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ABSTRACT

Estimating dynamic discrete choice models (DDCM) is a common task in many

disciplines, including various fields of economics. In a typical DDCM a forward-

looking decision-maker chooses from a finite set of actions in each time period by

maximizing the expected sum of current and discounted future values of an objective

function. The parameters that determine the objective function are called structural

parameters. For example, consider the problem of a senior teacher deciding the timing

of retirement. The retirement decision is influenced by the current and future salaries,

unobserved random factors, and pension rules. The teacher’s objective function is the

expected utility from the flow of salary or pension benefit. The structural parameters

that shape the teacher’s utility depict the teacher’s preference and are independent of

the environment (such as the pension rules.) Because the structural parameters are

invariant to changes in environment, estimation of structural parameters is especially

useful for simulating new policies that have not been employed in the past.

A DDCM is often presented as a dynamic programming (DP) problem. Solving

the DP model involves solving the Bellman equation. Even with a limited set of

state variables solving the Bellman equation can be time consuming. Conventional

structural estimation requires repeatedly solving the Bellman equation. High compu-

tational cost limits applications of structural discrete choice models in policy analysis.

The proposed research seeks improving computational efficiency for dynamic binary

choice models (DBCM), through deep neural networks (DNN). The thesis consists of

three chapters.

Chapter 1 proposes and implements a new method that uses DNN-aided learning

to solve DP models during the process of estimation. We compare the new algorithm

with several existing algorithms for estimating infinite horizon DBCM. The compar-

ison of algorithm performance is made in the context of estimating three variants of

xi



Rust’s (1987) optimal engine replacement model, the benchmark model in the liter-

ature of structural estimation. We find that without sacrificing much accuracy, the

new approach substantially cuts computational time of the conventional approach

(in Rust (1987)), is comparable to the ones developed by Imai et al. (2009), Norets

(2009) and Norets (2012), and has the potential to outperform others when the model

is more complex than the Rust model. The reduction in computational costs also al-

lows us investigate the shape of likelihood function more intensively, and we find that

the benchmark Rust model with serially correlated error may be unidentified.

Chapter 2 focuses on structural estimation of DBCM in finite horizons. We con-

sider teachers’ optimal retirement problem. First, we show that the solutions to two

similar models, DP and the option value model by Stock and Wise (1990) (SW), can

both be presented by thresholds of preference errors. Second, we modify the three-step

procedure of Norets (2012) to a simulated sample of teachers. We achieve reduction

in computational time of the conventional nested algorithm by around 20-fold for DP

and 5-fold for SW, without significant loss of accuracy. Lastly, the accuracy of the

DNN aided algorithm is high enough to distinguish DP from SW as data generating

model.

Chapter 3 applies the DNN-aided structural estimation to analyze the effect of

Illinois teacher pension rules. We first estimate structural parameters using data on

Illinois teacher retirement. The structural estimation accounts for the dependence of

sample distribution on previous pension policies. Then, as an out-of-sample test, we

use the estimated structural parameters to simulate teacher’s response to a historical

pension enhancement, the “22 upgrade”. The estimated structural model produces

good in- and out-of sample fit and is useful for policy simulations.

xii



Chapter 1

Bayesian Estimation of Dynamic
Discrete Choice Models with Deep
Neural Networks

1.1 Introduction

A traditional procedure of structural estimation is as follows. Let the solution

(i.e., an optimal policy function) of a structural model be yyy = f(XXX, θθθ, εεε). Here yyy is

the choice variable, XXX is a vector of (observable) state variable, θθθ is a set of structural

parameters, and εεε error term. In most cases the policy function is not available in

analytical form. For a fixed θθθ, we solve for a numerical approximation of the policy

function f , yyy = f̂(XXX, θθθ, εεε). For a given a solution method, the approximation error

||f−f̂ || is negatively related to the computation time of approximation.1 For example,

if one applies a grid search method, then with finer grids of XXX and εεε, ||f−f̂ || decreases

but computation time increases.

Denote the data of state- and choice variables by DDD = (XXX,YYY). From numerical

1Throughout the paper we use ||.|| as a generic notation for distance between parameters or
functions.
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solution f̂ and for given structural parameter θθθ one can simulate data DDD and obtain

a set of statistics M̂(DDD, θθθ). We estimate the structural parameter θθθ by matching

M̂(DDD, θθθ) with M̂(DDD∗) based on observed data DDD∗ for a given loss function: θ̂θθ =

argminθθθL(θθθ) where L(θθθ) = ||M̂(DDD, θθθ)−M̂(DDD∗)||. In a setting for Bayesian inference

we compute likelihood L(DDD∗, θθθ) from numerical simulations of the structural model.

Combining the approximated likelihood and a prior of θθθ yields numerical draws of

posterior. A posterior moment (e.g., posterior mean, posterior median, etc.) serves

as the Bayesian estimator for θθθ. Regardless of how the estimator of θθθ is obtained,

one key component of the estimation step is the solution of the structural model, f̂ .

Typically an optimization algorithm (or in a Bayesian setting Markov Chain

Monte Carlo algorithm) directs a search over parameter space. In the k-th itera-

tion, the algorithm requires computing L(θθθ(k)) (or in a Bayesian setting likelihood

L(DDD∗, θθθ(k))) and to do so we need to solve for f̂(XXX, θθθ(k), εεε). The estimation step ends

with estimate θ̂θθ when the improvement in the objective diminishes, and θθθ(k) converges

to θ̂θθ. If the data DDD∗ are generated by the true model f(., θθθ, .) then the error of the

estimator, ||θ̂θθ − θθθ|| stems only from the sampling error. However, in the presence of

approximation error ||f − f̂ ||, even as data are generated from the true model f part

of the estimation error ||θ̂θθ− θθθ|| is attributed to ||f − f̂ ||. If the solution error ||f − f̂ ||

is large then the search for estimator may fail to converge.

A technical challenge to structural estimation lies in computational cost. In the

estimation step if the dimension of θθθ is large, searching over the domain of parameter

θθθ may require computing f̂(., θθθ, .) many times. If the computation time for f̂ is large

then the estimation time may be prohibitive. This implies that in practice there is a

trade off between accuracy in numerical solution and complicity (e.g., dimension of

θθθ) of a feasible model. To ensure computation time is reasonable one may have to

limit the number of parameters to be estimated, which makes the structural models

overly restrictive for applications. The high computational cost is a major obstacle

2



to proliferation of structural estimations in practice.

Table 1.1: Four types of algorithms

type description references

1 solve to estimate Rust (1987), Rust (2000)
2 solve while estimate Imai et al. (2009), Norets (2009), Ching et al. (2012)
3 solve, learn, then estimate Norets (2012), Farrell et al. (2021), Chen et al. (2021)
4 learn to solve while estimate this chapter

Estimating the structural parameters involve repetitively solving for f̂(XXX, θθθ(k), εεε)

in the kth iteration. For a dynamic structural model there are competing meth-

ods in solving for f̂ . Conventional solution methods (see, e.g., Rust (1987), Rust

(2000) among others) solve for f̂(., θθθ(k), .) without benefiting from the information

on f̂(., θθθ(j), .) (for j < k), the solutions obtained from the previous iterations. Given

the values of L(θθθ(j)) (for j < k), the minimization algorithm selects θθθ(k). But ob-

taining f̂(., θθθ(k), .) is just as costly as obtaining f̂(., θθθ(j), .). We call the type of these

algorithms “solve to estimate.”

An alternative type of algorithms (Imai et al. (2009), Norets (2009), Ching et al.

(2012)) make use of the information on the solutions in the previous iterations. To

avoid the cost in computing f̂(XXX, θθθ(k), εεε) for all θθθ(k), in each iteration of parameters

they update an approximation of f̂(XXX, θθθ(k), εεε), ˆf (k)(., θθθ(k), .), only once, by averaging

over previous values, ˆf (j)(., θθθ(j), .) (for j < k). Under some conditions, ˆf (k)(., θθθ(k), .)

converges to f̂(., θθθ(k), .). We call this type of algorithms that iterate over both ap-

proximated solutions and parameters “solve while estimate.”

The iterative processes in solving and estimating the structural models both gen-

erate large data. This suggests potential benefit from recent development in machine

learning, especially deep learning. Machine learning can aid estimation in the follow-

ing three-step procedure (Norets (2012), Farrell et al. (2021), Chen et al. (2021)). In

the first step, the solution step, we obtain numerical f̂(., θθθ, .) for N combinations of

state variable and parameters (XXX, θθθ) and save the solution as a library. In the second

3



step, the learning step, we fit an approximation structure with the built library (i.e.,

“learn” the solution). In this paper, we choose deep neural network (DNN) as the

structure for its flexibility, and the process is also termed as “training a DNN”. In

the third step, the estimation step, we search for parameters θθθ that minimizes the

distance between simulated statistics and sample statistics. Rather than solving for

f̂(XXX, θθθ#, .) every time θθθ is evaluated at a new value θθθ#, we approximate f̂(XXX, θθθ#, .)

by DNN. If the optimal policy can be accurately learned from a moderately sized

library the total computational cost for estimation may be lower than the traditional

approach for a given level of accuracy. We call this type of algorithms “solve, learn,

then estimate.”

The second algorithm (“solve while estimate”) involves averaging over previous

values and updating once, which significantly reduces computational burden, but

might still be costly, if the state space is very large.2 For the third algorithm (“solve,

learn, then estimate”), once the library is built and DNN is trained, its performance is

also fixed. And it is hard to tell how large the library should be and how accurate the

DNN should be in advance, especially when library building is also time-consuming.

We propose a new algorithm, which combines the insights in algorithm 2 and

algorithm 3. We set up a DNN for the solution, and maintain a dynamic library of

inaccurate but continuously-improving solution library, along the estimation process.

In each iteration, we randomize between two actions: 1) update and 2) not update.

1) If update, we first generate a guess of solution from the current DNN, update it

only once, and save the new solution to the library, while deleting the oldest one.

Then, we re-train the DNN with this dynamic library, and use the re-trained DNN

as surrogate for the solution. 2) If not update, we simply use the current DNN as

the surrogate. The probability of update is set to be negatively related with the

2Imai et al. (2009) provide a modification of their algorithm which only updates the solution for
one vector of state variables in each iteration; but then it would take millions of iterations to obtain
convergence in practice.
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accuracy of the DNN in previous iterations. We call this type of algorithm “learn to

solve while estimate” and examines whether it outperforms other algorithms when

the state space is large.

The focus of this chapter is to summarize these types of algorithms for estimation

of structural models and compare their performance in the context of estimation of a

benchmark model–Rust’s model of optimal engine replacement. There are competing

methods for estimating the model (e.g., maximum likelihood, method of simulated

moments, Bayesian estimation.) Here we present all algorithms under the framework

of Bayesian estimation.

1.2 The Model and Bayesian Estimation

1.2.1 A General Dynamic Discrete Choice Model

Consider an infinite horizon Markov decision process with state variables (includ-

ing those observable and unobservable to the researchers, x and ε, s = (x, ε) ∈ X ×E ,)

control variables (action) in a finite set y ∈ Y(s), a instantaneous utility function (or

the inverse cost function) u(s, y), discount rate β ∈ (0, 1), and transition law π(s′|s, y).

The economic agent wishes to maximize the expected discounted sum of utility:

max
y0,y1,...

E
∞∑
t=0

βtu(st, yt)

subject to yt ∈ Y(st), the feasible choice given state variable at st, and st+1 ∼

π(st+1|st, yt). Under regularity conditions (see, e.g., Rust (1996)), we can write the

problem in a recursive form

V (s) = max
y∈Y(s)

u(s, y) + βEs′∼π(s′|s,y)V (s′).
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If we define the right hand side as a Bellman operator T that maps a function to

another function, the above equation can be written compactly as

V = T (V ).

Sometimes we also write the expected value function Es′∼π(s′|s,y)V (s′) = EV (s′|s, y)

to highlight its dependence on s and y. In the bus engine replacement problem

s = (x, ε) is the states, and y ∈ {0, 1} is the action. Solving the value function V (s)

gives rise to the optimal policy y(s). For solution methods of dynamic programming

problems we only cover a few common value-function-based methods and omit others.

3

Example 1 Rust model with normal AR(1) errors

The engine replacement model we solve and estimate is a modified version of Rust

(1987). In this problem a researcher estimates the parameters of an optimal decision

by a bus fleet manager from time series observations of the manager’s decisions. At

the beginning of each period, the bus fleet manager decides whether to replace the

engine for each bus. Consider a bus with mileage x which also is observable to the

researcher, and an idiosyncratic shock to maintenance ε which is only observable to

the manager. If the manager replaces the engine, there is a replacement cost rc and

the mileage is reset to zero next period. Otherwise, the running bus incurs cost θx,

and the mileage will become x′ > x. The discount rate, β ∈ (0, 1) is fixed and known

to the researcher. Written in recursive form, we have:

V (x, ε) = min
y∈{0,1}

{θx+ ε+ βEV (x′, ε′|x, ε, y = 0), rc+ βEV (x′, ε′|x, ε, y = 1)}.

3For example, we do not consider conditional choice probability (CCP) based estimators (Hotz
and Miller (1993), Hotz et al. (1994), Bajari et al. (2007)), Arcidiacono and Miller (2011) and
mathematical programming with equilibrium constraints (MPEC, Su and Judd (2012)) in this paper.
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For this binary choice problem, the first term on the right-hand-side is the value of

keeping the engine, and the second term is the value of replacing the engine.

In the original paper, Rust (1987) assumes the maintenance cost shock ε follows an

i.i.d. extreme valued distribution. This greatly reduces computational cost. Following

subsequent studies (e.g., Norets (2012), Reich (2018)) we assume ε to be normal and

AR(1). And to keep things simple, we assume the following transitional dynamics:

x′, ε′|(x, ε, y) ∼ x+ 1, N(ρε, 1), if y = 0;

∼ 0, N(0,
1

1− ρ2
), if y = 1.

This problem is a stationary infinite horizon DP. If we define the right hand side of

the minimization problem as the Bellman operator T , the problem can be solved by

value function iteration: given the current guess of V (x, ε), we obtain its next value

by apply the Bellman operator until convergence:

V ← TV

Also note that when ρ ≥ 0, this problem also has a threshold strategy, that is, when

the mileage is x, it is optimal to replace the engine if the shock to maintenance cost

is too high:

ε > ε∗(x)

where ε∗(x) is the threshold that depends on x. We plot the value function and

the threshold for one set of parameters in Figure 1.1. In the left panel, the value

function for an given value of x increases as the error term ε increases, and then

becomes constant (because upon replacing the engine the value is not dependent on

the mileage and current maintenance cost.) In the right panel, the threshold itself is

a decreasing function of mileage, due to linearity of the objective function in mileage
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and maintenance cost. The right panel shows that the threshold is almost linear in x,

which contributes to difficulty in identifying the model, a topic we will pick up later

in this chapter.

Figure 1.1: Value function and threshold for Rust model with AR(1) errors

Note: parameters are (θ, rc, ρ) = (0.3, 3.0, 0.5). Value function V (x, ε) is in the left panel,
and threshold ε∗(x) is in the right panel.

Example 2 Rust model with IID errors

We also consider a special case where ρ = 0, and the model is simplified as:

V (x, ε) = min
y∈{0,1}

{θx+ ε+ βEV (x+ 1, ε′), rc+ βEV (0, ε′)}

= min
y∈{0,1}

{θx+ ε+ βEV (x+ 1), rc+ βEV (0).}

Note that the expected value function no longer depends on the current error term

when the errors are IID. We can write the above equation in terms of expected value

functions:

EV (x) =

∫
V (x, ε)dG(ε)

=

∫
min
a∈{0,1}

{θx+ ε+ βEV (x+ 1), rc+ βEV (0)}dG(ε).
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And we still have to find the fixed point of the functional equation, with one fewer

dimension:

EV = T (EV )

The threshold strategy trivially holds here. The manager would replace the engine

if:

y = 1 ⇐⇒ rc+ βEV (0) < θx+ ε+ βEV (x+ 1)

⇐⇒ ε∗(x) ≡ rc+ βEV (0)− (θx+ βEV (x+ 1)) < ε.

Example 3 Rust model with random effect (RE)

Our last example adds upon the IID model in example 2 with a term for time

invariant heterogeneity (random effect α ∼ N(µ, σ2), where we normalize µ = 0 for

identification) in the maintenance cost:

V (x, α, ε) = min
y∈{0,1}

{θx+ α + ε+ βEV (x+ 1, α, ε′), rc+ βEV (0, α, ε′)}

= min
y∈{0,1}

{θx+ α + ε+ βEV (x+ 1, α), rc+ βEV (0, α)}

The threshold strategy is that replacing the engine if:

y = 1 ⇐⇒ rc+ βEV (0, α) < θx+ α + ε+ βEV (x+ 1, α)

⇐⇒ ε∗(x, α) ≡ rc+ βEV (0, α)− (θx+ βEV (x+ 1, α)) < ε.

Note that the expected value function depends on the mileage x as well as the time

invariant heterogeneity α.
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1.2.2 Bayesian Estimation

In the general model, assume that the utility function and the transition law are

parametrized by a vector θθθ. We have a random sample of I individuals over T periods,

with observable states and actions

Data = (XXX,YYY) = {xit, yit}I,Ti=1,t=1.

Given the prior distribution p(θθθ), the task is to derive the posterior distribution of

the structural parameters θθθ from these observations:

p(θθθ|XXX,YYY) ∝ p(θθθ)L(XXX,YYY|θθθ).

We compute the posterior numerically with Markov Chain Monte Carlo. More specif-

ically, we run the Metropolis–Hastings (MH) loop where in iteration k, given the

previous parameter values θθθk−1, the candidate draw θθθ∗ is obtained from a proposal

distribution q(θθθk−1, θθθ∗). We accept θθθ∗ as θθθk with probability:

min{1, p(θθθ∗)L(XXX,YYY|θθθ∗)q(θθθ∗, θθθk−1)
p(θθθk−1)L(XXX,YYY|θθθk−1)q(θθθk−1, θθθ∗)

}

and reject θθθ∗ and set θθθk = θθθk−1 otherwise.

Example 1-3 (ctd)

For example 1-3, the data we have are the mileage and replacement decisions for

each bus over the entire period. We assume all buses starts with zero mileage and

treat a bus with replaced engine as a new bus. The task in example 1 is to estimate

the value of deep parameters, θ, rc, ρ, from the data. The parameters are θ, rc in

example 2, and θ, rc, σ in example 3.
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The unconditional probability of observing bus i replaced in period τ is

pτ = Pr(observing replace i in τ) = Pr(not replace i in 0, 1, ..., τ − 1, replace in τ).

This is a high dimensional integral in example 1 due to serial correlation in ε. (For

efficient computation of this integral, see Appendix A.1) It can be factorized into

the product of probabilities for the IID case in example 2. With time invariant

heterogeneity in the manner of example 3, the product of probabilities needs to be

integrated with respect to the distribution of α.

1.3 Algorithms

1.3.1 Solve to Estimate

This class of algorithm depicted in Figure 1.2 follows the nested fixed point theo-

rem in Rust (1987).4 There are two loops, an inner loop and an outer loop. The inner

loop solves for the value function (or expected value function) by iterating the Bell-

man operator, for the current draw of parameters. The outer loop then use the solved

model to calculate the likelihood for these parameters, and run the MH updating.

This procedure has two features: First, once the MH updating is done, the solved

model is discarded. Second, in each iteration, the Bellman operator has to be applied

many times until ||fn − fn−1|| is within a pre-set tolerance level.

Example 2 (ctd)

The inner loop (with expectation computed via Monte Carlo integration) is:

4The original Rust paper makes several assumptions on the distribution of the error term (i.i.d.
GEV) such that the expected value function can be written in analytic form. Here we present a
more general formulation of the algorithm.
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Figure 1.2: Solve to Estimate

 

 

 

iteration 𝑘 − 1: 𝜃(𝑘−1)

------

---

...

...

-------

discard ALL

iteration 𝑘: 𝜃(𝑘)

------

update from guess 𝑓0:

𝑓1 = 𝑇𝑓0

𝑓2 = 𝑇𝑓1

...

