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ABSTRACT 
 
 

Recent developments in data collection methods in the behavioral and social 

sciences, such as Ecological Momentary Assessment (EMA) enables researchers to 

gather intensive longitudinal data (ILD) and to examine more detailed features of 

intraindividual variation of a variable(s) over time. Due to its high intensity of 

assessments within individuals, ILD often has different characteristics from traditional 

longitudinal data with a few measurement occasions and requires different assumptions 

of statistical models in use. In the present thesis, issues in the analysis of ILD and 

problems of current use of statistical models for the analysis of ILD are discussed and 

investigated. Specifically, the issue of heterogeneity of autocorrelation and variance 

across individuals in ILD is extensively studied for multilevel models (MLMs). In 

chapter 2, a brief introduction to multilevel models and issues in modeling residual 

covariance structure in MLMs are provided and discussed. In chapter 3, it is shown that 

bias in estimation of parameters in MLMs under homogeneity assumption is not 

ignorable when autocorrelation differs across individuals and its average is high. It is also 

shown that a transformation method, which multiplies variables in the model by the 

inverse of Cholesky factor of individual-specific error covariance, attenuates the bias for 

ILD. Chapter 4 reviews variance function models for heterogeneous variance and 

introduces a two-step MLM approach for modeling heterogeneous variance using squared 

residuals. A simulation study showed that the two-step MLM does not suffer from non-

convergence and is applicable to ILD. 
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1. Introduction 

 

Psychological research has focused on between-individual variation (or 

interindividual variation) on one or more dimensions to understand characteristics or 

relational patterns of psychological phenomena of interest. The findings from between-

individual variation have been often generalized to those of within-individual change. 

Because this generalization requires very strict conditions, called ergodicity (e.g., 

stationarity and non-cyclicity, see Molenaar, 2004), however, longitudinal studies have 

had their own right in psychology to describe characteristics of within-individual change.  

Traditional longitudinal studies often involve a small to moderate number of 

repeated observations (usually less than 10 occasions) across many individuals. 

Accordingly, the number of individuals is typically much greater than the number of 

observations within each individual. In such cases, the prediction of a response variable 

as a function of the within-individual covariates (including time for growth model), the 

between-individual covariates, and the interactions among the covariates are often of 

interest. However, with a small to moderate number of observations for each individual, 

more detailed investigation of the dynamic process of a response within individuals is 

restricted. If interest is more focused on intraindividual changes in response (e.g., mood 

fluctuations across time), many repeated observations are required for each individual, 

that is an intensive longitudinal study is called for. 

Recent developments in data collection methods in the behavioral and social 

sciences, such as Ecological Momentary Assessment (EMA) (Hufford, Shiffman, Paty, & 

Stone, 2001; Stone & Shiffman, 1994), enables researchers in this area to gather intensive 
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longitudinal data (ILD) and to examine more detailed features of intraindividual variation 

over time. For statistical analysis, multilevel models (MLMs) are useful and widely used 

tools for analysis of traditional longitudinal data and ILD in particular (Schwartz & 

Stone, 2007; Walls & Schafer, 2006). Due to its high intensity of assessments within 

individuals, however, ILD often has different characteristics or requires different 

assumptions from traditional longitudinal data (e.g., heterogeneity of error structure) and 

applications of traditional MLMs used in longitudinal data with a few measurement 

occasions to ILD may produce inaccurate statistical inferences. Additionally, when 

heterogeneity of intraindividual processes other than the effects of a covariate on the 

mean function are of interest (e.g., autocorrelation, variability, or instability), traditionally 

used MLMs as often implemented do not regularly examine the interindividual 

heterogeneity in those intraindividual variation patterns and such models must be 

extended or modified to accommodate ILD studies. In the present thesis, issues in the 

analysis of intensive longitudinal data and problems of current use of MLMs for the 

analysis of ILD are discussed and investigated. In addition, new developments in MLMs 

to model heterogeneous residual process are suggested and evaluated. A brief 

introduction of general characteristics of longitudinal data introduces readers to central 

conceptual issues in ILD analysis. 

 

Cattell’s Data Box and the Analysis of Longitudinal Data 

 

Design and analysis of a scientific research require consideration of the structure 

of probable patterns of relation among phenomena of interest, which in turn calls for 
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understanding the structure of the data under consideration. Cattell (1946, 1988) provided 

one such framework for the organization and analysis of multivariate data in 

psychological research (applicable to other fields of science as well). In its original form, 

Cattell (1946) proposed the Covariation Chart (or the data box) with three coordinates 

(for persons, for tests, and for occasions), but later (Cattell, 1988) modified the original 

data box to consist of four dimensions: dimensions for organisms, states, 

stimuli/situations, and responses. The person dimension of the original box corresponds 

to the organism dimension, the occasion corresponds to the state (and situation in part), 

and the test dimension is split into two dimensions, stimulus/situation and response.  

This approach differentiates external or situational conditions from responses and 

states (or time). Clearly, more than four dimensions can be conceived and empirically 

studied (e.g., addition of an “observer” dimension or separation of focal stimuli from 

background situation). In its final form, Cattell (1988) proposed a ten dimensional Basic 

Data Relation Matrix (BDRM) which is, he thought, sufficient for defining a behavioral 

event. The first five dimensions are person, stimulus, background, response, and 

observer. Cattell classified these five dimensions as time invariant proto-types, such as 

trait. The other five dimensions are time varying variants or states corresponding to the 

first five dimensions, i.e., state of the person, variant of the stimulus, phase of the 

background situation, style of the response, and condition of the observer. 

Although Cattell’s ten dimensional BDRM is useful as a comprehensive 

description and conceptual framework for possible data relationships, it is, as he noted, 

neither feasible nor necessary to obtain data or test hypotheses across all ten dimensions 

in a given study. First, not all dimensions are of interest. In such cases, in any given 
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study, some of the ten dimensions are measured (and analyzed) but others are not and, as 

such, these missing dimensions serve to highlight limitations to the generality of study 

conclusions (Cattell, 1988, pp. 95-100). Measured dimensions are assumed to be 

controlled for or fixed at a point on the unmeasured dimensions, or allowed to vary across 

all the points (or grids) on the unmeasured dimensions (i.e., marginalized or integrated 

out across the unmeasured dimensions in mathematical term). For example, if we relate 

scores of a set of individuals over a set of stimuli without temporal information, it may be 

assumed that each score is made on one occasion or averaged out across occasions. 

Moreover, some of the dimensions can be described in terms of other dimensions. For 

instance, different observers can be thought of as a situational factor. As a result, a four 

dimensional data box with person, state/time, response, and stimulus/situation can be 

considered a successful reduction of the ten dimensions in that the four dimensions form 

a core relational structure of the phenomena of interest. Accordingly, Ozer (1986) argued 

for the four dimensions (persons, situations, responses, and time) as a simplification of 

Cattell’s ten dimensional BDRM. Analytically, responses are variables of interest, 

persons are the units of analysis, stimuli/situations are covariates, and times are occasions 

of observations within units (Biesanz, West, & Kwok, 2003). Figure 1.1 illustrates a four 

dimensional data box with two situations, three responses, four persons, and four time 

points. 

The degree of dimensionality and presence of (or variation in) each dimension in 

the data box determines the range of possible relational patterns to be investigated as well 

as the nature of appropriate statistical models. The response dimension implies 

multivariate observations and is required when we are interested in a profile or  
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Figure 1.1. An illustration of a four dimensional data box with two situations (S), three 
response measures (R), four persons (P), and four time points (T). 

 

multivariate characteristics of variables. Variation in the person dimension allows an 

investigation of (between) individual differences. With multiple assessments across time 

dimension, within individual change can be described and inferred. Variation in 

situations or stimuli is required to investigate the effect of covariate(s) on a response or 

responses. Researchers may combine two or more dimensions, resulting in a data matrix 

or a (hyper-) data box, to examine more complicated relational patterns.  

In terms of statistical models, linear models (e.g., regression or ANOVA), for 

example, are often used for the analyses of data matrix with the person and the situation 

dimensions while time series models (e.g., ARIMA model or spectral analysis) are 

appropriate to investigate the time dimension with or without other dimensions. Data 

matrix with the response dimension and the person dimension is typically analyzed by 

multivariate statistical models (e.g., factor analysis or structural equation models). If 

three or four dimensions are involved in a study, MLMs (e.g., linear mixed model or 

multilevel structural equation models) are useful tools for the analysis of the data box. 

In general, psychological research is designed to investigate systematic 

differences in response across individuals (e.g., group difference or individual difference) 
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or changes of a response(s) within individuals (e.g., intervention effect or growth 

trajectory). These two different components of variability have been termed 

interindividual variation (IEV) and intraindividual variation (IAV), respectively 

(Molenaar, 2004; Molenaar, Huizenga, & Nesselroade, 2003). Traditional psychological 

studies have examined either IEV or IAV separately, due to the characteristics of data 

available for a particular study (i.e., lack of one or more of dimensions in the data box) 

and the limitations in the application of statistical models intended for IEV to modeling 

IAV, or vice versa. Interindividual variation is typically analyzed using linear models 

(e.g., regression, ANOVA, or structural equation models) that usually assume 

independence of observations among individuals while intraindividual variation is 

commonly analyzed using time-series regression models that allow serial correlations of 

observations within individuals. However, application of longitudinal studies (e.g., EMA 

study) and appropriate statistical models (e.g., MLMs) enables researchers to investigate 

both IEV and IAV simultaneously using one statistical model. 

Quantitatively, longitudinal studies are those which, in the data box, assess at 

least the time and person dimensions and often include the situation dimension due to 

interest in the effect of a covariate(s). Further, if the response dimension is added, the 

result is a multivariate longitudinal study. In longitudinal studies, many useful research 

questions can be posed concerning relational patterns among (and within) the dimensions. 

For example, questions concerning intraindividual variation (across the time dimension) 

of a response and interindividual differences (across the person dimension) in such 

intraindividual variation may be of interest: We may be interested in how a response 

changes across time for individuals in different groups (growth model), or how time 
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varying covariates are differentially related to change in mean response over time across 

individuals (multilevel regression model). 

 

Intensive Longitudinal Data and Heterogeneous Covariance Structure 

 

The questions described concern the effect of covariates as well as heterogeneity 

of their effects across individuals and are appropriately analyzed by multilevel models or 

latent variable models in which heterogeneous effects across individuals are treated as 

random effects or latent variables. In traditional longitudinal analysis using MLMs, 

inference concerning the effect of the covariate (for both fixed and random) is made 

under the assumption that the (within-individual) residual distribution is identical across 

individuals (nested within or controlled for other covariates), i.e., the residual covariance 

structure (variance and/or autocovariance components) is assumed to be homogeneous 

across individuals. 

This assumption is made not because researchers believe within-individual 

covariance structure to actually be homogenous in nature, but rather because individual-

specific parameters of the covariance are, if present, nuisance parameters (i.e., not the 

parameters of interest). Alternatively, it is often not efficient to estimate individual-level 

covariance parameters when only a small number of observations are present for each 

individual. In intensive longitudinal studies where many repeated assessments are 

available for each individual, however, the heterogeneous within-individual covariance 

structure may be both estimable and of theoretical interest as well. When this 

characteristic of ILD is ignored, it may cause bias in statistical inference on the 
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parameters of interest (i.e., the effect of covariates) under MLM’s as traditionally 

specified for longitudinal data and therefore modification which adjust for the biasing 

effects of such processes are necessary. 

It is well-known that autocorrelation in residuals adversely affects the efficiency 

of the OLS estimation for covariates effects in the context of regression on a single time-

series (Cochrane & Orcutt, 1949; Watson, 1955). It is also known that misspecified 

covariance structure in MLMs produce inaccurate statistical inference in both fixed 

effects and variance components (Ferron, Dailey, & Yi, 2002; Jacqmin-Gadda, Sibillot, 

Proust, Molina, & Thiébaut, 2007; Kwok, West, & Green, 2007; Lange & Laird, 1989). 

However, little is known about how violation of the homogeneity assumption of within-

individual covariance structure affects statistical inference on parameters in multilevel 

models for intensive longitudinal data (or even, for that matter, for longitudinal data in 

general). Heterogeneity of within-individual variance and autocorrelations may need to 

be taken into account in order to estimate the parameters of interest more efficiently. We 

may consider a model that allows heterogeneity of individual-level covariance structure 

or a new model that corrects for the adverse effects of heterogeneous autocorrelation.  

 

Modeling Heterogeneous Variances in ILD 

 

Individual differences in variance and/or serial correlation are of substantive 

interest in their own right in some ILD studies. Affective variability (as evidenced by 

within-individual variance) and instability (as a function of the variance and the 

autocorrelation), for example, are defining characteristics of psychological disorders such 
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as Borderline Personality Disorder and the individual difference or heterogeneity of those 

parameters can be investigated using EMA study (Cowdry, Gardner, O’Leary, Leibenluft, 

& Rubinow, 1991; Ebner-Priemer et al., 2007; Stein, 1996; Trull et al., 2008; Woyshville, 

Lackamp, Eisengart, & Gilliland, 1999). 

At least two sources are responsible for heterogeneity of variance across 

individuals: Difference in within-individual variance may be caused by (1) difference in 

the effect of a time varying covariate on a response (i.e., random effect) and (2) 

difference in individual level characteristics (e.g., individual differences in impulsivity 

that cause different variability in mood fluctuations). Of these two sources of 

heterogeneity of variance, (1) can be modeled in a MLM by adding individual-level 

random effects, as a part of modeling mean responses, while (2) requires modeling 

variance as a function of predictors, i.e., variance function models. Variance function 

models are rather unfamiliar and strange models to many researchers in psychology. 

