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ABSTRACT

Recent developments in data collection methods in the behavioral and social
sciences, such as Ecological Momentary Assessment (EMA) enables researchers to
gather intensive longitudinal data (ILD) and to examine more detailed features of
intraindividual variation of a variable(s) over time. Due to its high intensity of
assessments within individuals, ILD often has different characteristics from traditional
longitudinal data with a few measurement occasions and requires different assumptions
of statistical models in use. In the present thesis, issues in the analysis of ILD and
problems of current use of statistical models for the analysis of ILD are discussed and
investigated. Specifically, the issue of heterogeneity of autocorrelation and variance
across individuals in ILD is extensively studied for multilevel models (MLMs). In
chapter 2, a brief introduction to multilevel models and issues in modeling residual
covariance structure in MLMs are provided and discussed. In chapter 3, it is shown that
bias in estimation of parameters in MLMSs under homogeneity assumption is not
ignorable when autocorrelation differs across individuals and its average is high. It is also
shown that a transformation method, which multiplies variables in the model by the
inverse of Cholesky factor of individual-specific error covariance, attenuates the bias for
ILD. Chapter 4 reviews variance function models for heterogeneous variance and
introduces a two-step MLM approach for modeling heterogeneous variance using squared
residuals. A simulation study showed that the two-step MLM does not suffer from non-

convergence and is applicable to ILD.
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1. Introduction

Psychological research has focused on between-individual variation (or
interindividual variation) on one or more dimensions to understand characteristics or
relational patterns of psychological phenomena of interest. The findings from between-
individual variation have been often generalized to those of within-individual change.
Because this generalization requires very strict conditions, called ergodicity (e.g.,
stationarity and non-cyclicity, see Molenaar, 2004), however, longitudinal studies have
had their own right in psychology to describe characteristics of within-individual change.

Traditional longitudinal studies often involve a small to moderate number of
repeated observations (usually less than 10 occasions) across many individuals.
Accordingly, the number of individuals is typically much greater than the number of
observations within each individual. In such cases, the prediction of a response variable
as a function of the within-individual covariates (including time for growth model), the
between-individual covariates, and the interactions among the covariates are often of
interest. However, with a small to moderate number of observations for each individual,
more detailed investigation of the dynamic process of a response within individuals is
restricted. If interest is more focused on intraindividual changes in response (e.g., mood
fluctuations across time), many repeated observations are required for each individual,
that is an intensive longitudinal study is called for.

Recent developments in data collection methods in the behavioral and social
sciences, such as Ecological Momentary Assessment (EMA) (Hufford, Shiffman, Paty, &

Stone, 2001; Stone & Shiffman, 1994), enables researchers in this area to gather intensive



longitudinal data (ILD) and to examine more detailed features of intraindividual variation
over time. For statistical analysis, multilevel models (MLMs) are useful and widely used
tools for analysis of traditional longitudinal data and ILD in particular (Schwartz &
Stone, 2007; Walls & Schafer, 2006). Due to its high intensity of assessments within
individuals, however, ILD often has different characteristics or requires different
assumptions from traditional longitudinal data (e.g., heterogeneity of error structure) and
applications of traditional MLMs used in longitudinal data with a few measurement
occasions to ILD may produce inaccurate statistical inferences. Additionally, when
heterogeneity of intraindividual processes other than the effects of a covariate on the
mean function are of interest (e.g., autocorrelation, variability, or instability), traditionally
used MLMs as often implemented do not regularly examine the interindividual
heterogeneity in those intraindividual variation patterns and such models must be
extended or modified to accommodate ILD studies. In the present thesis, issues in the
analysis of intensive longitudinal data and problems of current use of MLMs for the
analysis of ILD are discussed and investigated. In addition, new developments in MLMs
to model heterogeneous residual process are suggested and evaluated. A brief
introduction of general characteristics of longitudinal data introduces readers to central

conceptual issues in ILD analysis.

Cattell’s Data Box and the Analysis of Longitudinal Data

Design and analysis of a scientific research require consideration of the structure

of probable patterns of relation among phenomena of interest, which in turn calls for



understanding the structure of the data under consideration. Cattell (1946, 1988) provided
one such framework for the organization and analysis of multivariate data in
psychological research (applicable to other fields of science as well). In its original form,
Cattell (1946) proposed the Covariation Chart (or the data box) with three coordinates
(for persons, for tests, and for occasions), but later (Cattell, 1988) modified the original
data box to consist of four dimensions: dimensions for organisms, states,
stimuli/situations, and responses. The person dimension of the original box corresponds
to the organism dimension, the occasion corresponds to the state (and situation in part),
and the test dimension is split into two dimensions, stimulus/situation and response.

This approach differentiates external or situational conditions from responses and
states (or time). Clearly, more than four dimensions can be conceived and empirically
studied (e.g., addition of an “observer” dimension or separation of focal stimuli from
background situation). In its final form, Cattell (1988) proposed a ten dimensional Basic
Data Relation Matrix (BDRM) which is, he thought, sufficient for defining a behavioral
event. The first five dimensions are person, stimulus, background, response, and
observer. Cattell classified these five dimensions as time invariant proto-types, such as
trait. The other five dimensions are time varying variants or states corresponding to the
first five dimensions, i.e., state of the person, variant of the stimulus, phase of the
background situation, style of the response, and condition of the observer.

Although Cattell’s ten dimensional BDRM is useful as a comprehensive
description and conceptual framework for possible data relationships, it is, as he noted,
neither feasible nor necessary to obtain data or test hypotheses across all ten dimensions

in a given study. First, not all dimensions are of interest. In such cases, in any given



study, some of the ten dimensions are measured (and analyzed) but others are not and, as
such, these missing dimensions serve to highlight limitations to the generality of study
conclusions (Cattell, 1988, pp. 95-100). Measured dimensions are assumed to be
controlled for or fixed at a point on the unmeasured dimensions, or allowed to vary across
all the points (or grids) on the unmeasured dimensions (i.e., marginalized or integrated
out across the unmeasured dimensions in mathematical term). For example, if we relate
scores of a set of individuals over a set of stimuli without temporal information, it may be
assumed that each score is made on one occasion or averaged out across occasions.
Moreover, some of the dimensions can be described in terms of other dimensions. For
instance, different observers can be thought of as a situational factor. As a result, a four
dimensional data box with person, state/time, response, and stimulus/situation can be
considered a successful reduction of the ten dimensions in that the four dimensions form
a core relational structure of the phenomena of interest. Accordingly, Ozer (1986) argued
for the four dimensions (persons, situations, responses, and time) as a simplification of
Cattell’s ten dimensional BDRM. Analytically, responses are variables of interest,
persons are the units of analysis, stimuli/situations are covariates, and times are occasions
of observations within units (Biesanz, West, & Kwok, 2003). Figure 1.1 illustrates a four
dimensional data box with two situations, three responses, four persons, and four time
points.

The degree of dimensionality and presence of (or variation in) each dimension in
the data box determines the range of possible relational patterns to be investigated as well
as the nature of appropriate statistical models. The response dimension implies

multivariate observations and is required when we are interested in a profile or
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Figure 1.1. An illustration of a four dimensional data box with two situations (S), three
response measures (R), four persons (P), and four time points (T).

multivariate characteristics of variables. Variation in the person dimension allows an
investigation of (between) individual differences. With multiple assessments across time
dimension, within individual change can be described and inferred. Variation in
situations or stimuli is required to investigate the effect of covariate(s) on a response or
responses. Researchers may combine two or more dimensions, resulting in a data matrix
or a (hyper-) data box, to examine more complicated relational patterns.

In terms of statistical models, linear models (e.g., regression or ANOVA), for
example, are often used for the analyses of data matrix with the person and the situation
dimensions while time series models (e.g., ARIMA model or spectral analysis) are
appropriate to investigate the time dimension with or without other dimensions. Data
matrix with the response dimension and the person dimension is typically analyzed by
multivariate statistical models (e.g., factor analysis or structural equation models). If
three or four dimensions are involved in a study, MLMs (e.g., linear mixed model or
multilevel structural equation models) are useful tools for the analysis of the data box.

In general, psychological research is designed to investigate systematic

differences in response across individuals (e.g., group difference or individual difference)



or changes of a response(s) within individuals (e.g., intervention effect or growth
trajectory). These two different components of variability have been termed
interindividual variation (IEV) and intraindividual variation (IAV), respectively
(Molenaar, 2004; Molenaar, Huizenga, & Nesselroade, 2003). Traditional psychological
studies have examined either IEV or IAV separately, due to the characteristics of data
available for a particular study (i.e., lack of one or more of dimensions in the data box)
and the limitations in the application of statistical models intended for IEV to modeling
IAV, or vice versa. Interindividual variation is typically analyzed using linear models
(e.g., regression, ANOVA, or structural equation models) that usually assume
independence of observations among individuals while intraindividual variation is
commonly analyzed using time-series regression models that allow serial correlations of
observations within individuals. However, application of longitudinal studies (e.g., EMA
study) and appropriate statistical models (e.g., MLMs) enables researchers to investigate
both IEV and IAV simultaneously using one statistical model.

Quantitatively, longitudinal studies are those which, in the data box, assess at
least the time and person dimensions and often include the situation dimension due to
interest in the effect of a covariate(s). Further, if the response dimension is added, the
result is a multivariate longitudinal study. In longitudinal studies, many useful research
questions can be posed concerning relational patterns among (and within) the dimensions.
For example, questions concerning intraindividual variation (across the time dimension)
of a response and interindividual differences (across the person dimension) in such
intraindividual variation may be of interest: We may be interested in how a response

changes across time for individuals in different groups (growth model), or how time



varying covariates are differentially related to change in mean response over time across

individuals (multilevel regression model).

Intensive Longitudinal Data and Heterogeneous Covariance Structure

The questions described concern the effect of covariates as well as heterogeneity
of their effects across individuals and are appropriately analyzed by multilevel models or
latent variable models in which heterogeneous effects across individuals are treated as
random effects or latent variables. In traditional longitudinal analysis using MLMs,
inference concerning the effect of the covariate (for both fixed and random) is made
under the assumption that the (within-individual) residual distribution is identical across
individuals (nested within or controlled for other covariates), i.c., the residual covariance
structure (variance and/or autocovariance components) is assumed to be homogeneous
across individuals.

This assumption is made not because researchers believe within-individual
covariance structure to actually be homogenous in nature, but rather because individual-
specific parameters of the covariance are, if present, nuisance parameters (i.e., not the
parameters of interest). Alternatively, it is often not efficient to estimate individual-level
covariance parameters when only a small number of observations are present for each
individual. In intensive longitudinal studies where many repeated assessments are
available for each individual, however, the heterogeneous within-individual covariance
structure may be both estimable and of theoretical interest as well. When this

characteristic of ILD is ignored, it may cause bias in statistical inference on the



parameters of interest (i.e., the effect of covariates) under MLM’s as traditionally
specified for longitudinal data and therefore modification which adjust for the biasing
effects of such processes are necessary.