𝑓𝑛 = 𝑇𝑓𝑛−1

until converge to get 𝑓 𝑥, 𝜃 𝑘

-----

...

iteration 𝑘 + 1: 𝜃(𝑘+1)

------

...

...

------

...

iteration 𝑘 − 1: 𝜃(𝑘−1)

------

---

...

-------

save 𝑓 𝑥, 𝜃𝑘−1

iteration 𝑘: 𝜃(𝑘)

------

approximate from:

𝑓 𝑥, 𝜃𝑘 = ∑𝑤 𝑘 − 𝑡 𝑓 𝑥, 𝜃𝑘−𝑡

update only ONCE:

𝑓 𝑥, 𝜃 𝑘 = 𝑇𝑓(𝑥, 𝜃𝑘)

-----

...

iteration 𝑘 + 1: 𝜃(𝑘+1)

------

...

...

------

...

Note: T is the Bellman operator for value function iteration. f is an unknown function
of state variable x and parameter θ. In iteration k, the parameter value is θ(k). More
general iterative solution methods such as Newton-Kontorovich iteration (Rust (2000)) is
also applicable in this case.

i) given the value of {θ, rc}, create grids for mileage {xn} = {0, 1, ..., n} and

initialize the expected value to arbitrary values, say, {EV (xn)} = {0, 0, ..., 0}

ii) draw M values of εm from N(0, 1), and calculate

V (xn, εm) = min
y∈{0,1}

{θxn + εm + βEV (xn + 1), rc+ βEV (0)}

iii) update EV (xn) for each xn:

EV (xn)←− 1

M

M∑
m=1

V (xn, εm)

iv) repeat ii) and iii) until convergence.

The outer loop is:

i) use the expected value function to calculate the threshold ε∗(x) for each x,

ii) calculate the likelihood function based on ε∗(x),

iii) run MH updating.
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1.3.2 Solve while Estimate

Figure 1.3: Solve while Estimate

 

 

 

iteration 𝑘 − 1: 𝜃(𝑘−1)

------

---

...

...

-------

discard ALL

iteration 𝑘: 𝜃(𝑘)

------

update from guess 𝑓0:

𝑓1 = 𝑇𝑓0

𝑓2 = 𝑇𝑓1

...

𝑓𝑛 = 𝑇𝑓𝑛−1

until converge to get 𝑓 𝑥, 𝜃 𝑘

-----

...

iteration 𝑘 + 1: 𝜃(𝑘+1)

------

...

...

------

...

iteration 𝑘 − 1: 𝜃(𝑘−1)

------

---

...

-------

save 𝑓 𝑥, 𝜃𝑘−1

iteration 𝑘: 𝜃(𝑘)

------

approximate from:

𝑓 𝑥, 𝜃𝑘 = ∑𝑤 𝑘 − 𝑡 𝑓 𝑥, 𝜃𝑘−𝑡

update only ONCE:

𝑓 𝑥, 𝜃 𝑘 = 𝑇𝑓(𝑥, 𝜃𝑘)

-----

...

iteration 𝑘 + 1: 𝜃(𝑘+1)

------

...

...

------

...

Note: T is the Bellman operator for value function iteration. f is the function of interest,
which takes the state variable x and parameter θ as inputs. In iteration k, the (candidate)
parameter value is θ(k) (we drop the superscript * for convenience). w(k− t) is the current
weight for the saved function at iteration k − t, depending on the weighting kernel and the
parameter values θk−t, θt.

The idea of algorithm 2 is to approximate the solution on the parameter space

by some weighting kernel K, according to Imai et al. (2009).5 The most significant

difference between algorithms 1 and 2 is the way we calculate the expected value

function. In algorithm 1, everything is discarded at the end of each iteration and

we repeatedly calculate the expectation from scratch. In algorithm 2, we store the

value functions obtained in each iteration. Then, we calculate the expected value

function as a weighted average of those saved value functions in previous iterations.

In Figure 1.3, f(x, θθθk−t) denotes the value function obtained in iteration k − t under

parameter θθθk−t, and w(k − t) =
K(θθθk−t, θθθt)∑N(k)
t=1 K(θθθk−t, θθθt)

the weight generated from some

kernel measuring the distance between current parameter draw θθθk and most recent

draws θθθk−t for t = 1, 2, ..., N(k). Another difference is that, in algorithm 1, we apply

the Bellman operator T until convergence to obtain the accurate solution. However,

5Norets (2009) provide an alternative approach based on k-Nearest Neighbors (KNN).
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in algorithm 2, we only apply it once in each loop. Under the conditions in Imai et al.

(2009), the solution becomes more accurate as the chain runs and converges to the

posterior distribution.

Example 2 (ctd)

The intuition of algorithm 2 can be visualized in Figure 1.4. We plot expected

value function and value functions for the IID case with three sets of structural

parameters: θθθ = (θ, rc) = (0.06, 16), (0.056, 15.4), (0.064, 16.6). Suppose that we

already obtained the results for (0.06, 16) and (0.064, 16.6), and wish to solve for

(0.056, 15.4). An good approximate would be some average of the previous two.

Figure 1.4: Expected value function and value function for Rust model with IID
errors

Note: three sets of parameters are θθθ = (θ, rc) = (0.06, 16), (0.056, 15.4), (0.064, 16.6), from
top (purple) to middle (red) and then bottom (blue). the left panel is for the expected value
functions, and the right panel for the value functions.

The outer loop of the algorithm is unchanged, while the inner loop at iteration k

is:

i) choose some weighting kernel K and length of recent memory N(k)

ii) update the expected value by

ÊV (x; θθθk)←−
N(k)∑
t=1

M∑
m=1

V̂ (x, εk−tm ; θθθk−t)
K(θθθk, θθθk−t)∑N(k)
t=1 K(θθθk, θθθk−t)

,
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iii) draw M values of εm from N(0, 1) and calculate

V̂ (x, εkm; θθθk)←− min
y∈{0,1}

{θ∗x+ εm + βÊV (x+ 1; θθθk), rc∗ + βÊV (0; θθθk)}.

Note that we no longer run the inner loop until convergence; instead, convergence

is obtained along the process of parameter draws.

1.3.3 Solve, Learn, then Estimate

Figure 1.5: Solve, Learn, then Estimate

 

 

Build a library of 
solutions:

𝑓 𝑥1, 𝜃1

𝑓 𝑥2, 𝜃2

...

𝑓 𝑥𝑚 𝜃𝑚

where:

𝜃𝑚 ∼ 𝑝𝑟𝑖𝑜𝑟

𝑥 ∼ 𝑑𝑎𝑡𝑎

Solve
Train a DNN,

where the inputs are (𝑥, 𝜃);

the outputs are 𝑓 𝑥, 𝜃 ;

and weights are 𝑤.

save it as

መ𝑓 𝑥, 𝜃;𝑤

Learn
iteration 𝑘 − 1: 𝜃(𝑘−1)

...

------

iteration 𝑘: 𝜃(𝑘)

use DNN as surrogate:

𝑓 𝑥, 𝜃𝑘 = መ𝑓 𝑥, 𝜃𝑘; 𝑤

...

------

iteration 𝑘 + 1: 𝜃(𝑘+1)

...

Estimate

iteration 𝑘 − 1: 𝜃(𝑘−1)

------

---

...

-------

save 𝑓 𝑥, 𝜃𝑘−1

save weights 𝑤𝑘−1 for 
DNN

iteration 𝑘: 𝜃(𝑘)

------

approximate from DNN

𝑓 𝑥, 𝜃𝑘 = መ𝑓 𝑥, 𝜃𝑘; 𝑤^(𝑘 − 1)

update only ONCE:

𝑓 𝑥, 𝜃 𝑘 = 𝑇𝑓(𝑥, 𝜃𝑘)

train DNN weights:

𝑤𝑘 = 𝑤𝑘−1 − Ƹ𝜂∇ መ𝑓 𝑥, 𝜃𝑘

-----

...

...

iteration 𝑘 + 1: 𝜃(𝑘+1)

------

...

...

------

...

...

Note: f(xm, θm) is the m-th entry of the library of solutions, w stands for the parameter
for the DNN here.

Instead of running nested loops in algorithm 1 and 2, we now follow a three-

part process shown in Figure 1.5. The first step is building a library of solutions for

different state variables xxxm and parameters θθθm. The state variables are re-sampled

from the data and the parameters are drawn from the prior distribution. Although

we draw the state variables from the sample, we do not use the observed choice of

action in the data but rather solve for the optimal policy under a random set of

parameters. This is different from the method by Semenova (2018), who uses the
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observed policy to back out the optimal policy under the true parameters. Such use

of data information is not cost-free; it may create bias in estimation. To correct the

potential bias Chernozhukov et al. (2018) use a double machine learning technique.

Moreover, since each draw of parameters are IID from the prior distribution, this

process can be accelerated by parallel computation if we have access to multi-core

computers.

The second step is learning the true f from the library of solutions. Multiple

techniques are applicable for this purpose. Here we choose Deep Neural Networks

(DNN) for its superior performance recently discovered by LeCun et al. (2015). And

we can train DNN with modern optimization techniques to improve its accuracy.

The third step is estimating the structural parameters. Instead of solving the

model, we use DPP as surrogate for the solution. That is, in each MCMC run we

evaluate likelihood for a given set of parameters using approximated likelihood learned

from DNN.

A brief introduction to DNN

The neural networks for policy function consists (zzz, yyy) where zzz = (z1, z2, ..., zm)′

is an m-dimensional input, and yyy = (y1, y2, ..., yl)
′ is a l-dimensional output vector

of interest (it can be the expected value function, value function or threshold of the

preference error that depicts the optimal policy). A feed-forward neural network with

two hidden layers is depicted in Figure 1.6 and can be written as (see, e.g., Cho and
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Sargent (1996)):

z1j = σ(b1j +

m0∑
i=1

w1
jiz

0
i )

z2j = σ(b2j +

m1∑
i=1

w2
jiz

1
i )

ŷj = b3j +

m2∑
i=1

w2
jiz

2
i

where we define z0j = zj the initial input vector, m0 = m its dimension, and ŷj the

j-th entry of the DNN approximate. The j ∈ {1, ...,m1}-th entry of the first hidden

layer is z1j and j ∈ {1, ...,m2}-th entry of the second hidden layer is z2j . Moreover, σ(·)

is the “activation function”6, wkji are weights of entry i of layer k − 1 in determining

entry j of layer k before activation. Neural networks with more layers simply take the

output from previous process as the input of current process, and repeat the above

weighting and activation procedure until reaching the final output.

Figure 1.6: A neural network with two hidden layers

Note: reproduced from Farrell et al. (2021), figure 2. Here, the input is two-dimensional,
each hidden layer has three neurons, and the output is scalar, hence m = m0 = 2,m1 =
m2 = 3, l = 1.

Training neural networks takes several steps. First, we pick the number of hidden

layers as well as number of perceptions in each layers (i.e., m1,m2 in our setting).

6Popular choices are Rectified Linear Unit (ReLu): σ(x) = max{0, x} and Sigmoid: σ(x) =
1/(1 + exp(−x)).
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Then we find the optimal weights that minimizes a loss function:

‖y − ŷ‖ = ‖y − (b3j +

m2∑
i=1

w2
jiz

2
i )‖

= ‖y − (b3j +

m2∑
i=1

w2
jiσ(b2j +

m1∑
i=1

w2
jiz

1
i ))‖

= ‖y − (b3j +

m2∑
i=1

w2
jiσ(b2j +

m1∑
i=1

w2
jiσ(b1j +

m0∑
i=1

w1
jiz

0
i )))‖

The asymptotic performance of neural networks is guaranteed by the universal ap-

proximation theorem, which claims that under minor restrictions an objective function

can be approximated arbitrarily well as long as m1 and m2 are large enough. More-

over, it only takes linearly many parameters to achieve this, while polynomial, spline,

and trigonometric expansions take exponential number of parameters (according to

Barron (1993).) Recently, Farrell et al. (2021), among others, also proves certain

finite sample properties of DNN.

Example 1 (ctd)

Step 1 Solve

We build a library by solving the model for 3,000 sets of parameters from the prior

distribution. We assume uniform priors: θ ∼ Unif [0.1, 0.4], rc ∼ Unif [1.0, 4.0],

ρ ∼ Unif [0.0, 0.9]. Since this problem exhibits threshold strategy, we store the

thresholds ε∗(x; θ, rc, ρ) corresponding to mileage x and parameters θ, rc, ρ in the

library, the structure of which is exemplified in Table 1.2.

Step 2 Learn

The DNN takes the one-dimensional state variable x and the three-dimensional

structural parameters θ, rc, ρ as input, and the threshold ε∗(x; θ, rc, ρ) as the output,

as summarized in Table 1.3. Since output is continuously values, it is a standard

regression problem. We would like the predicted thresholds be as close to the true
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Table 1.2: Structure of the solution library

# x θ rc ρ ε∗(x; θ, rc, ρ)

1 1 0.7 14.3 0.754 2.037
1 2 0.7 14.3 0.754 1.965
... ... ... ... ... ...
3000 19 0.6 12.6 0.279 -0.973
3000 20 0.6 12.6 0.279 -2.076

Note: a randomly build solution library for 3,000 sets of parameters and x ∈ {0, 1, ..., 20},
hence a total of 63,000 rows.

Table 1.3: Input and output of DNN

Variable Type Variable Name Notation

Input state variables x
Input structural parameters θ, rc, ρ
Output critical values ε∗(x; θ, rc, ρ)

Note: for Rust model with AR(1) errors.

ones as possible, measure by some loss functions such as mean squared error or mean

absolute error.

We trained the DNN for 1,000 epochs, and the metric for the last epoch are

reported in Table 1.4. We partition the sample into two sets: the training set and

test set. Mean squared errors and mean absolute errors are both relatively small,

suggesting a good fit.

Table 1.4: Performance of DNN

sample size mean squared error mean absolute error

train set 47250 8.7717×10−5 0.0080
test set 15750 1.5017×10−4 0.0109

Note: we randomly assign 75% (=47250/63000) rows of the library as the training set for
DNN training, and the remaining 25% as the test set.

We also plot the true and predicted thresholds for six randomly chosen sets of

parameters in Figure 1.7. The true and approximated solutions are visually indistin-

guishable.
19



Figure 1.7: Illustration of the fit of DNN

Note: exact thresholds (obtained by value function iteration) and approximate (obtained
by DNN) for six randomly chosen sets of parameters.

Step 3 Estimate

Given the satisfactory fit of the DNN, we use it as the surrogate for the true model

for likelihood calculation and update by the MH algorithm.

1.3.4 Learn to Solve while Estimate

Algorithm 2 (“solve while estimate”) involves averaging over previous values and

updating once, which significantly reduces computational burden, but might still be

costly, if the state space is very large. For algorithm 3 (“solve, learn, then estimate”),

once the library is built and DNN is trained, its performance is also fixed. In practice

it is hard to decide how large the library should be and how accurate the DNN should

be in advance, especially when library building is also time-consuming.

We propose a new algorithm (algorithm 4, “learn to solve while estimate”), com-

bines the ideas in algorithm 2 and algorithm 3 (see Figure 1.8). We set up a DNN

for the solution, and maintain a dynamic library of inaccurate but continuously-

improving solution library, along the estimation process. In each iteration, we ran-
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Figure 1.8: Learn to Solve while Estimate

 

 

Build a library of 
solutions:

𝑓 𝑥1, 𝜃1

𝑓 𝑥2, 𝜃2

...

𝑓 𝑥𝑚 𝜃𝑚

where:

𝜃𝑚 ∼ 𝑝𝑟𝑖𝑜𝑟

𝑥 ∼ 𝑑𝑎𝑡𝑎

Solve
Train a DNN,

where the inputs are (𝑥, 𝜃);

the outputs are 𝑓 𝑥, 𝜃 ;

and weights are 𝑤.

save it as

መ𝑓 𝑥, 𝜃;𝑤

Learn
iteration 𝑘 − 1: 𝜃(𝑘−1)

...

------

iteration 𝑘: 𝜃(𝑘)

use DNN as surrogate:

𝑓 𝑥, 𝜃𝑘 = መ𝑓 𝑥, 𝜃𝑘; 𝑤

...

------

iteration 𝑘 + 1: 𝜃(𝑘+1)

...

Estimate

iteration 𝑘 − 1: 𝜃(𝑘−1)

------

---

...

-------

save 𝑓 𝑥, 𝜃𝑘−1

save weights 𝑤𝑘−1 for 
DNN

iteration 𝑘: 𝜃(𝑘)

------

approximate from DNN

𝑓 𝑥, 𝜃𝑘 = መ𝑓 𝑥, 𝜃𝑘; 𝑤^(𝑘 − 1)

update only ONCE:

𝑓 𝑥, 𝜃 𝑘 = 𝑇𝑓(𝑥, 𝜃𝑘)

train DNN weights:

𝑤𝑘 = 𝑤𝑘−1 − Ƹ𝜂∇ መ𝑓 𝑥, 𝜃𝑘

-----

...

...

iteration 𝑘 + 1: 𝜃(𝑘+1)

------

...

...

------

...

...

Note: w stands for the parameter for the DNN here. We only show the updating process
in the figure.

domize between two actions: 1) update and 2) not update. 1) If update, we first

generate current guess from the current DNN, update it only once, and save the new

solution to the library, while deleting the oldest one. Then, we re-train the DNN

with this dynamic library, and use the re-trained DNN as surrogate for the solution.

2) If not update, we simply use the current DNN as the surrogate. The probability

of update is set to be negatively related with the accuracy of the DNN in previous

iterations. One measure of the accuracy is the difference in the (log-) likelihood using

the current and re-trained DNN.

Unlike algorithm 2, our new algorithm no longer needs to calculate the weighted

average of previous solutions and also avoids the updating, when the DNN is accuracy

enough. Unlike algorithm 3, our solution library is dynamic rather than static: it is

inaccurate at the beginning since we only update once, but its accuracy improves as

we run more iterations. By doing so, we avoid the high cost of building an accurate

library beforehand, when state space is large. Moreover, in our new algorithm, the
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number of epochs for DNN training is also endogenously determined, rather than

pre-determined as in algorithm 3.

Example 2 (ctd)

We maintain a dynamic library of solutions and a DNN. Since we need to update

them along the MCMC runs, approximating the expected value function instead of

the threshold is more convenient. So the output of DNN is EV (x; θ, rc), and the

inputs are x, θ, rc. In each iteration, we randomize between the following two actions:

1) update

i) generate current guess for EV (x; θ, rc) from the current DNN with parameters

wk−1, apply Bellman operator only once:

ẼV (x; θk, rck)← ÊV (x, θk, rck;wk−1)

ii) save the current solution to the solution library, delete the oldest one

iii) re-train the DNN with the library, where the parameters are now wk.

iv) use the re-trained DNN as the surrogate for the solution

ÊV (x; θk, rck)← ÊV (x, θk, rck;wk)

2) not update

i) use the current DNN as the surrogate directly:

ÊV (x; θk, rck)← ÊV (x, θk, rck;wk−1)

The probability of updating (action 1) in next period is negatively related to the

difference in the likelihood using two DNNs, one with wk−1 (hence ẼV (x; θk, rck) as

the surrogate) and another with wk (ÊV (x; θk, rck) as the surrogate) for the most
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recent iteration when we update. When the difference is negligible, we would switch

to not updating (action 2) with higher probability. In practice, we would like to build

a small library and pre-train the DNN as the “warm-up” process, before we run the

full-scale MCMC.

