A report of

Sugar Beet Research

in

Southeast Missouri--1969

James A. Roth Armon J. Keaster Harold D. Keer

Special Report 126 10/70/100 University of Missouri-Columbia Agricultural Experiment Station

CONTENTS

SUMMARY		PAGE
SUMMAR I		1
INTRODUCTION		1
SUGAR BEET VARIETY EXPERIMENTS IN SOUTHEAST MISSOURI 1969		3
Sugar Beet Variety Test on the Clay Soil at the Portageville Field, 1969		4
Sugar Beet Variety Test on the Loam Soil at the Portageville Field, 1969		4
SOIL FERTILITY, IRRIGATION, SPACING, DEEP PLOWING, AND ROTATION EX	EXPERIMENTS WITH SUGAR BEETS	5
The Effect of Soil Fertility Treatments on Yields and Quality of Sugar Beets,	Portageville Field, Clay Soil, 1969	6
The Effect of Soil Fertility Treatments on Yields and Quality of Sugar Beets,	Portageville Field, Loam Soil, 1969	7
The Effect of Soil Fertility Treatments on Yields and Quality of Sugar Beets,	Clarkton Field, 1969	8
Irrigation and Water Penetration Tests on Sugar Beets,	Portageville Field, Loam Soil, 1969	9
The Effect of Deep Plowing and Limestone on Yield and Quality of Sugar Beets,	Portageville Field, Loam Soil, 1969	10
The Influence of Row and Plant Spacing on Sugar Beet Yields and Quality,	Portageville Field, Clay Soil, 1969	11
The Influence of Row Width and Plant Spacing on Sugar Beet Yields and Quality,	Portageville Field, Loam Soil, 1969	12
The Influence of Dried Sewerage Sludge on Sugar Beets,	Portageville Field, Loam Soil, 1969	13
The Influence of Various Field Crops on Sugar Beets in a Three Year Rotation,	1969	14
WEED RESEARCH IN SUGAR BEETS		15
Sugar Beet Plants in 10 Meters of Row and Weed Plants per Square Meter (row v	width=2/3 meter=26 inches)	16
Sugar Beet Plants in 10 Meters of Row and Weed Plants per Square Meter (row v	width=2/3 meter=26 inches)	16
Yield and Quality of Sugar Beets as Affected by Herbicides Applied just after Th	inning the Beets on Tiptonville Silt Loam	17
Sugar Beet Plants in 10 Meters of Row and Weed Plants per Square Meter (row v	width=2/3 meter=26 inches)	18
Sugar Beet Plants in 10 Meters of Row and Weed Plants per Square Meter (row v	width=2/3 meter=26 inches) Counted May 5, 1969	19
INSECT PESTS OF SUGAR BEETS IN 1969		20
Summary of Insects Present and Damage to Fresh Sugar Beet Plant Samples take	en on 10 Sampling Dates, Southeast Missouri, 1969	
SUGAR BEET PATHOLOGY TRIALS		22
The Influence of Fungicide Sprays in Control of Cercospora Leaf Spot on Sugar E	Beets, Portageville Field, Loam Soil, 1969	
Fungicide Treatments to Control Rhizoctonia Crown Rot in Sugar Beets,	Portageville Field, Loam Soil, 1969	
The Effects of Soil Fumigation on Sugar Beets,	Clarkton Field, Sandy Soil, 1969	
SWEET SORGHUM AND CORN VARIETY TESTS		26
Sweet Sorghum and Corn Variety Tests, Portageville and Clarkton Fields, 1969-		27

SUGAR BEET RESEARCH IN SOUTHEAST MISSOURI 1969

James A. Roth, Harold D. Kerr, and Armon J. Keaster

SUMMARY

Sugar beet research was conducted by the University of Missouri Agricultural Experiment Station at the Delta Center near Portageville in 1969. Experiments included varieties, weed control, soil fertility, fungicides for control of cercospora leaf spot, row spacing, water infiltration, irrigation, fumigants, insecticides, and rhizoctonia control. Selection in breeding stock was made in the field for resistance to the root knot nematode, after which it was screened in the greenhouse. Sugar beet experiments were conducted on three of the major soil types of southeast Missouri.

The results of the variety tests varied from 29.0 to 17.2 tons per acre with an average yield of 26.1 tons of sugar beets (5159 pounds of sugar) per acre on the clay soil as compared to 20.6 tons of sugar beets (4121 pounds of sugar) per acre on the silt loam soil. Herbicide chemicals effectively controlled weeds when applied preemergence and post emergence thus reducing hand labor to a minimum. Variety tolerance and foliar fungicidal sprays were very effective in the control of cercospora leaf spot. Irrigation has proven to be an essential practice. Sprinkler irrigation which previously increased leaf spot disease was more effective in wetting the soil as compared to furrow irrigation. Fungicide spray controlled the leaf spot of the sprinkler beets and satisfactory yields were obtained.

In addition to sugar beets grown on the experimental fields in 1969, ten farmers, as selected by the Pemiscot-Dunklin-New Madrid Sugar Beet Association, grew from 23 to 45 acres or a total of 284 acres. The Great Western Sugar Company stationed an agronomist in the area who assisted the growers in production of sugar beets. The crop was harvested, washed and shipped to Colorado for processing into sugar. Yields of the commercial fields varied from five to sixteen tons per acre.

The staff of The Great Western Sugar Company of Denver, Colorado provided valuable assistance in the research conducted in southeast Missouri during 1969.

INTRODUCTION

The research involving sugar beets in 1969 included three different soils of the Delta Center experiment fields. The Portageville Field has two soils, one of which was a Tiptonville silt loam or clay loam with a sandy loam overwash phase and is referred to in this report as the "Loam" soil. The other soil on the Portageville Field was of the Sharkey Clay type and is referred to as the "Clay" soil in this report. Experiments at the Clarkton Field were on a Beulah fine sandy loam soil which has a low water holding capacity requiring frequent irrigations.

The clay soil on the Portageville Field has produced continuously the higher yields of beets relatively free of cercospora leaf spot. This soil has a high water holding capacity and the need for irrigation was only a fraction of the requirements of the loam soil at the Portageville Field or sandy soil of the Clarkton Field. The clay soil is very difficult to till and preparation of the seedbed the previous fall or winter has been essential for early planting on this soil.

The loam soil on the Portageville Field consists of a texture that is desirable to till but compacts easily during a rain which renders the soil practically impervious to supplementary irrigations. An experiment in 1969 included various materials incorporated into the soil and deep tillage to improve the rate of water infiltration. Cercospora leaf spot has been a serious problem on the loam soil but resistant varieties and fungicide sprays have reduced considerably the damage caused by the disease.

The sandy soil of the Clarkton Field has not been as desirable as the other two locations for production of sugar beets. This soil is infested with root knot nematodes (Meloidogyne sp.) and has required fumigation which adds considerably to the production costs. Selections were made from sugar beets grown on this soil for resistance to the nematode. Seed will be increased from these selections, planted and additional selections made. The production of sugar beets on the sandy soils would be very desirable in the operation of a sugar mill to insure a steady supply of beets during harvest. Beets on the sandy soil may be harvested soon after a rain while the other soils may be too wet for harvesting equipment to operate.

Irrigation was available and required at all locations in 1969. The row method was used on the graded land of the Portageville Field and sprinklers were used at the Clarkton Field. The 1969 growing season was dry and several irrigations were applied at each location.

All experiments except the variety tests were sprayed with a fungicide to control cercospora leaf spot disease. Various fungicides were included in an experiment to determine their effectiveness in the control of leaf spot disease.

Surveillance of the sugar beet plots indicated very little damage from insects during 1969. Feeding by Blister beetles <u>Epicauta</u> and the garden fleahopper <u>Halticus</u> <u>bracteatus</u> (Say) resulted in minor damage in the experimental plots on the Portageville Field.

The beets were harvested mechanically and pulp samples were obtained from each plot. These samples were frozen and shipped to The Great Western Sugar Company Experiment Station laboratory for sugar and purity analyses.

Ten farmers of the area produced a total of 284 acres during 1969. The Great Western Sugar Company stationed a field man in the area to assist the growers. Yields of the growers plots ranged from five to sixteen tons per acre.

James A. Roth, Assistant Professor of Agronomy (Soil Fertility); Harold D. Kerr, Associate Professor of Agronomy (Weed Science); and Armon J. Keaster, Assistant Professor of Entomology, University of Missouri, Delta Center, Portageville.

Sweet stalk corn and sorghum varieties were tested at Portageville and Clarkton fields to determine potential of these crops in sugar production. If feasible these crops could extend the operating season of a sugar mill.

Research in 1970 will be a continuation of the 1969 experiments with some modification. Rows on beds spaced 26 inches apart will be used in 1970 which was the same spacing as in 1969.

The sugar beet research over the past nine years has been summarized in a UMC Science and Technology Guide number 4713 "Producing Sugar Beets in Missouri" which is available at the University of Missouri-Columbia Extension Division.

Preparing beds for planting of Sugar Beets

Planting sugar beets

SUGAR BEET VARIETY EXPERIMENTS IN SOUTHEAST MISSOURI 1969

James A. Roth

Two sugar beet variety tests were grown on two soils in southeast Missouri during the 1969 growing season. The soils included the "Loam" soil (Tiptonville series) and the "Clay" soil (Sharkey series) located on the Portageville Field of the Delta Center. The soil at each location was graded and irrigation water applied by the row method as needed.

Planting of both tests was completed on March 14 on beds spaced 26 inches apart. Fertilizer $(100+N+100 P_2 0_5+100 K_2 0+2B)$ was incorporated into the bed prior to planting and additional nitrogen sidedressed in July on the loam soil. On the clay soil fertilizer $(38 N+100 P_2 0_5+100 K_2 0+2B)$ topdressed after planting.

The experimental design of the two experimental trials was a randomized complete block with ten replicates of nine varieties. No attempt was made to control disease in the tests during the season so as to measure natural resistance to diseases of the **area**. Varieties varied considerably in their resistance or susceptibility to cercospora leaf spot.

The experiments were harvested November 3. Pulp samples were obtained and shipped to The Great Western Experiment Station at Longmont, Colorado for sugar and purity analyses.


The clay soil produced the highest yield of 28.95 tons per acre with the 68MSH110 variety. Previous tests on the clay soil exceeded yields on the loam soil at the Portageville Field. The 68MSH472 variety was the high yielder on the loam soil in 1969.

Varieties varied considerably in their sugar content as grown under southeast Missouri conditions. On the clay soil the percent sugar varied from 10.8 to 13.2 whereas on the loam soil percent varied from 11.0 to 13.5. Several varieties were severely affected by leaf spot disease which caused complete desiccation of the leaves and a low sugar content. The loss of leaves generally reduces the sugar content of the beets as new leaves replace the dead leaves. If the beets had been sprayed to control leaf spot the yield and sugar content would have been increased considerably.

The testing and selection of sugar beet varieties adapted to southeast Missouri is an essential part of the sugar beet research program in southeast Missouri. Progress has been made over the years in trials that have been conducted in determining suitable varieties for the area.

The assistance of Dr. A. W. Erichsen of The Great Western Sugar Company Experiment Station is acknowledged in supplying the variety test seed, design, and computation of the data.

Thinning sugar beets with electronic thinner as compared to thinning by hand on the research plots.

Variety	Yield Tons/A	% Sugar Content	Juice Purity %	Recoverable Sugar/A (lbs) ^a	Leaf Spot	Stand %
A402-64R	28.35*	13.2*	91.1	6089	1.7	148.5
68MSH110	28.95	12.4	89.7	5661*	3.7	131.7
AH-1-69	26.71*	12.7*	90.4*	5480*	4.6	140.2
68MSH259	24.78*	13.2	90.6*	5326*	5.3	108.0
68MSH111	27.14*	12.7	90.2*	5489*	3.8	125.5
GWH23-68A	25.30*	12.1	90.1*	4895	4.4	140.7
68MSH136	24.05	12.7	90.2*	4885	5.4	122.9
68MSH472	27.64*	10.8	87.2	4373	5.6	66.9
GWH1-68A	21.85	12.4	89.4	4234	5.8	113.3
General Mean	26.09	12.46	89.88	5159	4.47	121.95
C.V. (%)	18.38	4.55	1.12	20.16		
L.S.D. 5%	4.52	0.53	0.95	980		
	SUGAR BEET	VARIETY TEST ON	THE LOAM SOIL A	T THE PORTAGEVILLE FIELD	0 - 1969	
A402-64R	20.32	13.5	92.1*	4595	3.5	142.6
68MSH110	21.26*	12.5	91.4	4372*	5.0	144.8
AH-1-69	22.01*	12.3	91.9	451.0*	5.5	143.0
68MSH259	21.04*	12.8	92.7	4583*	6.4	125.9
	20.72*	12.3	91.9	4254*	5.7	
68MSH111						148.7
	20.14	11.9	91.7	3968	5.2	$148.7\\142.2$
GWH23-68A		11.9 11.4	91.7 91.1	3968 3707	5.2 5.8	
GWH23-68A 68MSH136	20.14					142.2
GWH23-68A 68MSH136 68MSH472	20.14 19.94	11.4	91.1	3707	5.8	$\begin{array}{c} 142.2\\141.9\end{array}$
68MSH111 GWH23-68A 68MSH136 68MSH472 GWH1-68A General Mean	$20.14 \\ 19.94 \\ 22.76$	11.4 11.0	91.1 90.2	3707 3968	5.8 7.1	142.2 141.9 94.4
GWH23-68A 68MSH136 68MSH472 GWH1-68A	20.14 19.94 <u>22.76</u> 17.19	11.4 11.0 11.5	91.1 90.2 90.2	3707 3968 3132	5.8 7.1 5.6	$142.2 \\ 141.9 \\ 94.4 \\ 136.5$

SUGAR BEET VARIETY TEST ON THE CLAY SOIL AT THE PORTAGEVILLE FIELD - 1969

Line drawn under highest figure for each character.

Statistically equal to highest figure at the 5% level of significance. Calculated by computer, based on formula used since 1954. a

Experimental Design: Randomized Complete Block, 10 replicates.