It is well-known that autocorrelation in residuals adversely affects the efficiency
of the OLS estimation for covariates effects in the context of regression on a single time-
series (Cochrane & Orcutt, 1949; Watson, 1955). It is also known that misspecified
covariance structure in MLMs produce inaccurate statistical inference in both fixed
effects and variance components (Ferron, Dailey, & Y1i, 2002; Jacqmin-Gadda, Sibillot,
Proust, Molina, & Thiébaut, 2007; Kwok, West, & Green, 2007; Lange & Laird, 1989).
However, little is known about how violation of the homogeneity assumption of within-
individual covariance structure affects statistical inference on parameters in multilevel
models for intensive longitudinal data (or even, for that matter, for longitudinal data in
general). Heterogeneity of within-individual variance and autocorrelations may need to
be taken into account in order to estimate the parameters of interest more efficiently. We
may consider a model that allows heterogeneity of individual-level covariance structure

or a new model that corrects for the adverse effects of heterogeneous autocorrelation.

Modeling Heterogeneous Variances in ILD

Individual differences in variance and/or serial correlation are of substantive
interest in their own right in some ILD studies. Affective variability (as evidenced by
within-individual variance) and instability (as a function of the variance and the

autocorrelation), for example, are defining characteristics of psychological disorders such



as Borderline Personality Disorder and the individual difference or heterogeneity of those
parameters can be investigated using EMA study (Cowdry, Gardner, O’Leary, Leibenluft,
& Rubinow, 1991; Ebner-Priemer et al., 2007; Stein, 1996; Trull et al., 2008; Woyshville,
Lackamp, Eisengart, & Gilliland, 1999).

At least two sources are responsible for heterogeneity of variance across
individuals: Difference in within-individual variance may be caused by (1) difference in
the effect of a time varying covariate on a response (i.e., random effect) and (2)
difference in individual level characteristics (e.g., individual differences in impulsivity
that cause different variability in mood fluctuations). Of these two sources of
heterogeneity of variance, (1) can be modeled in a MLM by adding individual-level
random effects, as a part of modeling mean responses, while (2) requires modeling
variance as a function of predictors, i.e., variance function models. Variance function
models are rather unfamiliar and strange models to many researchers in psychology.
Although the history of variance function modeling is rather long, a recent development
by Hedeker, Mermelstein, and Demirtas (2008) enables researchers to model random
variance. In this model, variance of a response, not the response itself, is modeled in
multilevel equations and random mean responses are also modeled as well. Simultaneous
estimation of mean function and variance function increases flexibility of the model
while the increased complexity may cause difficulties in numerical optimization of the
model.

Alternatively, a two-step approach can be applied to modeling variance function.
After fitting a multilevel model with specified factors to data, residuals from the model

can be estimated. Given that the mean of squared residuals is approximately the variance,



we may fit a new multilevel model on the squared residuals obtained and take their mean
as an estimate of variance. The regression on squared residuals as a variance function
modeling has been suggested by many researchers (Goldfeld & Quandt, 1972; Hildreth &
Houck, 1968; Jobson & Fuller, 1980). Originally, this approach was suggested for
modeling within-individual variance as a function of within-individual covariate (i.e.,
modeling heterogeneous variance across observations within individuals). Nevertheless,
there is no barrier to applying the regression-on-squared-residual approach to multilevel
models as well, especially if the goal is to identify the effect of individual-level
covariates on intraindividual variances. Because the two-step approach estimates the
mean function and the variance function separately, the complexity of the model is

reduced and we may less suffer from problems in optimization.

Summary of Introduction and Topics of Following Chapters

Intensive longitudinal study is an emerging area of psychological research. Due to
recent developments in data collection, statistical modeling, and computing technology, it
is now possible to collect intensive longitudinal data and conduct a proper analysis on
ILD. Multilevel models provide a great deal of flexibility in modeling such complex data
and are considered as the prevailing approach to ILD by many researchers (Schafer,
2006; Schwartz & Stone 2007; Walls, Hoppner, & Goodwin, 2007). However, some
properties of statistical models typically used in ILD analysis are not fully investigated
yet. Moreover, new developments and deliberate applications in statistical modeling are

needed to examine interesting research questions unique to ILD analysis.
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Heterogeneous variance and autocorrelation across individuals are likely to exist
in most of ILD and may raise serious problems in parameter estimation and interpretation
of the mean function. In chapter 2, a brief introduction to multilevel models will be
provided as a basis of the current issues. In addition, the issues in modeling residual
covariance structure in MLMs will also be discussed. In chapter 3, a multilevel modeling
approach that transforms an autocorrelated error structure to an independent structure will
be introduced. The transformation is designed to provide a legitimate application of
MLM to a serially, and differently, correlated intensive longitudinal data. Using a
simulation study, the suggested procedure will be compared with other commonly used
MLM approaches that misspecify covariance structure.

In many applications of ILD, heterogeneous variance and autoregressive
processes are of significant interest in itself. Chapter 4 will review different approaches
that model heterogeneous variance available in current MLM approaches and introduce a
two step MLM approach to model heterogeneous variance. A simulation study is

conducted to verify the validity of the procedure.
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2. Multilevel Models for Longitudinal Data and Modeling Error Covariance

Structure

Multilevel models, also known as random effects models (Laird & Ware, 1982),
general linear mixed models (Goldstein, 1986), mixed effects models (Pinheiro & Bates,
2000), random coefficient models (Longford, 1993), or hierarchical linear models
(Raudenbush & Bryk, 2002), are linear models to analyze data with a multilevel or
hierarchical structure where units of analysis are nested within higher level(s), such as
students in classes, classes in schools, and so on. Although their use generally applicable
to any type of hierarchical or multileveled data, they are widely used for longitudinal data
analysis as originated in Laird and Ware (1982). In this chapter, multilevel models for the
analysis of longitudinal data are introduced as a basis of following chapters. In addition,
issues in modeling covariance structure are also discussed, in the context of

autocorrelation, misspecification, and heterogeneity.

Multilevel Models for Longitudinal Data

In longitudinal design, observations can be thought of as, for example,
representations of two level data structure where repeated observations (level-1) are
nested within individuals (level-2). Suppose there are n; repeated observations of a
variable y;; for individual i, where r =1, 2, ..., n;and i =1, 2, ..., N, with J-1 time varying

(within-individual) covariate zj;. A linear regression model for y;; is
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J-1
Vi :ﬂ0i+zﬂjizjti+eti’ (2.1)
=1

Suppose also the intercept fy; and the regression coefficients fj; in (2.1) are random and
have linear regression models with K-1 time invariant (between-individual) covariate wy;

as

K-l
Boi =Yoo + Z%kwki + Uy,
=1

o (2.2)
ﬂﬂ. =70t ;%kwki +u,.
In (2.1), Bo; 1s the level-1 intercept and f;; is the regression coefficient of the jth
variable z;; within individual 7, respectively, and e;; is the residual for occasion ¢ within
individual i. Equations in (2.2) are the level-2 equations where y; is the individual level
intercept, yj 1s the regression coefficient of the k™ level-2 variable Wi, and wuy; 1s the
residual for individual i for g, forj =0, 1, 2, ..., J-1, respectively. By substituting (2.2)
into (2.1), the level-1 and level-2 equations can be combined into a single equation form

as,

Vi 700"'270ka1+”01+Z(7Jo+27,kwkl+” )Zjn

k=1 j=1 =
K-l J-1 K-1
=2 YoiWi TUy + Z ZVJkaz tu, )Z,n (2.3)
k=0 J=1 k=0
J-1 K-1

J-
7/kaItht +zu/tzm + e
k=0 Jj=0

O

J=
where wy; = zg; = 1.
In matrix terms, (2.1), (2.2), and (2.3) are expressed as

—7.p, +e,, (2.4)

B, =Wy+u, (2.5)
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Y, =ZWy+Zu, +e, (2.6)

1 oz, - 20—l
) 1z, - Z(y12i .
respectively, where Z, = L . W, =1, ®@w;,wi= (1, wi;, ..., Wk-1)),
1 Zimi T 2Dy

and Y = (Y00, ---» YOK-1)s 105 «- s VIK-1)s «- -5 VI-1)05s - -5 VI-INK-1))s W = (Uoi Uiy -.., U(-1)i), and
® denotes the Kronecker product. Equation (2.6) can also be written as
Vv, =X\y+Zu, +e,, (2.7)
where X; = Z;W,;, and is called multilevel models or linear mixed models.
Unlike general linear models (e.g., linear regression or ANOVA), MLMs have

two error terms: u; and e;. These two types of error terms are assumed normally

u, 0 u, G, 0
distributed with £ e = 0 and Var . = 0 R . The mixture of the two normal

distributions results in a multivariate normal distribution of y;, y; ~ M(Xjy, Vi), where
V,=Z,G,Z; +R,." In practice, G; and R; are assumed homogeneous across all level-2

individuals (i.e., G;= G;= ... = Grand R;=R;=... = Ry) in most of applications.

For the entire observationsy = (¥;,¥5.---»¥;)’» the MLM is written as

y=Xy+Zu+e, (2.8)
X, z, 0 - 0
Xz . . . . 0 2 7T 0
where X =| .° |, Z is the block diagonal matrix of Z;, i.e., Z=| . S N
X, o 0 - Z

u=(u;,u),....,u;), and e=(e,e,,...,e;)". uand e are normally distributed with

! Alternatively, y; can also be expressed to have a normal distribution as y; ~ M(Xiy + Z;u;, R;).

14



u 0 u G 0 . )
E{ } = [0} and Var[ } = { 0 R} , where G and R are the block diagonal matrices of
e e

G; and R;, resulting in a multivariate normal distribution of y, y ~ M(Xy, V), where
V =ZGZ' + Ris the block diagonal matrices of V;.

Given normality assumptions of u and e, maximum likelihood (ML) or restricted
maximum likelihood (REML) estimators of G and R can be obtained by maximizing the

corresponding log-likelihood functions as follows:

l,(G,R)= —%log|V| —%r’Vlr —glog(27r) (2.9)

1 1 -
Loga (G, R) = —510g|V| —Elog‘X VX|

1 . (2.10)
——r'V'r——
2

log(27),

N
where r=y-X(X'V'X)X'V'y, T= Zni is the total number of observations, and P =

i=1
JK is the rank of X.
Estimates of y and u can be obtained by solving following mixed model equations

(Henderson, 1984; Rao, 2003):

X'R'X X'R'Z Y| | XRTy @11
ZR'X ZR'Z+G' 4| |ZRy '

which is also written as

,\? — (erflx)fl lefly

X o . (2.12)
u=GZ'V (y-Xy)

If G and R are known, ¥ is the best linear unbiased estimator (BLUE) of y and i is
the best linear unbiased predictor (BLUP) of u, in that ¥ and @ have the minimum

variances among all possible linear unbiased estimators of y and linear unbiased

15



predictors of u, respectively. If G and R are unknown and should be estimated from data
through ML or REML estimation by maximizing (2.9) or (2.10), for example, the
empirical BLUE (EBLUE) of y and the empirical BLUP (EBLUP) of u can be obtained
by replacing G and R with their corresponding ML or REML estimates G and R in

(2.11) or (2.12). The covariance matrix of the EBULE of y and the EBLUP of u is given

by
A A -1
.. |XR'X XR'Z
= A . (2.13)
ZR'X ZR'Z+G™
which is the approximation of the true covariance matrix of ¥ and :
XR'X XR'Z
= | : | (2.14)
ZR X ZR Z+G

Autocorrelation, Misspecification, and Heterogeneity in Covariance Structure of MLMs