1.4 Results for Rust’s Engine Replacement Exam-

ples

1.4.1 Model with IID Errors

Table 1.5: Performance comparison, IID case

# grid = 20 # grid = 100 # grid = 200

true 5% median 95% 5% median 95% 5% median 95%

algo 1 solve to estimate

θ 0.3000 0.2726 0.2995 0.3216 0.2677 0.2935 0.3159 0.2715 0.2917 0.3134
rc 3.0000 2.9562 2.9905 3.0331 2.9690 3.0039 3.0444 2.9659 3.0042 3.0431
time 87s 148s 268s

algo 2 solve while estimate

θ 0.3000 0.3214 0.3347 0.3482 0.2901 0.3166 0.3351 0.2954 0.3165 0.3399
rc 3.0000 2.9686 3.0081 3.0477 2.9941 3.0493 3.1317 2.9241 2.9824 3.0473
time 17s 17s 18s

algo 3 solve, learn, then estimate

θ 0.3000 0.2641 0.2805 0.2957 0.2747 0.2999 0.3193 0.2621 0.2865 0.3103
rc 3.0000 2.9916 3.0253 3.0580 3.0143 3.0496 3.0907 2.9999 3.0313 3.0712
time solve 3s 5s 8s

learn 65s 65s 65s
estimate 50s 51s 50s

algo 4 learn to solve while estimate

θ 0.3000 0.2954 0.3102 0.3336 0.2954 0.3075 0.3432 0.2867 0.2992 0.3180
rc 3.0000 2.9536 2.9796 3.0047 2.9632 2.9846 3.0064 2.9381 2.9802 3.0141
time warm-up 3s 4s 4s

MCMC 51s 50s 50s

Note: performance comparison of algorithms, 10,000 MCMC run, 10,000 buses. The number
of grids is for the error term ε.
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We run the above four algorithms for the Rust model under three cases (IID, RE,

AR(1)) respectively. As is standard in the literature, we assume that the discount rate

β = 0.99 is known. For the mileage, we limit the possible values be x ∈ [0, 1, ..., 20].

For x = 20, the only available choice is to replace the engine. For all three cases, the

variance of the innovation in cost is 1. The true parameters are θ = 0.3, rc = 3.0

for all cases, σ = 2.0 for the RE case, and ρ = 0.5 for the AR(1) case. For full

solution method, we set the maximum number of Bellman iteration to 10,000 and

tolerance for value function error (measured by the sum of absolute error) as 0.00001.

Our assumption of normally distributed errors rules out analytical solutions, and we

rely on discrete grids for the numerical dynamic programming. The more number

of grids for the errors, the more accurate our solution would be, at the cost of more

computation. We consider three choices of the number of grids: 20, 100, and 200.

We simulate 10,000 buses until replacement for each choice of grid size, and run

MCMC with chain length = 10,000 for the above four algorithms, resulting a total of

12 scenarios.7 The first 1,000 iterations are discarded as burn-in runs, and we report

the posterior median and the 5% and 95% posterior quantiles for each algorithm in

Table 1.5. The computational time is reported in the bottom row of each panel.

We find that in most scenarios, the posterior 90% credible intervals are tight and

contain the true parameters, while the posterior medians are close to the true values.

For algorithm 1, the computational time increases from 87 seconds to 268 seconds

as the grid size increases from 20 to 200. For algorithm 2, the computational time

only increases from 17 seconds to 18 seconds. For algorithm 3, when grid size is 20,

building the solution library takes 3 seconds , training the DNN takes 65 seconds, and

7Here we assume the mileage increases by 1 with certainty if not replaced, hence we only need to
record the mileage at replacement for each bus, and the sample frequency of mileage at replacement
would be a sufficient statistic here. In another word, the number of buses does not matter in the
calculation of likelihood function. However, such shortcut does not work for stochastic mileage
increment, say, a multinomial distribution over {0, 1, 2}. Under that case, we need to calculate the
probability of observing the history for each bus, and likelihood function computation cost would
be proportion to the number of sample.
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run MCMC with DNN takes 50 seconds. Library building takes 8 seconds when grid

size is 200, but the learning and estimating process takes same amount of time. For

algorithm 4, warm up takes 3-4 seconds, and MCMC takes 50-51 seconds regardless

of the grid size. To summarize, algorithm 2 performs well in IID case, where the state

space is not large hence calculating the weighted average and updating the solution

once is not costly. The two deep-learning aided algorithms (algorithm 3 and 4) spend

more time with the additional DNN structure.

1.4.2 Model with RE

Now, we add random effect to the IID model. In this case, we need to solve the

model for a set of possible values of the random effect α, deriving the unconditional

replacement probability, and then (numerically) integrate them over the distribution

of α ∼ N(0, σ2), where σ = 2. We reports the results for algorithms 1-3 in Table

1.6 in the same format as the last section, except that the number of grids not only

stands for the grids for the error term ε, but also the random effect α.

First, we find that in most scenarios, similar to the IID case, the posterior credible

intervals are tight and contain the true values, while the posterior medians are close

to the true values. Second, the computational time for algorithm 1 increases from

2,648 seconds to 88,992 seconds when grid size increases from 20 to 200, reflecting

the impact of curse of dimensionality. For algorithm 2, the computational time also

increases from 171 seconds to 1,533 seconds. The most interesting case is algorithm

3. With 20 grids, it takes 3 seconds for solution, 83 seconds for learning, and 223

seconds for estimation, hence a total of 309 seconds, which is higher than algorithm 2.

However, with 200 grids, it takes 12 seconds for solution, 83 second for learning, and

1340 seconds for estimation, so a total of 1,435 seconds, lower than 1,533 seconds for

algorithm 2! The saving of time comes from DNN approximation: once we learn the

threshold ε(x; θ, rc, α), we no longer need to solve the model many time for multiple
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Table 1.6: Performance comparison, RE case

# grid = 20 # grid = 100 # grid = 200

true 5% median 95% 5% median 95% 5% median 95%

algo 1 solve to estimate

θ 0.3000 0.3094 0.3460 0.3786 0.2394 0.2630 0.2879 0.2731 0.3020 0.3310
rc 3.0000 2.8644 2.9304 3.0174 3.0521 3.1352 3.2423 2.8990 2.9736 3.0674
σ 2.0000 1.8087 1.8896 1.9885 1.9952 2.0857 2.1846 1.8898 1.9695 2.0702
time 2648s 26441s 88992s

algo 2 solve while estimate

θ 0.3000 0.2726 0.3065 0.3373 0.2688 0.3055 0.3350 0.2612 0.2933 0.3222
rc 3.0000 2.9361 3.0072 3.1019 2.9161 2.9818 3.0751 2.9600 3.0306 3.1237
σ 2.0000 1.8886 1.9670 2.0575 1.8665 1.9456 2.0367 1.9536 2.0343 2.1222
time 171s 845s 1533s

algo 3 solve, learn, then estimate

θ 0.3000 0.2561 0.2742 0.2915 0.2688 0.3055 0.3350 0.2819 0.3159 0.3460
rc 3.0000 2.9501 3.0109 3.0888 2.9161 2.9818 3.0751 2.9309 3.0188 3.1242
σ 2.0000 2.0494 2.1249 2.2070 1.8665 1.9456 2.0367 1.9218 2.0265 2.1487
time solve 3s 7s 12s

learn 83s 83s 83s
estimate 223s 693s 1340s

Note: performance comparison of algorithms, 10,000 MCMC run, 10,000 buses. The number
of grids is the same for 1) the error term ε and 2) the random effect α.

possible values of α in each iteration, but rather approximate them in a single call of

DNN. And such saving of time would be more substantial if we run a longer MCMC

chains and/or use more grids for the random effects.

A side issue for this extension of the Rust model is whether the model is still

identified. In another word, would there be more than one set of parameters that

generate the same data? We present the trace plots for four MCMC settings in

Figure 1.9: in the first three panels, we fix one parameter at its true value, and

estimate the other two; in the last panel, we estimate all three parameters at the

same time. The trace plots show the chains converge to the posterior distribution

that is centered around the true parameters, suggesting that including an additional

parameter in this setting does not create difficulty in identification.

26



Figure 1.9: Results for RE with σ = 2.0

true 5% post median 95%

0.3 0.3000 0.3000 0.3000
3.0 2.9322 2.9785 3.0243
2.0 1.9534 2.0105 2.0692

true 5% post median 95%

0.3 0.2759 0.2916 0.3087
3.0 3.0000 3.0000 3.0000
2.0 2.0329 2.0993 2.1745

true 5% post median 95%

0.3 0.2896 0.3067 0.3241
3.0 2.9187 2.9695 3.0197
2.0 2.0000 2.0000 2.0000

true 5% post median 95%

0.3 0.2895 0.3159 0.3434
3.0 2.9577 3.0275 3.1093
2.0 1.9448 2.0198 2.1032

Note: 10,000 MCMC run, 10,000 buses. The number of grids is 11 for 1) the error term ε
and 2) the random effect α.

1.4.3 Model with AR(1) Errors

The results for AR(1) errors are reported in Table 1.7, where we omit algorithm

1 due to its prohibitive computational cost.

First, we focus on the comparison of computational time. For algorithm 2, the

computation time increases from 1,822 to 5,136 seconds when grid size increases from

20 to 200. For algorithm 3, the time for learning and estimation does not change

a lot, but the time for library building increases from 1,109 to 8,613 seconds. For

algorithm 4, the time for MCMC runs is around 2,100 seconds, while the time for

warm-up increases from 122 second to 895 seconds. In summary, for Rust model with

AR(1) errors, algorithm 4 achieves saving in computational time when the number of

grids is large.
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Table 1.7: Performance comparison, AR(1) case

# grid = 20 # grid = 100 # grid = 200

true 5% median 95% 5% median 95% 5% median 95%

algo 2 solve while estimate

θ 0.3000 0.2629 0.3095 0.3632 0.2525 0.2827 0.3184 0.2725 0.3217 0.3660
rc 3.0000 2.7308 3.1109 3.4819 2.6766 2.9075 3.1712 2.8492 3.2137 3.5457
ρ 0.5000 0.4395 0.5167 0.5707 0.4254 0.4679 0.5089 0.4615 0.5279 0.5693
time 1822s 4539s 5136s

algo 3 solve, learn, then estimate

θ 0.3000 0.2880 0.3090 0.3264 0.2811 0.3112 0.3384 0.2307 0.2634 0.2981
rc 3.0000 2.9587 3.2796 3.3889 2.8529 3.0525 3.2120 2.4854 2.7039 2.9683
ρ 0.5000 0.5065 0.5355 0.5679 0.4948 0.5213 0.5508 0.3955 0.4472 0.4987
time solve 1109s 4206s 8613s

learn 83s 83s 83s
estimate 1965s 1950s 1950s

algo 4 learn to solve while estimate

θ 0.3000 0.3041 0.3300 0.3594 0.2286 0.2467 0.2664 0.2566 0.3060 0.3465
rc 3.0000 3.2908 3.5020 3.7275 2.4927 2.6159 2.7188 2.7714 3.3717 3.7423
ρ 0.5000 0.4234 0.4858 0.5261 0.3799 0.3983 0.4297 0.4253 0.4994 0.5347
time warm-up 112s + 10s 443s + 10s 885s + 10s

MCMC 2107s 2025s 2133s

Note: performance comparison of algorithms, 10,000 MCMC run, 10,000 buses. The number
of grids is for the error term ε.

It is worth noting that the posterior credible interval is much wider under AR(1)

for all algorithms; in some cases, it even does not contain the true values. This sug-

gests difficulty in identification of model parameters. We now provide more evidence

and explore possible causes for weak identification.

First, in Figure 1.10, we plot the sets of parameters with log-likelihood above

certain values. We set the benchmark likelihood as the one for the sample under

true parameters. As we decrease the value from 10,000 below the benchmark (top

left) to 10 above the benchmark (lower right), the selected sets of parameters shrink.

However, we find that these points lies along a line of the 3-dimensional parameter

space. And such pattern persists even for points whose log-likelihood is above the

benchmark.
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Figure 1.10: MCMC draw of parameters whose log-likelihood is above certain values

log-lik≥ benchmark- 10000 log-lik ≥ benchmark - 1000 log-lik ≥ benchmark - 100

log-lik ≥ benchmark - 10 log-lik ≥ benchmark + 0 log-lik ≥ benchmark + 10
Note: benchmark = log-likelihood of the sample of 1,000,000 buses under the true param-
eters (`(θ = 0.3, rc = 3.0, ρ = 0.5) = −2022512).

Second, we repeat the procedure that produced Figure 1.9 with data generated

by the AR(1) model. In Figure 1.11, we first run three chains by fixing one of θ, rc, ρ

for each chain, with 1,000,000 buses. These three chains all gives tight posterior

credible interval around true values. However, if we allow all three parameters to be

unrestricted, the chain no longer mixes for 10,000 runs. This pattern holds when the

data generating ρ is 0.5, 0.7, 0.3, 0.1, and even for ρ = 0.0. See Appendix Figure

A.1-A.4 for more details.

There are some possible causes of weak identification: (i) Not enough variation in

states: we assumes deterministic state dynamics, and the utility function is linear in

parameters. (ii) Absence of other covariate: the only state variable is the mileage x.

(iii) Accumulation approximation error from three sources: Gauss-Hermite quadra-

ture and interpolation (in the solution process); deep neural network training (in the

learning process); and GHK approximation in likelihood calculation (in the estimation

process).

We conclude the section with a brief review of numerical findings by other studies
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that estimate the Rust model in the presence of serial correlated shocks. Norets (2009)

integrates DP-MCMC method with simulated data. He finds a bi-modal distribution

for ρ with actual data. Reich (2018) finds MLE tends to overestimate θ and but

underestimates ρ, but the bias tends to diminish as the sample size increases. Blevins

(2016) specifies the model differently and only reports few estimated ratio between

costs. All of them assume stochastic process of mileage (e.g., multinomial and expo-

nential distribution). We also experimented with stochastic process of mileage but

still find evidence of weak identification.

Figure 1.11: Results for AR(1) with ρ = 0.5, 1,000,000 buses

true 5% post median 95%

0.3 0.3000 0.3000 0.3000
3.0 2.9432 2.9964 3.0519
0.5 0.4912 0.5010 0.5099

true 5% post median 95%

0.3 0.2939 0.3003 0.3083
3.0 3.0000 3.0000 3.0000
0.5 0.4921 0.5011 0.5098

true 5% post median 95%

0.3 0.2911 0.2997 0.3080
3.0 2.9420 2.9975 3.0477
0.5 0.5000 0.5000 0.5000

true 5% post median 95%

0.3 0.2724 0.3073 0.3462
3.0 2.7895 3.0464 3.3534
0.5 0.4628 0.5093 0.5608

1.5 A Car Replacement Example

In this section, we extend the above one-dimensional engine replacement problem

to allow for multi-dimensional state variables. We label the new problem a “car
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replacement” problem. Specifically, let xt = (x1t, ..., xkt)
T be a k− dimensional vector

of state variables that may include engine mileage, condition of the car, etc.8 A

car owner decides whether to replace her old car with a new one by observing this

state vector as well as idiosyncratic shock εt = (ε0t, ε1t)
′ i.i.d.∼ G(·) to the two actions

yt ∈ {0, 1} (keeping the car or replacing it.) If she chooses to replace the car (yt = 1)

all state variables are reset to zero. If she keeps the car (yt = 0) the increment for each

state variable follows a known joint distribution.9 Here, for simplicity we assume that

the increments are identical and independent Bernoulli distribution with parameter

p.10 For example, when k = 2, if the owner keeps the car running and the current

state is (x1t, x2t), then the state variables for the next period are:

(x1t+1, x2t+1) =



(x1t, x2t), with probability (1− p)2;

(x1t + 1, x2t), with probability p(1− p);

(x1t, x2t + 1), with probability p(1− p);

(x1t + 1, x2t + 1), with probability p2.

The value function is

V (xt, εt) = min
yt∈{0,1}

{θTxt+ε0t + βEV (xt+1, εt+1|yt = 0),

rc+ε1t + βEV (xt+1, εt+1|yt = 1)}

where we assumes a linear cost running cost with coefficient θ = (θ1, ..., θk)
T , and the

replacement cost is constant rc. There exists a threshold strategy that we replace the

8This example is inspired by Imai et al. (2009) who give a single-firm entry-exit example in the
fashion of Rust (1987), but with additional state variable to capture observable heterogeneity.

9Note that even it is unknown, we can estimate it from the data, see Rust (1987) for details.
Since this paper focuses on the estimation of parameters in the cost function only, we assume it is
already known.

10We allow for stochastic evolution of state variables, since otherwise the possible sample path is
unique and could be reparametrized to the one-dimensional case.
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car if and only if

ε0t − ε1t < ε∗(xt)

Assume that the difference between error term follows a standard normal distribution

ε0t−ε1t
i.i.d.∼ N(0, 1).11 Finally, given the history of the state variables and replacement

decision of a car, we can write out the likelihood function as the product involving

standard normal CDF. Taking logarithm and summing up for all cars, we arrive at

the sample likelihood, and Bayesian estimation is then feasible.

As the dimension of state vector, k, increases, solving the model can be very

costly. Numerically, a common practice is to use finite grids for these state variables.

Say we use M equally spaced grids between [0, x̄] for each state variable, then we

need to perform value function iteration over Mk points until convergence.12 Even

one iteration is time-consuming when Mk is large for algorithm 2. One possible

time-saving approach is to limit the number of grids, but it could take longer for the

Markov Chain to converge, since the underlying non-parametric estimator needs a

large volume of data to perform well. For algorithm 3, since solving the model is

now very difficult, an accurate library of solutions may take too long to build, and we

cannot determine ex ante how large the library should be. However, algorithm 4 seems

promising since we do not need to build an accurate library ex ante. Moreover, using

DNN as the approximator typically requires fewer data than other non-parametric

approaches, if the high-dimensional function exhibits some low-dimensional patterns.

We fix k = 2 and consider three choices of M : 21 (hence each state variable

takes values in 0, 1, ..., 20), 41 and 61. The true values for two cost coefficients are

θ1 = 0.1, θ2 = 0.2, while the replacement costs are rc = 6.0 for M = 21, 12.0 for 41,

11We follow the tradition of two error terms for two actions to avoid unnecessary divergence,
though it can be shown they give raise to the same model with one error term. See appendix for
some numerical experiments.

12Another approach is to use randomization, function approximation, and some combinations of
the two, see e.g., Rust (1997), Judd et al. (2014). Our algorithm 4 exploits the effectiveness of DNN
in approximation and does not involve much tuning. Combining it with the estimation task is also
natural in Bayesian settings.
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and 18.0 for 61 to make sure those extended mileage grids are indeed possible and

can be observed from the data.13 The parameter for the increment of state variable,

p is set to be 1/2 and known.

The estimation results are summarized in the following tables. They show that: 1)

All algorithms yield accurate posterior distribution centered around true parameter

values. 2) With a small number of grids, M = 21, the two DNN-aided algorithms

take extra time for library building and DNN training. 3) With a medium number of

grids, M = 41, algorithm 2 takes shorter time since doing one value function iteration

is not that costly. 4) With a large scale of grids, M = 61, algorithm 3 takes too long

to build the library, and for algorithm 2 even one iteration is costly, while algorithm

4 takes the least time to finish.14 Our analysis suggests that if we further increase

M , the advantage of algorithm 4 would be more obvious.

1.6 Concluding Remarks

This chapter proposes and implements a new method (“learn to solve while esti-

mate”) that solves the model and learn the pattern of the solution along the estimation

process. We contrast it with three competing algorithms (“solve to estimate”, “solve

while estimate”, and “solve, learn, then estimate”) in an infinite horizon setup and

use three variants of Rust’s engine replacement problem as the benchmark. We find

that 1) “solve to estimate” is vulnerable to the curse of dimensionality; 2) “solve

while estimate” is computationally efficient for problem with small state space; 3)

“solve, learn, then estimate” is suited for small scale models that are time-consuming

to estimate; 4) “learn to solve while estimate” outperforms others when the state

13The priors are: θ1 ∼ U [0.05, 0.15], θ2 ∼ U [0.15, 0.30]. For M = 21, rc ∼ U [3, 9]; M = 41,
rc ∼ U [6, 18]; M = 61, rc ∼ U [9, 27]. We use 21 grids points for the Gauss-Hermite quadrature
of the error term ε. Simple Monte Carlo requires thousands of grids to achieve similar accuracy of
value function iteration.

