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ABSTRACT 

 

The purpose of this research is to develop simplified models to predict the load displacement 

behavior for any reinforced concrete beam on the basis of material, geometric, and design 

parameters. The proposed simplified model includes a beam element and a system of springs that 

represents the load extension behavior and moment rotation behavior of a reinforced concrete 

beam element. Spring properties are based on material, geometric, and design parameters. The 

tensile definition of the axial extension spring is approximated by a steel stress-strain curve 

modified to account for uneven stress in the steel along the length of the beam. The commercial 

finite element code ANSYS is used to analyze the models. The results of the models are then 

compared with experimental tests on reinforced concrete beams, and good agreements are found. 
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1. INTRODUCTION 

Most Reinforced Concrete buildings are not designed for loading conditions that may 

lead disproportionate collapse such as gas explosion, blast, foundation failure, vehicle 

impact, fire, and seismic forces. However, consequences due to disproportionate collapse 

on structures can be severe when unexpected extreme loading events occur. Collapse of 

several buildings such as the Ronan Point Apartment Building in England in 1968, the 

Murrah Building in Oklahoma City in 1995 and the World Trade Center towers in New 

York in 2001 demonstrated that most casualties are due to building collapse. As a result, 

research on disproportionate collapse has gained particular attention over the past few 

years. 

 

ASCE Standard 7-05 defines progressive collapse as the spread of an initial local failure 

from element to element, eventually resulting in collapse of an entire structure or a 

disproportionately large part of it (ASCE, 2005). In other words, disproportionate 

collapse is a chain reaction of failures following damage to a relatively small portion of a 

structure (Sasani and Kropelnicki, 2007). 

 

Reinforced concrete buildings can resist disproportionate collapse through a variety of 

mechanisms. These alternate resistance mechanisms include Vierendeel action, catenary 

action, compressive arch action, membrane action in the floor slab, and contributions 

from infill walls. Vierendeel action, or frame action, is characterized by rectangular 
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openings with fixed joints that are capable of transferring and resisting bending moments. 

Catenary, or membrane action, enables the resistance of gravity forces through tension if 

the structural member undergoes extreme deflection. Development is highly dependent 

on continuity of reinforcement. Compressive arch action involves axial restraint of 

surrounding structure that keeps beams from rotating, forming a compressive arch. Infill 

walls provide additional stiffness due to nonstructural walls. 

 

This thesis is primarily concerned with catenary action in reinforced concrete beams.  

Sometimes called cable action, it resists vertical load by mobilizing axial tension 

throughout reinforced concrete beam. As can be seen in Figure 1-1, catenary action in a 

reinforced concrete beam is a tensile force that is composed of a vertical and horizontal 

component due to deflection of the member without any flexural reaction. The vertical 

component resists the gravity loads while the horizontal component is transferred 

throughout the building. 

 

 

 

 

 

Figure 1-1.Beam under catenary action 

T- Tension force 

V- Vertical Force resists gravity loads 

H- Horizontal force 

Δ 

H 

V Vertical load V 

H 

T 
T 



 

3 

 

 

Δ- Vertical Displacement 

 

Alternate resistance mechanisms in reinforced concrete buildings are not commonly 

considered in typical disproportionate collapse analysis. Nevertheless, they may provide 

extra capacity to the building and may prevent a total collapse of the structure in case of 

extreme loading events. A number of reinforced concrete buildings were able to 

withstand disproportionate collapse after the loss of one or several supports due to 

accidental loads because of these actions (Sucuoglu 1994, Sasani et al. 2007). Therefore, 

investigating alternative resistance mechanisms is significant for life safety in extreme 

loading events. 

 

1.1 Problem 

Presently, there is limited information and research on alternative resistance mechanisms 

of reinforced concrete buildings. The aim of this research is to contribute to the 

development and understanding of one of these mechanisms: the catenary action.  The 

problem this thesis seeks to solve is how to define a simplified analysis model to predict 

the response of a reinforced concrete beam under catenary action.   