Common use of MLMs for longitudinal data, including linear growth models
where the intercept and the linear slope (and/or higher order of polynomials) over time

are estimated, assumes an unstructured G; matrix, that allows to estimate variance and

2
Gu 0

covariance for all random effects (e.g.,G; = [ 5 } ), and an independent and
GuOul o

ul

identical R; matrix (ID: R; = o I). However, it is likely that residuals of an MLM for

repeated observations have serial correlations across time (over and beyond the fixed and
random effects in the model). If this is the case, independence assumption in R; is not

appropriate and a suitable covariance structure that models autocorrelations between

16



consecutive residuals should be specified in R;. If observations are measured at equally
spaced time, a covariance matrix generated by a first order autoregressive (AR(1))
process can be used to model such a structure. The AR(1) covariance structure with four

occasions, for example, is modeled as

L p p P
1 2

Ri=62; ; ’1’ ‘;, (2.15)
e op 1

where p is the first order autoregressive parameter (or autocorrelation between
observations measured at time ¢ and #+1). Another covariance structure modeling
autocorrelations is a covariance matrix that generated by a first order autoregressive and
moving average (ARMA(1,1)) process (see chapter 3 for more details about AR and
ARMA process). The ARMA(1,1) covariance structure with four occasions, for example,

1s modeled as

L7 o
y Loy
w oy 1oy |
w ooy 1

R, =0’ (2.16)

Because V is determined by two covariance matrices G and R as well as a design
matrix of random effect Z, misspecification of R may affect the estimation of G, or vice
versa, and thus, y and u as well. The effect of misspecification of R or G on the
estimations of y (and G) has been studied by several researchers, in the context of linear
growth models (Ferron et al., 2002; Jacqmin-Gadda et al., 2007; Kwok et al., 2007,
Lange & Laird, 1989). A study by Lange and Laird (1989) has shown that

misspecification of G in a linear growth model, where the mean intercept and the linear
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slope are estimated (i.e.,y =| 7/00,7/10]’ ), affects estimation of the standard error of the

estimated means of the intercept and the slope. Specifically, they found that if the
intercept is in fact random (i.e., G; =&, ) but misspecified as fixed (i.e., G; = 0), the

standard error of the estimated mean intercept is always underestimated and that of the

slope estimate is always overestimated. Moreover, if the true model has both random

2
O-u 0

2
O

ul

intercepts and random slopes (i.e.,G; = [ } ) but is misspecified as a model only

with a random intercept (i.e., G; =0, ), the standard error of the slope estimate is always

underestimated while that of the intercept estimate is not biased (Lange & Laird, 1989).
Other researchers have been more interested in the effect of misspecification of R
on the estimation of y and G. Ferron et al. (2002) found that misspecification of AR(1)

residual covariance structure as ID structure in linear growth models results in

overestimation of both o, and o, in G when p =3 or .6, although bias in estimation of

o, is much smaller than that of &,,. They also found 95% confidence intervals for the

slope did not cover the true value when the number of individuals is small (N = 30 in the
study). Following the previous findings, Kwok et al. (2007) investigated the effect of
misspecification in R; for various covariance structures, such as ID, AR(1), ARMA(1,1),
and TOEP(2) (second banded Toeplitz or first order moving average) structure, and
found that underspecification (i.e., misspecification of a covariance structure as a nested
structure with smaller number of parameters, such as AR(1) as ID, ARMA(1,1) as AR(1)
or ID) produced minor overestimation of the standard errors of estimation for the

intercept and the slope as well as noticeable overestimation of variance estimates in G.
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Jacqmin-Gadda et al. (2007) showed that the estimation of y under the normal ID
assumption of R; is robust to heteroscedastic residuals (unless the residual variance is a
function of individual level covariates) and non-normal residuals. When residuals are
serially correlated, however, estimation of y was biased: The coverage rates of 95%
confidence intervals for intercept, slope, individual level covariate, and the interaction of
the last two were significantly smaller than the nominal value of .95.

In summary, previous research has argued that, for linear growth models,
misspecification of G matrix produces biased standard errors of the estimated mean
intercept and the linear slope. In addition, a falsely assumed ID structure of R; causes
overestimation of variance components in G, especially for the variance of random
intercept, and inflated standard errors of y for certain conditions, when there are positive
serial correlations of residuals in the true model. Note that all the results mentioned were
obtained from linear growth models for traditional longitudinal data where the number of
observations for each individual is small to moderate (3 to 12). In such models, time
varying covariates are time itself in a polynomial form and the research questions of
interest focused on individual differences in a systematic increase or decrease of a
variable over time. In intensive longitudinal studies, however, of interest are often the
fixed and the random regression effect of time varying covariates other than polynomial
linear change.

All the models investigated in the literature above assumed homogeneous G; and
R; across individuals, except for the heteroscedastic conditions in the study by Jacqmin-
Gadda et al. (2007). Because G; models between-individual variations, the assumption of

homogeneous G; across individuals looks appropriate in most situations. The
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homogenous R;, however, is assumed not because it is strongly believed that residual
covariance (i.e., variance and autocorrelations) is same for all individuals. Instead, it is
assumed mainly because accurate estimation of individual covariance structure is not
plausible with a small to moderate number of observations within individuals and
heterogeneity of the covariance structure is not the major interest in traditional
longitudinal studies. In addition, it is thought that, if not severe, violation of the
homogenous variance assumption does not produce significant bias in estimation of
regression parameters as seen in Jacqmin-Gadda et al. (2007). For these reasons, most
applications of MLMs in longitudinal study assume homogenous R; in practice. In case
of intensive longitudinal studies, however, this common practice is questionable on two
grounds. First, for such data, it is possible to reliably estimate individual-level covariance
structure given the massive number of observations within individuals typically in ILD
and, as a result, heterogeneity of R; is likely to be found. Second, heterogeneous
autocovariance functions within individuals, which require a sizable number of
observations to be estimated, may produce significant bias in estimation of G, vy, and u.
More importantly, in many intensive longitudinal studies, heterogeneity of variance and
autocovariance between individuals, is of substantive interest and not merely a nuisance
factor, making modeling R; (instead of or in addition to the mean of y;) necessary.

In the following chapters, multilevel modeling of intensive longitudinal data in
the presence of heterogeneous variance-covariance is investigated. In Chapter 3, the
effect of misspecification of heterogeneous covariance structure on the estimation of
mean function parameters is investigated along with an introduction and evaluation of a

correction procedure for heterogeneous autocorrelation to perform a valid estimation of
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MLMs. Chapter 4 introduces two newly developed MLMs to model heterogeneous
random variance across individuals and will evaluate their performances as estimators as

well through a simulation study.
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3. Misspecification and correction of heterogeneous covariance structure in

Multilevel Models for ILD

As seen in the previous chapter, in the analysis of longitudinal data, especially of
ILD, presence of autocorrelation between successive observations at the individual level
is a major concern and needs to be taken into account in the statistical model of interest.
However, current use of MLMs for analysis of longitudinal data, including ILD, almost
always assumes homogenous residual covariance structure. Violation of homogenous
covariance structure may result in bias in estimation of parameters of interest. Given the
bias, one possible approach when observations for each individual are collected
intensively across time, is to relax the homogeneity assumption in the model and estimate
R; separately for each i. For studies examining several individuals, however, this
relaxation produces too many estimated parameters. For example, if there are 50
individuals in the data and we assume heterogeneous AR(1) structure across individuals,
this approach estimates 100 parameters in the covariance structure R. Because these
parameters are simultaneously estimated, the large number of parameters may cause
optimization problems such as failure to convergence, convergence to local optima,
and/or convergence to improper solutions. Moreover, this approach is usually only
available in most of statistical programs for a restricted number of simple autocovariance
models (e.g., AR(1) or ARMAC(1,1)).

Alternatively, a transformation method for regression with autocorrelated error
can be applied to the analysis of ILD in this context. In this chapter, a transformation

method to model ILD with heterogeneous covariance structure is introduced and its
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performance is evaluated by a simulation study. In addition, the effects of
misspecification of heterogeneous R; as ID structure or homogenous AR(1) structure are
also investigated. Although ILD consist of a set of time series within multilevel structure
(i.e., each time series are nested within individuals), the problem of autocorrelation exists
at the first level of time series. As such, we consider a mathematical description of

autocorrelation in time series and the transformation method in a single time series first.

Regression with Autocorrelated Errors in a Single Time Series

For single time series data, the effect of autocorrelated errors on estimation of
regression parameters is well known and estimation of regressions when residuals are
autocorrelated has long been of interest to statisticians (Chipman, 1979; Cochrane &
Orcutt, 1949; Harvey 1981; Koreisha & Fang, 2001; Maeshiro, 1980; Park & Mitchell,
1980; Watson, 1955). Although traditional OLS estimation for linear regression model
assumes independence of observations, time series data usually violate this assumption.

Consider a regression model

y=Xp+e, (3.1
wherey =1, 2, .., Vis .., ¥u)', X is a n X g design matrix (of input variables), p = (fo,
Bi, ..., Pg-1) s a g x 1 regression parameter vector, and e = (e, €2, ..., €, ..., €,) isan x
1 random residual vector with an n x n covariance matrix £ =0o’V,. If ¢, is independent
and has constant variance across 7, i.c., X = afI or V. =1, where I is an n x n identity
matrix, we can apply ordinary least squares (OLS) to estimate B such that

B=(XX)"XlYy, (3.2)

23



and its covariance matrix is o, (X'X) ™", where the square root of each diagonal element is
the standard error of estimation for the corresponding parameter in f. The OLS estimator
|§ in this case is known as an unbiased and efficient estimator, or the best linear unbiased

estimator (BLUE), in the sense that it has the smallest variance among all possible linear

unbiased estimators.
If e, is serially correlated, i.e., X # ofl, however, (3.2) is no longer efficient. In
such cases, generalized least squares (GLS) is used to estimate f such that
B=(XZT'X)'XZTy. (3.3)
Alternatively, a suitable transformation of y can also be used. In that case, multiplying
(3.1) by a transformation matrix A, such that AXA' =1, gives
Ay = AXp+Ae=AXp+w (3.4)
where w is a white noise vector with covariance matrix o 1. (3.4) then can be expressed
as
y =XPB+w, 3.5
where y = Ayand X" = AX. (3.4) or (3.5) provides a valid OLS estimator of B,
B, =(X'A'AX)"X'A'Ay = (X'Z'X)"' X'z Ty, (3.6)
because X" = A’A . The transformation matrix A is obtained as A = L', where L
denotes the Cholesky root of V,,, where V, = () "'Z (i.e.,X=0.V, ), thatis V, = LL/
with L lower triangular (Note thatV, # V,). If we know the covariance matrix X or V,

(3.3) and (3.6) can directly be applied and will produce identical estimates of f§
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(.e.,p= [A}w). When we don’t know the covariance matrix X, the problem is how to

estimate X.

One possible approach for estimation of X (and thus a transformation matrix A) is
to construct X from a known autocorrelation structure. Pioneering work in this approach
was done by Cochrane and Orcutt (1949) for the simple Markov process. For a Markov

process, e, = ge, , +w,, w,~ N(0, o’) (i.e., the first order autoregressive process),

autocovariance y (/) is well known to be expressed as
lo
y(hy="22 (3.7)
Yo,

where p = ¢, is the first order autocorrelation (see Shumway & Stoffer, 2006, pp. 86-87).