14As in previous experiments, for large scales, algorithm 1 takes too long and we omit it here.
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Table 1.8: Performance comparison, M = 21

true post mean post std 5% post median 95%

algo 1 solve to estimate

theta1 0.1000 0.0999 0.0022 0.0963 0.0999 0.1034
theta2 0.2000 0.1950 0.0031 0.1898 0.1950 0.2000
rc 6.0000 5.8918 0.0680 5.7741 5.8960 5.9991
time 14020s

algo 2 solve while estimate

theta1 0.1000 0.0998 0.0021 0.0964 0.0998 0.1032
theta2 0.2000 0.1950 0.0030 0.1901 0.1949 0.2000
rc 6.0000 5.8891 0.0639 5.7851 5.8902 5.9957
time 13670s

algo 3 solve, learn, then estimate

theta1 0.1000 0.0980 0.0025 0.0936 0.0982 0.1018
theta2 0.2000 0.1916 0.0027 0.1872 0.1916 0.1960
rc 6.0000 5.8978 0.0682 5.7745 5.9027 6.0056
time 16873s

algo 4 learn to solve while estimate

theta1 0.1000 0.0962 0.0021 0.0930 0.0959 0.0994
theta2 0.2000 0.1925 0.0025 0.1885 0.1922 0.1976
rc 6.0000 5.8603 0.0719 5.7287 5.8704 5.9460
time 16959s

Note: performance comparison of algorithms, 10,000 MCMC run, 10,000 buses. The number
of grids is for each state variable.

space is large and accurate solution is costly to obtain.

Algorithms that reduce computational cost also allow us to investigate the likeli-

hood function more closely, and we find that the benchmark Rust model with serially

correlated error may be unidentified. The issue of identification is left for future in-

vestigation. Numerical simulation of this chapter suggests that algorithm 4 may be

more useful for estimating structural models that are more costly to solve than the

engine replacement problem. Further explorations will be left for future research.
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Table 1.9: Performance comparison, M = 41

true post mean post std 5% post median 95%

algo 1 solve to estimate

theta1 0.1000 0.1005 0.0016 0.0977 0.1004 0.1031
theta2 0.2000 0.1970 0.0025 0.1928 0.1970 0.2010
rc 12.0000 11.9274 0.1094 11.7332 11.9282 12.1132
time 47313s
algo 2 solve while estimate

theta1 0.1000 0.0996 0.0016 0.0971 0.0996 0.1023
theta2 0.2000 0.1985 0.0024 0.1946 0.1985 0.2023
rc 12.0000 11.9405 0.1094 11.7690 11.9357 12.1276
time 22862s

algo 3 solve, learn, then estimate

theta1 0.1000 0.0971 0.0027 0.0942 0.0968 0.1009
theta2 0.2000 0.1940 0.0056 0.1892 0.1932 0.1990
rc 12.0000 11.7685 0.2811 11.5177 11.7242 12.1242
time 29581s

algo 4 learn to solve while estimate

theta1 0.1000 0.1019 0.0015 0.0993 0.1024 0.1040
theta2 0.2000 0.1949 0.0015 0.1924 0.1950 0.1972
rc 12.0000 11.8862 0.0945 11.7048 11.9052 12.0070
time 29799s
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Table 1.10: Performance comparison, M = 61

true post mean post std 5% post median 95%

algo 2 solve while estimate

theta1 0.1000 0.1027 0.0015 0.1003 0.1027 0.1051
theta2 0.2000 0.1997 0.0022 0.1963 0.1997 0.2034
rc 18.0000 18.0974 0.1509 17.8735 18.0868 18.3577
time 33694s

algo 3 solve, learn, then estimate

theta1 0.1000 0.0953 0.0080 0.0883 0.0907 0.1105
theta2 0.2000 0.2021 0.0124 0.1897 0.1959 0.2244
rc 18.0000 18.3123 1.1760 17.1967 17.6920 20.5436
time 41691s

algo 4 learn to solve while estimate

theta1 0.1000 0.0996 0.0014 0.0977 0.0994 0.1016
theta2 0.2000 0.2019 0.0023 0.1987 0.2013 0.2051
rc 18.0000 17.9791 0.1262 17.7803 17.9843 18.2247
time 31682s
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Chapter 2

Comparison of Two Optimal
Retirement Models: Stock-Wise
versus Dynamic Programming

2.1 Introduction

Following the notation in Chapter 1, we consider a policy function in a structural

model yyy = f(XXX, θθθ, εεε) and its numerical approximation yyy = f̂(XXX, θθθ, εεε), with choice

variable yyy, state variable XXX, structural parameters θθθ, and error term εεε. In some cases

we seek to identify from a finite sample of data two competing but similar models

yyy = f1(XXX, θθθ1, εεε1) and yyy = f2(XXX, θθθ2, εεε2). For this exercise large approximation errors

||fj − f̂j|| (j = 1, 2) may lead to biased conclusions.1

Can one estimate a complicated structural model based on accurate solutions? In

this paper we argue that for a class of binary choice problem (an optimal retirement

problem with serially correlated errors in particular) the answer is yes.

In the retirement problem, an economic agent (say a senior school teacher) consid-

1The difference of optimal policy in the models is affected by the error ||f̂1 − f̂2||. ||f1 − f2|| =

||(f1 − f̂1)− (f2 − f̂2) + (f̂1 − f̂2)|| < ||f1 − f̂1||+ ||f2 − f̂2||+ ||f̂1 − f̂2||.
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ers the optimal timing for an irreversible retirement from continuing teaching. Factors

that influence the decision include an experience-dependent salary schedule, a pen-

sion formula that relates retirement benefit to the age and experience at the time of

retirement, a mortality table that determines life expectancy, a utility function that

sets preference of salary income relative to pension benefit, and an observed serially

correlated errors that measures the teacher’s preference to teaching.

The solution to this class of problem is characterized by a threshold of the cur-

rent preference error that depends on age and experience (the state variable XXX) and

preference parameter θθθ. If the current preference error is below the threshold, then it

is optimal to retire, otherwise it is optimal to stay teaching. This means the solution

f of the structural model takes the form of the threshold of errors. The thresholds

exhibit a pattern conducive to machine learning.

We present a three-step approach aided by deep learning neural network for the

problem (algorithm 3 “solve, learn, then estimate” in Chapter 1.) In the first step, the

solution step, we obtain numerical f̂(., θθθ, .) for N combinations of state variable and

parameters (XXX, θθθ) and save the solution as a library. In the second step, the learning

step, we approximate f̂(XXX, θθθ#, .) by learning from the pre-built library. The tool for

the machine learning is DNN. If the optimal policy can be accurately learned with

a moderately sized library the total computational cost for estimation may be lower

than the traditional approach for a given level of accuracy. Finally, in the third step,

the estimation step, we search for parameters θθθ that minimizes simulated statistics

and sample statistics. Rather than solving for f̂(XXX, θθθ#, .) every time θθθ is evaluated

at a new value θθθ#, we use the learned DNN as surrogates.

Numerical analysis of this approach is based on two structural models of teacher

retirement under the same set of factors (pension rules, salary schedule, mortality

rate, utility function, serially correlated preference errors). One is the forward-solving

optional value model by Stock and Wise (1990) (SW) model, another is dynamic
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programming (DP) model. The difference between the two models is subtle. The SW

model does not factor in the option value of future options of continuing teaching.

On the other hand, it has a lower computational cost than dynamic programming

because it does not involving solving for the value function.

The paper contributes to the tool box for policy analysis of pension incentives on

retirement. First, given a pension rule we can save the approximated numerical solu-

tion to a structural model in a library. To estimate parameters from a different data

set, other researchers can retrieve solutions from the library, thus skip the costliest

step in structural estimation, making estimation of structural models for retirement

easier and more common. We simulate data from a SW model and a DP model in

turn, then estimate the data generating model aided by DNN. We find the DNN aided

estimation is computationally feasible and can recover the data-generating model as

well as data generating parameters. For a sample of 21,412 teachers the DNN-aided

approach estimates the SW model in 400 seconds for the SW model and the DP model

in 3 hours. Under the traditional approach, with the same estimation error it took

2,000 seconds to estimate the SW model and 36 hours to estimate the DP model.

Second, we find that it is feasible to estimate structural models for teacher retire-

ment in reasonable time with high accuracy in approximation of the structural model.

The high accuracy renders it possible to identify similar structural models from data.

When the data are generated from a SW model the estimated model easily rejects

the DP model, and vice versa.

The paper is organized as follows. Section 2 presents the SW model of optimal

retirement timing and a DP version of the problem. Solutions to both problems have

the feature that when the current value of serially correlated preference errors is below

a threshold it is optimal to retire. Given the state variable the threshold that solves

the SW model is above that of the DP model (i.e., if it is optimal to retire in the DP

model then it is optimal to so in the SW models.) Section 3 outlines the three-step
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strategy: the solution step, learning step and estimation step. Section 4 presents

numerical simulations with the focus on accuracy and computation time.

2.1.1 Related literature

A number of recent studies have developed on the intersection between machine

learning (in particular deep learning) and structural estimation, see the summary

by Iskhakov et al. (2020) and Igami (2020). Farrell et al. (2021) provide theoretical

justification of using DNN as the approximation structure and Farrell et al. (2020)

discuss possible applications of DNN. Semenova (2018) applies machine learning to

estimation of DDCM under the Conditional Choice Probability (CCP) framework.

The most relevant work for this study is Norets (2012). We adopt his strategy but

make two modifications. We approximate the threshold instead of the value func-

tion; and we train the DNN with a loss function that weights thresholds by their

importance.

Another strand literature related to the present study is solutions of optimal

retirement problem, see Stock and Wise (1990), Ni and Podgursky (2016) for the SW

model, and Gustman and Steinmeier (1986), Rust and Phelan (1997), Berkovec and

Stern (1991) for DP model. Lumsdaine et al. (1992) and Belloni (2008) compare the

property of SW and DP models. However, these comparisons are made with different

model setups: In the SW model the error term is assumed to be AR(1) normal, but

in the DP model, the error term is assumed independently and identically distributed

(iid) generalized extreme value distribution (GEV). One reason for assuming iid errors

in the DP model is the high computational cost associated solving DP models with

AR(1) errors. Here we compare the SW and DP models assuming exactly the same

structural parameters and distribution of error terms. The DNN aided algorithm

makes it feasible to estimate a DP model with AR(1) errors.2

2Even with DNN, we still need to solve the DP model under some parameter values. For that pur-
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2.2 Teachers’ Optimal Retirement Problem with

Normal Serially Correlated Errors

2.2.1 A general model

We work under a finite-horizon setting. We assume the maximum lifespan is T .

The value function depends on age and experience. Note that the retirement problem

presents a few special features that may be used to save computation cost. One is

that the choice set is state dependent: a retiree can only stay retired. The state

variables are also restricted in some fashion: age and experience can only go up by

one per year. The teacher currently in teaching force decides whether to retire at

the end of the year, after enjoying the utility of current period salary. We assume

that there is an AR(1) error in preference to teaching and no preference shock after

retirement. The retirement benefit for retirees depends on age and experience.

The retirement eligible range of age and experience combination is (a, e) ≥ (a0, e0),

where the boundary (a0, e0) is defined by pension rules. We denote the values by the

age and experience in the initial period, (a, e). For instance, y(a,e)(t) is the salary of a

teacher in year t with (a, e) in the initial year 0 (hence with age a+ t and experience

e+ t in year t.)

With a fixed salary schedule there are two sources of uncertainty: the uncertainty

of survival of mortality and uncertainty in preference shocks.

The range for age a ≤ A and experience e ≤ A−22. We denote survival probability

from age a to age a + k by G(a, a + k). For a teacher alive in year t we denote the

probability of survival to period s > t as π(s|t) = G(a + t, a + s) = G(a + t, a + t +

1)..G(a+ s− 1, a+ s).

The current pension wealth (the discounted pension wealth at the time of sepa-

ration) W(a,e)(t) has the following properties: (1) The eligibility depends on age and

pose, we use the quadrature-interpolation method following Stinebrickner (2000) and Stinebrickner
(2001).
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experience. (2) For eligible retirees, the annual benefit B(a,e)(s) in year s is a func-

tion of experience. The year t value of pension wealth is W(a,e)(t) =
∑T

s=tG(a +

s, a + s + 1)βs−t(B(a,e)(s, t))
γ, where B(a,e)(s, t) is the year-t value of annual retire-

ment benefit received in year s by the teacher with initial (a, e) retired in year t. The

year-t value of pension wealth for a teacher with initial (a, e) retired in year s > t

is βs−tIEtW(a,e)(s) = βs−tπ(s|t)W(a,e)(s). For any age W(a,e)(t) is increasing in expe-

rience e. With age over a retirement eligible threshold W(a,e)(t) is decreasing in age

because for the fixed e, a larger a means fewer years to collect benefits.

The utility function for period t is

[(κty(a,e)(t))
γ + νt],

where κt = κ( 60
a+t

)κ1 is an age-dependent parameter of leisure, with 0 < κ ≤ 1 during

working years and captures the disutility of working. The unobserved innovations in

preferences are AR(1):

νt = ρνt−1 + εt. (2.1)

We assume εt is iid N(0, σ2). The preference error ν captures the preference for teach-

ing. A larger ν favors continuing teaching relative to retirement. Teachers with the

same initial (a, e) choose different time to retire in response to realizations unobserved

preference errors. We assume 0 ≤ ρ < 1 for two reasons. One is that the nature of

the unobserved heterogeneity in such as health or preference to teaching likely has a

positive serial correlation for each teacher. Another reason is that empirical estimates

of ρ that fit teacher samples are invariably in (0, 1).

The teacher’s expected utility in period t is a function of expected retirement in

year r (with r = t, · · · , T and T depends on the upper bound on age). In period t,

the expected utility of retiring in period r is the discounted sum of pre- and post-
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retirement expected utility

Vt(r) = IEt{
r−1∑
s=t

βs−t[(κsy(a,e)(s))
γ + νs]}︸ ︷︷ ︸+ IEtβ

r−tW(a,e)(r)︸ ︷︷ ︸ .
expected utility before retirement expected utility after retirement

The expectation for the first term pertains to the unobserved innovations in prefer-

ences and survival probability, and the expectation of the second term only pertains

to the survival probability. By definition Vt(t) = W(a,e)(t).

2.2.2 The dynamic programming solution

The value function of current teacher with preference error νt is V(a,e)(t, νt), is

V(a,e)(t, νt) = max{U(a,e)(t, νt) + νt, W(a,e)(t)} (2.2)

where U(a,e)(t, νt) is the expected value function of continuing teaching:

U(a,e)(t, νt) = [κty(a,e)(t)]
γ + βG(a+ t, a+ t+ 1)IEεV(a,e)(t+ 1, νt+1). (2.3)

The teacher chooses to retire when V(a,e)(t, νt) = W(a,e)(t); i.e., U(a,e)(t, νt) + νt ≤

W(a,e)(t). The following proposition says the expected value of continuing teaching is

increasing in the preference error ν.

Proposition 1: U(a,e)(t, ν) is increasing in ν.

Proof. If U(a,e)(t+ 1, νt+1) is increasing in νt+1 then V(a,e)(t+ 1, νt+1) is increasing

in νt+1 and IEεV(a,e)(t, ρνt + εt+1) is increasing in νt. Hence from (C.1) U(a,e)(t, νt) is

increasing in νt. The proposition is proved by backward induction.
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Denote a threshold ν∗t that satisfies

U(a,e)(t, ν
∗
t ) + ν∗t = W(a,e)(t). (2.4)

Proposition 2: There is a unique ν∗(a,e)(t). This follows from Proposition 1.

Proposition 2 suggests a threshold strategy for optimal retirement timing: A

teacher with initial age-experience (a, e) chooses to stay (retire) in year t if νt > (≤

) ν∗(a,e)(t). We later also denote the threshold ν∗(a,e)(t) as f ∗(a,e)(t) to indicate that it is

an optimal policy.

2.2.3 The Stock-Wise solution

In the SW “option value” model the expected gain from retirement at age r over

retirement in the current period is

G(a,e)(r, t) = IEtVt(r)− IEtVt(t)

=
r−1∑
s=t

π(s|t)βs−t(ksy(a,e)(s))γ +
T∑
s=r

π(s|t)βs−t(B(a,e)(s, r))
γ −

T∑
s=t

π(s|t)βs−t(B(a,e)(s, t))
γ

︸ ︷︷ ︸
g(a,e)(r, t)

+
r−1∑
s=t

π(s|t)βs−tIEtνs︸ ︷︷ ︸ .
K(a,e)(r, t)νt (2.5)

We denote the sum of the first three terms, a function of current salary and expe-

rience, by gt(r). The last term equals
∑r−1

s=t π(s|t)(βρ)sνt. We denote it as Kt(r) =∑r−1
s=t π(s|t)(βρ)s (which depends on unknown parameters) times the error term given

in (3.4.2). The SW retirement decision can thus be formulated as choosing r =

t, · · · , T that maximizes

Gt(r) = gt(r) +Kt(r)νt.44



Let

r†t = argmax gt(r)/Kt(r),

The teacher retires if

Gt(r) ≤ 0 ∀ r > t; i.e.
gt(r

†)

Kt(r†)
≤ −νt. (2.6)

Hence the probability that teacher retires in period t is Prob( gt(r
†)

Kt(r†)
≤ −νt).

Denote

f †(a,e)(t) = ν†(a,e)(t) = − gt(r
†)

Kt(r†)
(2.7)

then the teacher stays if νt > f †t .

2.2.4 Comparing the retirement decisions in DP and SW

Under the same parameter and preference shocks the retirement decision under

DP in year t may differ from that under SW because the latter does not factor in

the value of options in years after t. To compare optimal decisions in DP and SW

models, note that in (2.2) with initial age a and experience e,

U(a,e)(t, νt)

= [(kty(a,e)(t))
γ + νt] + βG(a+ t, a+ t+ 1)IEtmax{U(a,e)(t+ 1, νt+1) + νt+1,W(a,e)(t+ 1)}

≥ [(kty(a,e)(t))
γ + νt] + βG(a+ t, a+ t+ 1)IEt{U(a,e)(t+ 1, νt+1) + νt+1}

= [(kty(a,e)(t))
γ + νt] + βG(a+ t, a+ t+ 1)IEt{[kt+1y(a,e)(t+ 1)]γ + νt+1}

+ βG(a+ t+ 1, a+ t+ 2)IEt+1max{U(a,e)(t+ 2, νt+2) + νt+2,W(a,e)(t+ 2)}

≥ IEt{
t+1∑
s=t

βs−t[(ksy(a,e)(s))
γ + νs] +

T∑
s=t+2

βs−t[(B(a,e)(s, t+ 2))γ]}. (2.8)
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The last step uses the fact that the year-t expected value of pension wealth for retiring

in t+2 is β2IEtIEt+1W(a,e)(t+2) = π(t+2|t)
∑T

s=t+2G(a+s, a+s+1)βs−t[(B(a,e)(s, t+

2))γ].

Repeated application of the same argument implies that

U(a,e)(t, νt) ≥ IEt{
r−1∑
s=t

βs−t[(ksy(a,e)(s))
γ + νs] +

T∑
s=r

βs−t[(B(a,e)(s, r))
γ]}, (2.9)

for any r > t. The result (2.8) can be viewed as a special case of r = t+ 2. Hence if

U(a,e)(t, νt) + νt ≤ W(a,e)(t) then Vt(r) ≤ Vt(t). Hence we have the following proposi-

tion.

Proposition 3. If a teacher chooses to retire under DP, then given the same pa-

rameters and preference shocks she chooses to retire under SW. The reverse is not

true. If it is optimal for a teacher to retire under the SW model it may not be optimal

for her to retire under the DP model.

This proposition says if νt > ν†(a,e)(t) then νt > ν∗(a,e)(t). Hence ν†(a,e)(t) ≥ ν∗(a,e)(t)

for all t and (a, e). The numerical solutions ν†(a,e)(t) is less costly to compute then

ν∗(a,e)(t).

2.2.5 Solution technique

Solving DP

Given the value of structural parameters, we need to solve the model for each

(a, e, t) and all νt. Since νt follows an AR(1) process, its support is the entire R. A

common practice is approximating νt by finite grids through discretization or projec-

tion.

