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ABSTRACT 

 

In this study, we investigated the use of Bayesian model averaging (BMA) for latent growth 

curve models. We used the Trends in International Mathematics and Science Study (TIMSS) to 

predict growth rates in 8th-grade students’ mathematics achievement. The dataset on male and 

female students’ mathematics achievement contained 6 predictors, meaning that 64 model 

combinations were generated. Results highlighted science achievement score and teaching years 

as the most important predictors of both male and female students’ growth in mathematics 

achievement. In this study, the growth rate of mathematical achievement for each country was 

compared with the predicted density and the density based on actual data. Most countries did not 

differ significantly in observed and predicted growth rates for male and female groups. For 

sensitivity analysis, the model prior had the smallest log-predictive score (LPS) value when 

specified as a binomial model with m = 4 for both the male and female data groups, regardless of 

the parameter prior. When comparing the fixed prior and flexible prior for parameters, the LPS 

value was relatively small when the fixed prior for parameters was set regardless of the model 

prior. 
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Chapter 1 

 

Introduction 

 

The most striking difference between the Bayesian method and the frequentist 

method in terms of inference is whether uncertainty is considered. In multiple studies (De 

Beer & Bianchi, 2017; Depaoli & Clifton, 2015; Kim & Wang, 2021; Van De Schoot et 

al., 2017; van Erp et al., 2018) using the Bayesian method, parameter uncertainty has been 

explained by setting a prior to each parameter belonging to the model. More precise and 

richer information is provided as a result. Yet the prior setting for parameters does not fully 

account for model uncertainty. According to Hoeting et al. (1999), scholars generally 

specify a model first and then proceed as if the model generated the data; this strategy 

ignores uncertainty in model selection. In other words, when random predictors are 

identified based on a research question, then only a few models are compared despite a 

combination of predictors constituting multiple models. This approach to model selection 



 2 

allows for no option other than staying within the confines of the model. Furthermore, 

given over-confidence in the chosen model, risk is inherent in the results (Draper, 1987). 

Recognizing these model selection problems presents an opportunity to address 

model uncertainty. Bayesian model averaging (BMA) has been proposed to mitigate the 

issue of model uncertainty. This approach integrates models by taking a weighted average 

among several possible models. Raftery et al. (1997) found the performance of a model 

derived via BMA to be superior to that of a single model.  

Therefore, in this study, an optimal prediction model was developed with BMA. 

Based on mathematical achievement scores and multiple covariates measured by Trends in 

International Mathematics and Science Study (TIMSS) over several years, this study 

confirmed which set of covariates had the most influence on the growth rates of students’ 

math achievement scores. The growth model was adopted because the covariates and 

outcome variables were scores that were repeated over time. In addition, by setting priors 

to the model itself as well as to the model parameters, uncertainties regarding the 

parameters and the model were considered. 

This thesis is structured as follows. The next chapter introduces the growth model 

featured in this study; it also describes the BMA, ways to evaluate it, and priors that can be 

specified for the parameters as well as for the model itself. Chapter 3 provides an overview 

of the data and analysis process adopted herein. Chapter 4 presents the BMA results. The 

results of sensitivity analysis are also summarized to determine whether the findings are 

robust regardless of the prior used. Finally, in Chapter 5, an overall summary, conclusions, 

and limitations are discussed. 
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Chapter 2  

 

Literature Review  

 

This chapter provides a brief description of the latent growth curve model (LGCM) 

used for the probabilistic predictive model in this study. This introduction is followed by 

an overview of BMA including scoring rules, Zellner’s g-priors for parameters, and model 

priors. 

 

2.1 Latent Growth Curve Model  

In essence, the LGCM is a method of describing longitudinal data analysis 

developed from the tradition of multilevel or hierarchical linear modeling (HLM) within a 

structural equation framework. The basic latent growth model simply transfers the growth 

model from the HLM method to structural equation modeling. This basic model can 

express growth or change over time by repeatedly measuring one variable of interest 

several times. In so doing, one can monitor the average of the variable of interest at a certain 
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time point (usually referring to the starting point; intercept) and how the variable has 

changed on average over time (slope). A latent variable captures a pattern of growth or 

change, known as a growth parameter; the straight line or curve tracking a growth 

parameter over time is called a growth trajectory. The fundamental form of the latent 

growth model repeatedly measures one variable, but it is also possible to measure several 

variables repeatedly and integrate them in one model. 

 The linear growth model in the HLM framework can be defined as follows 

(Raudenbush & Bryk, 2002). HLM is a multi-level model. The lowest-level model is called 

a Level-1 model; upper-level models are sequentially expressed as a Level-2 model, a 

Level-3 model, and so on. The data used in this study contained a structure with repeated 

measurement data at the lowest level and countries at the upper level. The Level-1 model 

is called the within-model or intra-model, and it models each country’s individual growth 

trajectory: 

 

𝑦!" = 𝜋#! + 𝜋$!𝑎! + 𝑟"! 

 

where 𝑦!"  is the outcome for country 𝑖	(𝑖 = 1, 2,⋯ ,𝑁) at time 𝑡	(𝑡 = 1, 2,⋯ , 𝑇); 𝜋#!  is 

the intercept describing country 𝑖’s status on the outcome at time t; 𝜋$! is the slope for 

country 𝑖 ; and 𝑟"!  is the residual term. The term 𝑎!  denotes the assessment cycles for 

country 𝑖. Coding for 𝑎! can be expressed in numerous ways. In general, it is coded as 𝑎! =

0, 1, 2, 3, 4, but coding may vary with the data properties. For example, considering that 

the TIMSS data employed in this study were obtained every 4 years, 𝑎! can be coded as 

𝑎! = 0, 4, 8, 12, 16. Note that careful interpretation is required depending on the coding 
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value. The above model is a typical simple linear regression model with an independent 

variable 𝑎!. It is assumed that the residual 𝑟"! follows a normal distribution with a mean of 

0. In this case, 𝜋# and 𝜋$ are growth parameters denoting the intercept and growth rate, 

respectively.  

