

ing and routing decisions. A test case with 25 locations is chosen, as shown in Figure

3.3, in which the last three customer locations must be served only by a truck, while

the remaining 22 locations can be served either by a drone or a truck. Figures 3.3(a)

and 3.3(b) represent the best way to cluster the locations and route the truck for the

min-cost and min-time JOCR-R models, respectively. The min-cost JOCR-R model
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Figure 3.3: Solutions of an example using the proposed models: (a) min-cost JOCR-R
(CRJOCR=127.4 and T R

JOCR=6.7); (b) min-time JOCR-R (CRJOCR=143.8 and T R
JOCR=5.7)

yields a total cost of $127.4, and the corresponding delivery completion time for this

solution is 6.7 hours. On the other hand, the min-time JOCR-R completes the deliv-

ery in 5.7 hours but results in a higher total cost of $143.8. Thus, solely optimizing one

objective may worsen the performance of the other criterion. If the decision-maker is

interested in considering more than one objective, then a multi-criteria optimization

approach is beneficial to obtain the best trade-off solution.

The objective function plays a key role in deciding the number of drones carried

by truck. The solutions of min-time objective (Figure 3.3(b)) utilizes the entire fleet
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of drones and deploys them only at certain truck stops to achieve faster delivery

completion time. Conversely, the solutions obtained using min-cost objective (Figure

3.3(a)) uses fewer drones and dispatches them at every truck stop, and therefore

completes the delivery operation with lower cost but longer completion time. In

addition, the min-cost objective results in shorter drone travel distance compared

to the min-time objective. To achieve this, one of the key strategies adopted by the

min-cost model is to serve more locations by a truck compared to the min-time model.

3.3.4 Obtaining Pareto optimal solutions

In this section, we illustrate the ability of our proposed models to handle multiple

objectives and obtain Pareto-optimal solutions. We choose the same instance illus-

trated in Figure 3.3 as it clearly depicts the conflicting nature of the two objectives.

For example, the JOCR-R model can achieve the lowest cost (C∗) of $127.4 for the

instance depicted in Figure 3.3, but only at the expense of increasing the delivery

duration by an hour from the fastest achievable time (T ∗) of 5.7 hours. However,

lowering the completion time would increase the total costs. Therefore, we use the

ε-constraint method to obtain a set of best trade-off solutions. Figure 3.4 presents

the best compromise solutions for the chosen example, where the min-cost JOCR-R

model is solved repeatedly after incorporating the completion time constraint and

changing its limit from 5.7 to 6.7 in increments of 0.25 hours.
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Figure 3.4: Conflicting min-cost and min-time objectives of an example for JOCR-R

The results demonstrate that focusing solely on minimizing total cost increases

the corresponding completion time by 17.5% from T ∗. On the other hand, focusing

only on reducing completion time worsens the total cost by 12.9% when compared

to C∗. According to the decision maker’s priorities, a single objective can be adopted

while sacrificing the potential reduction in the other, or a trade-off can be considered

between the two objectives. For example, it can be observed from Figure 3.4 that

investing 6.0% more than C∗ would help us complete the delivery 13.1% faster than the

worst-case situation or only 4.4% slower than the best-case result of 5.7 hours. Thus,

this approach would enable practitioners to deal with two objectives simultaneously

and facilitate decision-making.
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3.4 Conclusion

In this chapter, the policy of restricting truck-drone stops to coincide with customer

locations is considered. Joint optimization models are proposed for the clustering of

customer locations and routing of truck and multiple drones. The most two common

objectives in the literature are adopted in this chapter − minimizing total cost and

delivery completion time. The proposed models can obtain the optimal solutions for

the policy under consideration.

This chapter contributes to the literature in the following manner.

• The clustering and routing decisions is jointly optimized rather than using a

sequential approach. Since these decisions are interrelated, a multi-phase method

may not achieve the best possible outcome.

• The best truck stop location for each cluster is identified instead of choosing it

to be the cluster’s centroid [31] or shifting the centroid towards the depot [32].

• This research optimizes the drones required per truck, while previous similar

work assumed the trucks to carry a fixed set of drones. This information would

be useful for planning purposes, especially with the strategic decision on the

number of drones to purchase.

• The depot is allowed to be a potential drone dispatch point.

• The customer locations can be visited by both truck and drones in our approach
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rather than restricting them only to drones.

• Instead of assuming the drones to be capable of serving all customer locations

irrespective of the order weight, certain locations are allowed to be designated

as truck-only delivery.

• As drone’s travel range is payload-dependent in practice [9, 58, 69], it is incorpo-

rated as an attribute in the proposed models instead of assuming constant travel

range.

• Two different objective functions (operational cost and completion time) are con-

sidered independently and simultaneously instead of optimizing just the delivery

completion time.

A comparison is conducted with the best known approach (refereed to as SHCR)

in the literature handling a similar problem. Although the SHCR heuristic assumes

that truck-drone stops can be anywhere in the delivery area (i.e., not just customer

locations), our proposed optimization models could either outperform it or achieve a

gap less than 4% for N greater than 25. Moreover, the gap decreases significantly as

more customer locations are involved.

53



Chapter 4

Joint optimization of customer

location clustering and truck-drone

routing with unrestricted stops

4.1 Problem description

There is a potential to obtain better solutions if the restriction on cluster focal

points is relaxed. In contrast to the min-cost JOCR-R model in Chapter 3, a min-

cost JOCR-U model is formulated in this chapter to allow cluster focal points to

be anywhere in the delivery area (i.e., at a customer or a non-customer location).
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Figure 4.1: Illustrative example of delivery using truck with a fleet of drones can be dispatched
from anywhere

Otherwise, both models share the same characteristics. Figure 4.1 illustrates with an

example the JOCR-U policy.

An overview of the research methodology to obtain the optimal clustering of cus-

tomer locations and routing of vehicles is presented in Figure 4.2. The min-cost

JOCR-U model does not enforce the focal point to be a customer location. Hence,

the problem is initially formulated as a mixed integer nonlinear program (MINLP).

Since this kind of models is computationally intractable, it is approximated to a MILP

model using some linearization procedures. In addition, novel acceleration techniques

are used to reduce the search space and expedite the solution time of the MILP model.

4.2 Nonlinear programming model

The following new notation are considered to formulate the min-cost JOCR-U

model.
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Indices and Set

k, k′∈ K set of possible clusters, K = {ko, k1, k2, k3, . . . kK̂}, where ko denotes the

cluster with depot as its focal point

Decision Variables

(ak, bk) coordinates of truck stop or cluster focal point k ∈ K

dElk Euclidean distance (in miles) between delivery location l ∈ L and clus-

ter focal point k ∈ K

dRkk′ rectilinear distance (in miles) between cluster focal points k ∈ K and

k′ ∈ K

xlk 1 if a delivery location l ∈ L is assigned to cluster k ∈ K, 0 otherwise

qlk 1 if a delivery location l ∈ L is assigned to cluster k ∈ K and served by

a drone, 0 otherwise

ykk′ 1 if truck travels from cluster focal point k ∈ K to another focal point

k′ ∈ K, 0 otherwise

CUJOCR total cost for the JOCR-U policy

The MINLP model for min-cost JOCR-U is mathematically formulated as follows.

Minimize CUJOCR = CD
1 g + CD

2

∑
l∈L

∑
k∈K

xlk × (2dElk) + CT
∑
k∈K

∑
k′∈K

ykk′d
R
kk′ (4.1)
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S.t.

∑
k∈K

xlk = 1 ∀l ∈ L (4.2)

dElk =
√

(Al − ak)2 + (Bl − bk)2 ∀l ∈ L, k ∈ K (4.3)

xlk d
E
lk ≤ Fl qlk ∀l ∈ L, k ∈ K (4.4)∑

l∈L

qlk ≤ g ∀k ∈ K (4.5)

g ≤ G (4.6)∑
k′∈K,k 6=k′

ykk′ = 1 ∀k ∈ K (4.7)

∑
k∈K,k 6=k′

ykk′ = 1 ∀k′ ∈ K (4.8)

uk − uk′ + (K̂ − 1)ykk′ + (K̂ − 3)yk′k ≤ (K̂ − 2) ∀k, k′ ∈ K\{ko}, k 6= k′ (4.9)

dRkk′ = |ak − ak′ |+ |bk − bk′| ∀k, k′ ∈ K (4.10)

(ak, bk) = (Alo , Blo) ∀k ∈ K 3 k = {ko} (4.11)

xlk ∈ {0, 1} ∀l ∈ L, k ∈ K (4.12)

ykk′ ∈ {0, 1} ∀k, k′ ∈ K (4.13)

The objective function (4.1) minimizes the total cost for the JOCR-U policy. Con-

straint (4.2) ensures that every delivery location l ∈ L is assigned to one and only

one cluster focal point k ∈ K. Equation (4.3) determines the drone travel distance

between a delivery location l ∈ L and its focal point k ∈ K. Further, constraint (4.4)

58



ensures this flight distance to be within the maximum drone flight range for location

l ∈ L. Also, constraint (4.4) forces delivery location l ∈ L to overlap with its cluster

focal point k ∈ K (i.e., dElk = 0) only when that location is not served by a drone

(qlk = 0). Besides guaranteeing truck visits to locations l ∈ LT , our formulation also

allows them to act as cluster focal points for drone dispatch to potential nearby loca-

tions (based on constraints (4.3) and (4.4)). Constraint (4.5) limits the drone-served

locations per cluster to the total drones carried by the truck (g), which is, in turn,

governed by the capacity constraint (4.6).

With respect to truck routing, constraints (4.7) and (4.8) stipulate that each cluster

focal point k ∈ K has exactly one inbound and one outbound visit by the truck.

Constraint (4.9) is for sub-tour elimination, which ensures that the truck returns

to the depot only after visiting all the truck stops. Equation (4.10) computes the

rectilinear travel distance for a truck between two cluster focal points k and k′. In

particular, the coordinates of cluster focal points (truck stops/drone dispatch points)

are determined concurrently by equations (4.3) and (4.10), which yield the optimum

combination of distances to be traveled by drones and truck, such that it leads to the

minimum cost. Equation (4.11) assigns the cluster focal point {ko} ∈ K to the depot

with coordinates (Alo , Blo) to ensure a truck visit to the depot, in addition to allowing

delivery locations to be assigned to the depot like any other cluster focal point.

Finally, the binary restrictions on the decision variables are specified using constraints

(4.12) and (4.13). Thus far, we have a MINLP model that is computationally complex
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to solve as the objective function (4.1) and constraints (4.3), (4.4), and (4.10) are non-

linear. To achieve optimal solutions in a reasonable time, we linearize the model later

in this chapter.

4.2.1 Alternative objective function

The objective of minimizing delivery completion time can be adopted by replacing

function (4.1) with (4.14), where T UJOCR is the delivery completion time for the JOCR-

U policy. The new adapted model is hereafter called min-time JOCR-U model.

Minimize T UJOCR =
∑
k∈K

max
l∈L

(xlk × (2dElk/V
D + Sl))+

∑
k∈K

∑
k′∈K

ykk′ × dRkk′/V T

(4.14)

The minimization of the maximum drone flight time within each cluster in the

first term of objective function (4.14) can be linearized as follows. First, a new

variable tk is introduced to denote the maximum drone completion time per cluster.

Then, constraint (4.15) is added to quantify that duration. Therefore, the objective

function (4.14) can be rewritten as in function (4.16). However, the multiplication of

decision variables xlk and dElk in constraint (4.15) and decision variables ykk′ and dRkk′

in objective function (4.16) still lead to a non-linear model. This is handled latter in

this chapter while linearizing the min-cost JOCR-U model, as these multiplications
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are existing in objective function (4.1) as well.

tk ≥ xlk × (2dElk/V
D + Sl) ∀l ∈ L, k ∈ K (4.15)

Minimize T UJOCR =
∑
k∈K

tk +
∑
k∈K

∑
k′∈K

ykk′ × dRkk′/V T (4.16)

4.2.2 Dealing with multiple conflicting objectives

The ε-constraint method can be used to obtain the Pareto-optimal solutions of

minimizing total cost and delivery completion time [70]. In this section, the min-cost

JOCR-U model is reformulated to incorporate the objective of delivery completion

time as in the following model, where ε is the upper bound on the delivery completion

time.

Minimize CUJOCR

S.t. constraints (4.2− 4.13)

T UJOCR ≤ ε (4.17)

Similarly, the min-time JOCR-U model can also be used to deal with the conflicting

objectives by determining an upper bound for the total cost. It is to be noted that

every solution obtained using the ε-constraint method is a Pareto-optimal. Thus, the
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model can be solved for diverse values of ε to provide the practitioner with a broad

set of Pareto-optimal solutions.

4.3 Model linearization and acceleration

In this section, we linearize the objective function and non-linear constraints of the

proposed MINLP model. The following additional notation are introduced to avoid

non-linearity and reformulate the problem under study as a MILP model.

Parameters

P number of planes for finding approximate Euclidean distance

θ rotation angle between two consecutive planes

M large positive number

Decision variables

dx Elk horizontal axis (or x-axis) length of Euclidean distance between de-

livery location l ∈ L and cluster focal point k ∈ K (i.e., dx Elk =

|Al − ak| )

dy Elk vertical axis (or y-axis) length of Euclidean distance between delivery

location l ∈ L and cluster focal point k ∈ K (i.e., dy Elk = |Bl − bk|)
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dx Rkk′ horizontal axis (or x-axis) length of rectilinear distance between clus-

ter focal points k and k′ ∈ K (i.e., dx Rkk′ = |ak − ak′ |)

dy Rkk′ vertical axis (or y-axis) length of rectilinear distance between cluster

focal points k and k′ ∈ K (i.e., dy Rkk′ = |bk − bk′ |)

There are many endeavors in the literature to find a good linear approximation

to the Euclidean distance [72, 73]. In this research, we adopt the recent linearization

technique developed by Xie et al. [74] to linearize constraint (4.3) as it has shown to

produce a highly accurate approximation of the Euclidean distance metric (i.e., an

error of less than -0.01% can be achieved). Their technique computes the Euclidean

distance between two locations using x-axis and y-axis components and slope angle

between the two locations. While the x-axis and y-axis components can be depicted

using linear constraints in a mathematical model, the slope angle is challenging to

represent linearly. Therefore, different values of slope angles, between 0 and π
2
, are

examined. Each of the examined slope angles represents one of the predefined P

planes, while a fixed rotation angle (θ) is imposed between two consecutive planes. In

this research, we choose six planes (P = 6) and a rotation angle (θ) of 0.2831 radian

to achieve < 1% error in approximating Euclidean distance [74].

Thus, the non-linearity in equation (4.3) can be avoided by adopting a two-step

reformulation. First, the horizontal and vertical axis components of the Euclidean

distance is represented with a set of equivalent linear constraints (4.18)−(4.21). Then,
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the Euclidean distance is redefined in terms of the x-axis and y-axis components in

constraint (4.22).

dx Elk ≥ Al − ak ∀l ∈ L, k ∈ K (4.18)

dx Elk ≥ ak − Al ∀l ∈ L, k ∈ K (4.19)

dy Elk ≥ Bl − bk ∀l ∈ L, k ∈ K (4.20)

dy Elk ≥ bk −Bl ∀l ∈ L, k ∈ K (4.21)

dElk ≥ dx Elk cos(pθ) + dy Elk sin(pθ) ∀l ∈ L, k ∈ K, p = 0, 1, 2, . . . P − 1 (4.22)

Likewise, the equivalent linearization of equation (4.10) is achieved by linear con-

straints (4.23)−(4.26).

dx Rkk′ ≥ ak − ak′ ∀k, k′ ∈ K (4.23)

dx Rkk′ ≥ ak′ − ak ∀k, k′ ∈ K (4.24)

dy Rkk′ ≥ bk − bk′ ∀k, k′ ∈ K (4.25)

dy Rkk′ ≥ bk′ − bk ∀k, k′ ∈ K (4.26)

Constraint (4.4) is also non-linear as it involves the multiplication of two decision

variables (xlk × dDlk). The purpose of constraint (4.4) is to ensure that the left hand
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side becomes zero if the delivery location l ∈ L is not assigned to the focal point

k ∈ K, and exactly equal to the distance between them if it is assigned. The same

characteristics can be achieved without non-linearity by modifying constraint (4.22)

as constraint (4.27). As a result, non-linear constraint (4.4) can now be rewritten as

linear constraint (4.28). Similarly, the second term of the objective function can be

rewritten as (CD
2

∑
l∈L

∑
k∈K 2dElk).

dElk ≥ dx Elk cos(pθ) + dy Elk sin(pθ)−M(1− xlk) ∀l ∈ L, k ∈ K, p = 0, 1, 2, . . . P − 1

(4.27)

dElk ≤ Fl qlk ∀l ∈ L, k ∈ K (4.28)

The third term of the objective function (4.1) is analogous to the objective func-

tion of the standard TSP model. However, in our approach, both ykk′ and dRkk′ are

decision variables. The non-linearity due to the multiplication of these two variables

could be circumvented by fixing the binary variable ykk′ . Since the locations of clus-

ter focal points (i.e., their coordinates) are not determined yet, any feasible truck

route sequence could be chosen without affecting the quality of results. For example,

equation (4.29) can be used to provide a feasible truck route, which gives a route:

ko → k1 → k2 → · · · → k|K| → ko. In addition to overcoming non-linearity, using

a fixed sequence of the truck route as an input leads to the exclusion of constraints
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(4.7), (4.8), and (4.9), thereby decreasing the problem complexity.

ykk′ = 1 ∀k, k′ ∈ K : (k = k′ − 1) ∨ (k = |K| ∧ k′ = 0) (4.29)

4.3.1 Accelerating solution time for min-cost and min-time JOCR-U

Allowing focal points to be anywhere on the delivery plane increases the search

space substantially. Therefore, large problem instances may become computationally

intractable. In this section, we present two problem-specific strategies to accelerate

the solution time for JOCR-U.

4.3.1.1 Adding a knowledge-based constraint (KBC) to reduce search space

The drone travel range, coordinates of all the delivery locations, and the distances

between them are known apriori. Therefore, based on this information, it is possible to

establish the area (or all feasible coordinates) in which a potential cluster focal point

will be located for delivery location l. Further, if the area of the prospective cluster

focal points that can serve location l does not overlap with the area of potential focal

points that can serve location l′, then l and l′ cannot be assigned to the same cluster.

