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Abstract

Particle �ltering (also known as the condensation al-
gorithm) has been widely applied to model-based hu-
man motion capture. However, the number of parti-
cles required for the algorithm to work increases ex-
ponentially with the dimensionality of the model. In
order to alleviate this computational explosion, we
propose a two-level hierarchical framework. At the
coarse level, the con�guration space is discretized into
large partitions and a suboptimal estimation is calcu-
lated. At the �ne level, new particles in the vicinity of
the suboptimal estimation are created using a more
likely and narrow con�guration space, allowing the
original coarse estimate to be re�ned more e�ciently.
Our preliminary results demonstrates that this hier-
archical framework achieves accurate estimation of
the human posture with signi�cantly reduction in the
number of particles.

Keywords: coarse-to-�ne, bottom-up aggrega-

tion of state estimations.

1 Introduction

Model-based analysis-by-synthesis is the dominating
methodology in markerless human motion capture.
Three general approaches exist for estimating the hu-
man posture by generating possible pose con�gura-
tions from a 3D articulated human model. Contin-
uous methods use optimized algorithms to search for

a global [1] or local [2, 3, 4, 5] estimation of the pose
con�guration. Stochastic methods such as parti-
cle �ltering [6, 7], Markov Chain Monte Carlo [8]
and Belief Propagation [9, 10, 11] adopt the sampling
technique to search the con�guration space of human
postures. Hybrid methods [12] combines both the
optimization and stochastic sampling to search for a
global estimates of the human posture. In our work,
we consider a model-based 3D human motion capture
using particle �lters.

Particle �ltering has proved to be an e�ective and
robust technique for contour tracking[13, 14, 15].
However, the application of particle �ltering to mark-
erless human motion capture, su�ers from the so
called curse of dimensionality. That is, in parti-
cle �ltering, the number of particles required to ef-
�ciently represent the state density increases expo-
nentially with the number of degrees of freedom of
the con�guration space. One e�ective way to reduce
the number of particles is based on the idea of Simu-
lated Annealing [16, 17]. Other methods include: 1)
adding constrains to the kinematics and to the hu-
man movements, as done in [18]; 2) imposing strong
motion priors to constrain the search space by learn-
ing the motion model [19, 20]; and 3) hierarchically
constrain possible con�guration states using the ob-
served poses of speci�c body parts, such as hands,
face, torso, etc. [21, 22, 23].

In this work, we address the problem of dimension-
ality and the associated computational complexity by
proposing an e�cient coarse-to-�ne framework using
monocular image sequences. The rest of this paper
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is organized as follows: Section 2 presents our hierar-
chical particle �ltering. Next, we provide preliminary
results using monocular image sequence in Section 3.
Future work and �nal conclusion are given in Section
4 and 5 respectively.

2 Two Level Hierarchical Parti-

cle Filter

As we mentioned above, the major drawback in par-
ticle �ltering when applied to human motion capture
resides in the enormous amount of particles required
to achieve good results. In order to reduce the num-
ber of particles, we proposed a hierarchical frame-
work characterized by two distinct levels: coarse and
�ne. At the coarse level, we discretize the con�gu-
ration space using a small and �nite number of par-
titions. That choice guarantees right from the be-
ginning a small search space. Also, particles derived
from this discrete con�guration space are assigned
weights based on a commonly used likelihood func-
tion. The algorithm then selects the suboptimal es-
timate as the one more likely to be the target con-
�guration state. Next, at the �ne level, we re�ne
the search for particles strictly in the vicinity of the
suboptimal estimate from the coarse level. In other
words, at the �rst level of �ltering, the algorithm lo-
calizes a narrow discrete con�guration space for the
target con�guration state, while at the second level
consists of a re�nement of the above localization. The
�nal con�guration state is estimated by the aggrega-
tion of individual estimates for the pose of each body
part in the con�guration space. The summary of the
proposed algorithm is listed in the pseudo code.