Although the history of variance function modeling is rather long, a recent development 

by Hedeker, Mermelstein, and Demirtas (2008) enables researchers to model random 

variance. In this model, variance of a response, not the response itself, is modeled in 

multilevel equations and random mean responses are also modeled as well. Simultaneous 

estimation of mean function and variance function increases flexibility of the model 

while the increased complexity may cause difficulties in numerical optimization of the 

model.  

Alternatively, a two-step approach can be applied to modeling variance function. 

After fitting a multilevel model with specified factors to data, residuals from the model 

can be estimated. Given that the mean of squared residuals is approximately the variance, 
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we may fit a new multilevel model on the squared residuals obtained and take their mean 

as an estimate of variance. The regression on squared residuals as a variance function 

modeling has been suggested by many researchers (Goldfeld & Quandt, 1972; Hildreth & 

Houck, 1968; Jobson & Fuller, 1980). Originally, this approach was suggested for 

modeling within-individual variance as a function of within-individual covariate (i.e., 

modeling heterogeneous variance across observations within individuals). Nevertheless, 

there is no barrier to applying the regression-on-squared-residual approach to multilevel 

models as well, especially if the goal is to identify the effect of individual-level 

covariates on intraindividual variances. Because the two-step approach estimates the 

mean function and the variance function separately, the complexity of the model is 

reduced and we may less suffer from problems in optimization. 

 

Summary of Introduction and Topics of Following Chapters 

  

Intensive longitudinal study is an emerging area of psychological research. Due to 

recent developments in data collection, statistical modeling, and computing technology, it 

is now possible to collect intensive longitudinal data and conduct a proper analysis on 

ILD. Multilevel models provide a great deal of flexibility in modeling such complex data 

and are considered as the prevailing approach to ILD by many researchers (Schafer, 

2006; Schwartz & Stone 2007; Walls, Höppner, & Goodwin, 2007). However, some 

properties of statistical models typically used in ILD analysis are not fully investigated 

yet. Moreover, new developments and deliberate applications in statistical modeling are 

needed to examine interesting research questions unique to ILD analysis. 
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Heterogeneous variance and autocorrelation across individuals are likely to exist 

in most of ILD and may raise serious problems in parameter estimation and interpretation 

of the mean function. In chapter 2, a brief introduction to multilevel models will be 

provided as a basis of the current issues. In addition, the issues in modeling residual 

covariance structure in MLMs will also be discussed. In chapter 3, a multilevel modeling 

approach that transforms an autocorrelated error structure to an independent structure will 

be introduced. The transformation is designed to provide a legitimate application of 

MLM to a serially, and differently, correlated intensive longitudinal data. Using a 

simulation study, the suggested procedure will be compared with other commonly used 

MLM approaches that misspecify covariance structure. 

In many applications of ILD, heterogeneous variance and autoregressive 

processes are of significant interest in itself. Chapter 4 will review different approaches 

that model heterogeneous variance available in current MLM approaches and introduce a 

two step MLM approach to model heterogeneous variance. A simulation study is 

conducted to verify the validity of the procedure. 
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2. Multilevel Models for Longitudinal Data and Modeling Error Covariance 

Structure 

 

Multilevel models, also known as random effects models (Laird & Ware, 1982), 

general linear mixed models (Goldstein, 1986), mixed effects models (Pinheiro & Bates, 

2000), random coefficient models (Longford, 1993), or hierarchical linear models 

(Raudenbush & Bryk, 2002), are linear models to analyze data with a multilevel or 

hierarchical structure where units of analysis are nested within higher level(s), such as 

students in classes, classes in schools, and so on. Although their use generally applicable 

to any type of hierarchical or multileveled data, they are widely used for longitudinal data 

analysis as originated in Laird and Ware (1982). In this chapter, multilevel models for the 

analysis of longitudinal data are introduced as a basis of following chapters. In addition, 

issues in modeling covariance structure are also discussed, in the context of 

autocorrelation, misspecification, and heterogeneity. 

 

Multilevel Models for Longitudinal Data 

 

In longitudinal design, observations can be thought of as, for example, 

representations of two level data structure where repeated observations (level-1) are 

nested within individuals (level-2). Suppose there are ni repeated observations of a 

variable yti for individual i, where t = 1, 2, …, ni and i = 1, 2, …, N, with J-1 time varying 

(within-individual) covariate zjti. A linear regression model for yti is  
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have linear regression models with K-1 time invariant (between-individual) covariate wki 
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In (2.1), β0i is the level-1 intercept and βji is the regression coefficient of the jth 

variable zjti within individual i, respectively, and eti is the residual for occasion t within 

individual i. Equations in (2.2) are the level-2 equations where γj0 is the individual level 

intercept, γjk is the regression coefficient of the kth level-2 variable wki, and uji is the 

residual for individual i for βji, for j = 0, 1, 2, …, J-1, respectively. By substituting (2.2) 

into (2.1), the level-1 and level-2 equations can be combined into a single equation form 

as,    
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where w0i = z0ti = 1. 

 In matrix terms, (2.1), (2.2), and (2.3) are expressed as 

 ,i i i iy = Z β + e  (2.4) 

 i i iβ = W γ + u  (2.5) 
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 ,i i i i i iy = Z W γ + Z u + e  (2.6) 

respectively, where 
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, J ′⊗i iW = I w , ′iw = (1, w1i, …, w(K-1)i), 

and ′γ = (γ00, …, γ0(K-1), γ10, …, γ1(K-1), …, γ(J-1)0, …, γ(J-1)(K-1)), ′u = (u0i, u1i, …, u(j-1)i), and 

⊗  denotes the Kronecker product. Equation (2.6) can also be written as 

 ,i i i i iy = X γ + Z u + e  (2.7) 

where Xi = ZiWi, and is called multilevel models or linear mixed models.  

Unlike general linear models (e.g., linear regression or ANOVA), MLMs have 

two error terms: ui and ei. These two types of error terms are assumed normally 

distributed with E
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.′i i i i iV = Z G Z + R 1 In practice, Gi and Ri are assumed homogeneous across all level-2 

individuals (i.e., G1 = G2 = … = GI and R1 = R2 = … = RI) in most of applications. 

For the entire observations , , , ,′ ′ ′ ′1 2 Iy = (y y y )K  the MLM is written as 
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1 Alternatively, yi can also be expressed to have a normal distribution as yi ~ N(Xiγ + Ziui, Ri). 
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E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

u 0
e 0

 and Var
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

u G 0
e 0 R

, where G and R are the block diagonal matrices of 

Gi and Ri, resulting in a multivariate normal distribution of y, y ~ N(Xγ, V), where 

′V = ZGZ + R is the block diagonal matrices of Vi. 

Given normality assumptions of u and e, maximum likelihood (ML) or restricted 

maximum likelihood (REML) estimators of G and R can be obtained by maximizing the 

corresponding log-likelihood functions as follows: 

 11 1( , ) log log(2 )
2 2 2ML

Tl π−′= − − −G R V r V r  (2.9) 

 

1

1

1 1( , ) log log
2 2
1 log(2 ),
2 2

REMLl

T P π

−

−

′= − −

−′− −

G R V X V X

r V r
 (2.10) 

where 1 1− −′ ′r = y - X(X V X)X V y , T =
1

N

i
i

n
=
∑ is the total number of observations, and  P = 

JK is the rank of X. 

Estimates of γ and u can be obtained by solving following mixed model equations 

(Henderson, 1984; Rao, 2003): 

 
1 1 1

1 1 1 1

ˆ
ˆ

− − −

− − − −

⎡ ′ ′ ⎤ ⎡ ′ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥′ ′ ′⎣ ⎦⎣ ⎦ ⎣ ⎦

γX R X X R Z X R y
uZ R X Z R Z + G Z R y

 (2.11) 

which is also written as 

 
1 1 1

1

ˆ ( )
ˆˆ ( )

− − −

−

′ ′

′

γ = X V X X V y
u = GZ V y - Xγ

. (2.12) 

If G and R are known, γ̂  is the best linear unbiased estimator (BLUE) of γ and û is 

the best linear unbiased predictor (BLUP) of u, in that γ̂  and û  have the minimum 

variances among all possible linear unbiased estimators of γ and linear unbiased 
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predictors of u, respectively. If G and R are unknown and should be estimated from data 

through ML or REML estimation by maximizing (2.9) or (2.10), for example, the 

empirical BLUE (EBLUE) of γ and the empirical BLUP (EBLUP) of u can be obtained 

by replacing G and R with their corresponding ML or REML estimates Ĝ  and R̂  in 

(2.11) or (2.12). The covariance matrix of the EBULE of γ and the EBLUP of u is given 

by 

 
11 1

1 1 1

ˆ ˆ
ˆ ,

ˆˆ ˆ

−
− −

− − −

⎡ ⎤′ ′
= ⎢ ⎥

′ ′⎢ ⎥⎣ ⎦

X R X X R Z
C

Z R X Z R Z + G
 (2.13) 

which is the approximation of the true covariance matrix of γ̂  and û : 

 
11 1

1 1 1
.

−− −

− − −

⎡ ′ ′ ⎤
= ⎢ ⎥′ ′⎣ ⎦

X R X X R ZC
Z R X Z R Z + G

 (2.14) 

 

Autocorrelation, Misspecification, and Heterogeneity in Covariance Structure of MLMs 

 

Common use of MLMs for longitudinal data, including linear growth models 

where the intercept and the linear slope (and/or higher order of polynomials) over time 

are estimated, assumes an unstructured Gi matrix, that allows to estimate variance and 

covariance for all random effects (e.g.,
2
0

2
0 1 1

u

u u u

σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

iG ), and an independent and 

identical Ri matrix (ID: Ri = 2
eσ I). However, it is likely that residuals of an MLM for 

repeated observations have serial correlations across time (over and beyond the fixed and 

random effects in the model). If this is the case, independence assumption in Ri is not 

appropriate and a suitable covariance structure that models autocorrelations between 
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consecutive residuals should be specified in Ri. If observations are measured at equally 

spaced time, a covariance matrix generated by a first order autoregressive (AR(1)) 

process can be used to model such a structure. The AR(1) covariance structure with four 

occasions, for example, is modeled as  

 

2 3

2
2

2

3 2

1
1

,
1

1

ρ ρ ρ
ρ ρ ρ

σ
ρ ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

iR  (2.15) 

where ρ is the first order autoregressive parameter (or autocorrelation between 

observations measured at time t and t+1). Another covariance structure modeling 

autocorrelations is a covariance matrix that generated by a first order autoregressive and 

moving average (ARMA(1,1)) process (see chapter 3 for more details about AR and 

ARMA process). The ARMA(1,1) covariance structure with four occasions, for example, 

is modeled as 

 

2

2

2

1
1

.
1

1

γ γρ γρ
γ γ γρ

σ
γρ γ γ
γρ γρ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

iR  (2.16) 

Because V is determined by two covariance matrices G and R as well as a design 

matrix of random effect Z, misspecification of R may affect the estimation of G, or vice 

versa, and thus, γ and u as well. The effect of misspecification of R or G on the 

estimations of γ (and G) has been studied by several researchers, in the context of linear 

growth models (Ferron et al., 2002; Jacqmin-Gadda et al., 2007; Kwok et al., 2007; 

Lange & Laird, 1989). A study by Lange and Laird (1989) has shown that 

misspecification of G in a linear growth model, where the mean intercept and the linear 
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slope are estimated (i.e., [ ]00 10,γ γ ′=γ ), affects estimation of the standard error of the 

estimated means of the intercept and the slope. Specifically, they found that if the 

intercept is in fact random (i.e., Gi = 2
0uσ ) but misspecified as fixed (i.e., Gi = 0), the 

standard error of the estimated mean intercept is always underestimated and that of the 

slope estimate is always overestimated. Moreover, if the true model has both random 

intercepts and random slopes (i.e.,
2
0

2
1

0
0
u

u

σ
σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

iG ) but is misspecified as a model only 

with a random intercept (i.e., Gi = 2
0uσ ), the standard error of the slope estimate is always 

underestimated while that of the intercept estimate is not biased (Lange & Laird, 1989). 

Other researchers have been more interested in the effect of misspecification of R 

on the estimation of γ and G. Ferron et al. (2002) found that misspecification of AR(1) 

residual covariance structure as ID structure in linear growth models results in 

overestimation of both 2
0uσ  and 2

1uσ  in G when ρ = .3 or .6, although bias in estimation of 

2
1uσ  is much smaller than that of 2

0uσ . They also found 95% confidence intervals for the 

slope did not cover the true value when the number of individuals is small (N = 30 in the 

study). Following the previous findings, Kwok et al. (2007) investigated the effect of 

misspecification in Ri for various covariance structures, such as ID, AR(1), ARMA(1,1), 

and TOEP(2) (second banded Toeplitz or first order moving average) structure, and 

found that underspecification (i.e., misspecification of a covariance structure as a nested 

structure with smaller number of parameters, such as AR(1) as ID, ARMA(1,1) as AR(1) 

or ID) produced minor overestimation of the standard errors of estimation for the 

intercept and the slope as well as noticeable overestimation of variance estimates in G. 
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Jacqmin-Gadda et al. (2007) showed that the estimation of γ under the normal ID 

assumption of Ri is robust to heteroscedastic residuals (unless the residual variance is a 

function of individual level covariates) and non-normal residuals. When residuals are 

serially correlated, however, estimation of γ was biased: The coverage rates of 95% 

confidence intervals for intercept, slope, individual level covariate, and the interaction of 

the last two were significantly smaller than the nominal value of .95. 