 The Level-2 model is called the between- or inter-model. This model attempts to 

explain the difference in the intercept and the slope between countries (in the case of this 

study) using covariates. One, multiple, or no covariates may exist. We have: 

 

𝜋%! = 𝛽%# + ∑ 𝛽%&𝑥&!
'!
&($ + 𝜖%!, 

 

where 𝜋%! represents the growth parameters, 𝑥&! are the values of 𝑄 predictors for country 

𝑖, and 𝛽%& are regression coefficients. Assuming a normal distribution with a mean of 0, 

𝜖%! are the residuals or errors of the intercept and slope remaining, which are accounted for 

by 𝑥&!. In the above equation, 𝛽%# are key parameters that summarize the growth trajectory. 

Most programs report them in output as the intercept estimate and the slope estimate. 

However, this interpretation only applies when there is no covariate; when an exogenous 

variable exists, attention should be paid to interpretation based on the set value of the 

exogenous variable. A model in which exogenous variables are added to Level-2 is called 

a conditional model, and a model in which exogenous variables are not added is called an 

unconditional model. 

In the latent growth model, linear and nonlinear models have their own 

characteristics. The time points of 𝑎! can be set to fixed values (as in this study) to estimate 

growth trajectories. The time points of 𝑎! can also be set through the latent basis method, 
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which uses information from given data. For instance, instead of setting the time points in 

𝑎!  to 𝑎! = 0, 1, 2, 3,⋯, some time points can be set to 𝑎! = 0, 1, 2, while others can be 

estimated from the data. Such strategies provide a preferable model fit for empirical growth 

trajectories because the trajectories are estimated with data-based information (Kaplan & 

Huang, 2021). Two types of covariates are used in latent growth curve modeling: time-

invariant and time-varying. Time-invariant covariates (e.g., race, sex, cognitive ability) 

maintain constant properties over time, whereas time-varying covariates (e.g., attitude, 

weight, age) fluctuate over time.  

 

2.2  Bayesian Model Averaging 

Developing a predictive model typically entails a process of selecting a final model 

after estimating and comparing several alternatives by setting up a set of models with given 

predictors. However, selecting a single model ignores the uncertainty inherent in model 

selection. BMA has been proposed as one way to address the problem of model uncertainty. 

Model averaging reduces this uncertainty by taking a weighted average (i.e., the posterior 

model probabilities [PMPs]) of the selected model. BMA has been found to provide better 

predictive performance than single-model selection (Madigan & Raftery, 1994). 

Suppose we have a matrix Χ containing all explanatory variables in a dataset, where 

𝑦=  is the quantity of interest. When Χ  contains 𝐾  variables, a total of 2)  models are 

estimated (Madigan & Raftery, 1994). The PMP is calculated as follows according to 

Bayes’ theorem:  

 

													𝑝@𝑀*B𝑦, 𝑋D = 	
𝑝@𝑦B𝑀* , 𝑋D𝑝(𝑀*)

𝑝(𝑦|𝑋) =
𝑝@𝑦B𝑀* , 𝑋D𝑝(𝑀*)

∑ 𝑝(𝑦|𝑀%, 𝑋)𝑝(𝑀%)+"
%($

, 𝛾 ≠ 𝑠											(1) 



 7 

 

The posterior probability of model 𝑀* , 𝑝@𝑀*B𝑦, 𝑋D, can vary depending on the model 

being used. The posterior probability reflects the relative uncertainty of the model (Kaplan 

& Huang, 2021). The term 𝑝@𝑦B𝑀* , 𝑋D in the numerator part of the above equation is the 

integrated likelihood given model 𝑀* and can be expressed as 

 

																																						𝑝@𝑦B𝑀* , 𝑋D = I𝑝@𝑦B𝜃* , 𝑀* , 𝑋D𝑝@𝜃*B𝑀* , 𝑋D𝑑𝜃* 																											(2) 

 

where 𝑝@𝜃*B𝑀* , 𝑋D is the prior distribution of the model parameters 𝜃* given model 𝑀* 

and covariates 𝑋 (Raftery et al., 1997). By combining the above equations, the model-

weighted posterior distribution for 𝑦= given data 𝑦 and 𝑋 can be written as 

 

𝑝(𝑦=|𝑦, 𝑋) = L𝑝@𝑦=B𝑀* , 𝑦, 𝑋D𝑝@𝑀*B𝑦, 𝑋D
+"

*($

 

																																																									=L 𝑝(𝑦=
+"

*($
B𝑀* , 𝑦, 𝑋D

𝑝@𝑦B𝑀* , 𝑋D𝑝@𝑀*D
∑ 𝑝(𝑦|𝑀%, 𝑋)𝑝(𝑀%)+"
%($

												(3) 

 

2.3  Implementation Issues for BMA 

Although BMA can address model uncertainty, implementing this approach 

presents some challenges (Hoeting et al., 1999). First, as the number of predictors increases, 

so does the number of terms in Equation (3). The model space thus expands exponentially 

(e.g., 𝐾 predictors make 2)  model spaces). The exhaustive summation of Equation (3) 

becomes infeasible as a result. For this reason, several methods have been developed to 
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reduce the overall number of models. Markov chain Monte Carlo model composition (MC3) 

method was applied in the Bayesian model sampling (BMS) package. Details of this 

method are provided in the following section. Second, a technical issue arises when 

calculating the implicit integral in Equation (3). Although the advent of MCMC has partly 

facilitated the integral calculation, difficulties remain when calculating an integral that 

contains a very large number of terms. The Laplace method (Tierney & Kadane, 1986) 

offers one solution for this calculation issue that returns a reasonable approximation to 

𝑝@𝑦B𝑀* , 𝑋D. This outcome leads to a very small Bayesian information criterion (BIC) 

approximation under certain circumstances (Schwarz, 1978). The maximum likelihood 

estimation (MLE) approximation of Taplin (1993) involves deriving an approximation of 

𝑝@𝑦=B𝑀* , 𝑦, 𝑋D by 𝑝@𝑦=B𝑀* , 𝜃M, 𝑦, 𝑋D, where 𝜃M is the maximum likelihood estimate, can also 

solve the technical issue of computation. Yet other challenges persist when specifying the 

model’s prior distribution (i.e., 𝑝(𝑀*)) and determining which model class to average. 