Clay Soil - 38 lbs. nitrogen topdressed at planting 0+100+100+2B topdressed May 6. Sidedressed 100 lbs.
nitrogen May 26. Loam Soil - $100+100+100+2B$ (N+P $_20_5$ +K $_20$ +Boron) broadcast and incorporated into bed. Sidedressed 100 lbs
nitrogen July 11. Clay Soil - June 11: July 17.
Loam Soil - July 3, 17; August 4, 15, 27; September 17.
None used on variety tests.
Clay Soil - November 10.
Loam Soil - November 3

SOIL FERTILITY, IRRIGATION, SPACING, DEEP PLOWING, AND ROTATION EXPERIMENTS WITH SUGAR BEETS

James A. Roth

Soil fertility research involving sugar beets in 1969 included the loam and clay soils of the Portageville Field and the sandy soil at the Clarkton Field. Experiments also included rotations, methods of irrigation, various row spacings, plant spacing, deep plowing and soil treatments to improve rate of water penetration.

Soil fertility experiments in 1969 included mainly rates and time of nitrogen applications. Since the soils on which these experiments have been conducted are naturally high in phosphorous and potash, response has not been experienced in previous experiments with the application of these elements. Boron is very essential in sugar beet nutrition so this element has been included in the soil treatments of all plots. Limestone has been applied to all plots prior to planting of the sugar beets so as to maintain the soil pH between 6.0 and 7.0.

Nitrogen has been a very critical element but it is very difficult to determine the correct amount. Excess nitrogen has reduced sugar percentage whereas an insufficient amount has reduced yield. The results in the following tests indicate that 150 pounds of nitrogen was an ample amount in 1969. At the Portageville Field on both soil types the split application of 75 pounds of nitrogen each increased the yield over the single application of 150 pounds of nitrogen at planting. These differences were not statistically significant in 1969.

Yield of sugar beets at the Clarkton Field was too low regardless of soil treatment. The damage caused by the root knot nematode was severe in 1969 during the latter part of the growing season. Control of this pest is essential if sugar beets are to be produced on this soil. Fumigation tests will be included in the 1970 research program on the Clarkton Field.

Penetration of irrigation water on the loam soil of the Portageville Field as applied by the row method has been very slow requiring long and frequent irrigations. Sprinkler irrigation has been compared with row irrigation and found to be more effective in 1968. In 1969 there was indication that sprinkler irrigation was superior but the increase in yield was not statistically significant. Even though sprinkler irrigation may increase leaf spot disease a timely fungicide spray program has maintained the disease under control.

Deep plowing 27 inches deep in 1968 followed by sugar beets in 1969 was another attempt to improve water penetration. Deep plowing increased yields of sugar beets by 3.6 tons but this difference was not statistically significant. A statistical difference was obtained on the area on which two tons of limestone was applied in addition to the deep breaking. There was a question as to the practicability of deep breaking but the percent clay in the top soil was increased approximately ten percent. The increase in clay in the top soil caused cracking of the soil upon drying which allowed a more rapid rate of penetration of irrigation water.

Row and plant spacing experiments were conducted on two soil types at the Portageville Field. Large tractors with wide tires require wider rows than former tractors but rows too wide reduce yield and quality of sugar beets. Sugar beets produce higher yields on 26 inch rows, 34 tons, as compared to the 30 inch rows, 30 tons, on the clay soil. On the loam soil at the Portageville Field there was no difference in yield of the 26 and 30 inch rows. There was no significant difference between the plant spacing within the row. There was indication that the 12 inch plant spacing within the row results in a decreased sugar percentage and purity.

Sewerage sludge increased yields of sugar beets when applied in addition to chemical fertilizer. There was no significant difference between 2 and 32 tons per acre but 16 tons produced the highest yield of sugar beets. For some unknown reason the sugar percentage was low in this experiment.

Crop rotation experiments were initiated on the two soil types of the Portageville Field to determine the effects of various crops on sugar beet production. These experiments will require several years before results will be of any value.

Commercial harvesting of sugar beets as compared to harvesting research plots at the Delta Center

Soll Tes	t (1969)	O. M.	$P_{2}^{0}_{5}$	К	Mg.	Ca	pН	н	C.E.C.	Soil Ser	ies
	psoil osoil	2.7 2.3	448+ 221	500 430	920 960	5600 5700	5.5 5.9	$5.0 \\ 3.5$	$23.5 \\ 22.5$	Sharkey	
	Soil Trea	$tment^{1/2}$									
Pour	nds of Nitro	ogen Per Ac	re								
Sidedress Ma	y 2	Si	dedress		Beets H	arvested/1	00 Ft.	% Sugar	Juice P	Purity %	Yield Tons/A
0						139 ab $\frac{4}{}$		15.6 ab $\frac{4}{}$	89.5 d ⁴	1/	13.1 d ^{$\frac{4}{}$}
75						135 ab 123 abc		16.2 ab	94.4 a		22.9 c
150						128 abc		16.3 ab	93.7 ab)C	29.8 a
75		75-June	27			120 bc		16.0 ab	94.2 ab		32.5 a
225						133 abc		15.7 ab	93.0 ab		30.2 a
75		75-June	27 - 75-Au	gust 4		123 abc		13.9 c	91.4 cc		31.6 a
150				9		113 bc		15.7 ab	91.8 bc		25.5 bc
75 + 8 Tons 1	Fine Lime	75-Augus	t 4			148 a		15.2 b	92.7 ab	be	31.9 a
150						108 c		16.4 ab	93.2 ab	oc	28.1 ab
150 + 200 lbs.	Salt					124 abc		16.7 a	93.5 ab	oc	30.7 a
nimum Least	Significant	Dango/I S	D V 05)			23.9		1.17	2.17		3.99
iximum Least	0	0,	D.)(.03)			23.5 27.4		1.17	2.17		3. <i>35</i> 4.59
efficient of Va	•	Trange				11.1%		4.3%	1.4%		8.4%
w Irrigated: ngicide: rbicide: secticide: rvested:	Ten oz. Incorpo r a	and July 17. Du-Ter spra ated with cul for control o	tivator 1.2	e 27, Jul 25 lb. tri	fluralin N	Iay 13.		2. Benlate sp and August 2			3.
ngicide: rbicide: secticide: rvested: Topdressed a Sodium nitrat Ammonium s	Ten oz. Incorpor Sprayed i October all plots wit te used as ulphate use	nd July 17. Du-Ter spra ated with cul for control o 30. th 10 lbs. ni source of nite ed as source	yed on Jun tivator 1.2 of garden fl trogen at ti crogen. of nitrogen	e 27, Jul 25 lb. tri eahopper ime of pl n. Amm	fluralin M s August anting and onium nit	Iay 13. 12 (Sevin 3)	2 lbs ai) 0+2B (N- e of nitr	and August 3 +P ₂ ⁰ ⁵ +K ₂ ⁰⁺ H ogen for all	27 (Dylox 1. 	5 lb ai). Tay 6.	3.
ngicide: rbicide: secticide: rvested: Topdressed a Sodium nitrat	Ten oz. Incorpora Sprayed f October a ulptots wit te used as ulphate use w Multiple To detern be applie in the sea Land was Land was	and July 17. Du-Ter spra ated with cul for control of 30. th 10 lbs. ni source of nife d as source Range Test: mine rate of d in one ope ason. s prepared as s shaped into	yed on Jun tivator 1.2 f garden fl trogen at t: rrogen. of nitroger nitrogen r ration, eitl nd shaped : b beds by u	e 27, Jul 25 lb. tri eahopper ime of pl n. Amm ollowed b equired f her prepl into beds se of rote	fluralin M rs August anting and onium nit y same le for high y lant or at during th pr-tiller.	fay 13. 12 (Sevin 2 d 0+100+10 rate source telds of high time of pla me fall seas Beets we	2 lbs ai) 0+2B (N e of nitr not signi gh qualit anting or son of 19 re fertil	and August : + $P_2 0_5 + K_2 0 + H$ ogen for all ficantly differ y sugar beet r is it desira 68. Beds we ized after er	27 (Dylox 1. Boron) on M other treatr rrent (.05). s. To deter ble to apply ere rolled b nergence ac	5 lb ai). ay 6. nents. rmine if al part of the efore plan ecording to	l nitrogen can e nitrogen later ting this spring p treatments
ngicide: rbicide: secticide: rvested: Topdressed a Sodium nitrat Ammonium s Duncan's New BJECTIVE:	Ten oz. Incorpora Sprayed f October a ulphots wit te used as a ulphate used w Multiple a To detern be applie in the sea Land was as listed spot was of applic; analysis Yields in	and July 17. Du-Ter spra ated with cul for control of 30. th 10 lbs. ni source of nite d as source Range Test: mine rate of d in one ope ason. s prepared a s shaped into above. At a controlled b ation. Sugar were made. excess of 2	yed on Jun tivator 1.2 f garden fl trogen at tr rogen. of nitrogen Results fo nitrogen r ration, eith nd shaped : beds by u hinning tri y periodic r beets wer 0 tons per	e 27, Jul 25 lb. tri eahopper ime of pl n. Amm bllowed b equired f her prepl into beds se of roto fluralin spraying re harves acre wer	fluralin M rs August anting and onium nit y same le for high y lant or at during th for -tiller. was applia g of a fung ited, yield	fay 13. 12 (Sevin 2 12 (Sevin 2 12 (Sevin 2 13 (Sevin 2 14 (Sevin 2 15 (Sevin	2 lbs ai) 	and August : + $P_20_5+K_20+H$ ogen for all ficantly differ y sugar beet r is it desira 68. Beds we ized after er d into the soj	27 (Dylox 1. Boron) on M other treatment (.05). s. To deter ble to apply ere rolled b nergence ac 1 with the r pplied as new ed from whith the highest yith	5 lb ai). ay 6. ments. rmine if al part of the cording to otary culti eded by the ch sugar a ield (32.5	l nitrogen can e nitrogen later ting this spring treatments vator. Leaf e row method nd purity tons) was

THE EFFECT OF SOIL FERTILITY TREATMENTS ON YIELDS AND QUALITY OF SUGAR BEETS - 1969 PORTAGEVILLE FIELD - CLAY SOIL

Soil Test	t (1969)	O. M.	$P_{2}^{0}_{5}$	К	Mg.	Ca	$\mathbf{p}\mathbf{H}$	н	C.E.C.	Soil Ser	ies
Тој	psoil	2.3	320	410	260	3400	5.5	2.5	12.5	Tiptonv	ille
Sub	osoil	2.1	160	220	340	4000	5.3	4.0	15.5		
,	Soil Trea	tment $\frac{1}{}$						-			
Pour	nds of Nitro	gen Per Ac	re								
Sidedress Ma			idedress		Beets H	arvested/1	100 Ft.	% Sugar	Juice P	urity %	Yield Tons/
0						138 b ^{4/}		17.4 $a^{4/}$	94.4 $a^{4/2}$	/	$10.9 c^{4/}$
75						138 b 147 ab		17.4 a 17.3 a	94.4 a 94.7 a		10.9 C- 14.2 b
150						151 ab		16.6 abc	94.1 a		14.2 D 18.7 a
75		75-June	27			154 ab		16.0 bcd	93.0 ab		19.6 a
225			-			159 ab		15.6 cd	92.9 ab		18.9 a
75		75-June	27 - 75-Aug	gust 4		162 a		15.1 d	91.9 b		18.4 a
150				5		163 a		17.0 ab	93.4 ab		17.3 ab
75 + 8 Tons I	Fine Lime	75-Augus	st 1			154 ab		16.6 abc	94.2 a		16.9 ab
150		0				155 ab		16.1 abcd	93.3 ab		16.5 ab
150 + 200 lbs.	Salt					158 ab		16.6 abc	93.3 ab		19.3 a
inimum Least	Significant	Range(L.S.	D.)(.05)			18.1		1.15	1.85		3.08
aximum Least	-					21.1		1.34	2.15		3.58
efficient of Va	riance	U U				8.1%		4.8%	1.4%		12.4%
anted: ow Irrigated: ungicide: orbicide: secticide:	Variety – June 14; , Ten oz. 1 Incorpora Sprayed f	ted with cul or control o	August 4, 1 wed on Jun ltivator 1 lk	.5; Septe e 27; Jul o. triflu	ly 11, 28; ralin May	14.		x oz. Benlate		•	
anted: ow Irrigated: ingicide: rbicide: secticide: urvested:	Variety – June 14; , Ten oz. I Incorpora Sprayed f November	July 3, 17; Du-Ter spra tted with cul or control o r 3.	August 4, 1 Lyed on Jun ltivator 1 lk of garden fl	5; Septe e 27; Jul o. triflun eahoppen	ly 11, 28; ralin May rs August	14. 12 (Sevin :	2-1/2 lbs	5. ai) and Au	gust 27 (Dyl	.ox 1.5 lb	. ai).
anted: ow Irrigated: ungicide: orbicide: secticide:	Variety - June 14; d Ten oz. I Incorpora Sprayed f November oadcast pre- ng. e used as s	July 3, 17: A Du-Ter spra ated with cul or control o r 3. eplant and di source of nit	August 4, 1 ayed on Jun tivator 1 lk of garden fl disc in befor crogen.	5; Septe e 27; Jul o. triflun eahoppen re beddin	y 11, 28; ralin May rs August ng 0+100+1	14. 12 (Sevin : .00+2B (N+	2-1/2 lbs $P_2^{0}{}_{5}^{+}K_2^{-}$	5. ai) and Au 0+Boron). 7	gust 27 (Dyl	ox 1.5 lb	. ai).
anted: www.irrigated: mgicide: rbicide: secticide: rvested: Fertilizer bre before breaki Sodium nitrat	Variety - June 14; a Ten oz. I Incorpora Sprayed f November oadcast pre- ng. e used as s ulphate use To deterr	July 3, 17: A Du-Ter spra atted with cul or control of r 3. eplant and di source of nit d as source nine rate of d in one ope	August 4, 1 yed on Jun ltivator 1 ll of garden fl disc in befor crogen. of nitrogen nitrogen r	5; Septe e 27; Jul o. triflun eahoppen re beddin n. Amm equired	y 11, 28; ralin May rs August ag 0+100+1 nonium nit	14. 12 (Sevin : .00+2B (N+ rate sourc ields of hig	2-1/2 lbs $P_2 0_5 + K_2$ e of nitr gh qualit	s. ai) and Au 0+Boron). 7 ogen for all o y sugar beets	gust 27 (Dyl Swo ton calc other treatm	ox 1.5 lb itic limes nents. mine if a	. ai).
anted: w Irrigated: mgicide: rbicide: secticide: urvested: Fertilizer bro before breaki Sodium nitrat Ammonium su	Variety - June 14; a Ten oz. I Incorpora Sprayed f November oadcast pre ng. e used as s ulphate use To deterr be applied in the sea Limeston spaced 26 gence acc with the c needed by	July 3, 17: A Du-Ter spra atted with cul or control or r 3. eplant and di source of nit d as source mine rate of d in one ope ison. e, phosphat cording to tr cultivator.	August 4, 1 yyed on Jun ltivator 1 lk of garden fl isc in befor crogen. of nitrogen nitrogen r ration, eith e, potash a use of bed s reatments a Leaf spot v ethod of app	5; Septe e 27; Jul o. triflun eahoppen re beddin n. Amm equired ner prep and boror shaper. is listed vas contri oblication	y 11, 28; ralin May rs August g 0+100+1 onium nit: for high y lant or at n were app Beets we above. A colled by p . Sugar b	14. 12 (Sevin : .00+2B (N+ rate sourc ields of hig time of pla- plied broad re planted t thinning periodic sp	2-1/2 lbs P205+K2 e of nitr gh qualit, anting or lcast and on top o triflural oraying o	s. ai) and Au 0+Boron). T ogen for all o y sugar beets is it desiral disc into the f the beds. I in was applie f a fungicide	gust 27 (Dyl wo ton calc other treatm s. To deter ble to apply e soil. Land Beets were f d and incorp . Irrigation	ox 1.5 lb itic limes ments. mine if a part of th d was sha fertilized porated in water w	. ai). stone applied Il nitrogen car le nitrogen lato uped into beds after emer-