In summary, previous research has argued that, for linear growth models, 

misspecification of G matrix produces biased standard errors of the estimated mean 

intercept and the linear slope. In addition, a falsely assumed ID structure of Ri causes 

overestimation of variance components in G, especially for the variance of random 

intercept, and inflated standard errors of γ for certain conditions, when there are positive 

serial correlations of residuals in the true model. Note that all the results mentioned were 

obtained from linear growth models for traditional longitudinal data where the number of 

observations for each individual is small to moderate (3 to 12). In such models, time 

varying covariates are time itself in a polynomial form and the research questions of 

interest focused on individual differences in a systematic increase or decrease of a 

variable over time. In intensive longitudinal studies, however, of interest are often the 

fixed and the random regression effect of time varying covariates other than polynomial 

linear change.  

All the models investigated in the literature above assumed homogeneous Gi and 

Ri across individuals, except for the heteroscedastic conditions in the study by Jacqmin-

Gadda et al. (2007). Because Gi models between-individual variations, the assumption of 

homogeneous Gi across individuals looks appropriate in most situations. The 
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homogenous Ri, however, is assumed not because it is strongly believed that residual 

covariance (i.e., variance and autocorrelations) is same for all individuals. Instead, it is 

assumed mainly because accurate estimation of individual covariance structure is not 

plausible with a small to moderate number of observations within individuals and 

heterogeneity of the covariance structure is not the major interest in traditional 

longitudinal studies. In addition, it is thought that, if not severe, violation of the 

homogenous variance assumption does not produce significant bias in estimation of 

regression parameters as seen in Jacqmin-Gadda et al. (2007). For these reasons, most 

applications of MLMs in longitudinal study assume homogenous Ri in practice. In case 

of intensive longitudinal studies, however, this common practice is questionable on two 

grounds. First, for such data, it is possible to reliably estimate individual-level covariance 

structure given the massive number of observations within individuals typically in ILD 

and, as a result, heterogeneity of Ri is likely to be found. Second, heterogeneous 

autocovariance functions within individuals, which require a sizable number of 

observations to be estimated, may produce significant bias in estimation of G, γ, and u. 

More importantly, in many intensive longitudinal studies, heterogeneity of variance and 

autocovariance between individuals, is of substantive interest and not merely a nuisance 

factor, making modeling Ri (instead of or in addition to the mean of yi) necessary. 

In the following chapters, multilevel modeling of intensive longitudinal data in 

the presence of heterogeneous variance-covariance is investigated. In Chapter 3, the 

effect of misspecification of heterogeneous covariance structure on the estimation of 

mean function parameters is investigated along with an introduction and evaluation of a 

correction procedure for heterogeneous autocorrelation to perform a valid estimation of 
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MLMs. Chapter 4 introduces two newly developed MLMs to model heterogeneous 

random variance across individuals and will evaluate their performances as estimators as 

well through a simulation study. 
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3. Misspecification and correction of heterogeneous covariance structure in 

Multilevel Models for ILD 

 

As seen in the previous chapter, in the analysis of longitudinal data, especially of 

ILD, presence of autocorrelation between successive observations at the individual level 

is a major concern and needs to be taken into account in the statistical model of interest. 

However, current use of MLMs for analysis of longitudinal data, including ILD, almost 

always assumes homogenous residual covariance structure. Violation of homogenous 

covariance structure may result in bias in estimation of parameters of interest. Given the 

bias, one possible approach when observations for each individual are collected 

intensively across time, is to relax the homogeneity assumption in the model and estimate 

Ri separately for each i. For studies examining several individuals, however, this 

relaxation produces too many estimated parameters. For example, if there are 50 

individuals in the data and we assume heterogeneous AR(1) structure across individuals, 

this approach estimates 100 parameters in the covariance structure R. Because these 

parameters are simultaneously estimated, the large number of parameters may cause 

optimization problems such as failure to convergence, convergence to local optima, 

and/or convergence to improper solutions. Moreover, this approach is usually only 

available in most of statistical programs for a restricted number of simple autocovariance 

models (e.g., AR(1) or ARMA(1,1)). 

Alternatively, a transformation method for regression with autocorrelated error 

can be applied to the analysis of ILD in this context. In this chapter, a transformation 

method to model ILD with heterogeneous covariance structure is introduced and its 
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performance is evaluated by a simulation study. In addition, the effects of 

misspecification of heterogeneous Ri as ID structure or homogenous AR(1) structure are 

also investigated. Although ILD consist of a set of time series within multilevel structure 

(i.e., each time series are nested within individuals), the problem of autocorrelation exists 

at the first level of time series. As such, we consider a mathematical description of 

autocorrelation in time series and the transformation method in a single time series first. 

 

Regression with Autocorrelated Errors in a Single Time Series 

 

For single time series data, the effect of autocorrelated errors on estimation of 

regression parameters is well known and estimation of regressions when residuals are 

autocorrelated has long been of interest to statisticians (Chipman, 1979; Cochrane & 

Orcutt, 1949; Harvey 1981; Koreisha & Fang, 2001; Maeshiro, 1980; Park & Mitchell, 

1980; Watson, 1955). Although traditional OLS estimation for linear regression model 

assumes independence of observations, time series data usually violate this assumption. 

Consider a regression model 

 ,= +y Xβ e  (3.1) 

where y = (y1, y2, …, yt, …, yn )′ , X is a n × q design matrix (of input variables), β = (β0, 

β1, …, βq-1 )′  is a q × 1 regression parameter vector, and e = (e1, e2, …, et, …, en )′  is a n × 

1 random residual vector with an n × n covariance matrix 2 .e eσ=Σ V  If et is independent 

and has constant variance across t, i.e., 2
eσ=Σ I  or Ve = I, where I is an n × n identity 

matrix, we can apply ordinary least squares (OLS) to estimate β such that 

 ˆ ( ) ,−′ ′= 1β X X X y  (3.2) 
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and its covariance matrix is 2 ( )eσ
−′ 1X X , where the square root of each diagonal element is 

the standard error of estimation for the corresponding parameter in β. The OLS estimator 

β̂  in this case is known as an unbiased and efficient estimator, or the best linear unbiased 

estimator (BLUE), in the sense that it has the smallest variance among all possible linear 

unbiased estimators. 

If et is serially correlated, i.e., 2 ,eσ≠Σ I  however, (3.2) is no longer efficient. In 

such cases, generalized least squares (GLS) is used to estimate β such that 

 ( ) .− − −′ ′= 1 1 1β X Σ X XΣ y%  (3.3) 

Alternatively, a suitable transformation of y can also be used. In that case, multiplying 

(3.1) by a transformation matrix A, such that 2
wσ′ =AΣA I , gives 

 = + = +Ay AXβ Ae AXβ w  (3.4) 

where w is a white noise vector with covariance matrix 2 .wσ I  (3.4) then can be expressed 

as  

 * * ,= +y X β w  (3.5) 

where *y = Ay and * .X = AX  (3.4) or (3.5) provides a valid OLS estimator of β, 

 ˆ ,w ′ ′ ′ ′ ′ ′-1 -1 -1 -1β = (X A AX) X A Ay = (X Σ X) X Σ y  (3.6) 

because 2
wσ ′-1Σ = A A . The transformation matrix A is obtained as -1A = L , where L 

denotes the Cholesky root of Vw, where 2 1( )w wσ
−=V Σ  (i.e., 2

w wσ=Σ V ), that is w ′V = LL  

with L lower triangular (Note that w e≠V V ). If we know the covariance matrix Σ or V, 

(3.3) and (3.6) can directly be applied and will produce identical estimates of β 
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(i.e., ˆ
w=β β% ). When we don’t know the covariance matrix Σ, the problem is how to 

estimate Σ. 

One possible approach for estimation of Σ (and thus a transformation matrix A) is 

to construct Σ from a known autocorrelation structure. Pioneering work in this approach 

was done by Cochrane and Orcutt (1949) for the simple Markov process. For a Markov 

process, 1 1t t te e wφ −= + , wt ~ N(0, σ2
w) (i.e., the first order autoregressive process), 

autocovariance ( )hγ  is well known to be expressed as 

 
2

2( ) ,
1

h
wh σ ργ
ρ

=
−

 (3.7) 

where 1ρ φ=  is the first order autocorrelation (see Shumway & Stoffer, 2006, pp. 86-87). 

Thus, autocovariance matrix Σ is then 

 

2

1
2

2 2
2

1 2

1
1

,1
1

1

n

n

w n

n n n

ρ ρ ρ
ρ ρ ρ

σ
ρ φ ρ

ρ

ρ ρ ρ

−

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=

− ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ

L

L

L

M M M O M

L

 (3.8) 

and its inverse matrix is 

 

2

2

2

2

1 0 0 0
1 0 0

0 1 0 01 .

0 0 0 1
0 0 0 1

w

ρ
ρ ρ ρ

ρ ρ
σ

ρ ρ
ρ

−⎡ ⎤
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− +

= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

−⎣ ⎦

-1Σ

L

L

L

M M M O M M

L

L

 (3.9) 

Assuming a simple Markov process, the GLS estimator β%  can be obtained by (3.3), 

where Σ-1 is specified as in (3.9). 
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To form a transformation matrix A, the inverse of Cholesky factor of Vw (i.e., the 

transpose of Cholesky factor of w
-1V , where 2

w wσ=
-1 -1V Σ ) then can be obtained from Σ-1, 

given by 

 

21 0 0 0 0
1 0 0 0

0 1 0 0 .

0 0 0 1 0
0 0 0 1

ρ
ρ

ρ

ρ

⎡ ⎤−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

-1L

L

L

L

M M M O M M

L

L

 (3.10) 

Using (3.10), a valid OLS estimator ˆ
wβ  is obtained through (3.6) (Judge, Griffiths, Hill, 

Lütkepohl, & Lee, 1985). Cochrane and Orcutt (1949) did not provide the exact form of 

(3.10) but a similar idea of transformation was offered. The following is the 

generalization of Cochrane and Orcutt’s approach to general ARMA(p,q) process. 

Interested readers may consult chapter 3 and 5 of Shumway and Stoffer (2006) and 

chapter 8 of Judge et al. (1985) for more details. 

There are two well-known processes that produce autocorrelations in a 

(stationary) time series: autoregressive process and moving average process. An 

autoregressive process, by definition, means that the current value of the series, et, can be 

explained as a linear function of a unique component of independent normal process and 

p past values, et-1, et-2, …, et-p. As such, the autoregressive model of order p, or AR(p), 

can be expressed as a regression model: 

 1 1 2 2 ,t t t p t p te e e e wφ φ φ− − −= + + + +K  (3.11) 

where wt is a normal white noise process, i.e., wt ~ N(0, σ2
w).  

Equation (3.11) can be simplified as 
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 ( ) ,t tB e wφ =  (3.12) 

where 2
1 2( ) 1 p

pB B B Bφ φ φ φ= − − − −K  is the autoregressive operator and pB is a 

backshift operator, i.e., p
t t pB e e −= . Although autoregressive model in (3.12) assumes that 

white noise wt is a linear combination of et-i of order p, an alternative model represents the 

observed data et as a linear combination of wt-i of order q, i.e., the moving average model 

of order q or MA(q). The MA(q) model is expressed as 

 1 1 2 2 ,t t t t q t qe w w w wθ θ θ− − −= + + + +K  (3.13) 

and simplified as 

 ( ) ,t te B wθ=  (3.14) 

where the moving average operator 2
1 2( ) 1 q

qB B B Bθ θ θ θ= + + + +K . The two process 

can be combined in one model, denoted by ARMA(p,q) and expressed as 

 1 1 1 1 ,t t p t p t t q t qe e e w w wφ φ θ θ− − − −= + + + + + +K K  (3.15) 

The equation (3.15) is simplified as 

 ( ) ( ) ,t tB e B wφ θ=  (3.16) 

Parameters in equation (3.15) or (3.16) can be identified by maximum likelihood 

or least square estimation. For entire observations, (3.16) is written as in matrix term 

 * * * *φ(B) e = θ(B) w  (3.17) 

where e* = (emax(p,q)+1, …, en-1, en) and w* = (wmax(p,q)+1, …, wn-1, wn), and φ(B)* and θ(B)* 

are submatrices of 
~

*

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

φ(B)φ(B)
φ(B)

 and 
~

*

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

θ(B)θ(B)
θ(B)

, consisting of rows of φ(B) and 

θ(B) lower than max(p,q)th row, respectively, where 
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1

1

1

1

1

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

p p

p

p p

p

φ

φ φ
φ φ

φ φ
φ φ

−

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥= ⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

φ(B)

L L

L L

M M O M M O M M

L L

L L

M M O M M O M M

L L

L L

 (3.18) 

and 

 

1

1

1

1

1

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

q q

q

q q

q

θ

θ θ
θ θ

θ θ
θ θ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

θ(B)

L L

L L

M M O M M O M M

L L

L L

M M O M M O M M

L L

L L

. (3.19) 

Once the estimates ˆ( )Bφ and ˆ( )Bθ  are obtained, we can apply (3.4) with A = 

* *ˆ ˆ
−

⎡ ⎤
⎣ ⎦θ(B) φ(B) , where − denotes a generalized inverse, to get a valid OLS estimator of 

parameter β in (3.4) or, identically a GLS estimator of β in (3.1). Notice that, for AR(1) 

model, the transform matrix L-1 and φ(B)* are identical except that the first row of L-1 is 

excluded in φ(B)*. 