 

2.4 Markov Chain Monte Carlo Model Composition 

As mentioned above, the aim of MC3 is to reduce the number of possible models 

that can be used in BMA. To clarify the premise of MC3, assume that ℳ is the space of 

the model containing all possible combinations of variables in a linear regression setting. 

Then the posterior probability, 𝑝@𝑀*B𝑦, 𝑋D, can be calculated by constructing a Markov 

chain for the model space ℳ  with a stationary distribution. Indexing the chain as 

{𝑀(𝑡), 𝑡 = 1,2,⋯ , 𝑇}, 𝑦=M can be estimated as follows: 
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𝑦=M =
1
𝑇L𝑔(𝑀(𝑡))

,

"($

,							𝑡 = 1, 2,⋯ , 𝑇 

 

where the function 𝑔(𝑀(𝑡)) calculates the quantity 𝑦= for the model 𝑀(𝑡), and this quantity 

converges to the true value of 𝑦=.  

Such a chain 𝑀(𝑡)  can be constructed using the Metropolis–Hastings (M–H) 

algorithm. At each step of this algorithm, every model is compared to determine which 

model is retained. Given a current model 𝑀 ∈ 	ℳ, 𝑀′ can be defined as the neighbor of 𝑀 

containing all models with one additional or fewer covariates than the current model. The 

M–H algorithm then evaluates whether a new model from the neighborhood can replace 

the current model with a specified probability of acceptance: 

 

𝑃(𝐴𝑐𝑐𝑒𝑝𝑡	𝑀-) = min(1, 𝛼) , 𝑤ℎ𝑒𝑟𝑒	𝛼 = 	
𝑝(𝑀-|𝑦)𝑝(𝑀-)
𝑝(𝑀|𝑦)𝑝(𝑀) 	. 

 

If 𝑀′ is accepted, 𝑀′ becomes the current model. Otherwise, the chain is kept as-is in the 

current model (Fraley & Percival, 2015; Hoeting et al., 1999).  

 

2.4.1 Scoring Rules 

Multiple predictive models can be implemented based on the use of numerous prior 

choices for parameters and models. It is important to derive an optimal model by evaluating 

each model’s predictive performance (Dawid & Musio, 2015; Eicher et al., 2011; Zeugner 

& Feldkircher, 2009). The method of evaluating prediction accuracy is called scoring rules, 

and various such rules have been suggested (Bernardo & Smith, 2009; Carvalho, 2016; 
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Dawid & Musio, 2015; Gneiting & Raftery, 2007; Merkle & Steyvers, 2013). The log-

predictive score (LPS) method built into the BMS package was used in this study. The LPS 

is defined as follows: 

 

𝐿𝑃𝑆 = 	−Llog e𝑝@𝑦.fB𝑋, 𝑦, 𝑋.g Dh
!

	, 

 

where 𝑝@𝑦.fB𝑋, 𝑦, 𝑋.g D denotes the predictive density for 𝑦.f  based on the model information 

𝑋 and 𝑦, and 𝑋.g  represents the explanatory variables for the prediction model 𝑦.f . Note that 

model comparisons are only meaningful when there are different prediction settings. 

Generally, the smaller the LPS value, the better the prediction performance.    

 

2.4.2 Parameter Priors 

One way that the Bayesian framework differs from the frequentist framework is 

that priors should be specified to the model parameters to derive posterior distributions. A 

commonly used prior structure is based on Zellner’s g priors (Zeugner & Feldkircher, 

2015). Taking the simple linear regression equation as an example, a g-prior can be 

specified as follows: 

 

𝑦 = 𝛼* + 𝑋*𝛽* + 𝜖,							𝜖~𝑁(0, 	𝜎+𝐼). 

 

In each Model 𝑀* presented in the above equation, suppose that the constant term and the 

error term are specified by as improper prior, such that 𝑝@𝛼*D ∝ 1 and 𝑝(𝜎) ∝ 𝜎/$. In 
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other words, these two terms are evenly distributed in their domains. The remaining term, 

𝛽* , is usually the parameter of interest and is typically assumed to follow a normal 

distribution with certain mean and variance values. When there is no information about the 

parameter, the mean value is set to 0 and the variance value is set according to Zellner’s g-

prior in a variance–covariance structure that is nearly identical to the data structure. The 

prior for the parameter 𝛽* is 

 

𝛽*|𝑔	~	𝑁 e0,			𝑔𝜎+@𝑋*, 	𝑋*D
/$h 

 

In this case, the hyperparameter g refers to the level of confidence in the specified value 

(mean = 0 in the example above). If the g value is small (i.e., the variance of the parameter 

is small), the specified value is quite certain. Conversely, the larger the g value, the greater 

the variance in the parameter—indicating weak confidence that the mean value is 0. In 

addition, the posterior distribution of the parameter reflects the prior uncertainty. Given g, 

the posterior distribution of 𝛽*  follows a t-distribution, and the expected posterior and 

variance posterior distributions of 𝛽*	are then:  

 

𝐸@𝛽*B𝑦, 𝑋, 𝑔,𝑀*D =
𝑔

1 + 𝑔𝛽
n* 

 

𝐶𝑜𝑣	@𝛽*B𝑦, 𝑋, 𝑔,𝑀*D =
(𝑦 − 𝑦r), 	(𝑦 − 𝑦r)

𝑁 − 3 	
𝑔

1 + 𝑔	s1 −
𝑔

1 + 𝑔	𝑅*
+u @𝑋*, 	𝑋*D

/$ 
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where 𝛽n* and 𝑅*+ are the standard ordinary least squares (OLS) estimators for 𝑀*. Both the 

posterior mean and the posterior variance values are composed of a combination of the 

shrinkage factor1, 0
$10

 , and each OLS estimator. When the value of g is small, the influence 

of the prior becomes relatively large and the expected value approaches 0. By contrast, 

when the value of g increases, the shrinkage factor approaches 1, and the influence of the 

OLS estimator is relatively large. 

The prior g can be specified in two ways under the BMS package: fixed and flexible 

priors. Table 1 summarizes how each prior is commanded in the BMS package, and the 

prior value is specified accordingly. 