THE EFFECT OF SOIL FERTILITY TREATMENTS ON YIELDS AND QUALITY OF SUGAR BEETS - 1969 PORTAGEVILLE FIELD - LOAM SOIL

THE EFFECT OF SOIL FERTILITY TREATMENTS ON YIELDS AND QUALITY OF SUGAR BEETS - 1969 CLARKTON FIELD

Soil Tes	t (1969)	O. M.	$P_{2}^{0}_{5}$	K	Mg.	Ca	pН	н	C.E.C.	Soil Ser	ies
	psoil osoil	1.3 0.8	326 80	220 160	220 280	1300 700	5.7 4.8	2.0 3.0	6.5 6.0	Beulah	
	Soil Trea	tment ^{1/}									
Sidedress Ap	nus or mitro	gen Pel Ac	idedress		Beets H	[arvested/	100 Ft	% Sugar	Juice	Purity %	Yield Tons/A
			Jucuress		Dects II	$\frac{101 \text{ vested}}{95 \text{ a}^{\frac{4}{2}}}$	100 10.		93.8 a	and the second sec	5.8 d ^{$\frac{4}{}$}
0								16.0 bc $\frac{4}{}$			
75						91 a		15.7 bc	95.3 a		8.4 bcd
150		75 1	90			113 a		15.8 bc	95.2 a		13.8 a
75 225		75-June	20			109 a 101 a		15.8 bc 15.5 bc	95.6 a 94.8 a		8.1 bcd
75		75 - Juno	26 - 75-Au	met A		101 a 124 a		15.5 bc	94.8 a 94.8 a		10.3 abcd
150		15-Julie	20 - 75-Au	gust 4		124 a 115 a		15.3 c	94.8 a 94.9 a		12.2 abc 13.1 ab
75 + 8 Tons	Fine Lime	75-Augus	et 4			115 a 116 a		16.4 ab	94.9 a 95.3 a		6.4 d
150	rine Linie	15 Mugu	56 -1			117 a		15.8 bc	95.3 a		10.6 abed
150 + 200 lbs.	Salt					104 a		17.1 a	95.3 a		7.5 ed
									00.0 u		1.5 cu
nimum Least	-		D.)(.05)			30.1		0.84	1.87		4.55
aximum Least	•	Range				34.5		0.97	2.15		5.22
efficient of Va	ariance					16.2%		3.1%	1.2%		27.6%
rinkler Irriga ngicide: rbicide: secticide: rvested: Two tons of topdressed	Ten o Incor None Nove	mber 11.	sprayed of 4 lb. triflux 1 0+100+100	n June 26 ralin May	3; July 10, y 15 with	, 23; Augu rotary cul	st 5: Th tivator.	and disc bef			
ngicide: rbicide: secticide: rvested: Two tons of topdressed Sodium nitr Ammonium	Ten o Incor None Nove calcitic lin on all plots ate used as sulphate u	bz. Du-Ter porated 3/4 mber 11. nestone and at planting source of r sed as sour	sprayed of 4 lb. triflux l 0+100+100 hitrogen. rce of nitro	n June 26 ralin May)+2B (N+) gen. An	3; July 10, y 15 with $P_2^{0}5^{+}K_2^{0}$, 23; Augu rotary cul +Boron) bi nitrate sou	st 5: Th tivator. coadcast urce of n	ree lbs. Mai	ore bedding 11 other tre	g. Ten lbs patments.	
ngicide: rbicide: secticide: rvested: Two tons of topdressed Sodium nitr Ammonium	Ten o Incor None Nove Calcitic lin on all plots rate used as sulphate u ew Multiple To determ	porated 3/4 mber 11. mestone and at planting source of r sed as sour Range Tes nine rate of d in one ope	sprayed of 4 lb. triflux 1 0+100+100	n June 26 ralin May)+2B (N+) gen. An followed required	B; July 10, y 15 with $P_2^{0}{}_5^{+}K_2^{0}$ mmonium by same for high y	, 23; Augu rotary cul + Boron) bi nitrate sou letters ar rields of hi	st 5: Th tivator. coadcast urce of n e not sig gh qualit	ree lbs. Man and disc bef itrogen for a nificantly dif	ore bedding 11 other tre ferent (.05 s. To dete	g. Ten lbs eatments.).	
ngicide: rbicide: secticide: rvested: Two tons of topdressed Sodium nitr Ammonium Duncan's No	Ten of Incor None Nove calcitic lin on all plots rate used as sulphate u ew Multiple To detern be applied in the sea Limeston use of a b the beds 3 trifluralin of a fungi harvested	 bu-Ter porated 3/4 mber 11. mestone and at planting source of a sour Range Tes source of a sour Range Tes source of a in one operson. e, phosphat ed shaper. 26" apart. n was applied cide. Irrigil, yields det 	sprayed of 4 lb. triflux 1 0+100+100	p+2B (N+) gen. An followed required her prep and boron e permit e fertiliz rporated r was app samples	B; July 10, y 15 with $P_2^{0}{}_5^{+}K_2^{0}$ mmonium i by same for high y lant or at n were app ted to set ed after e into the so plied as mobtained	, 23; Augu rotary cul + Boron) br nitrate sou letters ar rields of hi time of pl plied broa tle approx mergence soil with th eeded by t from whic	st 5: Th tivator. roadcast ince of n e not sig gh qualit anting on dcast and imately s accordin he cultiva he sprink h sugar a	and disc bef itrogen for a nificantly dif y sugar beet r is it desira d disc into th six weeks aft ng to treatme tor. Leaf s der method	ore bedding ll other tre ferent (.05 s. To dete ble to apply e soil. La: er which be ents as liste pot was cor of applicati- alysis were	g. Ten lbs eatments.). ermine if al y part of th nd was sha eets were p ed above. atrolled by on. Sugar e made. A	. nitrogen Il nitrogen can e nitrogen later ped into beds b planted on top o At thinning periodic spray
ngicide: arbicide: secticide: arvested: Two tons of topdressed Sodium nitr Ammonium Duncan's Ne BJECTIVE:	Ten of Incor None Nove calcitic lin on all plots ate used as sulphate u ew Multiple To detern be applied in the sea Limeston use of a b the beds 2 trifluralin of a fungi harvested was made Sugar bee nematode totaling 1	 bu-Ter porated 3/4 mber 11. mestone and at planting source of r sed as sour Range Tes source of the s	sprayed of 4 lb. triflu 1 0+100+100	an June 26 ralin May D+2B (N+) gen. An followed required her prep and boron e permit e fertiliz rporated r was app samples in yield a soil wer ag capaci with addi	B; July 10, y 15 with $P_2^{0}{}_5^{+}K_2^{0}$ mmonium by same for high y lant or at n were apy ted to set ed after ed into the solution obtained and quality e below w ty of this itional lim	+ Boron) by hitrate sou letters are rields of hi time of pl plied broat the approx emergence soil with the eeded by the from which y of the be what would soil have mestone pro-	st 5: Th tivator. coadcast ince of n e not sig gh qualit anting on dcast and imately s accordin he cultiva he sprint h sugar a ets due t be accep contribut oduced th	ree lbs. Man and disc bef itrogen for a nificantly dif y sugar beet r is it desira d disc into th six weeks aft ag to treatme ator. Leaf s cler method and purity an	ore bedding ll other tree ferent (.05 s. To dete ble to apply e soil. La: er which be ents as liste pot was cor of applicati- alysis were or an early mercial pr- y yields. T yield in 19	g. Ten lbs eatments.). ermine if al y part of th nd was sha eets were p ed above. htrolled by on. Sugar e made. A harvest. oduction. The split ap 68. The hi	. nitrogen Il nitrogen can e nitrogen late. ped into beds b planted on top o At thinning periodic spray beets were later harvest Root-knot plication

IRRIGATION AND WATER PENETRATION TESTS ON SUGAR BEETS - 1969	
PORTAGEVILLE - LOAM SOIL	

Soil Treatment	Beets Harvested/100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
S	OIL TREATMENT X IRRIGA	TION		
W IRRIGATED	= /	5/	5/	5/
1/2/ 1 Ton Sewerage Sludge	129 d ^{$\frac{5}{}$}	14.9 ab ^{5/}	92.1 bc $\frac{5}{}$	24.1 $ab^{5/}$
1/2/4 Tons Sewerage Sludge	72 e	14.0 d	88.9 d	19.3 cd
1/2/2 Inches Clay Soil	152 bc	14.8 bc	92.3 abc	22.2 abcd
2/No Treatment	149 bcd	15.5 ab	93.5 a	22.7 abcd
3/No Treatment-3 seed per foot	195 a	15.7 a	92.7 abc	18.7 d
$2/\overline{4}/$ No Treatment-Chisel plow under row	146 bcd	15.6 ab	92.2 abc	20.8 abcd
RINKLER IRRIGATED				
1/2/1 Ton Sewerage Sludge	134 bed	14.1 cd	91.5 c	23.4 abc
1/2/4 Tons Sewerage Sludge	132 cd	12.9 e	89.5 d	24.4 a
1/ 2 Inches Clay Soil	147 bcd	15.1 ab	93.3 ab	22.9 abcd
No Treatment	156 b	15.2 ab	93.4 ab	22.2 abcd
3/No Treatment-3 seed per foot	206 a	15.2 ab	93.6 a	19.9 bcd
$2/\overline{4}/$ No Treatment-Chisel plow under row	146 bcd	15.5 ab	93.6 a	22.7 abcd
Minimum Least Significant Range(L.S.D.)(.05)	19.3	0.75	1.26	3.73
Maximum Least Significant Range	22.4	0.88	1.46	4.34
Coefficient of Variance	7.7%	3.0%	0.8%	10.0%
	TREATMENT MEANS			
1/2/1 Ton Sewerage Sludge	132 c	14.5 c	91.8 b	23.8 a
1/2/4 Tons Sewerage Sludge	102 d	13.4 d	89.2 c	21.9 ab
1/ 2 Inches Clay Soil	149 b	15.0 bc	92.8 a	22.6 a
No Treatment	152 b	15.4 ab	93.4 a	22.4 a
3/No Treatment-3 seed per foot	200 a	15.4 ab	93.2 a	19.3 b
2/4/No Treatment-Chisel plow under row	146 b	15.6 a	92.9 a	21.8 ab
Minimum Least Significant Range(L.S.D.)(.05)	13.6	0.53	0.89	2.64
Maximum Least Significant Range	15.2	0.60	1.00	2.95
Coefficient of Variance	7.7%	3.0%	0.8%	10.0'c
	IRRIGATION MEANS			
Row	141 a	15.1 a	91.9 a	21.3 a
Sprinkler	154 b	14.7 a	92.5 a	22.6 a
Coefficient of Variance	2.4%	14.7%	3.2%	25.3%

Planted: Variety - 66MSH2 on March 24.

Irrigated: June 5, 14, 19; July 4, 16; August 5; September 1 and 17.

Fertilizer: All plots 0+100+100 (N+P₂0₅+K₂0) broadcast and incorporated into bed, 40 lbs nitrogen topdressed April 16 and 100 lbs sidedressed July 1.
Fungicide: Ten oz. Du-Ter on June 27; July 11, 28; August 11, 26. Six oz. Benlate on September 12.
Herbicide: Incorporated 1 lb. trifluralin May 14.
Insecticide: Sprayed for control of garden fleahoppers August 12 (Sevin 2 lbs Ai) and August 26 (Dylox 1.5 lbs Ai).

Harvested: November 5.

1/ Soil treatment incorporated into bed.

2/ Seed planted at rate of 10 seed per foot and later thinned to 8 inches between plants.

3/ Three seed planted per foot and not thinned.

4/ Chisel plowed directly under each row.

5/ Duncan's New Multiple Range Test: Results followed by same letters are not significantly different (.05).

- OBJECTIVE: To determine a soil treatment method that would increase the rate of penetration of irrigation water into the loam soil and to determine the most effective method of irrigation on yield and quality of sugar beets.
- PROCEDURE: Various materials as listed in the above table were incorporated into the soil eight inches deep with a rotor-tiller. The plots were then shaped into beds and sugar beets planted on top of the beds. Trifluralin was incorporated into the soil after thinning to control leaf spot. The beets were harvested mechanically, yield determined, and samples obtained for sugar percentage and purity analysis.
- RESULTS: In 1969 there was indication that sprinkler irrigation was more effective but the increased yield was not statistically significant. In 1968 the sprinkler plots were heavily infested with leaf spot disease but in 1969 fungicide sprays were very effective in the control of this disease. The soil treatments applied this season did not increase yields and in some instances reduced the quality of the beets.