2.1 Coarse Level

At this level, the algorithm calculates an initial esti-
mate for the con�guration state. In order to do that,
we must execute three major steps: 1) partitioning
of the con�guration space; 2) assigning likelihood to
con�guration states (particles); and 3) selecting the
suboptimal estimate. In the next three subsections
we will explain each of these steps.

Algorithm 1 Coarse to Fine Particle Filtering

N : number of particles at coarse level
M : number of particles at �ne level
t: time stamp
Coarse Level{⌈

θi
H−θ

i
L

δi

⌉}h
i=1

= QuantizeStateSpace(
{
θiL, θ

i
H

}h
i=1

)

{sj(t)}Nj=1 = ResampleState({sj(t− 1), πj(t− 1)}Nj=1)

{sj(t+ 1)}Nj=1 = PredictState({sj(t)}Nj=1 , X̂(t), X̂(t−1))

{πj(t)}Nj=1 = CalcWeight({sj(t+ 1)}Nj=1)

X̂c(t+ 1)= SubEstState({πj(t+ 1)}Nj=1)

Fine Level

{yj(t+ 1)}Mj=1= GenRe�nementParticle(X̂c(t+ 1))

{λj(t+ 1)}Mj=1= CalcBodyWeight({yj(t+ 1)}Mj=1)

X̂(t+ 1) = EstState({λj(t+ 1)}Mj=1)

2.1.1 Quantization of the Con�guration

Space

Let the number of dimensions of the con�guration
state X be h, and δi denote the quantization step for
each dimension i = 1, ...h. Then, the range

[
θiL, θ

i
H

]
of the joint angle θi is divided into

⌈
θi

H−θ
i
L

δi

⌉
equal

partitions. This indicates that possible con�gura-
tion states will be greatly reduced. In our work, the
step size δi was determined using the statistics of the
human motion from a training sequence � that is,
the variance in angular values between consecutive
frames.
At the coarse level, the target con�guration state

X is estimated at each time t from a set ofN particles

SN (t) = {(sj(t), πj(t))}Nj=1 (1)

where sj denotes a possible con�guration state and
πj the associated likelihood. The set of particles
SN (t) is chosen using proportionality of weights by
binary subdivision [13]. The new set of particles,
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SN (t + 1), is predicted using the following �rst or-
der dynamic model [24]:

sj(t+ 1) = sj(t) + A
(
X̂(t)− X̂(t− 1)

)
+Bω (2)

where X̂(t) is the optimal estimation of the con�g-
uration state X at time t. Each element in the di-
agonal matrix A is set experimentally to a constant
value of 0.2. Each element in the second diagonal
matrix B is set to the quantization step δi. Finally,
ω is a vector of independent random numbers drawn
from a standard normal distribution.

2.1.2 Likelihood Function

For each new particle generated by equation (2), a
likelihood function is required in order to measure
the similarity between the associated con�guration
state and the human pose as observed in the image.
As described in [16], one could combine edge and re-
gion features to form such likelihood function, which
starts with a silhouette extraction algorithm we de-
veloped in [25]. That is, given a silhouette image �
Figure 1(a) � where 1 denotes the foreground object
and 0 denotes the background, a gradient map Ig of
the silhouette image is created by convolving a 5× 5
Gaussian kernel with the original silhouette image
[21]. Figure 1(b) depicts such gradient map, where
the value of the gradient map Ig ∈ [0, 1] represents
the proximity to the edges.
This likelihood function consists of two terms: one

derived from edge and the other from region features.
That is:

pg,r(Z | X) ∝

exp

{
−1

2

(∑Mg

m=1
(1− gm)2

σ2
gMg

+

∑Nr

n=1
(1− rn)2

σ2
rNr

)}
(3)

where gm denotes the value of the gradient map
at the mth sample point corresponding to a point on
the projection the human contour, and rn denotes the
value of the foreground pixel at the nth sample point
corresponding to a point inside the same projected

(a) Silhouette Image (b) Gradient Map

Figure 1: Create gradient map from extracted silhou-
ette image

human contour. More details on the derivation of the
2D projection of the human contour can be found in
[24].