The fixed prior assigns the positive real scalar value to g, leading to four options 

(Fernandez et al., 2001): (1) unit information prior (UIP); (2) risk inflation criterion prior 

(RIC); (3) benchmark risk inflation criterion prior (BRIC); and (4) Hanna and Quinn prior 

(HQ). A fixed g-prior is commonly used but has unintended consequences. When the value 

of g is large, the shrinkage factor approaches 1, and the posterior estimation tends to be 

easily overfitted. This scenario affects not only the estimation coefficient but also the 

model estimation. Large over-fitting shrinkage factors result in tight PMP concentrations 

and small model sizes. Therefore, the posterior inclusion probability (PIP) distribution has 

a skewed distribution with relatively high PIP values for some variables and very low PIP 

values for the remaining variables. Conversely, when the value of g is small, most 

 
1 Assume that the posterior mean is given as a weighted combination of the prior mean and the observed 
data mean, �̂� = 	 #!

#!$%&!
𝜅 + %&!

#!$%&!
𝑦( , and that these weights are bounded between 0 and 1. These weights 

constitute the shrinkage factor (Kaplan, 2014).    
 



 13 

covariates have similar PIP values; they therefore lack discriminatory power in model 

estimation (Zeugner & Feldkircher, 2015).  

To compensate for these problems, the proposed flexible g-priors used in the BMS 

package are as follows: (1) the empirical Bayes local (EBL) prior and (2) the hyper-g-prior. 

In determining the EBL prior, the g-prior is estimated via maximum likelihood estimation. 

Given information contained in the data, this g-prior has a different value for each model. 

Consequently, the value of the shrinkage factor, 0
$10

 , may vary depending on the model. 

Note that the g-prior does not guarantee asymptotic “consistency” (Liang et al., 2008). The 

hyper-prior allows for prior assumptions about g while relying on the given data. This 

circumstance retains the benefits and minimizes the pitfalls of using fixed values. The 

hyper g-prior is a Beta prior on the shrinkage factor with 0
$10

	~	𝐵(1, 2
+
− 1) , with 

𝐸 e 0
$10

h = +
2
. Instead of setting the g value directly, the shrinkage factor value is derived 

by setting the hyperparameter 𝛼	 ∈ (2, 4]. As 𝛼 approaches 2, the prior expected shrinkage 

factor is close to 1. When 𝛼 is 4, the prior distribution on the shrinkage factor is uniformly 

distributed over [0, 1]. In this study, the hyper-g could be set to “UIP” and “BRIC.” With 

the hyper-g as UIP, the prior expected shrinkage factor is 𝐸 e 0
$10

h = 3
$13

, with 𝛼 = 2 + +
4
. 

If the hyper-g is BRIC, then the prior expected shrinkage factor 𝐸 e 0
$10

h is the same as with 

the BRIC prior. These latter two options guarantee asymptotic consistency (Zeugner & 

Feldkircher, 2009).  
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Prior  Argument  Set 

Fixed g     

g-prior that specifies a 

value directly 

 g = 𝑥  g = 𝑥 , where 𝑥	 is a 

positive real scalar. 

Unit information prior   g = “UIP”  g = 𝑁 

Risk inflation criterion 

prior 

 g = “RIC”  g = 𝑄+ 

Hanna and Quinn prior  g = “HQ”  g = 𝑙𝑜𝑔(𝑁)5 

Flexible g     

Empirical Bayes (local)  g = “EBL”  𝑔* = max@0, 𝐹* − 1D  

Hyper-g-prior  g = “hyper = 𝑥”  𝛼 = 𝑥 , where 𝑥	 is a 

positive real scalar. 

  g = “hyper = 

UIP” 

 𝛼 = 2 + +
4
  

  g = “hyper = 

BRIC” 

 𝐸 e 0
$10

h  to be 

equivalent to the 

BRIC prior. 

Note. 𝐹* ≡	
6'((3/$/8')
:$/6'(;8'

, and 𝑅*+ is the OLS R-squared of model 𝑀*. 

 

Table 1: Overview of g-priors 
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2.4.3 Model Priors 

A prior distribution for a model can be assigned to various prior distributions. In 

this study, the three types of model priors provided by the BMS package for R were 

investigated, namely (1) the uniform model prior, (2) the binomial model prior, and (3) the 

binomial-beta model prior. 

Uniform Model Prior. Assuming there are 𝐾  predictors, there are 2)  possible 

variable combinations and a total of 2) models. When applying a uniform model prior that 

gives the distribution of each model as 2/), a prior expected model size is ∑ @)8D
)
8 𝑘2/) =

𝐾 2⁄ . For example, with six variables, the expected model size is 𝐾 2⁄ = 6 2⁄ = 3. Given 

that the probability of the model size being 3 is greater than that for other sizes, the uniform 

model prior shows more mass around this size (𝐾 2⁄ = 3), resulting in a symmetric 

distribution (Zeugner & Feldkircher, 2015). 

Binomial Model Prior. The binomial model prior is mainly taken as a proxy of the 

uniform model prior (Zeugner & Feldkircher, 2015). Constructing the binomial model prior 

entails assigning a model size by placing a common and fixed inclusion probability, 𝜃, on 

each predictor. Then, the prior probability for a model of size 𝑘*  is 𝑝@𝐾*D =

𝜃8'(1 − 𝜃))/8', and the expected model size is 𝑚� = 𝐾𝜃. When setting 𝜃 = 0.5, the prior 

model size is 𝑚� = 𝐾 2⁄ , which is the same as for the uniform model prior. Thus, 𝜃 can be 

set to less than or greater than 0.5 (note that the theta value lies between 0 and 1 according 

to the definition of probability).  

Binomial-beta Model Prior. Ley and Steel (2009) suggested that specifying a 

model size neglects prior uncertainty and can lead to unintended results. Therefore, the 

inclusion probability 𝜃 was randomly treated in this study in order to assign a less tight 
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prior to the prior expected model size. The probability distribution of 𝜃 follows the Beta 

distribution with hyperparameters: 𝜃~𝐵𝑒𝑡𝑎	(𝛼, 𝛽)	for 𝛼, 𝛽 > 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17 

 

 

 

 

Chapter 3  

 

Data Overview and Methodology  

 

 

3.1 Sample and variables 

This study used data collected from countries that continued to participate in a total 

of five assessment cycles from TIMSS 2003 to TIMSS 2019. Data consisted of responses 

from 8th-grade students, their mathematics teachers, and school principals in 16 countries. 

