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ABSTRACT

As more and more data are available, data synthesis has become an indispensable

task for researchers. From a Bayesian perspective, this dissertation includes three

related projects and aims at quantifying the benefits of combining data under various

scenarios in terms of the theoretical properties including biases, frequentist variances,

and mean squared errors.

In the first project, data combining of linear models with the classical mixtures

of g-priors is investigated. We calculate and compare the posterior estimates and the

frequentist properties of the Bayesian estimator from the model with individual and

combined data.

To resolve the newly identified conditional Lindley paradox and relax constraints

on design matrix, data combining with independent mixtures of g-prior is explored,

where a different scale is used for each group of coefficients. We not only perform

a posterior variance analysis, but also offer a conditional asymptotic analysis of the

Bayesian estimators. We also apply the corresponding results in the comparison

of models for individual and combined data. Furthermore, to reflect how the use

of sample size impact the estimates in a data combining context, we compare the

Zellner-Siow prior to its adjustment with the effective sample size.

At last, an application on data combining of the 2016 county-level female breast

cancer prevalence is presented using data from the Missouri Cancer Registry and

Research Center, and the Missouri County-level Study. To provide a broader scope

of the data combining framework, we study the linear mixed model and generalized

linear mixed model with a conditional autoregressive prior serving as random effects.

xi



Chapter 1

Introduction

1.1 Research on Data Combining Strategies

Even though a lot of data are available for analysis in the big data era, complex issues

inherited from the data availability, collection and preparation still exist. Combining

data from multiple data sources is a challenge for researchers in many fields. In

general, combining data is carried out through either a direct linkage of databases or

statistical methods (Chen et al., 2020; Thomsen and Holmøy, 1998). For the first,

it is not frequently conducted by researchers due to discrepancies in case definitions,

data qualities, data availabilities, data sharing regulations, etc. Therefore, a large

number of statistical methods are developed to combine data according to available

data sources and potential research questions.

One of the most popular data syntheses tool is meta-analysis (Brockwell and Gor-

don, 2001; Burke et al., 2017; Jackson et al., 2011; Riley et al., 2007, 2008) and a

1



typical task is the inference for an overall effect or quantifying variabilities within

or across multiple data sources. It has widespread applications in many fields in-

cluding clinical trails (Moreno et al., 2018; Verde et al., 2016), psychology (Williams

et al., 2018), medical science (Jahan et al., 2020; Lin and Chu, 2018), etc. Bayesian

meta-analysis receives tremendous attention due to its sound performance in some

challenging situations such as a small heterogeneity across studies (Chung et al., 2013;

Hong et al., 2021) and incomplete outcomes from some data sources (Wei and Hig-

gins, 2013). When the primary focus is comparing multiple treatments, Bayesian

network is more frequently used since it integrates direct evidence such as data from

arm-based method and indirect evidence such as contrast-based method (Li et al.,

2021; Siegel et al., 2020; Zhang et al., 2014).

Besides meta-analysis framework, other data combining methods have also been

developed to suit different practical considerations. A common method to combine

models is model averaging, which aims at combining different distributions and offer-

ing better model selection and prediction (Fragoso et al., 2018; Hoeting et al., 1999;

Yuan and Yang, 2005). When the major difficulty lies in a small sample size, one

may incorporate information using a larger data set such as the administrative data

to obtain a reasonable weight to improve the estimation. The small area estimation

techique (Mercer et al., 2014; Pfeffermann et al., 2013) is a common method to deal

with such situation. Additionally, Jackson et al. (2009) studied the Bayesian graphi-

cal model and imputed missing covariates utilizing other data sources. Zellner (1962)

combined seemingly unrelated linear regression models with correlated random errors,

and studied general properties of the estimates from a frequentist perspective.

This dissertation intends to generalize the classical model in Zellner (1962) from a

2



Bayesian perspective. Compared with their unrelated regressions, we allow different

regression models to share common covariates and model specific covariates with a

simpler random error assumption. Our framework describes a common situation,

where some covariates are available to all data sources while some covariates are only

available to some sources. Instead of turning to imputation for covariates that are

not collected for some sources, we focus on a direct synthesis of available data in

its original form. Besides, we target at quantifying the differences in the Bayesian

estimators between using the individual data and combined data.

1.2 Research on Prior Specifications

Prior specification plays a key role in the Bayesian framework. This can be greatly

reflected in the context of data combining due to the flexibility in prior constructions.

For example, one can employ the informative prior eliciting from external data sources

or special structure assumptions among multiple outcomes (Bujkiewicz et al., 2016,

2013; Wei and Higgins, 2013). Alternatively, to avoid the subjectivity in prior speci-

fication, one may specify non-informative prior such as reference prior (Bodnar et al.,

2017). Hurtado Rúa et al. (2015) investigated how the choice of prior distributions

impact estimates for coefficients and covariates through extensive simulation studies

under the multivariate Bayesian meta-analysis framework. Despite the informative or

non-informative version of prior, it is without doubt that a multivariate normal prior,

conditional on other parameters, is one of the most used priors for regression coeffi-

cients in a linear model for its simple structure and efficient computation regarding

posterior distributions.

3



One classical option is the G-prior or mixtures of g-prior, which is frequently

known for its desirable model selection properties. G-prior or Zellner’s g-prior refers

to Goel and Zellner (1986), where they calculated the corresponding sampling distri-

butions for the Bayesian estimator along with Bayes factor. Due to its convenience in

obtaining a closed form of marginal likelihood and Bayes factor, many literature put

efforts in finding a suitable value for the scale parameter so that some classical model

selection criteria can be met (George, 2000; Kass and Wasserman, 1995). Mixtures of

g-prior refers to the case where the scale parameter in g-prior is considered random

rather than fixed. The earlist work is Zellner and Siow (1980) and they proposed to

employ an inverse gamma distribution for g, which is equivalent to marginally apply-

ing a Cauchy prior for coefficients. Later on, many variants have been developed and

one of the most influential work is Liang et al. (2008). Besides the Bartlett-Lindley

paradox associated with a fixed choice of g, they proved that Zellner’s g-prior may

lead to information paradox. Specifically, they proposed hyper-g prior as a solution,

and showed that both hyper-g prior and Zellner-Siow prior are not only free from the

information paradox but also hold other desired model selection properties. However,

to the best of our knowledge, rare literature explores the g-prior and mixtures of g-

prior from the estimation perspective except its connection with ridge regression and

its comparison with least squares estimates. Therefore, we not only intend to bring

the g-prior or the mixtures of g-prior into the estimation scope but also compare its

related properties between the individual and combined data.

4



1.3 Proposed Data Combining Framework

This section describes the model and notations throughout the dissertation unless

stated otherwise.

1.3.1 Model Specification

In this section, models for the individual and combined data are specified. Notice that,

although only two data sources are considered in the formal analysis, our framework

and theoretical results can be extended to multiple data sources. Let yi be a ni-

dimension vector of observations in Source i, i = 1, 2, and assume that the model for

an individual data source i, denoted as Mi, is defined as:

yi = X0iβ0 +Xiβi + εi, (1.1)

where εi ∼ Nni(0, σ
2Ini), σ2 is the common error variance, β0 ∈ IRp0 and βi ∈ IRpi

are vectors of unknown regression coefficients, and X0i with dimension ni × p0 and

Xi with dimension ni × pi are the corresponding design matrices. For the combined

data from Sources 1 and 2, the model, denoted as Mc, is defined as:

y1
y2

 =

X01

X02

β0 +

X1 0

0 X2


β1

β2

+

ε1
ε2

 , (1.2)

where yi,X0i,Xi,βi, and εi are defined the same as Source i. Thus, β0 is common

regression coefficient shared and collected by two sources and βi is the Source i specific

coefficient.

5



1.3.2 Notations

For simplicity, we use the following notations for regression coefficients and design

matrices in Mi and Mc.

• β0 = (β01, · · · , β0p0)′ denotes common coefficients;

• βi = (βi1, · · · , βipi)′ denotes Source i specific coefficients;

• X̃i = (X0i Xi) denotes the design matrix in Mi;

• β̃i = (β′0,β
′
i)
′ of dimension pI = p0 + pi denotes all the regression coefficients in

Mi;

• β̃Bi denotes the posterior mean for β̃i in Mi;

• y = (y′1,y
′
2)
′ is a nT -dimension vector of the observations in Mc with nT =

n1 + n2;

• β̃ = (β′0,β
′
1,β

′
2)
′ of dimension pT = p0 + p1 + p2 denotes all the regression

coefficients in Mc;

• β̃B denotes the posterior mean for β̃ in Mc;

• X0 = (X ′01,X
′
02)
′ denotes the design matrix for β0 in Mc;

• X̃ =

X01 X1 0

X02 0 X2

 denotes all the design matrices in Mc.

• X̃ = (X0, diag(X1,X2)), where diag is a diagonal operator, denotes all the

design matrices in Mc.
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1.3.3 Overview of Chapter 2

With Mi and Mc in Section 1.3.1, first, we adopt Zellner g-prior and a classical

mixtures of g-prior, Zellner-Siow (ZS) prior (Zellner and Siow, 1980), and examine the

posterior distributions together with frequentist properties of the Bayesian estimator.

Second, we theoretically compare posterior variances and frequentist properties of

the Bayesian estimator from Mi and Mc. Third, we evaluate reasonability of Mc

compared with golden standard, where data could be fully observed through extensive

simulation studies. At last, we conduct simulation studies and real data analysis to

offer an overall relative performance of Mi and Mc.

1.3.4 Overview of Chapter 3

This chapter considers a more flexible version of Zellner’s g-prior and ZS prior. Specif-

ically, the prior is applied to each parameter βi independently rather than β̃i or β̃.

This specification releases the full rank assumption on the whole design matrix in

Chapter 2 and accommodates different shrinkage for different parameters. It also

avoids the newly defined conditional information paradox. With independent version

of Zellner’s g-prior and ZS prior, we formally investigate posterior distributions and

frequentist properties of the Bayesian estimator, and compare their performances un-

der Mi and Mc. To enhance the frequentist properties of the Bayesian estimator, we

further incorporate the effective sample size (TESS) (Berger et al., 2014) in the prior.

We close this chapter by extensive simulation studies and one real data example to

evaluate the relative performance of the Bayesian estimator from the data combining

perspective.
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1.3.5 Overview of Chapter 4

Mi and Mc provide a fundamental framework of data combining with original data.

We may need to model more sophisticated issues in practice. For example, the vari-

ability in different data sources may differ, and random effects may exist. It is also

common to have counts as outcomes. To demonstrate and explore the potential of

our data combining framework, we focus on an application on the prevalence of fe-

male breast cancer using data from the Missouri Cancer Registry and 2016 Missouri

County-level Study. We incorporate spatial effects as random effects and investigate

data combining strategies under various assumptions. The corresponding data anal-

yses are carried out in both linear model and generalized linear model. We conclude

with comments on their relative performances.
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Chapter 2

Standard Mixtures of G-Priors

2.1 Introduction

Over the last century, the linear model has been by far the most popular and ap-

pealing statistical model in both the frequentist and Bayesian literature. The use

of Bayesian approaches, which combine information from the data likelihood with

reasonable prior distributions placed on the unknown model parameters to carry out

inference, is a valuable direction taken to broaden the linear model. Consider a linear

regression problem Y ∼ N(Xβ, σ2In), and suppose there is some information about

the regression coefficients and little information about the σ2. A normal conjugate

prior is naturally of interest for computational tractability, and one popular option is

the g-prior deduced by Goel and Zellner (1986) with β ∼ N(β0, σ
2g(X ′X)−1), where

g is a scale parameter and can be considered either known or unknown.

Zellner’s g-prior and Zellner-Siow prior have received tremendous attention in
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model selection and many variants have been developed. One of the most influential

works is Liang et al. (2008). They proposed hyper-g-prior and examined mixtures of

g-prior, Zellner’s g-prior and empirical g-prior by evaluating some desirable theoret-

ical properties in model selection such as model selection consistency and prediction

consistency. They proved that these properties are reserved only when a random

g is adopted. Maruyama and George (2011) investigated Bayes factor by general-

izing Zellner’s g-prior in high-dimensional setting and utilized a Pearson Type VI

distribution for the hyperparameter g including Cui and George (2008) and Liang

et al. (2008) as special cases. Zhang et al. (2016) extended Zellner’s g-prior to a

two-component g-prior by introducing a tuning parameter and enabled a different es-

timate for each coefficient. Li and Clyde (2018) further explored mixtures of g-prior

in the generalized linear model and proposed confluent hypergeometric prior on g to

ensure the asymptotic consistency in terms of model selection and Bayesian model

average (BMA) estimation.

However, g-prior has been less studied from the estimation perspective since Goel

and Zellner (1986). Agliari and Parisetti (1988) derived A-g reference informative

prior to incorporate prior knowledge of different independent variables by replacingX

withAX in g-prior, whereA is a diagonal matrix with non-negative elements. Sparks

et al. (2015) examined g-priors, including the empirical model in George (2000), the

hyper g-prior in Liang et al. (2008) and the classical Zellner-Siow prior, and provided

the corresponding necessary and sufficient conditions for posterior consistency under

certain defined sequences. Beyond the parametric framework model, in an analogy

to Zellner’s g-prior, Zhang et al. (2009) introduced Silverman’s g-prior (Silverman,

1985) to capture the regularization in kernel supervised learning methods and studied
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the posterior consistency under the corresponding Bayesian model. In addition, it is

well noticed that g-prior is connected to the ridge regression, whose penalty term is

L2 norm, and offers shrinkage estimation for coefficients compared with least squares

estimates. Shrinkage estimation generally offers many good properties such as smaller

sampling variance and mean squared error compared with the least squares estimate.

Therefore, it is interesting to consider the classic shrinkage prior (Berger et al., 2005)

and evaluate its behaviors in our data combining context.

This chapter mainly researches on the classical Zellner’s g-prior, Zellner-Siow (ZS)

prior and shrinkage prior from the estimation perspective, with a particular empha-

sis on their relative performances in Mi and Mc. The remainder of this chapter is

organized as follows. In Section 2.2, we study Zellner’s g-prior in two cases according

to whether σ2 is known or unknown. The sufficient and necessary conditions are es-

tablished for smaller posterior variances in Mc compared with Mi. In Section 2.3, we

focus on ZS prior and performed analyses on posterior variance and frequentist prop-

erties of the Bayesian estimator. In Section 2.3.3, we conduct extensive simulation

studies including sensitivity analysis of Mc compared to the golden data-combining

standard and comparison between Mi and Mc based on some frequentist properties

and posterior variances. Finally, we discuss some key findings as well as some issues

related to g-prior and potential future works.

2.2 Conventional G-priors

Conventional g-prior refers to the situation, where the scale parameter g is known, and

this section focuses on its application in Mi and Mc. We begin with the standard g-
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prior by Goel and Zellner (1986) in Section 2.2.1, where both the scale parameter and

σ2 are known. Then, with the scale parameter fixed, we consider σ2 to be unknown

for a practical consideration in 2.2.2.

2.2.1 Case 1. Known (σ2, g)

Priors, posterior distributions and some frequentist properties of regression coeffi-

cients for Mi and Mc are given in Facts 2.1 and 2.2, respectively.

Fact 2.1. For Mi in (1.1), assume the joint conventional g prior for β̃i is:

β̃i|σ2, gi ∼ NpI (0, σ
2gi(X̃

′
iX̃i)

−1), i = 1, 2. (2.1)

(a) The posterior distribution for (β̃i|σ2, gi,yi,Mi) is NpI (β̃
B
i ,Σ

B
i ), where

β̃Bi =
gi

1 + gi
(X̃ ′iX̃i)

−1X̃iyi and ΣB
i =

giσ
2

1 + gi
(X̃ ′iX̃i)

−1. (2.2)

(b) The posterior variances for β0 and βi are:

V AR(β0|σ2, gi,yi,Mi) =
giσ

2

1 + gi
[X

′

0i(Ini − Pi)X0i]
−1,

V AR(βi|σ2, gi,yi,Mi) =
giσ

2

1 + gi
{(X ′

iXi)
−1

+ (X
′

iXi)
−1X

′

iX0i[X
′

0i(Ini − Pi)X0i]
−1X

′

0iXi(X
′

iXi)
−1},

where Pi = Xi(X
′
iXi)

−1X ′i. Notice that [X
′
0i(Ini − Pi)X0i]

−1 exists since

(X̃ ′iX̃i)
−1 exists.
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(c) The frequentist distribution for the Bayesian estimator β̃Bi is NpI (mi,Vi), where

mi =
gi

1 + gi
β̃i and Vi = (

gi
1 + gi

)2σ2(X̃ ′iX̃i)
−1. (2.3)

Fact 2.2. For Mc in (1.2), assume the dependent conventional g-prior for β̃,

β̃|σ2, g ∼ NpT (0, σ2g(X̃ ′X̃)−1). (2.4)

(a) The posterior distribution for β̃ is NpT (β̃B,ΣB), where

β̃B =
g

1 + g
(X̃ ′X̃)−1X̃ ′y and ΣB =

gσ2

1 + g
(X̃ ′X̃)−1. (2.5)

(b) The posterior variance for β0,β1 and β2 are:

V AR(β0|σ2, g,y,Mc) =
gσ2

1 + g
{X ′

01(In1 − P1)X01 +X
′

02(In2 − P2)X02}−1,

V AR(β1|σ2, g,y,Mc) =
gσ2

1 + g
{(X ′

1X1)
−1 + (X

′

1X1)
−1X

′

1X01[X
′

01(In1 − P1)X01

+X
′

02(In2 − P2)X02]
−1X

′

01X1(X
′

1X1)
−1},

V AR(β2|σ2, g,y,Mc) =
gσ2

1 + g
{(X ′

2X2)
−1 + (X

′

2X2)
−1X

′

2X02[X
′

01(In1 − P1)X01

+X
′

02(In2 − P2)X02]
−1X

′

02X2(X
′

2X2)
−1}.

(c) The frequentist distribution for the Bayesian estimator β̃B is NpT (m,V ), where

m =
g

1 + g
β̃ and V = (

g

1 + g
)2σ2(X̃ ′X̃)−1.
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Let Mi and Mc indicate the estimates obtained from Source i and combined data.

Theorem 2.1. Consider Mi in (1.1) with conventional g-prior in (2.1), Mc in (1.2)

with conventional g-prior in (2.4), and Ai = X ′0i(Ini −Pi)X0i, Bj = (Inj −Pj)X0j,

Qi = (X ′iXi)
−1X ′iX0i,Mi = [(X ′iXi)

−1+QiA
−1
i Q

′
i] ∈ IRpi×pi, N = QiA

−1
i B

′
j[Inj +

BjA
−1
i B

′
j]
−1BjA

−1
i Q

′
i ∈ IRpi×pi, where i or j indicates data from Source (i) or (j),

and i, j = 1, 2 with i+ j = 3.

(a) The comparison of posterior variances in Mi and Mc for β0 is:

V AR(β0|σ2, g,y,Mc)− V AR(β0|σ2, gi,yi,Mi) ≤ 0

if and only if

1− gi(1 + g)

g(1 + gi)
≤ λ1

1 + λ1
, (2.6)

where λ1 is the smallest eigenvalue of BjA
−1
i B

′
j. Since BjA

−1
i B

′
j depends on

the rank of Bj, λ1 = 0 if and only if Bj is not of full column rank.

(b) The comparison of posterior variances in Mi and Mc for βi is:

V AR(βi|σ2, g,y,Mc)− V AR(βi|, σ2, gi,yi,Mi) ≤ 0

if and only if

1− gi(1 + g)

g(1 + gi)
≤ λmin(M

− 1
2

i NM
− 1

2
i ) ∈ [0, 1). (2.7)

Proof. See Appendix A.1.1.
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Theorem 2.1 gives the necessary and sufficient condition whereMc offers a smaller

posterior variance. In fact, the conditions in Theorem 2.1 can be easily verified

and achieved. We would present several special cases for a demonstrative purpose

according to different choices of gi or g as well as the design matrix.

Example 1: Since we assume gi and g are known and need to be chosen, with no

further information available, we may set gi = g = c for a non-informative purpose,

where c is a relatively large number. According to conditions in (2.6) and (2.7), in

such setting, Mc generates a smaller posterior variance for β0 and βi. As an extreme,

if we let c → ∞, β̃Bi and β̃B reduce to the least squares estimate of β̃i and β̃.

This theorem shows that, for least squares estimates, combining the data is always

beneficial for providing estimates with better precision.

Example 2: When X ′iX0i = 0pi×p0 or pi > p0,Mi and N are not of full rank,

λmin(M
− 1

2
i NM

− 1
2

i ) = 0,

V AR(βi|σ2, g,y,Mc)− V AR(βi|σ2, gi,yi,Mi) ≤ 0,

if and only if

g ≤ gi.

This indicates that when the design matrix for common and specific regression coeffi-

cients are orthogonal or when the dimension of specific regression coefficient is larger

than that for common, gi ≥ g is a sufficient and necessary condition to achieve a

smaller posterior variance in Mc.

Example 3: At last, we consider X0i = 1ni , where we only allow two data

sources to share the same intercept. Since 1′ni(Ini −Pi)1ni = ni − si, where si is the
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summation of all elements in Pi, we have the following.

1. For Mi,

V AR(β0|σ2, gi,yi,Mi) =
gi

1 + gi
σ2(ni − si)−1,

V AR(βi|σ2, gi,yi,Mi) =
gi

1 + gi
σ2[(X ′iXi)

−1+

(ni − si)−1(X ′iXi)
−1X ′iJniXi(X

′
iXi)

−1].

For Mc,

V AR(β0|σ2, g,y,Mc) =
g

1 + g
σ2(n1 − s1 + n2 − s2)−1,

V AR(β1|σ2, g,y,Mc) =
g

1 + g
σ2[(X ′1X1)

−1+

(n1 − s1 + n2 − s2)−1(X ′1X1)
−1X ′1Jn1X1(X

′
1X1)

−1],

V AR(β2|σ2, g,y,Mc) =
g

1 + g
σ2[(X ′2X2)

−1+

(n1 − s1 + n2 − s2)−1(X ′2X2)
−1X ′2Jn2X2(X

′
2X2)

−1].

2. (a) For common regression coefficients,

V AR(β0|σ2, g,y,Mc)− V AR(β0|σ2, gi,yi,Mi) ≤ 0

if and only if
gi(1 + g)

g(1 + gi)
≥ ni − si
n1 − s1 + n2 − s2

.

(b) For specific regression coefficients, when X ′i1ni = 0 or pi > p0 = 1,

V AR(βi|σ2, g,y,Mc)− V AR(βi|σ2, gi,yi,Mi) ≤ 0
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is equivalent to

g ≤ gi.

When X ′i1ni 6= 0 and pi = p0 = 1, Xi will reduce to a vector xi of

dimension ni and Qi will reduce to a real number qi. Here,

V AR(βi|σ2, g,y,Mc)− V AR(βi|σ2, gi,yi,Mi) ≤ 0

is equivalent to

1− gi(1 + g)

g(1 + gi)
≤ [(ni − si)−1 − (n1 − s1 + n2 − s2)−1]q2i

(x′ixi)
−1 + (ni − si)−1q2i

∈ (0, 1).

Remark 2.1. According to Facts 2.1-2.2, given gi and g, the frequentist variance and

posterior variance for β̃Bi and β̃B are related through

Vi =
gi

1 + gi
ΣB
i and V =

g

1 + g
ΣB.

Hence, the comparison of posterior variance in Theorem 2.1 can be applied to fre-

quentist variances and we only need to replace gi(1 + g)/[g(gi + 1)] in Theorem 2.1

with g2i (1 + g)2/[g2(gi + 1)2].

Remark 2.2. If β0,βi is estimated jointly, combining data have better estimates in

terms of a smaller covariance matrix.

Proof. See Appendix A.1.2.
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2.2.2 Unknown σ2 and Known g

Case 1 studies the ideal situation where both σ2 and g are known, which is unlikely in

practice. Hence, with the conventional g-priors for regression coefficients in equations

(2.1) and (2.4), we further assume σ2 is unknown and a Jeffrey prior is utilized:

π(σ2) ∝ 1/σ2. (2.8)

Then, posterior distributions for βi and frequentist properties of Bayesian estimators

for Mi and Mc are given in Facts 2.3 and 2.4, respectively.

Fact 2.3. For Mi in (1.1), with priors in (2.1) and (2.8), we have:

(a) The posterior distribution of β̃i is t-distribution with tni(β̃Bi ,ΣB
i ), where

β̃Bi =
gi

gi + 1
(X̃i

′
X̃i)

−1X̃i
′
yi and ΣB

i =
y′i(Ini − P̃i)yi
ni(

1
gi

+ 1)
(X̃i

′
X̃i)

−1, (2.9)

where P̃i = X̃i(X̃i
′
X̃i)

−1X̃i
′
and the posterior covariance is niΣB

i /(ni − 2).

(b) The frequentist distribution for β̃Bi is NpI (mi,Vi), where

mi =
gi

1 + gi
β̃i and Vi =

( giσ

1 + gi

)2
(X̃i

′
X̃i)

−1.

Proof. See Appendix A.1.3.

Fact 2.4. For Mc in (1.2), with priors in (2.4) and (2.8), we have:

(a) The posterior distribution of β̃ is t-distribution with tnT (β̃B,ΣB), where

β̃B =
g

g + 1
(X̃ ′X̃)−1X̃ ′y and ΣB =

y′(InT − P̃ )y

nT (1
g

+ 1)
(X̃ ′X̃)−1. (2.10)
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where P̃ = X̃(X̃ ′X̃)−1X̃ ′ and the posterior covariance is nTΣB/(nT − 2).

(b) The frequentist distribution for β̃B is NpT (m,V ), where

m =
g

1 + g
β̃ and V =

(
gσ

1 + g

)2

(X̃ ′X̃)−1.

With the same notations as Theorem 2.1, the comparison of posterior variances

for regression coefficients between Mi and Mc is as below.

Theorem 2.2. For Mi in (1.1) with priors (2.1) and (2.8), and Mc in (1.2) with

priors (2.4) and (2.8), let

ai =
y′i(Ini − PX̃i

)yi

(ni − 2)(g−1i + 1)
, and a =

y′(InT − PX̃)y

(nT − 2)(g−1 + 1)
.

1. For the shared regression coefficients β0,

(a) If 1− ai
a
< 0,

V AR(β0|g,y,Mc)− V AR(β0|gi,yi,Mi) ≤ 0

holds all the time.

(b) If 1− ai
a
≥ 0,

V AR(β0|g,y,Mc)− V AR(β0|gi,yi,Mi) ≤ 0

if and only if

1− ai
a
≤ λmin{A

− 1
2

i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

− 1
2

i } ∈ (0, 1).
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2. For the specific regression coefficients βi,

(a) If 1− ai
a
< 0,

V AR(βi|g,y,Mc)− V AR(βi|gi,yi,Mi) ≤ 0

holds all the time.

(b) If 1− ai
a
≥ 0,X ′iX0i 6= 0 and pi < p0,

V AR(βi|g,y,Mc)− V AR(βi|gi,yi,Mi) ≤ 0

if and only if

1− ai
a
≤ λmin(M

− 1
2

i NM
− 1

2
i ) ∈ (0, 1).

Theorem 2.2 reveals that the relative magnitude of posterior variances for β0 or βi

inMi andMc depends highly on the ratio of ai and a together with the design matrix.

The ratio of ai and a is related to the SSE, sample size, and the value of gi or g inMi

and Mc. Although it is evident that y′(InT − P̃ )y ≥ y′1(In1 − P̃1)y1 +y′2(In2 − P̃2)y2

or y′(InT − P̃ )y ≥ y′i(Ini − P̃i)yi (equivalently, SSE is larger with combined data),

the relationship between y′(InT − P̃ )y/(nT − 2) and y′i(Ini − P̃i)yi/(ni − 2) remains

less clear. A deeper discussion of their connection is one of our future directions.

In addition, compared with Case 2.2.1, we can see that the Bayesian estimators in

both models have the same form and therefore their frequentist distributions are the

same. Consequently, results in Remark 2.1 can be extended directly to this case. At

last, our theorem indicates that it is easy to verify these conditions and therefore

guide the choice of gi or g in terms of posterior variances, given the observations
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and design matrices. However, the justification of such choices still requires further

investigation. Alternatively, a prior on g could be specified, which enables a formal

Bayesian procedure, and such specification has been proved to receive many benefits

in the context of model selection. A detailed discussion is offered about this option

in the next subsection.

2.3 Zellner-Siow Prior

For the conventional g-prior, where g is a fixed value, the data-driven calibration of

g has been discussed to improve its performance in model selection including Clyde

and George (2000); George (2000); Kass and Wasserman (1995) and many others. As

an alternative, Zellner and Siow (1980) proposed to introduce a prior on g to enable a

fully Bayesian analysis, which has been referred to as Zellner-Siow prior. It was limited

at the time due to computational challenges in integrating g. As the development

of computational tools, the benefits of Zellner-Siow prior have been recognized and

many variants have been developed. For example, in linear regressions, Liang et al.

(2008) demonstrated that a fixed choice of g subjects to the information paradox and

proposed hyper-g prior as a solution, where a distribution for g is used. Maruyama

and George (2011) proposed a generalization that allows coefficient dimensions to be

greater than the number of observations. Moreover, Li and Clyde (2018); Wu et al.

(2016) extended g-prior to the generalized linear mixed model.

In this section, we focus on the classical Zeller-Siow prior and study its relative

performance in Mi and Mc. We first present the priors and posteriors distributions.

Then, we aim at the Bayesian estimators and posterior variances analyses from two
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perspectives. One perspective is the Laplace approximation, and the other is the

behavior of posterior variance in a special case.

2.3.1 Posterior Distribution and Computation

For Mi, the priors for regression coefficients β̃i and σ2 are specified as

β̃i|σ2 ∝

(
1 + β̃′i

X̃ ′iX̃i

nσ2
β̃i

)− pI+1

2

,

π(σ2) ∝ 1

σ2
,

which is a multivariate Cauchy distribution with the precision being unit Fisher in-

formation matrix. One benefit of this specification is that it is equivalent to the

following hierarchical structure:

β̃i|gi, σ2 ∼ NpI (0, giσ
2(X̃ ′iX̃i)

−1), gi ∼ IG(1/2, ni/2), π(σ2) ∝ 1/σ2, (2.11)

which enables a faster computation.

Similarly, for Mc, priors are specified as:

β̃|g, σ2 ∼ NpT (0, gσ2(X̃ ′X̃)−1), g ∼ IG(1/2, nT/2), π(σ2) ∼ 1/σ2. (2.12)

Then, priors in (2.11) and (2.12) are referred to as Zellner-Siow (ZS) prior.

Fact 2.5. Given the ZS prior and model, we could obtain the posterior mean and

variance through the law of total expectation and law of total variance.
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(a) For Mi, with priors in (2.11), the posterior mean and variance for β̃i is

E(β̃i|yi,Mi) = E

(
gi

1 + gi
|yi
)

(X̃ ′iX̃i)
−1X̃ ′iyi,

V AR
(
β̃i|yi,Mi

)
= E

(
gi

1 + gi

y′i(Ini −
gi

1+gi
P̃i)yi

ni − 2
|yi

)
(X̃ ′iX̃i)

−1

+ V AR

(
gi

1 + gi
|yi
)

(X̃ ′iX̃i)
−1X̃ ′iyiy

′
iX̃i(X̃

′
iX̃i)

−1.

(b) Similarly, for Mc with priors (2.12), the posterior mean and variance for β̃ is

E(β̃|y,Mc) = E

(
g

1 + g
|y
)

(X̃ ′X̃)−1X̃ ′y,

V AR(β̃|y,Mc) = E

(
g

1 + g

y′(InT −
g

1+g
P̃ )y

nT − 2
|y

)
(X̃ ′X̃)−1

+ V AR

(
g

1 + g
|y
)

(X̃ ′X̃)−1X̃ ′yy′X̃(X̃ ′X̃)−1.