Thus, autocovariance matrix X is then

i 1 Yo, p2 p" ]
SRR IR P
i LA I B (3.8)
_pn pn—l pn—2 1 |
and its inverse matrix is
1 -p 0
-p l+p*  —p
4 1[0 —p 1+p
! =— X : (3.9
o, : :
0 0 0 e 1+ pt —p
| 0 0 0 R 1

Assuming a simple Markov process, the GLS estimator f can be obtained by (3.3),

where X! is specified as in (3.9).
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To form a transformation matrix A, the inverse of Cholesky factor of V,, (i.e., the

transpose of Cholesky factor of V', where V' = c>X™) then can be obtained from X,

given by
1-p> 0 0 0
—p I 0
= Y P 0 (3.10)
0 0 0 - 1 0
0 0 0 - —p 1]

Using (3.10), a valid OLS estimator ﬁw is obtained through (3.6) (Judge, Griffiths, Hill,

Liitkepohl, & Lee, 1985). Cochrane and Orcutt (1949) did not provide the exact form of
(3.10) but a similar idea of transformation was offered. The following is the
generalization of Cochrane and Orcutt’s approach to general ARMA(p,q) process.
Interested readers may consult chapter 3 and 5 of Shumway and Stoffer (2006) and
chapter 8 of Judge et al. (1985) for more details.

There are two well-known processes that produce autocorrelations in a
(stationary) time series: autoregressive process and moving average process. An
autoregressive process, by definition, means that the current value of the series, e;, can be
explained as a linear function of a unique component of independent normal process and
p past values, e, e, ..., e.,. As such, the autoregressive model of order p, or AR(p),
can be expressed as a regression model:

e =ge  +he ,+...+de ,+w, (3.11)
where w, is a normal white noise process, i.e., w; ~ N(0O, azw).

Equation (3.11) can be simplified as
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P(B)e, = w,, (3.12)
where ¢(B)=1-@4B—-¢,B> —...— ¢,B" is the autoregressive operator and B”is a
backshift operator, i.e., B’¢, =¢,_,. Although autoregressive model in (3.12) assumes that

white noise wy is a linear combination of e, ; of order p, an alternative model represents the
observed data e; as a linear combination of w,; of order g, i.e., the moving average model
of order ¢ or MA(q). The MA(g) model is expressed as

e =w,+0w,_ +0w ,+...+0w_,

(3.13)
and simplified as

e, =0(B)w,, (3.14)
where the moving average operator @(B) =1+6,B+0,B” +...+ 6,B?. The two process
can be combined in one model, denoted by ARMA(p,q) and expressed as

e =ge  +...+de ,tw+Ow +..+0w_,

(3.15)

The equation (3.15) is simplified as
¢(B)e, =60(B)w,, (3.16)
Parameters in equation (3.15) or (3.16) can be identified by maximum likelihood

or least square estimation. For entire observations, (3.16) is written as in matrix term
o(B)e =0(B)'w (3.17)

where e = (emax(p,g)+15 ---» €n-1, €n) and w = (Wmax(p.q)+15 «-+» Wn-1, Wn), and (p(B)* and 0(B)"
are submatrices of @(B) = {LB)*} and 0(B) = {w} , consisting of rows of @(B) and
o(B) 0(B)

0(B) lower than max(p,q)th row, respectively, where
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(1 0 0 0 0 O]
—4 1 0 0 0 0
_¢ ¢ 1 1 0 0 0
oB)=| '’ " (3.18)
0 -4, —4 0 0
0 0 -4, —9,., 1 0
0 0 0 -4, 4 1
and
10 0 0 0 O]
6 1 0 0 0
OB 6, 0., 1 0 0 0 310
(B)= 0 6, 6 1 0 0 (3.19)
0., 1 0
I 0 6, 6 1]

Once the estimates ¢?(B) and é(B) are obtained, we can apply (3.4) with A =

[é(B)*]_ ¢(B), where ~denotes a generalized inverse, to get a valid OLS estimator of

parameter B in (3.4) or, identically a GLS estimator of § in (3.1). Notice that, for AR(1)
model, the transform matrix L' and ¢(B)" are identical except that the first row of L™ is
excluded in (B)".

The algorithm described above is a direct generalization of Cochrane and Orcutt’s
approach. Although the algorithm can be used to model both AR and MA process, AR(p)

models are widely used in practice. For AR(p) model, the original response values in'y

are transformed as y, =y, +4y,  +...+ ¢,v,_,- However, direct application of the

transformation matrix @(B)’ (in case of AR(p) model) excludes first p observations in the
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estimation, which produces biased estimations, especially in small samples. Use of the
transformation matrix L™, such as (3.10), can avoid exclusion of the several initial
observations. In practice, the transformation is carried out using a Kalman filter (Harvey
& Phillips, 1979; Jones, 1980), and the lower triangular matrix L is never directly
computed. For these reasons, the transformation approach is exclusively used to correct
higher order autoregressive error process, because the GLS approach requires a

complicated (nonlinear) parameterization of V or V.

Correction for Heterogeneous Autocorrelations for ILD

So far the regression-with-autocorrelation problem has been addressed for a single
time series. In ILD, this problem must be extended to multiple (or multilevel) time series
and expressed in multilevel models. In the analysis of intensive longitudinal data, the
concern for the heterogeneous autocorrelation is high. In applications of MLM for ILD,
uncorrected residual dependency may produce bias in estimation and inference. As
described above, simultaneous estimation for heterogeneous individual covariance
structure may not successfully address this problem. Alternatively, we may apply the
transformation approach used in a single time series to multilevel intensive longitudinal
data.

Application of the transformation method to ILD is straightforward. With a
number of repeated observations for each individual, transformation of each single series
may correct autocorrelated errors estimated separately by individual. A time series model

(3.1) for individual i is written as
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Yi =ZB; te, (3.20)
where Z,; is time varying covariates (instead of Xj) as in (2.4). Alternatively, (3.20) can be
written in a multilevel format as

y, =X y+tZu, +e,, (3.21)
where X; = Z;W;,, W; is the matrix of individual level covariates, v is the fixed effect, and

u; is the random effect, respectively, as specified in (2.5) through (2.7). The random

. 0
effect u; and the residual e; are assumed to be normal distributed with £ {u'} = { } and

u, G, 0
Var = .
Li } { 0 Rj

If each individual has one’s own (heterogeneous) covariance for e;, (i.e., Rj# Ry #
...#Ry fori=1,2, ..., I), the transformed equation for each individual will be given by

Ay, =AXYTAZu, +Age,

(3.22)
=AX/y+tAZu, +w,

. 0
where random effect u; and residual w; are then normal distributed with £ { B } = LJ
W,

G, 0

and Va{“i } { 0‘ o } A; can be obtained by solving (3.12), if AR(p) model is
W. ,

i w; T xn;

assumed, where A; = §(B); , or solving (3.16) or (3.17) in more general cases, where A; =

[é(B): T (i)(B): . For the entire system, the transformed equation is written as

Ay = AXy+AZu+ Ae

) (3.23)
=AXy+AZu+w
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where A is the block diagonal matrix of A; and X, Z, u are specified as in (2.8).

Assuming homogeneous variance of the transformed residuals (ai} =0l =...= aka ), the

W
transformed variables (Ay, AX, and AZ) can be modeled in a multilevel model with the
ID residual structure. Correction (3.22) or (3.23) is expected to reduce bias, if any, in
estimation of the parameters when there are heterogeneous autocorrelations in the data in
use.
The correction procedure of multilevel models with heterogeneous

autocorrelations is summarized as
(1) Fit (3.20) by OLS estimation for each individual. Obtain )A'i = Ziﬁi
(2) Calculate residuals as €, =y, - ¥, and investigate autocorrelations for €,.

(3) Define order p of AR(p) model for each individual by investigating autocorrelation patterns in
residuals.
(4) Apply transformation procedure by solving (3.12) for each individual to correct defined

autocovariance structures.

(5) Fit the intended MLM with R, = Gil. Obtain estimates for parameters of interest

Simply speaking, the above procedure consists of two steps. In the first step, a
transformation matrix is obtained from a regression-with-autoregressive-error model for
each individual. In the second step, the intended MLM is applied to the transformed
variables obtained in the first step. We call this correction method as the two-step
multilevel model with transformation (TS MLM-T). The TS MLM-T has several
strengths in correction of autocorrelation in error structure. First, correction is applied for
each individual, without unrealistic homogeneity assumption in ILD. Second, individual
specific correction is made avoiding risk in optimization process in MLM with

heterogeneous covariance where a number of parameters are estimated simultaneously.
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Third, time intervals between successive observations are not restricted to be equal across
different individuals, although time intervals within individuals are restricted to be
similarly spaced as in the ARMA models. Last, and most importantly, the correction is
applicable even higher order autoregressive error structure and allows different orders of

autoregressive processes across individuals.

Performance in Estimation of MLMs with Heterogeneous Autoregressive Errors. A

Simulation Study

As seen above, heterogeneity of residual covariance structure is likely in ILD and
in many applications, likely affects the estimation of the parameters of interest in MLMs.
Currently, common practice in using MLMs for such data is to ignore this plausible
violation of the homogeneity assumption. As such, we focus on the effect of
misspecification of residual covariance structure R on the estimation of fixed effects and
variance components of the random effects, in the sense that if MLMs assume
homogeneous R;, when it is in fact heterogeneous, it may cause bias in estimation of the
parameters in MLMs. To this end, a simulation study was conducted where data
generated from a longitudinal multilevel structure with heterogeneous autoregressive
error process were analyzed by MLMs with homogeneous assumption. The two most
commonly used covariance structures for the analysis of longitudinal data (i.e., ID and
AR(1)) were used to build misspecified models. In addition, the performance of the TS

MLM-T was evaluated in terms of reduction of bias in estimation.

32



Method
For simplicity, the following (two-level) linear mixed model was used to generate
data:

Vi =Yoo T VioXy T Uy + XU, + €, (3.24)

where o 1s the fixed intercept, y)o is the fixed effect of a time varying covariate x;;, uo; is
the random effect of intercept, and uy; is the random effect of x,; that is generated from a

normal distribution as x,; ~ N(0,1). The parameters yoo and y;o were set to 1. The random

u,. 0 2
effect ug; and u;; were distributed multivariate normal as ( o ] ~N H },[ Tuo D ,

2
uy; 0 Ouout O

i ul
where ¢, =.5, o/, =.5,and &,,,= .15 (i.e., 7,0.1 = .3). The errors were generated with

a first order autoregressive model, e; = pe; + wy, wy ~ N(0,1).

The autoregressive parameter p; was allowed to vary across individuals, generated
from a uniform distribution as p; ~ U(p - .3, p +.3), where p =0, .3, or .6, providing that
E(p) =0, .3, or .6, respectively. Each data set was completely balanced with L (series
length, or the number of observations within individuals) = 10, 20, 50, or 100 and N (the
number of individuals) = 20, 50, or 100. Accordingly, 3 (p) x 4 (L) x 3 (N) =36
conditions were obtained. In each condition, 500 data sets were simulated, resulting in
total of 18000 data sets. Each data set was analyzed three times separately by three
different MLMs: MLM with ID covariance structure (ID), MLM with homogeneous
AR(1) covariance structure (AR[1]), and the TS MLM-T (TST) introduced above. For the
transformation procedure in the first step of TS MLM-T, regression with autoregressive
error models was fitted for each individual and variables were transformed by using the

AUTOREG procedure in SAS. After transformation, the transformed variables were

33



fitted by a MLM in the second step. All three MLM were properly modeled as in (3.24)
and fit using the MIXED procedure in SAS with RMLE estimation.