We can inject this prior knowledge in the MILP model and accelerate the solution

time by adding constraint (4.30), where parameter Qll′ is 1 if delivery locations l and
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l′ can be served together within the same cluster and 0 otherwise.

(1−Qll′)(xlk + xl′k) ≤ 1 ∀l, l′ ∈ L, k ∈ K, l < l′ (4.30)

Note that the value of the binary parameterQll′ should be set to one if the condition

in inequality (4.31) is satisfied and 0 otherwise, whereDE
ll′ =

√
(Al − Al′)2 + (Bl −Bl′)2.

Fl + Fl′ ≥ DE
ll′ ∀l, l′ ∈ L (4.31)

4.3.1.2 Warm starting (WS) using a heuristic algorithm

Another strategy to accelerate the MILP solution time is by using a warm-start

(WS) procedure, where we initiate the optimization problem with a good feasible

solution. Prior research that considered a similar problem used an unsupervised

machine learning algorithm, iterative k-means clustering, to effectively cluster the

delivery locations and obtain the focal point of each cluster [31, 32]. However, unlike

our study, their heuristics assumed all the delivery locations to be accessible by drones.

Therefore, we propose a heuristic that modifies the clusters to accommodate all types

of customer locations and then uses it as a feasible solution to warm-start the MILP

model. The proposed heuristic is detailed in Algorithm 1 and adopts a three-step

procedure. First, the locations that can be served by drones (LD) are clustered, and
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their focal points are obtained by using the iterative k-means clustering. In the second

phase (lines 3-23 in Algorithm 1), the algorithm aims to move each cluster focal point

to the nearest delivery location that is served only by a truck (LT ), while taking into

account the flight range restrictions of drones. Finally, the optimal truck route via

the modified focal points is obtained using the standard TSP model.

Algorithm 1 Unsupervised Machine Learning Heuristic for Warm-starting

1: Inputs: set of delivery locations that can be served by a drone/truck (LD), locations that
must be served by a truck (LT ), delivery coordinates (Al, Bl) of all locations, drone
flight range (Fl, ∀l ∈ L), total drones can be carried by a truck (G)

2: Obtain the cluster focal points for locations that can be served by truck or drone and the
locations assigned to each cluster focal point using the iterative k-means algorithm

3: for each location l ∈ LT do
4: for each cluster focal point k ∈ K do
5: Compute the distance between cluster focal point k and location l (δlk)

δlk =
√

(Al − ak)2 + (Bl − bk)2

6: end for
7: end for
8: Establish a set consisting of distances between every cluster focal point and truck-only location
9: D = {δlk | l ∈ LT , k ∈ K}

10: while D 6= ∅ do
11: Determine (l̂, k̂) = argmin

l∈LT ,k∈K
{δlk}

12: for each location l ∈ LD do
13: if location l is assigned to cluster k̂ (i.e., xlk̂ = 1) then

14: Compute distance between l̂ and location l (∆l̂,l)

15: ∆l̂,l =
√

(Al̂ −Al)2 + (Bl̂ −Bl)2

16: end if
17: end for
18: if ∆l̂,l ≤ Rl {∀ l|l ∈ LD, xl,k̂ = 1} then

19: Set coordinates of focal point k̂ as the coordinates l̂, (ak̂, bk̂)← (Al̂, Bl̂)

20: Remove l̂ from being considered as cluster focal point, LT ← LT \{l̂}
21: end if
22: Remove δlk from set D (i.e., D ← D\{δlk})
23: end while
24: Compute the rectilinear distance among all the cluster focal points established
25: Obtain the optimal truck route covering all the focal points by using the rectilinear distance as

inputs and solving the standard TSP model
26: return focal points of clusters (ak, bk), optimal truck route between them, and assignments of

delivery locations to clusters (xlk ∀l ∈ L, k ∈ K)
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4.4 Computational experiments

The same set of instances and parameter setting that were used for the JOCR-R

models (in Chapter 3) are employed here to evaluate the JOCR-U models. Further,

a two-fold benchmarking approach is adopted in this section to assess the JOCR-

U models. First, the results of the JOCR-R models are utilized in this chapter to

compare the unrestricted truck-drone stops policy versus the restricted stops pol-

icy. Second, the performance of JOCR-U models is benchmarked against the SHCR

heuristic in the literature [32]. The procedure of obtaining Pareto-optimal solutions

(cost and time trade-off) in the case of conflicting objectives is illustrated. Finally,

a sensitivity analysis is conducted to ascertain the influence of critical parameters on

the performance measures.

4.4.1 Evaluation of test instances

A comparison of the average total cost and delivery completion time across 10

replications for the JOCR-R, JOCR-U and SHCR-U models is reported in Table 4.1.

In addition, the table also summarizes the percentage difference in cost (Cgap(U−R)
JOCR =

CUJOCR−C
R
JOCR

CRJOCR
× 100%) and time (T gap(U−R)

JOCR =
T U
JOCR−T

R
JOCR

T R
JOCR

× 100%) between the two

focal point policies - restricted and unrestricted. Likewise, it also gives the percent-

age change in cost (Cgap(U)
JOCR−SHCR=

CUJOCR−C
U
SHCR

CUSHCR
× 100%) and time (T gap(U)

JOCR−SHCR=
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T U
JOCR−T

U
SHCR

T U
SHCR

× 100%) between the joint optimization approach and sequential heuris-

tic proposed in the literature.

Table 4.1: Average minimum total cost and minimum total completion time of test instances

Total cost Delivery completion time

N CRJOCR CUSHCR CUJOCR Cgap(U)
JOCR−SHCR Cgap(U−R)

JOCR T R
JOCR T U

SHCR T U
JOCR T gap(U)

JOCR−SHCR T gap(U−R)
JOCR

20 135.3 122.2 106.2 -13.1% -21.5% 5.8 5.4 4.6 -14.8% -20.7%
25 143.4 138.6 120.0 -13.4% -16.3% 6.5 6.6 5.5 -15.4% -15.4%
30 161.6 159.4 142.7 -10.5% -11.7% 7.2 7.3 6.3 -12.5% -12.5%
35 170.5 169.2 151.0 -10.8% -11.4% 7.5 7.8 6.6 -14.3% -12.0%

It is evident from Table 4.1 that the joint optimization approach outperforms the

sequential heuristic method for all the test instances evaluated. The proposed JOCR-

U model achieves an average cost reduction of 10%-13% and time savings of 12%-15%

over the SHCR-U approach. Besides, allowing unrestricted focal points would achieve

substantial savings with respect to cost (CgapR−U) and time (T gapR−U) when compared to

restricted truck stop locations. Thus, the results demonstrate the dominance of the

JOCR-U model, thereby highlighting the importance of adopting unrestricted focal

points and joint optimization approach. For the computational performance, up to

1% gap to best known solutions can be obtained in less than 200 seconds for N ≤ 30,

while up to 679 seconds are required on average for N = 35.

Moreover, the benefit of adopting the unrestricted focal point policy is higher

when the number of delivery locations per trip is fewer. This may be because of

low customer density for smaller N , where the locations are likely to be spatially

dispersed, which, in turn, makes a customer location an unattractive (or inefficient)

focal point. Conversely, as N increases, the customer density also escalates and
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subsequently improves the likelihood of coinciding the best focal point coordinate

with a delivery location. To validate our findings, the impact of customer density is

examined by solving the min-cost and min-time models for four different densities,

which are generated by varying the delivery area and fixingN to 20. Table 4.2 presents

the average values of minimum cost and time across 10 replications for different

customer densities and focal point policies. It is evident that both CgapR−U and T gapR−U

decreases with increasing customer density, and is less than 5% when the delivery

area is 15×15 miles2 with 20 customer locations. Thus, as the spatial density of

delivery locations increases, the solutions obtained by both JOCR models become

more comparable.

Table 4.2: Average cost and time gaps between focal point polices for N=20 and different delivery
areas

Total cost Delivery completion time

Delivery area CRJOCR CUJOCR Cgap(U−R)
JOCR T R

JOCR T U
JOCR T gap(U−R)

JOCR

30× 30 135.3 106.2 -21.5% 5.8 4.6 -20.7%
25× 25 110.7 93.8 -15.3% 4.8 4.1 -14.6%
20× 20 85.9 77.8 -9.4% 3.8 3.4 -10.5%
15× 15 63.9 61.3 -4.1% 2.7 2.6 -3.7%

4.4.2 Influence of objective functions on clustering and routing decisions

The same instance that was shown in Section 3.3.3 is considered here again but

for the JOCR-U models. The test case includes 25 locations, as shown in Figure 4.3,

in which the last three customer locations must be served only by a truck, while the

remaining 22 locations can be served either by a drone or a truck. Figures 4.3(a) and
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Figure 4.3: Solutions of an example using the proposed models: (a) min-cost JOCR-U
(CUJOCR=108.6 and T U

JOCR=6.9); (b) min-time JOCR-U (CUJOCR=127.1 and T U
JOCR=4.9)

4.3(b) illustrate the best plan for minimizing total cost and completion time in the

JOCR-U models, respectively. The min-cost JOCR-U model yields a total cost of

$108.6, and the corresponding delivery completion time for this solution is 6.9 hours.

On the other hand, the min-time JOCR-U completes the delivery in 4.9 hours but

results in a higher total cost of $127.1. In other words, the min-cost solution results

in lower cost and higher completion time when compared to the min-time solution,

and vice versa. Thus, the best trade-off between the two objective may be of interest

of practitioners.
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It can be noticed that the solution of min-time objective (Figure 4.3(b)) utilizes

the entire fleet of drones and deploys all of them in three out of four drone launching

locations. Hence, a faster delivery completion time can be achieved. Conversely,

the solution of min-cost objective (Figure 4.3(a)) uses only half number of available

drones (i.e., three out of the six available drones), and therefore completes the delivery

operation with lower cost but longer completion time.

In addition, the min-cost objective results in shorter drone travel distance com-

pared to the min-time objective. Besides routing, the focal point location also plays

a key role in minimizing the drone travel distance. For example, consider locations

12 and 17 in Figures 4.3(a) and 4.3(b). The minimum drone distance for the min-

cost model is achieved by making these locations almost along a straight line with

their focal point (location 19). On the other hand, the min-time model (in Figure

4.3 (b)) minimizes the maximum drone flight distance by locating a focal point to be

approximately halfway between these two locations. Finally, both the objectives aim

to lower the truck travel distance, and this is also influenced by the location of truck

stops. For instance, in Figure 4.3 (a), the non-customer focal points to the north and

the south of location 23 are optimized to share the same truck path, as moving them

any further towards the left would increase the distance traveled by truck.

Aside from these differences, Figure 4.3 also highlights some of the unique features

of the proposed models. For example, the depot is also used as a focal point if it is
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beneficial (e.g., locations 1, 7, and 15 in Figure 4.3 (a)). Furthermore, the JOCR-U

models use the customer location as focal points when appropriate and choose a non-

customer location only when it improves the objective value. All of these demonstrate

the holistic approach of the proposed JOCR models to achieve the best clustering and

routing decisions and also provide insights for the development of novel heuristics in

future research.

4.4.3 Obtaining Pareto optimal solutions

The illustrated instance in Figure 4.3 is used to exhibit the procedure of handling

multiple objectives and obtaining Pareto-optimal solutions. The ε-constraint method

is employed to achieve a set of best trade-off solutions. Figure 4.4 presents the best

compromise solutions for the chosen instance, where the min-cost JOCR-U model is

solved repeatedly after incorporating the completion time constraint and changing its

limit from 4.9 to 6.9 in increments of 0.25 hours.

Figure 4.4 shows that focusing solely on minimizing total cost increases the cor-

responding completion time by 41% from T ∗. In contrast, focusing only on reducing

completion time worsens the total cost by 17% when compared to C∗. Hence, a

trade-off can be considered between the two objectives based on the decision maker’s

priorities. For example, it can be observed from Figure 4.4 that investing 9% more

than C∗ would help us complete the delivery 36% faster than the worst-case situation
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Figure 4.4: Conflicting min-cost and min-time objectives of an example for JOCR-R and JOCR-U

or only 5% slower than the best-case result of 4.9 hours.

4.4.4 Sensitivity analysis

In order to test the performance of the proposed JOCR models beyond the existing

instances and identify the impact/sensitivity of the key parameters, we evaluate dif-

ferent cases by exploring additional scenarios. The analysis of previous test instances

indicates that both min-cost and min-time objectives are substantially affected by the

number of customer locations (N). In addition, the proportion of truck-only locations

(ξ) and drone characteristics, such as drone velocity (V D) and flight range (Fl), can
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also affect the system performance measures. To understand the influence of these

four parameters, we consider two levels for each of them (low and high values) as

shown in Table 4.3, and generate a total of 16 different scenarios (i.e., 24 possible

combinations using the two levels of the four parameters). Besides, we assume each

scenario to be independent of each other. For example, one case may assess the use of

short-range low-velocity drones to serve a set of locations, while another scenario may

investigate the effect of long-range high-speed drones on the performance measures.

Table 4.3: Experimental factor settings

Experimental Factors Symbol Levels Settings

Number of delivery locations N 2 20, 50
Percent of delivery locations that must be served by a truck ξ 2 0%, 20%
Velocity of drone (in mph) V D 2 15, 35
Flight range of drone (in miles) Fl 2 7.5, 12.5

For each scenario, ten replications are generated and solved using the proposed

JOCR models and the SHCR approach resulting in a total of 960 cases (16 scenarios

× 10 replications × 2 objectives × 3 models). Table 4.4 summarizes the results of

the 16 scenarios for all models under consideration. Also, similar to Table 4.1, the

impact of using a joint optimization approach over sequential heuristic (CgapSHCR−JOCR

and T gapSHCR−JOCR), and the savings achieved by unrestricted focal point policy over

restricted truck stops (CgapR−U and T gapR−U) are reported.

For all the scenarios under consideration, the JOCR-U outperforms both the

SHCR-U and JOCR-R. On average, using the JOCR-U approach rather than the
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Table 4.4: Average min-cost and min-time of 10 replications for 16 scenarios

Scenario N ξ V D Fl Minimum total cost Minimum delivery
completion time

CRJOCR CUSHCR CUJOCR CgapSHCR−JOCR CgapR−U T R
JOCR T U

SHCR T U
JOCR T

gap
SHCR−JOCR T

gap
R−U

1 20 0% 15 7.5 140.9 122.9 109.1 -11.2% -22.6% 7.3 7.0 6.2 -11.4% -15.1%
2 20 0% 15 12.5 117.0 98.3 84.4 -14.1% -27.9% 6.4 6.9 5.8 -15.9% -9.4%
3 20 0% 35 7.5 140.9 122.9 109.1 -11.2% -22.6% 5.4 4.9 4.3 -12.2% -20.4%
4 20 0% 35 12.5 117.0 98.3 84.4 -14.1% -27.9% 4.4 4.5 3.3 -26.7% -25.0%
5 20 20% 15 7.5 155.6 152.2 141.5 -7.0% -9.1% 8.0 7.4 7.3 -1.4% -8.8%
6 20 20% 15 12.5 143.6 149.0 132.8 -10.9% -7.5% 7.3 7.3 6.9 -5.5% -5.5%
7 20 20% 35 7.5 155.6 152.2 141.5 -7.0% -9.1% 5.9 5.7 5.3 -7.0% -10.2%
8 20 20% 35 12.5 143.6 149.0 132.8 -10.9% -7.5% 5.3 5.6 5.0 -10.7% -5.7%
9 50 0% 15 7.5 179.9 176.5 151.6 -14.1% -15.7% 10.1 11.0 8.9 -19.1% -11.9%
10 50 0% 15 12.5 161.5 171.1 134.2 -21.6% -16.9% 9.1 10.9 8.3 -23.9% -8.8%
11 50 0% 35 7.5 179.9 176.5 151.6 -14.1% -15.7% 7.0 7.9 5.9 -25.3% -15.7%
12 50 0% 35 12.5 161.5 171.1 134.2 -21.6% -16.9% 6.3 7.8 5.3 -32.1% -15.9%
13 50 20% 15 7.5 217.3 219.8 205.4 -6.6% -5.5% 11.9 11.8 11.1 -5.9% -6.7%
14 50 20% 15 12.5 211.5 223.5 199.6 -10.7% -5.6% 11.5 11.7 10.9 -6.8% -5.2%
15 50 20% 35 7.5 217.3 219.8 205.4 -6.6% -5.5% 8.3 9.1 7.9 -13.2% -4.8%
16 50 20% 35 12.5 211.5 223.5 199.6 -10.7% -5.6% 8.1 9.0 7.8 -13.3% -3.7%

sequential heuristic, saves about 12% and 15% in total costs and delivery completion

time, respectively. Further, unrestricted focal point policy yields an average reduction

of 14% in min-cost and 11% in min-time as opposed to restricting the focal points to

customer-only locations. Besides, the best performance is achieved when all packages

can be delivered by drones (ξ = 0%) that have long-range (Fl = 12.5) and high-speed

(V D = 35). For serving 50 locations with such a setting, adopting our JOCR-U ap-

proach instead of the SHCR-U method provides an average reduction of 21.6% and

32.1% in min-cost and min-time, respectively.

Table 4.5 summarizes the 16 scenarios based on the low and high levels of each of

the four factors. The following insights can be derived from the impact of each factor

on the performance measures.

• Number of locations (N): As expected, the total cost and delivery com-

pletion time become higher if more customers (N) are involved. However, it
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is to note that when N is increased by 150% (from 20 to 50 locations), the

delivery completion time increased only by about 47% for both JOCR-R and

JOCR-U polices. Similarly, the best total costs for restricted and unrestricted

JOCR increased approximately by 38% and 48%, respectively. In other words,

cost and time do not change proportionally with N , but increase at a slower

rate. Hence, practitioners should include many orders per truck trip whenever

possible. Another advantage is that the performance (total cost and completion

time) of JOCR-U relative to SHCR-U is further enhanced for larger values of N .

• Proportion of truck-only locations (ξ): Requiring 20% of the delivery lo-

cations to be served by trucks instead of 0% has a greater negative impact on

the JOCR-U policy (41% and 29% increase in cost and time, respectively) as op-

posed to JOCR-R policy (21% and 18% increase in cost and time, respectively).