Compared with g-prior in Sections 2.2.1 and 2.2.2, marginalizing over g in the

Bayesian estimator in Fact 2.5 allows a data-adaptive shrinkage of the least squares

estimator. Since a tractable form of the marginal distribution for β̃i is not available,

the following posterior distributions can be utilized for computation in Mi.

β̃i|σ2, gi,yi ∼ NpI

(
gi

1 + gi
(X̃ ′iX̃i)

−1X̃ ′iyi,
giσ

2

1 + gi
(X̃ ′iX̃i)

−1
)

; (2.13)

σ2|gi,yi ∼ IG

(
ni
2
,
1

2
y′i(Ini −

gi
1 + gi

P̃i)yi

)
; (2.14)

π(gi|yi) ∝ (1 + gi)
− pI

2 g
− 3

2
i exp(− ni

2gi
)[y′i(Ini −

gi
1 + gi

P̃i)yi]
−ni

2 , (2.15)
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Similarly, for Mc, the corresponding posterior distributions are

β̃|σ2, g,y ∼ NpT

(
g

1 + g
(X̃ ′X̃)−1X̃ ′y,

gσ2

1 + g
(X̃ ′X̃)−1

)
; (2.16)

σ2|g,y ∼ IG

(
nT
2
,
1

2
y′(InT −

g

1 + g
P̃ )y

)
; (2.17)

π(g|y) ∝ (1 + g)−
pT
2 g−

3
2 exp(−nT

2g
)[y′(InT −

g

1 + g
P̃ )y]−

nT
2 . (2.18)

The introduction of a hyper parameter g facilitates the computation because the

integration of the marginal distribution of g in (2.15) or (2.18) is only one-dimensional,

which can be performed through standard integration techniques or approximation

with reasonable accuracy.

2.3.2 Posterior Variance Analysis

This section takes a focused investigation on the posterior variances in Fact 2.5. To

evaluate these quantities, we need to deal with the marginal distributions for gi or g

in (2.15) or (2.18). As these distributions are not standard, we take an approxima-

tion approach and consider the Laplace approximation. It is a popular method for

approximating integrals and is a candidate for analyzing the posterior mean and vari-

ance of g/(1 + g). There are many formulations for Laplace approximation and two

of which are discussed here. The first is the fully exponential Laplace approximation

(Tierney and B.Kadane (1986)). The second is the regular Laplace approximation,

which provides more insights in our situation.

Since the posterior means and variances for Mi and Mc have similar structures,

out of simplicity, only in this part, unless otherwise mentioned, we omit subscripts in
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Fact 2.5 and study following quantities:

π(g|y) ∝ (1 + g)−
p
2 g−

3
2 exp(− n

2g
)[y′(I − g

1 + g
P̃ )y]−

n
2 , (2.19)

E(β̃|y) = E

(
g

1 + g
|y
)

(X̃ ′X̃)−1X̃ ′y, (2.20)

V AR(β̃|y) = E

(
g

1 + g

y′(In − g
1+g
P̃ )y

n− 2
|y

)
(X̃ ′X̃)−1

+ V AR(
g

1 + g
|y)(X̃ ′X̃)−1X̃ ′yy′X̃(X̃ ′X̃)−1. (2.21)

Here, β̃ ∈ IRp is a vector of regression coefficients, X̃ ∈ IRn×p is the design matrix,

P̃ is its projection matrix, n is the sample size.

Option 1: Fully exponential Laplace approximation

Since the principal regularity condition for this method is the target function to be

unimodal, we will verify that this condition holds in our case first. To start with, we

investigate the mode of our target functions. Let h(g|y) denote the kernel of π(g|y)

and R̃2 = y′P̃ y/y′y ∈ [0, 1], and we have the following:

π(g|y) ∝ h(g|y) = (1 + g)
n−p
2 g−

3
2 exp(− n

2g
)
[
1 + g(1− R̃2)

]−n
2 (2.22)

The posterior mean and variance can be calculated by the following quantity:

E

(
ga

(1 + g)a
|y
)

=

∫ +∞

0

ga

(1 + g)a
π(g|y)dg =

∫ +∞
0

ga

(1+g)a
h(g|y)dg∫ +∞

0
h(g|y)dg

. (2.23)

If a = 1, (2.23) is the posterior mean for g/(1 + g). If a = 2, (2.23) is the second

posterior moment for g/(1 + g). Furthermore, let Ha(g|y) = gah(g|y)/(1 + g)a, a =
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0, 1, 2, La(g|y) = Log(Ha(g|y)), and then:

La(g|y) = (a− 3

2
)log(g) +

n− p− 2a

2
log(1 + g)− n

2g
− n

2
log(1 + g(1− R̃2))

with its first derivative:

∂La(g|y)

∂g
= (a− 3

2
)
1

g
+
n− p− 2a

2

1

1 + g
+

n

2g2
− n

2

1− R̃2

1 + g(1− R̃2)
,

and the second derivative:

∂2La(g|y)

∂2g
=

1

2

[
n(1− R̃2)2

1 + g(1− R̃2)2
− n− p− 2a

(1 + g)2
+

3− 2a

g2
− 2n

g3

]
.

To find the mode of La(g|y), let ∂La(g|y)/∂g = 0, which is equivalent to find roots

of the cubic equation:

−(p+3)(1−R̃2)g3+[(2a−3)(2−R̃2)+(n−p−2a)]g2+[(2a−3)+(2−R̃2)n]g+n = 0.

Assume that g1, g2, g3 are three roots of this cubic equation, generally, it has one

real root and a pair of complex conjugate roots with

g1g2g3 =
n

(p+ 3)(1− R̃2)
, g1g2 + g1g3 + g2g3 = −(2a− 3) + (2− R̃2)n

(p+ 3)(1− R̃2)
.

If a = 0,

g1g2g3 =
n

(p+ 3)(1− R̃2)
> 0, g1g2 + g1g3 + g2g3 = − n(2− R̃2)− 3

(p+ 3)(1− R̃2)
< 0,
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which suggests one positive root and two negative roots exist for n ≥ 3, and hence

L0(g|y) has unique positive modal in the domain of g. It is easy to verify that

g1g2g3 > 0 and g1g2 + g1g3 + g2g3 < 0 hold for a = 1 and a = 2. Then, the Laplace

approximation for E (ga/(1 + g)a|y) is:

E

(
ga

(1 + g)a
|y
)

=

∫∞
0
exp(log(Ha(g|y)))dg∫∞

0
exp(log(H0(g|y)))dg

≈ σ̂Ha
σ̂H0

exp(Ha(ĝHa)|y)

exp(H0(ĝH0|y))
, (2.24)

where ĝHa denotes the mode for Ha(g|y) and σ̂Ha =
[
∂2La(g|y)/∂2g|g=ĝHa

]
. The

benefit of fully exponential Laplace approximation is its improved accuracy of O(n−2)

for both posterior mean and variance of ga/(1 + g)a. The main idea is that, when ĝHa

is large enough, ĝHa/(1 + ĝHa) approaches to 1 despite of data. To find the mode

of the target function, Monte Carlo method and finding roots for the related cubic

equation are used and they yield consistent results, which indicate that ĝHa is far from

0 despite of data. One drawback is that the mode for denominator and numerator

are different, although both of them are very large, which makes it hard to justify the

overall performance of E (ga/(1 + g)a|y) based on an explicit expression.

Option 2: Conventional Laplace approximation

Another way to explore the quantity E (ga/(1 + g)a|y) is the conventional Laplace

approximation, which has an accuracy of O(n−1) and is formulated as:

∫ b

a

w(x)eMq(x) ≈

√
2π

M |q′′(x0)|
w(x0)e

Mq(x0), as M →∞, (2.25)

where w(x) is positive and continuous, q(x) is continuous, unimodal and twice dif-

ferentiable, x0 is a unique global maximum at x0, and M is a large number. To
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accomodate (2.25), we first rewrite h(g|y) in (2.22) as h(g|y) = h(y|g)h0(g), where

h(y|g) = (1 + g)
n−p
2 [1 + g(1 − R̃2)]−

n
2 , h0(g) = g−

3
2 exp(−n/2g). Then, suppose

w(g) = ha(g) = gah0(g)/(1 + g)a,M = n, q(g) = log(h(y|g))/n, the approximation

for the ath posterior moment is:

E

(
ga

(1 + g)a
|y
)

=

∫∞
0
ha(g)exp[log(h(y|g))]dg∫∞

0
h0(g)exp[log(h(y|g))]dg

≈ ha(ĝ)

h0(ĝ)
=

ĝa

(1 + ĝ)a
, (2.26)

where ĝ is the mode of log(h(y|g))/n and it is calculated by setting ∂L(y|g)/∂g = 0.

Also, since g is restricted in a positive parameter space, ĝ is:

ĝ = max

{
R̃2/p

(1− R̃2)/(n− p)
− 1, 0

}
, (2.27)

where ĝ has the same form with the local empirical Bayes (Hansen and Yu, 2001).

With Laplace approximation in (2.26) and (2.27), the posterior mean and variance

can be approximated by:

E

(
g

1 + g
|y
)
≈ ĝ

ĝ + 1
, E

(
g2

(1 + g)2
|y
)
≈
(

ĝ

ĝ + 1

)2

, (2.28)

V AR

(
g

1 + g
|y
)

= E

(
g2

(1 + g)2
|y
)
− E2

(
g

1 + g
|y
)
≈ 0. (2.29)

Equations in (2.28) indicate that, if ĝ is bounded considerably far away from 0,

E(g/(1 + g)|y) and E(g2/(1 + g)2|y) is close to 1, and hence V AR(g/(1 + g)|y) is

small, with 0 as an extreme. Meanwhile, the expression in (2.27) implies that one

way to achieve ĝ →∞ is R̃2 → 1.

To formally access the relationship between E(ga/(1 + g)a|y) and R̃2, we express
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the expectation as a function of R̃2:

E

(
g

1 + g
|y
)

=s1(R̃
2), E

(
g2

(1 + g)2
|y
)

= s2(R̃
2). (2.30)

While it is evident that s1(R̃2), s2(R̃
2) ≤ 1 and no closed form is available for a

direct analysis, we can prove that s1(R̃2) and s2(R̃2) are bounded by more tractable

functions m1(R̃
2), m2(R̃

2) as below:

s1(R̃
2) ≥ 2

4 + p

2F1(
n
2
, 2; p

2
+ 3; R̃2)

2F1(
n
2
, 1; p

2
+ 2; R̃2)

= m1(R̃
2), (2.31)

s2(R̃
2) ≥ 8

(4 + p)(6 + p)

2F1(
n
2
, 3; p

2
+ 4; R̃2)

2F1(
n
2
, 1; p

2
+ 2; R̃2)

= m2(R̃
2), (2.32)

where 2F1(a; b, c;x) is the Gaussian hypergeometric function (See Appendix A.1.5 for

detailed derivations) with:

2F1(a, b; c; z) =
1

Beta(b, c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− xz)−adx, c > b > 0.

Although 2F1(a; b, c;x) → ∞ as x → 1, it is less clear about the ratio of hypergeo-

metric functions in (2.31) and (2.32). In Figure (2.1), we present some examples to

visualize (2.31) and (2.32). These graphs indicate that si(R̃2) and mi(R̃
2) approach

1 as R̃2 → 1.

Theorem 2.3. With (2.19) - (2.21), as R̃2 → 1, s1(R̃2)→ 1 and s2(R̃2)→ 1.

Proof. See Appendix A.1.5.

Then, V AR(g/(1 + g)|y) = s2(R̃
2) − s1(R̃

2)2 → 0 as R̃2 → 1. Theorem 2.3

also implies that, as R̃2 → 1, the Bayesian estimator is similar to the least squares
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Figure 2.1: Relationship between si(R̃2), mi(R̃
2), i = 1, 2, and R̃2. Graphs (a) and

(b) are posterior mean and second moments for n = 100, p = 4, respectively. Graphs
(c) and (d) are posterior mean and second moments for n = 25, p = 4, respectively.

estimate. As a result, the frequentist variances are smaller for Mc and the magnitude

of such benefit mainly depends on the design matrices from these two data sources.

For the marginal posterior variance of β in (2.21), with Theorem 2.3, we can roughly

approximate V AR(β|y) by L = y′(In−P )y/(n−2)(X ′X)−1, which is close to (n−

p)/(n−2)(X ′X)−1 on average. If we connect this idea withMc andMi, for one thing,

the quantity of posterior variance primarily depends on its first term. For another,

the average of L is (nT−pT )/(nT−2)(X̃ ′X̃)−1 forMc and (ni−pI)/(ni−2)(X̃ ′iX̃i)
−1

forMi. However, the relative size of (nT −pT )/(nT −2) and (ni−pI)/(ni−2) remains

inconclusive. As an addition, we conduct simulation studies in Section 2.4.2 to offer a
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view of the relative performance of posterior variances for Mi and Mc (See Tables 2.5

and 2.6). We found that, among 500 datasets, at least 96.7% has a smaller posterior

variance in Mc for β0 and at least 55.7% has a smaller posterior variance in Mc for

βi.

Here, Laplace approximation and Theorem 2.3 are adopted to evaluate E(ga/(1+

g)a|y) for a=1,2 from two perspectives so that an explanation can be offered for the

relative performance of Bayesian estimators or posterior variances in Mi and Mc. We

found that, when R̃2 → 1, the frequentist variance for the Bayesian estimator is more

likely to be small in Mc while no clear pattern exists for posterior variance.

2.3.3 Extension

It is established that both Zellner’s g-prior and ZS prior yield shrinkage estimation in

terms of the Bayesian estimator. For a general linear regression model y = Xβ + ε,

where y, ε ∈ IRn,β ∈ IRp,X ∈ IRn×p, we further consider a prior for β with the

following hierarchical representation:

(β|λ, σ2) ∼ Np(0, λnσ
2(X ′X)−1), π(λ) ∝ λ−

1
2 exp

(
− 1

2λ

)
, (2.33)

which is improper and referred to as the shrinkage prior (Berger et al., 2005). Its den-

sity function has a high peak around zero, which imposes shrinkage on the coefficients

toward zero but not strictly exclude predictors. It is equivalent to:

π(β) ∝
(

1 + β′
(X ′X)

nσ2
β

)−(p−1)/2
.
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The marginal distribution for λ is:

π(λ|y) ∝ (1 + λ)−
p
2λ−

1
2 exp(− n

2λ
)[y′(I − λ

1 + λ
P̃ )y]−

n
2 , (2.34)

Compared with ZS prior, the only difference lies in the marginal distribution of λ.

Therefore, all the analyses in Section 2.3.2 can be directly applied for the shrinkage

prior. Similarly, we express E(λa/(1 + λ)a|y) as functions of R̃2:

E

(
λ

1 + λ
|y
)

=k1(R̃
2), E

(
λ2

(1 + λ)2
|y
)

= k2(R̃
2). (2.35)

Theorem 2.4. If n ≥ p+ 3, when R̃2 → 1, we have k1(R̃2)→ 1, k2(R̃
2)→ 1,

We can see that Theorem 2.4 reaches the same conclusion as Theorem 2.3 in terms

of the posterior distributions of g or λ. It is reasonable to expect ZS and shrinkage

priors to behave similarly. This phenomenon can be observed in Figure 2.2. This

figure shows that the shrinkage factors from the shrinkage prior and ZS prior follow

the same trend and the difference between them narrows as the sample size increases.

We will not go into detail about how Theorem 2.4 resonates with Mi and Mc for the

sake of simplicity, because the logic of posterior analyses for ZS prior can be applied

directly. More comparisons results for these two priors in terms of Mi and Mc can be

found in the simulation studies in Section 2.4.2.
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Figure 2.2: Illustrations of posterior distribution of g and λ for shrinkage and ZS
prior. Graphs (a), (c) and (e) are posterior mean, second moments and variance with
n = 10, p = 5, respectively. Graphs (b), (d) and (f) are those with n = 30, p = 5,
respectively.
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2.4 Numerical Analyses

2.4.1 Sampling Distribution

Note that ZS prior and shrinkage prior share similar form and therefore we unify

their sampling distributions in one framework. Specifically, for Mi, the following

distributions are applied to do the computation:

1. Sample σ2|gi,yi ∼ IG
(
ni/2, y

′
i

[
Ini − gi/(1 + gi)X̃i(X̃

′
iX̃i)

−1X̃ ′
]
yi/2

)
,

2. Sample gi|σ2, β̃i,yi ∼ IG
(
pI/2 + l, β̃i

′
X̃ ′iX̃iβ̃i/(2σ

2) + ni/2
)
,

3. Sample β̃i|σ2, gi,yi ∼ NpI

(
gi/(1 + gi)(X̃

′
iX̃i)

−1X̃ ′iyi, giσ
2/(1 + gi)(X̃

′
iX̃i)

−1
)
.

Similarly, for Mc, the sampling distributions are described as below:

1. Sample σ2|g,y ∼ IG
(
nT/2, y

′[InT − g/(1 + g)X̃(X̃ ′X̃)−1X̃ ′
]
y/2

)
,

2. Sample g|σ2, β̃,y ∼ IG
(
pT/2 + l, β̃′X̃ ′X̃β̃/(2σ2) + nT/2

)
,

3. Sample β̃|σ2, g,y ∼ NpT

(
g/(1 + g)(X̃ ′X̃)−1X̃ ′y, gσ2/(1 + g)(X̃ ′X̃)−1

)
.

Then, l = 1/2 and l = 0 correspond to ZS prior and shrinkage prior, respectively.

2.4.2 Model Comparison of Mi and Mc

We consider four sets of parameters for the regression coefficients with p0 = p1 = p2 =

3 with respect to different sizes of coefficients β̃i and error terms σ2, where Sets 1-2

represent moderate to large coefficients while Sets 3-4 represent small coefficients.

• Set 1: β0 = (1.1, 1.2, 1.8)′, β1 = (1.6, 1.2, 1.2)′, β2 = (1.3, 1.5, 1.7)′, where all

coefficients are large with σ = 0.5;
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• Set 2: β0 = (1.1, 1.2, 1.8)′, β1 = (1.6, 1.2, 1.2)′, β2 = (1.3, 1.5, 1.7)′, where all

coefficients are large with σ = 0.1;

• Set 3: β0 = (0.5, 0.8, 0.4)′, β1 = (0.3, 0.6, 0.7)′, β2 = (0.5, 0.5, 0.9)′, where all

coefficients are small with with σ = 0.5;

• Set 4: β0 = (0.5, 0.8, 0.4)′, β1 = (0.3, 0.6, 0.7)′, β2 = (0.5, 0.5, 0.9)′, where all

coefficients are small with with σ = 0.1.

For each set, we consider a small sample size ni = 10 and moderate to large

sample size ni = 20. All design matrices are generated from the normal distribution

N(0, 1). To evaluate the relative performance of the Bayesian estimator, we collect its

frequentist properties including its sampling variance, bias and MSE. For brevity, we

report these quantities in group βj rather than individual element βij. Each Bayesian

estimator is computed through 20,000 samples with 10,000 burn-ins. The frequentist

properties are calculated with 500 data sets. For priors, ZS prior and the shrinkage

prior are considered.

Tables 2.1 - 2.4 present the Bias, V ARF , and MSE for each grouped parameter.

Bias is the summation of absolute value of bias for each element in βj, j = 0, 1, 2 and

describes the overall absolute difference between the expected value of the Bayesian

estimator and its true value. V ARF shows the overall sample variance of the Bayesian

estimator for βj, which is the summation of diagonal elements of its sampling covari-

ance matrix. Similarly, MSE is reported in groups. The bold number indicates Mc

has a smaller value.

We have several main findings. First, despite the choices of sample size, random

error, size of coefficients and prior options, Mc has equivalent or better performances
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in terms of V ARF and MSE. Second, compared with the specific βi, Mc shows

more reductions in V ARF and MSE for common coefficients β0, which is reasonable

since more information is available for β0 in Mc. Third, across all combinations,

data combining is more advantageous with moderate to large coefficients, large σ

and small sample size ni. For example, with ZS prior, the reduction V ARF (β0) for

σ = 0.5, ni = 10 from M1 to Mc is 0.1295 while for σ = 0.1, ni = 10 is 0.0056. This

is within our expectation since a larger sample size is needed to obtain more precise

estimates when the variability in the data is large. Fourth, across all cells in terms of

Models (M1, M2, MC), parameters (β0,β1,β2), sample size and coefficients sets, ZS

and shrinkage priors offer similar behaviors in terms of frequentist properties while

one might outperform the other from different perspectives. For example, for Bias,

shrinkage prior offers an equivalent or smaller bias in 46 out of 56 comparisons. In

contrast, for V ARF , ZS prior shows an equivalent or smaller frequentist variance in

35 out of 56 combinations. When it comes to MSE, ZS prior outperforms in 27 out

of 56 combinations, which is close to half of the combinations.

Tables 2.5 and 2.6 present the percentages of cases whereMc outperformsM1 and

M2 in terms of smaller posterior variances in 500 data sets, respectively. The key

findings are summarized as below. To start with, the percentage is uniformly higher

regarding the common β0 than the specific βi across all settings. For example, it

could be as high as 99.80% while the highest percentage for βi is only 90.6%. This

implies that Mc is more likely to offer a smaller posterior variance for β0 rather than

βi. Second, shrinkage prior shows a uniformly lower percentage than ZS prior. This

indicates that, if the research interest lies in the posterior variance, ZS prior has a

better chance to offer a smaller posterior variance in Mc.
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Table 2.1: Comparisons of M1 and Mc in Sets 1 - 2

Prior Design Statistics n1 = n2=10 n1 = n2=20
Set 1 Set 2 Set 1 Set 2

M1 Mc M1 Mc M1 Mc M1 Mc

ZS

β0

Bias 0.1846 0.1103 0.0187 0.0087 0.0834 0.0400 0.0061 0.0028
V ARF 0.2142 0.0847 0.0091 0.0035 0.0580 0.0228 0.0024 0.0009
MSE 0.2263 0.0888 0.0092 0.0035 0.0604 0.0233 0.0024 0.0009

β1

Bias 0.1272 0.0645 0.0074 0.0024 0.0652 0.0275 0.0027 0.0012
V ARF 0.1413 0.1371 0.0059 0.0057 0.0714 0.0644 0.0029 0.0026
MSE 0.1467 0.1385 0.0059 0.0057 0.0728 0.0647 0.0029 0.0026

Shrinkage

β0

Bias 0.0972 0.0890 0.0055 0.0068 0.0451 0.0250 0.0041 0.0015
V ARF 0.2096 0.0831 0.0087 0.0034 0.0577 0.0242 0.0023 0.0010
MSE 0.2130 0.0858 0.0087 0.0034 0.0586 0.0245 0.0024 0.0010

β1

Bias 0.0886 0.0705 0.0044 0.0043 0.0661 0.0420 0.0047 0.0047
V ARF 0.1529 0.1479 0.0063 0.0061 0.0691 0.0635 0.0028 0.0026
MSE 0.1556 0.1497 0.0063 0.0061 0.0706 0.0642 0.0028 0.0026

Table 2.2: Comparisons of M1 and Mc in Sets 3 - 4

Prior Design Statistics n1 = n2=10 n1 = n2=20
Set 3 Set 4 Set 3 Set 4

M1 Mc M1 Mc M1 Mc M1 Mc

ZS

β0

Bias 0.2421 0.1837 0.0373 0.0175 0.1200 0.0702 0.0096 0.0047
V ARF 0.1812 0.0745 0.0089 0.0035 0.0539 0.0218 0.0023 0.0009
MSE 0.2028 0.0866 0.0095 0.0036 0.0590 0.0235 0.0024 0.0009

β1

Bias 0.1804 0.1331 0.0247 0.0081 0.0980 0.0550 0.0059 0.0022
V ARF 0.1207 0.1198 0.0059 0.0056 0.0660 0.0610 0.0029 0.0026
MSE 0.1331 0.1267 0.0061 0.0056 0.0696 0.0621 0.0029 0.0026

Shrinkage

β0

Bias 0.1623 0.1561 0.0180 0.0140 0.0777 0.0520 0.0034 0.0021
V ARF 0.1837 0.0745 0.0086 0.0034 0.0544 0.0234 0.0023 0.0010
MSE 0.1930 0.0832 0.0087 0.0035 0.0564 0.0244 0.0023 0.0010

β1

Bias 0.1465 0.1317 0.0156 0.0100 0.0939 0.0660 0.0073 0.0061
V ARF 0.1349 0.1314 0.0063 0.0060 0.0648 0.0606 0.0028 0.0026
MSE 0.1435 0.1383 0.0064 0.0061 0.0683 0.0625 0.0028 0.0026

2.4.3 Sensitivity Analyses of Mc

While Section 2.4.2 gives us a big picture of relative performances of Mi and Mc, one

natural question arises regarding the validity of data combining in Mc, and we may

wonder how far Mc is from the golden standard. Here, the golden standard model,
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Table 2.3: Comparisons of M2 and Mc in Sets 1 - 2

Prior Design Statistics n1 = n2=10 n1 = n2=20
Set 1 Set 2 Set 1 Set 2

M2 Mc M2 Mc M2 Mc M2 Mc

ZS

β0

Bias 0.2219 0.1103 0.0179 0.0087 0.0424 0.0400 0.0021 0.0028
V ARF 0.3236 0.0847 0.0141 0.0035 0.0416 0.0228 0.0017 0.0009
MSE 0.3414 0.0888 0.0142 0.0035 0.0423 0.0233 0.0017 0.0009

β2

Bias 0.2500 0.0999 0.0211 0.0053 0.0536 0.0464 0.0057 0.0058
V ARF 0.1423 0.1312 0.0060 0.0054 0.0432 0.0411 0.0017 0.0017
MSE 0.1635 0.1346 0.0062 0.0054 0.0444 0.0420 0.0018 0.0017

Shrinkage

β0

Bias 0.2066 0.0890 0.0206 0.0068 0.0332 0.0250 0.0015 0.0015
V ARF 0.3142 0.0831 0.0133 0.0034 0.0408 0.0242 0.0016 0.0010
MSE 0.3291 0.0858 0.0134 0.0034 0.0411 0.0245 0.0016 0.0010

β2

Bias 0.1749 0.0762 0.0118 0.0050 0.0484 0.0420 0.0041 0.0034
V ARF 0.1439 0.1327 0.0060 0.0055 0.0471 0.0454 0.0019 0.0018
MSE 0.1545 0.1349 0.0060 0.0055 0.0479 0.0460 0.0019 0.0018

Table 2.4: Comparisons of M2 and Mc in Sets 3 - 4

Prior Design Statistics n1 = n2=10 n1 = n2=20
Set 3 Set 4 Set 3 Set 4

M2 Mc M2 Mc M2 Mc M2 Mc

ZS

β0

Bias 0.2226 0.1837 0.0355 0.0175 0.0816 0.0702 0.0047 0.0047
V ARF 0.2738 0.0745 0.0137 0.0035 0.0394 0.0218 0.0017 0.0009
MSE 0.2910 0.0866 0.0142 0.0036 0.0418 0.0235 0.0017 0.0009

β2

Bias 0.2543 0.1858 0.0411 0.0152 0.0978 0.0806 0.0071 0.0069
V ARF 0.1220 0.1149 0.0060 0.0054 0.0412 0.0393 0.0017 0.0017
MSE 0.1456 0.1272 0.0066 0.0055 0.0451 0.0420 0.0018 0.0017

Shrinkage

β0

Bias 0.2284 0.1561 0.0326 0.0140 0.0658 0.0520 0.0036 0.0021
V ARF 0.2746 0.0745 0.0131 0.0034 0.0391 0.0234 0.0016 0.0010
MSE 0.2944 0.0832 0.0135 0.0035 0.0407 0.0244 0.0016 0.0010

β2

Bias 0.2047 0.1541 0.0257 0.0112 0.0850 0.0723 0.0064 0.0053
V ARF 0.1285 0.1187 0.0060 0.0054 0.0451 0.0436 0.0019 0.0018
MSE 0.1441 0.1280 0.0062 0.0055 0.0477 0.0455 0.0019 0.0018

denoted by “Mgs”, is referred to as the case where covariates are fully observed as
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Table 2.5: Comparisons of M1 and Mc regarding posterior variance

Prior Design n1 = n2=10 n1 = n2=20
Parameter Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

ZS
β0 98.00% 98.60% 97.60% 98.40% 99.80% 99.80% 99.80% 99.60%
β1 86.40% 90.60% 69.20% 88.80% 73.60% 75.40% 66.40% 74.40%

Shrinkage
β0 95.40% 95.80% 95.00% 95.60% 99.40% 99.40% 99.40% 99.40%
β1 75.80% 79.00% 63.80% 77.40% 72.80% 74.00% 68.80% 73.80%

Table 2.6: Comparisons of M2 and Mc regarding posterior variance

Prior Design n1 = n2=10 n1 = n2=20
Parameter Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

ZS
β0 99.00% 99.20% 98.80% 99.20% 97.60% 97.60% 97.80% 97.60%
β2 77.80% 88.60% 61.80% 85.00% 71.20% 71.00% 69.00% 71.20%

Shrinkage
β0 97.20% 97.40% 97.00% 97.40% 96.20% 96.20% 96.40% 96.20%
β2 69.00% 75.60% 55.60% 75.00% 64.80% 65.20% 63.60% 65.00%

below: y1
y2

 =

X01

X02

β0 +

X1 X12

X21 X2


β1

β2

+

ε1
ε2

 . (2.36)

Therefore, as a complement to Section 2.4.2, we perform a sensitivity analysis to

evaluate the behaviors of Mi, Mc and Mgs. Since Section 2.4.2 focused on a balanced

design in terms of sample size (n1 = n2) and dimension of coefficients (p0 = p1 = p2),

we additionally consider the imbalanced design to offer a more complete view of

candidate models.

Our analysis is conducted under two designs. In Design 1, fixing the dimension of

β0,β1,β2 at p0 = 4, p1 = p2 = 2, we let the ratio of sample size vary from 0.5 to 1.0

for two sources with the following setups n1 = 30, n2 = 15; n1 = 30, n2 = 30; n1 =

30, n2 = 45; n1 = 30, n2 = 60. In Design 2, fixing the sample size at n1 = n2 = 15, we
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let the ratio of dimension for β0 and βi vary from 0.25 to 1.0 with the following setups

p0 = 4, p1 = p2 = 1; p0 = 4, p1 = p2 = 2; p0 = 4, p1 = p2 = 3 and p0 = p1 = p2 = 4.

At last, we examine these two scenarios under large and small size of coefficients. The

largest model for large and small coefficients are listed in Sets 1 and 2 as below:

• Set 5: β0 = (1.6, 1.5, 1.7, 1.6)′, β1 = (1.5, 1.7, 1.4, 1.2)′, β2 = (1.4, 1.8, 1.3, 1.3)′,

where all coefficients are large with σ = 0.5;

• Set 6: β0 = (1.2, 0.8, 1.1, 0.9)′, β1 = (0.7, 0.4, 0.5, 0.3)′, β2 = (0.5, 0.6, 0.6, 0.2)′,

where all coefficients are small with σ = 0.5.