Following Stinebrickner (2001), we use backward induction on discrete grids with

the help of Gauss-Hermite quadrature to calculate the expected value function. We
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utilize monotonicity of value function and the fact optimal policy takes the form of

threshold of preference errors to reduce computational burden.

Step 1 discretization

Discretize the state space for the error term νt into equally spaced grids with lower

and upper bound νL, νU such that for each period,

ρνLt +
√

2σm1 > νLt+1, ρν
U
t +
√

2σmp < νUt+1

where mp is the p-th root for the Hermite polynomial Hp(m) (there are p roots for

the p-th order polynomial, namely, m1,m2, ...,mp). 3 The weights corresponding to

these roots are w1, w2, ..., wp.

Step 2 backward induction

Step 2.1: t = T . This is the last period, comparing the two alternatives yields the

optimal choice.

Step 2.2: Repeat for each t < T . First, note that the values for the grids in period

t + 1 are already given, for any grid point νt we can approximate the value for the

j-th point of Gaussian quadrature, ρνt +
√

2σmj by interpolation. Say the closest

points to that point is νkt+1 and νk+1
t+1 , and the associated value at these two points are

V (νkt+1) and V (νk+1
t+1 ). By mean-value theorem, there exists a ξ ∈ [0, 1] s.t.:

V (ρνt +
√

2σmj) = ξV (νkt+1) + (1− ξ)V (νk+1
t+1 )

where in practice we can choose ξ =
ρνt+

√
2σmj−νkt+1

νk+1
t+1 −νkt+1

. Then, by Gaussian-Hermit

quadrature, we approximate conditional expectation of the value function by

EV (νt+1|νt) ≈
1√
π

p∑
j=1

wjV (ρνt +
√

2σmj).

3Because these roots are symmetric we only need to know the positive ones.
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There are several advantages of Gauss-Hermite quadrature over equal spaced grids.

The first is its low computation cost: before we find the critical values, with naive grids

we need to compute weighted summation over n possible future scenarios. However,

with Gauss-Hermite quadrature, we only need 3p times of evaluation (p for finding

the nodes, 2p for calculate the value.) Second, we no longer need to calculate and

save the transition matrix for the discretized markov process of ν, which could be

prohibitively large (if grid size is 1000, the transition matrix is 1000 by 1000, hence

we need evaluation around 500,000 integrals.)

Solving SW

Unlike solving the DP model, we can calculate the SW threshold directly with

forward solution. For each t ≤ T , we calculate gt(r) and Kt(r) for all possible

r = t, ..., T . Then we find the optimal r†t that maximizes the ratio gt(r)/Kt(r), and

record the ratio as the SW threshold for time t.

2.3 Structural Estimation of Retirement Problems

As noted earlier, structural estimation generally involves solving a structural

model for a given set of parameters and searching for parameters that maximizes

the fit of the structural model to the data.

The traditional approach is based on repeatedly solving the structural model nu-

merically as the optimization algorithm searches over the parameter space. The

solution and estimation steps iterate until the gain from the search diminishes.

The deep-learning-aided approach involves additional steps in between of solution

and estimation: instead of solving the structural model for each set of parameters

dictated by the maximization algorithm of the estimation step, here we solve the

model for a pre-chosen set of parameters to build a library that links each set of
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parameters to a solution, then we train the neural network through deep learning to

obtain the optimal weights of activation. The trained neural network maps any set

of state variables and parameters to a solution of structural model. Lastly, with this

mapping, we estimate the parameters without the need to solve for the structural

model while searching through the parameter space. In each step there are multiple

options of implementation which could affect the computation time and accuracy.

Appendix Table B.1 summarizes some of these options. We describe our choice for

the numerical experiment in section 4.

2.3.1 Solution Step: Library Building

Assume that we are estimating a SW model. First, we build a library of solutions

by selecting a collection of deep parameters θθθ and state variables (a, e), solving for

thresholds f †a,e(t; θθθ).

We randomly draw a given number of age and exp cells based on their observed

frequency in the data, pair each sets of deep parameters with one age-exp cell, and

solve the model by backward induction to obtain thresholds f †a,e(t; θθθ) for t = 0, ..., T .

2.3.2 Learning Step: Training DNN

We specify a multi-layer neural network for approximating the critical values as

a function of state variable and parameters summarized in Table 2.1. The input is a

9-dimensional vector (3 for state variables, and 6 for structural parameters), and the

output is a scalar.

2.3.3 Estimation Step: MLE

We estimate the model parameter θθθ using a sample observations of teachers’ de-

cision with observed (a, e) in the initial year. We compute the likelihood of the
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Table 2.1: Input and output of the DNN for threshold

Variable Type Variable Name Notation

Input state variables s = (a, e, t)
Input structural parameters θθθ = (β, γ, κ, κ1, ρ, σ)
Output critical values f †a,e(t; θθθ)

sample from the probability of each observed choice. The parameter is estimated via

maximizing the simulated likelihood.

Given the critical values sequence (subscript a, e omitted)

f† = (f †(0), f †(1), ..., f †(T )).

and the AR(1) process

νt = ρνt−1 + εt where εt ∼ N(0, σ2).

we calculate the retirement probability at year t ∈ {0, 1, ..., T} by:

pt = Pr(retire at year t) = Pr(ν0 > f †(0), ..., νt−1 > f †(t− 1), νt ≤ f †(t)).

Then denote the entire sequence of probabilities of retirement as

p† = (p†0, p
†
1, ..., p

†
T ).

Note that this is the unconditional probability which can be log summed with the

retirement counts for each year to obtain the sample likelihood. And the estimator

is obtained by maximizing the sample (log-) likelihood. Since we need calculate

the unconditional retirement probabilities for all possible combination of (a, e), an

alternative to the GHK algorithm is the Discretization filter (Tauchen (1986), Adda

et al. (2003), Farmer (2021)) which discretizes the AR(1) process into finite state
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Markov chains. We apply the equal-probability discretization in Adda et al. (2003),

with the details presented in Appendix B.3.

The algorithm for estimating the DP model is similar to the one above, except

with f †t replaced by f ∗t for the same initial period (a, e). Also note that both DP and

SW admit this critical value representation, hence we can use the same computation

and approximation framework for both models.

2.4 Numerical Experiments

In this section we conduct numerical analysis on the teacher retirement problem.

We simulate retirement data from a DP or SW model based on a given set of parame-

ters. We then estimate parameters by MLE using traditional and deep-learning-aided

approaches. Finally, we estimate a DP model where the true data are generated from

a SW model, and vice versa, and study whether we can distinguish them from the

true data-generating model.

2.4.1 Institutional Background and Specification of Data Gen-
erating Model

In a typical public school system teacher compensation are in two forms: salary

and retirement benefit. We generate data based on a simplified version of the Illinois

TRS teacher pension system. For active teachers, salaries are paid solely based on

the experience/years of service one accumulated in the system. For data generation

we assume senior teachers have master’s degrees. The salary schedule is derived from

regressing the log wage on a cubic function of experience. With the Illinois data, we

obtain the following equation:

Y (e) = w0exp{b1e+ b2e
2 + b3e

3}
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where e is the experience, Y (e) is the salary.4 We assume teachers have full-time

employment and accumulate one credit for each year of service. Each year a teacher

can either keep working or claim retirement. Retirement is irreversible: once a teacher

claims retirement, she can no longer return to teaching.

For retired teachers, pension benefits are determined by years of service one al-

ready accumulated in the system at the point of retirement. Table 2.2 summarizes

age-and-experience dependent eligibility requirements for claiming retirement benefit

in Illinois.

Table 2.2: Retirement Eligibility of Illinois TRS Teachers

Year of Service Age Description

5 62 Normal Retirement
10 60 Normal Retirement
20 55 At Reduced Rate
35 55 Normal Retirement

Note: the reduced rate is calculated as follows: Calculate the years before reaching age
60 and service experience of 35 years. The smaller one of the two times 6% equals the
discounted annuity.

Note that experience is fixed after claiming retirement, hence the only post re-

tirement the only time-varying variable is age. We can write the pension benefit

as

B(at, et) = Q(at, et)b(et)

where Q(at, et) is an indicator for retirement eligibility which depends on age and

experience at the time of claim. The benefit formula is

b(et) = rep factor ∗ et ∗ FAS.

Here, the replacement factor rep factor is the percentage of final salary for one year of

4The estimated coefficients are: w0 = 35, 000, b1 = 0.0402516942, b2 = −0.0009063110, and
b3 = 0.0000061209. And we assume salary grows at constant compound rate of 2.1% after exp ≥ 40.
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service. The replacement factor may depend on total years of service, et, as in Illinois

before 1998. Here, we follow the Illinois rules post 1998 and assume the replacement

factor is a constant, 2.2%. FAS is the final average salary, which by the Illinois rules

is the average of the highest salaries over four consecutive years in last ten years.5

Data Generating Process

Based on the Illinois TRS pension rules we simulate 21,412 female teachers with

initial age between 47-54, initial experience between 5-40, track their retirement deci-

sions for seven years. To avoid unrealistic age and exp profile and to mimic patterns

of observed data, we use the age and experience distribution of Illinois TRS mem-

bers in 2006. We then calculate the threshold for each age-exp cell with parameter

values at (β, γ, κ, κ1, ρ, σ) = (0.96, 0.70, 0.60, 1.30, 0.70, 0.31 × 104). Finally, for each

teacher, we generate an AR(1) process with (ρ, σ) = (0.70, 0.31× 104) and record the

retirement decision.

2.4.2 Solution to Two Models under the Same Set of Struc-
tural Parameters

Panel (a) of Figure 2.1 plots the vector of thresholds for teachers with same initial

age (a = 58 and different initial experience) under DP (blue lines) and SW (red

lines), with the same set of parameters. The DP thresholds are always below the SW

thresholds, and the gap decreases in teacher’s age, as predicted by Propositions 1-3.

Panel (b) plots the unconditional retirement probability of these teachers over time.

It shows that based on the SW model teachers tend to retire earlier than in the DP

model, and their retirement years are more concentrated.

Panel (c) plots the expected discounted lifetime utility for a typical teacher with

5Illinois pension rules also allow the option of actuarial calculation, which provide retirees the
annuity based on the actuarial equivalent amount of how much they and their employers contributed
to the system. We ignore this uncommon option in data generation.
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different initial age and experience, based on DP and SW models. To compute the

expected utilities we compare generated AR(1) errors against the thresholds under

each model and record the predicted retirement decisions. Then we calculate the dis-

counted sum of utilities and take the average. Due to its “sub-optimality”, expected

utility of the SW model is below that in the DP model. Panel (d) plots this difference

in the expected utilities. The difference tends to be larger for younger teachers. For

a teacher aged 60 with 30 years of experience, the difference is around 3,000. With

γ = 0.7, the difference in welfare can be compensated by a one-time payment of about

$ 90,000 in 2010 dollars.

Figure 2.1: Comparison of SW and DP under same parameters

Note: Both models are solved under (β, γ, κ, κ1, ρ, σ) = (0.96, 0.70, 0.60, 1.30, 0.70, 0.31 ×
104). Panel a (upper left) shows the threshold as a function of initial experience (e0) and

time period t for a cohort of teachers with initial age a0 = 58. Panel b (upper right) shows

the unconditional retirement probability. Panel c (lower left) shows the expected value

function, and panel d (lower right) shows the difference in expected value functions. In

panel a-c, we use red color for SW and blue for DP.
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2.4.3 Implementation of the Three-Step Procedure

Solution Step

Following the procedure in chapter 1, we first generate 3000 random sample of

structural parameters from the following uniform distributions:

β ∼ Unif(0.93, 0.98), γ ∼ Unif(0.10, 1.00), κ ∼ Unif(0.10, 1.00),

κ1 ∼ Unif(0.50, 2.00), ρ ∼ Unif(0.10, 0.90), σ ∼ Unif(2000, 4000).

Then, we randomly draw 3000 age and experience cells based on their observed

frequency in the data. Next, we assign each sets of deep parameters with one age-exp

cell, and solve the model by backward induction to obtain thresholds f †a,e(t; θθθ) for

t = 0, ..., T . Finally, we only retain the relevant thresholds (i.e., keep those with

t < T ∗) and store them in a table.

Learning Step

After obtaining the library of solutions (here, the thresholds), we specify a DNN

for which the inputs and outputs are summarized in Table 2.1. We then train the

DNN for 1,000 epochs. To improve the efficiency of training, we keep the data with

thresholds in [-15,000, 15,000]. This is because for a Gaussian random variable, the

probability of observing a realization over 5σ is around 10−6, and for our numerical

example, σ = 3100. In addition, instead of using the mean square error loss, we let

the loss function be Gaussian weighted squared errors

L(y, ŷ) = (y − ŷ)2
φ(y/σ)

φ(0)
= (y − ŷ)2exp(− y2

2σ2
).

This loss function weighs more heavily thresholds closer to zero. More details in

training design and training results are reported in Appendix B.
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Estimation step

We conduct maximum likelihood estimation with the Nelder-Mead algorithm. For

each age-experience cell, following Adda et al. (2003) and Farmer (2021) we cal-

culate the unconditional retirement probability for each year in the sample period

through equal-probability discretization of the AR(1) process. The details are given

in appendix B. Since the likelihood is approximated by discrete Markov chain, we

experiment with the limit of tolerance of approximation errors and set it at 2.0.

2.4.4 Results with Correctly Specified Model

We first estimate the data-generating model–we first generate the sample of teacher

retirement by the DP (SW) model and a set of structural parameters, and then esti-

mate the structural parameters with the DP (SW) model.

Table 2.3: Computational time comparison for DP

method step task time details

conventional solve solve for all cells 131500s 532.5s per loop
estimate calculate likelihood 74s 0.3s per loop

total around 36h

3-step solve build the library 7500s 3000 cells
learn train the DNN 201s 1000 epochs
estimate calculate likelihood 89s 0.3s per loop

total around 2h

Note: to make the computation time comparable, we assume both methods need 247 iter-

ations for the MLE to converge. We have 213 initial age-exp cells, and it takes 2.5 seconds

to solve the DP for one cell, on average.

In Table 2.3, we compare the computation time of the conventional “solve to

estimate” approach and the 3-step “solve, learn, then estimate” approach for the DP

model. We use the GHK algorithm for a simulated estimator for likelihood. Unlike

running a Bayesian MCMC where the length of the chain is pre-set, the number
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of iterations in MLE is random.6 To make a fair comparison of estimation time we

remove the difference due to different MLE iterations in both cases. We use the actual

number of iterations for the 3-step procedure and rescale the computation time for the

conventional approach. Both methods use the same solver of the DP problem, that

solves for one age-experience cell in 2.5 seconds on average. The conventional method

needs to solve for ALL cells in each iteration, and because the sample contains 213

cells of age-experience combinations, it takes the conventional method 532 seconds on

solution, and the likelihood calculation takes negligible time of 0.3 second. In total,

conventional method takes 36 hours to finish 247 iterations.

The three-step method only solves the model for 3,000 cells under 3,000 different

parameter values, which takes 7,500 seconds if they are solved sequentially. And the

time can be further decreased if we do parallel computation. The training of DNN

takes 201 seconds. And with the trained DNN, estimation only takes 89 seconds

for 247 iterations, with the majority cost for likelihood calculation. The cost for

obtaining a solution of the DP model from trained DNN is negligible.

Table 2.4 presents the mean and standard deviation of the estimates of structural

parameters for 100 repetitions. In each repetition, we first simulate a random sample

of teachers with the same age-exp distribution, then estimate sturctural parameters

of the DP model by the three-step procedure. Note that in each repetition, the library

we build in the first step and the neural network we trained in the second step may

differ. The mean for each parameter is close to the true value, and the standard

deviation is relatively small. This suggests the three-step procedure recovers the true

parameters accurately.

Tables 2.5-2.6 are the counterparts of Tables 2.3-2.4 for SW. The main findings are

similar: the three-step procedure is faster than the conventional method, and it can

accurately recover true parameters. Because it is much faster to solve for SW than

6For estimation, commonly used algorithms include gradient descent, Newton’s method and
stochastic gradient descent.
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Table 2.4: Accuracy for 100 repetitions under DP

β γ κ κ1 ρ σ × 104

TRUE 0.9600 0.7000 0.6000 1.3000 0.7000 0.3100
mean 0.9598 0.6918 0.6075 1.3181 0.7105 0.3117
std.dev 0.0087 0.0180 0.0210 0.0409 0.0250 0.0126

for DP, the computational advantage of the three-step method for the SW model

is smaller than it computational advantage for the DP model. For the SW model

the total computation time of conventional method is around 5 times of that of the

three-step method. For the DP model the total computation time of conventional

method is around 20 times of that of the three-step method.

Table 2.5: Computational time comparison for SW

method step task time details

conventional solve solve for all cells 1893s 7.7s per loop
estimate calculate likelihood 74s 0.3s per loop

total around 2000s

3-step solve build the library 108s 3000 cells
learn train the DNN 201s 1000 epochs
estimate calculate likelihood 89s 0.3s per loop

total around 400s

Note: to make the computation time comparable, we assume both methods need 247 itera-

tions for the MLE to converge. We have 213 initial age-exp cells, and it takes 0.036 seconds

to solve the SW for one cell, on average.

Table 2.6: Accuracy for 100 repetitions under SW

β γ κ κ1 ρ σ × 104

TRUE 0.9600 0.7000 0.6000 1.3000 0.7000 0.3100
mean 0.9622 0.6958 0.6138 1.3065 0.6999 0.3075
std.dev 0.0103 0.0072 0.0372 0.0818 0.0204 0.0195
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Finally, Table 2.7 reports the MLE estimates for one sample (using the true pa-

rameters as the initial guess.) Columns (2) and (4) reports the estimated structural

parameters of the data generating models (SW model for Column (2) and the DP

model for Column (4)). In both cases, MLE recovers the true parameters with small

standard errors.

Table 2.7: MLE results for one sample

(1) (2) (3) (4) (5)
model true sim SW, est SW sim SW, est DP sim DP, est DP sim DP, est SW

β 0.9600 0.9598 0.9306 0.9617 0.9507
(0.0006) (0.0010) (0.0003) (0.0004)

γ 0.7000 0.7001 0.6911 0.6982 0.7665
(0.0009) (0.0006) (0.0008) (0.0001)

κ 0.6000 0.6041 0.6004 0.6059 0.5769
(0.0016) (0.0027) (0.0002) (0.0012)

κ1 1.3000 1.3384 1.3139 1.3107 1.2694
(0.0040) (0.0035) (0.0059) (0.0009)

ρ 0.7000 0.7006 0.7287 0.7013 0.7657
(0.0014) (0.0014) (0.0012) (0.0003)

σ × 104 0.3100 0.3125 0.3179 0.3113 0.2953
(0.0007) (0.0025) (0.0008) (0.0021)

log-lik -32847.9420 -33925.7708 -15716.2422 -16332.2856

Note: “sim SW, est DP” means the sample is simulated under the SW solution with the
true parameters, and then estimated under DP. “sim DP, est SW” means the sample is

simulated under the DP solution with the true parameters, but then estimated under SW.

2.4.5 Model Identification

We now examine whether the deep-learning-aided estimation enables identification

of similar structural models: can we tell whether the retirement data are generated

from DP or SW?

In column (3) of Table 2.7, the sample is simulated under the SW model with

the true parameters, but we estimate the parameters through a DP model via the

three-step method. As is expected, with model mis-specification the estimates for

structural parameters differs from the true values. The sample log-likelihood of the
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Table 2.8: 100 repetitions for mis-specified models

Case 1: sim SW, est DP

β γ κ κ1 ρ σ × 104

TRUE 0.9600 0.7000 0.6000 1.3000 0.7000 0.3100
mean 0.9331 0.6410 0.4801 1.4685 0.5940 0.3510
std.dev 0.0061 0.0326 0.1418 0.2720 0.1179 0.0450

Case 2: sim DP, est SW

β γ κ κ1 ρ σ × 104

TRUE 0.9600 0.7000 0.6000 1.3000 0.7000 0.3100
mean 0.9532 0.7516 0.6262 1.2239 0.7726 0.2877
std.dev 0.0181 0.0135 0.0678 0.1555 0.0374 0.0382

Note: “sim SW, est DP” means the sample is simulated under the SW solution with the
true parameters, and then estimated under DP. “sim DP, est SW” means the sample is
simulated under the DP solution with the true parameters, but then estimated under SW.

mis-specified is significantly lower than that of the true model. Similar results are

found in column (5), where the sample is simulated under SW but we estimate it

by DP. We then run 100 repetitions for the above two mis-specified models, and

report the mean and standard deviation of parameter estimates in Table 2.8. Not

surprisingly, the parameter estimates from mis-specified models differ from their true

values.