The JOCR-R policy is less affected because it already applies the restriction of

customer-only focal points by default. Although the JOCR-U policy has supe-

rior performance over JOCR-R and SHCR-U in all the cases, the improvement

achieved is relatively lower when ξ is increased to 20%. Thus, to achieve faster

and cheaper delivery, it is ideal to limit the proportion of truck-only locations

to a smaller value. This may be achieved by investing in drones with higher

payload capacity so that it can deliver a heavier package instead of a truck.

• Velocity of drone (V D): Increasing the drone velocity reduces the delivery

completion time by about 30% for both JOCR-R and JOCR-U polices. Besides,
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the min-time JOCR-U model achieves greater improvement over the other two

models with faster drones. Therefore, if the company is keen on achieving faster

delivery, then investing in high-speed drones is recommended.

• Flight range of drone (Fl): Operating drones with longer flight range (12.5

miles instead of 7.5 miles) reduces the total cost and completion time by 9% and

7%, respectively, for both JOCR-R and JOCR-U models. Moreover, the percent

improvement in cost and time achieved by the JOCR-U model over SHCR-U

is considerably greater for long-range drones. However, the purchasing cost of

such drones are likely to be more expensive than short-range drones. Therefore,

decision-makers should consider a trade-off between the additional purchasing

cost of long-range drones and their benefits.

Table 4.5: Impact of changing each of the four factors on min-cost/min-time and performance of
proposed solution approaches

Factor Level Minimum total cost Minimum total
completion time

CRJOCR CUSHCR CUJOCR CgapSHCR−JOCR C
gap
R−U T R

JOCR T U
SHCR T U

JOCR T gap
SHCR−JOCR T

gap
R−U

N
20 139.3 130.6 117.0 -10.8% -16.8% 6.3 6.2 5.5 -11.4% -12.5%
50 192.6 197.7 172.7 -13.2% -10.9% 9.0 9.9 8.3 -17.5% -9.1%

ξ
0% 149.8 142.2 119.8 -15.3% -20.8% 7.0 7.6 6.0 -20.8% -15.3%
20% 182.0 186.1 169.8 -8.8% -6.9% 8.3 8.5 7.8 -8.0% -6.3%

V D 15 165.9 164.2 144.8 -12.0% -13.8% 9.0 9.3 8.2 -11.2% -8.9%
35 165.9 164.2 144.8 -12.0% -13.8% 6.3 6.8 5.6 -17.6% -12.7%

Fl

7.5 173.4 167.9 151.9 -9.7% -13.2% 8.0 8.1 7.1 -11.9% -11.7%
12.5 158.4 160.5 137.8 -14.3% -14.5% 7.3 8.0 6.7 -16.9% -9.9%
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4.5 Conclusion

In this chapter, the policy of allowing truck-drone stops to be anywhere in the

delivery area (i.e., customer or non-customer locations) is considered. Joint opti-

mization models are proposed for the clustering of customer locations and routing

of truck and multiple drones. The most two common objectives in the literature are

adopted in this chapter − minimizing total cost and delivery completion time. A

comparison is conducted with the best known approach in the literature (i.e., the

SHCR heuristic) handling the same problem. The results show that our proposed

optimization models can significantly outperform the SHCR heuristic by an average

cost reduction of 6%-22% and time savings up to 32%.

A sensitivity analysis is performed for the three approaches by varying some key

parameters. The results show that operational cost and delivery time do not change

proportionally with N , but increase at a lower rate. Furthermore, investing in drones

with higher payload capacity (i.e., to eliminate truck-only locations) can save signif-

icant cost and delivery time. Also, it is recommended to employ drones with higher

speed to achieve faster delivery completion time. Lastly, results of instances with long

and short drone flight ranges are provided to illustrate the possible tradeoff between

purchasing cost of long-range drones and the expected benefits.
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Chapter 5

Routing and scheduling of truck

and drones for package delivery

with flexible launch and recovery

sites

While recent literature has extensively studied truck-drone routing, most of them

restrict the drone launch and recovery operations (LARO) to customer locations

[10, 47, 48, 52, 55]. However, the truck can stop at other feasible locations in the

service region to deploy or recover the drones. As a matter of fact, real-life testing
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by UPS shows the drone being launched from the roof of a delivery truck at non-

customer locations [36]. Moreover, scheduling of truck operator tasks at a given stop,

which possibly includes customer service and launch/recovery of multiple drones, is

usually neglected [32, 53, 75]. Nevertheless, it is crucial to consider the sequencing

dynamics to ensure safe and realistic operations [76].

An illustrative example is provided in Fig. 5.1 to highlight both the potential

of allowing non-customer nodes (also referred to as flexible locations or sites) for

drone LARO and the importance of scheduling at truck stops. The network in this

example consists of a depot, 8 customer locations to be served by a fleet of truck

and four drones, and 8 non-customer locations. Note that the flexible LARO sites

can be established in advance by considering the feasible areas within the delivery

region. It can be observed from the optimal plan that the delivery completion time

is substantially lower when flexible stop locations are permitted. In this particular

example, the distance traveled by truck is shorter and drone fleet utilization is higher

if trucks are allowed to launch and recover drones at flexible locations. For instance,

in the case of restricted LARO, node 4 is served by a truck instead of a drone since

existing locations along the truck route do not meet the flight range restriction. As

a result, the truck route is significantly longer when compared to the case of using

flexible sites. Furthermore, while the truck carries four drones in both settings, only

three of them were utilized when the LARO are restricted. Hence, the drones play a

secondary role in aiding the truck when restricting LARO to customer locations. In
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contrast, when flexible stop locations are considered, the truck assists the drones for

faster delivery completion.

Motivated by the potential and feasibility of flexible locations in practice, this

chapter aims to minimize the completion time of last-mile delivery operations by

employing a mixed fleet (truck and multiple drones) and accounting for flexible truck

stops for drone LARO. Specifically, this study contributes to the research stream of

collaborative truck-drone system for package delivery in the following ways.

• A new variant of drone-enabled logistics for last-mile package delivery called the

collaborative truck-drone routing and scheduling problem with flexible launch

and recovery locations (CTDRSP-FL) is introduced.

• To the best of our knowledge, this is the first work to consider flexible truck

stops with the following three logistical decisions: (i) assignment : whether a

drone or truck must serve a specific location, (ii) routing : in which order should

the truck visit the assigned locations (truck routing), and at which truck stop

should a drone be launched and recovered to serve a customer (drone routing or

sortie), (iii) scheduling : launch and retrieval times of multiple drones at a given

truck stop. Unlike the prior works, the truck-drone fleet is not required to visit

all the nodes because certain flexible stop locations may never be visited (see

unselected flexible locations in Fig. 5.1). Besides, incorporating the scheduling

of drones at each truck stop further complicates the problem.

83



Vehicles

20 40 60 80 100 120 140
time

(in minutes)



A
ll

ow
in

g
fl
ex

ib
le

la
u

n
ch

/r
ec

ov
er

y
lo

ca
ti

on
s



R
es

tr
ic

ti
n

g
la

u
n

ch
/r

ec
ov

er
y

lo
ca

ti
on

s

Truck 0 8 8 1 1 5 5 4 4 0

UAV u1 0 7 8

UAV u2 0 3 8

UAV u3 8 2 1 1 6 5

Drone flight and resepctive customer service

Drone preparation for launching

Drone recovery after landing

Customer service by truck operator

Truck travel

Truck 0 9 9 12 12 8 8 14 14 0

UAV u1 14 1 09 4 12

UAV u2 14 5 09 7 12

UAV u3 12 2 8 14 3 0

UAV u4 21 6 0

Figure 5.1: Illustrative example of using flexible locations for drone launching and recovery. The
solid arcs are for truck route and the dash arcs are for drone sorties. Numbers in the Gantt chart
are for the locations on the truck/drone routes.
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• A fleet of heterogeneous drones characterized by their endurance and speed is

considered. As drone technology is expected to evolve rapidly, companies are

bound to have UAVs of various capabilities (e.g., quadcopter vs. fixed-wing

drones), and it becomes critical to account for these attributes during route

planning.

• A new mixed integer linear programming (MILP) model is developed to handle

the flexible locations for drone LARO and simultaneously optimize the three

aforementioned logistical decisions.

• An optimization-enabled two-phase search (OTS) algorithm is developed to solve

large size instances in a reasonable time. Specifically, simulated annealing (SA)

algorithm is employed in the first phase to explore specific areas of the solution

space, and a variable neighborhood search (VNS) algorithm expands the search

in the second phase by leveraging the solution obtained by the SA algorithm.

Besides, a modular approach is adopted as it provides greater flexibility to han-

dle evolving regulations and drone characteristics, while also enabling scalable

deployment.

• Several new test instances are introduced and extensive analysis is conducted to

evaluate the proposed models. The delivery completion time associated with the

proposed CTDRSP-FL model is benchmarked against the conventional approach

of restricting the LARO to be at customer locations.
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5.1 Problem description

This research considers the last-mile delivery of packages to a set of customer

locations N = {i1, i2, i3, . . . iN} distributed in a 2D Euclidean space using a truck

and a set of heterogeneous drones U = {u1, u2, u3, . . . uU}. While all locations are

typically reachable by truck, drones can only serve a subset of locations N U ⊆ N

due to technical and operational restrictions (e.g., limited payload capacity), and

therefore the remaining customers N T ⊆ N (where N T = N\N U) must be served by

truck. In contrast to most of the last-mile delivery literature, our problem expands the

delivery network to include an additional set of F feasible truck stop locations (non-

customer locations and reachable by truck) besides the depot and customer locations,

thereby providing flexibility for drone LARO. The resultant set of feasible locations

can therefore be denoted by F = {i0} ∪ N ∪ {iN+1, iN+2, iN+3, . . . iN+F} ∪ {iN+F+1},

where i0 and iN+F+1 represent the starting and ending depot, respectively, which

can be distinct or same location. Among the N + F feasible locations, up to Ŝ of

customer and non-customer locations can be visited by the truck. Therefore, a set of

potential (or selected) truck stops S = {s0, s1, s2, s3, . . . sŜ, sŜ+1
} is considered, which

includes the Ŝ locations in addition to two stops s0 and s
Ŝ+1

corresponding to the

depot indices i0 and iN+F+1 in set F , respectively.

The truck carrying packages and a fleet of drones must start from the depot, visit

a subset of feasible locations, and return to the depot. The truck travel time from
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location i to j ∈ F is denoted by RT
ij. All customer locations that coincide with the

truck route are assumed to be served by the truck operator, requiring service time V T
i

for customer i ∈ N . Besides, the truck serves as a mobile drone platform for battery

swap (or recharging) and LARO. Each UAV u ∈ U is allowed to carry one package per

trip, where each UAV sortie consists of launching from a truck stop i ∈ F , visiting a

customer location j ∈ N U to deliver the package, and returning to the next truck stop

k ∈ F requiring flying time RU
ijku and service time V U

j . All customers must be served

either by a drone u ∈ U or truck before the fleet returns to the depot. Without loss of

generality, the total time of a drone u ∈ U between its launching and landing must be

within its endurance Eijku for the task from location i to customer j then to location

k ∈ F . Before a drone sortie, the truck operator spends a duration Hi at truck stop

(or depot) i ∈ F to retrieve the respective order and prepare the drone for launching.

Likewise, after completing an order delivery by drone, it requires a recovery time Gi

when landing at truck stop i ∈ F . Thus, overall delivery completion time is the

total time between starting the first vehicle preparation to depart from the depot and

completing the last vehicle recovery at the depot. Given the aforementioned problem

characteristics, the objective of this research is to minimize the delivery completion

time.

There are three categories of decisions to be made for solving the CTDRSP-FL.

First, a vehicle (truck or drone) should be assigned to visit/serve each customer. In

addition, truck stops, either customer location or flexible site, must be selected, and
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then truck route must be established. Furthermore, launching locations of drones

(which must be the depot or truck stops) to serve their assigned customers are deter-

mined, while the landing of drones are assumed to be at the subsequent truck stop

[53, 77]. Second, the departure and arrival times of all vehicles at each truck stop and

depot must be determined. Third, since the truck operator is assumed to perform

only one task at a time, sequencing (or scheduling) of tasks at truck stops (i.e., drone

launching and landing, and customer service) should be ascertained. An MILP is

developed to jointly optimize the three decisions and solve the CTDRSP-FL.

5.2 Mixed integer linear programming model

The following notation are used to formulate the optimization model.

Indices and Sets

i, j, k ∈ N set of customer locations, N = {i1, i2, i3, . . . iN}

i, j, k ∈ N U set of customer locations that can be served by drone or truck, N U ⊆ N

i, j, k ∈ N T set of customer locations that must be served by truck, N T = N\N U

i, j, k ∈ F set of potential truck stops, F = {i0}∪N ∪{iN+1, iN+2, iN+3, . . . iN+F}∪

{iN+F+1}

s ∈ S set of selected truck stops, S = {s0, s1, s2, s3, . . . sŜ, sŜ+1
}
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u ∈ U set of UAVs (or drones), U = {u1, u2, u3, . . . uU}

Parameters

N number of customer locations

F number of feasible truck stops at non-customer locations

Ŝ maximum number of stops allowed for the truck

U number of drones

RT
ij travel time of truck from feasible truck stop i to j ∈ F

RU
ijku travel time of drone u ∈ U from feasible truck stop i ∈ F to visit delivery

location j ∈ N U and then returning to feasible truck stop k ∈ F

V T
i service time of truck at delivery location i ∈ N

V U
i service time of drone at delivery location i ∈ N U

Eijku endurance (in time unit) of drone u ∈ U to fly from location i ∈ F

for delivering a package at location j ∈ N U and flying back to location

k ∈ F

Hi launch preparation time of drone at truck stop i ∈ F

Gi recovery time of drone at truck stop i ∈ F

Decision variables

dTs departure time of the truck from stop s ∈ S heading to s+ 1 ∈ S
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aTs arrival time of the truck to stop s ∈ S coming from s− 1 ∈ S

dUi departure (or launching) time of a drone to visit location i ∈ N

aUi arrival (or landing) time of a drone after visiting location i ∈ N

bUi service begin time at customer location i ∈ N if it is selected to be a

truck stop

eUi service end time at customer location i ∈ N if it is selected to be a

truck stop

wijs 1 if customer location i ∈ N is served (by launching or recovering the

respective drone, or by delivery via truck operator) before another lo-

cation j ∈ N at truck stop s ∈ S, 0 otherwise

xius 1 if a delivery location i ∈ N is served by UAV u ∈ U dispatched from

truck stop s ∈ S, 0 otherwise

yis 1 if location i ∈ F is assigned as a truck stop s ∈ S, 0 otherwise

t̂ delivery completion time of all vehicles

The objective function (5.1) minimizes the completion time of delivery operations,

which is determined by constraints (5.2) and (5.3) as the maximum of truck arrival

to the depot and the latest recovery of drone after landing (i.e., t̂ = max
∀i∈N

(aTs , a
U
i +∑

u∈U Gjxius), j = {jN+F+1}, s = {s
Ŝ
, s
Ŝ+1
}). The binary and continuous variables
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are specified by constraints (5.4) and (5.5), respectively.

Minimize t̂ (5.1)

S.t.

t̂ ≥ aTs ∀s ∈ {s
Ŝ+1
} ⊆ S (5.2)

t̂ ≥ aUi +
∑
u∈U

Gjxius ∀i ∈ N , j ∈ {jN+F+1} ⊆ N , s ∈ {sŜ} ⊆ S (5.3)

wijs, xius, yis ∈ {0, 1} ∀i, j ∈ F , u ∈ U , s ∈ S (5.4)

dTs , a
T
s , d

U
i , a

U
i , t̂ ∈ R+ ∀i ∈ N , s ∈ S (5.5)

5.2.1 Assignments and routing of hybrid vehicle fleet

Constraints (5.6)-(5.13) determine the assignments of truck stops (that can be

customer locations or flexible drone launch/recovery locations), assignments of drones

to customers (who were not selected to be visited by truck), and the routing of vehicles

(both drones and truck).

yis = 1 ∀i ∈ {i0} ⊆ F , s ∈ {s0} ⊆ S (5.6)

91



yis = 1 ∀i ∈ {iN+F+1} ⊆ F , s ∈ {sŜ+1
} ⊆ S (5.7)∑

i∈F

yis = 1 ∀s ∈ S (5.8)

∑
s∈S

yis ≤ 1 ∀i ∈ F\{iN+F+1} (5.9)

yis ≤ yi,s+1 ∀i ∈ {iN+F+1} ⊆ F , s ∈ S\{sŜ+1
} (5.10)∑

s∈S

yis = 1 ∀i ∈ N T (5.11)

∑
u∈U

∑
s∈S\{s

Ŝ+1
}

xius +
∑
s∈S

yis = 1 ∀i ∈ N U (5.12)

∑
i∈N

xius ≤ 1 ∀u ∈ U , s ∈ S (5.13)

The starting and ending depots are represented using two different indices (or

stops), {s0} and {s
Ŝ+1
}, to account for their spatial distribution. Such a modeling

approach provides the flexibility to represent the depot(s) as a single physical location

or two distinct nodes in the 2D Euclidean delivery region. Constraints (5.6) and

(5.7) ensure that the truck starts and ends its route at the depot. Constraint (5.8)

guarantees that each selected truck stop s ∈ S is assigned to exactly one potential

location i ∈ F , while constraint (5.9) ensures that each potential stop can be visited

at most once by a truck. Furthermore, constraint (5.10) limits the assignments to the

depot index {jN+F+1} to a consecutive subset of truck stop indices ending with Ŝ+1.

Each customer location that must be visited only by truck, i ∈ N T , is enforced using

constraint (5.11). Constraint (5.12) guarantees that each customer location is either
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assigned to be served by a truck or drone, while constraint (5.13) allows each drone

u ∈ U to be dispatched at most once from each truck stop.