Soil Treatment	Beets Harvested/100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
Check	137 a	16.3 a	94.7 a	19.7 b
Deep Plowed 27" (1968)	140 a	15.7 a	92.7 a	23.3 b
Deep Plowed 27" (1968) + 2 Tons Limestone	141 a	15.5 a	93.6 a	28.6 a
Minimum Least Significant Range(L.S.D.)(.05)	16.3	1.21	2.87	4.87
Maximum Least Significant Range	16.7	1.23	2.92	4.97
Coefficient of Variance	5.2%	3.4%	1.4%	9.0%

THE EFFECT OF DEEP PLOWING AND LIMESTONE ON YIELD AND QUALITY OF SUGAR BEETS - 1969 PORTAGEVILLE FIELD - LOAM SOIL

Planted:	Variety - 66MSH2 March 15.
Irrigated:	June 6, 20; July 4, 16; August 6, 27; September 17.
Fertilizer:	0+100+100 (N+P205+K20) broadcast and disc in before bedding March 12: Forty lbs. N topdressed March 15 and
	April 17. One hundred lbs. N sidedressed July 1.
Fungicide:	Du-Ter 10 oz. (4.75 oz ai/A) June 27, July 29, August 12, 26. TBZ 10 oz (6.0 oz ai/A) July 11. Benlate 6 oz (3.0 oz ai/A) September 12.
Herbicide:	Incorporated 1 lb trifluralin/A May 14.
Insecticide:	Sprayed for control of garden fleahopper August 12 (Sevin 2 lb ai) and August 26 (Dylox 1.5 lb ai).
Harvested:	November 6.
OBJECTIVE:	To determine if sugar beet roots and irrigation water will readily penetrate a soil which has been plowed deep.
PROCEDURE:	In 1968 an area was plowed approximately 27 inches deep which increased the clay content of the surface soil. This soil has been very difficult to irrigate because of the slow penetration of the irrigation water when applied by the row method. Fertilizer, herbicides, and insecticide were applied at optimum rates.

RESULTS: Limestone in addition to the deep breaking increased the yield of beets 8.9 tons. Deep breaking alone increased yield 3.6 tons per acre. The yield of 28.6 tons per acre has been one of the highest yields obtained on this soil type.

Breaking loam soil 27 inches deep at the Delta Center near Portageville, Missouri

Inches	th Plant Spacing Within Row Inches	Beets Harvested/100 Ft.	% Sugar	Juice Purity %	Yields Tons/
		ROW WIDTH X PLANT SPA			
1.00		$\frac{100 \text{ widdle A 1 min of A}}{106 \text{ b}^{\frac{1}{2}}}$	13.9 b ^{1/}	90.8 b ^{1/}	37.3 a ^{1/}
26	12				
	8	131 ab	14.7 a	92.0 ab	32.3 ab
	6	150 ab	14.6 ab	92.2 a	32.5 ab
30	12	128 ab	14.7 a	92.2 a	27.3 b
	8	138 ab	14.1 ab	91.5 ab	30.8 ab
	6	163 a	14.1 ab	91.8 ab	32.0 ab
Minimum Least	t Significant Range(L.S.D.)(.05)	45.4	0.68	1.13	7.30
Maximum Leas	t Significant Range	50.1	0.75	1.24	8.06
Coefficient of V	Variance	21.7%	3.1%	0.8%	14.8%
		ROW WIDTH MEANS			
26		128 a	14.4 a	91.7 a	34.0 a
30		142 a	14.3 a	91.9 a	30.0 b
30		142 a	14.5 a	51.5 a	30.00
Coefficient of V	Variance	13.0%	5.0%	0.5%	7.9%
		PLANT SPACING MEANS	5		
12		117 b	14.3 a	91.5 a	32.3 a
3		134 ab	14.4 a	91.8 a	31.5 a
6		157 a	14.3 a	92.0 a	32.2 a
				0.80	
	t Significant Range(L.S.D.)(.05)	32.1	0.48		5.16
Coefficient of V	t Significant Range	$\begin{array}{c} \textbf{33.6} \\ \textbf{21.7\%} \end{array}$	$\begin{array}{c} 0.50 \\ \mathbf{3.1\%} \end{array}$	0.84 0.8%	$5.41 \\ 14.8\%$
Planted:	Variety - 66MSH2 March 17.				
	June 11, 17.				
Irrigated:	June 11, 17. Forty lbs. nitrogen topdressed	March 17. 0+100+100+2B (N-	+P ₂ 0 ₅ +K ₂ 0+Bo	ron) topdressed May 6	6. 100 lbs nitroge
Irrigated: Fertilizer:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26.				
Irrigated: Fertilizer: Fungicide:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July	29, September 12. Ten oz.			
Irrigated: Fertilizer: Fungicide: Herbicide:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1-	7 29, September 12. Ten oz. 1/4 lbs trifluralin May 13.	Du-Ter spray	ed on June 30, July 11	
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1– Sprayed for control of garden fi	7 29, September 12. Ten oz. 1/4 lbs trifluralin May 13.	Du-Ter spray	ed on June 30, July 11	
rrigated: Fertilizer: Fungicide: Herbicide: Insecticide:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1-	7 29, September 12. Ten oz. 1/4 lbs trifluralin May 13.	Du-Ter spray	ed on June 30, July 11	
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1– Sprayed for control of garden fi	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2	Du-Ter spray	ed on June 30, July 11 Igust 27 (Dylox 1-1/2	
	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fi October 30.	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters as	Du-Ter spray lbs Ai) and Au re not significa	ed on June 30, July 11 Igust 27 (Dylox 1-1/2 Antly different (.05).	lbs Ai).
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fi October 30.	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 oblowed by the same letters a sugar beet row and plant spa	Du-Ter spray lbs Ai) and Au re not signification	ed on June 30, July 11 Igust 27 (Dylox 1-1/2 Antly different (.05).	ubs Ai).
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: 1/ Duncan's Ne OBJECTIVE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fr October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 oblowed by the same letters as sugar beet row and plant spa t to keep the row spacing with	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility	ed on June 30, July 11 ngust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm	lbs Ai). quality. Howeve nent.
Errigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: 1/ Duncan's Net OBJECTIVE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fi October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 oblowed by the same letters a sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility r beets were p	ed on June 30, July 11 Igust 27 (Dylox 1-1/2 Intly different (.05). num yield and highest of present day equipm lanted on a flat seed b	 lbs Ai). quality. Howeve nent. ped in row spacin
rrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: 	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fr October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters as sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility r beets were p pacing within t	ed on June 30, July 11 Igust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm lanted on a flat seed b he row. The herbicid	ulbs Ai). quality. Howevenent. ped in row spacin le trifluralin was
rrigated: Fertilizer: Fungicide: Herbicide: nsecticide: Harvested: / Duncan's Ne DBJECTIVE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden f October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility r beets were p pacing within t igation water v	ed on June 30, July 11 Igust 27 (Dylox 1-1/2 untly different (.05). num yield and highest of present day equipm lanted on a flat seed b he row. The herbicid a s applied as needed.	ulbs Ai). quality. Howeve nent. ped in row spacin le trifluralin was Fungicide was
rrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: // Duncan's Net DBJECTIVE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fi October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 oblowed by the same letters at sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr yent leaf spot. The beets wer	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility r beets were p pacing within t igation water v	ed on June 30, July 11 Igust 27 (Dylox 1-1/2 untly different (.05). num yield and highest of present day equipm lanted on a flat seed b he row. The herbicid a s applied as needed.	uality. Howeve nent. bed in row spacing trifluralin was Fungicide was
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: 1/ Duncan's Ne OBJECTIVE: PROCEDURE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fi October 30. w Multiple Range Test: Results fo To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev for sugar percentage and purity	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a: sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr yent leaf spot. The beets wer analysis.	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility r beets were p pacing within t igation water v e harvested, y	ed on June 30, July 11 agust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm alanted on a flat seed b he row. The herbicid as applied as needed. ields determined, and	quality. Howeve ent. bed in row spacing the trifluralin was Fungicide was d samples obtaine
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: <u>1</u> / Duncan's Ne	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden fi October 30. w Multiple Range Test: Results fo To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev for sugar percentage and purity Narrow rows were not practical	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a: sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr. yent leaf spot. The beets wer analysis. with the size tires of tractors	Du-Ter spray lbs Ai) and Au re not significa cing for maxir in practibility r beets were p pacing within t igation water v e harvested, y s used in mode	ed on June 30, July 11 agust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm alanted on a flat seed b he row. The herbicid as applied as needed. ields determined, and rn agriculture. These	quality. Howeve ent. bed in row spacin le trifluralin was Fungicide was d samples obtaine e data obtained
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: 1/ Duncan's Ne OBJECTIVE: PROCEDURE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden for October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev for sugar percentage and purity Narrow rows were not practical from the soil above indicate that	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a: sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr. yent leaf spot. The beets wer analysis. with the size tires of tractors the 26 inch rows produced the	Du-Ter spray lbs Ai) and Au re not significa cing for maxin in practibility r beets were p pacing within t igation water v e harvested, y s used in mode e higher yields	ed on June 30, July 11 agust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm blanted on a flat seed b he row. The herbicid as applied as needed. fields determined, and rn agriculture. These s of the two row widths	quality. Howeve ent. bed in row spacin le trifluralin was Fungicide was d samples obtained s tested. The
rrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: L/ Duncan's Ne OBJECTIVE: PROCEDURE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden for October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev for sugar percentage and purity Narrow rows were not practical from the soil above indicate that 30 inch rows would be the more	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a: sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr. yent leaf spot. The beets wer analysis. with the size tires of tractors the 26 inch rows produced the ideal spacing as far as machine	Du-Ter spray lbs Ai) and Au re not signification cing for maximin practibility r beets were provide the system of the system is pacing within the system of	ed on June 30, July 11 agust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm planted on a flat seed b he row. The herbicid as applied as needed. fields determined, and rn agriculture. These s of the two row widths erned but the quality a	quality. Howeve ent. bed in row spacin le trifluralin was Fungicide was d samples obtained s tested. The
Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: 1/ Duncan's Ne OBJECTIVE: PROCEDURE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden for October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev for sugar percentage and purity Narrow rows were not practical from the soil above indicate that	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a: sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr. yent leaf spot. The beets wer analysis. with the size tires of tractors the 26 inch rows produced the ideal spacing as far as machine	Du-Ter spray lbs Ai) and Au re not signification cing for maximin practibility r beets were provide the system of the system is pacing within the system of	ed on June 30, July 11 agust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm planted on a flat seed b he row. The herbicid as applied as needed. fields determined, and rn agriculture. These s of the two row widths erned but the quality a	ulbs Ai). quality. Howeven nent. ped in row spacin, le trifluralin was Fungicide was d samples obtained s tested. The
rrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested: L/ Duncan's Ne OBJECTIVE: PROCEDURE:	June 11, 17. Forty lbs. nitrogen topdressed sidedressed May 26. Six oz. Benlate sprayed on July Incorporated with cultivator 1- Sprayed for control of garden for October 30. w Multiple Range Test: Results for To determine the most desirable it was desired in this experiment Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to prev for sugar percentage and purity Narrow rows were not practical from the soil above indicate that 30 inch rows would be the more	29, September 12. Ten oz. 1/4 lbs trifluralin May 13. leahoppers August 12 (Sevin 2 ollowed by the same letters a: sugar beet row and plant spa t to keep the row spacing with t and disc into the soil. Suga nts were thinned to desired sp soil at time of thinning. Irr yent leaf spot. The beets wer analysis. with the size tires of tractors the 26 inch rows produced the ideal spacing as far as maching Plant spacing did not signifi	Du-Ter spray lbs Ai) and Au re not signification cing for maximin practibility r beets were propacing within t igation water we harvested, y s used in mode e higher yields nery was conce- cantly affect th	ed on June 30, July 11 agust 27 (Dylox 1-1/2 antly different (.05). num yield and highest of present day equipm lanted on a flat seed b he row. The herbicid as applied as needed. ields determined, and rn agriculture. These of the two row widths erned but the quality a he results.	upuality. Howeve ent. bed in row spacin the trifluralin was Fungicide was d samples obtained s tested. The and yield of the