As for structural estimation, we are more interested in whether the mis-specified

model (with the corresponding “mis-estimated” parameters) makes similar predic-

tions of teacher’s retirement behavior as the correctly specified model. For the sample

simulated by SW and estimated by DP, we further generate a sample with DP under

the estimated values of parameters, and plot some summary statistic in Figure 2.2.

The upper panel of Figure 2.2 is the survival rate over time, where the red solid

line is for the generated data, and the blue dashed line is for the predicted data. The

middle panel is the marginal distribution of age and experience of retired teachers.

The lower panel is the joint distribution of age and experience of retired teachers. The
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Figure 2.2: Simulated by SW, Estimated with DP

Note: the upper panel plots the survival rate. The middle panels plot the marginal distri-
bution of age (left) and experience (right) of retired teachers (at the time of retirement).
We use red solid line for the simulated data and blue dashed lines for the predicted data
with mis-specified model and the corresponding parameter estimates. The lower panels plot
the joint distribution of age and experience of retired teachers (at the time of retirement),
where the red lines in the left is for the simulated data and the blue lines in the right for
the predicted data.

left one is for the generated data, and the right one is for the predicted pattern. The

predicted survival rate is above the true one–the estimated DP model under-predict

retirement generated by the SW model. The estimated model mimics the spikes in

the marginal distribution of age and experience of retired teachers, but the spike is
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not as large as the true model. The joint distribution of age and experience of the

mis-specified model exhibit a qualitatively similar pattern as the generated data.

Figure 2.3 presents the results for data generated by the DP model, and estimated

by the SW model. First, comparing the true models for SW and DP in Figure 2.2 and

2.3 shows that the survival rates are higher under DP than SW, given the structural

parameters. Moreover, the marginal distribution of age and experience under DP

is not as concentrated as SW. Next, we focus on Figure 2.3. The survival rate of

the true model generated by the DP model is higher than the estimated model with

the SW model. The marginal distribution of age and experience is sharper under

the estimated model, and the joint distribution under the estimated model is more

concentrated.

2.5 Concluding Remarks

This chapter focuses on structural estimation of DBCM in finite horizons. We con-

sider teachers’ optimal retirement problem. First, we show that two popular models,

DP and SW, both admit the threshold strategy under our general framework, and

the threshold for DP is always higher than SW under the same set of parameters,

so teachers retire earlier under SW. Second, we modify the three-step procedure in

Norets (2009) to a simulated sample of teachers. We achieve reduction in computa-

tional time around 20-fold for DP and 5-fold for SW with respect to the conventional

nested algorithm, without significant accuracy loss. Lastly, we show that our method

is able to identify the subtle difference between DP and SW from the fit of the survival

rate and distribution of age and experience of retirement teachers.
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Figure 2.3: Simulated by DP, Estimated with SW

Note: the upper panel plots the survival rate. The middle panels plot the marginal distri-
bution of age (left) and experience (right) of retired teachers (at the time of retirement).
We use red solid line for the simulated data and blue dashed lines for the predicted data
with mis-specified model and the corresponding parameter estimates. The lower panels plot
the joint distribution of age and experience of retired teachers (at the time of retirement),
where the red lines in the left is for the simulated data and the blue lines in the right for
the predicted data.
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Chapter 3

Behavior Responses to Voluntary
Pension Upgrades: Structural
Estimation for Illinois Public
School Teachers

3.1 A Framework for Evaluating Effect of Pension

Rules

During the 1990s, many states enhanced pension benefits for public K-12 teachers,

sometimes multiple times over several years. In the state of Illinois, defined benefit

(DB) pension costs for K-12 public school teachers have been rising in the past decades

and created severe fiscal pressure.

“ In the current school year, 36% of the money the state allocates to educa-

tion will be diverted to pension payments. This represents a 200% increase

in spending on teacher pensions since 2000, compared with only a 20% in-

crease on classroom spending during that period. Despite massive funding

increases and diminishing social services, the five state-run retirement sys-
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tems – which serve teachers, state workers, public university employees,

judges and members of the Illinois General Assembly – are only about 40%

funded, a shortfall of $137 billion by the state’s accounting.” 1

Given the extent of the impending pension crisis major policy interventions may be

necessary.2 Assessing the labor supply and fiscal effect of major pension reforms

requires predicting outcomes of policies that generally have not been implemented in

the past, thus precluding the use of conventional policy evaluation tools.

Analysis of future policies should be based on economic models that can fit his-

torical data of teacher retirement under different pension rules. Before entrusting an

economic model for predicting teacher behavioral responses to any proposed reforms,

one should verify whether the model can explain the teacher retirement behavior un-

der the current pension rules as well as the change in retirement behavior induced by

the pension enhancements in the 1990s.

Evaluating the effects of the pension enhancements on teacher retirements is chal-

lenging. Under DB pension rules, financial incentives in retirement decision are func-

tions of teachers’ age and experience. Our previous empirical research suggests unob-

served heterogeneity in preference among teachers plays an important role in teachers’

retirement decision and the aggregate retirement rate. As multiple enhancements oc-

curred sequentially, earlier enhancements affected the population exposed to later

enhancements. Evolution of distribution of the preference of teachers who remain

teaching given age and experience depends on the historical policies. Ignoring this

dynamics of sample selection results in biased estimates of policy effects.

1From https://www.illinoispolicy.org/illinois-pension-costs-debt-are-growing-f

ar-faster-than-state-predicted/ and https://www.illinoispolicy.org/reports/pension

s-vs-schools/.
2Unfunded pension liabilities have generated calls for reforms of DB plans (see Costrell and

Podgursky (2009), Brown (2013), Costrell and McGee (2010), Fitzpatrick and Lovenheim (2014),
Friedberg and Turner (2010), Knapp et al. (2016), Ni and Podgursky (2016), Novy-Marx and Rauh
(2011), Malanga and McGee (2018), Doherty (2012), Backes et al. (2016), Kim et al. (2021), among
others).
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In addition, the full impact of a policy’s effect on retirement may take a long time

to materialize. This means the short-term effect may differ from the long-term effects:

in the short term the effects of a policy change depends on current distribution and

for the long term the full effects of a policy change may take long time to materialize

because the retirement decision occurs in the future.

With these challenges in mind, we propose a structural model approach to assess-

ing the effect of any given policy rule on teachers’ retirement decision. While the

discussion focuses on pension enhancements and teacher retirement, the framework

applies to evaluation of policy changes in other contexts. The structural model ap-

proach is based on a dynamic programming model of retirement in which teachers

make retirement decisions by maximizing an objective function given the pension rules

and with time-varying unobserved heterogeneity. We first estimate a set of “struc-

tural parameters” that quantify the nature of teachers’ preferences (such as teachers’

willingness in delaying receiving income, and preference towards risk). The struc-

tural parameters are independent of pension rules. We then use estimated structural

parameters to predict teachers’ decisions when facing a different pension rules.

In application of the model for the teachers in the sample, we not only account

for the dynamic dependence of unobserved heterogeneity as teachers make retirement

decisions over time, but also the initial unobserved heterogeneity, based on the and

and experience of the teachers in the initial sample year. The structural approach

is desirable for policy evaluation because the estimated structural parameters are

applicable beyond the data sample. Another advantage of the structural approach

lies in its ability predicting new policies that differ from those implemented in the past.

Because experimenting on pension policies are costly and time consuming, guidance

from economic models are particularly useful. The ultimate goal of the empirical

research on pension effect on retirement is guiding policies in pension reform. A

structural model is suitable for that purpose.
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A structural model is based on restrictive assumptions and omits empirically im-

portant factors. These limitations likely render misfit of data. However, structural

models produce often produce good out-of-sample fit, suggesting they capture the

key factors in the retirement decisions.

Two types of structural models, option value models and dynamic programming

models, have been used to model optimal retirement decision (see chapter 2 for more

details). In option value models of Stock and Wise (1990) and Ni and Podgursky

(2016), time-varying unobserved heterogeneity is modeled as AR(1) preference er-

rors. The option value model used in these studies can be more easily solved in a

forward-looking fashion. However, an option value model only values the option of

retirement of the current but ignores the value of of having such an option in future

years, which makes it unsuitable to model optimal sequential decisions by teachers

in some settings. In contrast, dynamic programming models account for the value

of future options but need to be solved through backward induction, which is com-

putationally more burdensome. Some studies use dynamic programming models but

make simplifying assumption on the unobserved heterogeneity. For example, Knapp

et al. (2019) construct a structural model of retirement with independent and identi-

cal generalized extreme value distribution (i.i.d. GEV) of per-period error term with

a random effect of time-invariant heterogeneity. Empirical evidence suggests serial

correlation is essential in modeling policy-dependent heterogeneity.

Estimation of the dynamic programming model with serially correlated preference

errors is computationally costly. A key innovation of this dissertation (chapter 1) is

proposing a machine learning algorithm for reducing the computation time of esti-

mating structural models. We estimate a dynamic programming model with AR(1)

preference errors using a modified three-step procedure and deep neural networks (i.e.,

algorithm 3 in chapter 1, which is tested with simulated retirement data in chapter

2).
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For empirical application, we estimate the structural parameters in a dynamic

programming model using administrative data of 2005-2012 from Illinois public school

teacher’s retirement system. In the dynamic programming model, teachers’ retirement

decision is driven by pension incentives, structural parameters defined utility function,

and serially correlated unobserved preference errors. With the structural parameters

we can calculate the distribution of preference errors for given a combination of age

and experience, and for in-sample test, the probability of retirement of the 2005-

2012 sample. Then as an out-of-sample test, we use the estimated model to evaluate

the effect of the 2.2 upgrade option implemented in 1998 that offers the option to

an earlier sample of Illinois teachers to upgrade pre-1998 service credits to a more

generous formula with 2.2% flat rate of pension benefit for each year of service. As

an example of history-dependence of sample distribution, in estimating the effect of

the “2.2 upgrad” we take into account of another enhancement, the Early Retirement

Incentives (ERI) during 1993-1995 that allowed teachers with at least five years of

service to purchase additional five years of age and service, conditional on them

retiring immediately. Note that teachers’ decisions on both ERI and “2.2 upgrade”

are based on the unobserved heterogeneity, and teachers who faced the “2.2 upgrade”

decisions were a selected sample that declined the offer of ERI.

For policy analysis, we focus on estimating the effect of 2.2 upgrade. We find

that around 87% of teachers in the 1998 sample took the upgrade. By matching

teachers with the same age and experience profile to an earlier cohort, we find that

takers retired around 1.3 years earlier on average, with a substantial variation across

different age-exp cells.
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3.2 Illinois TRS Rules and Data Sample

3.2.1 Illinois Pension Rules

Before discussing the pension upgrade in 1998, we first summarize the pension

rules of public school teachers in Illinois. Illinois public school teachers are enrolled

in TRS (except those in Chicago, who are enrolled in Chicago Teachers’ Pension

Fund, CTPF). During the time of employment, teachers contribute a proportion of

their salary to the defined benefit (DB) pension system, matched by the employer.

Eligibility for pension is based on combinations of age-experience (accumulated service

credit) requirement, see Table 3.1.3

Table 3.1: Retirement Eligibility

Year of Service Age Description

5 62 Normal Retirement
10 60 Normal Retirement
20 55 At reduced rate: 6% for each year under 60;

or under ERO*
35 55** Normal Retirement

Note: * ERO stands for Early Retirement Options.
** If the retirement annuity is at least 74.6 percent of the final average salary and the
teacher will reach age 55 between July 1 and Dec. 31, TRS considers him/her to have
attained age 55 on the preceding June 1. Moreover, if a teacher meets some criteria of the
state of Illinois, he/she can also apply for rule of 85.
Source: TRS (2018a), TRS (2018b).

A vested member (i.e., accumulated five years of service in the system) who do

not satisfy the above requirements may separate first and wait until qualified. For

those not vested members, refund option is also available.

3The TRS teachers are classified into several tiers of pension plans. Before September 2018, there
were two tiers: Tier 1 (2) are those first contributed to TRS before (after) Jan. 1, 2011 or (and)
have (no) pre-existing creditable service with a reciprocal pension system prior to Jan. 1, 2011. Tier
1 and Tier 2 members are covered by defined benefit plans of different parameters. In September
2018, a new group, Tier 3, was created. Tier 3 is a hybrid of defined benefit and defined contribution
plans.
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Pension Benefit

Upon claiming retirement, TRS will calculate the pension benefit according to

two approaches: experience-based formula and actuarial calculation, and use the one

gives the higher amount. The experience-based formula is

B = r ∗ exp ∗ FAS

where r is the replacement factor which equals 2.2% after 1998, exp is the credible

service year accrued by the member. According to Chapter 5 of TRS (2018a), credible

service years includes regular service, sabbatical leave, sick leave, optional service and

reciprocal service, among others. 4 FAS is the final average salary, which is the

average of four consecutive annual salaries among the last ten years.

3.2.2 Sample for Structural Estimation

This paper relies on the data from TRS. It has two types of data: i) personal data

such as name, age/age at claim, date hired, contribution accumulation, total service

credit, claim date, claim type, etc. ii) Payroll and service credit data, which record

the employment status, employer name, salary, earnings, service credit, and days paid

for every TRS member for each fiscal year. Sufficient statistics including individuals’

From the data we can compute age, experience, gender, and retirement decision.

The 2005-06 cohort is used for estimating deep parameters for structural models.

We construct the sample of teachers who satisfy the following criterion: 1) Work full

time in 2005-2006 school year. That is, service credit equals 1 in that year. 2) Have

5 or more years of experience at the end of 2005-2006. i.e., total service credit ≥ 5 at

4TRS has a series of rule of classify which service years are credible; moreover, members could
also purchase optional service year if qualified; and upon retirement, unused sick leave credit (max
2 years) also counts towards total credible service years. For more details, check the TRS member
guide at https://www.trsil.org/members/retired/guide.
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that time. 3) Age between 47 and 54 at the end of 2005-2006. 4) Work full time from

2005-2006 until retirement. These four restrictions balances maximize observations

and make it possible for cell-based estimation.

Table 3.2 shows the retirement pattern over time of 27,299 teachers, with average

age of 51.01 and average experience of 20.81 at the end of school year 2005-06. 516

teachers retired in July 2006, and the number jumped to 1,340 in 2007, back to 949

in 2008, then rose steadily from 1,377 in 2009 to 2,535 in 2012. There were 17,146

teachers remaining active in school year 2012-13. Among all teachers in 2005, 22% or

5,887 were male, and male teachers are more likely to retire, which results in a fewer

male share (19%) among active teachers in 2012.5

Table 3.2: Basic retirement facts

# Teachers Age Exp # Male Teachers Male Share

all teachers in 2005-2006 27,299 51.01 20.81 5887 0.22
retire in July06 516 52.75 24.96 149 0.29
retire in July07 1,340 54.39 29.25 373 0.28
retire in July08 949 54.83 29.08 254 0.27
retire in July09 1,377 55.69 30.36 378 0.27
retire in July10 1,512 56.30 30.72 386 0.26
retire in July11 1,924 56.88 30.72 537 0.28
retire in July12 2,535 57.75 29.76 557 0.22
not retired in 2012-2013 17,146 57.21 24.71 3253 0.19

Note: The sample includes teachers who earn full credit (=1) at 2005-2006 school year,
with total service credit (TSC, not including unused sick leave credit) at the end of 05-06
school year greater than or equal to 5, with age between 47 and 54.

3.3 A Dynamic Programming Model of Retirement

As in chapter 2, we set up a dynamic programming model with structural param-

eters as (β, γ, κ, κ1, ρ, σ). For the threshold strategy and the three-step algorithm, see

5We define the time of retirement as the date a teacher separate from her work, which is not
necessary the time when she claims pension benefits. Teachers retire under various retirement plans.
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the discussion there for more details.

3.3.1 Modeling the endogenous distribution of preference er-
rors

Denote the optimal policy f †t by the threshold preference error f †(a, e, t) = ν∗(a,e)(t),

i.e., the decision rule is that a teacher with preference error (for teaching) νt retires

in t if f †(a, e, t) ≤ −νt, and continue to teach otherwise. The threshold of the pref-

erence error in period t, ft, depends on the set up of the decision model, the model

parameter vector b (that determines the teacher’s preference), teacher’s observables

related to retirement decision (such as age and experience) in period t, ssst, and the

pension rules R. To make the dependence implicit we write the threshold condition

as a model of latent variable

y∗t = f(ssst, Rt, Rt−1...) + νt, (1)

where dt = 1 if y∗t ≤ 0; dt = 0 if y∗t > 0. By definition, y∗t ≤ 0 iff νt ≤

−f+(ssst, Rt, Rt−1...). The key challenge is to identify the threshold function f+(ssst, Rt, Rt−1...).

Teacher i’s history is given by dddi = (0, .., 0, 1) (with ni − 1 0’s before the number

1) we assign a sequence of latent variables in (1) with y∗t > 0 for t = 1, 2, .., ni − 1

and y∗t ≤ 0 for t = ni. The structural model depends on the assumptions on teacher

preference and the environment in which teachers make retirement decisions. These

assumptions imply restrictions in (1).

In making decision in period t, the teacher faces preference error νt drawn from

distribution conditional on the history up to t: F (νt| − νj < f+
j for all j < t). The

history of the teacher includes the historical pension rules and realized preference

shocks. With a given structural model we can track the thresholds.

An empirical indication of a shift in the threshold f+ is that retirement behavior
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shifts for a given sss. If over time the retirement decisions of different cohorts of teachers

with the same age-experience combination (say age = 47, exp = 27, see the top left

panel of Figure 3.1) change then the there is an underline shift in thresholds f . The

shift in the thresholds implies the distribution of νt differs by cohorts.

The key to implementing this approach is the structural model that produces the

thresholds f+ for given the state variables and policy history.

Figure 3.1: Evolution of preference shock across time

Note: 1) we plot the distribution of the preference shock in each period for the remaining
teachers immediately after they decide whether to retire. The top left panel is for teachers
with initial age of 47 and exp of 27, the top middle panel for 50 and 27,etc.
2) The distribution is generated by simulating 100,000 paths for each age-exp combination,
and trace them for 10 years. The vertical lines corresponds to the thresholds, and only
those whose preference shock to the right of threshold remain.

3) We use the DP model with estimated structural parameters for the 2005-12 cohorts in

Table 3.3 to generate these thresholds.
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3.3.2 MLE of Structural Parameters using the 2005-12 Sam-
ple

We apply the three-step procedure to the current problem. Because we do not

observe the date of birth, we specify the likelihood function as a finite mixture of two

possible cases: i) age is correctly measured; ii) true age is 1 year older. We run MLE

corrected for measurement error: denote the unconditional probability of a teacher

with initial age and exp (a, e) retires at period t as p(a, e, t). Assume that age is

correctly measured with probability λ, then we would observe a teacher with (a, e)

retiring at t with probability λp(a, e, t) + (1− λ)p(a+ 1, e, t). We set λ = 0.5 and the

MLE results are reported in Table 3.3.

Table 3.3: MLE estimates of structural parameters for Illinois data 2005-2012

Parameters β γ κ κ1 ρ σ × 104

0.9304 0.7907 0.3874 1.5438 0.6981 0.3488
(0.0002) (0.0003) (0.0013) (0.0005) (0.0026) (0.0004)

log-lik -22959.1596

Note: The estimation is based on female teachers only in the 2005-2012 sample. Standard

errors are in parentheses, which are obtained by inverting the numerical Hessian matrix of

the log-likelihood. Corrected for: i) measurement error in age; ii) left-censoring, and iii)

with a fixed effect for year 2008.