Other countries that participated in 3 or 4 assessment cycles (i.e., not all cycles) were 

excluded from analysis due to a lack of information.  

Plausible values on mathematics for each cycle were represented as the 

mathematics achievement scores at five time points in the growth model. TIMSS assesses 

a limited number of items per student to minimize students’ response burden and generates 

plausible values through a scaling process to accurately estimate the relevant scale score. 

Therefore, a plausible value cannot be regarded as an individual score for each student. 



 18 

Plausible values nevertheless have an advantage: they offer unbiased estimates of 

population characteristics. TIMSS provides five plausible value sets for mathematics in 

each cycle; the first value set was used in the current study (Foy et al., 2019). 

A set of academic-related noncognitive variables, science achievement score, 

teachers’ teaching years, homework frequency, and a school-related variable served as 

covariates for predictive modeling. Noncognitive variables and science achievement scores 

were obtained from students’ responses; teachers’ teaching years and homework frequency 

were acquired from mathematics teachers’ responses. A set of school-related variables, 

school discipline and safety, came from principals’ responses. Variables related to self-

concept and value in mathematics were classified as academic noncognitive variables. Self-

concept of mathematics, which was composed of one’s self-concept of mathematics 

competence and difficulty, was measured with 4 items scored on a Likert-type scale 

anchored by 1 (strongly agree) and 4 (strongly disagree). The degree of value in 

mathematics was measured with 5 items on the same scale. Science achievement scores 

also used plausible values estimated based on students’ responses. Similar to the 

mathematics plausible value score, the first plausible value of five science plausible values 

was taken as the science achievement score. Teachers were asked how many years they 

had been teaching mathematics, and they answered with their actual number of years spent 

teaching the subject. The frequency of homework assignment was measured on a scale of 

1 (less than once per week) to 3 (more than 3 times per week). The school-related variable 

included 11 items scored on a Likert-type scale of 1 (a lot) to 4 (not at all) to measure 

school discipline and safety. All scales were recoded so that positive responses had high 

scores (Fishbein et al., 2021; Gonzalez et al., 2003). 
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3.2 Methods for Bayesian LGCM 

Before implementing Bayesian LGCM, a latent growth curve model that fit the 

given data well was developed through preliminary analysis. As a result, in this study, fixed 

time points were used and residual errors were constrained to 1.1 to guarantee convergence. 

The model adopted in this study is shown in Figure 1. 

 

 

Figure 1: Diagram for Latent Growth Curve Model 
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Since the latent growth curve model has been extended to the Bayesian framework, 

prior specification is required for all parameters belonging to the model when applying this 

approach. The approximate mean of mathematics achievement scores in previous studies 

was 550; as such, the informative prior in this case was set to N(550, .1) for the intercept. 

A noninformative prior distribution was specified for all other parameters (see Table 3 in 

Chapter 4 for details). 

The Bayesian growth curve model was estimated using MCMC sampling via the 

Gibbs sampler. The analysis used 1,000 adaptations, 5,000 burn-in iterations, and 100,000 

post-burn-in iterations with 2 chains. In terms of model convergence for the chains, a visual 

check was also performed through trace plots, density plots, and autocorrelation plots along 

with Potential Scale Reduction Factor (PSRF) values. 

 

3.3 Analysis of BMA 

 Thus far, BMA does not seem to address time-varying predictors in longitudinal 

models. However, because all predictors in this study were time-varying, they needed to 

be converted properly. Following guidance from Kaplan and Huang (2021), new time-

invariant predictors were created by calculating the difference between the variable values 

of the most recent data (i.e., from 2019) and the oldest data (i.e., from 2003). The new 

time-invariant predictors were then included in the model instead of time-varying variables. 

Kaplan and Huang (2021) conceded that this method of handling the time predictor is not 

ideal but explained that the approach can account for the time predictor’s characteristics. 

The default settings of the BMS package were used when running BMA (Zeugner & 

Feldkircher, 2015). That is, the optimal model for both male and female datasets was found 
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using the UIP default prior for the parameters and the uniform model prior for the model. 

This execution involves evaluating the importance of the predictor included in the model 

and the optimal model size considering parameter and model uncertainty. 

 The posterior predictive densities of growth rates were derived from the BMA 

results. This density plot can visually confirm whether the growth rates of the predictive 

model match the actual growth rates. If the density of the predictive model and the model 

based on actual data differs significantly, it is necessary to either revise the predictive 

model or check the data characteristics. 

 Finally, sensitivity analysis was conducted by applying different priors for 

parameters and models. In studies using the Bayesian method, sensitivity analysis to 

confirm the influence of the prior is essential (Depaoli & van de Schoot, 2017). Therefore, 

in this study, several steps were taken: comparing the results of applying various priors; 

verifying whether the result was robust according to the prior; interpreting the prediction 

model; and developing the model as necessary. The sensitivity of the prior was confirmed 

using LPS, a scoring rule built into the BMS package described in Chapter 2. The overall 

analysis process for estimating the Bayesian probabilistic prediction model followed the 

workflow suggested by Kaplan and Huang (2021). 
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Chapter 4 

 

Data Analyses and Interpretation  

 

4.1 Bayesian growth curve modeling results 

Results of the Bayesian growth curve model for 8th-grade mathematics achievement 

are presented in Table 2. The findings are reported by gender; the upper panel displays 

results from males, and results from female students appear in the bottom panel. 

Within the data from male students, the Potential Scale Reduction Factor (PSRF) 

values for all parameters were less than 1.01. The parameter distributions were all 

acceptable by investigating the parameter trace plots, kernel density plots, and 

autocorrelation plots. All parameters therefore converged to their respective posterior 

distributions. The posterior estimate of the growth rate parameter for mathematics 

achievement was 0.921, and the posterior standard deviation (SD) was 0.270. The 95% 

highest posterior density (HPD) reflected a 95% probability that the true value of the 

growth rate for mathematics achievement was between 0.390 and 1.464. It is noted that the 
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95% HPD is similar to the 95% credible interval (i.e., an equal-tailed interval) when the 

posterior distribution is unimodal and symmetric, but HPD values are better explained 

when the distribution is multimodal or skewed (Gelman et al., 2014). The results from 

female students showed similar trends: all parameters also converged to each posterior 

distribution with PSRF<1.01 and visual inspection of the parameter distributions. The 

posterior estimate of the growth rate for female students’ mathematics achievement was 

0.772, and the posterior SD was 0.271. The 95% HPD ranged from 0.245 to 1.321.  