 

1.2 Objectives and research approach 

The primary objective of the research is to develop simplified models to predict the load 

displacement behavior for any reinforced concrete beam on the basis of material, 

geometric, and design parameters. Specifically, this research will develop and implement 
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in ANSYS simplified models to predict response of reinforced concrete beams under 

catenary action. The models consider reinforced concrete beams with non-continuous and 

continuous reinforcement.  The simplified models will consist of one beam element with 

2-node, three degrees of freedom and one or several spring systems that represent the 

behavior of the material component of the reinforced concrete beam.  The moment 

rotation response of the beam is modeled through a coupled concrete compression and 

steel tension springs.  The properties of the springs are directly determined from a 

moment rotation analysis of the reinforced concrete section.  Another spring models the 

axial extension along the beam.  The tensile behavior of the axial extension spring is 

based on a modified stress-strain curve for steel.  The curve is modified to take into 

account the non-uniform distribution of stress along the length of the steel reinforcement.  

The compression behavior of the axial extension spring will be based on concrete stress-

strain curves.  Next, the responses from the simplified model are compared and validated 

using existing experimental data.  

 

1.3 Outline 

This research is organized into 5 chapters. Following the introduction, Chapter 2 reviews 

the relevant literature pertaining to disproportionate collapse in reinforced concrete 

building, alternative mechanisms resisting disproportionate collapse, models and 

laboratory testing of reinforced concrete beam under in catenary action. Chapter 3 

describes the proposed simplified models development and calibration procedures to 

predict the response of a reinforced concrete beam under large deformation. Chapter 4 
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discusses and provides comparison of reinforced concrete beams under large deformation 

response observed in the laboratory and simulated using the proposed models results 

while chapter 5 present the conclusions of this research. The document concludes with a 

list of the references cited in this research. 
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2. LITERATURE REVIEW 

Previous investigations have been carried out to better understand catenary action. They 

include laboratory testing and analysis to predict and quantify the behavior of reinforced 

concrete and steel members under large deformation. This chapter will review relevant 

literature pertaining to disproportionate collapse in reinforced concrete building, 

alternative mechanism resisting disproportionate collapse, models and laboratory testing 

of reinforced concrete beam under in catenary action. 

 

2.1 Disproportionate collapse in buildings 

A number of structures have experienced disproportionate collapse while others did not 

after the loss of one or several supports due to extreme loading events. The following 

section gives some notable examples of disproportionate and non-disproportionate 

failures of reinforced concrete buildings which happened in the past. 

 

2.1.1 Examples of disproportionate collapse 

The collapse of the Ronan Point Tower in 1968 in Canning Town, London is one of the 

most famous cases of disproportionate collapse. The incident was initiated by a gas-stove 

leak on the 18th floor in apartment 90. The ultimate result was a collapse of the corner 

bay of the building from top to bottom, Figure 2-1. Ronan Point was a 22-story 

residential apartment tower consisted of precast panels joined together without a 

structural frame. Due to poor connections between the walls and floor, no alternate load 

paths to redistribute forces existed in the event of a partial collapse. Since the collapse of 
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the southeast corner of Ronan Point, changes to building codes to prevent the recurrence 

of such tragedies have been initiated in the United Kingdom and throughout the world 

(Pearson and Delatte, 2005). For example, in the United Kingdom precast concrete 

structures are required to be tied together so that they can either provide an alternate load 

path or a specific local resistance to withstand an abnormal load (NIST, 2007; Breen, 

1975). 

 

 
Figure 2-1.Ronan Point building after collapse (Nair, 2004) 

 

Another example of disproportionate collapse is the Alfred P. Murrah Building in 

Oklahoma City, Oklahoma. The Murrah building was destroyed by a bomb on April 19, 

1995 (FEMA 1996). The bomb, in a truck at the base of the building, destroyed or badly 

damaged three columns. Loss of support from these columns led to failure of a transfer 
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girder. Failure of the transfer girder caused the collapse of columns supported by the 

girder and floor areas supported by those columns. The result was a general collapse; 

about half of every floor was lost over the full height of the building, Figure 2-2 (Nair, 

2004).The building was designed with non-continuous reinforcement in both the positive 

and negative moment reinforcement in the beams. If the building had been detailed as a 

special moment frame the collapsed area of the structure could have been reduced 50% to 

80% (Corley, 2004). The extent of the collapse prompted studies of 

progressive/disproportionate collapse and development of new design guidelines for 

important buildings (Nair, 2004). 