The algorithm described above is a direct generalization of Cochrane and Orcutt’s 

approach. Although the algorithm can be used to model both AR and MA process, AR(p) 

models are widely used in practice. For AR(p) model, the original response values in y 

are transformed as *
1 1 .t t t p t py y y yφ φ− −= + + +K  However, direct application of the 

transformation matrix *φ̂(B) (in case of AR(p) model) excludes first p observations in the 
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estimation, which produces biased estimations, especially in small samples. Use of the 

transformation matrix L-1, such as (3.10), can avoid exclusion of the several initial 

observations. In practice, the transformation is carried out using a Kalman filter (Harvey 

& Phillips, 1979; Jones, 1980), and the lower triangular matrix L-1 is never directly 

computed. For these reasons, the transformation approach is exclusively used to correct 

higher order autoregressive error process, because the GLS approach requires a 

complicated (nonlinear) parameterization of V or V-1. 

 

Correction for Heterogeneous Autocorrelations for ILD 

 

So far the regression-with-autocorrelation problem has been addressed for a single 

time series. In ILD, this problem must be extended to multiple (or multilevel) time series 

and expressed in multilevel models. In the analysis of intensive longitudinal data, the 

concern for the heterogeneous autocorrelation is high. In applications of MLM for ILD, 

uncorrected residual dependency may produce bias in estimation and inference. As 

described above, simultaneous estimation for heterogeneous individual covariance 

structure may not successfully address this problem. Alternatively, we may apply the 

transformation approach used in a single time series to multilevel intensive longitudinal 

data. 

Application of the transformation method to ILD is straightforward. With a 

number of repeated observations for each individual, transformation of each single series 

may correct autocorrelated errors estimated separately by individual. A time series model 

(3.1) for individual i is written as 
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 ,i i i iy = Z β + e  (3.20) 

where Zi is time varying covariates (instead of Xi) as in (2.4). Alternatively, (3.20) can be 

written in a multilevel format as 

 ,i i i i iy = X γ + Z u + e  (3.21) 

where Xi = ZiWi,, Wi is the matrix of individual level covariates, γ is the fixed effect, and 

ui is the random effect, respectively, as specified in (2.5) through (2.7). The random 

effect ui and the residual ei are assumed to be normal distributed with E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

i

i

u 0
e 0

 and 

Var
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

i i

i i

u G 0
e 0 R

. 

If each individual has one’s own (heterogeneous) covariance for ei, (i.e., R1 ≠ R2 ≠ 

… ≠ RI, for i = 1, 2, …, I), the transformed equation for each individual will be given by 

 i i i i i i i i i

i i i i i i

A y = A X γ + A Z u + A e
= A X γ + A Z u + w

, (3.22) 

where random effect ui and residual wi are then normal distributed with E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

i

i

u 0
w 0

 

and 2
i i iw n n

Var
σ ×

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

ii

i

G 0u
0 Iw

. Ai can be obtained by solving (3.12), if AR(p) model is 

assumed, where Ai = *ˆ iφ(B) , or solving (3.16) or (3.17) in more general cases, where Ai = 

* *ˆ ˆ
−

⎡ ⎤
⎣ ⎦i iθ(B) φ(B) . For the entire system, the transformed equation is written as 

 
Ay = AXγ + AZu + Ae

= AXγ + AZu + w
, (3.23) 
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where A is the block diagonal matrix of Ai and X, Z, u are specified as in (2.8). 

Assuming homogeneous variance of the transformed residuals (
1 2

2 2 2
kw w wσ σ σ= = =K ), the 

transformed variables (Ay, AX, and AZ) can be modeled in a multilevel model with the 

ID residual structure. Correction (3.22) or (3.23) is expected to reduce bias, if any, in 

estimation of the parameters when there are heterogeneous autocorrelations in the data in 

use.  

The correction procedure of multilevel models with heterogeneous 

autocorrelations is summarized as 

(1) Fit (3.20) by OLS estimation for each individual. Obtain ˆˆ =i i iZ βy  

(2) Calculate residuals as ˆ ˆi i ie = y - y and investigate autocorrelations for ˆ .ie  

(3) Define order p of AR(p) model for each individual by investigating autocorrelation patterns in 

residuals. 

(4) Apply transformation procedure by solving (3.12) for each individual to correct defined 

autocovariance structures. 

(5) Fit the intended MLM with 2 .wσ=iR I  Obtain estimates for parameters of interest 

 Simply speaking, the above procedure consists of two steps. In the first step, a 

transformation matrix is obtained from a regression-with-autoregressive-error model for 

each individual. In the second step, the intended MLM is applied to the transformed 

variables obtained in the first step. We call this correction method as the two-step 

multilevel model with transformation (TS MLM-T). The TS MLM-T has several 

strengths in correction of autocorrelation in error structure. First, correction is applied for 

each individual, without unrealistic homogeneity assumption in ILD. Second, individual 

specific correction is made avoiding risk in optimization process in MLM with 

heterogeneous covariance where a number of parameters are estimated simultaneously. 
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Third, time intervals between successive observations are not restricted to be equal across 

different individuals, although time intervals within individuals are restricted to be 

similarly spaced as in the ARMA models. Last, and most importantly, the correction is 

applicable even higher order autoregressive error structure and allows different orders of 

autoregressive processes across individuals. 

 

Performance in Estimation of MLMs with Heterogeneous Autoregressive Errors: A 

Simulation Study 

 

As seen above, heterogeneity of residual covariance structure is likely in ILD and 

in many applications, likely affects the estimation of the parameters of interest in MLMs. 

Currently, common practice in using MLMs for such data is to ignore this plausible 

violation of the homogeneity assumption. As such, we focus on the effect of 

misspecification of residual covariance structure R on the estimation of fixed effects and 

variance components of the random effects, in the sense that if MLMs assume 

homogeneous Ri, when it is in fact heterogeneous, it may cause bias in estimation of the 

parameters in MLMs. To this end, a simulation study was conducted where data 

generated from a longitudinal multilevel structure with heterogeneous autoregressive 

error process were analyzed by MLMs with homogeneous assumption. The two most 

commonly used covariance structures for the analysis of longitudinal data (i.e., ID and 

AR(1)) were used to build misspecified models. In addition, the performance of the TS 

MLM-T was evaluated in terms of reduction of bias in estimation. 
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Method  

For simplicity, the following (two-level) linear mixed model was used to generate 

data: 

 00 10 0 1ti ti i ti i tiy x u x u eγ γ= + + + +  (3.24) 

where γ00 is the fixed intercept, γ10 is the fixed effect of a time varying covariate xti, u0i is 

the random effect of intercept, and u1i is the random effect of xti that is generated from a 

normal distribution as xti ~ N(0,1). The parameters γ00 and γ10 were set to 1. The random 

effect u0i and u1i were distributed multivariate normal as 
2

0 0
2

1 0 1 1

0
~ ,

0
i u

i u u u

u
N

u
σ
σ σ

⎛ ⎞⎡ ⎤⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠

, 

where 2
0uσ  = .5, 2

1uσ  = .5, and 0 1u uσ = .15 (i.e., ru0u1 = .3). The errors were generated with 

a first order autoregressive model, eti = ρieti + wti, wti ~ N(0,1).  

The autoregressive parameter ρi was allowed to vary across individuals, generated 

from a uniform distribution as ρi ~ U(ρ - .3, ρ + .3), where ρ = 0, .3, or .6, providing that 

E(ρ) = 0, .3, or .6, respectively. Each data set was completely balanced with L (series 

length, or the number of observations within individuals) = 10, 20, 50, or 100 and N (the 

number of individuals) = 20, 50, or 100. Accordingly, 3 (ρ) × 4 (L) × 3 (N) = 36 

conditions were obtained. In each condition, 500 data sets were simulated, resulting in 

total of 18000 data sets. Each data set was analyzed three times separately by three 

different MLMs: MLM with ID covariance structure (ID), MLM with homogeneous 

AR(1) covariance structure (AR[1]), and the TS MLM-T (TST) introduced above. For the 

transformation procedure in the first step of TS MLM-T, regression with autoregressive 

error models was fitted for each individual and variables were transformed by using the 

AUTOREG procedure in SAS. After transformation, the transformed variables were 
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fitted by a MLM in the second step. All three MLM were properly modeled as in (3.24) 

and fit using the MIXED procedure in SAS with RMLE estimation. 

Bias of parameter estimation was investigated in terms of relative bias for the 

fixed effects γ00 and γ10, and variance components, 2
0uσ , 2

1uσ , and 0 1u uσ . Relative bias was 

calculated as 
1

ˆ1 R
r

rR
θ θ
θ=

−∑ , where θ is the true parameter value, r̂θ  is the corresponding 

sample estimate of rth sample, and R is the number of replications converged in each 

condition. Bias in the estimated standard error was also investigated. Relative bias of 

standard error for the fixed effects was calculated as 
1

ˆ1 R
r

rR
θ θ
θ=

−∑ , where θ is the true 

standard error obtained from (2.14) and r̂θ  is the estimated standard error obtained from 

(2.13) for rth sample. 

No significant bias was expected in the estimates of the fixed effects obtained by 

the two misspecified MLMs (i.e., ID model and AR[1] model) because misspecified error 

covariance structure is unlikely to influence bias in point estimation of the fixed effects. 

Estimates of the variance components of random effects, however, are likely to be biased 

for the two MLMs with misspecified covariance structures, especially for the variance of 

random intercept and with high serial correlations. This bias was expected to be greater 

for the ID model than the AR(1) model because the first is more restricted by the 

independence assumption. In addition, TS MLM-T is expected to reduce bias of estimates 

of the variance components in some conditions, but not in other conditions. Specifically, 

because a successful correction of the TS MLM-T depends on the valid estimation of the 

transformation matrix (i.e., the autoregressive parameters) in the first step, which requires 
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enough number of observations for each individual, a less biased estimation in the second 

step was expected not for the data with a small to moderate number of observations (e.g., 

L = 10 or 20) but for the data with a large number of observations for each individual 

(e.g., L = 50 or 100). Bias in estimation of the standard error of estimation for the fixed 

effects is also more likely in the ID model and the AR(1) model than from the TST 

model, because the estimated standard error is a function of the estimated covariance as 

seen in (2.13). Because the estimation of random effects is also affected by the 

covariance structure in the model, a better performance in the estimation of the random 

effects and the corresponding standard error was expected for the TST model than the 

others models when series length is long enough. 

 

Results2 

Bias in fixed effects. Relative bias (RB) for the fixed effects γ00 and γ10 are 

presented in Table 3.1. Null bias was tested using t-test for each method. There was no 

significant bias in the estimation of the fixed intercept for all the three methods: RB = -

0.00, t(17999) = -0.91, p = .36 for ID; RB = -0.00, t(17999) = -0.80, p = .43 for AR(1); RB = -

0.00, t(17998) = -0.63, p = .53 for TST. To test effects of the sample size (N), series length 

(L), degree of autocorrelation (ρ), and their interactions on relative bias, a 3(N)×4(L)×3(ρ) 

ANOVA was conducted for each method. Across all the methods, no significant effect 

was found except for the interaction effect of sample size by series length: F(6,17964) = 

2.30, p < .05 for ID; F(6,17964) = 2.40, p < .05 for AR(1); F(6,17963) = 2.47, p < .05 for TST. 

However, the effect sizes (η2) of the N × L interaction effect for all the three methods 

                                                 
2 Of the total of 3×18000 analyses, only one analyzed by TS MLM-T on a sample from the condition of  ρ 
= .3, N = 20, L = 10 did not converge. 
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were less than .001. The results for the fixed regression effect were almost identical. All 

the three methods did not show any significant overall bias in the estimation of the fixed 

regression effect: RB = -0.00, t(17999) = -0.62, p = .54 for ID; RB = -0.00, t(17999) = -0.30, p 

= .76 for AR(1); RB = -0.00, t(17998) = -0.38, p = .70 for TST. The ANOVA for the  

 

Table 3.1 
Relative Bias of 00γ̂ and 10γ̂  under Heterogeneous Autocorrelation in Covariance for the 
Three Different MLMs 
 

       ρ = .0         ρ = .3         ρ = .6 
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST

  00γ̂   
10 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 0.00 0.00 0.00
20 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
50 0.00 0.00 0.00 0.01 0.01 0.01 -0.01 -0.01 -0.01

20 

100 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01

50 

100 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.00 0.00 0.00
10 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.01 0.01 0.00 -0.01 -0.01 -0.01

100 

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  10γ̂   
10 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01
20 0.01 0.01 0.01 0.00 0.00 0.00 -0.01 0.00 0.00
50 0.00 0.00 0.00 0.01 0.00 0.01 -0.01 -0.01 -0.01

20 

100 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
20 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 -0.01 -0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 

100 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.00 0.00 0.00
10 0.00 0.00 0.00 0.01 0.01 0.00 -0.01 -0.01 -0.01
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 
Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous 
first order autoregressive error structure; TST: Two-step MLM with transformation. 
ρ = average autocorrelation, N = sample size and L = series length. 
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relative bias also did not present any significant effects except for the N × L interaction 

effect: F(6,17964) = 2.42, p < .05 for ID; F(6,17964) = 2.32, p < .05 for AR(1); F(6,17963) = 2.16, 

p < .05 for TST. The effect sizes (η2) of the N × L interaction effect for the three methods 

did not exceed .001. The result suggests that the estimates of the fixed effects obtained by 

MLMs with homogenous covariance assumption are not biased when the error 

covariance structure is in fact heterogeneous. This is true whether sample size is small or 

large, series length is short or long, and the average error autocorrelation is null or high, 

at least for N = (20,100), L = (10,100), and ρ = (.0,.6). It is also suggested that the 

transformation procedure does not produce biased estimates for the fixed effects in 

MLMs.  