Overall, the growth model that constrained the residual variance to 1.1 and that set 

a noninformative prior for all parameters except the intercept was well suited to estimating 

the growth trajectory for both student groups. Upon comparing the posterior estimates, the 

growth rate estimate for male students was higher than for female students. However, 

because both growth rates were less than 1, the trend in the growth rate was not pronounced 

and appeared flat. An overall trend plot (i.e., covering all countries) and trend plots for 

selected countries are shown in Figures 2–5. Trend plots for each country are available in 

the Appendix A.1 – A.2.  
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 Estimate Post. SD HPD.025 HPD.975 PSRF Prior 

Male students’ growth parameters 

 Intercept 548.248 3.115 542.367 554.465 1.000 dnorm(550, .1) 

 Slope 0.922 0.270 0.388 1.461 1.000 dnorm(0, 1e-2) 

 Pre(Intercept) 2573.880 981.311 1048.870 4471.620 1.000 dgamma(1, .5) 

 Pre(Slope) 1.048 0.424 0.432 1.878 1.000 dgamma(1, .5) 

Female students’ growth parameters 

 Intercept 548.297 3.103 542.201 554.336 1.000 dnorm(550, .1) 

 Slope 0.772 0.271 0.245 1.321 1.000 dnorm(0, 1e-2) 

 Pre(Intercept) 2682.837 1042.916 1175.480 4788.936 1.000 dgamma(1, .5) 

 Pre(Slope) 1.044 0.426 0.420 1.866 1.000 dgamma(1, .5) 

Note. Pre() refers to the precision of the parameter, where precision = 1 / variance. dnorm 

is the normal distribution, 𝑁(𝜇, 𝜎+), where 𝜇 is the location and 𝜎 is the scale. dgamma is 

the gamma distribution, 𝐺(𝛼, 𝛽), where 𝛼 is the shape parameter and 𝛽 is the inverse scale. 

 

Table 2: Bayesian growth curve modeling results 
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Figure 2: Fitted Trend Plot for Mathematics Achievement for Male Students in All 

Countries 

 

 

Figure 3: Fitted Trend Plot for Mathematics Achievement for Female Students in All 

Countries 
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Figure 4: Fitted Trend Plots for Mathematics Achievement for Male Students in Selected 

Countries 

 

 

 

 

Chinese Taipei 

United States 
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Figure 5: Fitted Trend Plots for Mathematics Achievement for Female Students in 

Selected Countries 
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4.2 Bayesian model averaging results 

 The dataset on male and female students’ mathematics achievement contained 6 

predictors, meaning that 2< = 64 model combinations were generated. The growth rate 

(i.e., slope) obtained from Bayesian growth curve modeling was taken as an outcome 

variable. Bayesian model averaging was performed using the default prior setting for both 

parameters (i.e., the unit information prior on Zellner’s g) and the model (i.e., a uniform 

model prior). The results for Bayesian model averaging are displayed in Table 3.  

Each column of Table 3 is interpreted as follows. The posterior inclusion 

probability (PIP) column describes the importance of that variable, and its value is equal 

to the sum of the posterior model probabilities (PMPs) for all models that include that 

variable. Another statistic that can explain a variable’s importance, the posterior mean (i.e., 

the “Post Mean” column), is the averaged coefficient of that variable over all models (i.e., 

a total of 64 models). In models that do not include this variable, the coefficient value of 

the variable is assumed to be 0. The “Post SD” column lists coefficients’ posterior standard 

deviations. The “Cond. Pos. Sign” column indicates the posterior probability that the 

coefficient of this variable is positive in the model that includes this variable. 
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  PIP Post Mean Post SD Cond. Pos. 

Sign 

Males     

 Science score 0.87 0.43 0.24 1.00 

 Teaching years 0.79 0.41 0.28 1.00 

 School discipline  0.67 0.28 0.26 1.00 

 Math Self-concept 0.34 0.07 0.16 1.00 

 Freq. homework 0.28 0.05 0.15 0.95 

 Math value 0.28 0.05 0.15 0.95 

Females     

 Science score 0.92 0.42 0.19 1.00 

 Teaching years 0.91 0.52 0.25 1.00 

 School discipline  0.77 0.30 0.22 1.00 

 Math Self-concept 0.71 0.22 0.18 1.00 

 Math value 0.49 0.14 0.19 1.00 

 Freq. homework 0.26 0.03 0.11 0.94 

Note. PIP = posterior inclusion probability; Post Mean = expected a posterior estimate; 

Post SD = posterior standard deviation; Cond. Pos. Sign = probability that the sign of the 

estimate is positive conditional on inclusion in the model. Values for Post Mean and Post 

SD are standardized. The order of covariates is sorted by PIP.  

 

Table 3: Bayesian Model Averaging Results 
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Among the data from males, the PIP of the science score was 87%; that is, 87% of 

the posterior model mass included science score predictors. This variable seems to be 

important in predicting the growth rate of male students’ math achievement. Relatedly, the 

number of years a teacher had taught math was key to the math-score growth rate based on 

the PIP score of 79%. By contrast, the homework frequency and math value variables each 

only had a PIP value of 28%. Since the Post Mean values of these variables were quite 

small, the coefficient values of the variables were 0 in most models. Also, because the 

Cond.Pos.Sign of these variables was not 1, the coefficient of these variables was 

occasionally negative.  

For the female student data, the PIP of the science score and the number of years 

teaching was 92% and 91%, respectively, showing significantly high values. Those 

variables thus appeared important for predicting the growth rate of female students’ math 

achievement. Conversely, homework frequency had 26% PIP and 0.03 Post Mean values. 

The value of this variable was therefore 0 in most models, and its role in predicting 

mathematical achievement was quite low. In the same vein, among data on female students, 

the Cond.Pos.Sign of all variables other than homework frequency was 1. Taking the 

school discipline and safety variable as an example, the coefficient of this variable was 

positive in virtually all models that included it. 