 

 
Figure 2-2.Murrah Federal Office Building after 19 April 1995 attack (Crawford, 2002) 
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2.1.2 Examples of non-collapse buildings 

While Ronan Point and the Murrah Federal Office Building are some of the most famous 

examples of reinforced concrete building which have experienced disproportionate 

collapse due to extreme loading events, many other structures have suffered severe 

damage but did not lead to disproportionate collapse.  

 

One example is the partial collapse of the Pentagon Building in Washington, D.C. on 

September 11th 2001. A plane was flown into the first floor of the building and destroyed 

30, first-floor columns and damaged about 20 others along a path that extended 

approximately 75 ft wide by 230 ft long through the first floor, Figure 2-3 (Mlakar et al., 

2003). Even with the extensive damage to many columns in the first floor, the upper 

stories remained intact for more than 20 minutes until they collapsed due to fire after the 

airplane impact. According to the Pentagon Building Performance Report (Mlakar et al., 

2003), reasons for the performance of the building are: 

 “Redundant and alternative load paths of the beam and girder framing system; 

 Short spans between columns; 

 Substantial continuity of beam and girder bottom reinforcement through the supports; 

 Design for 150 psf warehouse live load in excess of service load; 

 Significant residual load capacity of damaged spirally reinforced columns;” 
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Figure 2-3.Pentagon building after the crash damage (Mlakar et al., 2003) 

 

Another example is a typical reinforced concrete six-story office building (Figure 2-4) 

damaged by a steam boiler explosion reported by Sucuoglu et al. (1994). Sucuoglu et al. 

investigated the redistribution paths of released forces resulting from a column failure 

and identified the basic structural defense mechanisms developed in the damaged 

building frame. One of the findings of the study showed that non-load-bearing infill wall 

panels provides reserve strength and prevents the progressive failure of the structure. 
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Figure 2-4. Front View of Reinforced Concrete Building Damaged by System Boiler 

Explosion (Sucuoglu et al., 1994). 

 

One last example is the limited vertical drift (deformation) of the Hotel San Diego in San 

Diego, Figure 2-5 and Figure 2-6. Scheduled for demolition, Hotel San Diego was a six-

story reinforced concrete frame structure built in 1914. It had a non-ductile reinforced 

concrete frame structure with hollow clay tile exterior infill walls. In order to determine 

the collapse resistance of the building, Sasani and Sagiroglu (2007) carried out an 

experimental evaluation following predefined initial damage of the structure. The initial 

damage was caused by the simultaneous explosion (removal) of two adjacent exterior 

columns, one of which was a corner column. Based on experimental data, the 

development of bidirectional Vierendeel (frame) action was identified as a major 
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mechanism in redistribution of loads. This mechanism with increased stiffness from infill 

walls contributed to resisting the failure of the building. 

 

 
Figure 2-5. Aerial view of Hotel San Diego 

 

 
Figure 2-6.  South-east view of Hotel San Diego 
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2.2 Modeling of reinforced concrete beams under catenary action 

Previous research provides a number of models for use in simulating the response of 

reinforced concrete elements under catenary action. In general, these previously proposed 

models range from relatively simple to complicated equations based on the fundamental 

concepts of equilibrium, compatibility, and material characteristics. 

 

Regan (1975) developed a simple equation to predict the catenary behavior following the 

loss of support of a reinforced concrete element based on the load extension 

characteristics of the members and simple equilibrium. For static equilibrium the 

equation is: 

   
   

 
        ( 2-1) 

 

 

 

 

Figure 2-7. Free body diagram of Regan’s Model (Regan, 1975) 

 

Where H is the axial tension in the catenary, q is the distributed load on the beam, L is 

the beam length and a is the central deflection of the bam. 

 

The axial extension of the beam (ΔL) required by geometry is: 

a 

H 

ql 

H 

ql 

q q 

L L 
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     ( 2-2) 

For the bi-linear deflected form of Figure 2-7. 

 

The final component to the analysis is to define the axial extension of the beam which 

will define the relationship between H and 
  

 
. This relationship depends on the 

reinforcement details. Regan defined the slip (Nslip) of the reinforcement at the joint as 

varying between 0 to the ultimate extension of joint (ΔL)u. 

        for 0<ΔL<ΔLu    ( 2-3) 

This gives a predicted load, axial force, deflection relationship of: 

  
   

      
         for 0<a< √ 

   

 
        ( 2-4) 

Regan found reasonably good agreement with the shapes of the load – deflection curves 

obtained in catenary tests but it was difficult to predict ultimate load because of difficulty 

in predicting the ultimate extension of the joint (ΔL)u. 