When p1, p2 ≤ 4, the coefficients correspond to the first k elements of β1 and β2 in

Sets 1 and 2. For each combination of two scenarios and two sets of coefficients, we

collect quantities including relative bias (RBias), standard deviation (SD), relative

MSE (RMSE), for βi, i = 0, 1, 2,

RBias =

∑500
r=1

∑pi
j=0 |β̂

(r)
ij − βij|

500pi
∑pi

j=0 βij
, (2.37)

RMSE =

√∑500
r=1

∑pi
j=0(β̂

(r)
ij − βij)2

500pi
∑pi

j=0 βij
. (2.38)

Tables 2.7 and 2.8 present the frequentist properties of Bayesian estimators for large

coefficients while Tables 2.9 and 2.10 show the frequentist properties for small coef-

ficients. We have several main findings. First, consider Mgs as the reference model,

Mc shows considerable advantage of Mi in terms of smaller deviation from Mgs for

SDF and RMSE but not necessarily for bias. Second, the magnitude of advantage in

Mc depends on the sample size and the dimension of coefficients. Specifically, when

the dimension of coefficients is fixed, as shown in Tables 2.7 and 2.9, the deviation
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between Mc and Mgs decreases as the increase of sample size in terms of all frequen-

tist properties studied in this context. In contrast, when the sample size is fixed,

the deviation of Mc and Mgs increases as the dimension of specific coefficients βi in-

creases. Third,Mc is pretty robust to the misspecification compared withMi in terms

of frequentist variances especially for common coefficients β0. Occasionally, Mc has

a smaller frequentist variance than Mgs. For example, in Table 2.7, the frequentist

variances for β0 in Mc are all smaller than those in Mgs across all cases. Fourth, the

Bayesian estimates in Mc differ from Mgs mainly in bias and the magnitude in MSE

mainly depends on the bias rather than the frequentist variances. A deeper relevant

discussion can be found in Section 2.6.

2.5 One Real Data Example

This section presents a student performance dataset to serve as a paradigm for our

data combining method. This dataset was collected from two Portuguese secondary

schools through mark reports and questionnaires (Cortez and Silva, 2008). It has

been frequently used to study the association between student performance, which

is reflected by their scores, and covariates including demographic, social and family

features from multiple perspectives. We first tailor this dataset to our context by

applying group lasso to select covariates included in our model and then we divide

the dataset into two according to schools so that M1, M2, and Mc could be simu-

lated. Here, we also use Mi or Mc to indicate the related datasets. As a result, M1

corresponds to Gabriel Pereira school with 349 observations and M2 corresponds to

Mousinho da Silveira school with 46 observations. The common covariates include the
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Table 2.7: Sensitivity analysis for Design 1 with Set 5

Pamameters Design n1 = 30, n2 = 15 n1 = 30, n2 = 30

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0379 0.0480 0.0364 0.0012 0.0305 0.0571 0.0457 0.0004
SDF 0.0504 0.0846 0.0421 0.0424 0.0524 0.0439 0.0334 0.0336
RMSE 0.0244 0.0314 0.0232 0.0066 0.0377 0.0377 0.0337 0.0053

β1

RBias 0.1824 - 0.1785 0.0045 0.0515 - 0.0449 0.0010
SDF 0.0837 - 0.0822 0.0676 0.0753 - 0.0698 0.0492
RMSE 0.1317 - 0.1288 0.0212 0.0443 - 0.0385 0.0154

β2

RBias - 0.1675 0.1130 0.0003 - 0.0203 0.0205 0.0012
SDF - 0.1255 0.1056 0.0557 - 0.0747 0.0738 0.0456
RMSE - 0.1461 0.1041 0.0174 - 0.0278 0.0273 0.0143
Design n1 = 30, n2 = 45 n1 = 30, n2 = 60

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0265 0.0239 0.0212 0.0006 0.0305 0.0343 0.0245 0.0006
SDF 0.0496 0.0420 0.0298 0.0301 0.0471 0.0338 0.0276 0.0281
RMSE 0.1004 0.0926 0.0769 0.0302 0.1226 0.1176 0.0906 0.0282

β1

RBias 0.0950 - 0.0900 0.0010 0.1241 - 0.0795 0.0011
SDF 0.0696 - 0.0665 0.0384 0.0763 - 0.0725 0.0361
RMSE 0.0727 - 0.0701 0.0120 0.1019 - 0.0675 0.0113

β2

RBias - 0.0367 0.0365 0.0009 - 0.0420 0.0399 0.0008
SDF - 0.0608 0.0581 0.0433 - 0.0444 0.0442 0.0367
RMSE - 0.0398 0.0363 0.0135 - 0.0415 0.0397 0.0115

age of a student β01 and the number of past class failures β02. The specific covariate

is the mother’s education β11 for M1 and the number of school absences β21 for M2.

The response variable is the average score of three exams (first period grade, second

period grade and final grade) for a student. After 20,000 samples with 10,000 burn-in

in MCMC, we collect the posterior mean (Mp), posterior variance (V ARp), 95% cred-

ible intervals (CI) and its corresponding width. Table 2.11 summarizes the key results

for the analysis. There are several main findings. First, for each parameter, the pos-

terior variances for the combined data are smaller compared using individual data

alone. Second, for each parameter, the width of 95% credible intervals for smaller for
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Table 2.8: Sensitivity analysis for Design 2 with Set 5

Parameters Design p0 = 4, p1 = p2 = 1 p0 = 4, p1 = p2 = 2

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0346 0.0352 0.0213 0.0013 0.0608 0.0360 0.0144 0.0017
SDF 0.0695 0.0911 0.0501 0.0499 0.0832 0.0712 0.0532 0.0528
RMSE 0.0244 0.0277 0.0152 0.0078 0.0379 0.0259 0.0122 0.0083

β1

RBias 0.1481 - 0.0148 0.0001 0.1166 - 0.0565 0.0025
SDF 0.1435 - 0.1356 0.0894 0.1140 - 0.1089 0.0886
RMSE 0.1764 - 0.0917 0.0596 0.0898 - 0.0534 0.0278

β2

RBias - 0.6261 0.2123 0.0070 - 0.1276 0.0498 0.0025
SDF - 0.2963 0.2193 0.1257 - 0.1313 0.1183 0.0915
RMSE - 0.6610 0.2638 0.0901 - 0.1068 0.0571 0.0287
Design p0 = 4, p1 = p2 = 3 p0 = 4, p1 = p2 = 4

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0914 0.0634 0.0651 0.0006 0.0960 0.0752 0.0405 0.0011
SDF 0.0775 0.1085 0.0578 0.0612 0.1014 0.0860 0.0492 0.0552
RMSE 0.0532 0.0382 0.0376 0.0096 0.0747 0.0599 0.0262 0.0086

β1

RBias 0.1207 - 0.0957 0.0023 0.1570 - 0.0758 0.0018
SDF 0.0927 - 0.0866 0.0665 0.0875 - 0.0747 0.0652
RMSE 0.0763 - 0.0732 0.0145 0.0889 - 0.0519 0.0113

β2

RBias - 0.3015 0.2874 0.0018 - 0.0619 0.0564 0.0009
SDF - 0.0927 0.0896 0.0611 - 0.1027 0.0865 0.0598
RMSE - 0.1899 0.1852 0.0136 - 0.0471 0.0386 0.0103

the combined data. Third, the benefit of data combining reach its best for common

coefficients rather than the specific coefficients in terms of both posterior variances

and width of 95% credible intervals. Fourth, individual model and combined model

yield the same conclusion regarding whether the 95% cover 0. Specifically, the CIs

for age, the number of failures, and mother’s education exclude 0 while the CIs for

school absences include 0 across all models.
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Table 2.9: Sensitivity analysis for Design 1 with Set 6

Parameters Design n1 = 30, n2 = 15 n1 = 30, n2 = 30

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0329 0.0454 0.0238 0.0024 0.0381 0.0225 0.0301 0.0023
SDF 0.0500 0.1001 0.0400 0.0393 0.0500 0.0555 0.0342 0.0349
RMSE 0.0227 0.0379 0.0180 0.0099 0.0267 0.0184 0.0205 0.0088

β1

RBias 0.2370 - 0.1867 0.0034 0.0220 - 0.0448 0.0042
SDF 0.0792 - 0.0730 0.0610 0.0718 - 0.0650 0.0439
RMSE 0.1835 - 0.1503 0.0557 0.0674 - 0.0671 0.0401

β2

RBias - 0.1678 0.0503 0.0062 - 0.1700 0.1297 0.0030
SDF - 0.1855 0.1070 0.0510 - 0.0598 0.0581 0.0427
RMSE - 0.2181 0.1045 0.0466 - 0.1322 0.1064 0.0388
Design n1 = 30, n2 = 45 n1 = 30, n2 = 60

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0348 0.0359 0.0334 0.0020 0.0262 0.0151 0.0104 0.0008
SDF 0.0441 0.0437 0.0302 0.0307 0.0562 0.0348 0.0284 0.0277
RMSE 0.0231 0.0212 0.0189 0.0078 0.0207 0.0124 0.0098 0.0069

β1

RBias 0.3941 - 0.3740 0.0049 0.1034 - 0.0861 0.0025
SDF 0.0709 - 0.0704 0.0520 0.0908 - 0.0792 0.0415
RMSE 0.2942 - 0.2792 0.0475 0.1133 - 0.0956 0.0378

β2

RBias - 0.0387 0.0330 0.0035 - 0.1004 0.0596 0.0008
SDF - 0.0550 0.0539 0.0406 - 0.0512 0.0490 0.0400
RMSE - 0.0571 0.0542 0.0369 - 0.0853 0.0618 0.0364

2.6 Discussion

In this chapter, we evaluated the use ofMi andMc in terms of posterior variances and

frequentist properties under Zellner’s g-prior, ZS prior, and shrinkage prior. When

g is known, Theorems 2.1 and 2.2 establish the sufficient and necessary conditions

to achieve a smaller posterior variance in Mc. These conditions depend on the value

of g and the minimum eigenvalue of a function of design matrices while additionally

rely on the observations when σ2 is unknown. Furthermore, we considered a more

general case, where we allow g to follow an inverse-gamma distribution. To handle the
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Table 2.10: Sensitivity analysis for Design 2 with Set 6

Parameter Design p0 = 4, p1 = p2 = 1 p0 = 4, p1 = p2 = 2

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0324 0.0290 0.0203 0.0036 0.0102 0.0648 0.0088 0.0040
SDF 0.1054 0.0680 0.0530 0.0552 0.0995 0.0948 0.0560 0.0554
RMSE 0.0326 0.0261 0.0203 0.0139 0.0257 0.0414 0.0147 0.0140

β1

RBias 0.1019 - 0.0764 0.0144 0.2486 - 0.1857 0.0115
SDF 0.1330 - 0.1237 0.1044 0.0966 - 0.0795 0.0716
RMSE 0.2157 - 0.1927 0.1498 0.1965 - 0.1501 0.0657

β2

RBias - 0.2806 0.2834 0.0022 - 0.0710 0.1857 0.0065
SDF - 0.1587 0.1568 0.1404 - 0.1067 0.0795 0.0728
RMSE - 0.4233 0.4224 0.2807 - 0.1165 0.1501 0.0663
Design p0 = 4, p1 = p2 = 3 p0 = 4, p1 = p2 = 4

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0562 0.0374 0.0386 0.0050 0.0425 0.0514 0.0404 0.0078
SDF 0.0854 0.0996 0.0566 0.0606 0.0865 0.0875 0.0590 0.0643
RMSE 0.0369 0.0314 0.0241 0.0154 0.0330 0.0351 0.0263 0.0166

β1

RBias 0.0768 - 0.0699 0.0064 0.0439 - 0.0513 0.0079
SDF 0.1015 - 0.0975 0.0656 0.0936 - 0.0891 0.0645
RMSE 0.0783 - 0.0791 0.0412 0.0545 - 0.0537 0.0343

β2

RBias - 0.0659 0.0555 0.0055 - 0.1134 0.1104 0.0098
SDF - 0.1001 0.0913 0.0645 - 0.0865 0.0791 0.0652
RMSE - 0.0752 0.0626 0.0382 - 0.0778 0.0754 0.0347

non-standard marginal distribution for g given data, we utilized two popular Laplace

approximation methods to evaluate the Bayesian estimator, posterior variance and

frequentist variances. We found that, in general, Mc is equivalent or better than

Mi in terms of a smaller posterior variance and frequentist variance, especially for

common coefficients. Our simulation studies also show that this conclusion holds

for most scenarios we considered. The advantage of Mc over Mi is more evident

when the sample size is small and/or the dimension of specific coefficients is small

compared with the dimension of common coefficients. We also performed a sensitivity
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Table 2.11: Results for the student performance dataset

Parameter M1 Mc M2

β01 Mp (V ARp) 0.5740 (0.0012) 0.5984 (0.0007) 0.6291 (0.0017)
95 % CI (0.5068, 0.6411) (0.5474, 0.6497) (0.5467, 0.7104)
Width 0.1343 0.1023 0.1637

β02 Mp (V ARp) -1.8936 (0.0741) -1.9282 (0.0629) -1.8607 (0.4573)
95 % CI (-2.4172, -1.3518) (-2.4186, -1.4382) (-3.1843, -0.5230)
Width 1.0655 0.9804 2.6613

β11 Mp (V ARp) 0.6283 (0.0330) 0.5052 (0.0210) -
95 % CI (0.2722, 0.9782) (0.2208, 0.7875) -
Width 0.7060 0.5666 -

β21 Mp (V ARp) - -0.0274 (0.0113) -0.1041 (0.0158)
95 % CI - (-0.2392, 0.1790) (-0.3504, 0.1393)
Width - 0.4182 0.4897

analysis in terms of Mc compared with the golden standard, where the covariates are

fully observed, to evaluate whether Mc is applicable. We found that the discrepancy

between Mc and Mgs increases as dimension of coefficients increases. Thus, it is

probably best not to use Mc when pi/p0 is large.

Finally, we discuss some issues and future directions based on the work in this

chapter. To begin with, we assume that the elements in β0 and βi are of similar

sizes. However, it is common for different parameters to have different sizes. For

example, we could have β0 with large size and βi with small size. In this case, it no

longer makes sense to use an overall g to govern all parameters. In fact, associated

problems of using the same scale parameter for all coefficients have been noticed. For

example, Agliari and Parisetti (1988) derived A-g prior and found that the limiting

behavior of a single parameter is affected by different scales in the prior. Som et al.

(2015) further revealed that using a single g to regulate all parameters may result in

unsatisfactory fixed p - fixed n conditional information paradox. Second, we strictly

explore the posterior variance and frequentist variance when R2 → 1 to demonstrate
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the limiting behavior to offer a reasonable explanation regarding the properties of

the Bayesian estimator. In the next chapter, we study the independent g-prior and

its relative performances in Mi and Mc under the conditional asymptotic defined by

Som et al. (2016).
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Chapter 3

Independent Mixtures of G-Priors

3.1 Introduction

In the previous chapter, we employed the standard g-prior, ZS prior, and shrinkage

prior on the coefficient with a single g controlling the shrinkage. However, several

problems for such specification still exist. For one thing, it requires the design matrix

for all coefficients to be of full column rank, which put more constraints on the number

of observations. For another thing, it has an undesirable theoretical property in the

context of model selection Som et al. (2015). Specifically, a new form of conditional

asymptotic limit driven by a situation arising in many practical problems when one

or more groups of regression coefficients are much larger than the rest. Under this

asymptotic, many prominent “g-type” priors, such as hyper-g prior (Liang et al., 2008)

and robust g prior (Bayarri et al., 2012), are shown to suffer from the Conditional

Lindley’s Paradox (CLP), which is interpreted as, “if at least one of the regression co-
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efficients common to both models is quite large compared to the additional coefficients

in the bigger model, then the Bayes factor due to the hyper-g shows unwarranted bias

toward choosing the smaller model.” The rationale behind this undesired behavior is

that the common mixing parameter g in these priors introduces a mono-shrinkage.

One way to alleviate CLP is to employ the block g-prior proposed by Som et al.

(2015), which has also been explored as independent g-prior in Min and Sun (2016).

With the new form of the asymptotic limit, they focused on the demonstration of

these undesirable issues in the traditional g-prior while we aim at the estimation of the

coefficients such as posterior variances and the frequentist variances of the Bayesian

estimator with the Zellner-Siow prior. More importantly, we need to examine such

quantities through the comparison of Mc and Mi. For instance, we are interested in

how the coefficient estimators differ in the Mc and Mi when the dominated one is

shared, and what is the tendency of the bias and covariance of the Bayesian estimators.

Therefore, in this chapter, we focus on the independent g-priors for β0i and βi. The

independent version of g priors not only allows us to specify different shrinkage effects

for β0i and βi but also offer a more flexible requirement for the rank of the design

matrix. For example, independent g-priors only requires Xi0 and Xi to be of full

column rank, respectively, while dependent g-prior requires (X0i,Xi) to be of full

column rank. Notice that when the whole design matrix X̃i or X̃ are block diagonal

(equivalently, X ′0iXi = 0) and g0i = gi for Mi, g0 = g1 = g2 = g for Mc, the

independent g-priors reduce to dependent g-priors.

Notice that the sample size in the ZS prior remains the same for β0 and βi across

Mi and Mc. This does not agree with our intuitions since at most ni observations

contribute for the estimation of βi even in Mc. As a matter of fact, the potential
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misuse of the number of observations as sample size has been identified and discussed

in the context of model selection. For example, the well-known Schwarz criterion

or Bayesian information criterion (BIC) (Schwarz, 1978) is formulated as BIC =

2l(β̂) − p log(n), where l(β̂) is the estimated log-likelihood for the model, p is the

dimension of the model parameter β, and n is the sample size. It has become a

standard procedure in model selection since it serves as an approximation to the

logrithm of the Bayes factor with large samples. However, the sample size n has been

suggested to be determined carefully. For one thing, its derivation reveals that n

should reflect the number of data values contributing to the summation that appears

in the formula for the Hessian and the approximation only works well for limited

settings (Kass and Raftery (1995), Stone (1979), Weakliem (1999)). Many efforts

have been made to improve its performance in more general situations rather than iid

observations including Kass and Wasserman (1995), Berger et al. (2014), Bayarri et al.

(2019) and Berger et al. (2019). Similar use of n exists in Zellner-Siow prior along with

its variants (Cui and George (2008), Liang et al. (2008), Wang (2017)), where n is used

to adjust the prior scale. It’s natural to investigate whether n is well-defined in such

cases. In fact, Berger et al. (2014) has addressed this issue and proposed the effective

sample size (TESS) to obtain a reasonable sample size for individual parameter by

removing the corresponding scale. One example of demonstrating the benefits of

TESS is Findley’s (Findley, 1991) counterexample, which shows the inconsistency of

BIC in hypothesis testing. This issue can be resolved with application of TESS. As

pointed out by Berger et al. (2014), the utilization of TESS should not be limited to

the model selection and therefore we probe the impacts of TESS from the estimation

perspective.
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In Section 1.3.2, we review the model and present notations. In Section 3.2, we

study the independent g-prior where (g, σ2) is considered known and presents the

comparative results for Mi and Mc in terms of posterior variances. Then, in Section

3.3, we have a focused investigation on the independent ZS prior and perform an

asymptotic analysis for the frequentist property regarding the Bayesian estimators

obtained from Mi and Mc. Additionally, the corresponding results could be easily

applied to TESS. In Section 3.4, we perform numerical analyses to illustrate the

theorems in Section 3.3. At last, a real data analysis is presented for a demonstrative

purpose.

3.2 Independent G-priors with Known (σ2, g)

3.2.1 Priors and Posterior Distributions

Fact 3.1. For Mi, independent conventional g-prior for (β0,βi) is:

β0|σ2, g0 ∼ Np0(0, g0σ
2(X ′0iX0i)

−1), βi|σ2, gi ∼ Npi(0, giσ
2(X ′iXi)

−1) (3.1)

(a) Define Si = diag
(
g0(X

′
0iX0i)

−1, gi(X
′
iXi)

−1) and gi = (g0, gi)
′, the posterior

distribution for (β̃i|σ2, gi,yi) is NpI (β̃
B
i ,Σ

B
i ), where

β̃Bi = (X̃ ′iX̃i + S−1i )−1X̃ ′iyi and ΣB
i = σ2(X̃ ′iX̃i + S−1i )−1.
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(b) The marginal posterior variances for β0 and βi are:

V AR(β0|σ2,gi,yi,Mi) = σ2
{
X
′

0i[(1 + g−10 )Ini − (1 + g−1i )−1Pi]X0i

}−1
,

V AR(βi|σ2,gi,yi,Mi) = σ2
{

(g−1i + 1)−1(X
′

iXi)
−1 + (g−1i + 1)−2(X

′

iXi)
−1

X
′

iX0i{X
′

0i[(1 + g−10 )Ini − (1 + g−1i )−1Pi]X0i}−1X
′

0iXi(X
′

iXi)
−1
}
.

Fact 3.2. For Mc, the independent conventional g-prior is:

β0 ∼ Np0(0, g0σ
2(X

′

0X0)
−1),βi ∼ Npi(0, giσ

2(X
′

iXi)
−1), i = 1, 2. (3.2)

(a) Define S = diag (g0(X
′
0X0)

−1, g1(X
′
1X1)

−1, g2(X
′
2X2)

−1) and g = (g0, g1, g2).

The posterior distribution for (β̃|σ2, g,y) is normal distribution with posterior

mean β̃B and ΣB, where

β̃B = (X̃ ′X̃ + S−1)−1X̃ ′y and ΣB = σ2(X̃ ′X̃ + S−1)−1.

(b) The marginal posterior variances for β0,β1,β2 are:

V AR(β0|σ2, g,y,Mc) = σ2
{
X
′

01[(1 + g−10 )In1 − (1 + g−11 )−1P1]X01

+X
′

02[(1 + g−10 )In2 − (1 + g−12 )−1P2]X02

}−1
,

V AR(β1|σ2, g,y,Mc) = σ2
{

(1 + g−11 )−1(X
′

1X1)
−1 + (1 + g−11 )−2(X

′

1X1)
−1

X
′

1X01

{ 2∑
i=1

X
′

0i[(1 + g−10 )Ini − (1 + g−1i )−1Pi]X0i

}−1
X
′

01X1(X
′

1X1)
−1
}
,

V AR(β2|σ2, g,y,Mc) = σ2
{

(1 + g−12 )−1(X
′

2X2)
−1 + (1 + g−12 )−2(X

′

2X2)
−1
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X
′

2X02

{ 2∑
i=1

X
′

0i[(1 + g−10 )Ini − (1 + g−1i )−1Pi]X0i

}−1
X
′

02X2(X
′

2X2)
−1
}
.

Theorem 3.1. With independent g-priors in (3.1) for Mi and in (3.2) for Mc,

V AR(β0|σ2, gi,yi,Mi) > V AR(β0|σ2, g,y,Mc), (3.3)

V AR(βi|σ2, gi,yi,Mi) ≥ V AR(βi|σ2, g,y,Mc). (3.4)

Proof. See Appendix A.2.1.

In fact, results in 3.3 and 3.4 hold no matter what values g0, g1, g2, n1 and n2 take.

On the premises of Theorem 3.1, for common regression coefficients, combining data

always provides more precise estimates. For specific regression coefficients, combin-

ing data provides at least equivalently precise estimates with respect to posterior

variances. One special case would be X ′0iXi = 0, which has been widely adopted

in hypothesis testing or variable selection using g-priors. It’s easy to check that

V AR(βi|σ2, gi,yi,Mi) = V AR(βi|σ2, g,y,Mc) by the proof of Theorem 3.1. This

indicates that, when the design matrix is block diagonal, there is no benefits for βi

with data combining from the estimation perspective. Also, notice that Theorem 3.1

assumes g0, g1 and g2 are the same for Mi and Mc. One may be interested in the case

of setting different g values before and after the combining. We wouldn’t pursue this

aspect here. For one thing, recommended fixed g-priors in model selection generally

lead to overly biased posterior means and it would be better to set g as a large number

for estimation. Since ZS prior has better properties and depends on the sample size,

we would pursue using different g-priors for Mi and Mc with ZS prior.

The following corollary gives a special case where the intercept is only term shared
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by two data sources.

Corollary 3.1. Assume that X0i = 1ni, it reduces to the case when two sources only

share the same intercept. Define si as the summation of all elements in the projection

matrix Pi. For Mi,

V AR(β0|gi,yi,Mi) = σ2{(1 + g−10 )ni − (1 + g−1i )−1si}−1,

V AR(βi|gi,yi,Mi) = σ2
{

(g−1i + 1)−1(X
′

iXi)
−1 + (g−1i + 1)−2

{(1 + g−10 )ni − (1 + g−1i )−1si}−1(X
′

iXi)
−1X

′

iJniXi(X
′

iXi)
−1}.

For Mc,

V AR(β0|g,y,Mc) = σ2{
2∑
i=1

(1 + g−10 )ni − (1 + g−1i )−1si}−1,

V AR(β1|g,y,Mc) = σ2
{

(g−11 + 1)−1(X
′

1X1)
−1 + (g−11 + 1)−2

{
2∑
i=1

(1 + g−10 )ni − (1 + g−1i )−1si}−1(X
′

1X1)
−1X

′

1Jn1X1(X
′

1X1)
−1},

V AR(β2|g,y,Mc) = σ2
{

(g−12 + 1)−1(X
′

2X2)
−1 + (g−12 + 1)−2

{
2∑
i=1

(1 + g−10 )ni − (1 + g−1i )−1si}−1(X
′

2X2)
−1X

′

2Jn2X2(X
′

2X2)
−1}.

We can see that V AR(βi|g,y,Mc) ≤ V AR(βi|gi,yi,Mi) and V AR(β0|g,y,Mc) ≤

V AR(β0|gi,yi,Mi) if gi ≥ g for i = 1, 2. This result can be obtained by the inequality

(1 + g−10 )ni − (1 + g−1i )−1si ≥ 0.
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3.2.2 Frequentist Properties for β̃Bi and β̃B

Fact 3.3. (a) For Mi, the frequentist distribution for β̃Bi is N(mi,Vi), where

mi = (X̃ ′iX̃i + S−1i )−1X̃ ′iX̃iβ̃i, Vi = σ2(X̃ ′iX̃i + S−1i )−1X̃ ′iX̃i(X̃
′
iX̃i + S−1i )−1.

(b) For Mc, the frequentist distribution for β̃B is N(m,V ), where

m = (X̃ ′X̃ + S−1)−1X̃ ′X̃β̃, V = σ2(X̃ ′X̃ + S−1)−1X̃ ′X̃(X̃ ′X̃ + S−1)−1.

Remark 3.1. If we let g0, g1, g2 go ∞, the frequentist variances reduce to Vi =

σ2(X̃ ′iX̃i)
−1 and V = σ2(X̃ ′X̃)−1. Consequently, the frequentist variances from Mc

are smaller than or equal to Mi for β0,β1 and β2, respectively.

3.3 Independent Zellner-Siow Priors

In this subsection, we consider independent ZS prior, where (σ2, g) is considered

unknown.

3.3.1 Priors and Posterior Distributions

We first present the priors for Mi and Mc, and show their corresponding posterior

distributions. For Mi, we use priors:

π(σ2) ∝ 1

σ2
,

β0|g0, σ2 ∼ Np0(0, g0niσ
2(X ′0iX0i)

−1),
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βi|gi, σ2 ∼ Npi(0, giniσ
2(X ′iXi)

−1),

π(gi) ∝ g
− 3

2
i exp(− 1

2gi
), i = 0, 1, 2. (3.5)

For Mc, we use priors:

π(σ2) ∝ 1

σ2
,

β0|g0c, σ2 ∼ Np0(0, g0cnσ
2(X ′0X0)

−1),

βi|gic, σ2 ∼ Npi(0, gicnσ
2(X ′iXi)

−1), i = 1, 2,

π(gic) ∝ g
− 3

2
ic exp(− 1

2gic
), i = 0, 1, 2. (3.6)

Define the covariance matrix for β̃i as Ci = nidiag
(
g0(X

′
0iX0i)

−1, gi(X
′
iXi)

−1) and

the covariance matrix for β̃ as C = ndiag
(
g0c(X

′
0X0)

−1, g1c(X
′
1X1)

−1, g2c(X
′
2X2)

−1)
in Mi and Mc, respectively.

Remark 3.2. In Section 3.2, we use the same g0, g1, g2 for Mi and Mc. However, in

Section 3.3, it is equivalent to use gi ∼ IG(1/2, ni/2) for Mi but gic ∼ IG(1/2, n/2),

where we allow gi and gic to adjust according to the sample size for Mi and Mc.

SinceMi andMc share similar structures regarding the posterior distributions, we

only present the results for Mi for brevity. The Bayesian estimator β̃Bi for β̃i is:

β̃Bi = E(β̃i|yi,Mi) = E
(
E(β̃i|σ2, g0, gi,yi)|yi,Mi

)
= E

(
(X̃ ′iX̃i +C−1i )−1X̃ ′iyi|yi,Mi

)
. (3.7)

The posterior variance of (β̃i|yi,Mi) can be computed by the total law of variation
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and the law of total expectation as below:

V AR(β̃i|yi,Mi)

=E(V AR(β̃i|σ2, g0, gi,yi)|yi,Mi) + V AR
(
E(β̃i|σ2, g0, gi,yi)|yi,Mi

)
=E

(
σ2(X̃ ′iX̃i +C−1i )−1|yi,Mi

)
+ V AR

(
(X̃ ′iX̃i +C−1i )−1X̃ ′iyi|yi,Mi

)
=E
[
E(σ2|g0, gi,yi)(X̃ ′iX̃i +C−1i )−1|yi,Mi

]
+ V AR

[
(X̃ ′iX̃i +C−1i )−1X̃ ′iyi|yi,Mi

]
=E

(
y′i(Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i)yi
ni − 2

(X̃ ′iX̃i +C−1i )−1|yi,Mi

)

+V AR
(
(X̃ ′iX̃i +C−1i )−1X̃ ′iyi|yi,Mi

)
. (3.8)

3.3.2 Reparameterization of g

Next, we explore the behaviors of the Bayesian estimators from Mi and Mc, which

are β̃Bi and β̃Bc , respectively. Since a direct integration for the marginal posterior

distributions in terms of g0 or gi is mathmetically difficult, we consider a special

case, whereX0i andXi are orthogonal, for a theoretical guidance. Notice that this is

actually the worse case where there is no information borrowing between the common

and specific factors. Namely, we expect better performances for the non-orthogonal

design.

When X ′0iXi = 0, the joint posterior distribution of g0 and gi in Mi is:

f(g0, gi|yi) ∝
(g0gi)

− 3
2 (1 + g0ni)

− p0
2 (1 + gini)

− pi
2 exp

(
− g0+gi

2g0gi

)[
y′i
(
Ini −

g0ni
1+g0ni

PX0i
− gini

1+gini
PXi

)
yi

]ni/2 , (3.9)

where PX0i
and PXi are the projection matrices generated by X0i and Xi. To make
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(3.9) more tracktable, we transform (g0, gi) through:

t0 =
g0ni

1 + g0ni
, ti =

gini
1 + gini

, (3.10)

R2
0i = y′iPX0i

yi/y
′
iyi and R2

i = y′iPXiyi/y
′
iyi, the density in (3.9) is equivalent to:

f(t0, ti|yi) ∝
(t0ti)

− 3
2 (1− t0)

p0−1
2 (1− ti)

pi−1

2 exp
(
− ni(t0+ti)

2t0ti

)
(1− t0R2

0i − tiR2
i )
ni/2

. (3.11)

Similarly, for Mc, if we transform (g0, g1, g2) into:

t0c =
g0n

1 + g0n
, t1c =

g1n

1 + g1n
, t2c =

g2n

1 + g2n
, (3.12)

then we have:

f(t0c, t1c, t2c|y) ∝
∏2

j=0 t
−3/2
jc (1− tjc)(pj−1)/2exp

(
− n/(2tjc)

)
(1− t0cR2

0 − t1cR2
1 − t2cR2

2)
n/2

, (3.13)

where R2
0 = y′PX0y/y

′y. With the simplified expressions in densities (3.11) and

(3.13), the Bayesian estimators defined in equation (3.7) reduce to:

β̃Bi =

βBi,0
βBi,i

 =

E(t0|yi,Mi)(X
′
0iX0i)

−1X ′0iyi

E(ti|yi,Mi)(X
′
iXi)

−1X ′iyi

 =

E(t0|yi,Mi)β̂
L
i,0

E(ti|yi,Mi)β̂
L
i,i

 , (3.14)

where βBi,0 and βBi,i indicate the Bayesian estimators for β0 and βi in Mi, respectively,

β̂Li,0 = (X ′0iX0i)
−1X ′0iyi and β̂Li,i = (X ′iXi)

−1X ′iyi are the least squares estimators

for β0 and βi.
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Similarly, in Mc, the Bayesian estimator for β̃ is denoted as β̃Bc with:

β̃Bc =


βBc,0

βBc,1

βBc,2

 =


E(t0c|y,Mc)(X

′
0X0)

−1X ′0y

E(t1c|y,Mc)(X
′
1X1)

−1X ′1y1

E(t2c|y,Mc)(X
′
2X2)

−1X ′2y2

 =


E(t0c|y,Mc)β̂

L
c,0

E(t1c|y,Mc)β̂
L
c,1

E(t2c|y,Mc)β̂
L
c,2

 , (3.15)

where βBc,0 and βBc,i are the Bayesian estimators for β0 and βi in Mc, respectively,

β̂Lc,0 = (X ′0X0)
−1X ′0y and β̂Lc,i = (X ′iXi)

−1X ′iyi correspond to the least squares

estimators for β0 and βi.