5.2.2 Timing decision I: departure and arrival times of truck

Constraints (5.14)-(5.18) determine the optimal departure and arrival times of

truck at its stops.

aTs+1 ≥ dTs +RT
ij −M(2− yis − yj,s+1) ∀i, j ∈ F , s ∈ S\{s

Ŝ+1
} (5.14)

dTs ≥ aTs ∀s ∈ S (5.15)

dTs ≥ aUi +
∑
j∈F

Gjyjs −M(1−
∑
u∈U

xiu,s−1) ∀i ∈ N , s ∈ S\{s0} (5.16)

dTs ≥ dUi −M(1−
∑
u∈U

xius) ∀i ∈ N , s ∈ S (5.17)

dTs ≥ ei −M(1− yis) ∀i ∈ N , s ∈ S\{s0} (5.18)

The arrival time of truck at stop s + 1 ∈ S is the sum of truck departure time

from stop s ∈ S and the travel time between these stops RT
ij, as given by constraint

(5.14). It should be noted that this constraint is active only if locations i and j ∈ F

are selected as stops s and s + 1 ∈ S, respectively. Moreover, constraints (5.14) and

(5.15) also facilitate subtour elimination for the truck route. The truck departure time
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from stop s ∈ S is the maximum of the following four events, which are captured

by constraints (5.15)-(5.18), respectively: (i) arrival time of truck to stop s ∈ S, (ii)

recovery completion time of UAVs launched from the preceding stop, (iii) departure

time of all UAVs from stop s ∈ S, and (iv) service completion time at truck stop

s ∈ S, if it is a customer location.

5.2.3 Timing decision II: launching and landing times of drones

Constraints (5.19)-(5.23) determine the optimal time of launching and recovering

drones at each truck stop.

dUi ≥ aTs +
∑
j∈F

Hjyjs −M(1−
∑
u∈U

xius) ∀i ∈ N , s ∈ S (5.19)

dUj ≥ aUi +
∑
k∈F

(Gk +Hk)yks −M(2− xius − xju,s+1)

∀i, j ∈ N , u ∈ U , s ∈ S\{s
Ŝ+1
} (5.20)

aUj ≥ dUj +
∑
u∈U

RU
ijkuxjus + V U

j −M(3−
∑
u∈U

xjus − yis − yk,s+1)

∀i, k ∈ F , j ∈ N , s ∈ S\{s
Ŝ+1
} (5.21)

aUi ≥ aTs+1 −M(1−
∑
u∈U

xius) ∀i ∈ N , s ∈ S\{s
Ŝ+1
} (5.22)

aUj − dUj ≤
∑
u∈U

Eijkuxjus +M(3−
∑
u∈U

xjus − yis − yk,s+1)
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∀i, k ∈ F , j ∈ N , s ∈ S\{s
Ŝ+1
} (5.23)

Constraint (5.19) ensures the dispatch time of each drone to be after the truck

arrival to its stop plus the respective launch preparation time. Likewise, constraint

(5.20) guarantees the departure of each drone u ∈ U from a truck stop to be after

the sum of the following three times: drone arrival time from the preceding location,

drone recovery time, and preparation time for the next delivery. Constraint (5.21)

stipulates that the arrival of each drone must be after the flight duration and service

time at the assigned customer location. In addition, constraint (5.22) ensures that

the drone landing is allowed only after the truck reaches its stop. However, for each

UAV sortie (from truck stop i ∈ F to deliver a package to a customer location j ∈ N

then returning to rendezvous at stop k ∈ F), the total flight and service duration

must be within its endurance, as stated by constraint (5.23).

5.2.4 Timing decision III: customer service at truck stops

Each customer i ∈ N can be served by the truck operator or a drone. When

a customer location is assigned to be a truck stop, the delivery is assumed to be

performed by the truck operator. The following constraints control the beginning

and end of such delivery services.
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bi ≥ aTs −M(1− yis) ∀i ∈ N , s ∈ S (5.24)

ei ≥ bi + V T
i −M(1−

∑
s∈S

yis) ∀i ∈ N (5.25)

bi ≤M
∑
s∈S

yis ∀i ∈ N (5.26)

ei ≤M
∑
s∈S

yis ∀i ∈ N (5.27)

If a customer location is assigned to be a truck stop, then the service start and end

time by the truck operator are specified by constraints (5.24) and (5.25), respectively.

Specifically, constraint (5.24) ensures that the service can begin only after the truck

arrival to the respective stop s ∈ S, while constraint (5.25) determines its end time

depending on the service duration V T
i . On the other hand, if a customer i ∈ N is

not assigned to be served by a truck (i.e.,
∑

s∈S yis = 0), then constraints (5.26) and

(5.27) forces the service begin and end time to be zero.

5.2.5 Scheduling of tasks at truck stops

At each truck stop, it is crucial to coordinate the drone launch and recovery op-

eration to avoid multiple drones departing/arriving at the same time. In addition,

the scheduling of tasks at each stop must account for the truck operator availability.
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An operator can perform only one of the following tasks at a given time: (i) pre-

pare a drone for launching, (ii) recover a drone, or (iii) deliver the respective package

to the customer at truck stop. Constraints (5.28)-(5.37) control the optimization of

scheduling these tasks.

wijs + wjis ≥
∑
u∈U

xius +
∑
u∈U

xjus +
∑
u∈U

xiu,s−1 +
∑
u∈U

xju,s−1 + yis + yjs − 1

∀i, j ∈ N , s ∈ S\{s0}, i > j (5.28)

wijs + wjis ≥
∑
u∈U

xius +
∑
u∈U

xjus − 1

∀i, j ∈ N , s ∈ {s0} ⊆ S, i > j

(5.29)

aUi ≥ aUj +
∑
k∈F

Gkyks −M(3− wjis −
∑
u∈U

xiu,s−1 −
∑
u∈U

xju,s−1)

∀i, j ∈ N , s ∈ S\{s0} (5.30)

dUi ≥ dUj +
∑
k∈F

Hkyks −M(3− wjis −
∑
u∈U

xius −
∑
u∈U

xjus)

∀i, j ∈ N , s ∈ S (5.31)

aUj ≥ dUi −M(2 + wjis −
∑
u∈U

xju,s−1 −
∑
u∈U

xius)

∀i, j ∈ N , s ∈ S\{s0} (5.32)
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dUi ≥ aUj +
∑
k∈F

(Gk +Hk)yks −M(3− wjis −
∑
u∈U

xju,s−1 −
∑
u∈U

xius)

∀i, j ∈ N , s ∈ S\{s0} (5.33)

aUi ≥ ej −M(3− wjis −
∑
u∈U

xiu,s−1 − yjs) ∀i, j ∈ N , s ∈ S\{s0}

(5.34)

bi ≥ aUj +
∑
k∈F

Gkyks −M(3− wjis −
∑
u∈U

xju,s−1 − yis) ∀i, j ∈ N , s ∈ S\{s0}

(5.35)

bi ≥ dUj −M(3− wjis − yis −
∑
u∈U

xjus) ∀i, j ∈ N , s ∈ S (5.36)

dUi ≥ ej +
∑
k∈F

Hkyks −M(3− wjis −
∑
u∈U

xius − yjs) ∀i, j ∈ N , s ∈ S (5.37)

The sequencing of launching and landing operations of drones as well as delivery

service tasks of customers at truck stops is controlled using constraints (5.28) and

(5.29) for each pair of customer locations i and j ∈ N at truck stop s ∈ S. In

particular, constraint (5.28) stipulates sequencing the pertaining tasks of locations i

and j ∈ N only when they are served (by drone launching/retrieval or delivery by

the truck operator) at the same truck stop, while constraint (5.29) similarly handles

the case of launching drones from the depot. If multiple drones are recovered at a

truck stop s ∈ S, constraint (5.30) ensures collision avoidance by determining the

arrival times of drones such that a drone can arrive only after the preceding drone
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has been recovered. Similarly, if multiple drones are launched from a truck stop

s ∈ S, constraint (5.31) specifies the launching times of drones while considering

a preparation duration between each consecutive sorties. For each pair of drones,

with one recovered and the other launched at the same truck stop s ∈ S, constraints

(5.32) and (5.33) determine their landing and launching times, respectively, while

considering a recovery and preparation duration if the landing is before the launching

task. When a customer location i ∈ N is assigned to a truck stop s ∈ S, constraints

(5.34)-(5.37) control the start and end times of delivery by the truck operator while

accounting for the recovery and launching tasks of drones at the same truck stop.

5.3 Optimization-enabled two-phase search algorithm

The strong NP-hardness of the addressed problem is clear based on less complex

cases in the literature [11, 48, 53]. Therefore, it is impractical to solve large size

problems using the proposed MILP model. Hence, in this section, we develop an

optimization-enabled two-phase search (OTS) algorithm that decomposes the prob-

lem into three modules to handle the different decisions associated with the CTDRSP-

FL. The goal of Module I is to establish the truck route, which implicitly determines

the assignment of customers to be served either by a drone or truck (i.e., assignment

and truck routing decisions). Module II assigns a specific drone u ∈ U to each cus-

tomer who must be served by a drone (based on Module I), and establishes the drone
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sorties, while Module III aims to optimize the scheduling decision at each truck stop.

Fig. 5.2 provides an overview of the proposed algorithm and highlights the in-

teraction between the three modules. We develop two metaheuristics, simulated an-

nealing (SA) and variable neighborhood search (VNS), which are solved sequentially

to explore and exploit the search space associated with Module I decisions. The SA

determines a feasible truck route by considering only the customer locations in the

delivery network, thereby restricting the search to a limited region of the CTDRSP-

FL solution space. Subsequently, the VNS leverages the solution obtained by the SA

and widens the search to flexible truck stop locations. Hence, the proposed two-phase

sequential search approach initially focuses on a subset of the feasible solutions and

then considers the entire search space to improve the solution quality. The motiva-

tion for such a two-phase sequential search approach is to obtain a good solution in

a reasonable time by progressively focusing on different parts of the solution space.

Furthermore, an additional benefit of our modeling approach is that the second phase

can be easily integrated into existing models proposed in the literature to relax their

restrictions on LARO to be at customer locations.

Given the candidate solution of Module I at each iteration of the search process,

Module II identifies which drone in the set U should be deployed to serve each cus-

tomer (who were selected in Module I to be served by drones) and subsequently

determines the routing of drones. Next, Module III optimizes the scheduling of truck
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operator tasks at each stop using a decomposed optimization model. Thus, the pro-

posed approach collaboratively employs the three modules as the neighborhood search

of the metaheuristics advances. The following subsections provide a detailed descrip-

tion of the three modules.

Figure 5.2: Overview of the developed OTS algorithm

5.3.1 Module I: customer assignment and truck routing

This module jointly determines the assignment of customers to each of the two

vehicle types (truck or drone) and the truck route. An illustrative solution represen-

tation of Module I is exhibited in Fig. 5.3. It depicts the customer locations assigned

to the truck, flexible truck stops selected for drone LARO (e.g., nodes iN+3, iN+7),

and sequence in which the stops are visited. The remaining customers (e.g., nodes

i2, i3, and i4) that are not present in Fig. 5.3 are assigned to be served by drones. It
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is important to note that the solution representation throughout the search process

must be constructed by taking into account several problem characteristics to ensure

feasibility. First, a drone or truck must be assigned to serve each customer i ∈ N U ,

while the truck is assigned by default to serve all customers in set N T . Let N U−

and N U+ denote the subset of customers who are selected to be served by truck and

drones, respectively, where N U−∪N U+ = N U . Then, the truck route must cover the

set of customers N TR− = N T ∪N U−. In addition, the truck route must start and end

its route at the depot (represented by indices {i0} and {iN+F+1}) and may also stop

at non-customer (or flexible) locations belonging to set F . If N TR+ denote the depot

and selected flexible truck stops, then, without loss of generality, the cardinality of

the set N TR = N TR− ∪ N TR+ must not exceed the maximum allowable number of

truck stops Ŝ, as indicated in Fig. 5.3.

i0

s0

i5

s1

i12

s2

i8

s3

iN+7

s4

i6

s5

i1

s6

iN+3

s7

i14

s8

...

...

...

...

iN+9

s
Ŝ

iN+F+1

s
Ŝ+1

Figure 5.3: Solution representation of truck assignment and routing in Module I

To determine the Module I decisions, we develop a two-phase search strategy us-

ing SA and VNS (see Fig. 5.2). SA is a well-known probabilistic search technique

developed by [78] with a mechanism to escape from local optimal solutions by prob-

abilistically accepting low quality solutions. It has been successfully used to solve

various routing problems [10, 49, 65, 79, 80]. Also, VNS is a popular local search

technique developed by [81] to improve an incumbent solution by systematically vis-
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iting multiple distant neighborhoods in the solution space [75, 82, 83]. Therefore, a

two-phase approach that employs SA to obtain a good feasible solution for a defined

solution space, and then leverages VNS to improve it by considering flexible LARO

sites is promising for the CTDRSP-FL, especially to achieve a good trade-off between

solution quality and runtime.

To generate the neighborhood solutions at each iteration of the search process,

we consider three neighborhood operators for both SA and VNS. Algorithm 2 shows

the procedure for sequentially generating the three neighborhood solutions. The

first search operator (B1) considers a random swap of two truck stops (lines 4-9).

Given the current truck route in the search algorithm (B0) and truck travel time

(RT
ij ∀i, j ∈ N ), two random indices (istop and ilocation) are generated (line 4), one

for position of the truck route (i.e., an index from set S) and another for a potential

physical location (i.e., an index from setN ) to be included in the resultant truck route.

If the chosen truck stop (i.e., istop) is a customer location that must be visited by

truck (i.e., B0[i
stop] ∈ N T ), then the swapping operation is confined to be within the

existing truck route (lines 5−7), otherwise the originally chosen location (i.e., ilocation)

is considered as shown on line 9. The second operator (B2) rearranges B1 using the

TSP nearest neighbor algorithm [84] (lines 11 − 13), while the third neighborhood

search operator (B3) reverses the truck route of B2 (lines 14 and 15). Finally, the

three neighborhood solutions B1, B2, and B3 are returned.
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Algorithm 2 Neighborhood search operators

1: Input: B0 and RT
ij ∀i, j ∈ N

2: Output: truck routes of the three neighbors
3: B1 ← B0

4: generate two random indices, istop ∼ U(1, Ŝ) and ilocation ∼ U(1, N)
5: if B1[istop] ∈ N T then

6: generate a random index, jstop ∼ U(1, Ŝ)
7: swap B1[istop] with B1[jstop]
8: else
9: swap B1[istop] with ilocation

10: end if
11: B2[s0]← i0
12: for s ∈ S do
13: set j∗ = argmin(RT

B2[s],j
|j ∈ B1 ∧ j /∈ B2)

14: B2[s+ 1]← j∗

15: end for
16: for s ∈ S do
17: B3[s]← B2[Ŝ − s]
18: end for
19: return B1, B2, B3

5.3.1.1 Constructing routing solution without flexible locations

The pseudocode of the SA is shown in Algorithm 3. An initial feasible routing

solution is given as an input to initiate the neighborhood search, in addition to SA

parameters, namely initial and final temperature (T 0 and Tmin), cooling rate (K),

number of iterations at each temperature level (itermax) and maximum runtime (τmax
SA ).

Upon initializing the current values of the SA algorithm (lines 3 − 5), the loop on

lines 6− 20 explores the solution space over different temperature levels until one of

the following two termination criteria is met: (i) current temperature level (T current)

falls below Tmin or (ii) current runtime (τ) exceeds τmax
SA . For each level, a predefined

number of search iterations is conducted by loop 7 − 18. In each iteration, three

neighbors to the current best solution are generated using Algorithm 2 (line 8). Next,
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the algorithms of Modules II and III (see Fig. 5.2) are executed to obtain fully defined

solutions of the three neighbors (line 9), and the best among them is identified (line

10). If the delivery completion of the best neighborhood solution (t̂′) is better than

the incumbent solution’s objective value (t̂∗), then the incumbent solution is updated

with the best neighborhood solution (along with the associated objective value), as

given by lines 11 and 12. Besides, if the best neighbor outperforms the current best

solution, the former replaces the latter (lines 13 and 14). Otherwise, for the purpose of

enhancing the exploration of SA algorithm, the selected neighbor may be considered

as the current best solution with a probability based on the metropolis acceptance

criterion (lines 15− 18) [85]. Based on the truck route obtained by the SA algorithm

(B∗), the customers are categorized into N U− and N U+ (line 21). Finally, both

customer assignments and truck route are returned. The obtained truck route is then

given as an input to the VNS in the second phase of Module I (as shown in Fig. 5.2)

for improvement by allowing truck stops to be at flexible locations.

5.3.1.2 Improving routing solution with flexible locations

The VNS procedure adopted in this research is given in Algorithm 4. In addition

to using Module I outputs as parameters (B∗, t̂∗), the VNS procedure also requires

the following inputs: number of iterations for exploring near and distant neighbors

(itermax
1 and itermax

2 ) and runtime threshold (τmax
V NS). The VNS is comprised of two
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Algorithm 3 Module I − phase I (SA)

1: Input: T 0, Tmin, K, itermax, and τmax
SA

2: Output: customer assignments and truck route
3: initialize a solution B and compute its objective value t̂(B)
4: set the current best solution (B∗ ← B) and objective value (t̂∗ ← t̂(B))
5: T current ← T 0

6: while T current ≥ Tmin and τ < τmax
SA do

7: for iter := 1 to itermax do
8: generate three neighbors (B1, B2, B3) to current solution B (using Algorithm 2)
9: run Modules II and III (Algorithms 5 and 6) sequentially for B1, B2 and B3

10: set B′ = Bargmin(B1,B2,B3) and t̂′ = min(t̂(B1), t̂(B2), t̂(B3))

11: if t̂′ ≤ t̂∗ then
12: B∗ ← B′ and t̂∗ ← t̂′

13: end if
14: if t̂′ ≤ t̂(B) then
15: B ← B′ and t̂(B)← t̂′

16: else
17: generate rand num ∼ U(0, 1)

18: if rand num ≤ e(
t̂′−t̂(B)

t̂′
×100)/T current

then
19: B ← B′ and t̂(B)← t̂′

20: end if
21: end if
22: end for
23: T current ← K× T current

24: update elapsed time (τ)
25: end while
26: NU− = {i ∈ NU |i ∈ B∗} and NU+ = {i ∈ NU |i /∈ B∗}
27: return NU−, NU+, B∗ and t̂∗

search levels (loops on lines 4 − 11 and 6 − 11) that are executed for itermax
1 and

itermax
2 iterations, respectively. The first level generates a single neighbor to the

current best solution (line 5), while the second level widens the search by using that

neighbor in generating multiple distant neighbors from the incumbent solution (lines

7-9). The random swap operator (in Algorithm 2) is used in the first level after

allowing truck stops to be at flexible locations. Specifically, on line 4 of Algorithm 2,

the randomly generated potential location is modified to be ilocation ∼ U(1, N + F ).