Bias in variance and covariance of random effects. Relative bias for the variance 

of the random intercept ( 2
0uσ ) is presented in Table 3.2. There was a significant bias in 

the estimation of 2
0uσ  for all the three methods: RB = 0.29, t(17999) = 68.68, p < .0001 for 

ID; RB = 0.09, t(17999) = 30.85, p < .0001 for AR(1); RB = 0.16, t(17998) = 47.27, p < 

.0001for TST. ANOVA showed significant effects of series length (F(3,17964) = 1417.01, p 

<.0001, η2 = .10), autocorrelation (F(2,17964) = 7074.03, p < .0001, η2 = .34), and their 

interaction (F(6,17964) = 843.01, p < .0001, η2 = .12) for the ID model. For the AR(1) 

model, significant effects of series length (F(3,17964) = 124.56, p < .0001, η2 = .02), 

autocorrelation (F(2,17964) = 820.45, p < .0001, η2 = .08), their interaction (F(6,17964) = 

86.14, p < .0001, η2 = .03), and the interaction of sample size by series length (F(6,17964) = 

2.87, p < .001, η2 = .00) were found. The TST model showed significant effects of series 

length (F(3,17963) = 1241.06, p < .0001, η2 = .12), autocorrelation (F(2,17963) = 2218.61, p < 

.0001, η2 = .15), and their interaction (F(6,17963) = 625.51, p < .0001, η2 = .13). ANOVA  
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Table 3.2 
Relative Bias of 2

0ˆuσ  under Heterogeneous Autocorrelation in Covariance for the Three 
Different MLMs 
 

      ρ = .0       ρ = .3           ρ = .6 
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST

10 -0.01 -0.01 0.02 0.25 0.04 0.19 1.44 0.40 0.98
20 0.00 0.00 0.00 0.14 0.03 0.05 0.97 0.33 0.45
50 0.01 0.01 0.00 0.06 0.01 0.01 0.48 0.18 0.14

20 

100 0.00 0.00 0.00 0.03 0.00 0.00 0.26 0.10 0.06
10 0.02 0.02 0.06 0.26 0.06 0.20 1.44 0.45 1.03
20 0.02 0.02 0.03 0.11 0.00 0.03 0.95 0.33 0.47
50 0.02 0.02 0.01 0.06 0.02 0.01 0.44 0.15 0.11

 
50 

100 0.00 0.00 0.00 0.01 -0.01 -0.02 0.23 0.08 0.03
10 0.01 0.01 0.06 0.25 0.05 0.19 1.45 0.52 1.05
20 0.00 0.00 0.00 0.13 0.02 0.05 0.93 0.33 0.45
50 -0.01 -0.01 -0.01 0.06 0.02 0.01 0.43 0.14 0.09

100 

100 -0.01 -0.01 -0.01 0.02 0.00 0.00 0.23 0.08 0.03
 
Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous 
first order autoregressive error structure; TST: Two-step MLM with transformation. 
ρ = average autocorrelation, N = sample size and L = series length. 
  

tables of relative bias for 2
0uσ  across the three models are presented in Table 3.3. 

The result showed that the misspecified homogenous covariance models produced biased 

estimates for the variance of random intercept. It also showed that the bias is large when 

autocorrelation is high, series length is short, or both. This bias was higher in the ID 

model than the AR(1) model, F(1,17964) = 28685.8, p < .0001, η2 = .04, analyzed by 

2(method) ×3(N)×4(L)×3(ρ) repeated ANOVA.3 On the other hand, the transformation 

method did not completely eliminate the bias of the estimates of 2
0uσ . Instead, it produced 

larger bias than the AR(1) model when series length is 10 or 20. However, the TST 

model showed smaller bias than the AR(1) model when series length is 50 or 100 (Figure 

3.1). When the two models were compared, there were considerable interaction effects of 

                                                 
3 Because each method was fitted to the same data sets, the method factor should be considered as a within-
subject factor instead of a between-subject factor. 
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method by series length, F(3,17963) = 2132.06, p < .0001, η2 = .02, method by 

autocorrelation, F(2,17963) = 997.02, p < .0001, η2 = .00, and method by series length by 

autocorrelation, F(6,17963) = 896.31, p < .0001, η2 = .01, as well as a main effect of method, 

F(1,17963) = 2413.18, p < .0001, η2 = .01. 

By contrast, no significant bias was found in the estimation of the variance of the 

 
Table 3.3 
Analysis of Variance for Relative Bias of 2

0uσ  by Three Models 
Source df SS MS F η2 

ID 
Sample size (N) 2 0.26 0.13 0.88 0.00
Series length (L) 3 617.88 205.96 1417.01** 0.10
N × L 6 0.55 0.09 0.63 0.00
Autocorrelation (ρ) 2 2056.39 1028.20 7074.03** 0.34
N × ρ 4 0.85 0.21 1.47 0.00
L × ρ 6 735.18 122.53 843.01** 0.12
N × L × ρ 12 0.63 0.05 0.36 0.00
Error 17964 2611.04   
            

AR(1) 
Sample size (N) 2 0.11 0.05 0.37 0.00
Series length (L) 3 54.60 18.20 124.56** 0.02
N × L 6 2.51 0.42 2.87* 0.00
Autocorrelation (ρ) 2 239.78 119.89 820.45** 0.08
N × ρ 4 0.48 0.12 0.83 0.00
L × ρ 6 75.53 12.59 86.14** 0.03
N × L × ρ 12 2.17 0.18 1.24 0.00
Error 17964 2625.06   
      

TST 
Sample size (N) 2 0.05 0.03 0.20 0.00
Series length (L) 3 466.12 155.37 1241.06** 0.12
N × L 6 1.57 0.26 2.09 0.00
Autocorrelation (ρ) 2 555.52 277.76 2218.61** 0.15
N × ρ 4 0.38 0.09 0.75 0.00
L × ρ 6 469.86 78.31 625.51** 0.13
N × L × ρ 12 1.40 0.12 0.93 0.00
Error 17963 2248.884      
 
Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous 
first order autoregressive error structure; TST: Two-step MLM with transformation 
* p < .05, ** p < .0001 
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Figure 3.1. Line plots of relative bias of 2

0ˆuσ  produced by three models across 
autocorrelations and series lengths. The square, triangle, and circle represent a relative 
bias for the ID model, the AR(1) model and the TST model, respectively. 
 

random regression effect and the covariance of the random intercept and the random 

regression effect for the two misspecified models: The ID model did not show any 

significant bias for the variance 2
1uσ , RB = 0.00, t(17999) = 0.86, p = .39, or for the 

covariance 0 1u uσ , RB = 0.00, t(17999) = 1.22, p = .22. The AR(1) model also did not 

produce biased estimates for 2
1uσ , RB = 0.00, t(17999) = 1.37, p = .17, or for 0 1u uσ , RB = 

0.00, t(17999) = 1.10, p = .27 (see Table 3.4). No main effects or interaction effects of N, L, 

and ρ significantly explained the variation of the relative bias of 2
1uσ  and 0 1u uσ  for the 

two models. On the contrary, the TST model produced a significant bias in the estimation 

of 2
1uσ , RB = 0.03, t(17998) = 13.66, p < .0001. There also was a significant effect of series 

length on the relative bias of the estimates, F(3,17963) = 112.88, p < .0001, η2 = .02. The  
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Table 3.4 
Relative Bias of 2

1ˆuσ and 0 1ˆu uσ  under Heterogeneous Autocorrelation in Covariance for 
the Three Different MLMs 
 

     ρ = .0      ρ = .3      ρ = .6 
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST

  
2
1ˆuσ   

10 -0.01 -0.01 0.08 0.01 0.01 0.10 -0.01 0.00 0.07
20 0.00 0.00 0.02 0.02 0.02 0.04 -0.01 0.00 0.01
50 -0.01 -0.01 -0.01 0.00 0.00 0.00 -0.02 -0.02 -0.02

20 

100 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.01 0.01
10 0.02 0.02 0.12 -0.01 -0.01 0.09 0.01 0.01 0.08
20 0.01 0.01 0.03 -0.01 -0.01 0.01 -0.01 -0.01 0.00
50 -0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01

50 

100 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02
10 0.01 0.01 0.10 0.00 0.00 0.09 0.01 0.01 0.08
20 0.00 0.00 0.02 -0.01 -0.01 0.01 0.01 0.01 0.02
50 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

100 

100 0.01 0.01 0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00

  0 1ˆu uσ   

10 -0.02 -0.02 -0.01 0.01 0.01 0.01 0.01 0.01 0.00
20 -0.02 -0.01 -0.01 0.01 0.01 0.01 0.00 -0.01 -0.01
50 0.01 0.01 0.01 -0.01 -0.01 -0.01 0.02 0.02 0.01

20 

100 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02
10 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
20 0.01 0.01 0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 

100 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
20 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 

100 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01
 
Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous 
first order autoregressive error structure; TST: Two-step MLM with transformation. 
ρ = average autocorrelation, N = sample size and L = series length. 
 
 
effect of series length implies that the bias is significant only when the series length is 

short, as seen in Table 3.4. There was no significant bias of the estimates of covariance 

0 1u uσ , RB = 0.00, t(17998) =0.90, p = .37, and no effects of N, L, and ρ for the TST model. 
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Bias in the standard error of estimation for fixed effects. Because of the bias in 

the estimated variance of the random intercept, the standard error of estimation of fixed 

effects was also expected to be biased. Table 3.5 presents relative bias of the estimated 

standard error for 00γ̂ and 10γ̂ . Significant relative bias of the estimated standard error of  

 
Table 3.5 
Relative Bias of the Standard Error of 00γ̂ and 10γ̂  under Heterogeneous Autocorrelation 
in Covariance for the Three Different MLMs 
 

       ρ = .0       ρ = .3     ρ = .6 
N L ID AR(1) TST ID AR(1) TST ID AR(1) TST

  SE( 00γ̂ )  

10 -0.02 -0.02 -0.02 0.00 0.00 0.01 0.11 0.10 0.08
20 -0.02 -0.02 -0.02 0.00 -0.01 0.00 0.10 0.09 0.04
50 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.05 0.05 0.01

20 

100 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.02 0.02 0.00
10 0.00 0.00 0.01 0.01 0.01 0.02 0.13 0.11 0.10
20 0.00 0.00 0.01 -0.01 -0.01 -0.01 0.11 0.10 0.07
50 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.01

50 

100 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.02 0.02 0.00
10 0.00 0.00 0.01 0.01 0.01 0.02 0.13 0.11 0.11
20 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.09 0.06
50 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.05 0.04 0.01

100 

100 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.02 0.02 0.00

  SE( 10γ̂ )  

10 -0.01 -0.01 0.00 0.00 -0.01 0.01 0.03 -0.01 0.01
20 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.02 -0.01 -0.01
50 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 -0.02 -0.02

20 

100 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.01
10 0.01 0.01 0.02 0.01 0.00 0.02 0.05 0.00 0.02
20 0.00 0.00 0.00 0.00 -0.01 0.00 0.03 -0.01 -0.01
50 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.02 0.00 0.00

50 

100 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.01 0.00 0.00
10 0.00 0.00 0.02 0.01 0.00 0.02 0.05 0.00 0.03
20 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

100 

100 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00
 
Note. ID: MLM with homogenous variance assumption; AR(1) MLM with homogeneous 
first order autoregressive error structure; TST: Two-step MLM with transformation; SE: 
standard error. 
ρ = average autocorrelation, N = sample size and L = series length. 
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the fixed intercept ( 00γ̂ ) was found in all the methods: RB = 0.02, t(17999) = 23.31, p < 

.0001 for ID; RB = 0.02, t(17999) = 19.74, p < .0001 for AR(1); RB = 0.01, t(17998) = 13.05, 

< .0001 for TST. For the ID model, there were significant effects of sample size (F(2,17964) 

= 9.31, p < .0001, η2 = .00), series length (F(3,17964) = 97.30, p < .0001, η2 = .01), 

autocorrelation (F(2,17964) = 837.60, p < .0001, η2 = .08), and the interaction of the last two 

(F(6,17964) = 64.87, p < .0001, η2 = .02). For the AR(1) model, significant effects of sample 

size (F(2,17964) = 9.40, p < .0001, η2 = .00), series length (F(3,17964) = 70.65, p < .0001, η2 = 

.01), autocorrelation (F(2,17964) = 655.74, p < .0001, η2 = .07), and the interaction of the 

last two (F(6,17964) = 47.66, p < .0001, η2 = .01) were found. The TST model also showed 

significant effects of sample size (F(2,17963) = 17.01, p < .0001, η2 = .00), series length 

(F(3,17963) = 113.80, p < .0001, η2 = .02), their interaction (F(6,17963) = 2.42, p < .05, η2 = 

.00), autocorrelation (F(2,17963) = 253.12, p < .0001, η2 = .03), and the interaction of series 

length and autocorrelation (F(6,17963) = 50.62, p < .0001, η2 = .02).  