3.3.3 In-sample Goodness of Fit

We report the predicted survival rate, age-exp distribution for retired teachers

(both marginal and joint distributions) in Figure 3.2. The dynamic programming

model provides reasonable fit to the observed data. It tracks the observed survival

curve very well. The model under-predicts the spike at 33-34 in the marginal distri-

bution of experience of retired teachers. As a result, the spike of the joint distribution

at (55, 33-43) is also under-predicted. Overall the estimated model provides a good

fit in-sample.
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Figure 3.2: DP for Illinois data

Note: the upper panel plots the survival rate. The middle panels plot the marginal distri-
bution of age (left) and experience (right) of retired teachers (at the time of retirement).
We use red solid line for the observed data and blue dashed lines for the predicted data with
estimated parameters. The lower panels plot the joint distribution of age and experience of
retired teachers (at the time of retirement), where the red lines in the left is for the observed
data and the blue lines in the right for the predicted data.

3.4 Policy Analysis of the “2.2 upgrade” as an

Out-of-Sample Test

Teachers can raise the replacement factor for their service years prior to July 1,

1998 to 2.2% by paying a cost. We call it the “2.2 upgrade”. The 2.2 upgrade in
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1998 only concerned Tier 1 members. Pensions of Tier 1 teachers experienced several

waves of pension enhancements. The 2.2 upgrade was one of them.

After 1998, teachers were given the option to upgrade their replacement rate for

service years prior 1998 to 2.2 percent by paying a price equal to:

Pit = min
(Exp1998

100
,

20

100

)
× Salaryit

where Exp1998 denotes the service years a teacher has earned before 1998, and Salaryit

is the highest salary rate during the four school years before the teacher applies to

make the upgrade contribution. Typically, this is the salary of the teacher at the time

of payment. This means that the price of upgrade is approximately 1% for each year

of service before 1998, with the total capped at 20% of annual salary.

It is important to note that with or without the upgrade, the experience-based

retirement annuity is capped at 75 percent of final average salary. Under the old

formula without the upgrade, teachers hit this cap at 38 years of service. Under the

new formula with the upgrade they hit it at 34 years. Thus the gain in pension wealth

from the upgrade declines after 34 years and hits zero at 38 years. This means that

teachers who planned on longer careers and retirement at a later age receive smaller

or zero benefits from the upgrade.

3.4.1 Data of the Response to “2.2 Upgrade”

The sample for out-of-sample test is a cohort of 19,126 active teachers with 22-28

years of experience at the end of 1997-98 school year. This is the same cohort we

built in Ni et al. (2022). The sample was initially studied by Fitzpatrick (2015), but

Ni et al. (2022) had the service credit more accurately measured.

Among teachers with 22-28 years experience in 1998, 87% purchased the 2.2 up-

grade by 2019. We label them “takers”. The rest of the group, “non-takers”, did not
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purchase by 2019. Teachers with at least 22 years experience in 1998 and still work-

ing in 2014 are considered non-takers. We find the take-up decision on the upgrade

strongly correlated with net realized pension benefit.

Figure 3.3 shows the observed age and experience distribution for takers and non-

takers in 1998 and at retirement claim date. All of them suggest a strong separating

pattern, where takers retire earlier and enjoy positive net benefits while non-takers

retire later and have negative net benefit of upgrade.

The upgrade status and retirement timing for teachers are correlated with initial

experience in 1998. Senior teachers take the upgrade more, and almost all teachers

above 26 years of experience retire by 2012. Among those with 22 years of experience

in 1998, 90% retired by 2012. Those still working in 2012 are non-takers (since if

they work full time, their service credit is at least 36 years, not including sick leave

service. Hence the 2.2 upgrade would be worthless for them.)

3.4.2 A Dynamic Programming Model with “22 upgrade” as
a Recurring Option

In the beginning of each period, a teacher makes two decisions in sequence imme-

diately before observing the preference shock: a) whether to purchase the upgrade, if

she has not purchased yet; and b) whether to retire, given the current upgrade status.

We first set up the Bellman equations for retirement. This decision depends on

whether the teacher already purchased the “22 upgrade”. Consider a teacher with

initial age-exp (a, e) who has already purchased the upgrade by period t, the only

decision is to retirement or not. Let W (a, e, t, 1) be the expected discounted lifetime

utility of pension for the upgraded benefit, and V (a, e, t, 1, νt) the value function:

V (a, e, t, 1, νt) = max{u(a, e, t) + νt + βEV (a, e, t+ 1, 1, νt+1),W (a, e, t, 1)}.
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The first term on the right-hand-side is the value of teaching for at least one more

year with the upgraded pension, the second term is the value of retiring now. By

backward induction, there exists a threshold ν∗(a, e, t, 1) such that the teacher retires

at period t (conditional on not retired yet) if and only if νt ≤ ν∗(a, e, t, 1). We can

then solve the model using this threshold property and obtain the value function

V (a, e, t, 1, νt).

The utility function u(a, e, t) for period t is the same one in the previous section,

(κty(a,e)(t))
γ, with same specification of age-dependent parameter of leisure κt =

κ( 60
a+t

)κ1 (0 < κ ≤ 1) during working years. The unobserved innovations in preferences

are again AR(1):

νt = ρνt−1 + εt.

As in the earlier context, the dependence on teacher is not reflected in the labeling

of variables.

Next, consider the case that the teacher who has just made the non-purchasing

decision in period t, and the only decision is whether to retire. Let U(a, e, t, νt) be the

value function of teacher in period t who have not yet made the upgrade decision. Let

W (a, e, t, 0) be the expected discounted lifetime utility of pension for the standard

benefit with the upgrade, and V (a, e, t, 0, νt) the value function of retirement. Then

V (a, e, t, 0, νt) = max{u(a, e, t) + νt + βEU(a, e, t+ 1, νt+1),W (a, e, t, 0)}.

The first term on the right-hand-side is the value of teaching for at least one more

year without the pension upgrade, the second term is the value of retiring now. The

optimal policy admits a threshold strategy in this case: the teacher retires if and only

if νt ≤ ν∗(a, e, t, 0).

Finally, we set up the Bellman equations for purchasing the “22 upgrade”. Con-

sider a teacher with initial age-exp (a, e) who has not purchased the upgrade by period
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t. Let disutil(a, e, t, δ) be the dis-utility of the one-time payment δ of the upgrade,

which is subtracted from the take-home income from last period. 6 We have:

U(a, e, t, νt) = max{V (a, e, t, 1, νt)− disutil(a, e, t, δ), V (a, e, t, 0, νt)}.

The first term on the right-hand-side is the value of upgrading this year, the second

term is the value of not upgrading now. Then one upgrades if and only if

V (a, e, t, 1, νt)− disutil(a, e, t, δ) ≥ V (a, e, t, 0, νt),

Since we already solved V (a, e, t, 0, νt) and V (a, e, t, 1, νt), and the disutility of pay-

ment can also be easily calculated, we can pin down the optimal actions given the

value of νt.

3.4.3 Numerical Procedure

We solve the above model for each (age, experience) cell (a, e) by 1) calcu-

late W (a, e, t, 1) and then V (a, e, t, 1, νt) through backward induction. 2) Calcu-

late W (a, e, t, 0). 3) Given the value of V (a, e, t, 1, νt), solve for V (a, e, t, 0, νt) and

U(a, e, t, νt) simultaneously. Note that we need to integrate νt+1 out in EU(a, e, t +

1, νt+1) via Gaussian-Hermit quadrature. We make several simplifying assumptions

6Consider the utility in period t with and without payment. The utility function without payment
is the same as before: u0(a, e, t) ≡ u(a, e, t) = (k(a, t)((1− c)y(e, t)−0))γ , and we assume the utility
with payment δ is uδ(a, e, t) = (k(a, t)((1− c)y(e, t)− δ))γ , so the disutility is:

u0(a, e, t)− uδ(a, e, t) = (k(a, t)(1− c)y(e, t))γ − (k(a, t)((1− c)y(e, t)− δ))γ .

Finally, since we assume the payment is subtracted from last-period’s income (this is to ensure that
the payment is always subtracted from wage income; otherwise, the disutility depends on whether
the teacher retires or not), we replace t with t− 1 to get:

disutil(a, e, t, δ) = u0(a, e, t− 1)− uδ(a, e, t− 1).
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for now, which will be relaxed later.7

3.4.4 Account for the effect of ERI on the sample used for
analysis of the “2.2 upgrade”

Now, consider teachers at the end of school year 1992-93 who were offered the

ERI option between 1993-1995. The cost and benefit of ERI are summarized in the

following table.

Table 3.4: Two Early Retirement Polices

Policy Effective Eligibility Benefit Price (Cost)

ERO 1979-2016 age ≥ 55, exp ≥ 20 undiscounted benefit one-time payment
(see note i)

ERI 1992-1994 age ≥ 50, exp ≥ 5 age+ 5, exp+ 5 one-time payment
(see note ii)
must retire immediately

Note: i) Only concerned Tier-1 members; ii) Fitzpatrick and Lovenheim (2014) noted “The

fee for employees was 4 percent of the highest annual salary for the past five years for each of

the five additional years of age and service purchased; the fee for employers was 12 percent

of the employee’s highest annual salary from the last five years for each additional year

purchased.”

Teachers in 1993 faced three choices: 1) keep working, 2) retire under ERI, 3)

retire without ERI. We assume the 1998 2.2 upgrade was not foreseen when these

teachers made the decision on ERI in 1993.

Then we solve the models in the following steps. i) First, we use backward induc-

tion under old formula to obtain the value function and threshold for year 1994, 1995,

..., assuming no further pension enhancement. ii) Second, we use the value function

7These assumptions are:
1) No ERO and actuarial calculation.
2) Payment is one-time, done at the beginning of each period, and partly by the employees.

Although the required employee payment for the upgrade is 20% of previous year salary for all
teachers, since they are senior teachers (exp = 22-28 in 1998), in the data we find that some fractions
are paid by their employers. In this exercise, based on the sample average we assume that employers
pay 50% of the upgrade fee.

3) For now we ignore the automatic increase of the replacement factor after 1998.
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for year 1994 as the continuation value for not retiring in 1993 with or without ERI.

iii) Finally, we solve for the optimal decision rule for ERI. For simplicity, for ERI we

assume the teachers purchase the minimum of 5 years and the difference between the

current service credit and the one that attains the 75% cap, i.e., 38 years. We model

the payment for ERI in the same way as 2.2 upgrade: subtract it from the take-home

income of the last period.8 Then, the effect of ERI is fully captured by the increase in

the threshold for the year it is offered. And we use the new thresholds f+ to simulate

the distribution of the preference shock νt from the year ERI is offered, and only keep

those sequences for teachers still active in 1997-1998. In this way, we account for the

left truncation induced by ERI.

3.4.5 Out-of-sample Fit

The same structural parameters in Table 3.3 (β, γ, κ, κ1, ρ, σ) estimated under the

current rules and the 2005-12 sample are used to simulate the response of the 1997-98

cohort to the option of the “2.2 upgrade” and ERI. Following Fitzpatrick (2015) and

Ni et al. (2022), we focus on a sample of senior teachers with experience between

22 and 28 in 1998, totaled at 19,126.9 We reproduce the observed age-experience

distribution for takers and non-takers in Figure 3.3 from Ni et al. (2022).10 We

plot the age (left) and experience (right) distribution for takers and non-takers in

1998 (upper) and at claim date (lower). Then, in Table3.5, we report the fraction

of teachers taking the upgrade and the retirement rate across time for subgroups of

teachers with different experience in 1998. Finally, in Figure 3.4 and Table 3.6, we

repeat the above analysis for the simulated data with our model in this section and

8Since there are two waves of ERI, to avoid complexity of introducing the timing choice of ERI,
we assume (based on the data) that 64% of the population is offered ERI only in the end of school
year 1992-1993, and the remaining 36% in 1993-1994.

9This is the sample size in Ni et al. (2022). Fitzpatrick (2015) uses a different sample; for
discrepancies between these two, see Ni et al. (2022).

10The scale for the x-axis in the upper panels is changed to be the same as the lower panels.
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the parameter estimates of Table 3.3.11

Figure 3.3: Observed age-experience distribution for takers and non-takers

11That is, we use the same sample of teachers, but generate our own retirement and upgrade
decisions.
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Figure 3.4: Simulated age-experience distribution for takers and non-takers
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Table 3.5: Upgrade decision and retirement timing, observed data

exp at 98 upgrade 1998 2000 2002 2004 2006 2008 2010 2012 obs 1

22 0.83 0.01 0.03 0.06 0.12 0.21 0.32 0.75 0.90 2385
23 0.84 0.01 0.03 0.06 0.13 0.21 0.56 0.85 0.94 2430
24 0.85 0.01 0.03 0.07 0.14 0.33 0.78 0.90 0.96 2897
25 0.87 0.01 0.04 0.08 0.16 0.63 0.87 0.94 0.98 3006
26 0.89 0.01 0.05 0.10 0.25 0.83 0.92 0.96 0.99 2972
27 0.90 0.01 0.05 0.13 0.63 0.89 0.95 0.97 0.99 2599
28 0.89 0.01 0.06 0.17 0.80 0.91 0.96 0.97 0.99 2837
whole sample 0.87 0.01 0.04 0.10 0.32 0.59 0.78 0.91 0.97 19126

Table 3.6: Upgrade decision and retirement timing, simulated data

exp at 98 upgrade 1998 2000 2002 2004 2006 2008 2010 2012 obs 1

22 0.80 0.00 0.01 0.03 0.10 0.24 0.44 0.67 0.80 2385
23 0.81 0.00 0.01 0.05 0.13 0.29 0.56 0.75 0.86 2430
24 0.79 0.00 0.02 0.07 0.19 0.40 0.65 0.79 0.88 2897
25 0.80 0.01 0.03 0.11 0.25 0.55 0.74 0.85 0.91 3006
26 0.79 0.01 0.05 0.16 0.38 0.64 0.79 0.88 0.94 2972
27 0.79 0.02 0.08 0.23 0.54 0.73 0.85 0.91 0.94 2599
28 0.78 0.02 0.13 0.35 0.63 0.78 0.88 0.93 0.96 2837
whole sample 0.79 0.01 0.05 0.15 0.32 0.53 0.71 0.83 0.90 19126

Note: Payment for the “2.2 upgrade” is made one-time and half of it paid by employer,

with possible refund. ERO is not modeled.
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Figure 3.3 shows that takers and non-takers are similar in terms of their age-

experience profile in 1998. However, they separate at the time of retirement. Takers

tend to retire around age 55 with 33-34 years of experience, while the distribution of

age for non-takers at retirement is bi-modal: one at 55 and another at 60. Moreover,

non-takers likely retire with 37-38 years of experience, though the distribution of

experience of non-takers is less concentrated than takers. Table 3.5 shows that the

average upgrade rate is 87%, and it is increasing in experience in 1998. In 1998 only

1% of the sample retire, while in 2012, 97% are retired.

The simulated data (Figure 3.4 and Table 3.6) also exhibit the similarity of takers

and non-takers in 1998 and then separation at retirement. Figure 3.4 and Table

3.6 match the pattern of Figure 3.3 and Table 3.5. The out-of-sample match is not

perfect though. Since we do not include ERO and actuarial calculation in our model,

the age and experience distribution of non-takers at retirement is uni-modal: non-

takers retire around age 60 with experience 37-38. The average upgrade rate is 79%,

significantly lower than the true rate of 87%, possibly due to the assumption that we

do not allow refund and payment in installment. And the upgrade rate is decreasing

in experience in 1998, in contrast to the true pattern. Finally, the retirement rate is

also lower in our simulated data: it is only 90% in 2012, 7% lower than the observed

value. This may be due to the low upgrade rate, since takers typically retire earlier

than non-takers.

3.4.6 The effect of 2.2 upgrade: structural estimation

Finally, we construct the counterfactual without 2.2 upgrade for the 1997-98 co-

hort. The age and experience distribution is shown in Figure 3.5. We find that

without 2.2 upgrade, the distribution of age and experience will be flatter and ex-

hibits a single peak. Based on this counterfactual, we found the introduction of “2.2

upgrade” moved retirement year forward by roughly 1.3 years on average.
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Figure 3.5: Counterfactual age-experience distribution in the absence of the “2.2
upgrade” option

3.5 Concluding Remarks

We formulate a dynamic programming model of retirement with time-varying

unobserved heterogeneity. We estimate the model with data on a later cohort using

a modified three-step procedure and deep neural networks (DNN). Our structure

model fits well both in-sample and out-of-sample. The estimated model can be used

for simulating counterfactual scenarios based on historical teacher population and

analyzing hypothetical rules of future pension reforms based on the current teacher

population.
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Appendix A

Additional Results for Chapter 1

A.1 GHK for Unconditional Replacement Proba-

bilities

Denote the normal N(m,σ2) truncated at (a, b) as TN(a,b)(m,σ
2). The CDF of

standard normal is Φ(.).

The following algorithm computes the probability of replacing in period x, p(x),

for a new engine in period 0:

p(0) = 1− Φ(ε∗(0)
√

1− ρ2) = Φ(−ε∗(0)
√

1− ρ2).

1. Starting in period 0, obtain K ε0s that satisfy ε
(k)
0 < ε∗(0) by drawing from the

right truncated TN(−∞,ε∗(0))(0,
1

1−ρ2 ), k = 1, .., K.

2. For 0 < t < x, given ε
(k)
t−1 draw µ

(k)
t from TN

(−∞,ε∗(t)−ρε(k)t−1)
(0, 1), hence ε

(k)
t =

ρε
(k)
t−1 + µ

(k)
t < ε∗(t).

Note ε
(k)
t is a biased draw of the error. But the following estimate of the probability

of replacing engine in period x > 0 is unbiased:
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p(x) ≈ 1

K

K∑
k=1

[
x−1∏
t=1

Φ(ε∗(t)− ρε(k)t−1)]Φ(−ε∗(t) + ρε
(k)
x−1). (A.1)

K = 200 would generate accurate approximation.

A.2 Results with 1,000,000 Buses

Figure A.1: Results for AR(1) with ρ = 0.7, 1,000,000 buses

true 5% post median 95%

0.3 0.3000 0.3000 0.3000
3.0 2.9034 3.0086 3.1509
0.7 0.6921 0.7012 0.7116

true 5% post median 95%

0.3 0.2854 0.3007 0.3125
3.0 3.0000 3.0000 3.0000
0.7 0.6920 0.7004 0.7098

true 5% post median 95%

0.3 0.2891 0.3005 0.3157
3.0 2.9292 3.0053 3.0861
0.7 0.7000 0.7000 0.7000

true 5% post median 95%

0.3 0.2586 0.2954 0.3391
3.0 2.6888 2.9461 3.3065
0.7 0.6638 0.6949 0.7321
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Figure A.2: Results for AR(1) with ρ = 0.3, 1,000,000 buses

true 5% post median 95%

0.3 0.3000 0.3000 0.3000
3.0 2.9712 2.9944 3.0216
0.3 0.2874 0.2957 0.3041

true 5% post median 95%

0.3 0.2968 0.3006 0.3044
3.0 3.0000 3.0000 3.0000
0.3 0.2887 0.2974 0.3047

true 5% post median 95%

0.3 0.2976 0.3021 0.3074
3.0 2.9811 3.0126 3.0467
0.3 0.3000 0.3000 0.3000

true 5% post median 95%

0.3 0.2863 0.2990 0.3079
3.0 2.8902 2.9861 3.0585
0.3 0.2693 0.2931 0.3123

Figure A.3: Results for AR(1) with ρ = 0.1, 1,000,000 buses

true 5% post median 95%

0.3 0.3000 0.3000 0.3000
3.0 2.9881 2.9953 3.0037
0.1 0.0912 0.0948 0.0991

true 5% post median 95%

0.3 0.2993 0.3005 0.3015
3.0 3.0000 3.0000 3.0000
0.1 0.0923 0.0962 0.0998

true 5% post median 95%

0.3 0.2999 0.3020 0.3040
3.0 2.9962 3.0114 3.0257
0.1 0.1000 0.1000 0.1000

true 5% post median 95%

0.3 0.2767 0.2924 0.3029
3.0 2.8238 2.9393 3.0166
0.1 0.0422 0.0782 0.1022
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Figure A.4: Results for AR(1) with ρ = 0.0, 1,000,000 buses

true 5% post median 95%

0.3 0.3000 0.3000 0.3000
3.0 2.9803 2.9830 2.9861
0.0 0.0009 0.0026 0.0044

true 5% post median 95%

0.3 0.3017 0.3021 0.3025
3.0 3.0000 3.0000 3.0000
0.0 0.0061 0.0077 0.0095

true 5% post median 95%

0.3 0.2984 0.2990 0.2997
3.0 2.9702 2.9751 2.9802
0.0 0.0000 0.0000 0.0000

true 5% post median 95%

0.3 0.2992 0.3017 0.3073
3.0 2.9763 2.9978 3.0430
0.0 0.0006 0.0069 0.0208

A.3 Thresholds for car replacement problem

Recall that the threshold strategy states that we replace the car if and only if:

ε0t − ε1t < ε∗(xt)

And we only assume that the difference between error term follows a standard normal

distribution ε0t − ε1t
i.i.d.∼ N(0, 1). However, in the calculation of the expected valua-

tion, we need the joint distribution of both ε0t and ε1t. Here, we consider two extreme

cases: i) σ0t
i.i.d.∼ N(0, σ2

0 = 0.01), σ0t
i.i.d.∼ N(0, σ2

1 = 0.99) and ii) σ0t
i.i.d.∼ N(0, σ2

0 =

0.99), σ0t
i.i.d.∼ N(0, σ2

1 = 0.01). Both cases gives us ε0t − ε1t
i.i.d.∼ N(0, 1).