In the second level (i.e., loop 6−11 of Algorithm 4), six neighbors are generated (line

8). Three of them are obtained by Algorithm 2, while the other three are created
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by adapting Algorithm 2 to only allow non-customer locations to be included (i.e.,

ilocation ∼ U(N+1, N+F ) on line 4 of the algorithm). Subsequently, the fully defined

solutions of the six neighbors are obtained by running Algorithms 5 and 6 sequentially

(i.e., Modules II and III as shown in Fig. 5.2), and the best among them is identified

(lines 8 and 9). If the best neighbor outperforms the incumbent solution, the former

replaces the latter (lines 10 and 11). The algorithm is terminated if the current

runtime (τ) goes beyond τmax
V NS. Finally, the best found customer assignment (N U−

and N U+) and improved truck route obtained by allowing stops at flexible locations

(B∗ and t̂∗) are returned (line 13).

Algorithm 4 Module I − phase II (VNS)

1: Input: B∗, t̂∗, itermax
1 , itermax

2 , τmax
V NS

2: Output: customer assignments and truck route
3: while τ < τmax

V NS do
4: for iter1 := 1 to itermax

1 do
5: generate a neighbor (Bl1

1 ) around the current best solution (using Algorithm 2)
6: for iter2 := 1 to itermax

2 do
7: generate neighbors (Bl2

1 , Bl2
2 , . . . , Bl2

6 ) to Bl1
1

8: run Modules II and III (Algorithms 5 and 6) sequentially for Bl2
1 , Bl2

2 , . . . , Bl2
6

9: set B = Bargmin(Bl2
1 ,Bl2

2 ,...,Bl2
6 ) and t̂B = min(t̂B

l2
1 , t̂B

l2
2 , . . . , t̂B

l2
6 )

10: if t̂B ≤ t̂∗ then
11: B∗ ← B, t̂∗ ← t̂B

12: end if
13: end for
14: end for
15: end while
16: NU− = {i ∈ NU |i ∈ B∗} and NU+ = {i ∈ NU |i /∈ B∗}
17: return NU−, NU+, B∗ and t̂∗
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5.3.2 Module II: drone assignment and routing

For each tested truck route in Module I, Module II is used to identify the drone-

customer assignment and drone sorties (see line 9 in Algorithm 3 and line 8 in Al-

gorithm 4). A rule-based heuristic is developed for Module II such that the truck

waiting and drone hovering are minimized. In particular, a priority is given to drone

sorties that do not require truck waiting and have minimal drone hovering, and then

the sorties are assigned in ascending order of truck waiting duration. A pseudocode

of the developed heuristic is provided in Algorithm 5. First, a list of all feasible

drone sorties is established, where each sortie is identified by a tuple (s, j, u) (line 3).

Subsequently, a preprocessing step is conducted to calculate the actual truck travel

time (ATs ) and drone travel times (AUsju) from each truck stop based on the partial

solution constructed in Module I (lines 4 and 5). The heuristic rule of minimizing

truck waiting and drone hovering is developed in the loops of lines 6−13 and 14−21.

First, the drone sorties that can be performed without truck waiting are considered

(lines 6−13). If a customer can be served by only one feasible drone sortie, then that

sortie is assigned by default (lines 7 and 8). Otherwise, the assignments are selected

such that the time delay between the truck and drone arrival at each truck stop is

minimized (lines 11 and 12). In both cases, any assigned sortie and its mutually

exclusive sorties are removed from the list L (lines 9 and 13). Specifically, once a

customer location is assigned to a drone, it should not be served again by a drone
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launched from a different truck stop. Furthermore, the assigned drone and launching

truck stop cannot be selected again to serve a different customer. Similar to the

loop on lines 6− 13, assignments of drone sorties are applied until all customers are

served (lines 14− 21). Finally, the assignments of drone sorties and their routing are

returned (line 22).

Algorithm 5 Module II − assignment of drones to customer locations and their routing

1: Input: B∗ and time-based parameters
2: Output: assignments and routing of drones
3: initialize a list of all feasible sorties L = (s, j, u) ∀s ∈ S\{s

Ŝ+1
}, j ∈ NU , u ∈ U

4: determine actual truck travel time (AT
s ) from each stop s ∈ S\{s

Ŝ+1
} to the next stop

5: calculate travel time of each done (AU
sju) if dispatched s ∈ S\{s

Ŝ+1
} to serve j ∈ NU and return to the

next truck stop
6: while a drone sortie (s, j, u) ∈ L can be performed without truck waiting do
7: if location j ∈ NU can be served only by a single feasible sortie in L then
8: x∗jus ← 1
9: remove the corresponding sortie from the list L

10: else
11: (s∗, j∗, u∗)← argmins∈S\{s

Ŝ+1
},j∈NU ,u∈U (AT

s −AU
sju|AT

s ≥AU
sju

)|(s,j,u)∈L
12: x∗j∗u∗s∗ ← 1
13: remove sorties (s, u, j∗) ∀s ∈ S\{s

Ŝ+1
}, u ∈ U and (s∗, u∗, j) ∀j ∈ NU from the list L

14: end if
15: end while
16: while at least one customer j ∈ NU is not served do
17: if location j ∈ NU can be served only by a single feasible sortie in L then
18: x∗jus ← 1
19: remove the corresponding sortie from the list L
20: else
21: (s∗, j∗, u∗)← argmins∈S\{s

Ŝ+1
},j∈NU ,u∈U (AU

sju −AT
s |AU

sju≥AT
s

)|(s,j,u)∈L
22: x∗j∗u∗s∗ ← 1
23: remove sorties (s, u, j∗) ∀s ∈ S\{s

Ŝ+1
}, u ∈ U and (s∗, u∗, j) ∀j ∈ NU from the list L

24: end if
25: end while
26: return x∗jus ∀j ∈ N , u ∈ U , s ∈ S
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5.3.3 Module III: scheduling decisions

The mathematical programming model with objective function (6.1) and con-

straints (6.2)-(5.37) is decomposed in Module III to independently optimize the

scheduling decisions at each truck stop. The tasks to be optimized at each truck

stop s ∈ S are launching and landing of drones. Besides, if the truck stop is at

a customer location, then the truck operator’s service start and end time for that

location must also be sequenced. To model the scheduling decisions at each truck

stop as an optimization problem, the following three mutually exclusive subsets of

locations are identified for each truck stop s ∈ S: (i) N+
s is the subset of customer

locations that are visited by drones to be recovered at truck stop s ∈ S, (ii) N 0
s is the

subset containing the customer location that is assigned to be the truck stop s ∈ S,

otherwise N 0
s = φ, and (iii) N−s is the subset of customer locations to be visited by

drones launched from truck stop s ∈ S.

Algorithm 6 provides the pseudocode of Module III. The outputs of Modules I and

II are used as inputs and the decomposed model is then solved sequentially for each

truck stop s ∈ S. In the decomposed model, the binary variables yis and xius are

fixed (lines 8 and 9) based on the truck routing and drone-customer assignments in

Modules I and II, respectively, as illustrated in Fig. 5.2. The arrival times of both

truck and drones are fixed based on the previous run of the decomposed model (lines

10 and 11). Furthermore, the sequencing binary variable wijs is limited to customer
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locations in sets N+
s , N 0

s , and N−s and to the truck stop s ∈ S for each run of the

decomposed model. Therefore, the maximum number of binary variables in each

model run does not exceed (2×U + 1)2. For each run, the arrival times of truck and

drones are stored (lines 12 and 13) to be used in the subsequent model run. Finally,

a fully defined solution to the delivery problem is obtained at the end of Module III.

An illustrative solution representation of Module III at a truck stop is shown in Fig.

5.4, where N+
s = {i2, i11}, N 0

s = {i6}, and N−s = {i3, i9, i13}. Given the assignment

of drones (both recoveries and launches) to a truck stop (i.e., customer location i6 in

the illustrative example), the tasks are sequenced as following: launch drone u2 →

recover drone u4 → recover drone u3 → serve customer i6 → launch drone u4 →

launch drone u1.

Algorithm 6 Module III − scheduling of delivery tasks

1: Input: B∗ and x∗jus ∀j ∈ N , u ∈ U , s ∈ S
2: Output: fully defined solution for the delivery problem
3: define binary parameter y∗is ∀i ∈ F , s ∈ S based on B∗

4: for each truck stop s′ ∈ S do
5: minimize objective function (6.1)
6: S.t.
7: constraints (6.2)− (5.34) by updating set S to S = {s′}
8: xjus = x∗jus ∀j ∈ N , u ∈ U , s ∈ {s′} ⊆ S
9: yis = y∗is ∀i ∈ F , s ∈ {s′} ⊆ S

10: aTs =aT∗s ∀s ∈ {s′} ⊆ S
11: aUi =aU∗i ∀i ∈ N+

s′

12: aT∗s′+1 ← aTs′+1

13: aU∗i ← aUi ∀i ∈ N−s′
14: end for
15: return fully defined solution

111



Assignemnt of drones to a truck stop

i11

i2

i9 i3

i13
i6

u3

u4 u2
u4
u1

Sequencing of tasks at the truck stop

launch
u2

recover
u4

recover
u3

serve
i6

launch
u4

launch
u1

Figure 5.4: An illustrative solution representation of sequencing decisions in Module III

5.4 Computational experiments

This section includes extensive computational experiments to evaluate the impact

of adopting flexible drone launch and recovery sites. The MILP model has been devel-

oped on GAMS 30.1 and solved using CPLEX 12.9. The proposed OTS algorithm is

implemented in Python 3.6. All experiments were performed on a computer with an

AMD Ryzen 7− 2700X @ 3.7 GHz processor and 16 GB RAM. First, the global op-

timal solutions are obtained for small size problems using the proposed MILP model.

We also use these instances to benchmark the performance of the OTS algorithm.

Next, we demonstrate the capability of the proposed solution approach to solve rel-

atively large-sized problems. Finally, a comprehensive analysis is conducted on large

instances to assess the impact of three critical parameters, namely, number of flexible

locations, UAV fleet size, and flight range. In order to quantify the impact of con-

sidering flexible locations, we benchmark its performance against the problem that

assumes truck stops to be at customer locations only (i.e., F = 0), which is referred

to as the collaborative truck-drone routing and scheduling problem with restricted

drone launch and recovery locations (CTDRSP-RL). Note that the proposed OTS al-
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gorithm is adapted to solve large instances of CTDRSP-RL by restricting the search

of VNS to customer-only locations.

5.4.1 Experimental setup of problem instances and OTS parameters

Test instances are created by generating randomly distributed customer and flex-

ible stop locations on a delivery region. We consider three network configurations

with 8, 25 and 50 customers distributed within areas of 15× 15, 25× 25, and 35× 35

miles2, respectively. Besides, we consider 10% of customers to be served only by a

truck, i.e., |N T | = d0.1×Ne. The number of flexible locations (F ) is set as 2N

in our initial analysis. For each problem configuration (delivery locations, flexible

stops, truck-only customers), we randomly generate and solve 10 instances. For each

instance, the fleet of delivery vehicles is assumed to comprise a truck carrying four

drones. The maximum number of allowable truck stops (Ŝ) is fixed at bN/2c. Similar

to prior works, the velocity of both truck and drones is set at 25 mph [33, 34, 55],

and the drone flight range is considered to be 12 miles [47]. The travel time of ve-

hicles and drone endurance are computed based on the coordinates of customer and

flexible locations. Specifically, the truck travel time is determined by considering the

rectilinear distance between nodes, while the drone travel time is calculated based on

Euclidean distance. The motivation for such an approach is to emulate the truck path

on a road network, and the drone route in the low-altitude airspace [34]. Customer
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service times by truck operator and drone are set at 0.5 and 1 minute, respectively

[52]. Furthermore, for all numerical experiments, we compare the performance of

CTDRSP-FL with CTDRSP-RL in terms of the (i) average percentage reduction in

delivery completion time (referred to as saving percent), (ii) improvement in drone

utilization (ηIMP ), which is computed as the percentage improvement in the number

of customers that are served by drones instead of truck, and (iii) percent of truck

stops that are selected at flexible sites (SF ).

Since the first phase of the OTS (i.e., the SA algorithm) is used to provide a

good initial solution (i.e., customer assignments and truck route without flexible

stops) for Phase 2, its runtime is limited to 5 minutes. For the second phase of

the OTS (i.e., the VNS algorithm), the runtime threshold is set to 60 minutes since

it is commonly adopted by prior research works on truck-drone routing [48, 52].

Further, the numerical results in Section 5.4.3 illustrate the convergence patterns for

different problem sizes and support the chosen runtime threshold. The other key

parameters of SA and VNS algorithms are tuned by considering a representative set

of instances using CALIBRA, a well-established fine-tuning procedure employing a

Taguchi’s fractional factorial experimental design combined with a local search [86].

The ranges explored for T 0, K, and itermax (SA-related parameters) are [100, 1000],

[0.8, 0.99], and [10, 30], respectively. The best performance is obtained for values: T 0

= 663, K = 0.94, and itermax = 23. Similarly, the values explored for the number of

iterations of the VNS algorithm (itermax
1 and itermax

2 ) is also between [10, 30], and the
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selected values are 13 and 15 iterations, respectively.

5.4.2 Results for Small Test Instances

The results of test instances with 8 customers for both the MILP model and OTS

algorithm are presented in Table 5.1. The proposed models are solved for the new

variant (CTDRSP-FL) and the benchmark problem (CTDRSP-RL). When employing

the MILP model, all the instances converged to proven optimal solutions. It is evident

that the consideration of flexible sites for drone LARO can yield substantial savings

in the delivery completion time as opposed to restricting them to customer locations.

On average, the package delivery was 14.4% faster for the newly introduced variant.

Besides, the CTDRSP-FL achieved lower delivery completion for all the 10 instances

with improvements ranging between 7.0% - 27.5%. Also, the gap in Table 5.1 denotes

the percentage deviation between the solution obtained by OTS algorithm and global

optimal. For both CTDRSP-RL and CTDRSP-FL, the proposed OTS algorithm

is able to achieve the global optimal for a majority of the cases, and near-optimal

solution in other instances. The average gap is less than 1% for both CTDRSP-

RL and CTDRSP-FL. With regard to the computational performance, the average

runtime to obtain the optimal solutions using the MILP model was 6,490 seconds

(min: 930, max: 14,028). For the OTS algorithm, all instances in the first phase

converged to the minimum temperature within 300 seconds (min: 62, average: 171,
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max: 288), while the second phase could obtain the results in Table 5.1 (which are

optimal for most instances) in less than 60 seconds (min: 4, average: 17, max: 52).

Table 5.1: Delivery completion time (t̂) of ten instances with N = 8 using the MILP model and
OTS algorithm

CTDRSP-RL CTDRSP-FL

Instance MILP OTS Gap % MILP OTS Gap % Saving %

1 109.7 109.7 0.0% 100.3 100.3 0.0% 8.6%
2 105.7 105.7 0.0% 82.9 82.9 0.0% 21.6%
3 86.8 89.6 3.3% 69.9 71.4 2.1% 19.5%
4 129.4 129.4 0.0% 117.1 117.1 0.0% 9.5%
5 103.7 103.7 0.0% 88.3 88.3 0.0% 14.8%
6 136.0 136.0 0.0% 98.6 98.7 0.1% 27.5%
7 113.1 113.7 0.5% 101.4 101.4 0.0% 10.4%
8 100.0 100.5 0.5% 86.7 88.0 1.4% 13.3%
9 117.9 117.9 0.0% 103.6 104.5 0.8% 12.1%
10 93.6 93.6 0.0% 87.1 88.0 1.1% 7.0%

Average 109.6 110.0 0.4% 93.6 94.0 0.6% 14.4%

Fig. 5.5 shows the characteristics of the optimal solutions for N = 8. In Fig.

5.5 (a), the percentage improvement in drone utilization when considering flexible

truck stops is shown as opposed to restricting them to customer locations. The drone

utilization is calculated as the ratio of customers served by drones to the total number

of droneable locations. For all cases under consideration, drone utilization is better

for the proposed CTDRSP-FL. This may be because of the fact that an additional

customer must be visited by a drone every time a flexible site is used as a truck

stop instead of a customer location, thereby engaging the drones in more sorties.

Moreover, a flexible stop may allow parallelization of drone delivery such that the

fleet synchronization at a truck stop is efficient (i.e., minimum waiting time), which,

in turn, enables faster delivery completion. Fig. 5.5 (b) illustrates that 77% of
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truck stops are at flexible locations. Another interesting observation in the optimal

solution of CTDRSP-FL is that the flexible stops that were neither close nor far away

from the depot were mostly chosen, while stops in the periphery were rarely selected.

Specifically, we observed that the majority of the chosen flexible stops are within the

area of 25% to 75% of the distance from the depot to the delivery area borders. This

suggests that it is beneficial to shorten the truck path by employing drones to faraway

locations.

Figure 5.5: Characteristics of optimal solutions for N = 8: (a) drone utilization of CTDRSP-RL and
CTDRSP-FL; and (b) percentage of truck stops at customer and flexible locations for CTDRSP-FL

5.4.3 Performance of OTS algorithm on larger instances

The proposed OTS algorithm is employed to obtain solutions for larger problem

instances (N = 25 and 50) of both CTDRSP-RL and CTDRSP-FL, and the corre-

sponding results are presented in Table 5.2. The average savings in delivery comple-

tion time for the two problem sizes is 12.5% and 11.3%, respectively. In contrast to the
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results of N = 8, the average savings decreased marginally as problem size increases.

In particular, the average improvement achieved by CTDRSP-FL decreases by 1.9%

(from 14.4% to 12.5%) when N = 25 instead of N = 8 and by only 1.2% (from 12.5%

to 11.3%) when an additional 25 customer locations are considered. Nevertheless,

the standard deviation of the improvement achieved tends to decrease as the prob-

lem size increases from 8 to 50 customers. In other words, the percentage savings in

delivery time is consistent and close to average as problem size increases, especially

for 50 customers. Besides, consistent with our initial findings, the drone utilization

is higher for all the instances if flexible drone LARO are allowed. Therefore, even for

large size problems, using flexible locations for drone LARO can achieve substantial

savings in delivery completion time and better drone utilization.