As in the bias of 2
0ˆuσ , there was a significant mean difference between the ID 

model and the AR(1) model (F(1,17964) = 1341.52, p < .0001, η2 = .00) as well as 

significant interaction effects of method by series length (F(3,17964) = 177.30, p < .0001, η2 

= .00), method by autocorrelation (F(2,17964) = 945.17, p < .0001, η2 = .00), and method by 

series length by autocorrelation (F(6,17964) = 111.90, p < .0001, η2 = .00). There also was a 

significant mean difference between the AR(1) model and the TST model (F(1,17963) = 

449.96, p < .0001, η2 = .00) as well as significant interaction effects of method by series 

length (F(3,17963) = 117.61, p < .0001, η2 = .00), method by autocorrelation (F(2,17963) = 

812.47, p < .0001, η2 = .00), and method by series length by autocorrelation (F(6,17964) = 

30.19, p < .0001, η2 = .00). The results support the transformation method is less biased 
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in the estimation of the standard error of 00γ̂ than the misspecified models, especially 

when the average autocorrelation is high and the series length is long (see Figure 3.2). 

The reduced bias achieved by the transformation method is expected to increase the 

accuracy of interval estimation and test of the fixed intercept. 
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Figure 3.2. Line plots of relative bias of the standard error of 00γ̂ and 10γ̂  produced by 
three models across autocorrelations and series lengths. The square, triangle, and circle 
represent a relative bias for the ID model, the AR(1) model and the TST model, 
respectively. 
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On the other hand, a significant bias of the standard error of 10γ̂ was found for the 

misspecified models (RB = 0.01, t(17999) = 7.38, p < .0001 for ID; RB = -0.00, t(17999) = -

5.47, p < .0001 for AR[1]), but not for the TST model (RB = 0.00, t(17999) = 1.32, p = .19). 

ANOVA showed significant effects of sample size (F(2,17964) = 17.39, p < .0001, η2 = .00), 

series length (F(3,17964) = 21.46, p < .0001, η2 = .00), autocorrelation (F(2,17964) = 86.26, p < 

.0001, η2 = .01), and the interaction of the last two (F(6,17964) = 6.25, p < .0001, η2 = .00) 

for the ID model. For the AR(1) model, only the effect of sample size (F(2,17964) = 15.32, p 

< .0001, η2 = .00) was significant. The TST model showed significant effects of sample 

size (F(2,17963) = 14.82, p < .0001, η2 = .00) and series length (F(3,17963) = 45.54, p < .0001, 

η2 = .01). The ID model and the AR(1) model were significantly different in their mean 

(F(2,17964) = 3352.51, p < .0001, η2 = .00) and the effects of series length (F(3,17964) = 

310.82, p < .0001, η2 = .00), autocorrelation (F(2,17964) = 1724.30, p < .0001, η2 = .00), and 

the interaction of the last two (F(6,17964) = 145.66, p < .0001, η2 = .00). The AR(1) model 

and the TST model were significantly different in their mean (F(2,17963) = 1211.69, p < 

.0001, η2 = .00) and the effects of series length (F(3,17963) = 924.47, p < .0001, η2 = .00), 

autocorrelation (F(2,17964) = 15.40, p < .0001, η2 = .00), and the interaction of the last two 

(F(6,17964) = 10.58, p < .0001, η2 = .00). Overall all models are downwardly biased for the 

estimates of the standard error of 10γ̂ . However, overestimation occurred when 

autocorrelation was .3 and series length was short or autocorrelation was .6 for the ID 

model, and when series length was 10 for the TST model. Figure 3.2 (right column) 

presents relative bias in the estimation of the standard error of 10γ̂  for the three models 

across series length and autocorrelation. 
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Conclusions 

 

In general, all three models failed to produce highly biased estimates of the fixed 

intercept and regression effects. This was also true for estimation of the variance of the 

random regression effect. Estimation of the variance of the random intercept, however, 

was severely biased when the average autocorrelation was .3 or .6. The AR(1) model was 

less biased than the ID model in these conditions but the amount of bias was still 

unsatisfactory. The TST model was also biased in the estimation of the variance of the 

random intercept. In fact, the bias of the TST model was higher than AR(1) model when 

the number of observations within individuals was 10 or 20. When the number of 

observation was large (50 or 100), however, the TST model was less biased than the 

AR(1) model. This was expected before analysis of the data. Because the transformation 

procedure, actually an estimation of autoregressive parameters for each individual, 

requires a large number of observations (within individuals), performance of the TS 

MLM-T depends critically on the number of observations. If this is not the case, the first 

step of TS MLM-T may fail to identify a valid transformation matrix, resulting in poor 

estimates in the second step. Once enough number of observations are available and 

analyzed for each individual, however, TS MLM-T produces better estimates than the 

other misspecified models under heterogeneous covariance structure. Bias in the 

estimation of the variance of the random intercept resulted in bias in estimation of the 

standard error of the fixed intercept. As seen in the results, TS MLM-T may reduce this 

bias if a large number of observations for each individual (say 50 or more) are available. 
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4. A Two-Step Multilevel Random Variance Model for Heterogeneous 

Individual Variance 

 

In the previous chapter, we have seen how heterogeneous covariance structure 

may affect estimation and statistical inference in multilevel models which contain effects 

of covariates on a response variable of interest. In such models, the parameters of interest 

are regression coefficients that predict or explain the change of a response. 

Characteristics of error structure (e.g., variance or autocorrelation) are generally not of 

major substantive concern. As such, heterogeneity of error covariance is often ignored, or 

at least modeled to enhance the estimation of parameters for the mean function of a 

response, as done by TS MLM-T (introduced in the previous chapter). In some studies 

with intensive longitudinal data, however, heterogeneity of residual variance (as an index 

of variability) or autocorrelation (as an index of temporal dependency) across individuals 

is of interest in its own right and individual level factors (e.g., group membership or 

impulsivity level) that explain the heterogeneity of variance and autocorrelation (e.g., 

fluctuations of negative mood state or alcohol use) are also of interest. In this chapter, 

modeling heterogeneous variance in the context of variance function model is discussed. 

A new model, suggested by Hedeker et al. (2008), that allows random variation of the 

variance across individuals is now introduced. In addition, an alternative multilevel 

model for modeling variance function and random variance is proposed and evaluated by 

comparison with the model suggested by Hedeker et al. in a simulation study. 

 

Variance Function Models and the Mixed-Effect Location Scale Model 
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Modeling variance as a function of within-individual or between-individual 

covariates has been suggested by many researchers (Goldstein, 1995; Hedeker et al., 

2008; Hedeker & Mermelstein, 2007; Pinheiro & Bates, 2000; Raudenbush & Bryk, 

1987; Raudenbush & Bryk, 2002). A basic form of variance function is suggested in the 

context of the single level linear regression model (Carroll & Ruppert, 1988; Davidian & 

Giltinan, 1995; Harvey, 1976). Suppose there is a response variable yt whose expected 

value is a function of a vector of covariates xt and its corresponding parameter β. A 

general specification for variance function g of yt is 

 2 2( ) ( , , )t tVar y gσ μ= tv θ , (4.1) 

where μt = E(yt) = f(xt, β), vt is a vector of covariates predicting the variance of yt, and θ 

is a parameter vector relating μt and vt to the variance of yt. Initially, the variance 

functions were suggested to relate mean and variance for heteroscedastic regression 

models. Examples of variance function g in this context include the power-of-the-mean 

model 

 ( , )t tg θμ μ=θ , (4.2) 

the exponential model 

 ( , ) exp( )t tg μ μθ=θ , (4.3) 

and a two-component model 

 222
1( , )t tg θμ θ μ= +θ . (4.4) 

Notice that if θ = 1 in (4.2), σ2 is the coefficient of variation. Variance of yt is sometimes 

thought to depend on a covariate. In this case, an exponential model can be used as 

 ( , ) exp( )tg vθ=tv θ . (4.5) 
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This single level variance function has been extended to the linear mixed models 

or the MLMs by several researchers (Davidian & Giltinan, 1995; Goldstein, 1995; 

Hedeker & Mermelstein, 2007; Pinheiro & Bates, 2000; Raudenbush & Bryk, 2002). 

Assume a two level regression model (2.3) for a variable yti, rewritten as 

 ( , , , ) ,ti tiy f e= +ti i iz w γ u  (4.6) 

where zti is a vector of within-individual covariates at time t for individual i, wi is a 

vector of between individual covariates for i, γ is a vector of fixed effects and ui is a 

vector of random effects for i. The variance function g of this model is expressed as 

 2 2( ) ( , , )ti tiVar y gσ μ= tiv θ  (4.7) 

where μti = E(yti) = f(zti, wi, γ, ui), vti is a vector of within- and/or between-individual 

covariates predicting the variance of yti, and θ is a parameter vector relating μti and vti to 

the variance of yti. vti may or may not include zti and wi. As in the single level case, 

variance function g may have the form of either the power-of-the-mean model or the 

exponential model or a combination of both (Pinheiro & Bates, 2000). A major difference 

between the variance functions of the single level regression and the multilevel model is 

that vti may include one or more between-individual covariates to explain the 

heterogeneity of variance in a multilevel variance function but not in a single level 

variance function. Notice that the parameter θ in variance function (4.7) is also fixed as in 

the single level variance function. 

The variance function (4.7) can be, however, further extended to a function with 

random parameters δi. Hedeker et al. (2008) suggested one such model, called the mixed-

effects location scale model (MLSM). Consider a multilevel model (4.6) where 

( , , , )f ti i iz w γ u = ′ ′+ti i ti iz W γ z u , written by 
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 ti tiy e′ ′= + +ti i ti iz W γ z u , (4.8) 

where ( ,..., )′=
ii 1i n iZ z z , and Wi, γ, and ui are defined as in (2.6). Hedeker et al. (2008) 

suggested a multilevel variance function for the variance of yti 

 2 exp( )
tie iσ δ′= +tiv θ , (4.9) 

where vti is a vector of within- and/or between-individual covariates predicting the 

variance of yti, θ is a vector of fixed effects of vti, and δi is a random intercept distributed 

as normal (across individuals) with mean 0 and variance 2
δσ . Taking logs both side of 

(4.9) yields 2log( )
tie iσ δ′= +tiv θ , meaning that the logarithm of variance is a linear 

function of vti. Note that the estimated variances of (4.9) are guaranteed to be positive. 

Because δi is normally distributed, the variance follows lognormal distribution across 

individuals. The location (mean) model (4.8) and the scale (variance) model (4.9) can be 

jointly written as 

 1exp ( )
2ti i tiy δ ε⎧ ⎫′ ′ ′= + + +⎨ ⎬

⎩ ⎭
ti i ti i tiz W γ z u v θ , (4.10) 

where εti is a standard normal. The model (4.10) can be estimated by (marginalized) 

maximum likelihood (ML) method and the ML estimates can be easily obtained by the 

NLMIXED procedure in SAS, for example.  

Although Hedeker et al. (2008) restricted the MLSM in (4.10) to one random 

effect, this model can easily be extended to a model with two or more random effects by 

replacing (4.9) with 

 2 exp( )
tieσ ′ ′= +ti ti iv θ s δ , (4.11) 

where δi is a vector of random effects of sti. For example, suppose that the variance is a 

function of a within-individual covariate ati and a between-individual covariate bi. 
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Suppose also that the intercept and the within-individual covariate have both fixed and 

random effects. In this case, (4.11) can be written in multilevel equations as 

 

2
0 1

0 00 01 0

1 10 1

exp( )
tie i i ti

i i i

i i

a

b

σ λ λ

λ θ θ δ
λ θ δ

= +

= + +
= +

 (4.12) 

and a single equation form is given by 

 2
00 01 10 0 1exp( )

tie i ti i i tib a aσ θ θ θ δ δ= + + + + . (4.13) 

Notice that in (4.13) there are two random effects: δ0i and δ1i. Notice also that there is no 

level-1 random error in this model. 

 

A Two-Step Multilevel Random Variance Model 

 

Carroll and Ruppert (1988) discussed alternative methods of variance function 

estimation other than introduced above, in the context of a single level regression model. 

One such method is a regression model where responses are squared residuals and the 

regression function is the variance function introduced in (4.1). For example, a variance 

function for a single level regression model can be modeled as 

 [ ]2 2 2( , ) ( , , )t t ty f g vσ μ ω− = +t tz γ θ , (4.14) 

where ( , )t ty f e= +tz γ  and μt = E(yt) = f(zt, γ). This method is based on the fact that the 

expectation of squared residuals is approximately the variance. As such, fitting (4.14) 

will provide a good approximation of the variance function g. For normal et, (4.14) is a 

nonlinear model with heteroscedastic variance proportional to 4 4 ( , , )tg vσ μ t θ . Given et ~ 

N(0, 2
eσ ), 2

te  is distributed as a scaled χ2 with df = 1, which is a special case of the 
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gamma distribution. If there is a function h such that h(πt) = θ1μt + *′tv θ , θ = (θ1, θ*) and 

πt = E( 2
te ) = 2 2 ( , , )tg vσ μ t θ , (4.14) can be fitted by a generalized linear model with 

gamma error distribution and a link function of h. 

In multilevel models, the same method is easily applicable. For a multilevel 

model (4.8), a multilevel random variance model is written by 

 [ ]2 2 2( , , , ) ( , , , , )ti ti tiy f gσ μ ω− = +ti i i ti ti iz w γ u v s θ δ , (4.15) 

where notations are defined as in (4.6), (4.7) or (4.11). The residual eti is obtained by 

fitting (4.8) first, and then subtracting the expected (or predicted) value ( , , , )f ti i iz w γ u  

from the observed value yti. Because the fitted value ( , , , )f ti i iz w γ u  is a function of 

EBLUP estimates, that is also empirical Bayes estimates, the obtained residuals are 

empirical Bayes estimates of the true residuals.  