2.1.3 Suboptimal Estimation of Con�gura-

tion States

The term �suboptimal� means that the estimation of
the target con�guration state at the coarse level is
only a rough one. However, we expect this subop-
timal estimate to be su�ciently accurate to initiate
the search at the �ne level. Moreover, this subop-
timal estimate could constrain the future search in
the most likely discrete con�guration partitions. In a
consequence, the algorithm could avoid computations
on those unlikely partitions. In our work, we assume
the suboptimal estimate X̂c as the con�guration state
with the maximum weight. That is

X̂c(t+ 1) = sj(t+ 1) (4)

j = argmax πj(t+ 1), j = 1, 2, ..., N

where sj(t+1) is the predicted con�guration state
and πj(t+1) is the associated weight using likelihood
function (3)

2.2 Fine Level

Given the suboptimal estimation X̂c, the second level
of our algorithm, the �ne level, samples a second set
of particles in the vicinity of X̂c. Figure 3 illustrates
this concept by depicting the re�nement produced
by the �ne level on top of the coarse estimate. The
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(a) Cylinder Segment (b) Kinematic Tree

Figure 2: 3D human model

(a) 3D Human Model

Figure 3: Re�nement particles are generated in the
vicinity of suboptimal estimate of coarse level

new set of con�guration states is obtained using the
following simpli�ed model:

yj(t+ 1) = X̂c(t+ 1) +Dω, j = 1, ...,M (5)

where ω is a vector of independent standard ran-
dom variables similarly to the one mentioned for the
coarse level. Also similar to the coarse level, D is a
diagonal matrix with elements equal to the quanti-
zation step. As for the estimate of the con�guration
state, the �ne level weights the new set of particles
using the likelihood function (3). Finally, the opti-
mal estimation for the target con�guration state X
is obtained by a bottom-up aggregation as will be
described in the following section 2.3.

2.3 Bottom-up Aggregation of State

Estimations

For the purpose of simplicity, we will discard the time
step from equations in this section. Instead of using
eq (4) to generate the �nal optimal estimate, we pro-

pose a bottom-up scheme to aggregate the individ-
ual estimates for the con�guration state of each body
part. The reason is independent search for the opti-
mal estimates of each body part makes the computa-
tion in parallel, thus implicitly reducing the number
of particles at the �ne level. Similar to [26], we �rst
separate con�guration state of the whole human body
into several decoupled con�guration states of body
parts. Then the likelihood function (3) is used to
measure the similarity between the observation and
the con�guration state for each body part. Finally
the optimal estimate will be obtained by aggregating
the optimal estimates of each body part. The math-
ematical details will be presented in the following:
We break the h dimensional con�guration state yj

of the whole human model into n decoupled body
parts

yj = (pTj,1, ..., p
T
j,k, ... p

T
j,n)T (6)

pj,k = (yj1, ..., yjL(k))
T ,

n∑
k=1

L(k) = h

where pj,k corresponds to one body part for jth

con�guration state. L(k) denotes the associated
number of joints for kth body part . We also build
the likelihood for jth con�guration state of body part

λj = (λj1, ..., λjn)T (7)

Therefore, the optimal estimation X̂ of the target
con�guration state X will be the aggregation of indi-
vidual estimates from n body parts

X̂ = (pTj,1, ... p
T
o,k, ... p

T
m,n)T (8)

o = argmax λqk, q = 1, ..., N

3 Experiments

The software was implemented in Matlab. Since the
estimation of human posture from single view is re-
strictive to speci�c class of human motion, we used
330 frames of Combo_2 sequences inHumanEva-

I Dataset [27]. The pose estimation of selective image
frames are shown in Figure 5.
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# of Particles Precision

coarse �ne coarse coarse + �ne

50 200 62.3% 73.8%

300 200 67.1% 74.9%

300 500 67.2% 76.3%

# of ParticlesRecall

coarse �ne coarse coarse + �ne

50 200 74.1% 87.6%

300 200 79.8% 89.3%

300 500 80.2% 91.3%

(a) (b)

Table 1: Precison and Recall for Hierarchical PF for di�erent numbers of particles

We use precision and recall as the measurement
metric. In the �rst experiment, we select di�erent
number of particles at both coarse level and �ne level.
The averages of precision and recall over 330 frames
are listed in Table 1.