For all instances with N = 25 and 50, the SA phase terminated only upon reaching

the runtime threshold of 300 seconds. Subsequently, the VNS phase was executed

for one hour, which resulted in the convergence patterns in Fig. 5.6. It can be

observed that the convergence pattern for the different problem sizes is similar, but the

convergence speed becomes slower with the increase in the problem size. For example,

while the best solutions for N = 8 (which are optimal for most instances according

to Table 5.1) could be achieved in less than 60 seconds, runtimes of 1, 600 and 2, 500

seconds were required to obtain an average gap of 0.5% to the best-known solutions

for the instances with N = 25 and 50, respectively. Thus, Fig. 5.6 can provide

operators with insights on the tradeoff between solution quality and corresponding
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Table 5.2: Delivery completion time of ten instances with N = 25 and N = 50 using the OTS
algorithm

Delivery completion time (t̂)

N Instance CTDRSP-RL CTDRSP-FL Saving % ηIMP SF

25 1 320.0 262.4 18.0% 30.8% 44.4%
2 322.6 276.0 14.4% 38.5% 55.6%
3 296.4 262.4 11.5% 46.2% 66.7%
4 290.2 263.6 9.2% 30.8% 44.4%
5 301.4 271.3 10.0% 21.4% 33.3%
6 265.2 237.5 10.4% 12.6% 18.2%
7 264.8 234.3 11.5% 23.1% 33.3%
8 308.6 269.2 12.8% 30.8% 44.4%
9 292.4 253.5 13.3% 38.5% 55.6%
10 300.0 259.9 13.4% 30.8% 44.4%

Average 296.2 259.0 12.5% 30.4% 44.0%

50 1 568.4 498.3 12.3% 40.0% 50.0%
2 496.7 444.4 10.5% 28.0% 30.0%
3 509.1 449.4 11.7% 28.0% 35.0%
4 550.8 480.0 12.9% 24.0% 30.0%
5 596.4 539.6 9.5% 40.0% 50.0%
6 557.6 498.1 10.7% 28.0% 35.0%
7 519.2 456.8 12.0% 19.2% 30.0%
8 540.4 485.9 10.1% 28.0% 30.0%
9 515.9 458.7 11.1% 7.7% 15.0%
10 534.5 466.8 12.7% 25.9% 45.0%

Average 538.9 477.8 11.3% 26.9% 35.0%
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required computational time.

Figure 5.6: Convergence of the second phase in the OTS algorithm for different problem sizes

5.4.4 Impact of critical parameters on delivery completion time

The delivery completion time may be affected by the problem parameters. In this

section, we assess the sensitivity of the CTDRSP-FL to three critical parameters by

considering three levels for each of them, as shown in Table 5.3. First, the influence

of decreasing the number of flexible locations (that is set at 2N in the baseline exper-

iments) by 50% and 75% is evaluated. Second, the impact of UAV fleet size per truck

is assessed. Finally, longer flight ranges than those used in the baseline experiments
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are considered. We vary the factor levels one at a time to assess its impact, while

fixing the other parameters to the baseline setting. Moreover, similar to the previous

analysis, we run 10 replications for each problem configuration. While the three levels

of each factor are evaluated, values of the other two factors are fixed based on the

baseline setting in Section 5.4.1. Thus, a total of 180 test instances (3 factors × 3

levels × 10 replications × 2 variants) are generated and analyzed.

Table 5.3: Levels of key factors affecting the impact of using flexible locations

Levels

Factor Low Medium High

Number of flexible locations 0.5N N 2N
Number of UAVs 2 4 6
Flight range (in miles) 12 15 20

Table 5.4 provides the impact of varying the number of potential flexible locations

(F ) on the delivery completion time, drone utilization, and assignment of truck stops

to flexible sites. The same tested instances in the previous section are considered.

For both 25 and 50 customer instances, the reduction in delivery completion time

increases as the number of potential sites for flexible drone LARO is increased. This

could be because the feasible solution space is larger when the number of potential

flexible locations is varied from 0.5N to 2N , thereby increasing the likelihood of

establishing a flexible stop that facilitates better synchronization of truck and drones

to serve the nearby customers. For this same reason, the number of flexible stops that

are selected as truck stops tends to increase with F , as shown in Table 5.4. Likewise,

the percentage improvement in drone utilization increases when F is increased. Since
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drones have limited flight range, restricting their LARO to customer-only locations

may limit the number of feasible drone sorties. However, increasing the number of

flexible stops improves the likelihood of deploying a drone, while shortening the truck

route and reducing its waiting time. With regards to the characteristics of the best

solution obtained from the OTS algorithm, we observed that when a flexible location

is closer to a customer (e.g., within one mile), it is less likely to be selected as a truck

stop. Moreover, if it is selected, the resulting reduction in delivery time is usually

marginal. Also, we observed that a shorter truck route can yield substantial savings

in delivery completion time. Therefore, flexible locations around the depot are more

likely to be selected. In particular, flexible locations should neither be very near to

the depot nor the periphery of the delivery area. Furthermore, irrespective of the

allowable number of flexible sites (F ), analysis of the different instances shows that,

in certain cases, a solution with fewer flexible locations serving as truck stops can

achieve a better reduction in delivery time than a plan with more such locations.

Thus, not only the number of flexible truck stops but also their relative positions to

the depot and customer locations are crucial to efficiently reduce delivery time in the

CTDRSP-FL.

Table 5.5 shows the impact of varying the drone fleet size. It is clear that operating

more drones per truck can reduce the delivery completion time. The delivery time

obtained for CTDRSP-FL is better than CTDRSP-RL even if only two drones are

employed. However, it is also observed that there is no monotonic relation between
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Table 5.4: Average results for using different levels of number of flexible locations

Delivery completion time
ηIMP SF

N F CTDRSP-RL CTDRSP-FL Saving %

25 0.5N 296.2 277.2 6.4% 10.7% 16.7%
N 296.2 268.7 9.3% 21.4% 32.2%
2N 296.2 259.0 12.5% 30.4% 44.0%

50 0.5N 538.9 503.3 6.6% 7.8% 12.0%
N 538.9 498.1 7.6% 15.3% 22.5%
2N 538.9 477.8 11.3% 26.9% 35.0%

the number of drones and the corresponding savings in delivery completion time by

using flexible locations, especially for test instances with N = 25. Also, an important

finding is that using flexible truck stops can achieve faster deliveries with fewer drones

as opposed to restricting LARO to customer locations (CTDRSP-RL) and employing

more drones. For example, in the instances ofN = 25, the average delivery completion

time for CTDRSP-FL with two drones is lower than CTDRSP-RL with six drones, as

shown in Table 5.5. Likewise, for instances with 50 customers, the delivery completion

time with four drones and flexible LARO is earlier than adopting six UAVs but

restricting truck stops to customer locations. Furthermore, the average improvement

in drone utilization with U = 4 and 6 is similar for both problem sizes. Thus, using

flexible locations for drone LARO can aid the operators not only in reducing delivery

time but also in better utilizing their available fleet of drones. It is observed that the

proportion of stops that were flexible tends to be higher for N = 25 when compared

to instances with 50 customers, as shown in Table 5.5. As the number of customer

locations increases within a delivery region, the likelihood of choosing some of them
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for drone LARO also increases, which, in turn, could lead to the selection of fewer

flexible stops. Also, SF increases with the drone fleet size for instances with 25

customers, but such a trend was not observed for N = 50.

Table 5.5: Average results for using different levels of number of drones

Delivery completion time
ηIMP SF

N U CTDRSP-RL CTDRSP-FL Saving %

25 2 300.1 277.6 7.5% 23.9% 34.6%
4 296.2 259.0 12.5% 30.4% 44.0%
6 287.9 257.9 10.4% 31.4% 48.3%

50 2 543.2 526.6 3.1% 8.4% 9.5%
4 538.9 477.8 11.3% 26.9% 35.0%
6 516.7 451.8 12.6% 24.4% 33.0%

The reduction in delivery completion time of the two variants, ηIMP , and SF

achieved by employing drones with different flying ranges are presented in Table 5.6.

Utilizing longer range drones results in faster delivery completion for both CTDRSP-

RL and CTDRSP-FL. A drone with a longer range could be capable of reaching

more customer locations (due to larger coverage) from a given truck stop. In other

words, sorties that were not feasible with a short-range drone might now be possible.

Thus, such a capability allows greater parallelization of delivery tasks and could

be a reason for the observed pattern in Table 5.6. Nevertheless, allowing flexible

truck stops always yielded superior delivery time as opposed to restricting them to

customer-only locations. Also, the utilization of drones is not drastically affected as

the range increases. This may be because the range primarily impacts the launch

and recovery locations, but not the number of customers served by the drone. Most
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importantly, allowing flexible stops can enable faster delivery with short-range UAVs

when compared to CTDRSP-RL employing long-range drones. For example, in Table

5.6, the average delivery time for N = 50 and flight range of 12 miles is 477.8 minutes

if flexible locations are used, which is lower than operating drones with longer flight

ranges but without allowing flexible locations (i.e., CTDRSP-RL). Also, the SF is

not substantially affected by the range of drones.

Table 5.6: Average results for using different levels of flight range

Delivery completion time
ηIMP SF

N Flight range CTDRSP-RL CTDRSP-FL Saving %

25 12 296.2 259.0 12.5% 30.4% 44.0%
15 261.4 240.8 7.9% 31.5% 46.7%
20 250.1 236.5 5.4% 32.3% 47.8%

50 12 538.9 477.8 11.3% 26.9% 35.0%
15 502.3 461.8 8.1% 29.2% 37.0%
20 486.0 454.7 6.4% 24.0% 30.5%

5.5 Conclusion

This chapter addresses the problem of last-mile delivery using a fleet of hetero-

geneous drones working in tandem with a single truck. In contrast to most of the

previous works, this study does not restrict drone launch and recovery operations

to be at customer locations. Specifically, we propose a new variant of the truck-

drone tandem called the collaborative truck-drone routing and scheduling problem

with flexible launch and recovery locations (CTDRSP-FL). While prior research used

drones to aid the trucks in package delivery, the proposed variant seeks to better
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exploit the drones for deliveries while embracing the assistance from truck stopping

at flexible sites (feasible non-customer locations). Furthermore, the addressed prob-

lem variant considers the scheduling of truck operator tasks at a given stop, which

possibly include customer service and launch/recovery of multiple drones.

A new MILP model is formulated to optimally solve the CTDRSP-FL with the

objective of minimizing delivery completion time. The proposed optimization model

considers several practical aspects, such as the necessity of serving some customers by

trucks and scheduling of tasks at truck stops (e.g., launching and recovery of drones

and customer service by the truck operator). Furthermore, an optimization-enabled

two-phase search (OTS) algorithm is developed to efficiently solve large instances.

While the first phase shares many characteristics with existing studies (e.g., truck-

drone routing through a network of customer nodes), the second phase is developed to

serve as an improvement module that leverages the presence of flexible drone launch

and recovery sites. Numerical analysis shows that substantial savings in delivery

completion time (> 25% in some instances) can be achieved by using non-customer

locations for drone launch and recovery operations. Besides, the utilization of drones

was also substantially higher for the proposed variant as opposed to the traditional

truck-drone tandem. Our findings also led to several practical insights on selecting

the potential flexible stops such as avoiding locations with high demand density and

selecting areas that are likely to shorten the truck route.
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Chapter 6

Aerial and ground drone assisted

delivery routing with autonomous

repositioning and docking stations

Hybrid systems of a truck working in tandem with unmanned vehicles (aerial and

ground drones) are proven to substantially reduce delivery time [8, 11, 52]. However,

a potential source of inefficiency is that the truck waits to recover the unmanned vehi-

cles, especially that ground drones may spend relatively long time until the customers

picks up their packages. This time consuming task can be eliminated by utilizing a

network of stations recovering the unmanned vehicles after performing their delivery

operations and docking them. Therefore, the truck is allowed to move directly after
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dispatching the unmanned vehicles, thereby yielding faster last-mile deliveries for the

next customers. Moreover, the truck can return faster to the depot and deployed for

another batch of orders. On the other hand, rather than assuming that the unmanned

vehicles accompanying the truck throughout its route, they can gather at a truck stop

(not necessarily the depot) when required and then separate permanently once the

truck dispatch the unmanned vehicle for delivery. Therefore, the idle time of drones

can be minimized as they are required only for a portion of the truck route travel

time. The investment cost for establishing the supporting stations is expected to be

relatively low as the existing public properties can be utilized (possibly after minor

modifications) for docking. For example, there is a patent for docking drones on lamp

posts [87]. In addition, parking of robots can be similar to that of scooters and bikes

[88].

A schematic illustration of the role of supporting stations is provided in Fig. 6.1.

It shows a truck route starting from the depot with the orders to be delivered. Next,

the truck stops to pick up a drone coming from a nearby station to its route. The

operator loads the drone to truck and continues its route until another stop near to

the customer. Then, the truck operator retrieves the drone and respective order and

launches the drone for the last-mile delivery. The truck continues its route towards

the depot, while the drone conducts the delivery to customer and then travel for

docking at the closest available station. Whereas the schematic illustration in Fig.

6.1 shows a typical operation in this study, there are many other possible variants as
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follows: (i) the truck can load drones at the depot, (ii) the drones can be collected at

and launched from the depot, (iii) the truck can stop at a station or a non-customer

location to pick up and launch drones, (iv) the truck can stop at a customer location

to deliver the order by the operator and launch a drone to another customer, and (v)

the truck can stop at multiple locations along its route after a drone collection before

launching the drone.
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Figure 6.1: Schematic illustration of the role of supporting stations and autonomous repositioning

Utilization of supporting stations for last-mile delivery by a combination of truck

and unmanned vehicles is studied in the literature in different ways [8, 14, 55, 89, 90].

Karak and Abdelghany considered an equipped truck for carrying drones stops only

by stations in the delivery area for attaching packages to drones before launching,
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while all customers are served only by drones [8]. Also, the truck is assumed to wait

at each station on its route until collecting all respective drones, and all drones must

return to the depot by the end of the delivery plan. A similar approach is developed by

Ostermeier et al. [14] but with using delivery robots instead of drones, and allowing

the truck to stop at drop-off locations in addition to the stations, while the customers

are only visited by robots. However, they avoided the truck waiting to recover the

robots after delivery tasks, where they return to the closest stations to the respective

customers for recharging and parking until a next truck delivery tour. A two-tier

delivery system is developed by Bakach et al. [89] comprising a truck distributing the

goods from a depot to stationary hubs, then robots perform the last-mile deliveries

from the hubs to respective customers. Wang and Sheu [55] assumed docking hubs

with an unlimited supply of drones, and that the landing operations can be conducted

only at these hubs or the depot. Hong et al. [7] developed an approach to design a

network of recharging stations for drones to extend the service coverage. However,

all drones are assumed to dispatch directly from and return to the depot, not a

truck, thereby losing the advantages of the economies of scale. Similarly, Shavarani

et al. [90] jointly optimize the locations of warehouses and recharging stations in the

delivery area with the minimum total cost. This chapter contributes to the literature

as following:

• A hybrid system with three types of vehicles (truck, drones, and robots) is consid-

ered along with a network of supporting stations and autonomous repositioning
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capabilities of unmanned vehicles.

• The truck is allowed to stop by three different types of locations - customers (to

directly deliver the packages), launching/drop-off sites, and stations.

• Eligibility of vehicles to perform the last-mile deliveries is respected. For exam-

ple, some customers can be served by truck or drone, truck or robot, or truck

only.

• A MILP model is formulated to optimally solve the delivery problem of using

a hybrid truck-drone-robot system with supporting stations and repositioning

capabilities.

• Routing of vehicles and scheduling of delivery operations are obtained with a de-

tailed plan about which drones/robots to use and their collection and launching/

drop-off locations.

• A scenario of using the existing fleet of traditional trucks (not equipped for car-

rying drones nor robots) is studied to assess the impact of investing in replacing

the traditional trucks with hybrid systems.

• The impact of operating repositioning-enabled drones is evaluated in terms of

estimated reduction in delivery time to exhibit the outcome of investing in ad-

vanced models of drones and autonomous recharging (or battery replacement)

facilities at stations.
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6.1 Problem description

This chapter addresses the problem of last-mile package deliveries from a depot to

a set of customers using a truck working in tandem with multiple heterogeneous aerial

and ground drones. In this chapter, the aerial drones are referred to as unmanned

aerial vehicles (UAVs) and the ground drones are denoted as autonomous delivery

robots (ADRs). The delivery network is comprised of a set of depot and low-cost

stations (for UAV/ADR docking and recharging) S = {s0, s1, s2, s3, . . . sS}, a set of

drop-off sites F = {f1, f2, f3, . . . fF} for temporary truck parking to launch UAVs and

dispatch ADRs, and a set of customers N = {i1, i2, i3, . . . iN} to be served by either

truck, UAV, or ADR.

The three sets S, F , and N are divided into subsets as following. First, the set

of depot and stations S are categorized into three subsets based on the eligibility of

docking unmanned vehicle into SD ⊆ S for stations designed only for UAV docking,

SR ⊆ S for ADR docking, and S\SD\SR for docking both vehicle types. Second,

the drop-off sites can be used for UAV launching only (FD ⊆ F), ADR dispatching

only (FR ⊆ F), or for dropping both vehicles (F\FD\FR). Third, the set of cus-

tomers N is categorized into locations can be served by UAV or truck (ND ⊆ N ),

ADR or truck (NR ⊆ N ), truck only (N T ⊆ N ), or any of the three vehicle types

(N\ND\NR\N T ). Furthermore, with respect to launching UAVs and dispatching

ADRs, customer locations can be used for UAVs only (NWD ⊆ N ), ADRs only
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(NWR ⊆ N ), both launching UAVs and dispatching ADRs (NWDR ⊆ N ), or cannot

be used for launching UAVs nor dispatching ADRs (N\NWD\NWR\NWDR).

The truck is allowed to stop by any location in the aforementioned three sets,

resulting in a set of potential truck stops P = S ∪F ∪N . Among those locations, up

to K truck stops can be selected, where K = {k0, k1, k2, k3, . . . kK , kK+1} represents

the actual set of truck stops and the indices {k0, kK+1} refer to starting and ending

the truck route at the depot. The fleet of delivery vehicles consists of a truck, a set

of heterogeneous UAVs D = {d1, d2, d3, . . . dD}, and a set of heterogeneous ADRs

R = {r1, r2, r3, . . . rR}.