With two-dimensional state vector, we plot the corresponding thresholds under
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these two settings in the left panel. Red lines are for case i) and blue lines for case

ii). They overlap perfectly. The right panel shows their difference, and the range is

between −8× 10−14 ∼ 2× 10−14, so they are indistinguishable at least at magnitude

of 10−12. Hence the choice of the joint distribution does not matter, we only require

the difference between error terms to follow i.i.d. standard normal distribution. This

also justifies the simplification in the engine replacement problem in example 1-3.

Figure A.5: Thresholds for car replacement problem under two settings for error term
distribution

Note: the left panel shows the thresholds for the car replacement problem in section 1.7 for

two-dimensional state vector under these two settings: i) red lines for σ0t
i.i.d.∼ N(0, σ20 =

0.01), σ0t
i.i.d.∼ N(0, σ21 = 0.99); ii) blue lines for σ0t

i.i.d.∼ N(0, σ20 = 0.99), σ0t
i.i.d.∼ N(0, σ21 =

0.01). The right panel shows their differences, with the scale in the y-axis is ×10−14.
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A.4 Specification of DNN

Table A.1: structure of DNN for AR(1)

layer shape no. param note

input 4
hidden 1 32 160 32*4(for w) + 32*1 (for b)
hidden 2 32 1056 32*32 + 32*1
output 1 33 32*1 + 1*1

total 1249

Table A.2: hyperparameters of DNN for AR(1)

hyperparams choice

activation function relu
learning rate 0.01
optimizer adam
loss function customized
no. epochs 1000
batch size 424
package tensorflow 2.1
platform google colab
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Appendix B

Additional Results for Chapter 2

B.1 Possible Choices for Implementation

We divide the numerical procedures into four categories: 1) DP solution, 2) library

building, 3) DNN training, and 4) estimation. All of them are relevant to the deep

learning-aided approaches (i.e., algorithm 3 and 4 in chapter 1), while only 1) and

4) are relevant to the traditional method (i.e., algorithm 1 “solve to estimate”).

For each procedure, there are several options with corresponding hyper-parameters.

For example, for estimation, we need to decide whether to use maximum likelihood

estimation (MLE), Bayesian estimation, or generalized (simulated) method of moment

(GMM, SMM). And if we choose MLE, we then need to determine which method to

calculate the likelihood, initial guess of parameters, maximum number of iteration,

and tolerance for convergence.

93



Table B.1: Options for traditional and deep-learning-aided approaches to structural estimation

traditional deep-learning-aided options hyperparameters note (common choices)

DP solution yes yes näıve grid number of girds equal probability discretization
GH quadrature number of GH roots

number of grids equal space discretization
monte carlo number of MC draws

library building no yes same as solution see above
library shape size of the library

library DGP for params and states

DNN training no yes DNN structure neural network or other ML techniques
activation function relu or sigmoid
loss function MSE or some weighted average
optimization algorithm standard newton or adam
number of iteration

estimation yes yes MLE likelihood calculation GHK
discretization filter
others

error tolerance
Bayesian prior distribution

number of MCMC runs
GMM (SMM) moment conditions

choice of weighting matrix
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B.2 Library Building and DNN Training Details

Table B.2 shows the solution library for optimal retirement models. Table B.3

reports the performance of DNN with three measures. Figure B.1 plots the true

thresholds (in x-axis) against the predicted values from DNN (in y-axis) along with

45 degree line. Figure B.2 shows the true thresholds (red solid lines) for teachers with

initial age 50 and the predicted threshold (blue dashed lines) from DNN.

Table B.2: structure of the library

beta gamma kappa kappa 1 rho sigma a e t f(a, e, t)

0 0.9383 0.4805 0.8252 0.9042 0.3536 2229.598 49 10 0 -3217.5
1 0.9383 0.4805 0.8252 0.9042 0.3536 2229.598 49 10 1 -3198.26
2 0.9383 0.4805 0.8252 0.9042 0.3536 2229.598 49 10 2 -3175.25
3 0.9383 0.4805 0.8252 0.9042 0.3536 2229.598 49 10 3 -3147.83
4 0.9383 0.4805 0.8252 0.9042 0.3536 2229.598 49 10 4 -3115.26
... ... ... ... ... ... ... ... ... ... ...
20995 0.9726 0.8172 0.7357 1.0832 0.4281 2664.682 50 27 2 -32786.6
20996 0.9726 0.8172 0.7357 1.0832 0.4281 2664.682 50 27 3 -23351.5
20997 0.9726 0.8172 0.7357 1.0832 0.4281 2664.682 50 27 4 -17057.8
20998 0.9726 0.8172 0.7357 1.0832 0.4281 2664.682 50 27 5 -10094.1
20999 0.9726 0.8172 0.7357 1.0832 0.4281 2664.682 50 27 6 -7353.06

Table B.3: Training DNN with weighted sum loss

sample size weighted squared loss mean squared error mean absolute error
(×106) (×106) (×103)

train set 139565 0.0020 0.0518 0.0732
test set 46522 0.0038 0.0601 0.0806

note: the inputs are scaled to [0, 1] by max-min scaler, while the outputs are not. we use

σ = 3, 000 for the weighted squared loss.
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Figure B.1: scatter plot for true versus predicted thresholds

Figure B.2: Thresholds for teacher with initial age = 50

B.3 Discretization of AR(1) Process

Adda et al. (2003) modify the Tauchen method for discretization by assuming

equal probability over all discretized intervals under stationary distribution. Consider
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an AR(1) process

zt = ρzt−1 + εt

where Φ is standard normal cdf and εt is i.i.d. N(0, σ2).

We would like to discretize the real line into N intervals by points z1, ..., zN+1

where z1 = −∞ and zN+1 =∞. The equal probability assumption requires

Φ(
zi+1

σz
)− Φ(

zi
σz

) =
1

N

where σz = σ/
√

1− ρ2. Hence we have

zi = σzΦ
−1(

i− 1

N
)

Now, we wish to find the mean point ẑi for each interval [zi, zi+1], which is the con-

ditional expectation:

ẑi = E[zt|zt ∈ [zi, zi+1]] = σz
φ(zi/σz)− φ(zi+1/σz)

Φ(zi/σz)− Φ(zi+1/σz)
= Nσz(φ(

zi
σz

)− φ(
zi+1

σz
))

where φ is standard normal density, and the second equality is from equal probability

assumptions.

Then, the transition probability is

πij = Pr(zt ∈ [zj, zj+1]|zt−1 ∈ [zi, zi+1])

which can be written as

πij =
N√
2πσz

∫ zi+1

zi

e−u
2/(2σ2

z)[Φ(
zj+1

σ
)− Φ(

zj
σ

)]du

97



Now, we can define a Markov process ẑt taking values in Ẑ = ẑ1, ..., ẑN with

transition matrix Π = [πij]

B.3.1 From Critical Values to Retirement Probabilities

We have two methods for deriving the unconditional retirement probabilities. One

is based on GHK algorithm and detailed in the theoretical note. Here we present the

other one.

Suppose we already have the critical values f †t as well as parameters for the AR(1)

process

νt = ρνt−1 + εt

we wish to calculate the probability of retirement at year t+m wherem = 0, 1, ..., T−t.

First, for a chosen N , we discretize the process νt as detailed in Appendix A to

get discretized points ν̂ and transition matrix Π. Second, we find the index of the

smallest ν̂ which is greater than or equal to −f †t+m:

ît+m = inf
i
{ν̂i|ν̂i ≥ −f †t+m}

Then the probability of retiring at period t+m is

Pr(f †t > −νt, ..., f
†
t+m−1 > −νt+m−1, f

†
t+m ≤ −νt+m)

i.e.,

Pr(νt > −f †t , ..., νt+m−1 > −f
†
t+m−1, νt+m ≤ −f

†
t+m)

which can be approximated by

Pr(ν̂t > −f †t , ..., ν̂t+m−1 > −f
†
t+m−1, ν̂t+m ≤ −f

†
t+m)
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shorthand the diagonal matrix where first ît+m values are 1 and the left are 0 as

diag(̂it+m) = diag({
ît+m times︷ ︸︸ ︷
1, 1..., 1 , 0, .., 0})

and denote the stationary probability as

πt = [
1

N
,

1

N
, ...,

1

N
]′

which is also the initial distribution of ν. then at time t + m, the unconditional

retiring probability is

Pr(retire at t+m) = sum{diag(̂it+m)πt+m}

where I denotes the identity matrix, and the distribution evolves as

πt+m+1 = Π′[I − diag(̂it+m)]πt+m

the probability of not retiring at the last observable period is

Pr(not retire at T ) = sum{[I − diag(̂iT )]πT}
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Appendix C

Additional Results for Chapter 3

C.1 Additional Descriptive Tables

Table C.1: Claim types of retired teachers

Claim Type Numbers of teachers

Regular 2.2 7496
2.2 ERO Member Pay 2082
2.2 ERO Employer Pay 1205
Normal - Actuarial calculation 830
1 2/3% Formula - Graduated 419
Rule of 85 - 2.2 69
Regular 2.2 - Disability 36
35% of Last Salary - No Max 24
ERO Member Pay 5
Rule of 85 - Formula 4
Rule of 85 - Actuarial 3
ERO Employer Pay 2
Age Type Formula Calculation 2

Total 12177

Note: Retirement Claims by teachers. Total sample number = 27299. The number of
officially recorded retired claims is different from our calculation of retired teachers, since
they were recorded as of Feb 2014.
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C.2 SMM Results

C.2.1 SMM Estimation

Denote the observed count for teachers retired in year t with initial age and expe-

rience (a, e) as c(a,e)(t) for t = 0, 1, ..., T , and those not retired as c(a,e)(T + 1). They

sum up to the total number of teachers with the same initial age and experience (a, e):

T∑
t=0

c(a,e)(t) + c(a,e)(T + 1) = C(a,e)

For a set of parameters, θ = (β, γ, κ, κ1, ρ, σ), we calculate the thresholds either

through DP or SW. Suppose we proceed with DP thresholds ν∗a,e(t; θ), where we add

θ to emphasis its dependence on the choice of parameters. Next, we simulate exactly

C(a,e) AR(1) sequences with parameter ρ and σ for teachers with initial age and

experience (a, e). Comparing the realization of preference shocks with the thresholds

ν∗(a,e)(t; θ), we obtain the retirement status and timing for each teacher. Summing

them up to derive the simulated count for ĉa,e(t; θ) and ĉ(a,e)(T + 1; θ). We repeat for

all (a, e) combinations and get a full simulated sample. The objective function is a

distance metric of the simulated counts and observed counts:

J(θ) =
∑
(a,e)

T+1∑
t=0

[ĉ(a,e)(t; θ)− c(a,e)(t)]2

And we wish to find θ to minimize such distance.

C.2.2 Correction for Measurement Error

The experience credited for retirement of a teacher increases by one at the end of

the AY (say July 1) for all. Age for retirement accounting depends on the birth date.
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When birth year is observed but birth date is unavailable to researchers.

We denote the values by the age and experience in the initial period, (a, e). y(a,e)(t)

is the salary of teacher in year t with (a, e) in the initial year 0 (hence with age a+ t

and experience e+ t in year t.

The age relevant for pension benefit is conditioning on the unobserved birth month

index M , M = 0 : 1 ≤ month ≤ 12. We assume that if an TRS teacher has a birthday

with M = 1 : 7 ≤ month ≤ 12) she can count an additional year in age.

The year t value of pension wealth of a teachers with (a, e) isW(a,e)(t) =
∑T

s=tG(a+

s, a+s+1)βs−t(B(a,e)(s, t))
γ. where B(a,e)(s, t) is the year-t value of annual retirement

benefit received in year s by the teacher with initial (a, e) retired in year t.

So the pension benefit for retiring in current year is

W(a,e)(t) if M = 0 : 1 ≤ month ≤ 6;

W(a+1,e)(t) if M = 1 : 7 ≤ month ≤ 12.

The Dynamic Programming Problem

The utility function for period t is [(κty(a,e)(t))
γ + νt], where κt = κ( 60

a+t
)κ1 is

an age-dependent parameter of leisure, with 0 < κ ≤ 1 during working years and

captures the disutility of working. The unobserved innovations in preferences are

AR(1): νt = ρνt−1 + εt. We assume εt is iid N(0, σ2).

The DP problem with accurately measured age and experience is as follows:

The value function of current teacher with preference error νt is V(a,e)(t, νt), is

V(a,e)(t, νt) = max{U(a,e)(t, νt) + νt, W(a,e)(t)}

where U(a,e)(t, νt) is the expected value function of continuing teaching:

U(a,e)(t, νt) = [κty(a,e)(t)]
γ + βG(a+ t, a+ t+ 1)IEεV(a,e)(t+ 1, νt+1). (C.1)
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The teacher chooses to retire when νt < ν∗ where V(a,e)(t, ν
∗) = W(a,e)(t); i.e.,

U(a,e)(t, ν
∗) + ν∗ ≤ W(a,e)(t). The threshold of preference ν∗ depends on (a, e, t) and

we make the dependence explicit by denoting as ν∗(a, e, t).

With uniformly distributed birthdays the probability of the unobserved index

M = 0 is 0.5 and probability of M = 1 is 0.5. The threshold for a teacher (a, e,M)

in t is ν(M,a, e, t), with ν(M = 0, a, e, t) = ν∗(a, e, t), and ν(M = 1, a, e, t) = ν∗(a+

1, e, t). The likely case is that as the teacher nearing eligibility for retirement ν(M =

0, a, e, t) > ν(M = 1, a, e, t), i.e., a teachers with birthday M = 1 is likely to retire

earlier because an extra year in age pushes her over the eligibility line she is more

likely to retire with a given preference error νt. A teacher with a given initial (a, e)

and not retiring in t may be because of a high νt or M = 0.

Table C.2: SMM parameter estimation results

model SW DP SW DP
with ME with ME

β 0.9648 0.9452 0.9681 0.9330
γ 0.6558 0.7773 0.6918 0.8242
κ 0.6515 0.2789 0.5800 0.4542
κ1 1.0673 1.0269 1.0688 1.0615
ρ 0.3446 0.3129 0.3263 0.3115
σ 3224.0553 2950.8957 3597.4202 3934.2339

Note: SW means Stock Wise, DP means Dynamic Programming. with ME means with
correction for measurement error in age.
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Figure C.1: The in-sample goodness of fit for SW with SMM (corrected for measure-
ment error)

Note: the upper panel plots the survival rate. The middle panels plot the marginal distri-
bution of age (left) and experience (right) of retired teachers (at the time of retirement).
We use red solid line for the observed data and blue dashed lines for the predicted data with
estimated parameters. The lower panels plot the joint distribution of age and experience of
retired teachers (at the time of retirement), where the red lines in the left is for the observed
data and the blue lines in the right for the predicted data.
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Figure C.2: The in-sample goodness of fit for DP with SMM (corrected for measure-
ment error)

Note: the upper panel plots the survival rate. The middle panels plot the marginal distri-
bution of age (left) and experience (right) of retired teachers (at the time of retirement).
We use red solid line for the observed data and blue dashed lines for the predicted data with
estimated parameters. The lower panels plot the joint distribution of age and experience of
retired teachers (at the time of retirement), where the red lines in the left is for the observed
data and the blue lines in the right for the predicted data.
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C.3 Willingness-to-pay for Simple Pension Enhance-

ment

Consider a small increase of δ to the annual pension benefit for a teacher with

initial (a, e) and retiring in year t (By “small”, we mean such increase does not change

her retirement behavior). That is, for each year s = t, ...T , the benefit changes from

B(a,e)(s, t) to B(a,e)(s, t) + δ. The increase in year t monetary value pension wealth is

∆PW(a,e)(t) =
T∑
s=t

G(a+ s, a+ s+ 1)βs−t(B(a,e)(s, t) + δ)

−
T∑
s=t

G(a+ s, a+ s+ 1)βs−t(B(a,e)(s, t))

= δ
T∑
s=t

G(a+ s, a+ s+ 1)βs−t.

And the increase in the year t subjective value of pension wealth (discounted utility

from pension) is

∆W(a,e)(t) =
T∑
s=t

G(a+ s, a+ s+ 1)βs−t(B(a,e)(s, t) + δ)γ

−
T∑
s=t

G(a+ s, a+ s+ 1)βs−t(B(a,e)(s, t))
γ

=
T∑
s=t

G(a+ s, a+ s+ 1)βs−t[(B(a,e)(s, t) + δ)γ − (B(a,e)(s, t))
γ].

Now, fix ν = ν∗t , the threshold value for period t, we would like to calculate a one-time

payment which equates the change in the discounted utility of future pension benefits

and the change in current salary:

−∆U(a,e)(t, ν
∗
t ) + ν∗t = ∆W(a,e)(t).
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that is, the maximum amount the teacher is willing to pay for such pension enhance-

ment. Assume the teacher would retire at t given ν∗t , we have:

[κty(a,e)(t)]
γ − [κty(a,e)(t)−∆y(a,e)(t)]

γ = ∆W(a,e)(t).

from which we can solve for ∆y(a,e)(t).
1 Then the WTP estimate is

WTP(a,e)(t) =
∆y(a,e)(t)

∆PW(a,e)(t)

Table C.3: WTP estimates for a female teacher with a = 55, e = 28

year t δ = 1 δ = 10 δ = 100

0 0.9580 0.9522 0.9486
1 0.9490 0.9432 0.9397
2 0.9404 0.9345 0.9311
3 0.9249 0.9189 0.9155
4 0.9169 0.9109 0.9076
5 0.9094 0.9032 0.9000
6 0.9019 0.8957 0.8926
7 0.8969 0.8906 0.8874
8 0.8931 0.8866 0.8836
9 0.8898 0.8834 0.8803

10 0.8874 0.8808 0.8777

Note: assume retiring under the 2.2 formula and ERO paid by the employer.

Using the estimated parameters for DP model with measurement error, we cal-

culate the WTP for a female teacher with a = 55, e = 28 for different enhancement

in pension benefit (δ = 1, 10, 100) and report them in Table 3.5. The WTPs are

around 0.9, decreases as the teacher getting older, and decreases when we increase

the amount of enhancement due to the curvature of the utility function.2

1Note that the payment term ∆y(a,e)(t) is not multiplied by the disutility of teaching, κt. other-
wise, the WTP is greater than one due to consumption smoothing incentives.

2We also experiment for some other teachers, and the WTP estimates are also close to 0.9.
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