 When comparing male and female results, science score and teaching years were 

critical in predicting growth in math achievement in both groups of data. However, a 

difference was observed in the degree of PIP values. Those for the female data were 

relatively large (92% and 91%, respectively), indicating that these variables played more 

significant roles in predicting the growth rate of female students’ mathematical 
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achievement. Also, the PIP for math value was 0.49 for the female student group, which 

was more influential than for male students. The results for both data groups showed that 

Cond.Pos.Sign was less than 1 for the homework frequency variable and that the coefficient 

sign was positive and sometimes negative in models including this variable. 

 The marginal densities of the posterior coefficient distribution for several variables 

are displayed below (see Figure 6 and Figure 7). These plots are a visual depiction of the 

data in Table 3. The posterior density was normal given this model, and the mean and 

median values of coefficients were well aligned; 95% posterior probability intervals are 

denoted by dashed lines. 

Table 4 presents the five models with the highest PMP per dataset. For male 

students, the best model (with 21% posterior model probability) included the science score, 

teaching years, and school discipline and safety variables. For female students, the best 

model (also with 21% posterior model probability) included math self-concept, school 

discipline and safety, teaching years, and science score. 

 

 Model1 Model2 Model3 Model4 Model5 

PMP(Male) .21 .09 .07 .07 .06 

PMP(Female) .21 .21 .08 .07 .05 

 

Table 4: Posterior Model Probabilities (PMPs) for Top Five Models 
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Figure 6: Posterior Coefficient Density Plots for Selected Variables for Male Students 
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Figure 6 (Continued): Posterior Coefficient Density Plots for Selected Variables for Male 

Students 
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Figure 7: Posterior Coefficient Density Plots for Selected Variables for Female Students 
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Figure 7 (Continued): Posterior Coefficient Density Plots for Selected Variables for 

Female Students 

 

Figures 8 and 9 provide a more detailed illustration of the models for each dataset. 

The horizontal axis indicates models in the order of PMP values and reflects cumulative 

probability. Each variable is expressed with three colors representing the coefficient sign 

or inclusion of that variable in the models: blue signifies that the coefficient of a variable 

is positive, red signifies that the coefficient is negative, and white signifies that the variable 

is not included in the model. Taking male student data as an example, 0.21 on the horizontal 

axis represents the mass of the model with the largest PMP value (i.e., the best model). The 

value of 0.3, on the horizontal axis, is the cumulative PMP value of the model with the 

largest PMP value and the model with the next largest PMP value. The best model for male 

students included the science score, years of teaching, and school discipline and safety 

variables. 

Bayesian growth curve models generate predictive densities, and a mixture of them 

yields the BMA predictive density. Comparing this BMA predictive density with the actual 
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density from data can determine whether the predictive density is adequate. In this study, 

the growth rate of mathematical achievement for each country was compared with the 

predicted density and the density based on actual data. Most countries did not differ 

significantly in observed and predicted growth rates for male and female groups. The 

predictive model therefore demonstrated a good fit. Figures 10 and 11 are a posterior 

density plot of the growth rate of math achievement for male and female students in the 

United States. 

 

 

Figure 8: Posterior Model Probabilities for Each Model for Male Students 



 37 

Figure 9: Posterior Model Probabilities for Each Model for Female Students 

 

 

Note. The dashed line is the actual growth rate; the solid line is the model-predicted growth 

rate based on BMA.   

 

Figure 10: Posterior Density Plots for Male Students in United States 

 

United States 
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Note. The dashed line is the actual growth rate; the solid line is the model-predicted growth 

rate based on BMA.   

 

Figure 11: Posterior Density Plots for Female Students in United States 

 

4.3 Sensitivity Analysis 

 The results of the sensitivity analysis are summarized in Table 5. The upper panel 

contains male student data, and the lower panel contains female student data. Note that UIP, 

RIC, BRIC, and HQ are fixed priors, and EBL and Hyper-g are flexible priors for 

parameters.  

The male data showed the smallest LPS value when the model prior was specified 

as a binomial model with m = 4 when the parameter was set as a fixed prior (regardless of 

type). Female students’ data showed the same results: the smallest LPS value appeared 

when the binomial model with m = 4 was used as the model prior in all fixed prior types. 

However, these LPS values were much smaller in comparison to male students. Parallel 

findings were also noted when the flexible prior was set to parameters. For both the male 

United States 
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and female data groups, regardless of the parameter prior, the model prior had the smallest 

LPS value when specified as a binomial model with m = 4.  

When comparing the fixed prior and flexible prior for parameters, the LPS value 

was relatively small when the fixed prior for parameters was set regardless of the model 

prior. Additionally, in terms of gender, the LPS values for female students were much 

smaller. 

This study included 6 predictors and 16 sample sizes, leading the g-value of BRIC 

(i.e., g = 𝑚𝑎𝑥(𝑁, 𝑄+)) and the g-value of RIC (i.e., g = 𝑄+) to be the same. Thus, the LPS 

results of RIC and BRIC, which are fixed priors, were the same irrespective of the model 

prior. In the case of a flexible prior, hyper = RIC was therefore excluded. 
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 UIP RIC BRIC HQ EBL HG2.1 HG4 HG-

UIP 

HG-

BRIC 

Male          

Uniform 0.907 0.923 0.923 0.909 0.960 1.006 1.076 1.005 1.011 

Bin.(m = 2) 1.002 1.033 1.033 1.009 1.058 1.115 1.147 1.108 1.140 

Bin.(m = 4) 0.846 0.849 0.849 0.844 0.911 0.945 1.023 0.946 0.944 

Bin.-Beta 0.905 0.980 0.980 0.924 0.951 1.044 1.053 1.033 1.083 

 

Female 

         

Uniform 0.679 0.673 0.673 0.670 0.742 0.795 0.901 0.796 0.797 

Bin.(m = 2) 0.826 0.849 0.849 0.826 0.888 0.962 1.030 0.957 0.983 

Bin.(m = 4) 0.596 0.574 0.574 0.583 0.658 0.699 0.804 0.700 0.697 

Bin.-Beta 0.587 0.587 0.587 0.579 0.653 0.723 0.802 0.718 0.744 

Note. UIP = unit information prior; RIC = risk inflation criterion; BRIC = benchmark risk 

inflation criterion; HQ = Hanna-Quinn criterion; EBL = empirical Bayes local; HG2.1 = 

hyper-g prior with 𝛼	= 2.1; HG4 = hyper-g prior with 𝛼	= 4; HG-UIP = hyper-g prior with 

UIP setting; HG-BRIC = hyper-g prior with BRIC setting; Uniform = uniform model prior; 

Bin. (m = 2) = binomial model prior with model size = 2; Bin. (m = 4) = binomial model 

prior with model size = 4; Bin.-Beta = beta-binomial model prior.  