Bias of parameter estimation was investigated in terms of relative bias for the

fixed effects yoo and 10, and variance components, c_,, o

“»and o, . Relative bias was
1 &6 -6 : A .
calculated as —Z ’0 , where 0 is the true parameter value, 6. is the corresponding

r=1

sample estimate of rth sample, and R is the number of replications converged in each
condition. Bias in the estimated standard error was also investigated. Relative bias of

R —
standard error for the fixed effects was calculated as lz 0.6 , where 0 is the true

r=l1

standard error obtained from (2.14) and ér is the estimated standard error obtained from

(2.13) for rth sample.

No significant bias was expected in the estimates of the fixed effects obtained by
the two misspecified MLMs (i.e., ID model and AR[1] model) because misspecified error
covariance structure is unlikely to influence bias in point estimation of the fixed effects.
Estimates of the variance components of random effects, however, are likely to be biased
for the two MLMs with misspecified covariance structures, especially for the variance of
random intercept and with high serial correlations. This bias was expected to be greater
for the ID model than the AR(1) model because the first is more restricted by the
independence assumption. In addition, TS MLM-T is expected to reduce bias of estimates
of the variance components in some conditions, but not in other conditions. Specifically,
because a successful correction of the TS MLM-T depends on the valid estimation of the

transformation matrix (i.e., the autoregressive parameters) in the first step, which requires
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enough number of observations for each individual, a less biased estimation in the second
step was expected not for the data with a small to moderate number of observations (e.g.,
L =10 or 20) but for the data with a large number of observations for each individual
(e.g., L =50 or 100). Bias in estimation of the standard error of estimation for the fixed
effects is also more likely in the ID model and the AR(1) model than from the TST
model, because the estimated standard error is a function of the estimated covariance as
seen in (2.13). Because the estimation of random effects is also affected by the
covariance structure in the model, a better performance in the estimation of the random
effects and the corresponding standard error was expected for the TST model than the

others models when series length is long enough.

Results®

Bias in fixed effects. Relative bias (RB) for the fixed effects yo and y;o are
presented in Table 3.1. Null bias was tested using t-test for each method. There was no
significant bias in the estimation of the fixed intercept for all the three methods: RB = -
0.00, #(17999) = -0.91, p = .36 for ID; RB = -0.00, #(17999) = -0.80, p = .43 for AR(1); RB = -
0.00, #17998) = -0.63, p = .53 for TST. To test effects of the sample size (N), series length
(L), degree of autocorrelation (p), and their interactions on relative bias, a 3(N)x4(L)*3(p)
ANOVA was conducted for each method. Across all the methods, no significant effect
was found except for the interaction effect of sample size by series length: Fi 17964) =
2.30, p <.05 for ID; Fie,17964) = 2.40, p < .05 for AR(1); Fi6,17963) = 2.47, p < .05 for TST.

However, the effect sizes (;12) of the N x L interaction effect for all the three methods

2 Of the total of 3x18000 analyses, only one analyzed by TS MLM-T on a sample from the condition of p
=.3, N=20, L = 10 did not converge.
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were less than .001. The results for the fixed regression effect were almost identical. All

the three methods did not show any significant overall bias in the estimation of the fixed

regression effect: RB = -0.00, #17999) = -0.62, p = .54 for ID; RB = -0.00, #17999) = -0.30, p

= .76 for AR(1); RB =-0.00, #17998) = -0.38, p = .70 for TST. The ANOVA for the

Table 3.1
Relative Bias of y,,and 7,, under Heterogeneous Autocorrelation in Covariance for the
Three Different MLMs
p=.0 p=23 p=.6
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST
};00
10 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 0.00 0.00 0.00
20 20 0.00 0.00 0.00 0.01 0.01  0.01 0.00 0.00 0.00
50 0.00 0.00 0.00 0.01 0.01 0.01 -0.01  -0.01 -0.01
100 0.00 0.00 0.00 0.01 0.01  0.01 0.00 0.01  0.01
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00
50 20 0.00 0.00 0.00 0.00 0.00 0.00 -0.01  -0.01 -0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 -0.01  -0.01 -0.01
100 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.00 0.00  0.00
10 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00  0.00
100 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.01 0.01  0.00 -0.01  -0.01 -0.01
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7;10
10 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02  -0.01 -0.01
20 20 0.01 0.01 0.01 0.00 0.00 0.00 -0.01 0.00  0.00
50 0.00 0.00 0.00 0.01 0.00 0.01 -0.01 -0.01 -0.01
100 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
50 20 0.00 0.00 0.00 -0.01 0.00  0.00 -0.01  -0.01 -0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 -0.01 -0.01 -0.01 0.01 0.01  0.01 0.00 0.00 0.00
10 0.00 0.00 0.00 0.01 0.01  0.00 -0.01  -0.01 -0.01
100 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00

Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous

first order autoregressive error structure; TST: Two-step MLM with transformation.
p = average autocorrelation, N = sample size and L = series length.
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relative bias also did not present any significant effects except for the N x L interaction
effect: Fi,17964) = 2.42, p < .05 for ID; F(,17964) = 2.32, p < .05 for AR(1); Fi,17963) = 2.16,
p < .05 for TST. The effect sizes (%) of the N x L interaction effect for the three methods
did not exceed .001. The result suggests that the estimates of the fixed effects obtained by
MLMs with homogenous covariance assumption are not biased when the error
covariance structure is in fact heterogeneous. This is true whether sample size is small or
large, series length is short or long, and the average error autocorrelation is null or high,
at least for N =(20,100), L = (10,100), and p = (.0,.6). It is also suggested that the
transformation procedure does not produce biased estimates for the fixed effects in
MLMs.

Bias in variance and covariance of random effects. Relative bias for the variance

of the random intercept (o, ) is presented in Table 3.2. There was a significant bias in

the estimation of 0'50 for all the three methods: RB = 0.29, #17999) = 68.68, p <.0001 for

ID; RB = 0.09, #17999) = 30.85, p <.0001 for AR(1); RB = 0.16, t(17998) = 47.27, p <
.0001for TST. ANOVA showed significant effects of series length (F(3,17964y = 1417.01, p
<.0001, #* = .10), autocorrelation (F(2,17964) = 7074.03, p < .0001, 5> = .34), and their
interaction (F(s,17964) = 843.01, p <.0001, ;12 =.12) for the ID model. For the AR(1)
model, significant effects of series length (F(317964) = 124.56, p < .0001, nt=.02),
autocorrelation (F(2,17964) = 820.45, p <.0001, ;12 = .08), their interaction (Fs,17964) =
86.14, p <.0001, 5* = .03), and the interaction of sample size by series length (F, (6,17964) =
2.87, p <.001, 5> = .00) were found. The TST model showed significant effects of series
length (F(3,17963) = 1241.06, p < .0001, ;12 =.12), autocorrelation (F2,17963) = 2218.61, p <

0001, #* = .15), and their interaction (Fs,17063) = 625.51, p <.0001, > = .13). ANOVA
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Table 3.2
Relative Bias of 6, under Heterogeneous Autocorrelation in Covariance for the Three

Different MLMs

p=.0 p=.3 p=.6
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST
10 -0.01  -0.01 0.02 0.25 0.04 0.19 1.44 040 098
20 20 0.00  0.00 0.00 0.14 0.03 0.05 097 033 045
50 0.01 0.01 0.00 0.06 0.01 0.01 048 0.18 0.14
100 0.00  0.00 0.00 0.03 0.00 0.00 026 0.10 0.06
10 0.02  0.02 0.06 0.26 0.06 0.20 144 045 1.03
20 0.02  0.02 0.03 0.11 0.00 0.03 095 033 047
50 50 0.02  0.02 0.01 0.06 0.02 0.01 044 0.15 0.11
100 0.00  0.00 0.00 0.01 -0.01 -0.02 0.23 0.08 0.03
10 0.01 0.01 0.06 0.25 0.05 0.19 145 052 1.05
100 20 0.00  0.00 0.00 0.13 0.02 0.05 093 033 045
50 -0.01 -0.01 -0.01 0.06 0.02 0.01 043 0.14 0.09
100 -0.01  -0.01 -0.01 0.02 0.00 0.00 023 0.08 0.03

Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous
first order autoregressive error structure; TST: Two-step MLM with transformation.
p = average autocorrelation, N = sample size and L = series length.

tables of relative bias for o, across the three models are presented in Table 3.3.

The result showed that the misspecified homogenous covariance models produced biased
estimates for the variance of random intercept. It also showed that the bias is large when
autocorrelation is high, series length is short, or both. This bias was higher in the ID
model than the AR(1) model, F(1,17964) = 28685.8, p <.0001, 5 = .04, analyzed by
2(method) x3(N)x4(L)x3(p) repeated ANOVA.? On the other hand, the transformation

method did not completely eliminate the bias of the estimates of o, . Instead, it produced

larger bias than the AR(1) model when series length is 10 or 20. However, the TST
model showed smaller bias than the AR(1) model when series length is 50 or 100 (Figure

3.1). When the two models were compared, there were considerable interaction effects of

3 Because each method was fitted to the same data sets, the method factor should be considered as a within-
subject factor instead of a between-subject factor.

38



method by series length, F3 17963) = 2132.06, p <.0001, ;12 = .02, method by
autocorrelation, F(»,17963) = 997.02, p <.0001, n* = .00, and method by series length by
autocorrelation, Fig17963) = 896.31, p <.0001, 172 = .01, as well as a main effect of method,
F1.17963 = 2413.18, p < .0001, > = .01.