As in the single level model, 2
tie  is distributed as a scaled χ2 with df = 1, that is a 

gamma distribution, and can be fitted by a generalized linear mixed model with gamma 

distribution. For squared residuals [ ]22 ( , , , )ti tie y f= − ti i iz w γ u , we write   

 2 | , ~ ( , )ti ti ti ti tie Gammaα β α β  (4.16) 

to denote that 2
tie  has a gamma distribution with a shape parameter αti and a scale 

parameter βti, αti > 0 and βti  > 0. The mean and the variance of (4.16) are E( 2
tie |αti, βti) = 

πti = αtiβti and Var( 2
tie |αti, βti) = αtiβti

2, respectively. As such, the variance function 

2 2 ( , , , , )tigσ μ ti ti iv s θ δ in (4.15) is equated to πti, that is the expected value of 2
tie  or the 

approximation of the variance. Notice that when eti is distributed as N(0,1), 2
tie  follows 
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(1 2, 2)Gamma , i.e., a χ2 distribution with df = 1. If eti is distributed as 2(0, )iN σ , 2
tie  

follows 2(1 2,2 )iGamma σ . 

If there is a function h such that h(πti) = ηti, where ηti is a linear function of μti, vti, 

and sti, it can be used as a link function for (4.15). For example, if we define the variance 

function as (4.11), that is 2
tieσ = 2 2 ( , , , , )tigσ μ ti ti iv s θ δ = exp( )′ ′+ti ti iv θ s δ , and set eti = 

( , , , )tiy f− ti i iz w γ u , (4.15) is rewritten as 

 2 exp( )ti tie ω′ ′= + +ti ti iv θ s δ  (4.17) 

In this case, the log link ensures linear relationship between logarithm of variance and 

predictors: 

 log( )ti tiη π= , (4.18) 

 tiη ′ ′= +ti ti iv θ s δ  (4.19) 

where ηti is the log of the expected value of 2
tie . 

Random effects δi is assumed to be multivariate normal. For (4.17), a normal 

distribution of δi results in the lognormal distribution of πti. (4.15) or (4.17) can also be 

expressed via multilevel equations. For example, (4.12) can be expressed as (4.17) where 

level-1 and level-2 equations are written by   

 

2
0 1

0 00 01 0

1 10 1

exp( )ti i i ti ti

i i i

i i

e a
b

λ λ ω
λ θ θ δ
λ θ δ

= + +
= + +
= +

 (4.20) 

Where E( 2
tie ) = πti = αtiβti and 0 00

1 01 11

0
~ ,

0
i

i

N
δ ς
δ ς ς

⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤
⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥
⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠

. The model (4.17), or (4.15) in 

general, can be estimated by (marginalized) ML and the ML estimates can be easily 

obtained using the NLMIXED procedure in SAS, for example.  
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The MLSM of (4.11) and the model (4.17) are almost equivalent to each other: (1) 

The log of the variance is modeled as a linear function of predictors. (2) Variance is 

modeled in two levels. (3) Variance is allowed to vary systematically and/or randomly. 

(4) Variance is modeled to follow a lognormal distribution. Two major differences of the 

two approaches are: (1) MLSM models an exact function of variance without assuming 

measurement or sampling errors of variance while (4.17) models variance function in 

terms of a regression model allowing errors. (2) MLSM fits mean function and variance 

function simultaneously while (4.17) fits variance function on the squared residuals 

obtained from a previous analysis. As such, we call the latter approach the Two-Step 

Multilevel Random Variance Models (TS-MRVM). In the following section the 

performance of the MLSM and the TS-MRVM will be investigated by a simulation 

study. 

 

Performance in Estimation of MLMs for Random Variance Function: A Simulation Study 

 

MLSM introduced by Hedeker et al. (2008) is a rather new model of the variance 

function. Hedeker et al. stated that the MLSM often did not converge with relatively 

small sample size (e.g., 20 subjects with 5 observations each) in their small simulation 

study. A plausible problem in the MLSM is complexity of the model in the sense of 

simultaneous estimation of both mean function and variance function. By contrast, the 

TS-MRVM may not suffer from this problem because it estimates parameters in mean 

function and variance function separately. Compensation may occur by producing bias in 

estimation. 
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Method 

The following models were used to generate data sets. For the mean function, yti 

was set to be a function of a time varying covariate zti and a between-individual covariate 

wi. For simplicity, only the intercept was allowed to randomly vary in the model. As 

such, the mean function MLM was given by 

 00 10 01 0ti ti i i tiy z w u eγ γ γ= + + + + . (4.21) 

The time varying covariate zti and a between-individual covariate wi were generated from 

a normal distribution with mean 0 and variance 1, independently. The fixed effects were 

set to a value: γ00 = .5, γ10 = .5, and γ01 = .5. The random intercept ui was generated from a 

normal distribution with the mean 0 and the variance 2
0uσ  = .25. The error eti was 

generated from a distribution with the mean 0 and the variance 2
tieσ , that is modeled by 

the following function. 

The residual variance was modeled as a function of the between-individual 

covariate wi. Only the intercept was modeled to randomly vary. Accordingly, the variance 

function model was given as 

 2
00 10 0exp( )

tie i iwσ θ θ δ= + +  (4.22) 

The fixed intercept θ00 and θ01 were set to .5 and the random effect of δ0i was generated 

from a normal distribution with mean 0 and the variance 2
0δσ = .25. 

Each data set was completely balanced with L (the number of observations within 

individuals) = 10, 20, 50, or 100 and N (the number of individuals) = 20, 50, or 100. 

Accordingly, 3 (L) × 4 (N) = 12 conditions were obtained. In each condition, 500 data 

sets were simulated, resulting total of 6000 data sets. Each data set was analyzed by the 

MLSM and the TS-MRVM separately. For the TS-MRVM, a MLM was fitted for the 
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mean function in the first step using the MIXED procedure in SAS. After fitting the mean 

function, empirical Bayes (EB) estimates of the residuals were obtained. In the second 

step, a multilevel variance model was fitted on the squared (EB) residuals for the 

variance function using the NLMIXED procedure in SAS. For the MLSM, both the mean 

function and the variance function were fitted simultaneously using the NLMIXED 

procedure in SAS. When fitting the NLMIXED procedure for both methods, true 

parameter values were provided as starting values. Relative bias was calculated as in 

chapter 3 to investigate bias in the estimation of parameters in mean model and variance 

model. 

 

Results 

Convergence rate. The TS-MRVM converged in all the data sets in all conditions. 

As expected, however, the MLSM showed poor performance in convergence as seen in 

Figure 4.1. Clearly, the coverage rate decreased as the series length increased (Wald χ2 = 

35.00, p < .001) or the number of individuals increased (Wald χ2 = 8.53, p < .05). When 

the number of individuals was 20, convergence rate decreased from 100 % through 96% 

as the series length increased from 10 through 100. For the sample size of 50, 

convergence rate declined from 99.2% to 90.2% as the series length raised from 10 to 

100. When N = 100, convergence rate decreased from 99% through 82%. 

Bias in mean model. The performance of the estimation of parameters in mean 

function was investigated. Relative bias (RB) for the fixed effects γ00, γ10, and γ01 and 

variance of random intercept 2
0uσ  are presented in Table 4.1. Because, for TS-MRVM, 

the mean function was fit by an MLM in which the variance function was not modeled,  
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Figure 4.1. Line plots of convergence rate of MLSM across sample size and series 
length. The square, triangle, and circle represent a convergence rate for sample size of 20, 
50, and 100, respectively. 
 

the first step of TS-MRVM is a model with misspecified variance structure. Nevertheless, 

there was no significant bias of estimates of the fixed effects in the mean function for the 

first step of TS-MRVM: RB = 0.00, t(5999) = -0.33, p = .74 for γ00; RB = 0.00, t(5999) = 0.33, 

p = .74 for γ10; RB = 0.00, t(5999) = 0.89, p = .37 for γ01. Likewise, no significant bias was 

found in estimates of the fixed effects in the mean function for MLSM: RB = 0.00, t(5646) 

= -0.37, p = .71 for γ00; RB = 0.00, t(5646) = -0.23, p = .82 for γ10; RB = 0.00, t(5646) = 1.10, 

p = .27 for γ01. Neither sample size nor series length has significant effects on the relative 

bias of the fixed estimates in both models. On the other hand, there was a significant bias 

in the estimation of the variance of random intercept in the MLSM, RB = -0.02, t(5646) = -

16.28, p < .0001. The bias decreased as sample size increased, F(2,5635) = 42.07, p < .0001, 

η2 = .01. In contrast, the misspecified MLM (i.e., the first step of TS-MRVM) did not 

produce biased estimates of 2
0uσ , RB = 0.00, t(5999) = 1.74, p = .08. The unbiased estimates 

of the parameters in the mean function in the misspecified MLM support use of the 

empirical Bayes residuals obtained the first step of TS-MRVM in the second step. 
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Table 4.1 
Relative Bias of 00γ̂ , 10γ̂ , 10γ̂ , and 2

0ˆuσ  for the Two Random Variance MLMs 
 

          00γ̂           10γ̂           10γ̂         2
0ˆuσ   

N L MLSM MRVM MLSM MRVM MLSM MRVM MLSM MRVM
10 0.00 0.00 0.00 0.00 0.00 0.00 -0.04 0.01
20 0.00 -0.01 0.00 0.00 0.01 0.01 -0.03 0.00
50 -0.01 -0.01 0.00 0.00 -0.01 -0.01 -0.03 0.00

20 

100 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.00
10 0.01 0.01 0.00 0.00 0.01 0.01 -0.01 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00

50 

100 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00
10 0.00 0.00 0.00 0.00 0.01 0.01 -0.01 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00

100 

100 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00
 
Note. MLSM: Mixed-effects Location Scale Model; MRVM: Two-Step Multilevel 
Random Variance Model; N = sample size; L = series length. 
 

Bias in variance model. Unlike estimation of the parameters in the mean function, 

the TS-MRVM produced biased estimates for the parameters in the variance function 

(Table 4.2). The TS-MRVM produced bias in the estimates of the fixed intercept 00θ̂ , RB 

= -0.02, t(5999) = -18.97, p < .0001, and 10θ̂ , RB = -0.01, t(5999) = -6.77, p < .0001. The bias 

was the function of series length in the both parameters, F(2,5988) = 27.73, p < .0001, η2 = 

.01 for 00θ̂ , and F(2,5988) = 30.22, p < .0001, η2 = .01 for 10θ̂ . By contrast, the MLSM did 

not show any bias in the estimation of 00θ̂ , RB = -0.00, t(5646) = -0.54, p = .58, and 10θ̂ , RB 

= 0.00, t(5646) = 0.45, p = .65. For the estimation of the variance of random intercept (i.e., 

2
0δσ ), both the MLSM model and the TS-MRVM showed significant bias: RB = -0.02, 

t(5646) = -19.03, p < .0001 for MLSM, and RB = -0.03, t(5999) = -26.76, p < .0001 for TS-

MRVM. For the MLSM, the bias was a function of sample size, F(2,5635) = 55.69, p <  
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Table 4.2 
Relative Bias of 00θ̂ , 10θ̂ , and 2

0ˆδσ  for the Two Random Variance MLMs 
 

         00θ̂              10θ̂          2
0ˆδσ   

N L MLSM MVM MLSM MVM MLSM MVM
10 0.00 -0.04 -0.01 -0.04 -0.06 -0.07
20 0.01 -0.02 0.00 -0.01 -0.03 -0.04
50 -0.01 -0.02 0.01 0.00 -0.02 -0.03

20 

100 0.00 -0.01 0.00 0.00 -0.03 -0.03
10 0.00 -0.04 0.00 -0.03 -0.02 -0.04
20 0.00 -0.03 0.00 -0.01 -0.02 -0.02
50 0.00 -0.02 -0.01 -0.01 -0.01 -0.01

50 

100 0.00 -0.01 0.01 0.01 -0.02 -0.02
10 0.00 -0.04 0.01 -0.01 -0.01 -0.03
20 0.00 -0.03 0.00 -0.01 -0.01 -0.01
50 0.00 -0.02 0.00 0.00 -0.01 -0.01

100 

100 0.00 -0.01 0.00 0.00 -0.01 -0.01
 
Note. MLSM: Mixed-effects Location Scale Model; TS-MRVM: Two-Step Multilevel 
Random Variance Model; N = sample size; L = series length. 
 

.0001, η2 = .02, series length, F(2,5635) = 10.99, p < .0001, η2 = .01, and the interaction of 

the two, F(2,5635) = 3.13, p < .01, η2 = .00. Similarly, bias in the TS-MRVM was also the 

function of sample size, F(2,5988) = 83.19, p < .0001, η2 = .03, series length, F(2,5988) = 

56.56, p < .0001, η2 = .03, and the interaction of the two, F(2,5988) = 3.80, p < .001, η2 = 

.00. Figure 4.2 presents line plots of relative bias for the parameters in the variance 

function across series length, the major effect in each case. Clearly, the biases produced 

in the TS-MRVM converged to 0 as series length increased. 

 

Conclusions 

 

The two multilevel modeling approaches for random variance function were introduced 

and their estimations were evaluated by a simulation study. The Mixed-effects Location  
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Figure 4.2. Line plots of relative bias of 00θ̂ , 10θ̂ , and 2

0ˆδσ  produced by two models 
across series lengths. The square and circle represent a relative bias for the MLSM and 
the TS-MRVM, respectively. 