 

Orton (2007) developed a similar set of equations that were based on equilibrium, 

geometry (compatibility), and the axial extension of concrete beams. For a beam without 

continuous reinforcement, a hinge will open at the column line which has no moment 

capacity. Therefore, the equilibrium of the beam, with two point loads (see diagram in 

Figure 2-8), will be: 

      
 

 
  

 

 
      (2-5) 



 

15 

 

 

 

Figure 2-8. Free body diagram of Orton’s Model (Orton, 2007) 

 

By rearranging that equation, the value of axial force becomes: 

  
    

 
         (2-6) 

Where M is the nominal flexural capacity of the hinge at the support, A is the axial 

tension, Δ is the center deflection, P is the point load, and L is the length of the modeled 

half of the beam. 

 

For the compatibility geometry, the extended length of the beam (L+L) is related to the 

deflection  and original length L by the Pythagorean Theorem.  Therefore, the equation 

becomes: 

  √(    )                        (2-7) 

For axial extension, Orton considered three components: due to rotation of beam g, 

support movement s, and elongation in the beam e. The equation has the following 

form: 

                     (2-8) 

 

a M 

L L 

P 
P 

P 

M 

H 
H 

M=0 
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The axial extension of the beam was divided into contributions for different sections of 

the beam based on the approximation of yielding of the reinforcement elongation along 

the length of the beam. Using these equations, Orton was able to replicate the vertical 

load versus deflection and the axial load versus deflection responses of the experimental 

study. 

 

Izzudin (2004) proposed an analytical model for lightly reinforced members under fire 

conditions subjected to axial restraint. The model accounts for the compressive arch and 

tensile catenary stages, bond-slip, yielding, rupture of steel reinforcement and effect of 

elevated temperature. He concluded that there is a compressive arch action up until a 

deflection equal to the depth of the beam. In addition to that, he found out that the scale 

of the catenary effect is dependent on the beam depth and the support axial stiffness. 

Model to predict deflections and catenary forces in steel beams at elevated temperatures 

also was proposed by Yin and Wang (2003).  

 

2.3 Experimental tests of reinforced concrete beams under catenary action 

Along with the modeling of reinforced concrete under catenary action, relatively few 

experimental investigations have been carried out to study the response of reinforced 

concrete elements subjected to large deformation. One of earliest works was conducted 

by Regan (1975) at Imperial College in London. He tested precast floor strips 14 in. to 28 

in. wide and 18 ft long with a central joint between two 9 ft planks representing a lost 

support. The specimens comprised a 2 in. thick precast panel and a 2 in. thick cast-in-
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place topping. Details of the ties between the panels varied according to the specimens’ 

width, Figure 2-9.  

 

 

 
Figure 2-9. Arrangement for PCL catenary test (Regan, 1975). 

 

In all the tests, it was observed an initial compressive arch phase followed by catenary 

action phase. The majority of the beams failed by tearing out of the bottom bars near the 

supports at a deflection of 5 to 7% of the double span length (test #5 in Figure 2-10). 

However in a few cases, the end cantilevers yielded before any tearing of the bottom bars 

began. In these cases ultimate central deflections were about 10% of the doubled span 

Cross section of the specimen 
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and collapse was caused by fracturing of the end ties, due to limited rotation between the 

specimen and its supports (test #3 in Figure 2-10). 

 

 
Figure 2-10.Results of catenary tests of precast floor strips (Regan, 1975) 

 

Based on the tests results, Regan concluded that “successful development of a catenary 

action requires that the members in question posses not only tensile strength but also 

ductility, which is largely determined by the detailing of the longitudinal reinforcement.” 

 

Sasani and Kropelnicki (2007) carried out another experimental program to evaluate the 

behavior of a 3/8 scaled model of a continuous perimeter beam in a reinforced concrete 
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frame structure following the removal of a supporting column.  They also used a detailed 

finite element model to capture the behavior of that beam subjected to large deformation 

using ANSYS. The beam was 13 ft 8¼ in. long by 12 in. by 20 in. It was constructed with 

fixed boundary conditions. Reinforcement of grade 75 ksi was used along with concrete 

compressive strength of 6 ksi. Figure 2-11 shows the reinforcement detailing of the beam. 