THE INFLUENCE OF ROW AND PLANT SPACING ON SUGAR BEET YIELDS AND QUALITY - 1969 PORTAGEVILLE FIELD - CLAY SOIL

THE INFLUENCE OF ROW WIDTH AND PLANT SPACING ON SUGAR BEET YIELDS AND QUALITY - 1969 PORTAGEVILLE FIELD - LOAM SOIL

Single Row Wid		D	(1) 0		
Inches	Inches	Beets Harvested/100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
		ROW WIDTH X PLANT SPA		. /	,
26	12	106 c ^{1/}	15.4 $ab^{1/2}$	91.9 bc ^{1/}	24.0 $a^{1/2}$
	8	150 b	15.8 ab	92.6 ab	23.4 a
	6	167 a	16.0 a	93.2 a	23.4 a
30	12	105 c	14.4 d	90.5 d	23.2 a
	8	145 b	15.2 bc	92.7 ab	22.3 a
	6	168 a	14.6 cd	90.7 cd	21.5 a
Minimum Leas	t Significant Range(L.S.D.)(.05)	14.2	0.76	1.17	3.49
Maximum Leas	st Significant Range	15.7	0.84	1.29	3.85
Coefficient of V	Variance	6.6%	3.2%	0.8%	9.9%
		ROW WIDTH MEANS			
26		141 a	15.7 a	92.6 a	23.6 a
30		139 a	14.7 b	91.3 b	22.3 a
Coefficient of V	Variance	2.5%	1.5%	1.1%	6.3%
coefficient of t	ur funce	PLANT SPACING MEAN		1.1 <i>/</i> C	0.07
12		105 e	14.9 b	91.2 b	23.7 a
8		147 b	15.5 a	92.7 a	23.3 a
6		167 a	15.3 ab	92.0 ab	21.9 a
Minimum Leas	t Significant Range(L.S.D.)(.05)	10.0	0.54	0.83	2.47
	st Significant Range	10.5	0.56	0.87	2.59
Coefficient of V	Variance	6.6%	3.2%	0.8%	9.9%
Planted: Irrigated: Fertilizer: Fungicide: Herbicide: Insecticide: Harvested:	Variety - 66MSH2 March 17. June 5, 20: July 4, 17: August $100+100+100+2B$ (N ⁺ P $_{2}0_{5}$ ⁺ K $_{2}0^{+}$ dressed July 1. Ten oz. Du-Ter on June 20: Au Incorporated with cultivator 11 Sprayed for control of garden f November 5.	Boron) broadcast and incorpo agust 12, 27: Six oz. Benlate b trifluralin May 14.	on July 29 and	September 12.	
<u>1</u> / Duncan's Ne	ew Multiple Range Test: Results f	ollowed by the same letters a	re not significa	ntly different (.05).	
OBJECTIVE:	To determine the most desirable it was desired in this experimen		-		
PROCEDURE:	Preplant fertilizer was broadcas as listed in the above table. Pla applied and incorporated into the applied during the season to pre- for sugar percentage and purity	nts were thinned to desired sp e soil at time of thinning. Irr vent leaf spot. The beets wer	acing within th igation water w	e row. The herbicide as applied as needed.	e trifluralin was Fungicide was
RESULTS:	Narrow rows were not practical from the soils above indicate The 30 inch rows would be the m of the beets were reduced on loa within the row. Percent sugar a	e that the 26 inch rows produc lore ideal spacing as far as m m soils. There was no signif	ed the higher y achinery was c icant difference	ields of the two row w oncerned but the quali e in yield between plan	vidths tested. ity and yield
4	In harvesting the 6 inch plant spa	aced plots that many beets we	re too small to	be harvested by the n	nechanical

Tons P	Soil Treatment er Acre of Sewerage Sludge	Beets Harvested/100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
	None	147 a	13.1 a	92.9 a	17.1 bc
	1	136 a	12.3 b	92.6 a	14.7 c
	2	124 a	12.4 ab	91.8 a	19.8 abc
	4	125 a	11.4 d	92.0 a	18.9 abc
	8	131 a	13.1 a	89.1 b	20.2 ab
	16	143 a	11.6 cd	88.6 b	22.9 a
	32	131 a	12.2 bc	87.7 b	22.2 ab
Minimum Least	Significant Range(L.S.D.)(.05)	24.2	0.66	1.35	5.0
Maximum Least	Significant Range	27.6	0.75	1.54	5.7
Coefficient of Va	ariance	15.3%	4.6%	1.3%	21.8 ¹
Plan t ed:	March 15 66MSH2				
Row Irrigated:	June 5, 13; July 3, 15, 21; Aug	just 4, 27; September 17.			
Fertilizer:	$100+100+100+2B$ (N+P $_{2}0_{5}+K_{2}0+2$	Boron) March 12 disc in befor	e bedding. 100	0 lb N sidedressed Ju	ly 1.
Fungicide:	Du-Ter 10 oz/A (4.75 oz ai) Ju				
Herbicide:	Incorporate 1 lb trifluralin/A M	May 14.			
Insecticide:	Sprayed for garden fleahopper	August 12 (Sevin 2 lb ai/A) and	d August 26 (Dy	$\sqrt{1.5 \text{ lb ai}/A}$.	
Harvested:	November 5.				
OBJECTIVE:	To determine the effectiveness water.	of sewerage sludge on produc	tion of sugar b	eets and the penetrati	on of irrigation
PROCEDURE:	Sewerage sludge was applied br fertilizer was broadcast on all single row of beets planted on t spot disease was controlled by season. The beets were harves	plots before bedding in the spi op of the row. Irrigation wate periodic spraying of a fungicio	ring. Beds we er was applied de. Insects we	re spaced on 26 inch o as needed by the row are controlled as requ	center and a method. Leaf ired during the
				mpared to chemical f	

THE INFLUENCE OF DRIED SEWERAGE SI	LUDGE ON SUGAR BEETS - 1969	
PORTAGEVILLE FIELD	- LOAM SOIL	

	Crop Sequence		an a sum and a sum and as a family sum as a sum of the	Sugar Beet	Data 1969	
First Year	Second Year	Third Year Be	ets Harvested/100 Ft.	% Sugar	Juice Purity %	Yield Tons/
		PORTAC	<u>GEVILLE FIELD - CLAY</u>	SOIL		
Sugar Beets	Cotton	Soybeans	121 a	14.8 a	93.1 a	16.8 a
Sugar Beets	Corn to Wheat	Wheat to Soybeans	111 a	15.4 a	93.4 a	14.0 a
Sugar Beets	Soybeans	Corn	118 a	15.2 a	94.2 a	17.2 a
Sugar Beets	Soybeans	Cotton	123 a	15.0 a	93.0 a	16.4 a
Minimum Le	east Significant Range	(L.S.D.)(05)	34.1	0.61	1.19	5.2
	east Significant Range		35.9	0.65	1.25	5.5
Coefficient o	• •		14.5%	2.0%		
coefficient o	or variance				0.6%	16.3 ^m /2
		PORTAC	EVILLE FIELD - LOAM	<u>I SOIL</u>		
Sugar Beets	Cotton	Soybeans	136 a	11.5 b	87.2 a	21.0 a
Sugar Beets	Corn to Wheat	Wheat to Soybeans	142 a	12.7 a	88.4 a	21.5 a
Sugar Beets	Soybeans	Corn	143 a	11.9 ab	89.6 a	21.7 a
Sugar Beets	Soybeans	Cotton	130 a	12.1 ab	86.8 a	21.5 a
Minimum Le	ast Significant Range	(L.S.D.)(.05)	14.2	0.82	4.74	4.23
Maximum Le	east Significant Range		14.9	0.87	4.99	4.45
Coefficient o			5.2%	3.4%	2.7%	9.9%
	Loam - June 4, 13;		st 4, 14; September 17.			
			ron) disc in before Marc	ch 20, 100 lb N	sidedressed July 1, 2	tons limestone
Fertilizer:	Clay - 100+100+10	$0+B (N+P_2 0_5 + K_2 0 + B c_3)$	fon also in before marc			
Fertilizer:	applied Mar	rch 17.				
Fertilizer:	applied Mar Loam – Sludge 2 tor	rch 17. n/A February 14, lim	nestone 2 ton/A March 1'	7, 100+100+10	0+B (N+P205+K20+Bor	
Fertilizer:	applied Mar Loam – Sludge 2 tor	rch 17.		7, 100+100+10	0+B (N+P205+K20+Bor	
	applied Mar Loam - Sludge 2 tor 100 lb N sid Clay - Du-Ter 10	rch 17. h/A February 14, lin dedress July 11. oz/A (4.75 oz ai) Jul				on) March 19.
	applied Man Loam - Sludge 2 tor 100 lb N sic Clay - Du-Ter 10 (3 oz ai) Se	rch 17. 2022 1/A February 14, lin dedress July 11. 02/A (4.75 oz ai) July ptember 12.	nestone 2 ton/A March 1' y 11, 29: August 11: 3 ll	o Manzate/A (2.4 lb ai/A) August 27	on) March 19. : 6 oz Benlate/A
Fertilizer: Fungicide:	applied Man Loam - Sludge 2 tor 100 lb N sic Clay - Du-Ter 10 (3 oz ai) Se	rch 17. 2022 1/A February 14, lin dedress July 11. 02/A (4.75 oz ai) July ptember 12.	nestone 2 ton/A March 1'	o Manzate/A (2.4 lb ai/A) August 27	on) March 19. : 6 oz Benlate/A
Fungicide:	applied Man Loam - Sludge 2 ton 100 lb N sid Clay - Du-Ter 10 (3 oz ai) Sej Loam - 10 oz TBZ	rch 17. 2022 n/A February 14, lim dedress July 11. oz/A (4.75 oz ai) July ptember 12. (6 oz ai) June 27: July	nestone 2 ton/A March 1' y 11, 29: August 11: 3 lk y 11: 10 oz Du-Ter (4.7	o Manzate/A (5 oz ai) July 2	2.4 lb ai/A) August 27 8; August 12.27:6 oz	on) March 19, : 6 oz Benlate/A 2 Benlate Septem
	applied Man Loam - Sludge 2 ton 100 lb N sid Clay - Du-Ter 10 (3 oz ai) Se Loam - 10 oz TBZ Clay - Pyramin Pl	rch 17. 2022 n/A February 14, lim dedress July 11. oz/A (4.75 oz ai) July ptember 12. (6 oz ai) June 27: July us 12 lb/A ai postem	nestone 2 ton/A March 1' y 11, 29: August 11: 3 ll	o Manzate/A (5 oz ai) July 2 14 1 lb/A trif.	2.4 lb ai/A) August 27 8; August 12.27:6 oz	on) March 19, : 6 oz Benlate/A 2 Benlate Septem
Fungicide: Herbicide:	applied Man Loam - Sludge 2 ton 100 lb N sid Clay - Du-Ter 10 (3 oz ai) Se Loam - 10 oz TBZ Clay - Pyramin Pl Loam - Incorporate	rch 17. 2022 n/A February 14, lin dedress July 11. oz/A (4.75 oz ai) July ptember 12. (6 oz ai) June 27: July us 12 lb/A ai postem id 1 lb trifluralin May	nestone 2 ton/A March 1 y 11, 29: August 11: 3 ll y 11: 10 oz Du-Ter (4.7 ergence 10'' band. May y 14 with rotor-cultivator	o Manzate/A (5 oz ai) July 2 14 1 lb/A trif r.	2.4 lb ai/A) August 27 8; August 12. 27: 6 oz luralin incorporated Ju	on) March 19, : 6 oz Benlate/A 2 Benlate Septem me 20.
Fungicide: Herbicide:	applied Man Loam - Sludge 2 ton 100 lb N sid Clay - Du-Ter 10 (3 oz ai) Se Loam - 10 oz TBZ Clay - Pyramin Pl Loam - Incorporate Clay - Sprayed for	rch 17. 2 5 2 h/A February 14, lin dedress July 11. oz/A (4.75 oz ai) July ptember 12. (6 oz ai) June 27: July us 12 lb/A ai postem id 1 lb trifluralin May control of garden fle	nestone 2 ton/A March 1' y 11, 29: August 11: 3 ll y 11: 10 oz Du-Ter (4.7 ergence 10'' band. May y 14 with rotor-cultivator eahopper August 12 (Sevi	o Manzate/A (5 oz ai) July 2 14 1 lb/A trif. r. n 2 lb/A ai) ar	2.4 lb ai/A) August 27 8; August 12. 27: 6 or luralin incorporated Ju	on) March 19, : 6 oz Benlate/A 2 Benlate Septem me 20.
Fungicide: Herbicide: Insecticide:	applied Man Loam - Sludge 2 tor 100 lb N sic Clay - Du-Ter 10 (3 oz ai) Se Loam - 10 oz TBZ Clay - Pyramin Pl Loam - Incorporate Clay - Sprayed for Loam - Sprayed for	rch 17. 2.6 2 1/A February 14, lin dedress July 11. oz/A (4.75 oz ai) July ptember 12. (6 oz ai) June 27: July us 12 lb/A ai postem d 1 lb trifluralin May control of garden fle garden fleahopper A	nestone 2 ton/A March 1 y 11, 29: August 11: 3 ll y 11: 10 oz Du-Ter (4.7 ergence 10'' band. May y 14 with rotor-cultivator	o Manzate/A (5 oz ai) July 2 14 1 lb/A trif. r. n 2 lb/A ai) ar	2.4 lb ai/A) August 27 8; August 12. 27: 6 or luralin incorporated Ju	on) March 19. : 6 oz Benlate/A 2 Benlate Septem me 20.
Fungicide:	applied Man Loam - Sludge 2 ton 100 lb N sid Clay - Du-Ter 10 (3 oz ai) Se Loam - 10 oz TBZ Clay - Pyramin Pl Loam - Incorporate Clay - Sprayed for	rch 17. 2.6 2 1/A February 14, lin dedress July 11. oz/A (4.75 oz ai) July ptember 12. (6 oz ai) June 27: July us 12 lb/A ai postem d 1 lb trifluralin May control of garden fle garden fleahopper A	nestone 2 ton/A March 1' y 11, 29: August 11: 3 ll y 11: 10 oz Du-Ter (4.7 ergence 10'' band. May y 14 with rotor-cultivator eahopper August 12 (Sevi	o Manzate/A (5 oz ai) July 2 14 1 lb/A trif. r. n 2 lb/A ai) ar	2.4 lb ai/A) August 27 8; August 12. 27: 6 or luralin incorporated Ju	on) March 19, : 6 oz Benlate/A 2 Benlate Septem me 20.

12.

THE INFLUENCE OF VARIOUS FIELD CROPS ON SUGAR BEETS IN A THREE YEAR ROTATION - 1969

and yield data obtained annually. RESULTS: The above data from the sugar beet crop was from the first year. Results will be of little value until the experiment has been in progress for several years.

WEED RESEARCH IN SUGAR BEETS

Harold D. Kerr

Weed control studies were conducted on Beulah sandy loam, Tiptonville silt loam, and Sharkey clay soils. Grass weeds were crabgrass, goosegrass, barnyard grass, and fall panicum on Tiptonville silt loam. Dicot weeds were redroot pigweed, lambsquarter, prickly sida, cocklebur, and smartweed. Weeds on the Sharkey clay site were mainly <u>Polygonum</u> species, knotweed and smartweed with purslane and barnyardgrass present at lower frequency. The Beulah sandy loam was infested with crabgrass and evening primrose with crabgrass being the main competitor.

Beulah loamy sand (Clarkton Farm)

This soil is infested with root knot nematodes. However, no nematocide was applied ahead of planting because of the possible effect on weed populations.