 

Table 5: Summary of LPS for Parameter and Model Prior Settings 
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Chapter 5 

 

Conclusions 

 

In this study, the Bayesian probabilistic prediction distribution with BMA was 

investigated to address model uncertainty. BMA was applied to the TIMSS, an 

international large-scale assessment, to predict growth rates in 8th-grade students’ 

mathematics achievement. Results highlighted science achievement score and teaching 

years as the most important predictors of both male and female students’ growth in 

mathematics achievement. Several limitations and implications emerged from these 

findings. 

 First, during preliminary analysis, different models were found to be best suited to 

the male and female datasets. The model in this study which used fixed time points and 

constrained residual variances was optimal for male student data, whereas female student 

data were best managed with the latent basis method and no constraints. Nevertheless, 

because these datasets were compared based on the same model, more accurate conclusions 
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remain to be drawn for female students. An optimal model for female student data will 

capture these students’ mathematics achievement growth more precisely.  

 Second, the latent basis method generally outperforms approaches where the time 

points have fixed values (Kaplan & Huang, 2021). However, the fixed method was adopted 

in this study for a specific reason: when the latent basis method was applied to determine 

the optimal growth curve model in preliminary analysis, the time points displayed negative 

values at the inappropriate time point. For example, out of 5 time points, when the former 

time points were given as fixed values 0, 1, and 2, negative values such as −4 and −7 were 

chosen for the latter time point based on the data. Unlike the positive value given in the 

former, if a negative value is set in the latter, then the time-point interpretation does not 

capture the meaning of the data. The growth curve model was thus adopted in this study 

with the fixed method to ensure the simplicity and accuracy of analysis. 

 Third, the correlations among model predictors were not checked during 

preliminary analysis. BMA includes numerous variables to find the optimal model, and 

this approach is highly sensitive to collinearity issues. Draper (1999) described the effects 

of such issues with the following example. Suppose there are predictors 𝑥$, 𝑥+,	 and 

𝑥5,	where 𝑥+  and 𝑥5  are collinear. When 𝑥$	and 𝑥+  are included in model space 𝑀$ , 4 

models can be created; that is, 𝑀$ = { no predictors, 𝑥$, 𝑥+, (𝑥$, 𝑥+)} . Using the 

indifference prior on the model space, each model can be given 1/4 weight. Assume that 

the model space 𝑀+ contains 𝑥$, 𝑥+,	and 𝑥5. Eight models are created in this case—𝑀+ =

{ no predictors, 𝑥$, 𝑥+, 𝑥5, (𝑥$, 𝑥+), (𝑥$, 𝑥5), (𝑥+, 𝑥5), (𝑥$, 𝑥+, 𝑥5)}—and each is given a 

weight of 1/8. In this instance, the estimation of the last two models fails due to collinearity. 

Apart from these two models, the 𝑀+ space can also be updated with six models, 𝑀+′ =
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{no predictors, 𝑥$, 𝑥+, 𝑥5, (𝑥$, 𝑥+), (𝑥$, 𝑥5)}, and weighted by 1/6 using an indifferent prior 

across them. Because the 𝑀+′ space is essentially identical to the 𝑀$ space in terms of 

predictions, the weight of the 𝑀$ space is given as {1/6, 1/6, 2/6, 2/6}. The weights vary 

even for different versions of the same model when a collinear predictor is included. 

Therefore, to strengthen BMA results, collinearity diagnostics (Belsley et al., 2005) should 

be assessed first. 

Fourth, the BMS package provides PMP values for each model. In this study, the 

top 5 models were reported in the order of the largest PMP value (see Table 4). This result 

requires additional explanation. Despite being the PMP of the top model, its value for 

Model 1 was too small at 0.21. The model with the largest PMP value is often chosen. Yet 

if the largest PMP value is too small (i.e., if the model uncertainty is still large), then it is 

risky to draw inferences based on that model. Draper (1987) stated that inferences based 

on models with small PMP values tend to be overconfident. Making decisions based on 

these inferences hence carries greater risk than expected. In addition, the sum of the PMP 

values for the top five models was far less than 1. This outcome may have arisen because 

the number of predictors in this study was limited. This finding also implies uncertainty 

about the model space. Therefore, if the PMP value is not large enough when choosing a 

model via BMA, then the selected model will contain substantial uncertainty and will need 

to be updated. 

 Fifth, Bayesian predictive densities for growth were checked for each country to 

verify how well the growth rate predictions and the actual data aligned. As mentioned in 

Ch. 4 (Results), in most countries, the difference between the model-predicted growth rate 

and the actual growth rate did not exceed 𝑆𝐷 = ±1. However, the difference between them 
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was quite large in the data on Israeli male students. The prediction model was thus incorrect 

for this dataset. The data on Israeli male students must be scrutinized accordingly. 

Compared with other countries, some characteristics may only be explained by Israeli male 

student data. The outlier’s meaning must be determined as well. All Bayesian predictive 

densities for male and female students in all countries are presented in the Appendix A.3 – 

A.4. Moreover, the predictive densities for growth where the model-predicted growth rate 

and actual growth rate were consistent only found in a few countries. A different prior 

setting should be specified in place of the default prior (used in this study) to further reduce 

the discrepancy between these two growth rates.  
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Appendix A 

 

Appendix A.1 

 

 The following provides fitted and actual trend plots of the male students’ data for 
each country. 
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Appendix A.2 
 
 The following provides fitted and actual trend plots of the female students’ data 
for each country. 
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Appendix A.3 
 
 The following provides posterior density plots for male students in each country. 
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Appendix A.4 
 
 The following provides posterior density plots for female students in each 
country. 
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