3.3.3 Conditional Information Asymptotic Analyses

Here, we establish asymptotic frequentist properties regarding β̃Bi and β̃Bc respec-

tively. The asymptotic process under consideration is defined in Som et al. (2015)

and Som et al. (2016) in the context of hyper-g prior. It describes a situation where

the model is dominated by a typical group of coefficients or, equivalently, the size

of one group of coefficients is much larger than the rest. Different from the regu-

lar asymptotic theories, it is referred to as the sample size n fixed and dimension p

fixed asymptotic process and considered to address the conditional Lindley’s paradox

(CLP), which will occur if a dependent hyper-g prior is employed. Specifically, with

the dependent version of hyper-g prior, in the comparison of a pair of nested models,

the Bayes factor always chooses a smaller model if at least one of the common regres-

sion coefficients is relatively larger compared with additional coefficients in the bigger

model. This phenomenon not only exists in hyper-g prior but also the ZS prior when

it comes to the hypothesis testing. Since our primary interest lies in the independent

ZS prior in this subsection, the CLP is no longer our concern, but how the defined
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sequence impact the Bayesian estimator in Mi and Mc in terms of estimation and

whether the sequence has the same impact on Mi and Mc remain unstudied.

Recall that our models includes three groups of regression coefficients β0,β1,β2

and we perform two asymptotic analyses, where subsection 3.3.4 probes the case

where the common β0 is dominant over the specific β1 or β2 and 3.3.5 investigates

the case where the specific β1 is dominant over the common β0 and the specific β2.

3.3.4 Dominant Common Coefficients

In this subsection, we consider the case where dominant variables are common coef-

ficients β0 in the sense that the size of β0 is relatively large compared with βi. For

Mc, we consider {L(k)
c }∞k=1, where each element L(k)

c represents the linear model with:

L(k)
c = {X0,β

(k)
0 ,X1,β1,X2,β2, ε}, (3.16)

where we let ||β(k)
0 ||2 → ∞ as k → ∞ while {X0,X1,X2,β1,β2, ε} are held. Inter-

ested readers may refer to Som et al. (2016) for more details and discussions. Here, ε

is held in the sense that ε remains the same for all k. Notice that this represents the

situation where the likelihood is driven by one particular set of predictor variables.

Naturally, the sequence for Mi, i=1,2 is {L(k)
i }∞k=1 with element:

L
(k)
i = {X0i,β

(k)
0 ,Xi,βi, εi}. (3.17)

Lemma 3.1. With X ′0iXi = 0 and the defined sequence {L(k)
i }∞k=1, as k → ∞,

E(1/R
2(k)
0i |X0i,β

(k)
0 ,Xi,βi) → 1 with R2(k)

0i ∈ (0, 1).
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Proof. See Appendix A.2.2.

Remark 3.3. By Lemma 3.1, since 1/R
2(k)
0i > 1, as k → ∞, we have E(|1/R2(k)

0i −

1|) = E(1/R
2(k)
0i − 1) → 0, and therefore 1/R

2(k)
0i

L1→ 1, which implies that 1/R
2(k)
0i

converges to 1 in probability. By the continuous mapping theorem, we have R2(k)
0i

converges to 1 in probability. A similar argument can be applied to R2(k)
0 , R

2(k)
1 and

R
2(k)
2 .

Remark 3.4. Several seminal papers have addressed the Lindley’s paradox (Liang

et al. (2008)) as R2
0i → 1. However, the underlying sequence has been seldom explicitly

addressed. To the best of our knowledge, Som et al. (2015) is the first to formally

state the underlying sequence {L(k)
i } to explain R

(k)
0i → 1 and utilize the sequence

to demonstrate CLP. However, Som et al. (2015) utilized this type of convergence

vaguely and other types of convergence are clearer such as converging in probability

when it comes to model selection consistency or prediction consistency. Lemma 3.1

and Remark 3.3 first show that the convergence type with respect to the sequence {L(k)
i }

refers to the convergence in probability.

Lemma 3.2. For Mi, with X ′0iXi = 0 and the defined sequence {L(k)
i }∞k=1 in (3.17),

as k → ∞ and ||β(k)
0 ||2 → ∞, βB(k)

i,0 − β(k)
0 → (X ′0iX0i)

−1X ′0iεi in probability if

ni − p0 > 4. Similarly, for Mc, we have βB(k)
c,0 −β

(k)
0 → (X ′0X0)

−1X ′0ε in probability.

Proof. See Appendix A.2.3.

The lemma indicates that, under our defined sequences, the difference between the

Bayesian estimator for dominated variables and the true value converges in probability

to a random variable, whose expectation is zero.
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Now, we formally address the conditional asymptotic analyses with respect to the

Bayesian estimators for β0 in Mi and Mc.

Theorem 3.2. SupposeX ′0iXi = 0, and considerMi and priors in (3.5), ni−p0 > 4,

under the sequence {L(k)
i }∞k=1 in (3.17), there exists a subsequence with respect to β(mk)

0

such that if ||β(mk)
0 ||2 →∞,

(a) limmk→∞E
(
β
B(mk)
i,0 − β(mk)

0

)
= 0;

(b) limmk→∞E
(

[β
B(mk)
i,0 − β(mk)

0 ][β
B(mk)
i,0 − β(mk)

0

]′)
= σ2(X ′0iX0i)

−1.

Consider Mc and priors in (3.6), under the sequence {L(k)
c }∞k=1 in (3.16), there exists

a subsequence with respect to β(mk)
0 such that if ||β(mk)

0 ||2 →∞,

(c) limmk→∞E
(
β
B(mk)
c,0 − β(mk)

0

)
= 0;

(d) limmk→∞E
(

[β
B(mk)
c,0 − β(mk)

0 ][β
B(mk)
c,0 − β(mk)

0

]′)
= σ2(X ′0X0)

−1.

Proof. See Appendix A.2.5.

Theorem 3.2 (a) and (c) reveal that the Bayesian estimators for both Mi and Mc

are conditional asymptotically unbiased for the dominant common β0. Comparing

Theorem 3.2 (b) and (d), the frequentist variances for βB(mk)
c,0 in Mc is conditional

asymptotically smaller than βB(mk)
i,0 in Mi. Consequently, the MSEs for βB(mk)

c,0 in Mc

is also conditional asymptotically smaller than βB(mk)
i,0 in Mi.

Next, we would establish the conditional asymptotic analysis with respect to the

Bayesian estimators for the specific βi in Mi and Mc.

Recall that in Mi, E(ti|yi) has the following form:

∫ 1

0

∫ 1

0
t
− 3

2
0 t

− 1
2

i (1− t0)
p0−1

2 (1− ti)
pi−1

2 e
− ni

2t0
− ni

2ti (1− t0R2(k)
0i − tiR

2(k)
i )−

ni
2 dt0dti∫ 1

0

∫ 1

0
t
− 3

2
0 t

− 3
2

i (1− t0)
p0−1

2 (1− ti)
pi−1

2 e
− ni

2t0
− ni

2ti (1− t0R2(k)
0i − tiR

2(k)
i )−

ni
2 dt0dti

. (3.18)
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In fact, due to X ′0iXi = 0, if ||β(k)
0 || → ∞, then R

2(k)
0i , R

2(k)
0 → 1 and R

2(k)
i → 0.

Consequently, E(ti|yi,Mi) reduces to G(ni; pi) and E(ti|y,Mc) reduces to G(n; pi),

where

G(x; pi) =

∫ 1

0
t
− 1

2
i (1− ti)

pi−1

2 exp(− x
2ti

)dti∫ 1

0
t
− 3

2
i (1− ti)

pi−1

2 exp(− x
2ti

)dti
. (3.19)

Notice that G(ni; pi) and G(n, pi) do not depend on data yi or y when R
2(k)
i → 0.

In the comparison of Mi and Mc, their only difference lies in the sample size. The

following lemma states that G(x; pi) is nondecreasing with respect to x.

Lemma 3.3. If R2(k)
0i or R2(k)

0 → 1, we have R2(k)
i → 0 and G(x; pi) in (3.19) is

increasing with respect to x. Consequently, G(ni; pi) ≤ G(n; pi) for i = 1, 2.

Proof. See Appendix A.2.4.

Theorem 3.3. Suppose X ′0iXi = 0, and consider Mi and priors in (3.5), under the

sequence {L(k)
i }∞k=1, as ||β

(k)
0 ||2 →∞,

(a) limk→∞E
(
β
B(k)
i,i − βi

)
= [G(ni; pi)− 1]βi;

(b) limk→∞E
(

[β
B(k)
i,i − E(β

B(k)
i,i )][β

B(k)
i,i − E(β

B(k)
i,i )

]′)
= σ2G2(ni; pi)(X

′
iXi)

−1.

Consider Mc and priors in (3.6), under the sequence {L(k)
c }∞k=1,

(c) limk→∞E
(
β
B(k)
c,i − βi

)
= [G(n; pi)− 1]βi;

(d) limk→∞E
(

[β
B(k)
c,i − E(β

B(k)
c,i )][β

B(k)
c,i − E(β

B(k)
c,i )

]′)
= σ2G2(n; pi)(X

′
iXi)

−1.

Theorem 3.3 indicates that the Bayesian estimators for relatively undominant ran-

dom variables or the specific βi are asymptotically biased under the defined sequence
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and the magnitude of this biasness depends on G(x; pi). Additionally, compared with

Mi, the Bayesian estimator of the undominated specific βi in Mc has an asymptot-

ically increased frequentist variance but a decreased bias. Therefore, the resulting

MSEs for Mi and Mc depend on the trade-off of bias and variance.

By Theorems 3.2 and 3.3, the following result gives the comparison of MSEs in

the limiting case.

Theorem 3.4. Suppose X ′0iXi = 0. Under the defined sequence {L(k)
i }∞k=1 in Mi and

{L(k)
c }∞k=1 in Mc, we have

1. For β0, the MSE in Mc is asymptotically smaller.

2. For βi, let a = β′iβi, b = σ2tr((X ′iXi)
−1), if a/(a+b) > G(n; pi) > G(ni; pi) or a/(a+

b) < G(n; pi) < 2a/(a + b) − G(ni; pi), MSE in Mc is smaller. If 2a/(a + b) −

G(n; pi) < G(ni; pi) < a/(a+ b) < G(n; pi), MSE in Mc is larger.

3.3.5 Dominant Specific Coefficients

In this subsection, we investigate the case where the size of specific coefficients play a

dominant role in the model. Notice that the dominant coefficient is either β1 or β2.

Accordingly, the sequence for Mi, i = 1, 2 is {L(k)
i }∞k=1 with element:

L
(k)
i = {X0i,β0,Xi,β

(k)
i , εi}. (3.20)

Assume ‖βi‖ has a dominant effect, then the sequence for Mc is specified as:

L(k)
c = {X0,β0,Xi,β

(k)
i ,Xj,βj, ε}, (3.21)
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where i + j = 3, i, j = 1, 2, and we let ||β(k)
i ||2 → ∞ as k → ∞. Note that there is

no dominant effect in Mj and no sequence is associated with it. Results for Mi with

||βi|| being dominated can be easily extended to Mj with ||βj|| being dominant.

Again, under the orthogonality assumption X ′0iXi = 0, recall that R(k)
0 + R

(k)
1 +

R
(k)
2 ≤ 1 and therefore, if ||β(k)

i || → ∞ as k →∞, R(k)
i → 1, R

(k)
0 → 0, R

(k)
j → 0 forMc

and R(k)
i → 1, R

(k)
0i → 0 for Mi. We would directly present the corresponding results

since detailed proofs have been provided for dominant common regression coefficients

in Subsection 3.3.4 and they can be tailored to dominant specific regression coefficients

without efforts.

Theorem 3.5. Suppose X ′0iXi = 0, and consider Mi and priors in (3.5), assume

ni − pi > 4, under the sequence {L(k)
i }∞k=1 in (3.20), there exists a subsequence with

respect to β(mk)
i such that if ||β(mk)

i || → ∞, we have:

(a) limmk→∞E
(
β
B(mk)
i,i − β(mk)

i

)
= 0;

(b) limmk→∞E
(

[β
B(mk)
i,i − β(mk)

i ][β
B(mk)
i,i − β(mk)

i

]′)
= σ2(X ′iXi)

−1.

Consider Mc and priors in (3.6), under the sequence {L(k)
c }∞k=1 in (3.21), there exists

a subsequence with respect to β(mk)
i such that if ||β(mk)

i || → ∞,

(c) limmk→∞E
(
β
B(mk)
c,i − β(mk)

i

)
= 0;

(d) limmk→∞E
(

[β
B(mk)
c,i − β(mk)

i ][β
B(mk)
c, − β(mk)

i

]′)
= σ2(X ′iXi)

−1.

Notice that when the specific regression coefficients are driven predictors, Mi

provides Bayesian estimates as good as Mc for β(mk)
i in terms of the conditional

asymptotic bias, frequentist variance and MSE. For the common β0, we have the

following results.
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Theorem 3.6. Suppose X ′0iXi = 0, and consider Mi and priors in (3.5) with the

sequence {L(k)
i }∞k=1 in (3.20), if ||β(k)

i || → ∞, we have:

(a) limk→∞E
(
β
B(k)
i,0 − β0

)
= (G(ni; p0)− 1)β0;

(b) limk→∞E
(

[β
B(k)
i,0 − E(β

B(k)
i,0 )][β

B(k)
i,0 − E(β

B(k)
i,0 )

]′)
= σ2(G(ni; p0))

2(X ′0iX0i)
−1.

Consider Mc and priors in (3.6), under the sequence {L(k)
c }∞k=1 in (3.21), we have:

(c) limk→∞E
(
β
B(k)
c,0 − β0

)
= (G(n; p0)− 1)β0;

(d) limk→∞E
(

[β
B(k)
c,0 − E(β

B(k)
c,0 )][β

B(k)
c,0 − E(β

B(k)
c,0 )

]′)
= σ2(G(n; p0))

2(X ′0X0)
−1.

Since the logic is similar to Section 3.3.4, G(x; p0) is the same function as equation

(3.19) with p0 replacing pi and t0 replacing ti. It follows immediately from Theorem

3.5 that the asymptotic MSE remains the same in terms of βi forMi andMc. However,

for the common β0, Theorem 3.6 indicates thatMc has an asymptotic larger bias and

uncertain change in the asymptotic frequentist variance. Therefore, the comparison

of asymptotic MSE with respect to the common β0 between Mi and Mc is less clear.

3.3.6 The Effective Sample Size (TESS)

This section mainly targets at the application of TESS to our framework. We would

use Berger et al. (2014) as a major reference and cite the results directly for the linear

regression.

Consider Case 3 in Section 3.2 from Berger et al. (2014), for a simple linear

regression (SLR) problem, Yi = Xiβ+εi, εi
i.i.d.∼ N(0, σ2), i = 1, · · · , n, with the design

matrix X = (X1, · · · , Xn)′ and Xi ∼ N(k, 1) randomly. With facts E(
∑n

i=1X
2
i ) =
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n(k2 + 1) and E(max |Xk|) ≈ |k| + (2 log n − 3)1/2 for large n, the effective sample

size is

(a) for k = 0 and n is large,

ne ≈ n

2 log n− 3
; (3.22)

(b) for k large compared with log(n), ne ≈ nk2/k2 = n.

Remark 3.1. Replacing N(k, 1) with N(k, τ 2) leads to the same TESS.

Then, we generalize results for SLR to a multiple linear regression problem under

some conditions. Consider Y = Xβ + ε, where Y = (Y1, · · · , Yn)′ ∈ IRn, β =

(β1, · · · , βp)′ ∈ IRp, ε = (ε1, · · · , εn)′ with εi ∼ N(0, σ2), X = (x1, · · · ,xp) ∈ IRn×p is

the design matrix and the jth column xj = (X1j, · · · , Xnj) is a vector of realizations

from a random variable Xj. Consider any scalar linear transformation ξ = ν ′β and

assume that Xj and Xj′ are independent and identically distributed with mean 0,

we then derive its TESS. Follow the basic expression of TESS in equation (2.1) from

Berger et al. (2014), TESS denoted as ne has the following form:

ne =
|ν|2

ν ′CF−12 Cν
, (3.23)

where F2 = X ′X/σ2 is Fisher information matrix for β and C = diag(maxj |Xij|/σ).

Note that TESS in (3.23) is free from scales of σ and design matrix X. CF−12 C in

(3.23) can be evaluated through its inverse K = (CF−12 C)−1 for convenience. Its
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diagonal element kjj is:

kjj =

∑n
i X

2
ij

(maxi |Xij|)2
, (3.24)

and its off-diagonal element kjj′ is:

kjj′ =

∑
iXijXij′

maxi |Xij|maxi |Xij′|
, j 6= j′ (3.25)

Since E(
∑

iXijXij′) ≈ cov(Xj, Xj′) = 0, kjj′ ≈ 0. Then, K ≈ diag(k11, · · · , kpp) and

CF−12 C ≈ diag(k−111 , · · · , k−1pp ).

Remark 3.5. Notice that:

k−1jj ≈ (Emax
i
|Xij|)2/E(

n∑
i

X2
ij) and nej ≈ (Emax

i
|Xij|)2/E(

n∑
i

X2
ij),

since Xj and Xj′ are independently and identically distributed, ne1 = · · · = nep. For

example, if Xj ∼ N(0, σ2), by (3.22), ne1 = · · · = nep = n/(2log(n)− 3) = ne.

Next, we focus on the application of TESS to the ZS prior. For a transformation

ξ = V β, such that σ2V (X ′X)−1V = D, whereD is a diagonal matrix with diagonal

elements di. As recommended by Berger et al. (2014), the sample size n in the ZS

prior should be replaced by the effective sample size for each coordinate of ξ and the

prior for ξ has the following form ξ ∼ Np(0, gdiag(ne1d1, · · · , nepdp)).When Xj and Xj′

are independently and identically distributed with E(Xj) = E(Xj′) = 0, by Remark

3.5, it reduces to ξ ∼ Np1(0, gn
ediag(d1, · · · , dp1)).

Since (X ′X)−1 = PDP ′ by spectral decomposition, where P is an orthogo-

nal matrix comprising of its eigenvectors and D is a diagonal matrix comprising of
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eigenvalues, if we set V = P ′, the equivalent prior for β with TESS is:

β ∼ Np(0, gσ
2ne(X ′X)−1), g ∼ IG(0.5, 0.5).

Compared with ZS prior without TESS, the only difference lies in the scale parameter

n and ne.

Remark 3.6. Notice that TESS highly depends on the distribution and the form

of design matrix. If each column of the design matrix is independently identically

distributed, TESS for any linear combination of regression coefficients remain the

same. Admittedly, this assumption may not be easily achieved in practice. When

the design matrix does not arise from normal distribution or has more complicated

generation mechanisms (e.g., Xi and Xj are neither independent nor identical; non-

standard distributions; no information about the distribution of the design matrix),

TESS can still be computed numerically even though an approximation or explicit

form is not available.

At last, we formally state the asymptotic results for ZS prior with TESS in com-

parison of Mi and Mc. For regression coefficients of interests, notice that the corre-

sponding Bayesian estimators in either (3.14) forMi or (3.15) forMc can be written as

the product of a posterior expectation of g and a least squares estimate. Substituting

the sample size with the effective sample size would only impact Bayesian estimators

through the posterior expectation of g. For example, for common coefficients β0 in

Mi, βBi,0 = F (ni, p0, R
2
0i)β̂

L
i,0, where F (ni, p0, R

2
0i) = E(t0|yi) with t0 = g0ni/(1+g0ni).

Therefore, all the procedures in Section 3.3.4 and 3.3.5 can be applied step by step

with a simple change of replacing ni in the prior with the effective sample size. This
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rationale also applies to the specific coefficients βi and Mc.

With Remark 3.5, ZS prior conditioned on hyperparameter with TESS adjustment

for β0 and βi are described below. For Mi, we have :

β0|g0, σ2 ∼ Np0(0, g0n
e
i,0σ

2(X ′0iX0i)
−1), (3.26)

βi | gi, σ2 ∼ Npi(0, gin
e
iσ

2(X ′iXi)
−1), (3.27)

where nei,0 indicates TESS for common coefficients β0 in Mi, and nei indicates TESS

for specific coefficients βi in Mi and Mc. For Mc, we have:

β0|g0c, σ2 ∼ Np0(0, g0cn
e
c,0σ

2(X ′0X0)
−1), (3.28)

βi | gic, σ2 ∼ Npi(0, gicn
e
iσ

2(X ′iXi)
−1), (3.29)

where nec,0 indicates TESS for common coefficients β0 inMc. Priors in (3.26) to (3.29)

shows that the resulting TESS for βi remains exactly the same due to the same design

matrices in Mi and Mc while TESS differs for β0 in individual and combined model.

Accordingly, the asymptotic results regarding βi are the same Mi and Mc while β0

varies. In an analogy to Theorems 3.2 to 3.6, the asymptotic analyses for ZS prior

with TESS adjustment is described below.

Theorem 3.7. When the common coefficient β0 is dominant, the asymptotic bias

and covariance regarding β1 and β2 for Mi are the same as Mc, which is [G(nei ; pi)−

1]βi and σ2G2(nei ; pi)(X
′
iXi)

−1. The asymptotic bias regarding β0 for Mi and Mc are

both zero, the asymptotic variance regarding β0 for Mi and Mc are σ2(X ′0iX0i)
−1

and σ2(X ′01X01 +X ′02X02)
−1, respectively. When the specific coefficient β1 or β2 is

dominant, the asymptotic bias and covariance matrix β1 or β2 in Mi are the same as
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Table 3.1: Summary of Theorems 3.2 - 3.7. “S”, “L”,“UNC” and “UNS” indicate that
the statistics is smaller, larger, unchanged and unsure in Mc compared with Mi.

Dominant Term Parameter Statistics ZS TESS
Common β0 β0 Bias UNC UNC

V ARF S S
MSE S S

βi Bias S UNC
V ARF L UNC
MSE UNS UNC

Specific βi β0 Bias S S
V ARF UNS UNS
MSE UNS UNS

βi Bias UNC UNC
V ARF UNC UNC
MSE UNC UNC

Mc, which are zero and σ2(X ′iXi)
−1. The asymptotic bias and covariance matrix for

β0 for Mi are [G(nei,0; p0)− 1]β0 and σ2(G(nei,0; p0))
2(X ′0iX0i)

−1, respectively, and for

Mi are [G(nec,0; p0)− 1]β0 and σ2(G(nec,0; p0))
2(X ′01X01 +X ′02X02)

−1, respectively.

Theorem 3.7 indicates that the overall asymptotic frequentist variance and MSE

are equal or smaller in Mc. In Table 3.1 is a summary of key conclusions from

Theorems 3.2 to 3.7, which hopefully serves as a quick reference for interested readers.

3.3.7 Sampling Distributions

For Mi, the following distributions are applied to do the computation:
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1. Sample σ2|g0, gi,yi ∼ IG
(
ni/2, y

′
i

[
Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i

]
yi/2

)
;

2. Sample g0|σ2, gi,β0,yi ∼ IG
(

(p0 + 1)/2, β′0X
′
0iX0iβ0/(2niσ

2) + 1/2
)
;

3. Sample gi|σ2, g0,βi,yi ∼ IG
(

(pi + 1)/2,β′iX
′
iXiβi/(2niσ

2) + 1/2
)
;

4. Sample β̃i|σ2, g0, gi,yi ∼ NpI

(
(X̃ ′iX̃i +C−1i )−1X̃ ′iyi, σ

2(X̃ ′iX̃i +C−1i )−1
)
.

For Mc, the following distributions are used to do the computation:

1. Sample σ2|g0c, g1c, g2c,y ∼ IG
(
nT/2,y

′[InT − X̃(X̃ ′X̃ +C−1)−1X̃ ′
]
y/2

)
;

2. Sample g0c|σ2, gic,β0,y ∼ IG
(

(p0 + 1)/2,β′0X
′
0X0β0/(2nTσ

2) + 1/2
)
;

3. Sample gic|σ2, g0c,βi,y ∼ IG
(

(pi + 1)/2,β′iX
′
iXiβi/(2nTσ

2) + 1/2
)
, i = 1, 2,;

4. Sample β̃|σ2, g0c, g1c, g2c,y ∼ NpT

(
(X̃ ′X̃ +C−1)−1X̃ ′y, σ2(X̃ ′X̃ +C−1)−1

)
.

Remark 3.7. An alternative Gibbs sampling algorithm for Mi is as below:

1. Sample (g0|gi,yi) with ratio-of-uniform by

π(g0|gi,yi) ∝
g
− 3

2
0 exp(− 1

2g0
)|CiX̃

′
iX̃i + Ip0+pi |−

1
2{

y′i
[
Ini − X̃i(X̃ ′iX̃i +C−1i )−1X̃ ′i

]
yi

}ni
2

;

2. Sample (gi|g0,yi) with ratio-of-uniform by

π(gi|g0,yi) ∝
g
− 3

2
i exp(− 1

2gi
)|CiX̃

′
iX̃i + Ip0+pi |−

1
2{

y′i
[
Ini − X̃i(X̃ ′iX̃i +C−1i )−1X̃ ′i

]
yi

}ni
2

;

3. Sample (σ2|g0, gi,yi) ∼ IG
(
ni/2,y

′
i

[
Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i

]
yi/2

)
;
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4. Sample (β̃i|σ2, g0, gi,yi) ∼ NpI

(
(X̃ ′iX̃i +C−1i )−1X̃ ′iyi, σ

2(X̃ ′iX̃i +C−1i )−1
)
.

We show the derivation in Appendix (A.2.6). This sampling procedure enables us to

sample or analyze directly from the joint distribution of (g0, gi|yi) and provide better

mixing compared with the one we used. However, it takes more time to compute. For

example, to obtain 1000 samples, this sampling procedure takes 24 minutes while the

method we used only takes 2 minutes.

Remark 3.8. In fact, given Mi or Mc, our case is a special case of Min and Sun

(2016), where they considered the independent ZS prior in the linear model with

grouped covariates. Without loss of generality, we only present results for M1 as

an illustration. Under the commutativity assumption of block projection matrices, the

marginal density m(y1|g0, g1) is proportional to:

m(y1|g0, g1) ∝ (1 + g0)
− p0

2 (1 + g1)
− p1

2 (1 + g0 + g1)
− p2

2 (y′1(In1 −
g0

1 + g0
P0 −

g1
1 + g1

P1

+

(
g0g1

(1 + g0)(1 + g0 + g1)
+

g0g1
(1 + g1)(1 + g0 + g1)

)
P0P1)y1)

−n1
2 ,

where p0 =rank(P0(In−P1)), p1 =rank(P1(In−P0)) and p2 =rank(P0P1). Here, for

convenience in notations, we set P0 = PX01 and P1 = PX1. If we further assume the

orthognality of X ′0X1 = 0, then P0P1 = P1P0 = 0 with p0 =rank(P0) =rank(X0),

p1 =rank(P1) =rank(X1), and p2 = 0. The marignal density is simplified into:

m(y1|g0, g1) ∝ (1 + g0)
− p0

2 (1 + g1)
− p1

2 (y′1(In −
g0

1 + g0
P0 −

g1
1 + g1

P1)y1)
−n1

2 , (3.30)

which is exactly the same as our case if we replace g0, g1 with g0n1, g1n1 as we adopt

a slightly different parameterization for the prior on regression coefficients.
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Proof. See Appendix A.2.7.

3.4 Numerical Analyses

This section aims at investigating the relative performances of Mi and Mc from the

estimation perspective through simulation studies.

3.4.1 Model Comparison of Mi and Mc

We consider two sets of parameters for the regression coefficients with p0 = p1 = p2 =

3 as below:

• Set 1: β0 = (10, 5, 1)′, β1 = (0.1, 0.2, 0.1)′, β2 = (0.2, 0.1, 0.1)′, where the

common β0 is dominant over the specific β1 and β2 in size;

• Set 2: β0 = (0.1, 0.2, 0.1)′, β1 = (10, 5, 1)′, β2 = (0.2, 0.1, 0.1)′, where the

specific β1 is dominant over the common β0 and the specific β2 in size.

For the design matrices, we consider orthogonal X ′0iXi 6= 0 and non-orthogonal

design X ′0iXi = 0 with (X0i,Xi) generated from the normal distribution N(0, 3)

[Design 1] and uniform distribution Unif(−3, 3) [Design 2]. For priors, we consider

the regular ZS prior as well as TESS prior. We set σ2 = 1 and n1 = n2 = 10. For each

combination of coefficients and design matrices, we collect frequentist properties of

the Bayesian estimator including its sampling variance, bias and MSE. Each Bayesian

estimator is computed through 20,000 samples with 10,000 burn-ins. The frequentist

properties are calculated with 500 data sets.
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Tables 3.2 - 3.5 presents the Bias, V ARF , andMSE for each grouped parameter.

Bias is the summation of absolute value of bias for each element in βj, j = 0, 1, 2 and

describes the overall absolute difference between the expected value of the Bayesian

estimator and its true value. V ARF shows the overall frequentist variance of the

Bayesian estimator for βj, which is the summation of diagonal elements of its sampling

covariance matrix. Similarly, MSE is reported in groups. The bold number indicates

Mc has a smaller value.

Our simulation results consolidate theorems in Subsections 3.3.4 and 3.3.5. Sev-

eral main findings are summarized as follows. First, when the design matrices are

non-orthogonal X ′0iXi 6= 0, Mc uniformly outperform Mi in terms of V ARF and

MSE despite of the prior specifications, the distributions of the design matrices and

the dominant coefficients. This is within our expectation because it not only enables

information borrowing between data sources but also the design matrices. Second,

no matter β0 or β1 is dominant, Mc indicates uniformly better estimations for the

common β0 than β1 or β2 across different distributions for design matrices, which

is reasonable since β0 is shared by two data sources and therefore more information

is available for the estimation. Third, overall, ZS and TESS show similar behav-

iors across all the combinations, especially when the design matrices are from the

normal distribution. When comparing Mi and Mc, TESS shows uniformly smaller

V ARF and MSE for βi while ZS is less stable. Also, TESS shows slightly better or

equivalent performances in terms of smaller V ARF and MSE compared with ZS in

most cases. At last, we may find that the Bayesian estimator is less biased for the

dominant coefficients, which echoes our theoretical results as the Bayesian estimator

is asymptotically unbiased for the dominant coefficients.
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Tables 3.7 - 3.6 presents the percentages of Mc winning over Mi among 500 sim-

ulations in terms of a smaller posterior variance. We have several main findings.

First, in general, it is more likely to obtain a smaller posterior variance in Mc for

the non-orthogonal design matrix despite of parameters, priors, distributions of the

design matrix and dominant coefficients. Second, compared with ZS, TESS shows a

smaller posterior variance under an orthogonal design despite of parameters or dis-

tributions of the design matrix. It also tends to have a smaller posterior variance for

the non-orthogonal design. For example, when the design matrix is from the uniform

distribution, TESS outperforms ZS in 7 out of 8 comparisons. Third, common coeffi-

cients β0 presents higher percentages compared with the specific coefficients despite

of other factors. For example, β0 reaches at least 90% in 30 out of 32 comparisons

with the highest 99.6% while βi only reaches at least 70% in 20 out of 32 compar-

isons with the highest 97.8%. We also notice that the percentage of smaller posterior

variance in Mc in terms of β2 is quite low in the comparison of M2 and Mc when the

specific β1 is dominant, which is within our expectation and more explanations are

offered in Section 3.6.