By contrast, no significant bias was found in the estimation of the variance of the

Table 3.3
Analysis of Variance for Relative Bias of c., by Three Models
Source df SS MS F n

ID
Sample size (N) 2 0.26 0.13 0.88 0.00
Series length (L) 3 617.88 205.96 1417.01° 0.10
NxL 6 0.55 0.09 0.63 0.00
Autocorrelation (p) 2 2056.39 1028.20 7074.03" 0.34
N x p 4 0.85 0.21 1.47 0.00
Lxp 6 735.18 122.53 843.017 0.12
NxLxp 12 0.63 0.05 0.36 0.00
Error 17964 2611.04

AR(1)

Sample size (N) 2 0.11 0.05 0.37 0.00
Series length (L) 3 54.60 18.20 124.56" 0.02
NxL 6 2.51 0.42 287 0.00
Autocorrelation (p) 2 239.78 119.89 820.45™ 0.08
N x p 4 0.48 0.12 0.83 0.00
Lxp 6 75.53 12.59 86.14" 0.03
NxLxp 12 2.17 0.18 1.24 0.00
Error 17964 2625.06

TST
Sample size (N) 2 0.05 0.03 0.20 0.00
Series length (L) 3 466.12 155.37 1241.06™ 0.12
NxL 6 1.57 0.26 2.09 0.00
Autocorrelation (p) 2 555.52 277.76 2218.61° 0.15
N x p 4 0.38 0.09 0.75 0.00
Lxp 6 469.86 78.31 625.51" 0.13
NxLxp 12 1.40 0.12 0.93 0.00
Error 17963 2248.884

Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous
first order autoregressive error structure; TST: Two-step MLM with transformation
p<.05 p<.0001
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Figure 3.1. Line plots of relative bias of 67, produced by three models across

autocorrelations and series lengths. The square, triangle, and circle represent a relative
bias for the ID model, the AR(1) model and the TST model, respectively.

random regression effect and the covariance of the random intercept and the random

regression effect for the two misspecified models: The ID model did not show any

significant bias for the variance ajl , RB=0.00, 17999y = 0.86, p = .39, or for the

covariance o

uOul >

RB =0.00, #17999) = 1.22, p = .22. The AR(1) model also did not
produce biased estimates for o,, RB = 0.00, #17999) = 1.37, p = .17, or for &,,,,, RB =
0.00, #17999) = 1.10, p = .27 (see Table 3.4). No main effects or interaction effects of N, L,

and p significantly explained the variation of the relative bias of ¢, and o, for the

two models. On the contrary, the TST model produced a significant bias in the estimation

of ofl , RB =0.03, 17998y = 13.66, p < .0001. There also was a significant effect of series

length on the relative bias of the estimates, F(3,17963) = 112.88, p <.0001, 772 = .02. The
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Table 3.4

Relative Bias of 6., and 6,,,, under Heterogeneous Autocorrelation in Covariance for
the Three Different MLMs

p=.0 p=23 p=.6
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST
5.
10 -0.01 -0.01 0.08 0.01  0.01 0.10 -0.01 0.00 0.07
20 20 0.00  0.00 0.02 0.02  0.02 0.04 -0.01 0.00 0.01
50 -0.01 -0.01 -0.01 0.00  0.00 0.00 -0.02  -0.02 -0.02
100 0.02 0.02 0.02 0.00  0.00 0.00 0.01 0.01 0.01
10 0.02 0.02 0.12 -0.01  -0.01 0.09 0.01 0.01 0.08
50 20 0.01  0.01 0.03 -0.01  -0.01 0.01 -0.01  -0.01 0.00
50 -0.01 -0.01 0.00 0.00  0.00 0.00 0.01 0.01 0.01
100 0.00  0.00 0.00 0.00  0.00 0.00 0.02 0.02 0.02
10 0.01  0.01 0.10 0.00  0.00 0.09 0.01 0.01 0.08
100 20 0.00  0.00 0.02 -0.01  -0.01 0.01 0.01 0.01 0.02
50 0.00  0.00 0.00 0.00  0.00 0.00 0.01 0.01 0.01
100 0.01 0.01 0.01 -0.01  -0.01 -0.01 -0.01 0.00 0.00
G .out
10 -0.02 -0.02 -0.01 0.01  0.01 0.01 0.01 0.01 0.00
20 20 -0.02 -0.01 -0.01 0.01  0.01 0.01 0.00 -0.01 -0.01
50 0.01  0.01 0.01 -0.01 -0.01 -0.01 0.02 0.02 0.01
100 0.00  0.00 0.00 0.00  0.00 0.00 0.02 0.02 0.02
10 0.01 0.01 0.01 0.01  0.01 0.01 0.02 0.02 0.01
50 20 0.01 0.01 0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01
50 0.00  0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00
100 0.00  0.00 0.00 0.00  0.00 0.00 -0.01  -0.01 -0.01
10 0.00  0.00 0.00 0.00  0.00 0.00 0.01 0.01 0.01
100 20 0.00  0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00
50 0.00  0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00
100 0.00  0.00 0.00 0.00  0.00 0.00 -0.01  -0.01 -0.01

Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous

first order autoregressive error structure; TST: Two-step MLM with transformation.
p = average autocorrelation, N = sample size and L = series length.

effect of series length implies that the bias is significant only when the series length is

short, as seen in Table 3.4. There was no significant bias of the estimates of covariance

O 0u » RB = 0.00, #17998) =0.90, p = .37, and no effects of N, L, and p for the TST model.
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Bias in the standard error of estimation for fixed effects. Because of the bias in

the estimated variance of the random intercept, the standard error of estimation of fixed

effects was also expected to be biased. Table 3.5 presents relative bias of the estimated

standard error for 7, and y,,. Significant relative bias of the estimated standard error of

Table 3.5

Relative Bias of the Standard Error of y,,and y,, under Heterogeneous Autocorrelation
in Covariance for the Three Different MLMs

p=.0 p=23 p=.6
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST
SE(7,)
10 -0.02 -0.02 -0.02 0.00  0.00 0.01 0.11  0.10 0.08
20 20 -0.02  -0.02 -0.02 0.00 -0.01 0.00 0.10  0.09 0.04
50 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.05  0.05 0.01
100 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.02  0.02 0.00
10 0.00  0.00 0.01 0.01  0.01 0.02 0.13  0.11 0.10
50 20 0.00 0.00 0.01 -0.01 -0.01 -0.01 0.11  0.10 0.07
50 0.00  0.00 0.00 0.00  0.00 0.00 0.05  0.05 0.01
100 -0.01 -0.01 -0.01 -0.01  -0.01 -0.01 0.02  0.02 0.00
10 0.00  0.00 0.01 0.01  0.01 0.02 0.13  0.11 0.11
100 20 0.00  0.00 0.00 0.00  0.00 0.00 0.11  0.09 0.06
50 -0.01 -0.01 -0.01 0.00  0.00 0.00 0.05 0.04 0.01
100 -0.01  -0.01 -0.01 0.00  0.00 0.00 0.02 0.02 0.00
SE(7,)
10 -0.01  -0.01 0.00 0.00 -0.01 0.01 0.03 -0.01 0.01
20 20 -0.01 -0.01  -0.01 0.00  0.00 0.00 0.02 -0.01 -0.01
50 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 -0.02  -0.02
100 -0.01 -0.01 -0.01 -0.01  -0.01 -0.01 0.00 -0.01 -0.01
10 0.01 0.01 0.02 0.01  0.00 0.02 0.05  0.00 0.02
50 20 0.00  0.00 0.00 0.00 -0.01 0.00 0.03 -0.01 -0.01
50 -0.01 -0.01  -0.01 0.00 -0.01 -0.01 0.02  0.00 0.00
100 -0.01 -0.01 -0.01 0.00  0.00 0.00 0.01  0.00 0.00
10 0.00  0.00 0.02 0.01  0.00 0.02 0.05  0.00 0.03
100 20 0.00  0.00 0.00 0.00  0.00 0.00 0.04  0.00 0.00
50 0.00  0.00 0.00 0.00  0.00 0.00 0.02  0.00 0.00
100 0.00  0.00 0.00 0.00 -0.01 -0.01 0.00  0.00 0.00

Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous
first order autoregressive error structure; TST: Two-step MLM with transformation; SE:

standard error.
p = average autocorrelation, N = sample size and L = series length.
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the fixed intercept ( 7,,) was found in all the methods: RB = 0.02, #(17999) = 23.31, p <

.0001 for ID; RB = 0.02, #(17999) = 19.74, p < .0001 for AR(1); RB = 0.01, #7993y = 13.05,
<.0001 for TST. For the ID model, there were significant effects of sample size (F(2,17964)
=9.31, p <.0001, 5> = .00), series length (F3 17964 = 97.30, p < .0001, #* = .01),
autocorrelation (F(2,17964) = 837.60, p < .0001, 712 =.08), and the interaction of the last two
(F6,17964) = 64.87, p < .0001, n* = .02). For the AR(1) model, significant effects of sample
size (Fa.17964 = 9.40, p < .0001, > = .00), series length (F(3,17964) = 70.65, p <.0001, 5* =
.01), autocorrelation (F(2,17964) = 655.74, p < .0001, ;12 =.07), and the interaction of the
last two (F6,17964) = 47.66, p < .0001, 712 =.01) were found. The TST model also showed
significant effects of sample size (F(2,17963y = 17.01, p <.0001, n* = .00), series length
(F3.17963 = 113.80, p < .0001, #* = .02), their interaction (F(s.17963) = 2.42, p < .05, * =
.00), autocorrelation (F(2,17963) = 253.12, p <.0001, ;12 =.03), and the interaction of series

length and autocorrelation (£s,17963) = 50.62, p <.0001, 712 =.02).

As in the bias of &7, there was a significant mean difference between the ID

model and the AR(1) model (F1,17964) = 1341.52, p <.0001, 7> =.00) as well as
significant interaction effects of method by series length (F3,17964) = 177.30, p <.0001, n”
=.00), method by autocorrelation (F2,17964) = 945.17, p < .0001, n* =.00), and method by
series length by autocorrelation (F(s,17964) = 111.90, p <.0001, ;12 =.00). There also was a
significant mean difference between the AR(1) model and the TST model (F(1,17963) =
449.96, p < .0001, 5> = .00) as well as significant interaction effects of method by series
length (F(3,17963y = 117.61, p <.0001, ;72 =.00), method by autocorrelation (F2,17963) =
812.47, p <.0001, 772 =.00), and method by series length by autocorrelation (Fs,17964) =

30.19, p <.0001, #* = .00). The results support the transformation method is less biased
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in the estimation of the standard error of 7,, than the misspecified models, especially

when the average autocorrelation is high and the series length is long (see Figure 3.2).

The reduced bias achieved by the transformation method is expected to increase the

accuracy of interval estimation and test of the fixed intercept.
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Figure 3.2. Line plots of relative bias of the standard error of 7, and y,, produced by

three models across autocorrelations and series lengths. The square, triangle, and circle
represent a relative bias for the ID model, the AR(1) model and the TST model,

respectively.
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On the other hand, a significant bias of the standard error of y,, was found for the

misspecified models (RB = 0.01, 17999y = 7.38, p < .0001 for ID; RB = -0.00, f17999) = -
5.47, p <.0001 for AR[1]), but not for the TST model (RB = 0.00, #17999) = 1.32, p = .19).
ANOVA showed significant effects of sample size (F(2,17964) = 17.39, p <.0001, 772 =.00),
series length (F(3,17964) = 21.46, p < .0001, 772 =.00), autocorrelation (F2,17964) = 86.26, p <
.0001, > =.01), and the interaction of the last two (F(s17964) = 6.25, p < .0001, > = .00)
for the ID model. For the AR(1) model, only the effect of sample size (F(2,17964) = 15.32, p
<.0001, #* = .00) was significant. The TST model showed significant effects of sample
size (F(2,17963) = 14.82, p <.0001, 712 =.00) and series length (F3 17963 = 45.54, p <.0001,
5> = .01). The ID model and the AR(1) model were significantly different in their mean
(F,17964) = 3352.51, p <.0001, ;12 =.00) and the effects of series length (F3,17964) =
310.82, p < .0001, #° = .00), autocorrelation (F(2,17964) = 1724.30, p < .0001, 5> = .00), and
the interaction of the last two (Fs,17964) = 145.66, p <.0001, 772 =.00). The AR(1) model
and the TST model were significantly different in their mean (F2,17963) = 1211.69, p <
0001, #* = .00) and the effects of series length (F(3.17963 = 924.47, p < .0001, #* = .00),
autocorrelation (F(2,17964) = 15.40, p <.0001, ;12 =.00), and the interaction of the last two
(F6,17964) = 10.58, p <.0001, ;12 =.00). Overall all models are downwardly biased for the

estimates of the standard error of 7,,. However, overestimation occurred when

autocorrelation was .3 and series length was short or autocorrelation was .6 for the ID
model, and when series length was 10 for the TST model. Figure 3.2 (right column)

presents relative bias in the estimation of the standard error of 7,, for the three models

across series length and autocorrelation.
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Conclusions