At the beginning of the delivery planning horizon, the truck is assumed to be

at the depot while the positions of the fleet of UAVs and ADRs are known (i.e.,

each autonomous vehicle is at a specific station in set S). Each UAV d ∈ D and

ADR r ∈ R takes a travel time of ED
ds and ER

rs, respectively, to reach a station

s ∈ S from the respective initial position. Such relocation can be applied only if the

travel time of UAV d ∈ D and ADR r ∈ R is within the allowed ranges QD
d and

QR
r , respectively. Furthermore, a relocation is considered when a UAV or ADR is

assigned to collaborate in the delivery plan, where the autonomous vehicle and truck

are coordinated to rendezvous at a station s ∈ S. Then, the truck driver can either

attach a package to the autonomous vehicle and dispatch it to perform a delivery

task, or pick the vehicle up and load it on the truck to be dispatched afterwards from
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another stop on the truck route. However, the truck can concurrently accommodate

up to CD UAVs and CR ADRs at any part of its route. The travel time of truck from

a potential truck stop p to p′ ∈ P is denoted as T Tpp′ , while the flying time of UAV

d ∈ D and travel time of ADR r ∈ R from truck stop p ∈ P to serve customer i ∈ N

and return to the closest docking station are denoted as TDdpi and TRrpi, respectively.

A delivery package is attached to UAV d ∈ D or ADR r ∈ R only if the total travel

is within the ranges thereof, GD
d and GR

r , respectively. A preparation time HD
d and

HR
r for order and delivery vehicle retrieval is required for each UAV d ∈ D and ADR

r ∈ R, respectively. Furthermore, a service time of truck, UAV, and ADR (V T
i , V D

i ,

and V R
i ) are considered at each customer location i ∈ N depending on the assigned

delivery vehicle. All customers must be served by either of the three vehicle types.

At the end of the delivery plan, the truck must return to the depot. The objective

in the addressed problem is to minimize the delivery completion time, represented by

the latest arrival of vehicles (truck, UAVs, or ADRs) to their designated destinations.

The following decisions are optimized to obtain a delivery plan for the addressed

problem. First, number of UAVs and ADRs to be loaded onto the truck before trav-

eling from the depot are determined. Second, the truck route is specified, which must

start and end at the depot and include the customers in set N T . In addition, the

truck stops can be at other customer sites, docking stations, and drop-off sites. At

each truck stop k ∈ K, the driver can perform one or more of three tasks - (i) loading

autonomous vehicle(s) onto the truck (which may incur idle time in waiting the ve-
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hicle(s) arrival) to be employed later on the truck route, (ii) unloading autonomous

vehicle(s) and prepare it for a delivery operation, and (iii) launching/dispatching au-

tonomous vehicle(s) not loaded on the truck (i.e., rendezvous with the truck at its

stop). Third, a subset of UAVs and ADRs is selected to work in tandem with truck in

performing delivery operations. Fourth, assignments of selected UAVs and ADRs to

loading locations onto truck (if required) and to both launching/dispatching locations

and customers are specified. Finally, departure and arrival times of all vehicles are

scheduled. A MILP model is developed in this chapter to optimize these decisions

and achieve the minimum delivery completion time.

6.2 Mixed integer linear programming model

The following notation are used to formulate the optimization model.

Indices and Sets

s ∈ S set of depot and low-cost stations for UAV/ADR docking and recharging,

S = {s0, s1, s2, s3, . . . sS}

f ∈ F set of drop-off sites for launching UAVs and dispatching ADRs to perform

last-mile deliveries, F = {f1, f2, f3, . . . fF}

i, j ∈ N set of customer locations, N = {i1, i2, i3, . . . iN}
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p, p′ ∈ P set of potential truck stops (i.e, low-cost stations, drop-off sites, and

customers), P = S ∪ F ∪N

k, k′ ∈ K set of actual truck stops, K = {k0, k1, k2, k3, . . . kK , kK+1}

d ∈ D set of UAVs, D = {d1, d2, d3, . . . dD}

r ∈ R set of ADRs, R = {r1, r2, r3, . . . rR}

Parameters

S number of low-cost stations

F number of drop-off sites

N number of customer locations

K maximum allowable number of truck stops

D number of UAVs

R number of ADRs

CD number of UAVs that can be docked on the truck roof

CR number of ADRs that the truck can carry

ED
ds duration required for UAV d ∈ D to fly from its location at the start of

the planning horizon to station s ∈ S

ER
rs duration required for ADR r ∈ R to travel from its location at the start

of the planning horizon to station s ∈ S

T Tpp′ travel time of truck from potential truck stop p to p′ ∈ P
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TDdpi travel time of UAV d ∈ D from potential truck stop p ∈ P to customer

i ∈ N and then to the closest station

TRrpi travel time of ADR r ∈ R from potential truck stop p ∈ P to customer

i ∈ N and then to the closest station

QD
d flight range of UAV d ∈ D for relocation

QR
r travel range of ADR r ∈ R for relocation

GD
id flight range of UAV d ∈ D serving customer i ∈ N

GR
ir travel range of ADR r ∈ R serving customer i ∈ N

HD
d preparation time of UAV d ∈ D

HR
r preparation time of ADR r ∈ R

V T
i service time of truck at delivery location i ∈ N

V D
i service time of UAV at delivery location i ∈ N

V R
i service time of ADR at delivery location i ∈ N

Decision variables

aTk arrival time of truck to truck stop k ∈ K

aDd arrival time of UAV d ∈ D to the closest station after completing its

delivery task

aRr arrival time of ADR r ∈ R to the closest station after completing its

delivery task

dTk departure time of truck from truck stop k ∈ K
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uDdk 1 if UAV d ∈ D is carried by the truck before traveling to stop k ∈ K,

0 otherwise

uRrk 1 if ADR r ∈ R is carried by the truck before traveling to stop k ∈ K,

0 otherwise

qDdk 1 if a UAV d ∈ D is collected by truck at stop k ∈ K, 0 otherwise

qRrk 1 if a ADR r ∈ R is collected by truck at stop k ∈ K, 0 otherwise

wDdk 1 if a UAV d ∈ D is launched from truck stop k ∈ K, 0 otherwise

wRrk 1 if a ADR r ∈ R is dispatched from truck stop k ∈ K, 0 otherwise

xpk 1 if station, drop-off site, or customer location p ∈ P is assigned to

be truck stop k ∈ K, 0 otherwise

yDid 1 if a delivery location i ∈ N is served by UAV d ∈ D, 0 otherwise

yRir 1 if a delivery location i ∈ N is served by ADR r ∈ R, 0 otherwise

t̂ delivery completion time of all vehicles

The following specifies the developed MILP model for obtaining the optimal last-

mile delivery plan using the hybrid truck-drone-robot system. The objective function

(6.1) minimizes the delivery completion time, which is the maximum of arrival times

of delivery vehicles to their respective destinations as computed by constraints (6.2),

(6.3), and (6.4), for the truck, UAVs, and ADRs, respectively. The binary and con-
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tinuous decision variables are defined by constraints (6.5) and (6.6), respectively.

Minimize t̂ (6.1)

S.t.

t̂ ≥ aTk ∀k ∈ K 3 k = {kK+1} (6.2)

t̂ ≥ aDd ∀d ∈ D (6.3)

t̂ ≥ aRr ∀r ∈ R (6.4)

uDdk, u
R
rk, q

D
dk, q

R
rk, w

D
dk, w

R
rk, xpk, y

D
id, y

R
ir ∈ {0, 1} ∀i ∈ N , d ∈ D, r ∈ R, p ∈ P , k ∈ K

(6.5)

aTk , a
D
d , a

R
r , d

T
k , t̂ ∈ R+ ∀k ∈ K, d ∈ D, r ∈ R (6.6)

6.2.1 Routing of delivery vehicles

Routing of truck, UAVs, and ADRs is controlled by constraints (6.7)-(6.14) guar-

anteeing feasible routes of vehicles as well as inclusion of all customers in the delivery

plan.

xpk = 1 ∀p ∈ P 3 p = {s0}, k ∈ K 3 k = {k0, kK+1} (6.7)
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∑
p∈P

xpk = 1 ∀k ∈ K (6.8)

∑
k∈K

xpk ≤ 1 ∀p ∈ P\{s0} (6.9)

xpk ≤ xp,k+1 ∀p ∈ P 3 p = {s0}, k ∈ K\{k0, kK+1} (6.10)∑
k∈K

xik +
∑
d∈D

yDid +
∑
r∈R

yRir = 1 ∀i ∈ N (6.11)

∑
k∈K

xik +
∑
d∈D

yDid = 1 ∀i ∈ ND (6.12)

∑
k∈K

xik +
∑
r∈R

yRir = 1 ∀i ∈ NR (6.13)

∑
k∈K

xik = 1 ∀i ∈ N T (6.14)

Constraint (6.7) ensures that the truck starts and ends its route at the depot

(s0 ∈ P). Along the truck route, each stop k ∈ K must be assigned to a potential

truck stop p ∈ P as specified by constraint (6.8), while constraint (6.9) guarantees

that each potential stop p ∈ P\{s0} is allowed only once to serve as a truck stop

k ∈ K. However, in constraint (6.9), multiple truck stops in set K can be assigned

to the depot {s0} ∈ P allowing the total number of truck stops to be less than K.

Those redundant stops are assigned by constraint (6.10) to be at the end of the truck

route. Therefore, constraint (6.10) implicitly stipulates that the depot cannot be

visited by truck until the end of its route. For each customer i ∈ N , constraint (6.11)

ensures exactly one delivery service by the truck, an UAV, or an ADR. Based on the

feasibility of serving customers by different vehicle types, constraints (6.12) -(6.14)
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confine the assignments in the delivery plan to the eligible vehicles for the customers

in sets ND, NR, and N T , respectively.

6.2.2 Collection of UAVs and ADRs

Along the truck route, collection of UAVs and ADRs from eligible stations is

controlled by constraints (6.15)-(6.22).

∑
k∈K

qDdk ≤ 1 ∀d ∈ D (6.15)

∑
k∈K

qRrk ≤ 1 ∀r ∈ R (6.16)

∑
k∈K

qDdk =
∑
i∈N

yDid ∀d ∈ D (6.17)

∑
k∈K

qRrk =
∑
i∈N

yRir ∀r ∈ R (6.18)

qDdk ≤ 1− xpk ∀d ∈ D, k ∈ K, p ∈ F ∪N (6.19)

qRrk ≤ 1− xpk ∀r ∈ R, k ∈ K, p ∈ F ∪N (6.20)∑
r∈R

qRrk ≤ R(1− xsk) ∀k ∈ K, s ∈ SD (6.21)

∑
d∈D

qDdk ≤ D(1− xsk) ∀k ∈ K, s ∈ SR (6.22)

Each UAV d ∈ D or robot r ∈ R is allowed by constraints (6.15) and (6.16),
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respectively, to be collected at most once by the truck. However, constraints (6.17)

and (6.18) stipulate the UAV or ADR collection, respectively, only if it is assigned

to serve one of the customer locations. Moreover, collection of UAVs and ADRs

is restricted by constraints (6.19) and (6.20), respectively, to be performed only at

stations, not customer nor drop-off locations. Furthermore, depending on the station

eligibility to accommodate delivery vehicles, constraints (6.21) and (6.22) determine

if to allow vehicle collection by truck at each station s ∈ S or not. The rationale

of constraints (6.19)-(6.22) is to avoid waiting of autonomous vehicles (i.e., UAV

hovering or ADR parking) at unequipped locations.

6.2.3 Launching UAVs and dispatching ADRs

The last-mile delivery tasks by UAVs and ADRs are steered by constraints (6.23)-

(6.32) to optimize the assignments of these autonomous vehicles to both truck stops

as dispatching locations and customers for package delivery.

∑
k∈K

wDdk ≤ 1 ∀d ∈ D (6.23)

∑
k∈K

wRrk ≤ 1 ∀r ∈ R (6.24)

∑
k∈K

wDdk =
∑
i∈N

yDid ∀d ∈ D (6.25)
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∑
k∈K

wRrk =
∑
i∈N

yRir ∀r ∈ R (6.26)

∑
r∈R

wRrk ≤ R(1− xsk) ∀k ∈ K, s ∈ SD (6.27)

∑
d∈D

wDdk ≤ D(1− xsk) ∀k ∈ K, s ∈ SR (6.28)

∑
r∈R

wRrk ≤ R(1− xfk) ∀k ∈ K, f ∈ FD (6.29)

∑
d∈D

wDdk ≤ D(1− xfk) ∀k ∈ K, f ∈ FR (6.30)

∑
r∈R

wRrk ≤ R(1− xik) ∀k ∈ K, i ∈ N\NWR\NWDR (6.31)

∑
d∈D

wDdk ≤ D(1− xik) ∀k ∈ K, i ∈ N\NWD\NWDR (6.32)

Constraints (6.23) and (6.24) ensure, respectively, that each UAV d ∈ D and ADR

r ∈ R can be assigned to travel with a delivery package from at most one truck stop

k ∈ K. In addition, dispatching of an autonomous vehicles to perform a delivery

task is stipulated by constraints (6.25) and (6.26) when it is assigned to serve one of

the customers. Furthermore, from constraints (6.17), (6.18), (6.25), and (6.26), an

autonomous vehicle cannot be used for package delivery unless it has been collected

by the truck driver at a stop k ∈ K. Feasibility of UAVs and ADRs dispatching

locations is guaranteed by constraints (6.27)-(6.32). In particular, since the stations

can be designed to accommodate only one type of autonomous vehicles, constraints

(6.27) and (6.28) accordingly guide the assignments of vehicles to stations. Similarly,
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constraints (6.29) and (6.30) control whether UAVs and ADRs, respectively, can be

assigned to deliver a package from each drop-off location f ∈ F , while constraints

(6.31) and (6.32) determine if a customer location i ∈ N can be used for launching

UAVs/dispatching ADRs.

6.2.4 Relation between the truck and unmanned vehicles

Dynamics of autonomous vehicles collection, transportation from a truck stop to

a next, and dispatching for delivery tasks are handled by constraints (6.33)-(6.38).

uDdk = 0 ∀k ∈ K 3 k = {k0}, d ∈ D (6.33)

uRrk = 0 ∀k ∈ K 3 k = {k0}, r ∈ R (6.34)

uDdk + qDdk = uDd,k+1 + wDdk ∀d ∈ D, k ∈ K\{kK+1} (6.35)

uRrk + qRrk = uRr,k+1 + wRrk ∀r ∈ R, k ∈ K\{kK+1} (6.36)∑
d∈D

uDdk ≤ CD ∀k ∈ K (6.37)

∑
r∈R

uRrk ≤ CR ∀k ∈ K (6.38)

Constraints (6.33) and (6.34) state that the truck does not carry any UAVs nor

ADRs before commencing the delivery plan. Therefore, all involved autonomous

vehicles are tracked starting with a possibility of collecting some of them at the depot
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before the truck travel. Flow balance of the UAVs and ADRs at each truck stop is

governed by constraints (6.35) and (6.36), respectively. Particularly, the number of

UAVs (or ADRs) carried by truck before arriving the stop k ∈ K and those collected

after arrival (i.e., uDdk + qDdk) must be equal to the number of dispatched vehicles from

the truck stop to perform delivery tasks and the onboard vehicles after leaving the

truck stop (i.e., uDd,k+1 +wDdk). Since the truck has a limited space for UAVs (CD) and

ADRs (CR), constraints (6.37) and (6.38) limit their capacity on the truck.

6.2.5 Scheduling of delivery vehicles

While the previous constraints aim at achieving feasible delivery routing plan,

scheduling the departure and arrival times of vehicles at truck stops and stations is

specified by constraints (6.39)-(6.44).

dTk ≥ aTk +
∑
d∈D

HD
d w

D
dk +

∑
r∈R

HR
r w

R
rk +

∑
i=p∈N

V T
i xpk ∀k ∈ K (6.39)

dTk ≥ ED
dsq

D
dk −M(1− xsk) ∀k ∈ K\{kK+1}, d ∈ D, s ∈ S

(6.40)

dTk ≥ ER
rsq

R
rk −M(1− xsk) ∀k ∈ K\{kK+1}, r ∈ R, s ∈ S

(6.41)

aTk ≥ dTk−1 + T Tpp′ −M(2− xp,k−1 − xp′k) ∀k ∈ K\{k0}, p, p′ ∈ P (6.42)
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aDd ≥ dTk + TDdpi + V D
i −M(3− xpk − yDid − wDdk) ∀d ∈ D, p ∈ P , k ∈ K, i ∈ N

(6.43)

aRr ≥ dTk + TRrpi + V R
i −M(3− xpk − yRir − wRrk) ∀r ∈ R, p ∈ P , k ∈ K, i ∈ N

(6.44)

Constraint (6.39) determines the truck departure time from each stop k ∈ K by

stipulating preparation times for the assigned UAVs and ADRs. Furthermore, when

the truck collects UAV d ∈ D or ADR r ∈ R at stop k ∈ K, constraints (6.40) and

(6.41) ensure that its departure time must be later than the arrival of the respective

autonomous vehicle to that truck stop. Arrival time of the truck to a stop k ∈ K

is determined by constraint (6.42). Similarly, constraints (6.43) and (6.44) compute

the arrival times of UAVs and ADRs to their destination stations based on departure

and travel times thereof, in addition to service time at customer location.

6.2.6 Travel ranges of UAVs and ADRs

A feasible delivery plan must guarantee the limited travel ranges of UAVs and

ADRs, which is addressed by constraints (6.45)-(6.48).

ED
dsq

D
dk −M(1− xsk) ≤ QD

d ∀d ∈ D, k ∈ K, s ∈ S (6.45)

ER
rsq

R
rk −M(1− xsk) ≤ QR

r ∀r ∈ R, k ∈ K, s ∈ S (6.46)
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aDd − dTk −M(2− wDdk − yDid) ≤ GD
id ∀d ∈ D, k ∈ K, i ∈ N (6.47)

aRr − dTk −M(2− wRrk − yRir) ≤ GR
ir ∀r ∈ R, k ∈ K, i ∈ N (6.48)

Constraints (6.45) and (6.46) ensure that the relocation time of each UAV d ∈ D

and ADR r ∈ R is within the respective travel ranges QD
d and QR

r , respectively.