Data are summarized in Table 1. Early postemergence application of herbicides was superior to the preemergence application just after planting. This is a result of crabgrass being the abundant weed and it did not begin to germinate rapidly until mid-April about two weeks after the preemergence treatments were applied. Conversely, the postemergence application on April 15 when the sugar beets had developed 1 to 2 square inches of foliage surface caught the crabgrass seeds in the processes of germination and emergence. Soil moisture was not a directly limiting factor in the performance of herbicides applied at either date. Comparing BAS 2430 with pyrazon, BAS 2430 tended to control dicot weeds more effectively. Neither of these herbicides controlled crabgrass. Comparing preemergence treatments 1 through 7, crabgrass controlling effectiveness appeared to be related to the relative water solubility of the herbicide included in the mixture with pyrazon. Generally the more soluble compounds were less effective for control of crabgrass. Two pounds of CP 52223 applied preemergence controlled crabgrass much better than the one pound dose. One pound of CP 53619 was definitely inferior to CP 52223 at the same dosage applied postemergence.

Reduction of the stand of sugar beets was most severe following treatment 13, the combination of pyrazon plus dalapon at 2+3 lbs/A. The CP 52223 combined with pyrazon (treatment 14) reduced the stand compared to pyrazon alone.

Tiptonville silt loam (Delta Center Farm)

Two experiments were conducted on this soil type in 1969. One was a comparison of treatments for preemergence application at planting. A second experiment in the same area was an evaluation of treatments applied just after thinning for control of weeds for the remainder of the growing season.

Preemergence herbicide treatments in Table 2 were effective in reducing the initial infestation of weeds compared to cultivation alone. However, it was necessary to remove weeds by hoeing in late summer after the levels of herbicide residues remaining in the soil had been depleted below the amounts needed to control late germinating weeds. Combinations of TCA, dalapon. and siduron with pyrazon effectively controlled the early weed infestation with minimal injury of the seedling sugar beets. Treatment 15 in Table 2, pyrazon plus CP 52223 at 3+1.5 lb/A respectively, was nearly perfect for weed control but a temporary slight reduction in rate of sugar beet growth resulted. The sugar beets recovered from the temporary stunting within two weeks and grew normally thereafter.

Postemergence treatments after thinning time are shown in Table 3. All grasses and dicot weeds growing in the row were removed in thinning the sugar beets. Benzadox was applied in this experiment after the dicot weeds were emerging. Since dicot weeds were more prevalent than grasses in the plots at the time of treatment, application of benzadox at 1.5 to 2 lbs/A or BAS 2430 at 3 lbs/A resulted in higher yields of sugar beets. Grasses germinated in July after the plots had been irrigated twice. By then, the sugar beets had developed adequately to withstand competition from the grasses and differences among treatments in control of grasses were not apparent in the beet yields. Rotary hoeing favored germination of more weeds, treatments 31-34, and benzadox was the best herbicide treatment on plots that were rotary hoed.

Sharkey clay (Delta Center Farm)

Results are in Table 4. Smartweed and knotweed, <u>Polygonum</u> species were the most abundant weeds on this site in the spring. Other species such as purslane, prickly sida, and velvetleaf were present at much lower frequencies than the knotweed and smartweed. Sugar beet stands were quite variable in the studies conducted on the Sharkey clay and differences in populations from plot to plot were not significantly different. However, all stands were adequate for a normal population after thinning on May 3 following the counts. One beet plant in 8 inches of drill row (2 decimeters) was adequate.

The combination of BAS 2430 plus dalapon at 3+3 lbs/A, respectively or BAS 2430 alone or combined with TCA were the effective weed control treatments. At 4 or 5 lbs/A, CP 52223 controlled knotweed well.

Nitrogen applied as a spray over the drill row did not affect emergence and early growth of the beet seedlings. Sixty pounds of nitrogen per acre (treatment 30, Table 4) stimulated the beets to develop faster than those treated with only 30 lbs/A. Knotweed had started to germinate when these treatments were applied and a significant reduction of knotweed resulted from the 60 lbs/A of nitrogen. Only the newly emerged knotweed seedlings with poorly developed chlorophyll or green coloration were eliminated.

By 0469 Sugar beet plants in 10 meters of row and weed plants per square meter (row width = 2/3 meter = 26 inches)^{1/2}

			Plants Counted M	lay 1
Treatment ^{<u>a</u>/}	Lb/A, 40 gpa	Beets	Dicot	Grass
PREEMERGENCE March 31, 1969				
1. $pyrazon + TCA$	2+5	251	4	15
2. $pyrazon + propachlor$	2+3	283	4	16
3. $pyrazon + alachlor$	2+1	273	3	. 7
4. pyrazon + CP 53619	2+1	292	1	1
5. $pyrazon + CP 52223$	2+1	262	1	12
6. pyrazon + CP 52223	2+2	257	0	0
7. pyrazon + dalapon	2+3	252	3	45
8. cultivate timely	-	250	7	10
9. pyrazon	2	266	5	12
10. pyrazon	3	265	5	8
11. BAS 2430	2	248	1	4
12. BAS 2430	3	257	2	8
POSTEMERGENCE April 15, 1969				
13. pyrazon + dalapon	2+3	186	0	3
14. $pyrazon + CP 52223$	2+2	223	0	1
15. alachlor	1	267	1	1
16. CP 52223	1	265	0	0
17. CP 52223	2	242	4	4
18. CP 53619	1	287	20	10
LSD . 05, 50 df		42	· · · ·	
LSD .01, 50 df		55		

1/Crabgrass, Digitaria sanguinalis, and evening primrose, Oenothera laciniata, were the most frequent weeds.

 \underline{a} /The sugar beets were planted March 30, 1969. The timely cultivation (treatment 8) was done as needed up to May 20 when the experiment was terminated. The soil type is Beulah loamy sand.

Table 2

By 0569 Sugar beet plants in 10 meters of row and weed plants per square meter (row width = 2/3 meter = 26 inches)

				- /					Pl	ants Co	unted	May 20)	
Treatme	ent Appl	ed Pr	eemergen	ce April 17 ^{<u>a</u>/}		Lb/A, 40	gpa	Beets		Dicot			ras	s
		hlor				1.5		68		1			1	
	2. alac	hlor				2		59		1			0	
	3. CP	52223				1.5		82		1			1	
	4. CP	52223				3		99		0			1	
	5. CP	53619				1.5		92		1			2	
	6. CP	53619				2		102		3			4	
	7. Cyc	loate				2		105		1			2	
	8. Cyc	loate				3		117		. 0			6	
	9. pyr:	azon +	TCA			3+5		112		1			2	
. 1	10. pyr:	azon +	dalapon			3+3		119		1			7	
1	11. pyr:	azon +	siduron			3+4		121		1			3	
1	12. pyra	azon +	siduron			3+5		 101		1			2	
1	13. pyra	azon +	propachle	or		3+3		77		2		1	4	
1	14. pyr	azon +	alachlor			3+1.5		54		0			1	
1	15. pyr	azon +	CP 52223			3+1.5		91		0			0	
1	16. BAS	\$ 2430	+ alachlo	r .		3+1.5		68		0			0	
1	17. cult	ivated				- · · ·		111		19			86	
1	18. CP	52223			1.	3.5		 79		0			0	
. 1 .		LSI	0.05, 50	df				33						
		LSI	0.01, 50	df				43						

a/The sugar beets were planted in Tiptonville silt loam on Spril 16, 1969.

Bv 05a69 Yield and quality of sugar beets as affected by herbicides applied just after thinning the beets on Tiptonville silt loam $\frac{1}{2}$

Freatme	ent Applied May 5 After Thinning	Lb/A 40 gpa	Beet Yield Tons/A	Weight Grams/Beet	% Sugar	% Juice Purity	Estimated Sugar Tons/A
19.	benzadox	1.5	17.2	289	13.9	90.5	2.39
20.	benzadox	2.5	15.5	388	13.6	92.1	2.11
21.	pyrazon + dalapon	3+2	16.0	368	13.4	90.4	2.14
22.	BAS 2430 + dalapon	3+2	16.8	364	14.3	92.0	2.40
23.	BAS 2430 + benzadox	3+2	16.8	308	14.0	91.7	2.35
24.	dalapon + benzadox	2+2	12.3	298	14.0	92.2	1.72
25.	dalapon + endothall	2+1	14.8	293	13.6	90.4	2.01
26.	dalapon + benzadox + endothall	2+2+1	15.1	285	14.0	91.0	2.11
27.	BAS 2430 + nitralin	3+1	16.5	404	14.1	89.6	2.33
28.	BAS 2430 + DCPA	3+6	15.6	435	13.0	90.3	2.03
29.	BAS 2430 + bensulide	3+6	15.4	302	13.8	90.8	2.13
30.	Cultivated timely	-	13.4	328	14.3	92.0	1.92
31.	Rotary hoe + benzadox	2	17.3	352	14.2	91.6	2.46
32.	Rotary hoe + nitralin	1	13.7	328	14.0	90.5	1.92
33.	Rotary hoe + DCPA	6	11.9	344	13.5	92.5	1.61
34.	Rotary hoe + bensulide	6	12.4	252	14.2	91.8	1.76
35.	Delay first cultivation	-	11.0	292	14.6	92.0	1.61

1/The sugar beets were planted April 1, treated May 5, and harvested November 6, 1969.

Bv 0369 Sugar beet plants in 10 meters of row and weed plants per square meter (row width = 2/3 meter = 26 inches) $\frac{1}{2}$

			Lb/A	Cou	nted April	22	Counted May 2			
eemergence Tre	atment Applied Ma	rch 20	40 gpa	Beets	Dicot	Grass	 Beets	Dicot	Gras	
1. pyrazon			3	78	35	0	68	38	2	
2. pyrazon			4	102	52	0	92	56	2	
3. pyrazon +	TCA		3+5	65	38	0	55	41	. 0	
4. pyrazon +			3+7	95	26	0	85	25	0	
5. pyrazon +			3+3	165	28	1	140	25	3	
6. pyrazon -			3+4	172	43	2	135	39	. 0	
7. BAS 2430			2	142	17	8	113	23	3	
8. BAS 2430			3	55	55	0	62	45	1	
9. BAS 2430			4	108	2	0	83	5	1	
10. BAS 2430	+ TCA		2+5	123	9	0	112	4	0	
11. BAS 2430	+ TCA		3+5	105	7	1	112	10	0	
12. BAS 2430			2+7	53	13	0	45	17	0	
13. BAS 2430	+ dalapon		2+3	100	32	2	110	34	2	
14. BAS 2430			2+4	142	11	0	112	15	2	
15. BAS 2430	+ dalapon		3+3	107	30	0	100	8	1	
16. propachlo	r		3	67	33	0	68	27	0	
17. propachlo	r		4	143	30	0	100	17	0	
18. alachlor			1.5	168	35	1	140	32	0	
19. alachlor			2	57	70	0	50	57	1	
20. alachlor			3	65	28	0	68	24	0	
21. CP 52223			3	77	72	0	77	59	1	
22. CP 52223			4	122	31	6	112	30	0	
23. CP 52223			5	143	22	2	132	23	0	
24. CP 53619			3	80	91	2	58	78	1	
25. CP 53619			4	108	50	1	105	44	1	
26. CP 53619			5	95	28	0	92	27	0	
27. delayed c	ultivation		-	168	62	0	167	48	0	
28. timely cu	tivation		-	55	64	0	63	60	0	
29. liquid N (32%)		30	73	132	0	78	110	0	
30. liquid N (32%)		60	67	72	0	75	58	0	
LSI	0.05.29 df			NS	52	-	 NS	42	-	

1/ Polygonum aviculare (knotweed) and P. pensylvanicum (smartweed) and Echinochloa crusgalli (barnyardgrass) were the most frequent weeds. The soil type is Sharkey clay.

By 0669 Sugar beet plants in 10 meters of row and weed plants per square meter (row width = 2/3 meter = 26 inches) counted May 5, 1969

		Lb/A, 20 gpa	Beet Plants	Dicot Weeds	Grass Weeds
1.	pyrazon + dalapon	3+3	89	111	3
2.	BAS + dalapon	3+3	96	100	18
3.	benzadox + siduron	2+5	77	89	6
	Over trea	ated with benzadox + endo	thall at $2+1 \text{ lb/A}$ (treat	ments 4-8 only)	
4.	BAS 2430	3	63	51	4
5.	siduron	5	79	70	2
6.	CP 52223	3	73	18	8
7.	DCPA	6	81	46	3
8.	bensulide	6	72	51	7
9.	Liquid Nitrogen (32%)	20	96	141	2
0.	Liquid Nitrogen (32%)	30	93	136	6
1.	Nitrogen + endothall	20+1	77	59	22
2.	endothall	. 75	106	118	9
3.	endothall	1	70	147	7
4.	CP 52223	2	88	86	7
15.	CP 52223	4	69	111	17
6.	BAS 2430	3	58	96	3
17.	pyrazon + Citowett ^R	3+1/4 %	102	101	7
18.	pyrazon + non-phytotoxic oil	3+5 %	80	172	9
	LSD . 05, 34 df		NS	NS	· · · · · · · · · · · · · · · · · · ·

INSECT PESTS OF SUGAR BEETS IN 1969

Armon J. Keaster

A survey was made in 1969 for insects in the sugar beet field plots located in three southeast Missouri counties.

The survey was made for two purposes: 1) To check for the insect species which were present in the sugar beet fields, and 2) To estimate the populations of these insect species.

The procedure involved three approaches: 1) Ten plants in the seedling stage were selected at random at three sites within each sugar beet field for the dates of April 30, May 5 and May 27. The plants were taken into the laboratory and examined for thrips, aphids and other insects. Beginning June 11, the small plant samples were discontinued and 25 leaves were randomly selected at three different sites in the field and taken into the lab for examination. Two medium size leaves were usually taken near the crown for each plant sampled. The leaves were examined for various insects, feeding by chewing insects, and the leaves which were damaged were further examined for the number of holes made by chewing insects.

2) A D-VAC machine, which is a large suction-type machine resembling a large vacuum cleaner but powered by a small gasoline engine, was used for the collection of insects which normally would not be picked up in leaf samples. D-VAC machine samples were also started June 11 and continued on an approximate two week basis until September 16. The D-VAC machine samples were taken at three different sites per field. Each site consisted of 33 feet which approximates 100 feet of row.