In general, all three models failed to produce highly biased estimates of the fixed
intercept and regression effects. This was also true for estimation of the variance of the
random regression effect. Estimation of the variance of the random intercept, however,
was severely biased when the average autocorrelation was .3 or .6. The AR(1) model was
less biased than the ID model in these conditions but the amount of bias was still
unsatisfactory. The TST model was also biased in the estimation of the variance of the
random intercept. In fact, the bias of the TST model was higher than AR(1) model when
the number of observations within individuals was 10 or 20. When the number of
observation was large (50 or 100), however, the TST model was less biased than the
AR(1) model. This was expected before analysis of the data. Because the transformation
procedure, actually an estimation of autoregressive parameters for each individual,
requires a large number of observations (within individuals), performance of the TS
MLM-T depends critically on the number of observations. If this is not the case, the first
step of TS MLM-T may fail to identify a valid transformation matrix, resulting in poor
estimates in the second step. Once enough number of observations are available and
analyzed for each individual, however, TS MLM-T produces better estimates than the
other misspecified models under heterogeneous covariance structure. Bias in the
estimation of the variance of the random intercept resulted in bias in estimation of the
standard error of the fixed intercept. As seen in the results, TS MLM-T may reduce this

bias if a large number of observations for each individual (say 50 or more) are available.
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4. A Two-Step Multilevel Random Variance Model for Heterogeneous

Individual Variance

In the previous chapter, we have seen how heterogeneous covariance structure
may affect estimation and statistical inference in multilevel models which contain effects
of covariates on a response variable of interest. In such models, the parameters of interest
are regression coefficients that predict or explain the change of a response.
Characteristics of error structure (e.g., variance or autocorrelation) are generally not of
major substantive concern. As such, heterogeneity of error covariance is often ignored, or
at least modeled to enhance the estimation of parameters for the mean function of a
response, as done by TS MLM-T (introduced in the previous chapter). In some studies
with intensive longitudinal data, however, heterogeneity of residual variance (as an index
of variability) or autocorrelation (as an index of temporal dependency) across individuals
is of interest in its own right and individual level factors (e.g., group membership or
impulsivity level) that explain the heterogeneity of variance and autocorrelation (e.g.,
fluctuations of negative mood state or alcohol use) are also of interest. In this chapter,
modeling heterogeneous variance in the context of variance function model is discussed.
A new model, suggested by Hedeker et al. (2008), that allows random variation of the
variance across individuals is now introduced. In addition, an alternative multilevel
model for modeling variance function and random variance is proposed and evaluated by

comparison with the model suggested by Hedeker et al. in a simulation study.

Variance Function Models and the Mixed-Effect Location Scale Model
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Modeling variance as a function of within-individual or between-individual
covariates has been suggested by many researchers (Goldstein, 1995; Hedeker et al.,
2008; Hedeker & Mermelstein, 2007; Pinheiro & Bates, 2000; Raudenbush & Bryk,
1987; Raudenbush & Bryk, 2002). A basic form of variance function is suggested in the
context of the single level linear regression model (Carroll & Ruppert, 1988; Davidian &
Giltinan, 1995; Harvey, 1976). Suppose there is a response variable y;, whose expected
value is a function of a vector of covariates x¢ and its corresponding parameter . A

general specification for variance function g of y, is
Var(y,)=0"g"(14,V,,9), (4.1)

where u; = E(y;) = f(xt, ), vt is a vector of covariates predicting the variance of y;, and 0
is a parameter vector relating 4, and v to the variance of y,. Initially, the variance
functions were suggested to relate mean and variance for heteroscedastic regression

models. Examples of variance function g in this context include the power-of-the-mean

model
g(u,,0) =y, (4.2)
the exponential model
g(4,,0) = exp(1,0), (4.3)
and a two-component model
8 (1, 0) =0+ (4.4)

Notice that if = 1 in (4.2), o° is the coefficient of variation. Variance of y, 1S sometimes

thought to depend on a covariate. In this case, an exponential model can be used as

2(v,,0) = exp(6v,). .5)
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This single level variance function has been extended to the linear mixed models
or the MLMs by several researchers (Davidian & Giltinan, 1995; Goldstein, 1995;
Hedeker & Mermelstein, 2007; Pinheiro & Bates, 2000; Raudenbush & Bryk, 2002).
Assume a two level regression model (2.3) for a variable yy;, rewritten as
Vi = f(Zg Wi v,u;) +e,, (4.6)
where zg 1s a vector of within-individual covariates at time ¢ for individual i, w;is a

vector of between individual covariates for 7, y is a vector of fixed effects and u; is a
vector of random effects for i. The variance function g of this model is expressed as
Var(y,)=0"g" (#4;,4,0) (4.7)

where w; = E(vy) = f(z4, Wi, ¥, W), Vi 1S a vector of within- and/or between-individual
covariates predicting the variance of y,, and 0 is a parameter vector relating yu,; and v to
the variance of y;. v4 may or may not include zi and w;. As in the single level case,
variance function g may have the form of either the power-of-the-mean model or the
exponential model or a combination of both (Pinheiro & Bates, 2000). A major difference
between the variance functions of the single level regression and the multilevel model is
that v may include one or more between-individual covariates to explain the
heterogeneity of variance in a multilevel variance function but not in a single level
variance function. Notice that the parameter 0 in variance function (4.7) is also fixed as in
the single level variance function.

The variance function (4.7) can be, however, further extended to a function with
random parameters 9;. Hedeker et al. (2008) suggested one such model, called the mixed-
effects location scale model (MLSM). Consider a multilevel model (4.6) where

zZ.,W.,y,u.)=z.W.y+z.u., written b
ti i y i ti 17 tii y
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Vi =2gWY +25u; +e, (4.8)

where Z; =(zy,...,z,;)", and W, v, and u; are defined as in (2.6). Hedeker et al. (2008)

suggested a multilevel variance function for the variance of y;;

o =exp(vVy8+35), (4.9)

where vy is a vector of within- and/or between-individual covariates predicting the
variance of yy;, 0 is a vector of fixed effects of vy, and J; is a random intercept distributed

as normal (across individuals) with mean 0 and variance o, . Taking logs both side of
(4.9) yields log(ofﬁ) =v,0+J,, meaning that the logarithm of variance is a linear

function of v. Note that the estimated variances of (4.9) are guaranteed to be positive.
Because 0; is normally distributed, the variance follows lognormal distribution across
individuals. The location (mean) model (4.8) and the scale (variance) model (4.9) can be

jointly written as
’ ! 1 !
Vv, =2, W,y +Z,u, +exp {E(VﬁEH— @)}gti , (4.10)

where ¢, is a standard normal. The model (4.10) can be estimated by (marginalized)
maximum likelihood (ML) method and the ML estimates can be easily obtained by the
NLMIXED procedure in SAS, for example.

Although Hedeker et al. (2008) restricted the MLSM in (4.10) to one random
effect, this model can easily be extended to a model with two or more random effects by
replacing (4.9) with

o, =exp(vy0+syd,), (4.11)
where 0; is a vector of random effects of sy. For example, suppose that the variance is a

function of a within-individual covariate a; and a between-individual covariate b;.
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Suppose also that the intercept and the within-individual covariate have both fixed and

random effects. In this case, (4.11) can be written in multilevel equations as

0-2, = exp(ﬂ’w + Zliati)

Aoi =Gy +0,,b, + S, (4.12)
/?11‘ = ‘910 + 511‘

and a single equation form is given by
o—i =exp(Oy + 0y, + 090, + 6y, +6,4,) - (4.13)

Notice that in (4.13) there are two random effects: dy; and J;;. Notice also that there is no

level-1 random error in this model.

A Two-Step Multilevel Random Variance Model

Carroll and Ruppert (1988) discussed alternative methods of variance function
estimation other than introduced above, in the context of a single level regression model.
One such method is a regression model where responses are squared residuals and the
regression function is the variance function introduced in (4.1). For example, a variance

function for a single level regression model can be modeled as
2
[yt_f(zta’Y)] :ngz(ﬂtavt:9)+a)ta (414)
where y, = f(z,,v)+e, and i, = E(y;) = f(z, v). This method is based on the fact that the

expectation of squared residuals is approximately the variance. As such, fitting (4.14)

will provide a good approximation of the variance function g. For normal e;, (4.14) is a

nonlinear model with heteroscedastic variance proportional to o*g*(,,v,,0) . Given ¢, ~

MO, 62), e is distributed as a scaled »* with df = 1, which is a special case of the
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gamma distribution. If there is a function 4 such that i(z,) = O, + V0", 0 = (6, 0") and

m=E(e})=o’g*(u,v,,0), (4.14) can be fitted by a generalized linear model with

gamma error distribution and a link function of 4.
In multilevel models, the same method is easily applicable. For a multilevel

model (4.8), a multilevel random variance model is written by

2
[vi—f(@g, Wi ru)] =08 (1, V4,84.0,8,) + @, , (4.15)
where notations are defined as in (4.6), (4.7) or (4.11). The residual e, is obtained by

fitting (4.8) first, and then subtracting the expected (or predicted) value f(z,,w,,y,u,)
from the observed value y;. Because the fitted value f(z,,w,,y,u,) is a function of

EBLUP estimates, that is also empirical Bayes estimates, the obtained residuals are

empirical Bayes estimates of the true residuals.

As in the single level model, ¢’ is distributed as a scaled ¥ with df=1, that is a
gamma distribution, and can be fitted by a generalized linear mixed model with gamma
distribution. For squared residuals e, =[y, — f (Zﬁ,wi,y,ui)]z, we write

e |a,, B, ~Gamma(a,, B,) (4.16)
to denote that e> has a gamma distribution with a shape parameter o, and a scale
parameter S, a,; > 0 and f,; > 0. The mean and the variance of (4.16) are E( e,f lo, Bri) =
7t = ayfy and Var( ei |0, Pu) = a,i,B,iz, respectively. As such, the variance function
o’g’ (1, 4,8,,0,8,)in (4.15) is equated to 7, that is the expected value of e’ or the

approximation of the variance. Notice that when e, is distributed as N(0,1), e follows
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Gamma(1/2,2), i.e., a y* distribution with df = 1. If e, is distributed as N(0,07), e’
follows Gamma(1/2,207}).

If there is a function 4 such that i(z,;) = 5;, where 7,; is a linear function of u, vy,

and s, it can be used as a link function for (4.15). For example, if we define the variance
function as (4.11), that is o, =0°g”* (44, V4,84,0,8,)= exp(vy0+s,8,), and set e, =
v, —f(Zs,w,,v,u,), (4.15) is rewritten as

e =exp(v,0+s,8,)+ o, (4.17)

In this case, the log link ensures linear relationship between logarithm of variance and

predictors:
n, =log(x,), (4.18)

M, = V0 +849; (4.19)

i0i
where 7, is the log of the expected value of e .