3.4.2 Sensitivity Analyses for Mc

To evaluate the relative performance of Mc compared with the golden standard Mgs

in (2.36), we perform sensitivity analyses of Mc under the independent ZS priors

in Section 3.3.1. As Section 3.4.1 adopted a balanced design regarding sample size

(n1 = n2) and dimension of coefficients (p0 = p1 = p2), we additionally consider the

imbalanced design to serve as a complement. We also consider the case where β1

and β2 are dominant over β0, which has not been considered in the previous section.
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Table 3.2: Comparisons of Mi and Mc under Design 1 and Set 1

Parameters Design Orthogonal Non-orthogonal
ZS Statistics M1 M2 Mc M1 M2 Mc

β0 Bias 0.0301 0.0151 0.0127 0.1142 0.0585 0.0180
V ARF 0.1116 0.1573 0.0531 0.4836 0.1867 0.0884
MSE 0.1119 0.1574 0.0532 0.4887 0.1882 0.0885

β1 Bias 0.0360 - 0.0204 0.0504 - 0.0473
V ARF 0.1476 - 0.1681 0.1534 - 0.1532
MSE 0.1482 - 0.1683 0.1554 - 0.1549

β2 Bias - 0.0645 0.0404 - 0.0925 0.0570
V ARF - 0.1337 0.1519 - 0.1181 0.1246
MSE - 0.1355 0.1527 - 0.1211 0.1260

TESS
β0 Bias 0.0263 0.0430 0.0131 0.1359 0.0802 0.0504

V ARF 0.1558 0.1722 0.0591 0.4622 0.1754 0.0773
MSE 0.1560 0.1729 0.0592 0.4687 0.1781 0.0783

β1 Bias 0.0959 - 0.0976 0.0816 - 0.1031
V ARF 0.1100 - 0.1096 0.1126 - 0.0992
MSE 0.1133 - 0.1131 0.1175 - 0.1059

β2 Bias - 0.1141 0.1144 - 0.1325 0.1204
V ARF - 0.1441 0.1432 - 0.0896 0.0812
MSE - 0.1492 0.1483 - 0.0960 0.0873

Table 3.3: Comparisons of Mi and Mc under Design 1 and Set 2

Parameters Design Orthogonal Non-orthogonal
ZS Statistics M1 M2 Mc M1 M2 Mc

β0 Bias 0.0809 0.0518 0.0483 0.1040 0.0697 0.0643
V ARF 0.0782 0.1151 0.0430 0.3355 0.1256 0.0688
MSE 0.0807 0.1163 0.0440 0.3416 0.1291 0.0705

β1 Bias 0.0528 - 0.0499 0.1245 - 0.0809
V ARF 0.2150 - 0.2147 0.2133 - 0.1925
MSE 0.2161 - 0.2156 0.2213 - 0.1954

β2 Bias - 0.0584 0.0407 - 0.0839 0.0542
V ARF - 0.1389 0.1516 - 0.1145 0.1207
MSE - 0.1405 0.1525 - 0.1172 0.1221

TESS
β0 Bias 0.1176 0.0888 0.0871 0.1481 0.1044 0.1133

V ARF 0.0618 0.0940 0.0351 0.2490 0.0938 0.0482
MSE 0.0670 0.0972 0.0381 0.2590 0.1011 0.0535

β1 Bias 0.0541 - 0.0509 0.1474 - 0.1139
V ARF 0.2151 - 0.2147 0.1957 - 0.1825
MSE 0.2163 - 0.2156 0.2066 - 0.1885

β2 Bias - 0.1101 0.1223 - 0.1191 0.1167
V ARF - 0.1037 0.0943 - 0.0870 0.0774
MSE - 0.1086 0.1003 - 0.0926 0.0830
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Table 3.4: Comparisons of Mi and Mc under Design 2 and Set 1

Parameters Design Orthogonal Non-orthogonal
ZS Statistics M1 M2 Mc M1 M2 Mc

β0 Bias 0.0098 0.0207 0.0125 0.1288 0.0787 0.0091
V ARF 0.0296 0.0457 0.0135 0.0491 0.0835 0.0288
MSE 0.0297 0.0458 0.0136 0.0556 0.0856 0.0289

β1 Bias 0.1017 - 0.0792 0.2488 - 0.0660
V ARF 0.2021 - 0.2313 0.0750 - 0.0761
MSE 0.2058 - 0.2336 0.0966 - 0.0777

β2 Bias - 0.0869 0.0695 - 0.0983 0.0264
V ARF - 0.3500 0.3929 - 0.0592 0.0498
MSE - 0.3526 0.3947 - 0.0627 0.0502

TESS
β0 Bias 0.0100 0.0205 0.0124 0.1574 0.1002 0.0349

V ARF 0.0296 0.0457 0.0135 0.0379 0.0619 0.0194
MSE 0.0297 0.0458 0.0136 0.0473 0.0654 0.0200

β1 Bias 0.1550 - 0.1553 0.3024 - 0.1624
V ARF 0.1392 - 0.1358 0.0360 - 0.0337
MSE 0.1479 - 0.1447 0.0681 - 0.0433

β2 Bias - 0.1323 0.1334 - 0.1589 0.0824
V ARF - 0.2544 0.2527 - 0.0306 0.0294
MSE - 0.2604 0.2587 - 0.0391 0.0330

Table 3.5: Comparisons of Mi and Mc under Design 2 and Set 2

Parameters Design Orthogonal Non-orthogonal
ZS Statistics M1 M2 Mc M1 M2 Mc

β0 Bias 0.0564 0.0423 0.0301 0.0716 0.0860 0.0410
V ARF 0.0599 0.0344 0.0211 0.0882 0.0396 0.0268
MSE 0.0610 0.0350 0.0214 0.0912 0.0422 0.0275

β1 Bias 0.0112 - 0.0104 0.0364 - 0.0139
V ARF 0.0850 - 0.0850 0.0720 - 0.0610
MSE 0.0851 - 0.0851 0.0726 - 0.0611

β2 Bias - 0.0720 0.0570 - 0.0951 0.0672
V ARF - 0.0728 0.0790 - 0.0563 0.0606
MSE - 0.0750 0.0804 - 0.0603 0.0624

TESS
β0 Bias 0.1100 0.0849 0.0792 0.1276 0.1265 0.0926

V ARF 0.0442 0.0282 0.0173 0.0569 0.0292 0.0199
MSE 0.0487 0.0308 0.0195 0.0647 0.0347 0.0237

β1 Bias 0.0120 - 0.0108 0.0560 - 0.0313
V ARF 0.0850 - 0.0850 0.0663 - 0.0597
MSE 0.0851 - 0.0851 0.0675 - 0.0603

β2 Bias - 0.1197 0.1311 - 0.1490 0.1474
V ARF - 0.0546 0.0501 - 0.0384 0.0368
MSE - 0.0602 0.0568 - 0.0476 0.0450
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Table 3.6: Posterior variance analysis for Design 1 with σ2 = 1.0

Comparison Prior Parameter Dominant β0 Dominant β1

Orthogonal Non-orthogonal Orthogonal Non-orthogonal

M1 vs Mc

ZS β0 93.6% 96.6% 95.2% 98.2%
β1 62.6% 87.6% 75.6% 94.0%

TESS β0 94.8% 97.4% 95.4% 98.6%
β1 66.4% 86.2% 77.4% 93.6%

M2 vs Mc

ZS β0 97.6% 99.4% 93.2% 97.4%
β2 68.4% 97.8% 24.2% 77.6%

TESS β0 98.4% 99.4% 95.2% 98.0%
β2 74.2% 97.0% 35.2% 76.8%

Table 3.7: Posterior variance analysis for Design 2 with σ2 = 1.0

Comparison Prior Parameter Dominant β0 Dominant β1

Orthogonal Non-orthogonal Orthogonal Non-orthogonal

M1 vs Mc

ZS β0 95.2% 99.4% 95.6% 99.6%
β1 64.8% 77.6% 71.0% 77.4%

TESS β0 96.0% 99.4% 96.4% 99.8%
β1 70.2% 81.4% 72.2% 77.0%

M2 vs Mc

ZS β0 97.6% 95.0% 92.4% 81.6%
β2 68.0% 72.2% 18.4% 28.4%

TESS β0 97.8% 96.8% 94.4% 87.2%
β2 69.8% 75.0% 28.4% 37.8%

Table 3.8: Posterior variance analysis for Design 1 with σ2 = 0.01

Comparison Prior Parameter Dominant β0 Dominant β1

Orthogonal Non-orthogonal Orthogonal Non-orthogonal

M1 vs Mc

ZS β0 98.0% 99.2% 99.0% 99.2%
β1 82.4% 98.4% 95.0% 98.0%

TESS β0 98.0% 99.8% 99.0% 99.2%
β1 84.6% 98.8% 97.0% 98.2%

M2 vs Mc

ZS β0 99.8% 100.0% 99.6% 100.0%
β2 94.4% 100.0% 89.4% 99.6%

TESS β0 99.8% 100.0% 99.8% 100.0%
β2 94.6% 99.8% 91.8% 99.8%

Table 3.9: Posterior variance analysis for Design 2 with σ2 = 0.01

Comparison Prior Parameter Dominant β0 Dominant β1

Orthogonal Non-orthogonal Orthogonal Non-orthogonal

M1 vs Mc

ZS β0 98.6% 99.8% 99.0% 99.8%
β1 89.4% 94.0% 95.8% 91.4%

TESS β0 98.0% 99.8% 99.0% 100.0%
β1 89.8% 94.0% 96.6% 93.0%

M2 vs Mc

ZS β0 99.4% 98.6% 99.2% 98.4%
β2 89.8% 92.6% 79.8% 88.0%

TESS β0 99.4% 99.0% 99.4% 98.6%
β2 91.8% 93.8% 89.2% 92.2%
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Specifically, the sensitivity analysis is conducted under two scenarios. In Scenario 1,

we include four cases where the dimension of β0,β1,β2 is fixed at p0 = 4, p1 = p2 = 2

and the sample size ratio n1/n2 varies from 0.5 to 2.0 with n1 = 30, n2 = 15; n1 =

30, n2 = 30; n1 = 30, n2 = 45; n1 = 30, n2 = 60. In Scenario 2, we also have four cases

where the sample size is fixed at n1 = n2 = 15 and the ratio of dimension p0/pi varies

from 1.0 to 4.0 with p0 = 4, p1 = p2 = 1; p0 = 4, p1 = p2 = 2; p0 = 4, p1 = p2 = 3

and p0 = p1 = p2 = 4. We examine each scenario under two sets of coefficients with

σ2 = 0.5 and the largest model for each set is:

• Set 3: β0 = (8, 5, 3, 2)′, β1 = (0.7, 0.5, 0.6, 0.7)′, β2 = (0.6, 0.6, 0.7, 0.6)′, where

the common β0 is dominant over the specific β1 and β2 in size;

• Set 4: β0 = (0.7, 0.5, 0.6, 0.6)′, β1 = (1.5, 2.5, 1.6, 1.5)′, β2 = (1.9, 2.1, 1.7, 1.4)′,

where the specific β1 and β2 are dominant over the common β0 in size.

When p1, p2 ≤ 4, the coefficients correspond to the first k elements of β1 and β2 in

Sets 1 and 2. The design matrices are generated from the normal distribution N(0, 1).

For each combination of four cases from two scenarios and two sets of coefficients,

we collect frequentist properties of the Bayesian estimator including its sampling

standard deviation, relative bias and relative MSE with the same definition in (2.37)

and (2.38). Each Bayesian estimator is computed through 20,000 samples with 10,000

burn-ins. The frequentist properties are calculated with 500 data sets.

Tables 3.10 - 3.13 summarize sensitivity results for two scenarios and two sets of

coefficients. Main findings are quiet similar to those in Chapter 2. First, Mc and Mgs

yield similar frequentist standard deviation whileMgs shows a smaller bias and there-

fore a smaller MSE. Second, despite dominant coefficients, Mc offers improvements
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Table 3.10: Sensitivity analysis for Scenario 1 with Set 3

Parameter
Design n1 = 30, n2 = 15 n1 = 30, n2 = 30

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0060 0.0039 0.0053 0.0012 0.0058 0.0052 0.0028 0.0001
SDF 0.0595 0.0751 0.0431 0.0482 0.0565 0.0560 0.0380 0.0374
RMSE 0.0047 0.0047 0.0038 0.0028 0.0043 0.0043 0.0026 0.0021

β1

RBias 0.0568 - 0.0607 0.0115 0.0932 - 0.0895 0.0084
SDF 0.0719 - 0.0680 0.0671 0.0742 - 0.0723 0.0495
RMSE 0.0723 - 0.0718 0.0568 0.0998 - 0.0913 0.0417

β2

RBias - 0.0815 0.0547 0.0156 - 0.2151 0.1995 0.0090
SDF - 0.0819 0.0787 0.0608 - 0.0719 0.0695 0.0497
RMSE - 0.0916 0.0789 0.0524 - 0.1680 0.1575 0.0419

Parameter
Design n1 = 30, n2 = 45 n1 = 30, n2 = 60

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0080 0.0048 0.0046 0.0002 0.0033 0.0059 0.0045 0.0001
SDF 0.0550 0.0422 0.0324 0.0317 0.0575 0.0334 0.0282 0.0276
RMSE 0.0054 0.0037 0.0035 0.0018 0.0037 0.0043 0.0035 0.0015

β1

RBias 0.0745 - 0.0503 0.0050 0.1386 - 0.0838 0.0073
SDF 0.0831 - 0.0776 0.0456 0.0757 - 0.0695 0.0354
RMSE 0.0918 - 0.0776 0.0382 0.1233 - 0.0839 0.0300

β2

RBias - 0.0430 0.0337 0.0052 - 0.0829 0.0773 0.0028
SDF - 0.0536 0.0527 0.0430 - 0.0563 0.0545 0.0427
RMSE - 0.0568 0.0548 0.0361 - 0.0866 0.0819 0.0356

in terms of V ARF and MSE compared with Mi, especially for the imbalanced de-

sign. Third, Mc and Mgs yield similar results for small sample size, which is possibly

related to more loss of information forMc with a larger sample size. For example, the

results are quite similar for n1 = 30 and n2 = 15 instead of n1 = 30 and n2 = 30. The

differences between Mc and Mgs in terms of V ARF and MSE increase as the sample

size increases. Such difference is less obvious for dominant βi rather than dominant

β0. Fourth, the difference between Mc and Mgs in terms of considered quantities are

smaller for dominant coefficients rather than specific coefficients.
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Table 3.11: Sensitivity analysis for Scenario 2 with Set 3

Parameter
Design p0 = 4, p1 = p2 = 1 p0 = 4, p1 = p2 = 2

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0043 0.0063 0.0040 0.0004 0.0112 0.0036 0.0047 0.0004
SDF 0.0816 0.0717 0.0502 0.0487 0.0864 0.0955 0.0599 0.0580
RMSE 0.0052 0.0053 0.0039 0.0027 0.0084 0.0057 0.0042 0.0032

β1

RBias 0.1820 - 0.1236 0.0330 0.1106 - 0.1047 0.0120
SDF 0.1470 - 0.1353 0.0943 0.1376 - 0.1145 0.0733
RMSE 0.2777 - 0.2295 0.1385 0.1502 - 0.1269 0.0618

β2

Bias - 0.4377 0.3125 0.0400 - 0.0791 0.0524 0.0137
SDF - 0.1432 0.1360 0.1049 - 0.1126 0.1010 0.0707
RMSE - 0.4986 0.3859 0.1787 - 0.1096 0.0963 0.0598

Parameter
Design p0 = 4, p1 = p2 = 3 p0 = 4, p1 = p2 = 4

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0079 0.0072 0.0033 0.0003 0.0241 0.0304 0.0148 0.0010
SDF 0.0778 0.0807 0.0529 0.0532 0.1003 0.0847 0.0647 0.0661
RMSE 0.0061 0.0059 0.0040 0.0030 0.0148 0.0169 0.0094 0.0037

β1

Bias 0.0958 - 0.0645 0.0170 0.1158 - 0.0805 0.0061
SDF 0.0821 - 0.0805 0.0590 0.0769 - 0.0725 0.0541
RMSE 0.0806 - 0.0636 0.0342 0.0674 - 0.0598 0.0220

β2

Bias - 0.1480 0.1246 0.0149 - 0.0614 0.0714 0.0052
SDF - 0.0932 0.0894 0.0708 - 0.0745 0.0725 0.0583
RMSE - 0.1069 0.0950 0.0386 - 0.0575 0.0517 0.0235

3.5 A Real Data Example

In this section, we analyze a personal medical cost data to illustrate the potential

benefits of data combining in practice. It was first analyzed by Lantz (2013) to

predict medical expenses, which is an essential task for insurance company to make

a profit. Consequently, the insurers spend tremendous time in building models to

predict medical expenses so that the medical care offered to beneficiaries can at

least be covered by the yearly premiums. Medical expenses could depend on many

conditions, which could be rare but costly conditions or more prevalent for certain
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Table 3.12: Sensitivity analysis for Scenario 1 with Set 4

Parameter
Design n1 = 30, n2 = 15 n1 = 30, n2 = 30

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0159 0.0207 0.0156 0.0004 0.0164 0.0196 0.0083 0.0005
SDF 0.0566 0.0640 0.0509 0.0525 0.0531 0.0508 0.0438 0.0452
RMSE 0.0322 0.0359 0.0320 0.0142 0.0315 0.0344 0.0219 0.0123

β1

RBias 0.0156 - 0.0136 0.0001 0.0201 - 0.0137 0.0003
SDF 0.1316 - 0.1304 0.1201 0.1302 - 0.1282 0.1092
RMSE 0.0434 - 0.0414 0.0150 0.0461 - 0.0410 0.0137

β2

RBias - 0.0247 0.0231 0.0002 - 0.0127 0.0063 0.0001
SDF - 0.1523 0.1485 0.1173 - 0.1284 0.1277 0.1086
RMSE - 0.0489 0.0477 0.0147 - 0.0359 0.0281 0.0136

Parameter
Design n1 = 30, n2 = 45 n1 = 30, n2 = 60

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0113 0.0105 0.0070 0.0002 0.0080 0.0075 0.0059 0.0003
SDF 0.0530 0.0457 0.0410 0.0417 0.0541 0.0436 0.0406 0.0413
RMSE 0.0257 0.0243 0.0213 0.0113 0.0226 0.0226 0.0187 0.0111

β1

RBias 0.0256 - 0.0241 0.0001 0.0040 - 0.0031 0.0000
SDF 0.1309 - 0.1284 0.1023 0.1245 - 0.1210 0.0940
RMSE 0.0498 - 0.0472 0.0128 0.0207 - 0.0193 0.0118

β2

RBias - 0.0104 0.0107 0.0001 - 0.0115 0.0106 0.0001
SDF - 0.1182 0.1173 0.1033 - 0.1124 0.1118 0.1000
RMSE - 0.0349 0.0341 0.0129 - 0.0323 0.0310 0.0125

group in a population. This data focused on the latter. The response variable is

the total medical expenses charged to the insurance plan for the calendar year and

covariates if interests include age of the primary beneficiary (age), policy holder’s

gender (sex), body mass index (BMI), smoker (whether the insured regularly smokes

tobacco), region (beneficiary’s place of residence in the U.S.).

To reflect the data combining situation, we first divide the data set into two data

sets according to the variable “region”. Specifically, instead of four levels of region

(i.e., northeast, northwest, southeast, southwest), we consider two levels (east, west),
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Table 3.13: Sensitivity analysis for Scenario 2 with Set 4

Parameter
Design p0 = 4, p1 = p2 = 1 p0 = 4, p1 = p2 = 2

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.0872 0.1448 0.0557 0.0076 0.1642 0.2072 0.1298 0.0094
SDF 0.0679 0.0580 0.0447 0.0463 0.0700 0.0706 0.0481 0.0517
RMSE 0.0645 0.0846 0.0370 0.0197 0.0906 0.1154 0.0761 0.0220

β1

RBias 0.2731 - 0.1188 0.0055 0.0535 - 0.0597 0.0030
SDF 0.1208 - 0.1082 0.0872 0.1339 - 0.1207 0.0862
RMSE 0.2847 - 0.1390 0.0585 0.0623 - 0.0524 0.0217

β2

RBias - 0.2168 0.0583 0.0036 - 0.0914 0.0544 0.0022
SDF - 0.1407 0.1237 0.1030 - 0.1052 0.1031 0.0811
RMSE - 0.2292 0.0874 0.0542 - 0.0708 0.0463 0.0203

Parameter
Design p0 = 4, p1 = p2 = 3 p0 = 4, p1 = p2 = 4

Statistics M1 M2 Mc Mgs M1 M2 Mc Mgs

β0

RBias 0.1376 0.0945 0.0996 0.0079 0.1068 0.1165 0.0916 0.0094
SDF 0.0696 0.0618 0.0512 0.0550 0.0952 0.0637 0.0493 0.0572
RMSE 0.0845 0.0598 0.0558 0.0233 0.0882 0.0696 0.0550 0.0244

β1

RBias 0.0244 - 0.0106 0.0005 0.1098 - 0.0956 0.0017
SDF 0.0685 - 0.0673 0.0642 0.0859 - 0.0810 0.0707
RMSE 0.0711 - 0.0688 0.0115 0.0598 - 0.0547 0.0100

β2

RBias - 0.0873 0.0857 0.0017 - 0.0443 0.0462 0.0026
SDF - 0.0892 0.0883 0.0647 - 0.0698 0.0663 0.0586
RMSE - 0.0659 0.0628 0.0125 - 0.0298 0.0297 0.0084

and assign observation in east to data source 1 and west to data source 2. We

also simulate a couple of cases with different combinations of common and specific

covariates to offer more perspectives of the relative performances of Mi and Mc. M1,

M2 andMc has 688, 650 and 1,338 observations, respectively. For Case 1, we consider

sex and smoker are shared by M1 and M2. BMI is only collected by M1 and age is

collected only by M2. For Case 2, BMI and smoker are considered as shared while

sex is available for M1 and age is available for M2.

Tables 3.14 and 3.15 summarize findings including, posterior mean (Mp), poste-
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Table 3.14: Mp, V ARp, and 95% CI along with its width in Case 1.

Parameter Statistics M1 Mc M2

β01

Mp (V ARp) 1.6657 (0.0032) 1.7310 (0.0017) 1.8148 (0.0040)
95 % CI (1.5573, 1.7754 ) (1.6484, 1.8140) (1.6924, 1.9388)
width 0.2181 0.1655 0.2463

β02

Mp (V ARp) -0.4170 (0.0015) -0.4301 (0.0008) -0.4399 (0.0017)
95 % CI (-0.4921, -0.3403) (-0.4841, -0.3758) (-0.5201, -0.3599)
width 0.1518 0.1083 0.1602

β11

Mp (V ARp) 0.2486 (0.0014) 0.2483 (0.0014) -
95 % CI (0.1742, 0.3225) (0.1758, 0.3209)

-
width 0.1483 0.1451

β21

Mp (V ARp) - 0.1311 (0.0002) 0.1282 (0.0003)
95 % CI

-
(0.1000, 0.1620) (0.0963, 0.1605)

width 0.0619 0.0642

rior variance (V ARp), 95% credible intervals (CI) and its corresponding width. From

these tables, compared withMi, we may find that posterior variances and width of 95

% CI for each parameter is smaller in Mc, which implies that Mc offers more precise

Bayesian estimates. In addition, no matter Case 1 or Case 2, common parameters

benefits more from data combining since more reductions have been observed regard-

ing posterior variances and widths in contrast with specific parameters. At last, all

models from Table 3.14 and Table 3.15 indicates that smoker, female, older people

are more likely to be charged more while lower BMI is associated with lower charges,

which align with our common senses.

3.6 Discussion

In this chapter, we take a focused investigation on independent g-priors from an

estimation perspective under two cases. For Case 1, where (σ2, g) is known, we

mainly evaluate the posterior variances of the Bayesian estimators inMi andMc, and
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Table 3.15: Mp, V ARp, and 95% CI along with its width in Case 2.

Parameter Statistics M1 Mc M2

β01

Mp (V ARp) 1.6650 (0.0032) 1.6439 (0.0017) 1.6184 (0.0040)
95 % CI (1.5559, 1.7754) (1.5618, 1.7273) (1.4946, 1.7440)
width 0.2195 0.1654 0.2494

β02

Mp (V ARp) 0.2491 (0.0014) 0.2852 (0.0009) 0.3406 (0.0024)
95 % CI (0.1759, 0.3240) (0.2262, 0.3437) (0.2434, 0.4369)
width 0.1481 0.1175 0.1935

β11

Mp (V ARp) -0.4163 (0.0015) -0.4166 (0.0014)
-95 % CI (-0.4900, -0.3407) (-0.4899, -0.3444)

width 0.1493 0.1455

β21

Mp (V ARp)
-

0.0558 (0.0002) 0.0545 (0.0003)
95 % CI (0.0246, 0.0864) (0.0230, 0.0867)
width 0.0617 0.0637

some frequentist properties with special cases. For the second case, where (σ2, g) is

unknown, we research more on the frequentist properties of the Bayesian estimator

through the lens of asymptotic analysis. This asymptotic is first defined by Som

et al. (2016) and often referred to as fixed p and fixed n asymptotic (or conditional

informational asymptotic). Utilizing this defined asymptotic sequence, we derive the

asymptotic mean and covariance of the Bayesian estimator in Mi and Mc under two

situations. One considers where the model is driven by common coefficients and the

other considers where the model is driven by specific coefficients. Our theoretical

results not only echo the essential least squares (ELS) estimation framework in Som

et al. (2016) under the hyper-g prior but also extend the framework to study of

conditional asymptotic frequentist properties. Inspired by Berger et al. (2014) and

Min and Sun (2016), we further adopt TESS to offer an adjustment to the scale in the

ZS-prior and investigate its potential in improving the estimation. Our findings reveal

that Mc contributes to a smaller risk in terms of MSE even if there is no information

borrowing in most cases (e.g. block orthogonal design matrices). Incorporating TESS

86



in the ZS prior is very likely to improve the estimates. More importantly, we bring

ZS prior together with TESS into the estimation scope and quantify their potential

benefits of data combining. Our extensive simulation studies and real data example

also consolidate our theories.

In fact, our framework could be extended to other shrinkage estimations such as

shrinkage prior or robust prior and plenty of future directions worth exploring based

on our work. First and foremost, Mi and Mc is under the assumption of independent

and identically distributed (iid) error terms. In practice, it might be more realistic

to consider non-iid settings where we allow different errors for different data sources

and therefore such generalizations of our framework are needed. Second, although

our straightforward combining strategy makes theoretical pursuit possible, alternative

data combining methods should be explored and compared. One example is introduc-

ing external data sources to impute missing covariates (Jackson et al., 2009). Another

example is modeling the between-study covariance matrix to enable more informa-

tion sharing depending on a specific situation (Siegel et al., 2020), which is a common

method in meta-analysis. In fact, this option will be explored in our next chapter.

Third, the derivation of TESS is offered by Berger et al. (2014) for the purpose of

model selection and is applied directly for estimation in our case. Specifically, we

remove the scale by the observation with maximum information. Alternative scaling

options or a general definition to obtain a suitable form for the purpose of estimation

is highly recommended. Fourth, under our data combining framework, extensions to

the generalized linear mixed model (Li and Clyde, 2018) under g-prior along with

TESS should be studied to accommodate practical considerations.
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Chapter 4

Female Breast Cancer Prevalence in
Missouri

Chapters 2 and 3 investigate the data combining with linear models in (1.2) and

primarily access the performance of the Bayesian estimator in Mi and Mc under the

classical and independent g-prior or ZS prior. However, in practice, more complex

models are frequently needed rather than the linear regression, and the two data

sources may be of different nature. As a result, it is critical to evaluate our data

combining strategy in a broader context.

Among many fields, analyses for cancer statistics play an important role as it is

the second leading cause of death according to Centers for Disease Control and Pre-

vention (CDC). Breast cancer is the most common cancer in women in the United

States except for skin cancers. This makes it essential to evaluate its overall burden

in the population and cancer prevalence is generally used to achieve such purpose. In

this chapter, we evaluate county-level female breast cancer prevalence in Missouri via

88



different variants of our data combining strategy. In fact, for many diseases, including

FBC, county-level data sources for calculating prevalence estimates are limited due to

small sample sizes. To the best of our knowledge, Missouri Cancer Registry (MCR)

and County-level Study (CLS) are two available data sources in Missouri to conduct

such analysis. On the one hand, different data sources could have common variables

such as county attributes. On the other hand, different data sources have their own

limitations. For example, regarding prevalence estimates, the survey data from the

Behavioral Risk Factor Surveillance System (BRFSS)-based CLS suffers from non-

response and possible recall bias and lacks some cancer information of interest (e.g.,

stage at diagnosis). Meanwhile, administrative data from MCR suffers from limited

time period of data collection (only the prevalence of cancer survivors diagnosed since

1996 can be directly measured via MCR data) and lacks risk factor information (such

as whether the person is obese or told of high cholesterol level by health professional).

Therefore, combining available county-level data sources in Missouri is a promising

approach to help us model the relationship between the FBC prevalence and covari-

ates of interests, and provide more precise estimates of the corresponding effects.

Additionally, understanding the relationship between the prevalence estimates and

covariates, such as risk factors, could provide useful information for the public to

prevent disease in advance and for health care planners to allocate resources.

The remainder of this chapter is organized as follows. We first provide some back-

ground for the two types of cancer prevalence, two data sources for prevalence with

distinct characteristics, and the data source for county attributes. Second, we present

several candidate data combining strategies according to observed data sources. We

wrap up with a discussion of issues and potential future directions.
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4.1 Background

According to National Institutes of Health (NIH), prevalence is defined as a proportion

of people alive on a certain date in a population who previously had a diagnosis of

the disease. In the context of cancer statistics, there are two types of prevalence: (1)

Limited-Duration Prevalence (LDP), which represents the proportion of people alive

on a certain day who had a diagnosis of the disease within a past period; (2) Complete

Prevalence (CP), which represents the proportion of people alive on a certain day

who previously had a diagnosis of the disease. Prevalence, LDP or CP, is used to

evaluate existing cases or the overall burden of a certain disease. It differs from

incidence, which indicates newly diagnosed cases in a defined population. Although

prevalence cannot provide as much information as incidence from the perspective of

cancer etiology, it could provide information regarding health care resources and be

helpful in health care planning. One may also notice that prevalence is studied in

limited settings since reliable cancer prevalence estimates might come from long-term

cancer registries instead of population survey.

4.2 Data Source

Sections 4.2.1 and 4.2.2 present data sources for FBC prevalence and specific covari-

ates according to different data sources. Section 4.2.3 describes the data source for

common covariates.
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4.2.1 Missouri Cancer Registry and Research Center (MCR-
ARC)

Every cancer incidence is required to be reported to the Missouri Cancer Registry in

accordance with Missouri Statutes (192.650-192.657 RSMo), then the information

is edited and consolidated by MCR-ARC staff. MCR-ARC has high quality (at

least 95% of expected incidence cases) data through December 31, 2018. Several

key characteristics are as follows.

1. MCR-ARC data is population-based, which collects all cancer incidence in Mis-

souri since 1996.

2. Only the prevalence of cancer survivors diagnosed since 1996 can be directly

measured via MCR-ARC data. Hence, the prevalence estimate is based on a

limited time period and called LDP. In our case, we use 20 years limited-duration

prevalence so that LDP and CP could be as close as possible.

3. MCR-ARC data has cancer-specific information such as stage information, which

is not available in CLS.