 

Scale Model (MLSM) proposed by Hedeker et al. (2008) is a useful model in that it 

models variance as a function of within-individual and between-individual covariates. It 

also allows variance to vary randomly across individuals as well as systematically (as a 
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function of predictors). The MLSM models both multilevel mean function and multilevel 

variance function simultaneously. This feature may produce more accurate estimation on 

the parameters in the model because the estimations of parameters in both functions are 

connected to each other. At the same time, the complexity of the simultaneous estimation 

of parameters in both functions may raise problems in optimization, such as convergence. 

The result of the simulation study showed this problem found in the MLSM. The 

convergence rate was very unsatisfactory when we consider that the true parameter 

values were given as starting values and increased series length and sample size made 

convergence rate even worse. 

On the other hand, the Two-Step Multilevel Random Variance Model (TS-MVM) 

is an alternative MLSM. Although TS-MRVM estimates mean function and variance 

function of the model separately, which may suffer from inaccurate estimation, the result 

of the present simulation study showed no bias in estimation of the parameters in the 

mean function. In addition, the bias found in the estimation of the parameters of the 

variance function, obtained by the TS-MRVM, decreased as series length increased, 

meaning that the TS-MRVM produces asymptotically unbiased estimates. 

One limitation of TS-MRVM is that it can not model covariance (or correlation) 

between a random effect in the mean function and a random effect in the variance 

function, because the estimation of each function was separated. It is also noted that the 

current study did not investigate the bias in the estimate of standard error. However, 

given that the estimates of variance of random effects were not much biased, especially 

when the series length is 50 or more, it is not highly suspected. 
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5. Discussion 

 

In this paper, we discussed issues related to the heterogeneity of residual 

covariance in analysis of intensive longitudinal data. In chapter 3, we found that if 

homogeneous covariance is incorrectly assumed, MLMs produce highly biased estimates 

of variance of the random intercept when the average autocorrelation is high. It is also 

found that biased estimates of random intercept variance also create biased estimates of 

the standard error of the fixed effects. For intensive longitudinal data (e.g., 50 or more 

observations for each individual), we saw that application of MLMs to variables, 

transformed by the inverse of Cholesky factor of individual specific residual covariance, 

can be used to reduce the bias. We also found that squared residuals can be successfully 

modeled within multilevel modeling framework to estimate variance function. Although 

the residual-based approach produced biased estimates when the number of observations 

within individuals was small to moderate, it is applicable to intensive longitudinal data 

without much concern. More importantly, this approach does not suffer non-convergence 

problem on which a flexible alternative (i.e., the mixed-effects location scale model) has 

much concern. Because the concern of the alternative increases as the number of 

observations increases, the suggested model is more appropriate for ILD than 

longitudinal data with a small to moderate number of observations. 

When researchers are interested in the estimation of fixed effects but not in the 

variance of random effects, there are alternative ways to optimally estimate the fixed 

effects in ILD. For example, one can fit a multilevel model with unstructured error 

covariance matrix without modeling covariance of random effects. Unstructured 
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covariance structures in which every element is freely estimated from the data may 

represent a complicated correlational pattern among occasions. This approach, however, 

has several limitations when applied to ILD. First, this approach also assumes 

homogenous covariance across individuals and estimates each element in covariance 

matrix by pooling observations at each occasion across individuals. As such, although the 

number of parameters in unstructured covariance matrix (i.e., n(n+1)/2, where n is the 

number of occasions) is large in ILD, the pooled covariance matrix may not well 

represent a simple covariance structure (e.g., AR(1)) if it differs across individuals. In 

addition, unstructured covariance for ILD has too many parameters to be estimated, 

because the total number of parameters in the covariance matrix depends on the number 

of occasions. For example, if the number of observations within each individual is 100, 

the number of parameters in the unstructured covariance is 5050. If this is the case, it is 

likely to suffer from under-identification, non-convergence and/or improper solutions. It 

also requires a large number of individuals relative to the number of occasions, which is 

not feasible in some ILD studies.  

Another method for optimal estimation of fixed effects for ILD is generalized 

estimating equations (GEE) (Liang & Zeger, 1986). GEE is a generalization of quasi-

likelihood and robust estimation for longitudinal data. It is well known that robust or 

sandwich estimation provides an asymptotically unbiased estimate of the covariance of 

the estimates of fixed parameters even when constant variance across individuals is 

suspected and the pattern of heteroscedasticity is unknown. If correlations among 

observations at different occasions, in addition to the heteroscedasticity, are expected in 

longitudinal data, then GEE can be applied to obtain an accurate estimate of the 
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covariance of the parameter estimates of fixed effects. GEE does not assume 

homogenous error covariance structure and can be applied to non-normally distributed 

variables, such as a binary or count variable. GEE approach also has limitations, 

however, including need for a large number of individuals to achieve its asymptotical 

properties and a restricted number of autocorrelation patterns available as well as lack of 

information of interindividual variability of random effects (Schafer, 2006). 

On the other hand, Bayesian approach can be used to model multilevel random 

variance. In general, Bayesian statistical models find a posterior probability distribution 

of parameters given data by incorporating assumed prior distributions of parameters and 

likelihood function of data using Bayes’ theorem. The assumed hierarchical structures 

commonly used in Bayesian modeling well suit to hierarchical data and multilevel 

models, and thus the application of Bayesian multilevel regression models is natural and 

common (Gelman, Carlin, Stern, & Rubin, 2004; Gelman & Hill, 2007). Although a basic 

application of Bayesian multilevel regression models assumes distribution of random 

variance across replications not across individuals, extension to models with 

interindividual-specific random variance is also possible. This approach is especially 

useful when the number of individuals is small in ILD because ML or REML estimation 

of the variance of random effects, based on asymptotic theory, assumes a large number of 

individuals and often obtain unreliable solution from small samples while Bayesian 

approach may avoid unreliability by giving weight more on prior distribution than on the 

likelihood of data when sample size is small. A major difficulty of applications of 

Bayesian approach is unfamiliarity with Bayesian statistical models and software 

programs to most of social scientists. If sample size and the number of observations 
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within individuals are large enough, differences between likelihood-based approach and 

Bayesian approach is minimal. Therefore, if ILD with enough sample size are modeled, 

the benefits of Bayesian approaches, including random effects models and random 

variance models, are not impressive. 

Several limitations of the present studies are acknowledged. First of all, because 

both suggested procedures (MLMs for transformed variables or squared residuals) consist 

of two steps and as such suffer from problems common to any two-step approach. The 

transformation method requires estimation of autocorrelation or autoregressive 

parameters of individual time series in the first step and application of the intended MLM 

on the transformed variables in the second step. Multilevel modeling of squared residuals, 

as a multilevel variance function model, in the second step requires estimation of valid 

residuals in the first step. As such, a major limitation of the suggested models is high 

dependency of the performance in the first step analysis. If a poor transformation matrix 

or invalid residuals are obtained in the first step, the final intended MLMs will produce 

biased estimation of the parameters of interest. For intensive longitudinal data, however, 

this concern is not critical because performance of the first step analysis gets better as the 

number of observations within individuals increases. However, for longitudinal data with 

small to moderate number of observations within individuals, the suggested two-step 

approaches produce biased estimation and should be limited to use. An iterative method 

alternating the two steps may converge to a better solution. 

Results of the simulation studies conducted in chapter 3 and chapter 4 are 

restricted to generalization in several ways. First, the models used to generate data did not 

vary widely. For example, the parameters in true model were set to one value for each in 
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both studies (e.g., γ00 =1, γ10 =1, 2
0uσ  = .5, 2

1uσ  = .5, and 0 1u uσ = .15 in chapter 3). In 

addition, conditions used were not comprehensive. We only used sample size of 20 

through 100 and series length of 10 through 100 in the both simulation studies. We did 

not investigate the effect of negative autocorrelations in chapter 3. Observations in all 

conditions are balanced and equally spaced temporally. As such, all the results found in 

the studies need cautions for generalization to other situations.  

Another limitation is related to the assessed time intervals between successive 

measurements. The error covariance structures used in the transformation method in 

chapter 3 assume constant and equally spaced time of measurements. Because ILD are 

often measured at randomly prompted times (e.g., within-day random assessments of 

electronic diary), transformation methods introduced in chapter 3 can not be applied 

directly to ILD with random time intervals.  

The suggested transformation method should be extended to ILD with random 

time intervals. In such cases, heterogeneous covariance with autocorrelation that 

exponentially decreases over random time intervals may be modeled and estimated by 

individual and transformation of original variables by multiplying the inverse of the 

Cholesky factor of the estimated covariance matrix can be applied to get a valid 

estimation of fixed effects and the variance of random effects. A simulation study can be 

conducted to evaluate the performance of the transformation method on ILD with random 

time intervals and heterogeneous autocorrelation. 

Multivariate analysis, especially using Latent Variable Models (LVMs), is 

another immediate extension of heterogeneous within-individual covariance structure. 

For example, multivariate intraindividual covariance has been modeled using Dynamic 
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Factor Analysis (DFA) that applies traditional Confirmatory Factor Analysis to 

multivariate data with time series structure (Browne & Nesselroade, 2005; Molenaar, 

1985; Wood & Brown, 1994). On the other hand, LVMs have been generalized to 

multivariate data with multilevel structure, called multilevel LVMs or multilevel 

Structural Equation Models (Goldstein & Browne, 2002; Goldstein & McDonald, 1987; 

Mehta & Neale, 2005; Rabe-Hesketh, Skrondal & Pickles, 2004). This line of research is 

based on the recognition that, with some restrictions, a univariate multilevel model or 

linear mixed model can be expressed in a multivariate latent variable model (Bauer, 

2003; Curran, 2003; MacCallum, Kim, Malarkey, & Keicolt-Glaser, 1997; Meredith & 

Tisak, 1990; Rovine & Molenaar, 2000). Because LVMs are about modeling covariance 

and multilevel approach aims to modeling heterogeneity, heterogeneity of covariance 

structure is of direct interest in multilevel LVMs. Extending DFA to multilevel data 

structure, however, has not been fully developed in this context, because estimation of the 

multilevel time series structure is difficult to be solved by maximum likelihood based 

method commonly used in estimation of SEMs. 

Interestingly, it is known that state space models have great flexibility in analysis 

of intensive longitudinal data. It can be thought of not only as a generalization of time 

series models but also as a generalization of other approaches. For example, it is well 

known that a linear mixed model has its state-space form (for two-level model). In 

addition, it is also known that DFA has its state-space form (Ho, Shumway, & Ombao, 

2006). This means that state space models can be used as a general model for the analysis 

of multi-dimensional hierarchical data structure, especially in intensive longitudinal 

study. Although state-space forms for more complicated models of other approaches 
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(e.g., three-level MLM) and the combinations of more than two approaches (e.g., 

multivariate longitudinal MLM) are not fully investigated yet, the application of state 

space models on intensive longitudinal study with high dimensional data is a promising 

topic of study in ILD analysis. 

Intensive longitudinal data are useful to investigate various patterns of 

intraindividual processes. Although we restricted our discussion of analysis of ILD to the 

multilevel models for mean function and variance function, there are still other 

possibilities of modeling intraindividual processes using ILD. For example, heterogeneity 

of autocorrelation can be modeled in MLMs. In this regard, an interesting extension of 

MLM has been suggested by Rovine and Walls (2006). Rovine and Walls showed that 

the autoregressive parameters can be modeled as predictors in MLM, which allow 

estimation of individual specific autoregressive parameters as a random effect, as well as 

higher order AR(p) process. Jahng, Wood, and Trull (2008) suggested a multilevel 

random instability model for EMA data where instability is equated as frequent and 

extreme fluctuations over time and expressed as a function of variance and 

autocorrelation. Other possibilities for modeling heterogeneous intraindividual process 

include time varying regression effects (Fan, & Gijbels, 1996; Li, Root, & Shiffman, 

2006), nonlinear multilevel models (Davidian & Giltinan, 1995; Fok & Ramsay, 2006), 

state space models (Durbin & Koopman, 2001; Ho, Shumway, & Ombao, 2006), and 

differential equation models (Boker, 2001; Boker & Laurenceau, 2006; Ramsay, 2006). 

In summary, intensive longitudinal data enable researchers to fully investigate the 

time dimension and the person dimension as well as other dimensions. Using ILD, more 

detailed investigation on the intraindividual dynamic process is available. Understanding 
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time series process plays a key role in the investigation of intraindividual dynamics. In 

addition, unlike a result obtained from single time series data, heterogeneity of 

idiographic dynamic process likely existing in ILD can be modeled to provide more 

general descriptions of the processes using multilevel models. Moreover, the 

heterogeneity of intraindividual dynamic process is not restricted to the mean function 

but extended to other characteristics, such as variance and autocorrelation. This 

heterogeneity of variance and autocorrelation can be of direct interest or be a factor 

influencing estimation of mean change. In both cases, applications of MLM for the 

analysis of ILD require extensions and modifications of existing models. The 

transformation procedure of correction for autocorrelated error and multilevel random 

variance models on squared residuals are such an extension or modification which seems 

to be appropriately applied to intensive longitudinal data. 

Due to recent developments in data collection methods (e.g., electronic diaries) 

and statistical models (e.g., multilevel models), intensive longitudinal studies and the 

analysis of ILD are gaining popularity across many areas of psychology. As such, 

development of new methods and evaluation and proper applications of existing methods 

for the analysis of ILD become more important than ever. Studies on statistical models 

for intensive longitudinal data such as this will provide better tools to understand 

intraindividual change and interindividual difference of psychological phenomena and 

even stimulate interesting studies that should be assisted by the development and proper 

use of the quantitative methods. 
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