Random effects 6; is assumed to be multivariate normal. For (4.17), a normal
distribution of §; results in the lognormal distribution of 7. (4.15) or (4.17) can also be
expressed via multilevel equations. For example, (4.12) can be expressed as (4.17) where

level-1 and level-2 equations are written by

eﬁ = eXp(/?VOi + ﬂ'liati) + o,
Ay =6y +6,,D, + 0, (4.20)
211' = 010 + 511'

2N Oy U R .
Where E(e;) = m; = a,fp; and ~N , . The model (4.17), or (4.15) in
Sy, 0] S ¢u

general, can be estimated by (marginalized) ML and the ML estimates can be easily

obtained using the NLMIXED procedure in SAS, for example.
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The MLSM of (4.11) and the model (4.17) are almost equivalent to each other: (1)
The log of the variance is modeled as a linear function of predictors. (2) Variance is
modeled in two levels. (3) Variance is allowed to vary systematically and/or randomly.
(4) Variance is modeled to follow a lognormal distribution. Two major differences of the
two approaches are: (1) MLSM models an exact function of variance without assuming
measurement or sampling errors of variance while (4.17) models variance function in
terms of a regression model allowing errors. (2) MLSM fits mean function and variance
function simultaneously while (4.17) fits variance function on the squared residuals
obtained from a previous analysis. As such, we call the latter approach the Two-Step
Multilevel Random Variance Models (TS-MRVM). In the following section the
performance of the MLSM and the TS-MRVM will be investigated by a simulation

study.

Performance in Estimation of MLMSs for Random Variance Function: A Simulation Study

MLSM introduced by Hedeker et al. (2008) is a rather new model of the variance
function. Hedeker et al. stated that the MLSM often did not converge with relatively
small sample size (e.g., 20 subjects with 5 observations each) in their small simulation
study. A plausible problem in the MLSM is complexity of the model in the sense of
simultaneous estimation of both mean function and variance function. By contrast, the
TS-MRVM may not suffer from this problem because it estimates parameters in mean
function and variance function separately. Compensation may occur by producing bias in

estimation.
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Method
The following models were used to generate data sets. For the mean function, y;;
was set to be a function of a time varying covariate z; and a between-individual covariate
w;. For simplicity, only the intercept was allowed to randomly vary in the model. As
such, the mean function MLM was given by
Vi =Yoo T 710Z T VoW Ty T €. (4.21)
The time varying covariate z,; and a between-individual covariate w; were generated from

a normal distribution with mean 0 and variance 1, independently. The fixed effects were

set to a value: yo0 = .5, y10 = .5, and yo; = .5. The random intercept u; was generated from a

normal distribution with the mean 0 and the variance ofo = .25. The error e, was
generated from a distribution with the mean 0 and the variance afl, , that is modeled by

the following function.

The residual variance was modeled as a function of the between-individual
covariate w;. Only the intercept was modeled to randomly vary. Accordingly, the variance
function model was given as

o, =exp(by +6,w, +6,,) (4.22)
The fixed intercept 6y and Gy were set to .5 and the random effect of dy; was generated

from a normal distribution with mean 0 and the variance o;,= .25.

Each data set was completely balanced with L (the number of observations within
individuals) = 10, 20, 50, or 100 and N (the number of individuals) = 20, 50, or 100.
Accordingly, 3 (L) * 4 (N) = 12 conditions were obtained. In each condition, 500 data
sets were simulated, resulting total of 6000 data sets. Each data set was analyzed by the

MLSM and the TS-MRVM separately. For the TS-MRVM, a MLM was fitted for the
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mean function in the first step using the MIXED procedure in SAS. After fitting the mean
function, empirical Bayes (EB) estimates of the residuals were obtained. In the second
step, a multilevel variance model was fitted on the squared (EB) residuals for the
variance function using the NLMIXED procedure in SAS. For the MLSM, both the mean
function and the variance function were fitted simultaneously using the NLMIXED
procedure in SAS. When fitting the NLMIXED procedure for both methods, true
parameter values were provided as starting values. Relative bias was calculated as in
chapter 3 to investigate bias in the estimation of parameters in mean model and variance

model.

Results

Convergence rate. The TS-MRVM converged in all the data sets in all conditions.
As expected, however, the MLSM showed poor performance in convergence as seen in
Figure 4.1. Clearly, the coverage rate decreased as the series length increased (Wald y* =
35.00, p < .001) or the number of individuals increased (Wald y* = 8.53, p <.05). When
the number of individuals was 20, convergence rate decreased from 100 % through 96%
as the series length increased from 10 through 100. For the sample size of 50,
convergence rate declined from 99.2% to 90.2% as the series length raised from 10 to
100. When N = 100, convergence rate decreased from 99% through 82%.

Bias in mean model. The performance of the estimation of parameters in mean

function was investigated. Relative bias (RB) for the fixed effects yqo, y10, and yo; and

variance of random intercept o, are presented in Table 4.1. Because, for TS-MRVM,

the mean function was fit by an MLM in which the variance function was not modeled,
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Figure 4.1. Line plots of convergence rate of MLSM across sample size and series
length. The square, triangle, and circle represent a convergence rate for sample size of 20,
50, and 100, respectively.

the first step of TS-MRVM is a model with misspecified variance structure. Nevertheless,
there was no significant bias of estimates of the fixed effects in the mean function for the
first step of TS-MRVM: RB = 0.00, #5999 = -0.33, p = .74 for y90; RB = 0.00, #5999 = 0.33,
p = .74 for y10; RB = 0.00, #5999) = 0.89, p = .37 for yo1. Likewise, no significant bias was
found in estimates of the fixed effects in the mean function for MLSM: RB = 0.00, #(5646)
=-0.37, p =71 for yoo; RB = 0.00, #5646) = -0.23, p = .82 for y10; RB = 0.00, #(5646) = 1.10,
p = .27 for 9. Neither sample size nor series length has significant effects on the relative
bias of the fixed estimates in both models. On the other hand, there was a significant bias
in the estimation of the variance of random intercept in the MLSM, RB = -0.02, #(5646) = -
16.28, p <.0001. The bias decreased as sample size increased, F» s635) = 42.07, p < .0001,

n* = .01. In contrast, the misspecified MLM (i.e., the first step of TS-MRVM) did not

produce biased estimates of 0'50 , RB=0.00, f(5999) = 1.74, p = .08. The unbiased estimates

of the parameters in the mean function in the misspecified MLM support use of the

empirical Bayes residuals obtained the first step of TS-MRVM in the second step.
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Table 4.1
Relative Bias of 7y, 710, 710, and &2, for the Two Random Variance MLMs

A2

};OO 7;10 };10 O-uO
N L MLSM MRVM MLSM MRVM MLSM MRVM MLSM MRVM
10 0.00  0.00 0.00  0.00 0.00 0.00 -0.04 0.01
20 20 0.00 -0.01 0.00  0.00 0.01 0.01 -0.03 0.00
50 -0.01  -0.01 0.00  0.00 -0.01  -0.01 -0.03 0.00
100 0.00  0.00 0.00  0.00 0.00 0.00 -0.03 0.00
10 0.01  0.01 0.00  0.00 0.01 0.01 -0.01 0.00
50 20 0.00  0.00 0.00  0.00 0.00 0.00 -0.02  -0.01
50 0.00  0.00 0.00  0.00 0.00 0.00 -0.01 0.00
100 0.00  0.00 0.00  0.00 0.00 0.00 -0.01 0.00
10 0.00  0.00 0.00  0.00 0.01 0.01 -0.01 0.00
100 20 0.00  0.00 0.00  0.00 0.00 0.00 0.00 0.00
50 -0.01  0.00 0.00  0.00 0.00 0.00 -0.01 0.00
100 0.00  0.00 0.00  0.00 0.00 0.00 -0.01 0.00

Note. MLSM: Mixed-effects Location Scale Model; MRVM: Two-Step Multilevel
Random Variance Model; N = sample size; L = series length.

Bias in variance model. Unlike estimation of the parameters in the mean function,

the TS-MRVM produced biased estimates for the parameters in the variance function

(Table 4.2). The TS-MRVM produced bias in the estimates of the fixed intercept éoo , RB

=-0.02, 1(5999) = -18.97,p <.0001, and élo ,RB=-0.01, 1(5999) = -6.77,p <.0001. The bias
was the function of series length in the both parameters, F2 5083y = 27.73, p <.0001, 772 =

.01 for

o> and Fp.s088) = 30.22, p < .0001, #° = .01 for ém . By contrast, the MLSM did
not show any bias in the estimation of éoo, RB =-0.00, t5646) = -0.54, p = .58, and 910 , RB

= 0.00, s646) = 0.45, p = .65. For the estimation of the variance of random intercept (i.e.,
o3, ), both the MLSM model and the TS-MRVM showed significant bias: RB = -0.02,

fsea6) = -19.03, p < .0001 for MLSM, and RB = -0.03, (5999, = -26.76, p < .0001 for TS-

MRVM. For the MLSM, the bias was a function of sample size, F( 5635 = 55.69, p <
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Table 4.2
Relative Bias of éoo’ élO’ and &, for the Two Random Variance MLMs

A A

o 7 &éo
N L MLSM MVM MLSM MVM MLSM MVM
10 0.00 -0.04 -0.01 -0.04 -0.06 -0.07
20 20 0.01 -0.02 0.00 -0.01 -0.03 -0.04
50 -0.01 -0.02 0.01 0.00 -0.02 -0.03
100 0.00 -0.01 0.00 0.00 -0.03 -0.03
10 0.00 -0.04 0.00 -0.03 -0.02 -0.04
50 20 0.00 -0.03 0.00 -0.01 -0.02 -0.02
50 0.00 -0.02 -0.01 -0.01 -0.01 -0.01
100 0.00 -0.01 0.01 0.01 -0.02 -0.02
10 0.00 -0.04 0.01 -0.01 -0.01 -0.03
100 20 0.00 -0.03 0.00 -0.01 -0.01 -0.01
50 0.00 -0.02 0.00 0.00 -0.01 -0.01
100 0.00 -0.01 0.00 0.00 -0.01 -0.01

Note. MLSM: Mixed-effects Location Scale Model; TS-MRVM: Two-Step Multilevel
Random Variance Model; N = sample size; L = series length.

.0001, ;12 = .02, series length, F(2 5635y = 10.99, p <.0001, 772 = .01, and the interaction of
the two, F(25635)=3.13, p <.01, 712 =.00. Similarly, bias in the TS-MRVM was also the
function of sample size, F(2 5983y = 83.19, p <.0001, 772 = .03, series length, F» so85) =
56.56, p <.0001, > = .03, and the interaction of the two, F(3 s0s3) = 3.80, p <.001, * =
.00. Figure 4.2 presents line plots of relative bias for the parameters in the variance
function across series length, the major effect in each case. Clearly, the biases produced

in the TS-MRVM converged to 0 as series length increased.

Conclusions

The two multilevel modeling approaches for random variance function were introduced

and their estimations were evaluated by a simulation study. The Mixed-effects Location
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Figure 4.2. Line plots of relative bias of éoo, 6310, and &, produced by two models

across series lengths. The square and circle represent a relative bias for the MLSM and
the TS-MRVM, respectively.

Scale Model (MLSM) proposed by Hedeker et al. (2008) is a useful model in that it
models variance as a function of within-individual and between-individual covariates. It

also allows variance to vary randomly across indi