4. MCR-ARC data is edited by professional staff, which implies that cancer related

concepts might be different than those without professional training.

4.2.2 2016 Missouri County-level Study (CLS)

Missouri county-level study (CLS) is a self-reported survey based on landline and cell

telephones. Its target is to produce accurate county-level estimates. CLS has been

conducted in years 2007, 2011 and 2016. In 2016, it aimed at completing approxi-

mately 52,000 landline and cell telephone calls for adults (aged 18 or older) throughout
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the year. Prevalence estimates were generated for the 114 Missouri counties and the

city of St.Louis. We need to point out several features for this data source.

1. Since CLS focused on providing accurate county-level estimation, for each county,

the sample size used to perform statistical analysis is relatively larger compared

with other surveys, such as BRFSS. The specific goal is described as below.

• 400 each in the 105 smallest counties;

• 800 (400 urban/400 rural) in Buchanan, Boone, Cole, Greene, and Jasper

Counties; 800 in St. Charles County (400 eastern and 400 western); 800

in Jefferson County (400 northern and 400 southern);

• 1200 in Jackson County (800 in Kansas City, 400 in Independence and 400

in Eastern Jackson County); 1200 in the City of St. Louis (400 each in 3

strata);

• 2000 in St. Louis County (400 each in 5 strata).

2. The prevalence percent estimates from CLS refers to complete prevalence for

the reason that a participant in the survey is asked questions such as “Have you

ever been diagnosed as cancer”, which differs from when an individual is asked

“Have you ever been diagnosed as cancer in the past xx years”.

3. The CLS prevalence percent estimates were weighted with the raking method

to be representative for the Missouri adult, non-institutionalized population of

the area covered.

4. The CLS collects information about cancer-related risk factors, such as obe-

sity and smoke, which are not available for other data sources. In our case,
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Figure 4.1: Summary of characteristics for MCR and CLS

we use cholesterol information, which is well-known for its relationship with

cardiovascular disease. Its specific association with FBC is still under investiga-

tion from a clinical perspective (Garcia-Estevez and Moreno-Bueno, 2019; Wei

et al., 2021). From a surveillance viewpoint, we intend to study the relationship

between FBC prevalence and cholesterol level.

5. As a self-reported survey, it suffered from non-response and possible recall bias.

Especially, when it comes to the cancer study, the CLS additionally lacks some

cancer information of interest, such as stage at diagnosis.

For an easier reference, Figure 4.1 summarizes the comparison of characteristics

for MCR and CLS. Figure 4.2 demonstrates the concepts of LDP and CP using 2016

FBC prevalence data from MCR and CLS.
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Figure 4.2: An illustration for LDP and CP

4.2.3 Others

For common covariates, we consider county attributes since we expect this demo-

graphic information to be the same for a geographical region despite data sources.

County attributes are obtained from American Community Survey (ACS) 5-year files,

which provide more reliable data for small population compared yearly file. Variables

of interests such as percentages of poverty level (below, at or above) are aggregated

from the ACS 2014-2018 data file. As 2016 is the middle of this time span, we expect

it to be more accurate than other time spans or ACS yearly files.

4.2.4 Data Overview

To better understand our various modeling strategies, this section visualizes the dis-

tribution of FBC prevalence (response variable) and covariates of interests. Tables 4.1

- 4.3 show summary statistics for covariates and prevalence proportions (PP), preva-

lence counts, and population size, respectively. Figures 4.3 - 4.4 display histograms

for prevalence proportions and covariates of interests, respectively. Two models are

discussed in this chapter. The first is the linear mixed model where we assume the

logit transformed FBC prevalence proportions are observed. The second is the gen-

94



Table 4.1: Summary statistics for covariates and prevalence proportions

Variable
Statistics

Min 1st quantile Median Mean 3rd quantile Max

Age 65+ 0.1435 0.2371 0.2590 0.2619 0.2904 0.3920

Poverty At or above 0.6917 0.8041 0.8319 0.8289 0.8619 0.9392

MCR PP
Early 0.0080 0.0132 0.0146 0.0149 0.0163 0.0256

Late 0.0032 0.0058 0.0067 0.0069 0.0077 0.0114

CLS PP
Had high cholesterol 0.0081 0.0347 0.0507 0.0536 0.0680 0.1580

No high cholesterol 0.0031 0.0160 0.0268 0.0333 0.0442 0.1087

Table 4.2: Summary statistics for prevalence counts

Prevalent counts
Statistics

Min 1st quantile Median Mean 3rd quantile Max

MCR
Early 12.0 64.5 114.0 323.4 201.0 8014.0

Late 9.0 29.5 47.0 146.4 94.5 3537.0

CLS
Had high cholesterol 7.0 46.5 101.0 324.8 227.5 6096.0

No high cholesterol 3.0 38.5 109.0 347.7 232.0 8978.0

Table 4.3: Summary statistics for population size

County-level population size
Statistics

Min 1st quantile Median Mean 3rd quantile Max

MCR 823 3989 7237 21073 15209 416081

CLS
Had high cholesterol 230 1134 2279 5537 4028 100073

No high cholesterol 490 1982 3318 10804 7245 243540

eralized linear mixed model, where the prevalence counts and population size are

considered to be observed.
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Figure 4.3: Histograms of prevalence proportions for MCR (left) and CLS (right).

Figure 4.4: Histograms for percentages of women age over 65 (left) and live at or
above poverty level (right).

4.3 Linear Mixed Model (LMM)

4.3.1 Individual Model for MCR or CLS

Let pijk denote the FBC prevalence proportion the i-th data source, j-th county and

k-th category, and then the observed response variable vijk is the logit transformed
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pijk, i.e., vijk = logit(pijk) = log(pijk/(1− pijk)). As displayed in Table 4.1, there are no

zero prevalence estimates for both data sources. We specify Mi as below:

vijk = µi + β01x1j + β02x2j + γik + zj + εijk, (4.1)

where

• i = 1, 2, j = 1, 2, · · · , J and k = 1, · · · , Ki;

– i = 1 corresponds to the data from MCR;

– i = 2 corresponds to the data from CLS;

• µi is the overall mean for data source i;

• x1j is the percentage of age group 65+ for county j, with coefficient β01;

• x2j is the percentage of at or above poverty level for county j, with coefficient

β02;

• γik is the special effect for data source i;

– γ1k is the stage effect with two categories (early[localized]/late[regional,distant])

and K1 = 2;

– γ2k is the cholesterol effect with two categories (no high cholesterol/had

high cholesterol) and K2 = 2;

–
∑Ki

k=1 γ
i
k = 0;

• zj is the random effect, which accounts for county spatial effect. In our case,

J = 115.
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• εijk is the random error and εijk
i.i.d.∼ N(0, σ2).

To rewrite Mi in (4.1) as the matrix representation, we define a JKi × J design

matrix Xz = IJ ⊗ 1Ki , with a vector z = (z1, z2, · · · , zJ)′, where IJ is an identity

matrix of size J , 1Ki is a vector with all ones of size Ki and ⊗ is the Kronecker

product. Similarly, let the vector β0 = (β01, β02)
′ and xj = (x1j, x2j)

′, then β01x1j +

β02x2j = x′jβ0 and the design matrix for β0 is X i
β0

= (x1,x2, · · · ,xJ)′ ⊗ 1Ki ; let

the vector γi = (γi1, γ
i
2, · · · , γiKi) and its design matrix X i

γ = 1J ⊗ IKi ; finally, vij =

(vij1, · · · , vijKi)
′ and vi = ((vi1)

′, · · · , (viJ)′)′. The model in (4.1) is equivalent to:

vi = µi1JKi +X i
β0
β0 +X i

γγ
i +Xzz + εi, (4.2)

where εi is a vector of dimension JKi with distribution NJKi(0, σ
2IJKi). Here, β0 are

interpreted as county attributes, γi is interpreted as data-source special effect and z

is considered as county spatial effect.

4.3.2 Combined Model for MCR and CLS

To specifyMc for combined data of MCR and CLS, we first clarify the common coeffi-

cients and specific coefficients, and two candidate models are considered accordingly.

The Candidate Model 1, denoted by Mc1 , assumes that no systematic difference exist

between two data sources, namely, µ1 = µ2. This case considers the common coeffi-

cients for two data sources are the overall mean, county attributes, and spatial effects.

Then, the specific coefficients correspond to stage effects and cholesterol information.

Candidate Model 2, denoted by Mc2 , assumes that there is a systematic difference

between two data sources. Thus, the common coefficients correspond to county at-
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tributes, while the specific coefficients correspond to different overall means from M1,

and special coefficients related to stage effects and cholesterol effects. As the stage

and cholesterol effects are categorical variables and we intend to include an overall

mean effect in the model, we rewrite the stage and cholesterol effects as its treatment

means’ form to quantify the data source effect later. As a result, although Mc2 does

not appear the same as Mc, they have essentially the same structure.

Candidate Model 1

Following notations in Section 4.3.1, Mc1 for the combined data is:

v1
v2

 =

1JK1 X1
β0

1JK2 X2
β0


 µ

β0

+

X1
γ 0

0 X2
γ


γ1

γ2

+

Xz

Xz

 z +

ε1
ε2

 , (4.3)

where µ,β0 and γk are the fixed effects, z is the random effect. For this particular

application,X1
γ = X2

γ andX1
β0

= X2
β0
. In general, our framework allows these design

matrices to be different.

Formulation in (4.3) has some potential issues. First, for county attributes β0,

we center its design matrix Xβ0 with a centering matrix CJK = IJK − 11′/JK

and denote X i?
β0

= CJKX
i
β0
, where K = K1 + K2. This enables the same mean-

ing for the overall mean in all models. In a model/variable setting, this is a fre-

quently used setting so that a common prior can be specified for common coeffi-

cients. Second, since the special effect γk is a categorical variable, model in (4.3)

suffers from identification problems, which has been discussed in vast literature in

analysis of variance models (Rouder et al., 2012; Wang, 2017). For special effects

γi, firstly, we use the sum-to-zero constraints to relieve the identification issue.
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γ1 = (γ11 , γ
1
2)′ reduces to γ1 and γ2 = (γ21 , γ

2
2)′ reduces to γ2. The correspond-

ing design matrix reduces to X i?
γ = 1I ⊗ (1,−1)′, and then a QR decomposition is

applied X i?
γ γ

i = QiRiγi = Qiγi?, where Qi′Qi = IKi−1. We found that QR decom-

position contributes to better mixing property or the reduction of correlation among

posterior samples regarding different parameters based on practice, especially when

the random error is not i.i.d. A typical method to perform a QR decomposition is the

Gram-Schmidt process. Besides, considering that the R matrix, which is an upper

triangular matrix, is invertible in QR decomposition, we can always transform our

estimates back to its original scales for reasonable interpretations.

After reparameterization, Mc1 in (4.3) is equivalent to:

v1
v2

 =

1JK1 X1?
β0

1JK2 X2?
β0


 µ

β0

+

Q1 0

0 Q2


γ1?
γ2?

+

Xz

Xz

 z +

ε1
ε2

 , (4.4)

which is the final form for our data analysis.

Following this reparameterization, Mi is reparameterized as:

vi = 1JKiµ
k +X i?

β0
β0 +Qiγi? +Xzz + εi, i = 1, 2. (4.5)

Candidate Model 2

A study effect γ3 with design matrix X3?
γ = (1′JK1 ,−1′JK2)

′ is added to quantify

potential differences between two data sources. After the QR decomposition,X3?
γ γ

3 =
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Q3R3γ3 = Q3γ3?, where Q3′Q3 = 1. Then, Mc2 is specified as:

v1
v2

 =

1JK1 X1?
β0

1JK2 X2?
β0


 µ

β0

+

Q1 0

0 Q2


γ1?
γ2?

+Q3γ3? +

Xz

Xz

 z +

ε1
ε2

 ,

(4.6)

where γ3? is used to account for the potential systematic differences between two data

sources described in Section 4.2,

4.3.3 Prior Distributions

The non-informative prior is used for overall mean µ ∝ 1, independent ZS priors are

used for β0 and γi. The independent form of ZS prior is also recommended by Rouder

et al. (2012) for g-prior in terms of fix effects, where each factor is modeled with a

separate g parameter. Prior distributions are summarized as below:

β0|g0 ∼ Np0

(
0, g0σ

2(X?
β0
′X?

β0
)−1
)
, (4.7)

γi?|gi ∼ NKi−1(0, giσ
2),γ3?|g3 ∼ N(0, g3σ

2). (4.8)

For the random spatial effect z, many advanced techniques have been developed to

suit different spatial structures or considerations (Besag et al., 1991; Dean et al., 2001;

Lee and Mitchell, 2012; Leroux et al., 2000; MacNab, 2022; Simpson et al., 2017).

As it is not our primary focus, we adopted one popular method, the conditional

autoregressive (CAR) model, to provide insights on how random effects are impacted

in our data combining framework. CAR model is shown to have guaranteed posterior

propriety (Sun et al., 2004; Woodard et al., 1999), and it assumes that counties with
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shared boundaries are spatially correlated with the following form:

z|δ, ρ ∼ NI(0, δ(I − ρC)−1), ρ ∈
(

1

λmin
,

1

λmax

)
, (4.9)

where C is the adjacency matrix, with element cij = 1 if county i and county j are

adjacent, and 0 otherwise. λmin, λmax are minimum and maximum eigenvalues of C,

respectively.

For the scale parameter δ in the distribution of spatial effect z and random error

σ2, Inverse-Gamma (IG) distribution is used:

f(σ2|a, b) ∝ 1

(σ2)a+1
exp(− b

σ2
), σ2 > 0, (4.10)

f(δ|a0, b0) ∝
1

(δ)a0+1
exp(−b0

δ
), δ > 0. (4.11)

A uniform prior is used for ρ to ensure δ(I − ρC)−1 is positive definite:

ρ ∼ Unif

(
1

λmin
,

1

λmax

)
= Unif (ρmin, ρmax) . (4.12)

IG distributions are used for g0, g1, g2 and g3:

f(g0) ∝
1

g
3/2
0

exp(−JK
2g0

), g0 > 0, (4.13)

f(gi) ∝
1

g
3/2
i

exp(− 1

2gi
), gi > 0. (4.14)

For σ2, we set a = b = 0, that’s to say, f(σ2) ∝ 1/σ2. For δ, we set a0 = b0 = 1.

For computation, a Markov Chain Monte Carlo (MCMC) method was used to

generate samples of posterior distributions. Data aggregation was carried out by
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SEER*Stat and SAS software for MCR and CLS, respectively. Sampling algorithms

were implemented in R. We fit M1, M2, Mc1 , and Mc2 , separately. For each model,

we used 50,000 samples after discarding the first 20,000 ones. We collect posterior

meanMp, posterior standard deviation (SDp) and 95% credible interval (CI) for each

model. Since true values for regression coefficients are not available for real data,

we adopt the mean absolute difference (MAD) between the observed value vijk and

estimated value v̂ijk and correlation between vijk and v̂ijk, denoted as COR in Tables.

A model with a lower MAD and a higher COR indicates a better model.

4.3.4 Results

Figures 4.5-4.8 shows the estimated against observed responses for MCR, CLS, Mc1 ,

and Mc2 , respectively. Figure 4.9 maps SDp for z to visualize the impacts of data

combining on the random effects. Mp, SDp, 95% CIs, MAD and COR for key pa-

rameters calculated from individual models and combined models are summarized in

Tables 4.4 and 4.5, respectively. To compare results from Tables 4.4 and 4.5, main

findings are presented from three perspectives. First, we compare overall performance

of using the combined data and individual data. Second, we examine two different

combining methods (Mc1 and Mc2). Third, based on Mc2 , we interpret associations

between FBC prevalence and covariates.

First, combining data is not all always beneficial for both data sources due to

different variability inherited in data sources. However, data combining, even if the

most naive one such as Mc1 , could still be advantageous for the data source with

large variability such as CLS data if a researcher is interested in smaller SDp and

shorter CI. We would recommend researchers to use administrative data to improve
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the precision of estimates based on survey data. Second, when systematic difference

appears in data sources, a study effect should be included to improve the overall

model performance, which can be consolidated by the exclusion of 0 for the 95%CI

of γ3. For example, for CLS, the inclusion of a study effect γ3 lead to a decrease of

MAD from 0.4313 to 0.3411, and an increase of COR from 0.7597 to 0.8633.

At last, as Mc2 is the best model in terms of smaller MAD and larger COR, we

use results from Mc2 to interpret the relationship between the covariates and FBC

prevalence in its logit form. For county attributes β0 (percentages of age 65+, people

below poverty level), posterior means are not far from zero. For γ1 stage factor, the

posterior mean is 2.2024 with 95% CI exclude 0, which indicate the localized stage

is associated with more prevalent cases, which can be explained by higher survival

rates for early stage cancer. For γ2, the posterior mean is -0.5098 with 95% CI

excludes 0, which indicates people who had no cholesterol is associated with lower

FBC prevalence.

Additionally, γ3, the study effect, has a posterior mean of -0.5290 with 95% CI

exclude 0. This is the evidence that, given other covariates, FBC prevalence of MCR

is below overall mean while CLS is above. Reasons behind the lower FBC prevalence

for MCR could be: (1) FBC prevalence for MCR is LDP, which shows existing cases

in a shorter time period compared with CP in CLS; (2) Medical definition difference

about “cancer” in MCR and CLS. MCR only collects malignant cancer cases except

for brain cancer while an interviewee might consider both benign and in Situ tumor

as cancer cases in CLS; (3) MCR does not get all cases that should be reported.

For county effects z, the posterior distribution for spatial smoothing parameter ρ is

slightly right-skewed but centered around zero. This indicates the spatial structure
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Table 4.4: Mp and SDp for individual models with LMM

Data Source MCR CLS
Parameter Mp(SDp) 95% CI Mp(SDp) 95% CI

µ -4.5470 (0.0230) (-4.5934, -4.5026) -3.2943 (0.0556) (-3.4004, -3.1809)
β01 7.9498 (3.7834) (1.5330, 16.0593) -0.4982 (1.2526) (-3.0794, 1.9536)
β02 -3.1575 (1.5083) (-6.432, -0.5878) -0.9286 (0.5720) (-2.1626, 0.0666)
γ1? -5.2476 (0.2937) (-5.8307, -4.6701) - -
γ2? - - 3.8808 (0.6931) (2.4874, 5.2311)
γ1 2.4448 (0.1368) (2.1758, 2.7164) - -
γ2 - - -0.4169 (0.0745) (-0.5620, -0.2672)
σ2 0.0701 (0.0078) (0.0567, 0.0867) 0.4188 (0.0547) (0.3280, 0.5390)
δ 0.3803 (0.1542) (0.1616, 0.7599) 0.3158 (0.0966) (0.1632, 0.5336)
ρ 0.0886 (0.0947) (-0.1739, 0.1714) -0.0401 (0.1047) (-0.2514, 0.1363)

MAD 0.1975 0.4313
COR 0.8377 0.7597

in (4.9) may not be helpful in our model. De Oliveira (2012) pointed out that the

uniform prior in (4.12) assigns little mass when there is substantial spatial correlation,

and much mass when there is weak or no spatial correlation.

4.4 Generalized Linear Mixed Model (GLMM)

Consider possible loss in the accuracy during the logit transformation in Section 4.3

for prevalent percentages, here, we model via the observed prevalent counts and pop-

ulation size directly. As displayed in Table 4.2, the data do not have zero responses.

4.4.1 Model Specifications

Following the same notations as in Section 4.3, for the i-th data source, j-th county,

and k-th category, we consider the prevalent counts yijk as random variable and the
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Table 4.5: Mp and SDp for Mc1 and Mc2 from LMM

Data Source Mc1 Mc2

Parameter Mp(SDp) 95% CI Mp(SDp) 95% CI
µ -4.5597 (0.0668) (-4.6897, -4.4261) -4.2758 (0.0369) (-4.3479, -4.2032)
β01 0.0998 (1.2608) (-2.4440, 2.6056) -0.3090 (1.1436) (-2.6468, 1.9451)
β02 0.2091 (0.4270) (-0.5893, 1.1244) 0.0749 (0.3768) (-0.6729, 0.8411)
γ1? -6.5078 (0.5597) (-7.6049, -5.4284) -5.9169 (0.5255) (-6.9347, -4.8697)
γ2? 4.9069 (0.5829) (3.7510, 6.0398) 3.6664 (0.5527) (2.5639, 4.7422)
γ3? - - 15.2490 (1.0166) (13.2970, 17.2361)
γ1 3.0319 (0.2608) (2.5290, 3.5430) 2.2024 (0.2448) (2.2687, 3.2308)
γ2 -0.5272 (0.0626) (-0.6489, -0.4030) -0.5098 (0.0594) (-0.5095, -0.2755)
γ3 - - -1.6052 (0.1070) (-1.8144, -1.3998)
σ2 0.3074 (0.0255) (0.2620, 0.3616) 0.2667 (0.0207) (0.2290, 0.3096)
δ 1.1207 (0.2351) (0.7214, 1.6417) 0.7466 (0.1584) (0.4683, 1.0881)
ρ 0.1716 (0.0015) (0.1675, 0.1732) -0.0798 (0.0855) (-0.2447, 0.0825)

MAD 0.3724 0.3411
COR 0.8464 0.8633

Figure 4.5: Estimated against the observed responses in logit (left) and percentage (right)
form from MCR with LMM.
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Figure 4.6: Estimated against the observed responses in logit (left) and percentage (right)
form from CLS with LMM.

Figure 4.7: Estimated against the observed responses in logit (left) and percentage (right)
form from Mc1 with LMM.

population size nijk as known values. Recall that i = 1 indicates data from MCR

and two categories are early vs late stage. i = 2 indicates data from CLS and
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Figure 4.8: Estimated against the observed responses in logit (left) and percentage (right)
form from Mc2 with LMM.

two categories are whether a person is told of high cholesterol level or not by health

professional. There is no zero prevalence count in the data. To ensure the consistency

of notations, we use nijk for i = 1, 2. Notice that, when n1
i1 = n1

i2 = n1
i .

For the individual data source i, we assume that

yijk ∼ Bin(nijk, p
i
jk), v

i
jk = logit(pijk) = log(

pijk
1− pijk

) (4.15)

vijk = µi + β01x1j + β02x2j + γik + zj + εijk. (4.16)

The matrix form of model in (4.16) is rewritten as

vi = µi1JKi +X i
β0
β0 +X i

γγ
i +Xzz + εi. (4.17)

The same reparameterization strategy as in Section 4.3.2 is applied to models in this
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Figure 4.9: Map of SDp of z for M1, M2, Mc1 , and Mc2 with LMM.

section. Additionally, since we incorporate the aggregate-level county attributes in the

model, there is potential confounding in the model. In a meta-analytical framework

for aggregate-level data, it is more frequently called “ecological fallacy” (Chen et al.,

2020; Cooper and Patall, 2009). In the context of spatial analysis, the confounding
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issue is referred to as “spatial confounding” ,and the models in (4.15) and (4.16) are

referred to as the spatial generalized linear mixed model (SGLMM).

Specifically, the phenomenon of multicollinearity among spatial covariates and the

spatial random effect is referred to as “spatial confounding” (Paciorek, 2010). When

a researcher is interested in the interpretation of the relationship between spatial

covariates and a response, the spatial confounding can have a significant effect on

regression parameters in SGLMM. Although no universal solution exists, one popular

method to relieve this problem is the restricted spatial regression (RSR) (Hanks et al.,

2015; Hodges and Reich, 2010; Hughes and Haran, 2013), which constrains the random

effects to be orthogonal to fixed effects. It has been shown that, conditioned on the

spatial effects, RSR is a reparameterization of the SGLMM. For example,

η = Xβ0β0 +Xzz

= Xβ0β0 + PXβ0
Xzz + (I − PXβ0

)Xzz

= Xβ0 [β0 + (X ′β0Xβ0)
−1X ′β0Xzz] + (I − PXβ0

)Xzz

= Xβ0β̃0 + (I − PXβ0
)Xzz,

where β̃0 = β0 + (X ′β0Xβ0)
−1X ′β0Xzz represents marginal regression coefficients and

β0 represents conditional regression coefficients. They also recommended that, with-

out strong belief that regression coefficients are orthogonal to the random effects,

SGLMM is a better option. The samples of β̃0 can be obtained through the relation-

ship between β̃0 and β0 when performing MCMC.

With (4.15)-(4.17), following Section 4.3, two data combining methods are con-

sidered. If the data is combined with (4.4), we denote the model as Mc1 . If the data
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is combined with (4.6), the model is referred to as Mc2 .

4.4.2 Prior Distributions

Prior specifications are the same as Section 4.3. Non-informative prior is used for

overall mean, µ ∝ 1. For other parameters, we use priors in (4.7)-(4.13). A MCMC

method, such as Gibbs sampling, was used to generate samples of posterior distri-

butions. We only present full conditional distributions for Mc2 , and one could easily

obtain the full conditional distributions for the rest of candidate models. Since the

full conditional distributions for ρ and σ2 (See 6 and 8 in Appendix A.3) are not

standard distributions, Adaptive Rejection Metropolis Sampling (ARMS) by Gilks

et al. (1995) was used to obtain the posterior samples. The following hyper parame-

ter values are used: a1 = b1 = 0, a0 = b0 = 1. We fit models using MCR, CLS and the

combined data, separately. Therefore, results for four models are reported in total.

For each model, we used 50,000 samples after discarding the first 20,000.

4.4.3 Results

Tables 4.6 and 4.7 summarize Mp, SDp, and 95% CIs for individual models and the

combined model. Figures 4.10, 4.11, 4.12, and 4.13 present the estimated responses

against observed in both logit scale and percentage scale. Figure 4.14 presents the

posterior standard deviations for the spatial effects z. To further visualize the estima-

tion of prevalence estimates, Figure 4.15 gives an example of early stage prevalence

in a map form. Finally, for a convergence check, Figure 4.16 displays the trace plots

for key parameters with Mc2 . The trace plots for other models along with those for
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LMM show similar patterns and are not presented to save space.

There are several main findings. First, Mc1 , Mc2 , and Mi nearly reach consistent

conclusions for most of the parameters in terms of whether CI covers 0 except the age

group β01. Second, Mc1 and Mc2 offer a smaller SDp for coefficients compared with

CLS but not MCR. This is within our expectation as we have discussed in Section

4.3. Third, Mc2 yields more precise estimates compared with Mc1 in terms of SDp.

This echoes the result that the 95% CI of γ3? excludes 0. Fourth, for other parameters

(σ2, ρ, δ), Mc1 and Mc2 show a smaller SDp compared with both MCR and CLS.

In addition, compared with LMM, the estimated prevalence are more close to the

observed, which can be reflected by Figures 4.10-4.13. At last, we found that, the

estimates for β0, with and without the spatial confounding adjustment, are more

close in Mc1 and Mc2 rather than M1 and M2. It might be interesting to investigate

whether incorporating more data sources could help us relieve the confounding issue

if RSR is a proper formulation. We also found that, the marginal estimates for β0

have smaller posterior variance compared with the conditional estimates.

4.5 Discussion

This chapter takes a primary investigation of combining FBC prevalence from MCR

and CLS under several candidate models with random effects incorporated. Specially,

we examine how our data combining framework impact the relationship between the

FBC prevalence and covariates of interests. The take home message is that it is

essential to understand the nature of data when we intend to perform data synthesis.

For example, in our case, we intend to combine data sources with very different
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Table 4.6: Mp and SDp for MCR and CLS from GLMM

Data Source MCR CLS

Parameter Mp(SDp) 95% CI Mp(SDp) 95% CI

µ -4.5955 (0.0092) (-4.6135, -4.5777 ) -3.3218 (0.0433) (-3.4073, -3.2366)

β01 1.9588 (0.4929) (0.9858, 2.9131) 0.9689 (1.2727) (-1.5186, 3.4630)

β02 1.2094 (0.4466) (0.3651, 2.1274 ) 2.8414 (1.1571) (0.5788, 5.0884)

β̃01 2.0215 (0.1998) (1.6237, 2.4114) 1.0718 (0.9908) (-0.8496, 3.0105)

β̃02 1.4003 (0.1794) (1.0428, 1.7543) 2.7997 (0.9028) (1.0247, 4.5938)

γ1 0.3992 (0.0075) (0.3843, 0.4138) - -

γ2 - - -0.2867 (0.0429) (-0.3712, -0.2034)

γ3 - - - -

σ2 0.0028 (0.0011) (0.0011, 0.0055) 0.4106 (0.0486) (0.3243, 0.5138)

δ 0.0361 (0.0054) (0.0270, 0.0480) 0.1390 (0.0339) (0.0840, 0.2153)

ρ 0.0625 (0.0498) (-0.0475, 0.1448) -0.0852 (0.0897) (-0.2539, 0.0882)

Table 4.7: Mp and SDp for Mc1 and Mc2 from GLMM

Data Source Mc1 Mc2

Parameter Mp(SDp) 95% CI Mp(SDp) 95% CI

µ -3.9669 (0.0397) (-4.0448, -3.8892) -3.9573 (0.0226) (-4.0020, -3.9126)

β01 1.4714 (1.0908) (-0.6891, 3.6008 ) 1.4948 (0.7751) (-0.0221, 3.0080)

β02 2.1262 (0.9960) (0.1520, 4.0807) 2.0930 (0.7101) (0.7022, 3.4934 )

β̃01 1.4862 (0.9073) (-0.2949, 3.2688 ) 1.5374 (0.5194) (0.5078, 2.5498)

β̃02 2.1239 (0.8268) (0.5000, 3.7298 ) 2.0996 (0.4754) (1.1648, 3.0295)

γ1 0.3878 (0.0559) (0.2792, 0.4970) 0.3942 (0.0322) (0.3312, 0.4572)

γ2 -0.2891 (0.0551) (-0.3974, -0.1807 ) -0.2843 (0.0320) (-0.3469, -0.2222)

γ3 - - -0.6490 (0.0225) (-0.6925, -0.6048)

σ2 0.6944 (0.0489) (0.6048, 0.7980) 0.2184 (0.0174) (0.1866, 0.2549)

δ 0.0787 (0.0169) (0.0511, 0.1171) 0.0721 (0.0135) (0.0496, 0.1023)

ρ -0.0313 (0.0819) (-0.1986, 0.1132) -0.0290 (0.0747) (-0.1815, 0.1051)

features in terms of data collection, data measurements, case definition, information

collected, and what statistics are used to publish these data. These features enable
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Figure 4.10: Estimated against the observed responses in logit (left) and percentage (right)
form from MCR with GLMM.

Figure 4.11: Estimated against the observed responses in logit (left) and percentage (right)
form from CLS with GLMM.

us to better target appropriate statistical methods and interpret results.

The results with LMM or GLMM also offer implications to health care planners or
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Figure 4.12: Estimated against the observed responses in logit (left) and percentage (right)
form from Mc1 with GLMM.

Figure 4.13: Estimated against the observed responses in logit (left) and percentage (right)
form from Mc2 with GLMM.

policy makers. For one thing, all models indicate that people aged over 65 and at or

above poverty level is associated with a higher FBC prevalence from the population
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Figure 4.14: Map of SDp of z for M1, M2, Mc1 , and Mc2 with GLMM

perspective. While the higher prevalence is more related to a higher incidence, people

below the poverty level is more related to a higher mortality due to limited access to

affordable health care resources. It is helpful to provide accessible medical resources

such as early screening for people below the poverty level. For another thing, there
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Figure 4.15: Estimated (left) FBC prevalence against the observed (right) for the early
stage from M1, Mc1 , and Mc2 with GLMM.

is a positive association between the FBC prevalence and early stage, which puts

emphasis on cancer prevalence since late stage is more related to higher mortality.