Similarly, when delivery tasks are assigned, flying ranges of UAVs and travel ranges

of ADRs are respected by constraints (6.47) and (6.48).

6.2.7 Valid inequalities and knowledge-based constraints

The MILP model of objective function (6.1) and constraints (6.2)-(6.48) takes

relatively long computational time to obtain optimal solutions even for small size

problems, as observed from initial experiments. Therefore, valid inequalities and

knowledge-based constraints are developed in this section to enhance the proposed

model performance, thereby yielding optimal solutions of reasonable size instances to

efficiently benchmark solution approaches for larger size problems. However, both sets

of constraints only provide cuts of the solution space, and therefore do not exclude

any of the optimal solutions. Initially, the following lemmas and propositions are

presented to clarify the concepts of the proposed valid inequalities and knowledge-

based constraints.
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Lemma 1. For three locations indexed by k, k + 1, and k + 2 ∈ K, the travel time

T Tk,k+2 is a lower bound to the overall time of traveling from k to the intermediate

stop k + 1 and then to k + 2.

Proof. Based on the triangular law of inequality, T Tk,k+2 ≤ T Tk,k+1 + T Tk+1,k+2. �

Proposition 1. For any two different truck stops k and k′ ∈ K, aTk > (dTk′+T
T
k′,k)|k′<k.

Proof. Consider two consecutive truck stops k − 1 and k ∈ K. Based on constraint

(6.42), truck arrival at stop k equals the departure time from k − 1 plus its travel

time from k − 1 to k, aTk = dTk−1 + T Tk−1,k. Likewise, aTk−1 = dTk−2 + T Tk−2,k−1. Since

dTk−1 > aTk−1, by definition, then aTk > dTk−2 + T Tk−2,k−1 + T Tk−1,k. From Lemma 1,

T Tk−2,k < T Tk−2,k−1 + T Tk−1,k. Thus, aTk > dTk−2 + T Tk−2,k. By induction, aTk > dTk′ +

T Tk′k,∀k, k′ ∈ K, k > k′. �

Proposition 2. Arrival time of a vehicle (e.g., UAV or ADR) carried by a truck from

the depot {s0} ∈ P to a customer i ∈ N is larger than the minimum of independent

travel time spent by either that vehicle or the truck.

Proof. Assume that both the autonomous vehicle and truck can independently

travel from {s0} ∈ P to i ∈ N on the same geometric route in times TA and T T ,

respectively. When the truck carries the vehicle from the depot {s0} ∈ P and dispatch
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it to perform the last-mile delivery to customer i ∈ N , the resultant travel time is

T̂ = (1 − p) × TA + p × T T , where p ∼ [0, 1] is the proportion of the route traveled

by the truck carrying the autonomous vehicle. Therefore, T̂ ≥ (1 − p) × TA and

T̂ ≥ p×T T irrespective of the value of p. Moreover, T̂ ≥ min(TA, T T ). Thus, arrival

to i ∈ N after a travel time T̂ is larger than the minimum of TA and T T . �

Lemma 2. The truck can be assigned to stop k ∈ K and an autonomous vehicle can

be dispatched from k as long as the autonomous vehicle travel time does not visit a

customer i ∈ N causing violation of its allowable travel range.

Proof. For a potential truck stop p ∈ P , if xpk = 1 for a stop k ∈ K, a travel time

of an unmanned vehicle longer than the allowable range contradicts with the delivery

problem feasibility. �

Lemma 3. The truck can be assigned to stop k ∈ K and an autonomous vehicle can

be dispatched to serve a customer i ∈ N as long as the vehicle is not assigned to be

dispatched from stop k in case that it violates its allowable travel range.

Proof. The same feasibility conditions in Lemma 2 are applied. �

Lemma 4. An autonomous vehicle can be dispatched from a stop k ∈ K to serve a

customer i ∈ N as long as k does not coincide with a geographical location p ∈ P

149



causing violation of the autonomous vehicle’s allowable travel range.

Proof. The same feasibility conditions in Lemma 2 are applied. �

Proposition 3. If vehicle travel time from truck stop k ∈ K coinciding with a

potential location p ∈ P to visit customer i ∈ N and return to the closest station

is larger than the allowable travel range, the following three assignments cannot be

conducted simultaneously: coinciding location p ∈ P with stop k ∈ K, dispatching

the vehicle from stop k ∈ K, and employing the vehicle to serve customer i ∈ N .

Proof. Lemmas 2, 3, and 4 together prove the preposition. �

Proposition 4. If autonomous vehicle relocation time to station s ∈ S is longer

than its travel range, the station cannot be assigned as a truck stop collecting that

autonomous vehicle.

Proof. Feasibility of the delivery plan includes two conditions. First, the truck can

be assigned to stop at station s ∈ S unless picking an autonomous vehicle up from

that station requires a relocation violating the vehicle travel range. Second, pick up

of an autonomous vehicle at a station s ∈ S can be performed unless it requires a

relocation to reach s violating its travel range. �

Based on these lemmas and propositions, the valid inequalities (6.49)-(6.51) are
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used to apply lower bounds to the three determinants of delivery completion time,

aTk , aDd , and aRr (c.f., objective function (6.1) and constraints (6.2)-(6.4)), while the

knowledge-based constraints (6.52)-(6.55) capitalizes on the travel ranges information

of UAVs and ADRs to guide the branching procedure of the MILP solver.

aTk ≥ dTk′ + T Tp′p −M(2− xpk − xp′k′) ∀p, p′ ∈ P , k, k′ ∈ K, k > k′

(6.49)

aDd ≥ min(T Tpi + min
s∈S

(T Tis ), T
D
dpi) + V D

i −M(1− yDid) ∀d ∈ D, p ∈ P 3 p = {s0}, i ∈ N

(6.50)

aRr ≥ min(T Tpi + min
s∈S

(T Tis ), T
R
rpi) + V R

i −M(1− yRir) ∀r ∈ R, p ∈ P 3 p = {s0}, i ∈ N

(6.51)

xpk + wDdk + yDid ≤ 2 ∀p ∈ P , i ∈ N , k ∈ K, d ∈ D|TDdpi + V D
i > GD

id (6.52)

xpk + wRrk + yRir ≤ 2 ∀p ∈ P , i ∈ N , k ∈ K, r ∈ R|TRrpi + V R
i > GR

ir (6.53)

xsk + qDdk ≤ 1 ∀s ∈ S, k ∈ K, d ∈ D|ED
ds > QD

d (6.54)

xsk + qRrk ≤ 1 ∀s ∈ S, k ∈ K, r ∈ R|ER
rs > QR

r (6.55)
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6.3 Computational experiments

In this section, we conduct numerical experiments to demonstrate the effectiveness

of last-mile delivery by hybrid truck-drone systems with a network of supporting

stations. The tested instances are benchmarked with the traditional delivery by truck

only. Furthermore, the impact of UAV/ADR relocation to rendezvous with truck is

assessed. Finally, a tradeoff between operating hybrid versus traditional trucks is

studied. The developed MILP model has been coded on GAMS 30.1 and solved by

CPLEX 12.10. All computational experiments were conducted on a PC with an AMD

Ryzen 7-2700X processor and 16 GB RAM.

6.3.1 Setup of test instances

The test instances are created by randomly generating locations of network nodes

within an area of 25 × 25 miles2 around a depot at the center of delivery area. The

number of locations for stations, drop-off sites, and customers is listed in Table 6.1 for

each set of allowable vehicles. When establishing the stations, a minimum of 5 miles

between them is considered, while all drop-off sites are far by at least 3 miles from

stations and other sites. Based on this setting, ten different instances are generated.

Customer locations that can be served by a specific vehicle type (e.g., UAV) may be

assigned as a dispatching site for the respective vehicle type. The maximum allowable

152



number of truck stops (K) is set at 50%× |N |. The system is assumed to contain a

total of 15 UAVs and 15 ADRs and their locations are uniformly distributed within a

range of [0,3] per station. The truck can simultaneously carry up to 4 UAVs on its roof

and 4 ADRs along with the customer packages. The truck and UAV speed is set at 25

mph, while ADRs can travel 10 mph [12]. Travel times of vehicles are computed based

on the distances between coordinates of stations and the aforementioned velocities.

The travel ranges of UAVs and ADRs are set at 10 and 16 miles, respectively [91].

Before each UAV launching or ADR dispatching, a one minute preparation time is

required to retrieve the vehicle and respective order, while the truck, UAVs, and

ADRs spend a service time of 0.5, 1.0, and 3.0 minutes, respectively, at customer

locations.

Table 6.1: Number of locations of stations, drop-off sites, and customers for each set of allowable
vehicles

UAVs and truck ADRs and truck Truck only All vehicles Total

Stations 2 2 - 6 10
Drop-off sites 2 2 - 6 10
Customers 2 2 1 5 10

6.3.2 Effectiveness of using UAVs and ADRs with docking stations

In order to evaluate the effectiveness of using UAVs and ADRs with supporting

stations, a comparison is conducted with delivery operations by truck only. The

traveling salesman problem is solved to obtain the optimal solutions for the ten in-

stances, while the proposed MILP model is solved with a 6-hr runtime limit resulting
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in the optimal solutions for six out of the ten instances. Table 6.2 exhibits the de-

livery completion time of both cases and the saving percent of using hybrid system

with supporting stations as compared to truck only delivery operations. The saving

in delivery completion time ranges from 23.7% to 41.4%, which demonstrates the

effectiveness of using the hybrid delivery systems while utilizing supporting stations.

Table 6.2: Delivery completion time by solving the TSP model and the developed MILP model for
ten instances

Instance Truck only Hybrid system with
supporting stations

Saving %

1 216.6 157.6 27.3%
2 164.1 101.9 37.9%
3 220.2 129.1 41.4%
4 243.0 163.6 32.7%
5 230.8 155.1 32.8%
6 180.4 116.3 35.5%
7 215.0 154.8 28.0%
8 252.0 148.8 40.9%
9 203.4 155.2 23.7%
10 221.6 133.7 39.7%

Average 214.7 141.6 34.0%

6.3.3 Impact of UAVs and ADRs repositioning

Relocation of unmanned vehicles may require recharging or autonomous battery

replacement facilities at stations and advanced models of UAVs and ADRs. Therefore,

the impact of establishing facilities and investing in advanced vehicles to allow the

relocation is studied in this section. Table 6.3 shows the delivery completion time

for two cases, without and with relocation. While a marginal saving of less than

3.3% is achieved when the relocation is considered for seven instances, a substantial
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saving in delivery time is obtained for the remaining three instances, resulting in an

average saving of 9.8%. Thus, delivery operators may consider the tradeoff between

the estimated saving in delivery time and the corresponding required investment in

facilities and vehicles.

Table 6.3: Delivery completion time when unmanned vehicles can be operated without and with
repositioning

Instance Without repositioning With repositioning Saving %

1 185.2 157.6 14.9%
2 140.2 101.9 27.3%
3 129.4 129.1 0.2%
4 243.0 163.6 32.7%
5 155.1 155.1 0.0%
6 116.3 116.3 0.0%
7 154.8 154.8 0.0%
8 153.9 148.8 3.3%
9 155.7 155.2 0.3%
10 137.3 133.7 2.6%

Average 157.1 141.6 9.8%

6.3.4 Tradeoff between traditional and hybrid trucks

Replacing the existing fleet of trucks or even retrofitting them to accommodate

UAVs and ADRs may require a considerable investment. Therefore, delivery op-

erators may consider a tradeoff between the required investment amount and the

corresponding estimated yield versus maintaining their traditional fleet of trucks. In

this section, we quantify the average saving in delivery time by using traditional

trucks with unmanned vehicles and supporting stations as compared to both using

stand-alone trucks and hybrid trucks for delivery operations. The optimal solutions
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for the former can be achieved by the proposed MILP model by fixing variables uDdk

and uRrk to zero. Figure 6.2 shows that using traditional trucks with UAVs and ADRs

outperforms the truck-only delivery for all the tested instances. Nevertheless, the

difference is marginal in some cases (e.g., instance 4, 7, and 9) as the truck trav-

els longer to rendezvous the unmanned vehicles at nearby locations to the target

customers. Furthermore, additional saving can be achieved by using hybrid trucks.

However, using hybrid verses traditional trucks may result in either small or no saving

in delivery time (e.g., instances 3, 5, and 8). On average, using UAVs and ADRs with

the traditional trucks saves 22.3% of delivery time, while investing in hybrid trucks

can yield an additional saving of 11.7%.

6.4 Conclusion

This chapter studies the impact of establishing a network of supporting stations

on reducing delivery time. A MILP model is developed for the addressed delivery

problem. Furthermore, valid inequalities and knowledge-based constraints are for-

mulated. The obtained delivery completion time by the system under consideration

is benchmarked with the conventional delivery operations by truck only. We found

that up to 41.4% of delivery time can be saved when using hybrid truck-drone-robot

systems with supporting stations. Next, two cases are separately studied to exhibit

the tradeoff between the required investment in vehicles and facilities versus the cor-
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Figure 6.2: Comparison between delivery completion time by using three settings of traditional and
hybrid trucks

responding estimated reduction in delivery time. In particular, we found that the

relocation of UAVs and ADRs can contribute with an additional 9.8% saving in de-

livery time, while using hybrid instead of traditional trucks can yield an additional

saving of 11.7%. The proposed model in this chapter demonstrated the benefit of a

hybrid delivery system and also yielded some preliminary insights.
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Chapter 7

Conclusions and future research

directions

This dissertation considers the problem of last-mile delivery using multiple UAVs

and a single truck. Four variants are addressed in this dissertation. We adopt the

approach of grouping customer locations into non-overlapping clusters and routing

the truck via each cluster’s focal point to facilitate simultaneous UAV deliveries in

that cluster. Unlike the common sequential approaches in the literature, this work

presents a new integrated method for clustering and routing decisions. We propose

mathematical programming models to solve the problem for two different policies - (i)

restricting truck stops to a customer-only location (JOCR-R), (ii) allowing truck stops

to be anywhere in the delivery region (JOCR-U). Besides, we formulate our models to
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consider the two common objectives, namely, minimizing total costs and minimizing

delivery completion time. Thus, we provide the flexibility to treat the problem as

a single objective to optimize one of the performance measures or handle it as a

multi-objective to achieve the best compromise solutions. Furthermore, we introduce

a knowledge-based constraint and machine learning-based heuristic to accelerate the

JOCR-U models.

An extensive numerical analysis is conducted for the proposed models and bench-

marked with a recently introduced sequential heuristic approach in the literature.

Solving the test instances independently for the two objectives revealed that the pro-

posed joint optimization approach outperforms the sequential heuristic method for

all the cases. Besides, allowing the focal points to be anywhere in the delivery re-

gion instead of restricting it to a customer location provides substantial savings with

respect to cost and delivery completion time. In addition, a sensitivity analysis of

key model parameters is also conducted to establish their independent effects on the

performance measures. Also, the ε-constraint method achieves the best compromise

between the two objectives. Finally, numerous insights drawn from our analysis could

aid the practitioners and researchers in the effective routing of one truck and multiple

UAVs.

Furthermore, we consider a common assumption in the existing literature of truck-

drone tandems, which predominantly restricts the UAV launch and recovery opera-

159



tions (LARO) to customer locations. Such a constrained setting may not be able

to fully exploit the capability of UAVs. Moreover, this assumption may not accu-

rately reflect the actual delivery operations. In this research, we address these gaps

and introduce a new variant of truck-drone tandem that allows the truck to stop at

non-customer locations (referred to as flexible sites) for UAV LARO. The proposed

variant also accounts for three key decisions - (i) assignment of each customer loca-

tion to a vehicle, (ii) routing of truck and UAVs, and (iii) scheduling UAV LARO

and truck operator activities at each stop, which are always not simultaneously con-

sidered in the literature. A mixed integer linear programming model is formulated

to jointly optimize the three decisions with the objective of minimizing the delivery

completion time. To handle large problem instances, we develop an optimization-

enabled two-phase search algorithm by hybridizing simulated annealing and variable

neighborhood search. Numerical analysis demonstrates substantial improvement in

delivery efficiency of using flexible sites for LARO as opposed to the existing approach

of restricting truck stop locations. Finally, several insights on UAV utilization and

flexible site selection are provided based on our findings.

Establishing of docking stations and the repositioning feature of unmanned ve-

hicles are also considered. The proposed delivery system is benchmarked with the

conventional delivery operations by truck only. In addition, the impact of investing

in autonomous recharging (or battery replacement) and repositioning-enabled vehi-

cles on reducing the delivery time is evaluated. Moreover, as replacing the existing
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fleet of trucks with hybrid systems may incur large investment, the tradeoff between

them in terms of the corresponding estimated reduction in delivery time is consid-

ered. Since the proposed MILP model for using docking stations and repositioning of

unmanned vehicles can only obtain optimal solutions for small size problems, efficient

solution approaches should be developed in future research to allow using such de-

livery systems at scale. In addition, the following directions should be considered in

the future research: (i) stochastic operations, especially due to road congestion and

weather conditions, (ii) time windows for delivery of packages, (iii) service coverage

of delivery vehicles, (iv) rectilinear travel of drones in a city with tall buildings, and

(v) drones capable of delivering multiple packages in each sortie.

161



References

[1] Tuerk, M. (2019), “Fixing Amazon’s Drone Delivery Problem,” .

URL https://www.forbes.com/sites/miriamtuerk/2019/05/16/

fixing-amazons-drone-delivery-problem/{#}64f4da774d37

[2] Fehr and Peers (2019), “Drone Delivery — Fehr & Peers,” .

URL https://www.fehrandpeers.com/drone-delivery/

[3] Joerss, M., F. Neuhaus, and J. Schroder (2016), “How customer demands

are reshaping last-mile delivery,” .

URL https://www.mckinsey.com/industries/

travel-transport-and-logistics/our-insights/

how-customer-demands-are-reshaping-last-mile-delivery

[4] Reuters (2021), “Last mile delivery in North America expected to grow 16%

per year between 2021 and 2025 — Reuters Events — Supply Chain & Logistics

Business Intelligence,” .

URL https://www.reutersevents.com/supplychain/ecommerceretail/

last-mile-delivery-north-america-expected-grow-16-year-between-2021-and-2025

[5] World Economic Forum (2020) “The Future of the Last-Mile Ecosystem,”

World Economic Forum, (January).

URL https://www.weforum.org/reports/the-future-of-the-last-mile-ecosystem
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