3) In addition to the above sampling methods several insect species such as grasshoppers and moths and other miscellaneous insects missed by the D-VAC machine were collected along the margin of the field or while makeing observations over the entire field.

RESULTS

The data for the ten plant samples on April 30, May 5, and May 27 and the leaf samples beginning June 11 taken through September 16 are summarized in the following table.

The insects collected using the D-VAC machine and by other methods are preserved in alcohol or other preservative solutions for identification at a later time. These data will be reported as soon as identification has been completed.

In looking at these data, it is apparent that thrips and aphid populations were only present in appreciable numbers during the first three observation periods. The garden fleahopper. <u>Halticus bracteatus</u> (Say), was not found until August 15. At this time an average of .4 or almost one half leafhopper per leaf was observed. On August 28 the overall average had increased slightly but did not increase significantly until the middle of September when an average of over two garden fleahoppers were found per leaf.

The average per cent leaves damaged by chewing insects was 39% June 11, but declined for the June 25 observation. However, from June 25 the percentage of leaves damaged increased for each observation period until September 16. Although several foliage feeding insects were present, no single species was found to be of major significance for any of the observation periods, there was a continuous increase of damage throughout the growing season. The insects responsible were apparently grasshoppers, fall armyworm and webworms.

INSECTICIDE APPLICATIONS

In addition to the survey, recommendations for insect control were given to those farmers who were found to have damaging insect populations. For the most part insecticidal applications were made for garden fleahopper control after the middle of August. Until the results of the D-VAC machine samples are analyzed it will be difficult to determine the real benefit gained from the insecticidal applications. The control recommended for this pest were either an application of a half pound of methyl parathion per acre or one pound of Dylox per acre.

SUMMARY OF INSECTS PRESENT AND DAMAGE TO FRESH SUGAR BEET PLANT SAMPLES TAKEN ON 10 SAMPLING DATES SOUTHEAST MISSOURI - 1969

haamatian	Humton	Cas	Vandiuan I	Fie Vandiver II	ld Gideon Anderson	Pierce	Simcoke	Harris
bservation	Hunter	Gee	Vandiver I		Gideon Anderson	Pierce	SIIICOKE	nairis
		0.07		<u>April 30, 1969</u>	0.40	0.30	0.13	0.30
hrips/plant		0.07	0.07	0 0	0.40	0.30	0.13	0.30
phids/plant		0	0	0	0.03	0.07	0.03	0
				<u>May 5, 1969</u>			0.00	
hrips/plant	0.43	0.03	0.37	0.47	0.53	0.83	0.33	1.10
phids/plant	0.03	0.03	0.07	0	0	0.10	0.10	0.03
				May 27, 1969				
hrips/plant	0.47	0.70	1.03	0.93	1.77	1.37	0.57	0.73
phids/plant	0	0.03	0	0 .	0.10	0.03	0	0.03
				June 11, 1969				
hrips/leaf	1.10	0.43	0.40	0.51	0.28	0.21	0.37	0.59
leahoppers/leaf	0	0	0	0	0	0	0	0
phids/leaf	0	0	0	0	0	0	0	0
Leaves damaged	61	47	41	45	39	24	45	31
Feeding holes/leaf	1.32	0.83	0.68	0.69	0.65	0.49	0.68	0.47
				June 25, 1969				
hrips/leaf	0	0	0	0.03	0	0	0	0.03
leahoppers/leaf	0	0	0	0	0	0	0	0
ohids/leaf	0	0	0	0	0	0	0	0
Leaves damaged	17	31	20	27	19	7	12	5
Feeding holes/leaf	0.31	0.12	0.27	0.39	0.40	0.15	0.39	0.05
				July 14, 1969				
nrips/leaf	0	0	0	0	0	0	0	0.07
ohids/leaf	0	0	0	0	0	0	0	0
Leaves damaged	31	24	36	21	39	12	25	17
Feeding holes/leaf	1.04	0.44	0.91	0.44	0.40	0.21	0.65	0.33
				July 29, 1969				
hrips/leaf	0	0	0	0.01	0.01	0.01	0.07	0
phids/leaf	0.03	0	0	0	0	0.01	0.01	0
Leaves damaged	61	32	36	19	17	37	61	23
Feeding holes/leaf	3.60	1.17	1.12	0.72	0.47	2.29	1.73	0.43
			Δ	ugust 15, 1969				
hrips/leaf	0.01	0	0	0.04	0	0	0	0.05
leahoppers/leaf	1.84	0.01	0.04	0.04	0.23	0.59	0	0.47
phids/leaf	0	0	0	0	0	0	0	0
Leaves damaged	40	37	83	64	61	65	53	33
Feeding holes/leaf	1.19	0.65	4.08	1.60	1.57	1.96	1.69	0.77
			۵	ugust 28, 1969				
hrips/leaf	0.05	0	0.01	0	0	0	0	0
leahoppers/leaf	0.07	0.05	0.21	0.67	0.35	0.24	0.65	2.19
phids/leaf	0	0	~~ 0	0	0	0	0	0
Leaves damaged	51	57	84	79	76	92	75	52
Feeding holes/leaf	1.15	0.97	2.44	2.05	1.72	2.05	2.33	1.08
Ŭ			So	otember 16, 1969				
nrips/leaf	0	0	0	0	0.04	0	0	0
leahoppers/leaf	0.07	0.11	0.04	0.08	3.40	0.11	0.41	13.33
phids/leaf	0.07	0.11	0.04	0.00	0	0.11	0.11	0
pinus/ icai							85	85
Leaves damaged	44	48	77	55	45	31	85	00

AVERAGE FOR ALL FIELDS

	Date of Observation									
Observation	April 30	May 5	May 27	June 11	June 25	July 14	July 29	Aug. 15	Aug. 28	Sept. 10
Thrips/plant or leaf	0.18	0.51	0.94	0.49	0	0.01	0.01	0.01	0.01	0
Garden Fleahopper/leaf	-	-	-	0	0	0	0	0.40	0.55	2.19
Aphids/plant or leaf	0.02	0.05	0.03	0	0	0	0.01	0	0	0
Percent leaves damaged	-	-	-	39	17	26	36	55	71	59
Number feeding holes	-	-	-	0.72	0.26	0.55	1.44	1.69	1.72	2.14

SUGAR BEET PATHOLOGY TRIALS

James A. Roth

CERCOSPORA LEAF SPOT FUNGICIDE CONTROL

Cercospora leaf spot in combination with the climate of southeast Missouri may result in very drastic reduction in yield and quality of sugar beets. Varieties first tested nine years ago were very susceptible to leaf spot but through plant breeding over the years considerable improvement in resistance has been accomplished.

To improve production fungicides have been tested to determine effect of various rates and time of application. Copper and oil have been the universal treatment in control of leaf spot over past years but in more recent years such fungicides as TBZ, DuTer, and Benlate have been very effective in controlling the disease. Although these chemicals have not been approved label requirements have or are in the process of being completed. TBZ and Benlate are expected to be cleared for commercial production in 1970.

In 1969 two varieties were included in the fungicide tests, one variety (66MSH2) resistant and another variety (GW 869) susceptible to leaf spot. Various intervals and rates of Du-Ter, Maneb, Benlate, and TBZ were tested and compared with copper and oil. Spraying was accomplished by using three nozzles per row, one over the top of the plants and one on each side of the row of beets.

The results of 1969 indicate that both the resistant and the susceptible varieties were improved in yield and sugar content by fungicidal sprays. With the exception of TBZ at the 38 day interval all spray treatments were effective in improving the sugar content and yields of the resistant (66MSH2) variety. The susceptible variety (GW 869) when sprayed to control the disease yielded six tons above the highest yield of the resistant variety (66MSH2).

In summary TBZ, Benlate and Du-Ter effectively controlled leaf spot in 1969. The results indicate that the 28 day schedule used with Benlate may have been too long of an interval for most effective control with this compound.

RHIZOCTONIA CROWN ROT FUNGICIDE CONTROL

Eight fungicides were evaluated for their efficiency in control of Rhizoctonia crown rot. These chemicals were incorporated into the soil prior to planting. Planting was delayed so as to encourage the development of root rot.

The results indicate no significant difference in treatments occurred due to the absence of the disease in these plots. The treatments used did not adversly affect the beets.

ROOT KNOT RESISTANCE SELECTION

Sugar beets selected from resistant plants the preceding year were planted at the Clarkton Field from which selections were made for resistance to the root knot nematode. Approximately two hundred beets were found to have no indication of root knot nematode in the field and further screened in the greenhouse. From this screening none of the beets were found to be free of root knot so all were discarded and additional selection will be made in 1970.

Spraying sugar beets with fungicide to control Cercospora leaf spot.

T	reatment ^{1/}	Leaf Spot Aug 25	Reading* Sept 22	Beets/100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
				H2 (Resistant)			
No Treatment		2.5 a	4.5 a	133 a	13.7 f	92.1 d	16.2 b
	Oil 4 pts/A (14 days)	1.3 c	1.5 bc	144 a	16.2 abcd	94.0 ab	20.5 a
	(7 day interval)	1.0 c	1.3 bc	146 a	16.7 a	94.1 a	20.4 a
$\frac{1}{4}$ /Du-Ter 4.8 oz/A		1.0 c	1.0 c	145 a	16.4 ab	93.8 abc	19.5 a
5/Du-Ter 4.8 oz/A		1.0 c	1.3 bc	148 a	16.3 abc	93.9 abc	17.2 ab
	(28 day interval) 4 applications	1.5 bc	1.5 bc	136 a	15.7 cd	93.5 abc	19.4 a
	(28 day interval) 3 applications	1.0 c	2.3 b	144 a	15.5 de	93.2 abc	17.5 ab
8/Benlate 3 oz/A	(28 day interval) 3 applications	1.3 c	2.3 b	133 a	15.8 bcd	93.3 abc	17.9 ab
	(14 day interval)	1.0 c	1.5 bc	141 a	16.0 abcd	93.7 abc	20.1 a
	(14 day interval)	1.3 c	1.8 bc	144 a	16.0 abcd	93.7 abc	20.4 a
	(28 day interval)	2.0 a	3.3 a	135 a	14.9 e	93.1 bc	·15.4 b
2/Maneb 2.4 lb/A		1.3 c	1.5 bc	136 a	15.5 de	93.0 c	19.4 a
Minimum Least Signi	ficant Range(L.S.D.)(.05)	0.52	0.89	17.5	0.62	0.85	2.88
Maximum Least Sign:		0.60	1.04	20.5	0.73	1.00	3.38
Coefficient of Varian		26.7%	31.3%	8.6%	2.7%	0.6%	10.7%
		Variety	: <u>GW86</u>	9 (Susceptible)			
No Treatment		6.0 ab	7.2 ab	141 ab	9.9 g	88.6 b	18.7 d
Copper 6 lbs and	Oil 4 pts/A (14 days)	2.0 de	4.4 de	141 ab	12.2 cd	89.7 ab	22.7 bc
	(7 day interval)	1.2 g	1.8 g	150 ab	14.3 a	91.7 a	26.4 a
Du-Ter 4.8 oz/A		1.4 g	2.0 g	153 a	14.6 a	91.6 a	26.0 ab
Du-Ter 4.8 oz/A	(14 day interval)	2.2 fg	2.6 fg	141 ab	14.1 a	90.9 a	26.8 a
	(28 day interval) 4 applications	1.8 de	3.4 ef	148 ab	12.6 bc	88.5 b	24.2 abc
	(28 day interval) 3 applications	2.0 de	7.8 a	134 b	10.8 f	89.8 ab	22.4 c
	(28 day interval) 3 applications	3.0 cd	5.0 cd	146 ab	12.8 bc	91.5 a	22.2 c
	(14 day interval)	1.6 e	2.0 g	147 ab	13.2 b	90.5 ab	24.4 abc
	(14 day interval)	2.2 e	3.4 ef	144 ab	12.3 cd	90.0 ab	22.5 c
	(28 day interval)	4.6 b	6.8 ab	145 ab	11.3 ef	89.8 ab	22.3 c
	(14 day interval)	3.6 bc	5.6 c	142 ab	11.8 de	90.2 ab	24.5 abc
Minimum Least Signi	ficant Range(L.S.D.)(.05)	1.09	1.10	14.4	0.73	1.84	3.0
Maximum Least Sign		1.29	1.30	17.0	0.87	2.18	3.6
Coefficient of Varian		32.3%	19.8%	7.8%	4.6%	1.6%	10.0%

pressure (PSI) and all other treatments with 40 gallons of water/A at 40 pounds pressure.

Copper sulphate and dormant spray oil. 2/

3/ Du-Ter - 3 ounces active ingredient sprayed per acre June 18, 25; July 2, 9, 16, 23, 30; August 6, 13, 20, 27; September 3, 10.

4/ Du-Ter - 4.8 ounces active ingredient sprayed per acre June 18, 25; July 2, 9, 16, 23, 30; August 6, 13, 20, 27; September 3, 10.

5/ Du-Ter - 4.8 ounces active ingredient sprayed per acre June 18; July 2, 16, 30; August 13, 27; September 10.

 $\overline{6}$ / Benlate - 3 ounces active ingredient plus surfactant sprayed per acre June 18; July 16; August 13; September 10.

Benlate - 3 ounces active ingredient plus surfactant sprayed per acre June 18; July 16; August 13. 7/

Benlate - 3 ounces active ingredient plus surfactant sprayed per acre July 16; August 13; September 10.

8/ 9/ TBZ - 6 ounces active ingredient sprayed per acre June 18; July 2, 16, 30; August 13, 27; September 10.

TBZ - 3 ounces active ingredient sprayed per acre June 18; July 2, 16, 30; August 13, 27; September 10. 10/

11/ TBZ - 6 ounces active ingredient sprayed per acre June 18; July 16; August 13; September 10.

12/ Maneb - 2.4 pounds active ingredient plus surfactant sprayed per acre June 18; July 2, 16, 30; August 13, 27 and September 10.

OBJECTIVE: To investigate the effectiveness of various fungicides in controlling Cercospora leaf spot on sugar beets.