Although the specific dynamic between the FBC prevalence and cholesterol level re-

main unclear due to complicated factors, our results still show that a higher FBC

prevalence is associated with a higher cholesterol level from the population perspec-

tive. This indicates that appropriate control over the cholesterol level through diet

or exercise maybe a helpful way to reduce the FBC prevalence.
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There are several aspects worth exploring in the future. To start with, with

the proposed data combining framework, the incorporation of random effects and

the generalization to counts outcomes cause theoretical challenge on the analyses of

posterior variance and frequentist properties. We may adopt approximation method

for the theoretical support in some special cases. This makes extensive simulation

studies with different structures of random effects, different sample sizes, and different

size of coefficients necessary to offer a more complete picture of the behaviors of the

Bayesian estimator and posterior variances in terms of the random effects. Second,

other data combining strategies should be studied and compared. For example, in the

FBC prevalence setting, another interesting framework is to combine data according

to different geographical regions and study the correlations among multiple factors.

Third, for the spatial structure of the random effects, many spatial structures besides

CAR model have been developed, and one key question need to be answered is how

to deal with the spatial confounding. This issue has also been identified in the meta-

regression or meta-analysis when the aggregate-level data is used. Several ways have

been proposed to relieve this problem. For example, one may use individual level data,

or one may consider a marginal estimate for the coefficients by RSR. We adopted the

later. Alternatively, Page et al. (2017) models the correlation between the spatial

effects and the spatial related covariates, which is a very interesting topic to pursue

next. Fourth, Mc1 orMc2 assumes MCR and CLS shares the same spatial correlation.

However, according to the posterior mean of ρ from MCR and CLS, one indicates a

positive correlation and the other indicates a negative correlation, and therefore it is

more realistic to allow two spatial correlations for the combined data (Du, 2018; Kim

et al., 2001; Schmaltz, 2012).
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Figure 4.16: Trace plots of selected parameters for Mc2 with GLMM
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Chapter 5

Summary and Concluding Remarks

This dissertation aims at a theoretical and numerical evaluation of g-prior, ZS prior,

and shrinkage prior under Mi and Mc defined in Chapter 1 in terms of posterior

variances and frequentist properties of the Bayesian estimators. We also generalize

our data combining framework from continuous outcomes and fixed effects model to

counts outcomes and mixed effects model through an application on the county-level

female breast cancer prevalence. Our methods and results can be extended to data

combining with more than two data sources using other g-type priors.

As data combining has become a common practice for researchers, the contribu-

tions in this dissertation are three-fold. First, while common data synthesis methods

focus on the inference of an overall mean or multiple correlated factors, our data com-

bining framework enables a specification of both shared and model-specific covariates.

Compared with the graphical model, our formulation offers a balance between the

theoretical justification and model complexity, which is highly needed to draw con-

clusions of suitability of data combining. We found thatMc performs betterMi when
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the sample size is small and βi is not dominant. Mc offers more stable estimates,

especially when the focus is on β0. Second, we explore the performance of g-prior

and ZS prior from the estimation perspective, which has been ignored due to its de-

sirable properties in the model selection. Our results indicate that g prior or ZS prior,

especially the independent version, can be a good candidate for estimation in terms

of a smaller risk compared with least squares estimates. Third, it provides insights

of how much "strength" can be borrowed via such data combination. In Chapters 2

and 3, our work formally compares the posterior variance and frequentist properties

in Mi and Mc. While Chapter 2 mainly adopt a Laplace approximation approach,

Chapter 3 takes a conditional asymptotic approach and addresses its convergence in

the analysis of frequentist properties. The conditional asymptotic analyses results

implies that, independent ZS prior offers unbiased estimates for large coefficients and

substantial shrinkage for small coefficients, which is desired from the estimation per-

spective (Berger, 1985).

However, several issues deserve further comments and investigations. First, for

both Mi and Mc, we assume that σ2 are common for both sources, which may be

not be true in practice. Although allowing different σ2 for both sources in Chapter

4 contributes little to improve model performance, it is of interest to study a more

general covariance structure for ε depending on a specific research question. Second,

despite the straightforward theoretical justification withMc, the relative performance

ofMc and alternative data combining strategies need to be evaluated. For example, for

the application in Chapter 4, it is also feasible to integrate data through geographical

region. Then, the difficulties lies in the incorporation of the correlation between stage

and cholesterol information, as well as the systematic difference among MCR and CLS.
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Third, our framework reveals that, when there are more specific coefficients and the

specific coefficients are dominant in size, the benefits of our data combining strategy

is not much, and alternatives need to be explored. For example, from the missing data

perspective, whether imputations from external data sources for “missing” covariates

could improve the estimation. Fourth, for the specification of g-prior, we utilize zero

as its mean for the shrinkage purpose and alignment of model selection. If the priority

lies in the estimation and shrinkage is not a primary consideration, one may generalize

the mean zero to an unknown parameter and specify a prior accordingly to adjust

the magnitude of the shrinkage effects.
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Appendix A

Theorems and Lemmas

A.1 Proofs of Theorems, Lemmas, Remarks and Facts
in Chapter 2

A.1.1 Proof of Theorem 2.1

By the Woodbury matrix identity,

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,

where A,U ,C and V all denote matrices of the conformable sizes. If we let U =

B′,C = I,V = B, then (A +B′B)−1 = A−1 −A−1B′(I +BA−1B′)−1BA−1. In

our case, we set Ai = X ′0i(Ini −Pi)X0i, and Bj = (Inj −Pj)X0j, where i = 1, 2, j =
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1, 2 and i 6= j, then

V AR(β0|σ2, g,y,Mc)− V AR(β0|σ2, gi,yi,Mi)

=
gσ2

1 + g
(Ai +B′jBj)

−1 − giσ
2

1 + gi
A−1i

=
gσ2

1 + g
{A−1i −A−1i B′j(Inj +BjA

−1
i B

′
j)
−1BjA

−1
i } −

giσ
2

1 + gi
A−1i

=

(
g

1 + g
− gi

1 + gi

)
σ2A−1i −

gσ2

1 + g
A−1i B

′
j(Inj +BjA

−1
i B

′
j)
−1BjA

−1
i .

Hence, V AR(β0|σ2, g,y,Mc)− V AR(β0|σ2, gi,yi,Mi) ≤ 0 is equivalent to

[
1− gi(1 + g)

(1 + gi)g

]
Ip0 ≤ A

− 1
2

i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

− 1
2

i . (A.1)

Since A−
1
2

i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

− 1
2

i < A
− 1

2
i B′j(BjA

−1
i B

′
j)
−1BjA

− 1
2

i , the eigen-

values of A−
1
2

i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

− 1
2

i are less than 1 or 0. Inequality (A.1) is

equivalent to

[
1− gi(1 + g)

(1 + gi)g

]
≤ λmin(A

− 1
2

i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

− 1
2

i ) ∈ (0, 1).

Notice that λmin(A
− 1

2
i B′j(Inj + BjA

−1
i B

′
j)
−1BjA

− 1
2

i ) 6= 0 because it is of full rank

p0. If we further assume the ordered eigenvalues of BjA
−1
i B

′
j is λ1 ≤ λ2 ≤ · · · ≤ λJ ,

where J = nj, then

λmin[A
− 1

2
i B′j(Inj +BjA

−1
i B

′
j)
−1BjA

− 1
2

i ] = λmin[(Inj +BjA
−1
i B

′
j)
−1BjA

−1
i B

′
j]

=
λ1

1 + λ1
.

124



Since BjA
−1
i B

′
j depends on the rank of Bj, λ1 = 0 if and only if Bj is not of full

column rank.

For the specific regression coefficient βi, suppose Qi = (X ′iXi)
−1X ′iX0i, Mi =

[(X ′iXi)
−1 +QiA

−1
i Q

′
i], and N = QiA

−1
i B

′
j[Inj +BjA

−1
i B

′
j]
−1BjA

−1
i Q

′
i, then

V AR(βi|σ2, g,y,Mc)− V AR(βi|σ2, gi,yi,Mi)

=

(
g

1 + g
− gi

1 + gi

)
σ2Mi −

g

1 + g
σ2N . (A.2)

Equation (A.2) can be simplified based on the rank ofQi since the rank ofN depends

on Qi.

When X ′iX0i = 0ni×p0 or pi > p0, Qi is either equal to 0pi×p0 or of full column

rank and N is either 0pi×pi or not of full rank, and therefore

V AR(βi|σ2, g,y,Mc)− V AR(βi|σ2, gi,yi,Mi) ≤ 0

is equivalent to

gi ≥ g.

When X ′iX0i 6= 0ni×p0 and pi ≤ p0, Qi is of full row rank and N is of full rank.

V AR(βi|σ2, g,y,Mc)− V AR(βi|σ2, gi,yi,Mi) ≤ 0

is equivalent to (
1− gi(1 + g)

g(1 + gi)

)
Ipi ≤M

− 1
2

i NM
− 1

2
i ,
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which is equivalent to

1− gi(1 + g)

g(1 + gi)
≤ λmin(M

− 1
2

i NM
− 1

2
i ).

Furthermore, let X be a matrix and λi(X) denote its i-th eigenvalue, where λi ∈

{λ1, · · · , λn−1, λn} and λ1 ≥ · · · ≥ λn. Notice that

N < QiA
−1
i B

′
j[BjA

−1
i B

′
j]
−1BjA

−1
i Q

′
i ≤ QiA

− 1
2

i A
− 1

2
i Q′i,M

−1
i < (QiA

−1
i Q

′
i)
−1,

λi(M
− 1

2
i NM

− 1
2

i ) < λi(M
− 1

2
i QiA

− 1
2

i A
− 1

2
i Q′iM

− 1
2

i )

= λi(QiA
− 1

2
i A

− 1
2

i Q′iM
−1
i )

= λi(A
− 1

2
i Q′iM

−1
i QiA

− 1
2

i )

< λi(A
− 1

2
i Q′i(QiA

−1
i Q

′
i)
−1QiA

− 1
2

i ). (A.3)

Notice that equation (A.3) is a projection matrix and hence the minimum eigenvalue

ofM− 1
2

i NM
− 1

2
i is controlled by a projection matrix, whose eigenvalues can be either

0 or 1, which indicates λmin(M
− 1

2
i NM

− 1
2

i ) ∈ (0, 1).

A.1.2 Proof of Remark 2.2

Consider posterior variances for (β0,βi|yi,Mi) as well as (β0,βi|y,Mc). Recall that

Σi = giσ
2(X̃i

′
X̃i)

−1/(1 + gi) in equation (2.2) and Σ = gσ2(X̃ ′X̃)−1/(1 + g) in
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equation (2.5), where

X̃i
′
X̃i =

X ′
0iX0i X

′
0iXi

X
′
iX0i X

′
iXi

 and X̃ ′X̃ =


X
′
01X01 +X

′
02X02 X

′
01X1 X

′
02X2

X
′
1X01 X

′
1X1 0

X
′
2X02 0 X

′
2X2

 .

With the formula of inverse block diagonal matrix

A B

C D


−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 ,

where all inverses exist and A,B,C and D are suitable matrices. When i = 1,

A =

X ′
01X01 +X

′
02X02 X

′
01X1

X
′
1X01 X

′
1X1

 ,B =

X ′
02X2

0

 ,

C =
(
X
′

2X02,0
)
,D =

(
X
′

2X2

)−1
.

Then the posterior covariance matrix for (β0,β1) is

(A−BD−1C)−1 =

X ′
01X01 +X

′
02(In2 − P2)X02 X

′
01X1

X
′
1X01 X ′1X1


−1

≤

X ′
01X01 X

′
01X1

X
′
1X01 X ′1X1


−1

.
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When i = 2, we only need to multiply X̃ ′X̃ by

M =


Ip0 0 0

0 0 Ip2

0 Ip1 0


on the left and M ′ on the right. A similar procedure can be performed for (β0,β2).

A.1.3 Proof of Fact 2.3

We show the derivations for marginal distributions in (2.9). For brevity, let’s consider

the linear regression model y = Xβ + ε, where ε ∼ Nn(0, σ2In) and σ2 is unknown.

Here, the known design matrix X is n × p, and β ∈ IRp is unknown regression

coefficients. Conventional g-prior for the regression coefficient β and Jeffrey prior for

σ2 are specified as

β|σ2, g ∼ N(0, σ2g(X ′X)−1);

f(σ2) ∝ 1

σ2

Proof. The posterior distribution for (β, σ2|y) is

f(β, σ2|y) ∝(σ2)−
n
2 exp{− 1

2σ2
(y −Xβ)′(y −Xβ)}

|σ2g(X ′X)−1|−
1
2 exp{−1

2
β′(σ2g(X ′X)−1)−1β} 1

σ2
.
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The marginal distribution for (β|y) is

f(β|y) ∝
∫
σ2

f(β, σ2|y)dσ2

∝
∫
σ2

(σ2)−
n+p+2

2 exp{− 1

2σ2
[(y −Xβ)′(y −Xβ) +

(Xβ)′(Xβ)

g
]}dσ2

∝ {1

2
[(y −Xβ)′(y −Xβ) +

(Xβ)′(Xβ)

g
]}−

n+p
2 .

Set µ = (g−1 + 1)−1(X ′X)−1X ′y,Λ−1 = n(1 + g−1)(X ′X) and P = X(X ′X)−1X ′,

f(β|y) ∝ {(β − µ)′Λ−1(β − µ)

n
+ y′(I − P )y}−

n+p
2

∝ {(β − µ)′Λ−1(β − µ)

ny′(I − P )y
+ 1}−

n+p
2 .

Hence, the marginal distribution for β|y is multivatiate t distribution with

tn(µ,Σ), where Σ−1 =
Λ−1

y′(I − P )y
.

A.1.4 Proof of Theorem 2.2

Here, we use the same notations and similar techniques in Proof A.1.1. Recall that

Ai = X ′0i(Ini − Pi)X0i, and Bj = (Inj − Pj)X0j, where i, j = 1, 2, i 6= j, then

V AR(β0|g,y,Mc)− V AR(β0|gi,yi,Mi)

=a(Ai +B′jBj)
−1 − aiA−1i

=a{A−1i −A−1i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

−1
i } − aiA−1i
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=(a− ai)A−1i − aA−1i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

−1
i .

Hence, V AR(β0|g,y,Mc)− V AR(β0|, gi,yi,Mi) ≤ 0 is equivalent to

(
1− ai

a

)
Ip0 ≤ A

− 1
2

i B′j(Inj +BjA
−1
i B

′
j)
−1BjA

− 1
2

i . (A.4)

As it has been proved that in Proof A.1.1, λmin(A
− 1

2
i B′j(Inj +BjA

−1
i B

′
j)
−1BjA

− 1
2

i ) ∈

(0, 1).

Next, we show the results for specific regression coefficients βi.

V AR(βi|g,y,Mc)− V AR(βi|gi,yi,Mi) = (a− ai)σ2(X ′iXi)
−1 + (a− ai)σ2QiA

−1
i Q

′
i

− aσ2QiA
−1
i B

′
j[Inj +BjA

−1
i B

′
j]
−1BjA

−1
i Q

′
i.

As Qi = (X ′iXi)
−1X ′iX0i, Mi = [(X ′iXi)

−1 +QiA
−1
i Q

′
i], and N = QiA

−1
i B

′
j[Inj +

BjA
−1
i B

′
j]
−1BjA

−1
i Q

′
i, then

V AR(βi|g,y,Mc)− V AR(βi|gi,yi,Mi) = (a− ai)σ2Mi − aσ2N . (A.5)

Notice that equation (A.5) can be simplified according to the rank of Qi.

When X ′iX0i = 0ni×p0 or pi > p0, Qi is either equal to 0pi×p0 or of full col-

umn rank and N is either 0pi×pi or not of full rank. Then, V AR(βi|g,y,Mc) −

V AR(βi|gi,yi,Mi) ≤ 0 is equivalent to ai ≥ a.

When X ′iX0i 6= 0ni×p0 and pi ≤ p0, Qi is of full row rank and N is of full rank.

V AR(βi|g,y,Mc)− V AR(βi|gi,yi,Mi) ≤ 0
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is equivalent to (
1− ai

a

)
Ipi ≤M

− 1
2

i NM
− 1

2
i ,

which is also equivalent to

1− ai
a
≤ λmin(M

− 1
2

i NM
− 1

2
i ).

As in Proof A.1.1, λmin(M
− 1

2
i NM

− 1
2

i ) ∈ (0, 1) holds.

A.1.5 Proof of Theorem 2.3

We need the following lemmas.

Lemma A.1. If the ratio of two densities f1(x) and f2(x) is increasing in x, then

Ef1(x) ≥ Ef2(x).

Proof. See Lemma 6.1 in Shao (2003).

Lemma A.2.

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt = (1− z)c−a−b
∫ 1

0

tc−b−1(1− t)b−1(1− tz)a−cdt,

where c > b > 0, |z| < 1.

Proof. When c > b > 0, we have the following equation from Bailey (1935)

2F1(a, b; c; z)Beta(b, c− b) =

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt,
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where 2F1(a, b; c; z) is the Gaussian hypergeometric function with

2F1(a, b; c; z) =
1

Beta(b, c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− xz)−adx, c > b > 0.

2F1(a, b; c; z) is convergent for |z| < 1 with c > b > 0 and for z = ±1 only if c > a+ b

and b > 0. By Euler’s transformation 2F1(a, b; c; z) = (1−z)c−a−b2F1(c−a, c−b; c; z),

2F1(a, b; c; z)Beta(b, c− b) = (1− z)c−a−b2F1(c− a, c− b; c; z)Beta(b, c− b)

= (1− z)c−a−b
∫ 1

0

tc−b−1(1− t)b−1(1− tz)a−cdt.

Recall that the marginal posterior of g has the following form

π(g|y) ∝ (1 + g)
n−p
2 g−

3
2 exp(− n

2g
)

(
1− gR̃2

1 + g

)−n
2

.

Then, we set t = g/(1 + g) to offer an easier analysis and then the density becomes

π(t|y) ∝ (1− t)
p−1
2 t−

3
2 exp(− n

2t
)(1− tR̃2)−

n
2 .

Since an explicit evaluation of π(t|y) is not feasible, alternatively, we consider the

density h(t|y) ∝ (1 − t)p/2(1 − tR̃2)−n/2. Notice that the ratio π(t|y)/h(t|y) =

t−3/2(1 − t)−1/2 exp(−n/(2t)) is the increasing function with respect to t. Hence, by

Lemma A.1, we have Eπ(t|y) ≥ Eh(t|y). It is obvious that Eπ(t|y) ≤ 1 and we only
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need to evaluate Eh(t|y). Specifically,

Eh(t|y) =

∫ 1

0
t(1− t) p2 (1− tR̃2)−

n
2 dt∫ 1

0
(1− t) p2 (1− tR̃2)−

n
2 dt

=
2

4 + p

2F1(
n
2
, 2; p

2
+ 3; R̃2)

2F1(
n
2
, 1; p

2
+ 2; R̃2)

. (A.6)

Then, by Lemma A.2, (A.6) is represented as

(1− R̃2)
p−n
2

+1
∫ 1

0
t
p
2 (1− t)(1− tR̃2)

n−p
2
−3dt

(1− R̃2)
p−n
2

+1
∫ 1

0
t
p
2 (1− tR̃2)

n−p
2
−2dt

=

∫ 1

0
t
p
2 (1− t)(1− tR̃2)

n−p
2
−3dt∫ 1

0
t
p
2 (1− tR̃2)

n−p
2
−2dt

. (A.7)

As R̃2 → 1, (A.7) → 1. For the posterior variance, we only need to prove E(g2/(1 +

g)2|y) → 1, which is equivalent to show E(t2|y) → 1. Similarly, by Lemma A.2, we

have

E(t2|y) =

∫ 1

0
t2(1− t) p2 (1− tR̃2)−

n
2 dt∫ 1

0
(1− t) p2 (1− tR̃2)−

n
2 dt

=

∫ 1

0
t
p
2 (1− t)2(1− tR̃2)

n−p
2
−4dt∫ 1

0
t
p
2 (1− tR̃2)

n−p
2
−2dt

, (A.8)

which approaches to 1 as R̃2 → 1.

A.2 Proofs of Theorems, Lemmas, Remarks and Facts
in Chapter 3

A.2.1 Proof of Theorem 3.1

Define V1 = X
′
01[(1 + g−10 )In1 − (1 + g−11 )−1P1]X01 and V2 = X

′
02[(1 + g−10 )In2 − (1 +

g−12 )−1P2]X02, then

V AR(β0|σ2, g0, g1,y1,M1) = σ2V −11 ,
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V AR(β0|σ2, g0, g1, g2,y,Mc) = σ2(V1 + V2)
−1.

For the comparison for common regression coefficient β0,

V AR(β0|σ2, g0, g1,y1,M1)− V AR(β0|σ2, g0, g1, g2,y,Mc)

=σ2[V −11 − (V1 + V2)
−1]

=σ2{V −11 − [V −11 − (V1 + V1V
−1
2 V1)

−1]}

=σ2(V1 + V1V
−1
2 V1)

−1. (A.9)

Notice that V1 and V2 have the same structure. Recall that P1 = X1(X
′
1X1)

−1X ′1

and we assume that X1 is of full column rank. P1 is idempotent and of rank p1.

According to the eigen-decomposition theorem, there exists an orthogonal matrix T ,

where the columns of T is composed of eigenvectors of P1, and Λ = diag(1, 1, · · · , 0),

where Λ if a diagonal matrix of rank p1 and dimension n1, such that P1 = T ′ΛT .

Then,

V1 = T {X ′

01[(1 + g−10 )In1 − (1 + g−11 )−1P1]X01}T ′

= X
′

01[(1 + g−10 )In1 − (1 + g−11 )−1Λ]X01.

The elements of [(1 + g−10 )In1 − (1 + g−11 )−1Λ] are either g−10 + (g1 + 1)−1 > 0 or

(1 + g01)
−1 > 0, which indicates V1 is positive definite. Similarly, V2 is positive

definite. Hence, (A.9) is positive definite.

For specific regression coefficients β1, recall that Qi = (X ′iXi)
−1X ′iX0i, then

V AR(β1|σ2, g0, g1,y1,M1)− V AR(β1|σ2, g0, g1, g2,y,Mc)
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=σ2{[(g−11 + 1)−1(X ′1X1)
−1 + (g−11 + 1)−2Q1V

−1
1 Q′1]− [(g−11 + 1)−1(X ′1X1)

−1

+(g−11 + 1)−2Q1(V1 + V2)
−1Q1]

′}

=σ2{(g−11 + 1)−2Q1[V
−1
1 − (V1 + V2)

−1]Q′1}. (A.10)

As V1 and V2 are proved to be positive definite, (A.10) is positive semi-definite, where

Qi has dimension of pi × p0. The same holds for β2.

A.2.2 Proof of Lemma 3.1

Proof. Without loss of generality, we use 1/R
2(k)
01 in M1 as an example. With the

defined sequence {L(k)}∞k=1 for M1, we have:

1

R
2(k)
01

=
β

(k)′
0 X ′01X01β

(k)
0 + β′1X

′
1X1β1 + ε′1ε1

β
(k)′
0 X01X01β

(k)
0 + ε′1PX01ε1

= 1 +
β′1X

′
1X1β1 + ε′1(In1 − PX01)ε1

β
(k)′
0 X ′01X01β

(k)
0 + ε′1PX01ε1

.

Since ε′1(In1 −PX01)ε1 and ε′1PX01ε1 are independent, denote {X01,β
(k)
0 ,X1,β1} as ·

and we have:

E(1/R
2(k)
01 |·)

=1 + E
[
β′1X

′
1X1β1 + ε′1(In1 − PX01)ε1| ·

]
E
[
(β

(k)′
0 X ′01X01β

(k)
0 + ε′1PX01ε1)

−1| ·
]

=1 + (σ−2β′1X
′
1X1β1 + n1 − p0)E

[
(σ−2β

(k)′
0 X ′01X01β

(k)
0 + σ−2ε′1PX01ε1)

−1|
]
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Let a = σ−2β
(k)′
0 X ′01X01β

(k)
0 and we may find that Q = σ−2ε′PX01ε ∼ χ2

p0
. Then, we

only need to calculate E[(a+Q)−1]. We have

E[(a+Q)−1] =

∫ +∞

0

1

a+ q

(1
2
)
p0
2

Γ(p0
2

)
q
p0
2
−1 exp(−q

2
)dq

=

∫ +∞

0

∫ +∞

0

exp(−(a+ q)t)
(1
2
)
p0
2

Γ(p0
2

)
q
p0
2
−1 exp(−q

2
)dtdq

=

∫ +∞

0

∫ +∞

0

exp(−(a+ q)t)
(1
2
)
p0
2

Γ(p0
2

)
q
p0
2
−1 exp(−q

2
)dqdt

= (
1

2
)
p0
2

∫ +∞

0

exp(−at)(1

2
+ t)−

p0
2 dt

= (
1

2
)
p0
2 exp(

a

2
)

∫ +∞

1
2

exp(−at)t−
p0
2 dt

= (
1

2
)
p0
2 exp(

a

2
)a

p0
2
−1Γ(1− p0

2
,
a

2
),

where Γ(m,x) =
∫ +∞
x

tm−1 exp(−t)dt is the upper incomplete Gamma function. If

k →∞, ||β(k)
0 ||2 →∞ and therefore a→∞, by the L’Hospital rule, we have

lim
a→+∞

∫ +∞
a
2

exp(−s)s−
p0
2 ds

exp(−a
2
)a1−

p0
2

= − lim
a→+∞

1
2

exp(−a
2
)(a

2
)−

p0
2

−1
2

exp(−a
2
)a1−

p0
2 + (1− p0

2
) exp(−a

2
)a−

p0
2

= lim
a→+∞

(1
2
)1−

p0
2

1
2
a− (1− p0

2
)

= 0.

A.2.3 Proof of Lemma 3.2

To prove this argument, we begin with the following lemmas.
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Recall that directly dealing with the term (1 − t0R
2
0i − tiR

2
i )
−ni/2 in (3.11) or

(1− t0cR2
0− t1cR2

1− t2cR2
2)
−n/2 in (3.13) might be difficult. As an alternative, inspired

by Som et al. (2015), we employ the joint density of (t0, ti) with the following form

h(t0, ti|yi) ∝ (1− t0)
p0
2 (1− ti)

pi
2 (1− t0R2

0i)
−ni

2 (1− tiR2
i )
−ni

2 . (A.11)

Notice that h(t0, ti|yi) is equivalent to applying the independent scaled Pareto priors

with the parameterization (g0, gi).

Remark A.1. With the joint density of h(t0, ti|yi), we have

Eh(t0|yi) =

∫ 1

0

∫ 1

0
t0(1− t0)

p0
2 (1− ti)

pi
2 (1− t0R2

0i)
−ni

2 (1− tiRi)
−ni

2 dtidt0∫ 1

0

∫ 1

0
(1− t0)

p0
2 (1− ti)

pi
2 (1− t0R2

0i)
−ni

2 (1− tiRi)
−ni

2 dtidt0

=

∫ 1

0
t0(1− t0)

p0
2 (1− t0R2

0i)
−ni

2 dt0∫ 1

0
(1− t0)

p0
2 (1− t0R2

0i)
−ni

2 dt0
=

2

4 + p0

2F1(
ni
2
, 2; p0

2
+ 3;R2

0i)

2F1(
ni
2
, 1; p0

2
+ 2;R2

0i)
. (A.12)

Similarly,

Eh(ti|yi) =

∫ 1

0

∫ 1

0
ti(1− t0)

p0
2 (1− ti)

pi
2 (1− t0R2

0i)
−ni

2 (1− tiR2
i )
−ni

2 dt0dti∫ 1

0

∫ 1

0
(1− t0)

p0
2 (1− ti)

pi
2 (1− t0R2

0i)
−ni

2 (1− tiR2
i )
−ni

2 dt0dti

=

∫ 1

0
ti(1− ti)

pi
2 (1− tiR2

i )
−ni

2 dti∫ 1

0
(1− ti)

pi
2 (1− tiR2

i )
−ni

2 dti
=

2

4 + pi

2F1(
ni
2
, 2; pi

2
+ 3;R2

i )

2F1(
ni
2
, 1; pi

2
+ 2;R2

i )
. (A.13)

For Mi, we denote Eh(t0|yi) = H(ni, p0, R
2
0i) and Eh(ti|yi) = H(ni, pi, R

2
i ). Sim-

ilarly, for Mc, denote Eh(t0|y) = H(n, p0, R
2
0) and Eh(ti|y) = H(n, pi, R

2
i ). For

simplicity, we only state results for Mi in Lemma A.3 and results can be extended

to Mc without efforts. For an easy demonstration, and for i = 1, 2, we further

denote F (ni, p0, R
2
0i) = E(t0|yi,Mi), F (ni, pi, R

2
i ) = E(ti|yi,Mi), F (n, p0, R

2
0) =

E(t0c|y,Mc), and F (n, pi, R
2
i ) = E(tic|y,Mc)

137



Lemma A.3. Notice that F (ni, p0, R
2
0i) is the target posterior expectation with density

f(t0|yi), H(ni, p0, R
2
0i) is the alternative posterior expectation with density h(t0|yi),

F (ni, pi, R
2
0i) is the target posterior expectation with density f(ti|yi), and H(ni, pi, R

2
0i)

is the alternative posterior expectation with density h(ti|yi). By Lemma A.1, we have

F (ni, p0, R
2
0i) ≥ H(ni, p0, R

2
0i) and F (ni, pi, R

2
i ) ≥ H(ni, pi, R

2
i ). (A.14)

Proof. With the alternative density in (A.11), the ratio of the target and alternative

marginal densities is as below

f(t0|yi)
h(t0|yi)

∝
∫ 1

0
f(t0, ti|yi)dti∫ 1

0
h(t0, ti|yi)dti

∝ t
− 3

2
0 (1− t0)−

1
2 exp(− ni

2t0
)

∫ 1

0

t
− 3

2
i (1− ti)−

1
2 exp(− ni

2ti
)(1− tiR

2
i

1− t0R2
0i

)−
ni
2 dti.

It is easy to show that both

t
− 3

2
0 (1− t0)−

1
2 exp(− ni

2t0
) and

∫ 1

0

exp(− ni
2ti

)(1− tiR
2
i

1− t0R2
0i

)−ni/2dti

are increasing with respect to t0 and therefore f(t0|yi)/h(t0|yi) is increasing in t0. By

Lemma A.1, we can conclude that

F (ni, p0, R
2
0i) ≥ H(ni, p0, R

2
0i).

The rest of inequalities can be proved in a similar way.

Lemma A.4. Under the sequence {L(k)
i } defined in (3.17), if ni > p0+2 and R2(k)

0i →
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1, H(ni, p0, R
2(k)
0i )→ 1 and therefore F (ni, p0, R

2(k)
0i )→ 1.

Proof. Recall that

H(ni, p0, R
2(k)
0i ) =

∫ 1

0
t0(1− t0)

p0
2 (1− t0R2

0i)
−ni

2 dt0∫ 1

0
(1− t0)

p0
2 (1− t0R2

0i)
−ni

2 dt0
. (A.15)

By Lemma A.2, (A.15) is represented as

H(ni, p0, R
2(k)
0i ) =

(1−R2(k)
0i )

p0−ni
2

+1
∫ 1

0
t
p0
2
0 (1− t0)(1− t0R2(k)

0i )
ni−p0

2
−3dt0

(1−R2(k)
0i )

p0−ni
2

+1
∫ 1

0
t
p0
2
0 (1− t0R2(k)

0i )
ni−p0

2
−2dt0

=

∫ 1

0
t
p0
2
0 (1− t0)(1− t0R2(k)

0i )
ni−p0

2
−3dt0∫ 1

0
t
p0
2
0 (1− t0R2(k)

0i )
ni−p0

2
−2dt0

. (A.16)

As R2(k)
0i → 1, (A.16) → 1, which is equiavalent to H(ni, p0, R

2(k)
0i ) → 1. Together

with Lemma (A.3), we can conclude that F (ni, p0, R
2(k)
0i )→ 1 as R2(k)

0i → 1.

Lemma A.5. H(ni, p0, R
2(k)
0i ) is non-decreasing with respect to R2(k)

0i .