In the second experiment, we compare the aver-
ages of precision and recall using proposed algorithm
and Condensation algorithm. The result is shown in
Table 2.

We also compare likelihood of the optimal esti-
mates between our proposed algorithm and Conden-
sation algorithm. We use di�erent number of parti-
cles for our proposed algorithm to compare the like-
lihood over 330 frames with Condensation algorithm
using 1500 particles. Figure 4 demonstrates that our
proposed algorithm generates higher likelihood than
the condensation algorithm even if we only use 250
particles in the proposed algorithm. We noticed that
the proposed algorithm generates more smooth state
estimation as the number of particles at both coarse
and �ne levels increases.

4 Future Work

The likelihood function in our work combines both
the edge and region information during the estima-
tion, but it only captures the degree of the matching
between the observed con�guration states and the
expected ones. That is, the projection of an incor-
rect con�guration of the human model onto the image
plane for a single view may appear to �t the obser-
vation better than the projection of a more proper
con�guration. That is because the likelihood func-
tions used in this work and other works only consider
the overlaping pixels (matching) as a measurement of

(a) number of particles:
coarse-to-�ne 50 + 200 vs
condensation 1500

(b) number of particles:
coarse-to-�ne 100 + 200 vs
condensation 1500

(c) number of particles:
coarse-to-�ne 300+200 vs
condensation 1500

(d) number of particles:
coarse-to-�ne 300 + 500 vs
condensation 1500

Figure 4: Likelihood for Condensation Algorithm
versus Hierarchical PF

the likeness of the two images, but does not penalize
the images for the non overlaping pixels (mismatch-
ing). Therefore, when using only single view, this
drawback may cause the false selection of the sub-
optimal estimation. We will further investigate the
use of new likelihood functions to capture both the
degree of matching and mismatching. We also hope
to present more performance evaluation of accuracy
against groundtruth.

5 Conclusion

Our work resolved the computational complexity of
the particle �ltering with its application to human
motion capture. The proposed hierarchical frame-
work separate the state estimation into two di�er-
ent levels at each time step. The algorithm reduces
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# of Particles Precision

coarse + �ne condens. coarse + �ne condens.

50 + 200 600 73.8% 72.1%

300 + 200 1000 74.9% 73.2%

300 + 500 1500 76.3% 76.1%

# of Particles Recall

coarse + �ne condens. coarse + �ne condens.

50 + 200 600 87.6% 76.3%

300 + 200 1000 89.3% 78.5%

300 + 500 1500 91.3% 79.1%

(a) (b)

Table 2: Precison and Recall for Condensation Algorithm versus Hierarchical PF

Figure 5: Pose Estimation using the Proposed Hierarchical PF for frame 2517, 2524, 2553, 2584,
2593,2640,2799 separately.The �rst row shows the suboptimal estimate of coarse level; The second row
shows the optimal estimate estimate of �ne level; The third row shows the estimated 3D Human Model.
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the number of particles required to e�ectively repre-
sent the state density function at both levels. At the
coarse level, the con�guration space is quantitized to
a �nite number of large partitions. At the �ne level,
the optimal estimation of the state con�guration is
obtained by generating re�nied particles in the vicin-
ity of the suboptimal estimate of the coarse level. The
optimal estimate is determined by a bottom-up ag-
gregation of individual estimates of each body part.
We showed that our work required less number of
particles to achieve higher accuracy than the original
condensation algorithm.
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