PROCEDURE: Sugar beet varieties GW869, susceptible to Cercospora leaf spot and 66MSH2, resistant to leaf spot were planted March 15 on single row beds spaced 26 inches apart. Four fungicides plus copper and oil were used in the test.

Fertilizer (100 N + 100 P_20_5 + 100 K $_20$ + 2 Boron) was broadcast and incorporated into the bed prior to planting. Nitrogen (100 pounds) was sidedressed July 1.

Irrigation water was applied eight times during the growing season by the row method. Tensimeters were installed to determine moisture level of the soil during the season.

Herbicide (1 lb Treflan per acre) was applied broadcast and incorporated with a cultivator after beets were thinned to control grasses.

Insecticides were applied as needed to control the garden fleahopper.

The beets were harvested mechanically, yield determined and samples obtained for sugar and purity analysis.

RESULTS: Practically all of the fungicide treatments were effective in reducing the occurance of leaf spot of both the resistant and susceptible varieties. There was evidence that the 28 day interval between spraying of TBZ and Benlate was too long to be most effective.

> As compared to the no treatment all of the fungicide treatments resulted in an increase in sugar and purity percentage. In this experiment the susceptible variety produced the highest yield (26.8 tons/acre) when sprayed with 4.8 ounces of Du-Ter at a fourteen day interval.

		nt Per Acre $\frac{1}{}$ Formulation)	% Live Beets Sept. 23	Beets Harvested Per 100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
Check			94.7 a	147 a	14.1 a	90.5 abc	13.2 a
0 lbs Dacon	il 2787-Terrazo	le (10-2.5% granules)	92.1 a	139 a	14.1 a	90.8 ab	12.8 a
0 lbs Terra	clor	(10% granules)	90.6 a	124 a	13.9 a	89.9 abc	12.6 a
0 lbs Terra	clor Super X	(10-2.5% granules)	92.2 a	134 a	14.0 a	90.4 abc	13.2 a
lbs Vitava	ax	(5% granules)	93.2 a	134 a	14.0 a	89.6 abc	13.4 a
0 lbs Chem	agro 5506	(40% WP)	88.1 a	139 a	14.0 a	90.1 abc	12.6 a
0 lbs Chem	agro 5506	(40% WP)	91.3 a	125 a	14.0 a	90.1 abc	12.0 a
lbs Bay 7	8175	(40% WP)	87.7 a	140 a	14.0 a	89.5 bc	13.2 a
-1/4·lbs TBZ		(60% WP) sprayed 14 day interval	90.4 a	128 a	13.8 a	89.4 c	12.7 a
3/4 lbs Benla	te	(50% WP) sprayed 14 day interval	91.1 a	130 a	14.3 a	90.9 a	12.5 a
inimum Least	Significant Range	e(L.S.D.)(.05)	21.36	21.9	0.57	1.13	2.25
aximum Least	Significant Rang	e	25.00	25.7	0.67	1.33	2.63
oefficient of Va	riance		20.7%	14.0%	3.5%	1.1%	15.0%
lanted:	Variety - 66MS	5H2 May 1.					
ow Irrigated:	July 13, 17; Au	igust 4, 15; September 17.					
ertilizer:	100+100+100+2	B (N+P205+K20+Boron) broadcast inco	orporated into re	ow. 100 lb N sided	ressed July	11.	
ungicide:		and 4 pints dormant spray oil/A appli 12. TBZ and Benlate applied July 2,		-	- /	July 11, 29;	August 13
erbicide:	Twelve lb/A P	yramin Plus in 10" band May 14.					

FUNGICIDE TREATMENTS TO CONTROL RHIZOCTONIA CROWN ROT IN SUGAR BEETS - 1969 PORTAGEVILLE FIELD - LOAM SOIL

1/ All treatments except TBZ and Benlate applied broadcast and incorporated into soil. Rates of application refers to pounds of formulation applied in a 12 inch band.

Sprayed for control of garden fleahopper August 12 (Sevin 2 lb ai/A) and August 26 (Dylox 1.5 lbs ai/A).

OBJECTIVE: To determine if fungicide soil treatments and sprays will control rhizoctonia crown rot in sugar beets.

Insecticide: Harvested:

November 5.

PROCEDURE: Seven treatments including six fungicides were applied broadcast and incorporated into the soil prior to planting. Two systemic fungicides were sprayed bi-weekly after thinning for control of crown rot.

All plots were fertilized and irrigated so as to assure optimum growth. Pyramin herbicide was used in control of weeds. Sevin and Dylox were used to control garden fleahopper.

RESULTS: The results indicate that there was no significant difference between any of the treatments used and the check except in juice purity. The sugar beets were planted late and crown rot did not develop as did in the previous season. The late planting of May 1 will account for the low yields as compared to the other sugar beet experiments.

In some seasons or locations rhizoctonia crown rot has reduced the stand materially.

Rhizoctonia Crown Rot of Sugar Beets

Soil Treatment		Beets Harvested/100 Ft.	% Sugar	Juice Purity %	Yield Tons/A
20 gallons $Rotox^{1/2}$		105 $a^{3/2}$	15.0 $a^{3/2}$	94.9 $a^{3/}$	5.9 $a^{3/2}$
Check		49 b	14.5 a	94.3 a	2.6 b
20 gallons Zytox ^{2/} Minimum Least Significant Range(L.S.D.)(.05) Maximum Least Significant Range		91 a	15.2 a 0.80 0.84	93.7 a 1.06 1.10	7.2 a 2.66 2.80
		28.3 29.7			
Fumigants:	Applied April 16.	•			
Planted:	Variety - A402-64R May 23.				
Irrigated:	: May 30; June 6, 15, 30; July 10, 18; August 4, 12.				

THE EFFECTS OF SOIL FUMIGATION ON SUGAR BEETS - 1969 CLARKTON FIELD - SANDY SOIL

Fertilizer: 100+100+2B (N+P₂0₄+K₂0+Boron) incorporated before bedding March 31. 50 lbs. N sidedressed June 26 and August 5.

Fungicide: Ten oz/A Du-Ter (4.75 oz ai/A) July 10, 23; August 5. Three lb/A Manzate (2.4 lb ai/A) September 5.

Herbicide: Incorporated 3/4 lb. trifluralin/A before planting May 15.

Insecticide: None Harvested: November 11.

1/ Methyl Bromide 49.5%, Ethylene Dibromide 49.5%, Inert 1%.

2/ Methyl Bromide 70 0%, Ethylene Dibromide 23.75%, Inert 1.25%.

3/ Duncan's New Multiple Range Test: Results followed by same letters are not significantly different (.05).

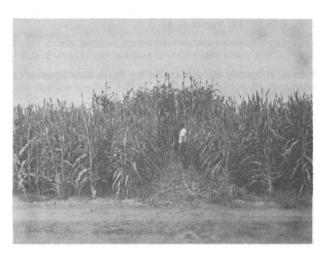
OBJECTIVE: To determine the effect of soil fumigants on yields of sugar beets growing on soil infected with root-knot nematode.

PROCEDURE: Fumigants tested were applied and incorporated into the soil. Planting was delayed for thirty days to prevent damage to the seedling sugar beets. Optimum cultural practices were followed.

RESULTS: The late date of planting resulted in very low sugar beet yields. Yields were increased from 2.6 tons on the check to 5.9 and 7.2 tons by the use of fumigants. Many of the beets in the check plot died due to nematode infestation whereas the stand was maintained on the treated plots.

Additional work in 1970 will investigate further the use of fumigants on this sandy soil which is heavily infested with nematodes. \neg

Rotox on the left, Zytox on the right with the check plot between the two treated plots.


SWEET SORGHUM AND CORN VARIETY TESTS

James A. Roth

Sweet stalk corn and sorghum may offer the possibility of another source of sugar products in the event a sugar mill is built in southeast Missouri. These crops may be harvested earlier than sugar beets which would extend the operating season of the plant.

Two variety tests of sweet sorghum and corn were planted with one on the loam soil of the Portageville Field and the other on the sandy soil of the Clarkton Field. The sweet stalk corn at both locations did not produce satisfactory yields of sugar as compared to the sweet sorghum. On the Portageville Field the Rio variety produced 6692 pounds of sugar whereas on the Clarkton Field the DeKalb FS-26 variety produced 5254 pounds. Yields at Portageville compared favorably with sugar beet yields of sugar but at Clarkton yields of sugar from sorghum exceeded sugar beet yields considerably.

The tests were planted in 30 inch rows, irrigated, fertilized, but required no pesticides during the season. Considerable research will be required to determine most favorable cultural practices including fertility, irrigation, insect control, and methods of harvesting.

Sweet sorghum and corn variety test on the loam soil at the Delta Center Farm near Portageville.

SWEET SORGHUM AND CORN VARIETY TESTS - 1969 PORTAGEVILLE AND CLARKTON FIELDS

		PORTAGEVILLE FI		d		
Variety	Days to Mid-Bloom	Plant Height at Harvest (Inches)	Sugar Based on Fresh Wt. (%)	Sugar Based on Dry Wt. (%)	Purity (%)	Total Sugar/A (Pounds)
NL-2 (Northland Corn)	61	70	10.77	42.35*	84.97	1845
Rio	91	126	12.20*	37.68	83.47	6692
Brawley	72	99	13.27	47.22	89.84	6098*
DeKalb FS-26	99	134	9.44	35.29	78.06	6071*
NC + NB305F	68	93	11.28*	43.17*	84.89	4430
CR-1 (Ross)	65	84	10.02	40.59*	83.55	4352
Pioneer 931	99	165	8.22	25.42	74.12	4110
DeKalb FS-4	68	93	10.04	40.09	85.71	4082
RS (Ross)	63	78	10.35	39.82	85.94	4032
Rudy Patrick Sumax	61	84	9.97	42.04*	83.49	3429
CR-4 (Ross)	65	87	10.47	42.12*	87.31	3267
CR-3 (Ross)	65	83	9.82	37.21	84.29	2731
LSD (.05)			2.00	6.91	ns	1021
C.V. (%)			12.08	11.13	6.98	17.89
		CLARKTON	FIELD			
NL-2 (Northland Corn)	54	66	6.93	25.64	71.43	642
Rio	99	107	11.04	31.51	79.48	4957
Brawley	79	93	12.32	38.02*	78.86	3855
DeKalb FS-26	99	124	10.93	38.88*	78.82	5254
NC + NB305F	79	86	11.27	36.32*	78.92	3208
CR-1 (Ross)	70	83	10.39	35.82*	83.12*	3048
Pioneer 931	99	169	8.38	22.74	72.52	3499
DeKalb FS-4	75	90	10.99	37.83*	81.19*	3595
RS (Ross)	75	70	10.90	34.72	81.20*	2521
Rudy Patrick Sumax	70	79	10.51	32.84	82.46*	2603
CR-4 (Ross)	70	78	10.07	39.61	86.55	2943
CR-3 (Ross)	70	83	9.81	33.26	83.76*	2834
LSD (. 05)			1.01	4.80	6.33	809
C. V. (%)			6.21	8.97	5.03	15.82

---- Line drawn under highest mean for each character.

* Statistically equal to highest mean (underscored) at the 5% level of significance.

Planted:	Portageville:	May 15 - Clarkton: May 16.
Irrigated:	C,	July 16 - Clarkton: July 10, August 14, 29.
Fertilizer:	Portageville:	$100+100+100 (N+P_{9}0_{5}+K_{9}0) - Clarkton: 116+50+50 (N+P_{9}0_{5}+K_{9}0).$
		None - Clarkton - None 2 3 2
Insecticide:	Portageville:	None - Clarkton: None
Harvest:	Portageville:	August 30 - CR1, CR3, CR4, Sumax, NL2 - Clarkton: September 5 - CR1, CR3, CR4, Sumax, NL2.
		September 8 - Brawley, NB305F, FS4, RS:Clarkton: September 11 - Brawley, NB305F, FS4, RS
		September 30 - 931. FS26, Rio - Clarkton October 7 - 931, FS26, Rio.

OBJECTIVE: To determine if sweet sorghum and corn will produce satisfactory yields of sugar on southeast Missouri soils.

PROCEDURE: Twelve varieties of sweet sorghum and corn were planted on two soil types, sandy loam soil at Portageville and sandy soil at Clarkton. Optimum rates of fertilizer was applied broadcast at each location. On the Clarkton field irrigation water was applied as needed by sprinkler whereas on the Portageville field the row method was used.

Heads were removed from the fertile varieties during the growing season.

Each variety was harvested approximately six weeks after date of mid bloom. The stalks were stripped of leaves, heads and corn ear shoots removed before cutting and weighing. Plants were chopped into inch lengths, sampled. frozen and shipped to the Great Western Sugar Company for analysis. Dr. J. N. Widner of the Great Western Sugar Company Experiment Station. supplied the seed, analyzed the samples, and computed the data.

RESULTS: Sugar production per acre compared favorably with that of sugar beets produced at the two locations. On the Portageville field 31.5 tons per acre of fresh material was produced but contained only 9.4% (fresh weight) sugar. The highest percent sugar was 13.3% with 23 tons of fresh material per acre.

Sweet stalk corn did not compare favorably with the sweet sorghum in yield or production of sugar this season.

Production of sweet sorghum would enable the sugar mill to operate over a longer season as could begin harvest of sorghum by September 1 which would be three to four weeks ahead of sugar beets.

Additional research will be needed to refine cultural practices including fertility and irrigation which have not been included this season. Also a mechanical means must be devised to remove leaves from the stalks or a chemical process devised to remove impurities of the leaves.

University Libraries University of Missouri

Digitization Information Page

Local identifier

Special Report 126 – sugar beet research

Source information

Format	Book
Content type	Text / Text with images
Source ID	[barcode number or note]
Notes	

Capture information

Date captured	December, 2019
Scanner manufacturer	Plustek OpticBook
Scanner model	A300 Plus
Scanning system software	Book Pavilion
Optical resolution	600 dpi
Color settings	8 bit grayscale
File types	tiff
Notes	

Derivatives - Access copy

Compression	Tiff: LZW compression
Editing software	Adobe Photoshop CC
Resolution	600 dpi
Color	grayscale
File types	tiff
Notes	Images cropped, straightened, brightened. Canvased the images to 8.1 x 10.9 in.