Proof. The derivative of H(ni, p0, R
2(k)
0i ) with respect to R2(k)

0i is

∂H(ni, p0, R
2(k)
0i )

∂R
2(k)
0i

=
ni
2

∫ 1

0
t20(1− t0)

p0
2 (1− t0R2(k)

0i )−
ni
2
−1dt0∫ 1

0
(1− t0)

p0
2 (1− t0R2(k)

0i )−
ni
2 dt0

−
ni
2

∫ 1

0
t0(1− t0)

p0
2 (1− t0R2(k)

0i )−
ni
2
−1dt0

∫ 1

0
t0(1− t0)

p0
2 (1− t0R2(k)

0i )−
ni
2 dt0

(
∫ 1

0
(1− t0)

p0
2 (1− t0R2(k)

0i )−
ni
2 dt0)2

(A.17)

If we set s(t0) = (1− t0)p0/2(1− t0R2(k)
0i )−ni/2 and h(t0) = t0/(1− t0R2(k)

0i ), then

(A.17) =
ni
2

∫ 1

0
t0s(t0)h(t0)dt0∫ 1

0
s(t0)dt0

−
ni
2

∫ 1

0
s(t0)h(t0)dt0

∫ 1

0
t0s(t0)dt0

(
∫ 1

0
s(t0)dt0)2
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and (A.17) ≥ 0 is equivalent to

∫ 1

0

t0h(t0)s(t0)dt0

∫ 1

0

s(t0)dt0 ≥
∫ 1

0

h(t0)s(t0)dt0

∫ 1

0

t0s(t0)dt0. (A.18)

Since both h(t0) and t0 are increasing with respect to t0, (A.18) holds by the Cheby-

shev’s algebraic inequality (See Proposition 2.1 in Egozcue et al. (2009)). Therefore,

H(ni, p0, R
2(k)
0i ) is increasing with respect to R2(k)

0i . Although we prove the monotonity

in R2(k)
0i under the defined sequence, the conclusion holds for any random variable u

satisfying the function H(ni, p0, u).

Next, we prove Lemma 3.2.

Proof. By Lemma A.3, we have F (ni, p0, R
2(k)
0i ) ≥ H(ni, p0, R

2(k)
0i ) and therefore we

only need to prove
(
H(ni, p0, R

2(k)
0i ) − 1

)
||β(k)

0 || → 0. We first consider the eigende-

composition as X ′0iX0i = SΛS−1, where Λ is a diagonal matrix comprising of the

corresponding eigenvalues with λ1 and λp0 being its minimum and maximum elements,

respectively. We have

R
2(k)
min =

λ1||β(k)
0 ||2 + ε′iPX0i

εi

λ1||β(k)
0 ||2 + β′iX

′
iXiβi + ε′iεi

≤ R
2(k)
0i

≤ λp0||β
(k)
0 ||2 + ε′iPX0i

εi

λp0 ||β
(k)
0 ||2 + β′iX

′
iXiβi + ε′iεi

= R2(k)
max.

By Lemma A.5, we have

(
H(ni, p0, R

2(k)
min)− 1

)
||β(k)

0 ||

≤
(
H(ni, p0, R

2(k)
0i )− 1

)
||β(k)

0 || ≤
(
H(ni, p0, R

2(k)
max)− 1

)
||β(k)

0 ||. (A.19)
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For
(
H(ni, p0, R

2(k)
min)− 1

)
||β(k)

0 ||, by L’Hospital’s rule,

lim
k→∞

(
H(ni, p0, R

2(k)
min)− 1

)
||β(k)

0 || = lim
k→∞

∂(H(ni,p0,R
2(k)
min)−1)

∂||β(k)
0 ||

∂||β(k)
0 ||−1

∂||β(k)
0 ||

, (A.20)

where

∂(H(ni, p0, R
2(k)
min)− 1)

∂||β(k)
0 ||

=
∂(H(ni, p0, R

2(k)
min)− 1)

∂R
2(k)
min

∂R
2(k)
min

∂||β(k)
0 ||

. (A.21)

Then, we calculate the limitation of ∂(H(ni, p0, R
2(k)
min)−1)/∂R

2(k)
min, which has the same

form as (A.17) with R2(k)
0i replaced by R2(k)

min. By Lemma A.2, we have

∂(H(ni, p0, R
2(k)
min)− 1)

∂R
2(k)
min

=
ni(AD −BC)

2(1−R2(k)
min)D2

, where (A.22)

A =

∫ 1

0

t
p0
2
0 (1− t0)2(1− t0R2(k)

min)
ni−p0

2
−3dt0, B =

∫ 1

0

t
p0
2
0 (1− t0)(1− t0R2(k)

min)
ni−p0

2
−3dt0,

C =

∫ 1

0

t
p0
2
0 (1− t0)(1− t0R2(k)

min)
ni−p0

2
−2dt0, D =

∫ 1

0

t
p0
2
0 (1− t0R2(k)

min)
ni−p0

2
−2dt0.

Then,

lim
R

2(k)
min→1

AD −BC
(1−R2(k)

min)D2
= lim

R
2(k)
min→1

1

D2
lim

R
2(k)
min→1

AD −BC
(1−R2(k)

min)
, (A.23)

where, as R2(k)
min → 1,

A→ Beta
(
p0/2 + 1, (ni − p0)/2

)
, B → Beta

(
p0/2 + 1, (ni − p0)/2− 1

)
,

C → Beta
(
p0/2 + 1, (ni − p0)/2

)
, D → Beta

(
p0/2 + 1, (ni − p0)/2− 1

)
.
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By the L’Hospital’s rule, we have

lim
R

2(k)
min→1

AD −BC
(1−R2(k)

min)
= − lim

R
2(k)
min→1

(A′D + AD′ −B′C −BC ′)

=
Γ(p0

2
+ 1)Γ(p0

2
+ 2)Γ(ni−p0

2
− 1)Γ(ni−p0

2
− 2)

Γ(ni
2

)Γ(ni
2

+ 1)
,

where

A′ → −[(ni − p0)/2− 3]Beta
(
p0/2 + 2, (ni − p0)/2− 1

)
,

B′ → −[(ni − p0)/2− 3]Beta
(
p0/2 + 2, (ni − p0)/2− 2

)
,

C ′ → −[(ni − p0)/2− 2]Beta
(
p0/2 + 2, (ni − p0)/2− 1

)
,

D′ → −[(ni − p0)/2− 2]Beta
(
p0/2 + 2, (ni − p0)/2− 2

)
,

and “ ′ ” refers to the derivative in terms of R2(k)
min. Therefore,

(A.22)→ p0 + 2

ni − p0 − 4
. (A.24)

At last, as ||β(k)
0 || → ∞, we may find that the limitation as follows

lim
||β(k)

0 ||→∞

∂R
2(k)
min/∂||β

(k)
0 ||

∂||β(k)
0 ||−1/∂||β

(k)
0 ||

= lim
||β(k)

0 ||→∞
−

2λ1
(
‖Xiβi‖2 + ε′i(I − PX0i

)εi
)
||β(k)

0 ||3(
λ1||β(k)

0 ||2 + ‖Xiβi‖2 + ε′iεi
)2 = 0. (A.25)

By (A.19), (A.20), (A.24) and (A.25), we may conclude
[
H(ni, p0, R

2(k)
0i )−1

]
||β(k)

0 || →

0 in probability, which yields
[
F (ni, p0, R

2(k)
0i )− 1

]
||β(k)

0 || → 0 in probability through

the squeeze theorem. Notice that

β
B(k)
i,0 − β(k)

0 =F (ni, p0, R
2(k)
0i )β̂

L(k)
i,0 − β

(k)
0
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=
(
F (ni, p0, R

2(k)
0i )− 1

)
β

(k)
0 + F (ni, p0, R

2(k)
0i )(X ′0iX0i)

−1X ′0iεi. (A.26)

For the first term on the right hand of (A.26), since ||(F (ni, p0, R
2(k)
0i ) − 1)β

(k)
0 || ≤

|(F (ni, p0, R
2(k)
0i )− 1)|||β(k)

0 || and |(F (ni, p0, R
2(k)
0i )− 1)|||β0|| → 0, ||(F (ni, p0, R

2(k)
0i )−

1)β
(k)
0 || → 0 holds. For the second term, we have F (ni, p0, R

2(k)
0i )(X ′0iX0i)

−1X ′0iεi →

(X ′0iX0i)
−1X ′0iεi in probability by the Slutsky’s theorem. Recall that X(k) → X in

probability and Y (k) → Y in probability imply (X(k), Y (k)) → (X, Y ) in probability.

Specifically, X(k) +Y (k) → X+Y in probability according to the continuous mapping

theorem. Therefore, we conclude βB(k)
i,0 −β

(k)
0 → (X ′0iX0i)

−1X ′0iεi in probability.

A.2.4 Proof of Lemma 3.3

Proof. Recall that

G(n; pi) =

∫ 1

0
t
− 1

2
i (1− ti)

pi−1

2 exp(− n
2ti

)dt0∫ 1

0
t
− 3

2
i (1− ti)

pi−1

2 exp(− n
2ti

)dti
.

If we define

k(x) =

∫ 1

0

t
− 1

2
−x

i (1− ti)
pi−1

2 exp(− n

2ti
)dti,

then G(n; pi) = k(0)/k(1) and the derivative of G(n; pi) with respect to n is

G′(n; pi) =
−k(1)k(1)/2 + k(2)k(0)/2

k2(1)
. (A.27)

To prove G′(n; pi) ≥ 0, we equivalently show k(1)k(1) ≤ k(0)k(2), which can be

established by proving k(x) log-convex. Next, we show k(x) is log-convex. Consider
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the lth derivative of k(x) as

k(l)(x) =

∫ 1

0

(ln
1

ti
)lt
− 1

2
−x

0 (1− ti)
pi−1

2 exp(− n

2ti
)dti, (A.28)

and define the inner product as

〈f, g〉 =

∫ 1

0

f(ti)g(ti)t
− 1

2
−x

i (1− ti)
pi−1

2 exp(− n

2ti
)dti,∀x > 0.

It is easy to verify its the linearity, conjugate symmetry and postive definiteness.

Suppose f(x) = ln(1/x) and g(x) = 1, with the Cauchy’s inequality, we have

〈f, g〉2 ≤ 〈f, f〉〈g, g〉 ⇔ (k(1)(x))2 ≤ k(2)(x)k(x),

which implies (log(k(x)))′′ ≥ 0.

A.2.5 Proof of Theorem 3.2

Proof. We first present results about the bias. For the first term on the right hand of

(A.26), by Lemma 3.2, for the defined sequence, there exists a subsequence (mk) such

that (F (ni, p0, R
2(mk)
0i ) − 1)||β(mk)

0 || → 0 almost surely if ni − p0 > 4. Furthermore,

we consider (1− F (ni, p0, R
2(mk)
0i ))||β(mk)

0 || ≤ (1−H(ni, p0, R
2(mk)
0i ))||β(mk)

0 ||, and

supεi
{

[1−H(ni, p0, R
2(mk)
0i )]||β(mk)

0 ||
}

=
{

[1− infεiH(ni, p0, R
2(mk)
0i )]||β(mk)

0 ||
}
.(A.29)
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With Lemma A.5 indicating that H(ni, p0, R
2(mk)
0i ) is increasing with R2(mk)

0i and the

infimum of R2(mk)
0i being achieved at εi = 0 with value

R
(mk)
inf =

||X0iβ
(mk)
0 ||2

||X0iβ
(mk)
0 ||2 + ||Xiβi||2

, (A.30)

we may find that

lim
β
(mk)
0 →∞

{
[1− infεiH(ni, p0, R

2(mk)
0i )]||β(mk)

0 ||
}

(A.31)

= lim
β
(mk)
0 →∞

{[
1−H(ni, p0, R

2(mk)
inf )

]
||β(mk)

0 ||
}

= 0, (A.32)

and therefore we conclude that (H(ni, p0, R
2(mk)
0i )− 1)||β(mk)

0 || → 0 uniformly in εi on

a convergent set. Hence,

lim
mk→∞

E
[
1−H(ni, p0, R

(mk)
0i )

]
||β(mk)

0 || = E
[

lim
mk→∞

(1−H(ni, p0, R
(mk)
0i ))||β(mk)

0 ||
]

= 0.

(A.33)

Each element of
∣∣∣[H(ni, p0, R

2(mk)
0i )− 1

]
β

(mk)
0

∣∣∣ being smaller than |H(ni, p0, R
2(mk)
0i )−

1|‖β(mk)
0 ‖ would additionally lead to limmk→∞E

{[
1 − H(ni, p0, R

(mk)
0i )

]
β

(mk)
0

}
= 0

and therefore

lim
mk→∞

E
{[

1− F (ni, p0, R
(mk)
0i )

]
β

(mk)
0

}
= 0. (A.34)

For the second term on the right hand of (A.26), since F (ni, p0, R
2(mk)
0i ) → 1 in

probability and it is bounded, by the dominant control theorem (DCT), we may

conclude

lim
mk→∞

E
[
F (ni, p0, R

2(mk)
0i )(X ′0iX0i)

−1X ′0iεi
]
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=E
[

lim
mk→∞

F (ni, p0, R
2(mk)
0i )(X ′0iX0i)

−1X ′0iεi
]

= E
[
(X ′0iX0i)

−1X ′0iεi
]

= 0. (A.35)

With (A.26), (A.34) and (A.35), we may conclude the following for the bias of β(mk)
0

lim
mk→∞

E
(
β
B(mk)
i,0 − β(mk)

0

)
= 0.

Second, we show the asymptotic results for the covariance matrix. Note that the

covariance matrix of the Bayesian estimator βB(mk)
i,0 is

E
[
(β

B(mk)
i,0 − β(mk)

0 )(β
B(mk)
i,0 − β(mk)

0 )′
]

(A.36)

=E
{[
F (ni, p0, R

2(mk)
0i )− 1

]2
β

(mk)
0 β

(mk)′
0

}
(A.37)

+E
{[
F (ni, p0, R

2(mk)
0i )

][
F (ni, p0, R

2(mk)
0i )− 1

]
β

(mk)
0 ε′iX0i(X

′
0iX0i)

−1
}

(A.38)

+E
{[
F (ni, p0, R

2(mk)
0i )

][
F (ni, p0, R

2(mk)
0i )− 1

]
(X ′0iX0i)

−1X ′0iεiβ
(mk)′
0

}
(A.39)

+E
{
F (ni, p0, R

2(mk)
0i )2(X ′0iX0i)

−1X ′0iεiε
′
iX0i(X

′
0iX0i)

−1
}
. (A.40)

By Lemma A.4 and the proof of Lemma 3.2, we may find that (A.37)→ 0 since each

element of |[F (ni, p0, R
2(mk)
0i ) − 1]2β

(mk)
0 β

(mk)′
0 | is smaller than

[
F (ni, p0, R

2(mk)
0i ) −

1
]2‖β(mk)

0 ‖2, where |
[
F (ni, p0, R

2(mk)
0i ) − 1

]
| → 0 and

[
F (ni, p0, R

2(mk)
0i ) − 1

]
‖β(mk)

0 ‖2

is bounded. Additionally, since
[
1 − H(ni, p0, R

2(mk)
0i )

]
‖β(mk)

0 ‖ → 0 uniformly, it is

uniformly bounded and therefore
[
1−F (ni, p0, R

2(mk)
0i )

]
‖β(mk)

0 ‖ is uniformly bounded.

Then by DCT, we may conclude that (A.38) or (A.39) → 0. For (A.40), by DCT,

we may have (A.40) → σ2(X ′0iX0i)
−1. Hence, we may conclude that (A.36) →

σ2(X ′0iX0i)
−1. Every step above for Mi could be applied directly to Mc by replacing

the corresponding quantities.
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A.2.6 Proof of Remark 3.7

For simplicity, consider a linear model yi = X̃iβ̃i + εi, where εi ∼ Nni(0, σ
2Ini),

β̃i = (β′0,β
′
i)
′, β0 ∈ IRp0 , βi ∈ IRpi , Ci = diag(g0ni(X

′
0iX0i)

−1, gini(X
′
iXi)

−1), σ2 is

unknown, and we use the following priors

π(σ2) ∝ 1

σ2
,

π(gi) ∝ g
− 3

2
i exp(− 1

2gi
), i = 0, 1 or 2,

β̃i | g0, gi, σ2 ∼ NpI

(
0, σ2Ci

)
.

Then, the joint posterior distribution for (β̃i, σ
2, gi|yi) is

f(β̃i, σ
2, gi|yi)

∝(σ2)−
ni
2 exp{− 1

2σ2
(yi − X̃iβ̃i)

′(yi − X̃iβ̃i)}|σ2Ci|−
1
2 exp{−1

2
β̃′i(σ

2Ci)
−1β̃i}

1

σ2
g
− 3

2
0 exp(− 1

2g0
)g
− 3

2
i exp(− 1

2gi
).

Then,

f(β̃i|σ2, gi,yi) ∝ exp
{
− 1

2σ2
(yi − X̃iβ̃i)

′(yi − X̃iβ̃i)−
1

2σ2
β̃′iC

−1
i β̃i

}
∝ exp

{
− 1

2σ2
(β̃′iX̃

′
iX̃iβ̃i − 2y′iX̃iβ̃i)−

1

2σ2
β̃′iC

−1
i β̃i

}
∝ exp

{
− 1

2σ2
(β̃′iX̃

′
iX̃iβ̃i + β̃′iC

−1
i β̃i) +

1

σ2
y′iX̃iβ̃i

}
∝ exp

{
− 1

2σ2
[β̃′i(X̃

′
iX̃i +C−1i )β̃i] +

1

σ2
y′iX̃iβ̃i

}
∝ exp

{
− 1

2
(β̃i − µβ)′Σ−1β (β̃i − µβ)

}
,
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where µβ = (X̃ ′iX̃i +C−1i )−1X̃ ′iyi,Σβ = σ2(X̃ ′iX̃i +C−1i )−1.

f(σ2, gi|yi)

∝
∫
β̃

(σ2)−
ni
2 |σ2Ci|−

1
2 (σ2)−1exp

{
− 1

2σ2
(yi − X̃iβ̃i)

′(yi − X̃iβ̃i)−
1

2σ2
β̃′iC

−1
i β̃i

}
dβ̃

∝(σ2)−
ni+p

2
−1
∫
β̃

exp
{
− 1

2σ2
(yi − X̃iβ̃i)

′(yi − X̃iβ̃i)−
1

2σ2
β̃′iC

−1
i β̃i

}
dβ̃

∝(σ2)−
ni+p

2
−1exp

{
− 1

2σ2
y′iyi

}∫
β̃

exp
{
− 1

2

[
(β̃i − µβ)′Σ−1β (β̃i − µβ)− µ′βΣ−1β µβ

]}
dβ̃

∝(σ2)−
ni+p

2
−1|Σβ|

1
2 exp

{ 1

2σ2
y′iyi +

1

2
µ′βΣ−1β µβ

}
∝(σ2)−

ni+p

2
−1(σ2)

p
2 exp

{
− 1

2σ2
y′iyi +

1

2σ2
y′iX̃i(X̃

′
iX̃i +C−1i )−1X̃ ′iyi

}
∝(σ2)−

ni
2
−1exp

{
− 1

2σ2
y′i
[
Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i

]
yi

}
,

This indicates that,

(σ2, gi|yi) ∼ IG

(
ni
2
,
1

2
y′i
[
Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i

]
yi

)
,

and

f(g0|gi,yi)

∝
∫
σ2

∫
β̃

f(β̃i, σ
2, gi|yi)dβ̃idσ2

∝
∫
σ2

∫
β̃

(σ2)−
ni
2 exp{− 1

2σ2
(yi − X̃iβ̃i)

′(yi − X̃iβ̃i)}|σ2Ci|−
1
2

exp{−1

2
β̃′i(σ

2Ci)
−1β̃i}

1

σ2
g
− 3

2
0 exp(− 1

2g0
)dβ̃idσ

2

∝|Ci|−
1
2 g
− 3

2
0 exp(− 1

2g0
)

∫
σ2

(σ2)−
ni+p

2
−1∫

β̃

exp
{
− 1

2σ2
(yi − X̃iβ̃i)

′(yi − X̃iβ̃i)−
1

2σ2
β̃′iC

−1
i β̃i

}
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∝|Ci|−
1
2 g
− 3

2
0 exp(− 1

2g0
)

∫
σ2

(σ2)−
ni+p

2
−1exp

{
− 1

2σ2
y′iyi +

1

2
µ′βΣ−1β µβ

}
∫
β̃

exp
{
− 1

2

[
(β̃i − µβ)′Σ−1β (β̃i − µβ)

]}
dβ̃dσ2

∝g−
3
2

0 exp(− 1

2g0
)|Ci|−

1
2

∫
σ2

(σ2)−
ni+p

2
−1|Σβ|

1
2 exp

{ 1

2σ2
y′iyi +

1

2
µ′βΣ−1β µβ

}
dσ2

∝g−
3
2

0 exp(− 1

2g0
)|Ci|−

1
2 |(X̃ ′iX̃i +C−1i )−1|

1
2

∫
σ2

(σ2)−
ni
2
−1

exp
{
− 1

2σ2
y′i
[
Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i

]
yi

}
dσ2

∝g−
3
2

0 exp(− 1

2g0
)|Ci(X̃

′
iX̃i +C−1i )|−

1
2

{1

2
y′i
[
Ini − X̃i(X̃

′
iX̃i +C−1i )−1X̃ ′i

]
yi

}−ni
2
.

A.2.7 Proof of Remark 3.8

Proof. Following definitions in Min and Sun (2016), consider the linear regression

model y = Xβ + ε and assume that there are m blocks design matrices X =

(X ′1, · · · ,X ′m)′ with the corresponding regression coefficients as β = (β′1, · · · ,β′m)′.

Then, we consider the independent g-priors for βj

p(βj|σ2) ∝ exp(− 1

2giσ2
β′jX

′
jXjβj). (A.41)

Denote γ ⊆ {0, 1, · · · ,m} and Γ as the collection of nonempty subset of {0, 1, · · · ,m},

where Γ serves as the index set. Under the commutativity condition of the projection

matrices, PiPj = PjPi, ∀i, j,we could further define

Pγ =
∏
j∈γ

Pj,

Aγ =
∏
j∈γ

Pj
∏

j′∈{1,··· ,m}−γ

(In − Pj′),
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pγ = rank(Aγ).

By Theorem 2 in Min and Sun (2016), the marginal density of m(y|g) is proportional

to

m(y|g) ∝ 1

(y′Ry)
n
2

∏
γ∈Γ

1

(1 +
∑

j∈γ gj)
pγ
2

(A.42)

where

R = In+
∑
γ∈Γ

uγPγ , uγ = (−1)k
∑

(j1,··· ,jk)∈γ

(
gj1

1 + gj1

gj2
1 + gj1 + gj2

· · · gk
1 + gj1 + · · ·+ gjk

).

where k = |γ| and (j1, · · · , jk) takes over all permutations of γ.

In our case, for M1, we have two blocks, m = 2 with Γ = {{0}, {1}, {0, 1}},

P0 = PX01 and P1 = PX1 . Then, the marginal density m(y1|g0, g1) is proportional to

m(y1|g0, g1) ∝(1 + g0)
− p0

2 (1 + g1)
− p1

2 (1 + g0 + g1)
− p2

2 (y′1(In1 −
g0

1 + g0
P0 −

g1
1 + g1

P1

+

(
g0g1

(1 + g0)(1 + g0 + g1)
+

g0g1
(1 + g1)(1 + g0 + g1)

)
P0P1)y1)

−n1
2 ,

where p0 =rank(P0(In1 − P1)), p1 =rank(P1(In1 − P0)) and p2 =rank(P0P1). If

we further assume the orthognality of X ′0X1 = 0, then P0P1 = P1P0 = 0 with

p0 =rank(P0) =rank(X0), p1 =rank(P1) =rank(X1) and p2 = 0. The marignal

density is

m(y1|g0, g1) ∝ (1 + g0)
− p0

2 (1 + g1)
− p1

2 (y′1(In1 −
g0

1 + g0
P0 −

g1
1 + g1

P1)y1)
−n1

2 .
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A.3 Full Conditional Distributions in Chapter 4

For convenience, consider a general reparametrized model yij ∼ Bin(nij, pij), vij =

log(pij/(1− pij)),v = µ1n +Xβ0β0 +Xγγ +Xzz + ε, where v is a vector of vij, i =

1, · · · , I, j = 1, · · · , J , n = IJ , and ε ∼ N(0, σ2In). β0 is fixed,Xβ0 is continuous, βγ

is fixed, Xγ is categorical, z corresponds to random effects. The priors are specified

as: µ ∝ 1, σ2 ∝ 1/σ2,β0 ∼ Np0(0, g0σ
2(X ′β0Xβ0)

−1),γ ∼ NK(0,Gσ2), where G =

diag(g1, · · · , gK), z ∼ NI(0, δ(I − ρC)−1), g0 ∼ IG(1/2, n/2), gj ∼ IG(1/2, 1/2), δ ∼

IG(1/2, 1/2), ρ ∼ Unif(ρmin, ρmax). Then, denote X = (1n,Xβ0 ,Xγ,Xz), β =

(µ,β′0,γ
′, z′)′. Then, X̄µ = (Xβ0 ,Xγ,Xz), X̄β0 = (1n,Xγ,Xz), X̄γ = (1IJ ,Xβ0 ,Xz),

X̄z = (1n,Xβ0 ,Xγ), µ̄ = (β′0,γ
′, z′), β̄0 = (µ,γ ′, z′)′, γ̄ = (µ,β′0, z

′)′, z̄ = (µ,β′0,γ
′)′.

Let Σ = σ2In and the joint posterior density of (µ,β0,γ, z, σ
2, δ, ρ, g0, g1, g2) given y:

f(v, µ,β0,γ, z, σ
2, δ, ρ, g0, g1, g2|y)

∝f(y|v)f(v)f(µ)f(β0|σ2, g0)f(γ|σ2, g1, g2)f(z|δ, ρ)f(σ2)f(δ)f(g0)f(g1)f(g2),

Let · denote all remaining parameters.

1. The full conditional distribution for vij|· is

f(vij|·) ∝ exp

{
I∑
i=1

J∑
j=1

yijvij − nijlog(1 + evij)− 1

2
(v −Xβ)′Σ−1(v −Xβ)

}
.
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2. The full conditional distribution for µ|·

f(µ|·) ∝ exp

{
−1

2
(v − 1nµ− X̄µµ̄)′Σ−1(v − 1nµ− X̄µµ̄)

}
∝ exp{−1

2
[
n

σ2
µ2 − 2(v − X̄µµ̄)′Σ−11nµ]},

which implies that (µ|·) ∼ N
(
u, σ2

µ

)
, where u = σ2

u1
′
nΣ
−1(v−X̄µµ̄), σ2

µ = σ2/n.

3. The full conditional distribution for β0|· is

f(β0|·) ∝exp{−
1

2
(v − X̄β0β̄0 −Xβ0β0)

′Σ−1(v − X̄β0β̄0 −Xβ0β0)}

exp{− 1

2g0σ2
β′0(Xβ0

′Xβ0)β0},

which implies that (β0|·) ∼ Np0 (uβ0 ,Σβ0) , where

uβ0 =Σβ0Xβ0
′Σ−1(v − X̄β0β̄0)

Σβ0 =
[
Xβ0

′(Σ−1 + (gσ2)−1Ip0)Xβ0

]−1
=

g0σ
2

g0 + 1
(Xβ0

′Xβ0)
−1
.

4. The full conditional distribution for γ|· is

f(γ|·) ∝ exp{−1

2
(v − X̄γγ̄ −Xγγ)′Σ−1(v − X̄γγ̄ −Xγγ)} · exp{−1

2
γ ′Λ−1γ}

∝ exp{−1

2
[γ ′(X ′γΣ

−1Xγ + Λ−1)γ − 2(v − X̄γγ̄)′Σ−1Xγγ]}

where Λ = diag(g1σ
2, g2σ

2). This indicates γ ∼ NK (uγ,Σγ) , where

uγ = ΣγX
′
γΣ
−1(y − X̄γγ̄),
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Σγ = diag(
g1σ

2

1 + g1
,
g2σ

2

1 + g2
).

5. The full conditional distribution for z|· is

f(z|·)

∝exp{−1

2
(v − X̄zz̄ −Xzz)′Σ−1(v − X̄zz̄ −Xzz)}exp{−1

2
z′[δ(I − ρC)−1]−1z}

∝exp
{
− 1

2

[(
z′[X ′zΣ

−1Xz + δ−1(I − ρC)]z
)
− 2(v − X̄zz̄)′Σ−1Xzz

]}
,

which indicates that (z|·) ∼ Npz (uz,Σz) , where

uz = ΣzX
′
zΣ
−1(y − X̄zz̄),

Σz = [X ′zΣ
−1Xz + δ−1(I − ρC)]−1.

6. The full conditional distribution for σ2|·

f(σ2|·) ∝|σ2In|−
1
2 exp{− 1

2σ2
(v −Xβ)′(v −Xβ)}|g0σ2(Xβ0

′Xβ0)
−1|−

1
2 (σ2)−1

exp{− 1

2g0σ2
β′0Xβ0

′Xβ0β0}(g1σ2)−
1
2 (g2σ

2)−
1
2 exp{− 1

2g1σ2
γ21 −

1

2g2σ2
γ22}

∝(σ2)−
n+p0

2
−2exp

{
− 1

σ2
[
(v −Xβ)′(v −Xβ)

2
+
γ1

2

2g1

+
γ2

2

2g2
+
β′0Xβ0

′Xβ0β0

2g0
]

}

7. The full conditional distribution for δ|· is

f(δ|·) ∝|δ(I − ρC)−1|−
1
2 exp{− 1

2δ
z′(I − ρC)z} 1

δa0+1
exp{−b0

δ
}
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∝δ−(
pI
2
+a0)−1exp{−1

δ
[
z′(I − ρC)z

2
+ b0]},

which implies that

(δ|·) ∼ IG

(
pc
2

+ a0,
z′(I − ρC)z

2
+ b0

)
.

8. The full conditional distribution for ρ|· is

f(ρ|·)

∝|δ(I − ρC)−1|−
1
2 exp{− 1

2δ
z′(I − ρC)z} 1

ρmax − ρmin
1ρ(ρmin < ρ < ρmax)

∝|δ(I − ρC)−1|−
1
2 exp

{
ρz′Cz

2δ

}
1ρ(ρmin < ρ < ρmax).

9. The full conditional distribution for g0|· is

f(g0|·) ∝ |g0σ2(X ′β0Xβ0)
−1|−

1
2 exp

{
− 1

2g0σ2
β′0(Xβ0

′Xβ0)β0

}
g
− 3

2
0 exp

{
− n

2g0

}
∝ g

− p0+1
2
−1

0 exp

{
− 1

2g0
[
β′0Xβ0

′Xβ0β0

σ2
+ n]

}
,

which implies that

(g0|·) ∼ IG

(
(p0 + 1)/2, [

β′0(Xβ0
′Xβ0)β0

σ2
+ n]/2

)
.

10. The full conditional distribution for gi|· is

f(g1, g2|·) ∝ |Λ|−
1
2 exp{−1

2
γ ′Λ−1γ}g−

3
2

1 exp{− 1

2g1
}g−

3
2

2 exp{− 1

2g2
}
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∝ g
− 1

2
1 exp{− γ21

2g1σ2
}g−

3
2

1 exp{− 1

2g1
} · g−

1
2

2 exp{− γ22
2g2σ2

}g−
3
2

2 exp{− 1

2g2
}

∝ g−1−11 exp

{
− 1

2g1
[
γ21
σ2

+ 1]

}
· g−1−12 exp

{
− 1

2g2
[
γ22
σ2

+ 1]

}
,

which implies that f(g1|·) and f(g2|·) are conditional independent IG distribu-

tions with

(gi|·) ∼ IG

(
1, [

(γi)
2

σ2
+ 1]/2

)
, i = 1, 2.
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