The test was conducted utilizing displacement control at the center span (Sasani and 

Kropelnicki, 2007). 

 

 
Figure 2-11. Reinforcement detailing of the experimental beam (Sasani and Kropelnicki, 

2007). 

 

As shown in Figure 2-12 and from the tests results, it was found that the two bottom bars 

fractured at vertical displacements of about 6.0 in. and 7.5 in. Furthermore, by satisfying 

the integrity requirements of ACI-318, they found that catenary action developed in the 

top reinforcement following the bar fractures. Finally, the beam end rotation at the 

conclusion of the test was measured at about 11 degrees (slope of about 20%) (Sasani and 

Kropelnicki, 2007). 
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Figure 2-12. Force – Displacement relationship (Sasani and Kropelnicki, 2007). 

 

In 2007, Orton tested eight beams evaluate different load paths to develop continuity and 

catenary action in reinforced concrete beams. The experiments consisted of test on half-

scale reinforced concrete beams that measured 30 ft long with a cross-section of 6 in. by 

12 in. The reinforcement consisted of #3 (0.11 in2) and #4 (0.2 in2) reinforcing bars 

equivalent to half-scale versions of the prototype beam. Figure 2-13 shows the 

reinforcement detailing of the beam. (Orton, 2007). 
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Figure 2-13. Reinforcement design of test specimen (Orton, 2007) 

 

One test (NR-2) found that beams without continuous reinforcement were able to transfer tension forces for catenary action from the 

positive moment steel to the negative moment steel through stirrups Figure 2-14 
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Figure 2-14. Transfer of catenary forces through stirrups (Orton, 2007) 

 

The axial load and vertical load versus deflection response (Figure 2-16) shows a 

compressive arch phase until about 16 in. of deflection, and then a catenary tension 

phase. During the catenary tension phase the test specimen was able to carry 2.5 times the 

load that is was able to carry in flexural action.  The test was then stopped at 25 in. of 

deflection due to limitations in the test setup (Figure 2-16). 
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Figure 2-15. Vertical and axial loads versus displacement for beams without continuous 

reinforcement (Orton, 2007). 

 

 

Figure 2-16. Photo of test NR-2 under catenary action 

 

Another test (CR-1) found that a beam with continuous steel reinforcement (equal to that 

required by current version of the ACI code) was not able to carry a load corresponding 

to disproportionate collapse resistance before continuous reinforcement fractured due to 
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limited ductility in the beam in the positive hinge region. After failure of the positive 

moment, the negative moment steel fractured as well. 

 
Figure 2-17. Vertical and axial loads versus displacement for beams with continuity 

provided by CFRP sheets (Orton, 2007). 

 

 
Figure 2-18. Photo of test PM-2 under catenary action 

 

Orton conducted two more tests where continuity of the negative moment reinforcement 

was provided by external CFRP sheets. For these beams the positive moment 
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moment steel and the CFRP, Figure 2-18.  For these beams the moment rotation capacity 

near the support provide some vertical load carrying capacity.  As the beam continued to 

rotate, the load remained nearly constant then increased once the beam went into catenary 

action at about 17 in. of displacement. 

 

Orton concluded that catenary action begins after the beam has formed a failure 

mechanism, or the beam is no longer able to sustain additional vertical loads in a flexural 

manner. Orton further mentioned that a reinforced concrete beam can be modeled a rigid 

rectangular blocks between the hinge locations and the deflection at which catenary 

action begins is directly dependent on the height of the beam. Finally, Orton found that 

the stiffness, or slope of the load-deflection curve, is dependent on the axial elongation of 

the beam, which is largely dependent on the length of the beam (determines elongation 

due to geometry) and yielding in the beam (determines beam elongation). 

 

More recently, Yi and Kunnanth (2008) conducted a static experimental study to 

investigate progressive failure of a reinforced concrete frame due to the loss of a lower 

story column. They tested one-third scale model of a four-bay and three-story 

representing a segment of a larger planar frame structure with continuous positive 

reinforcement, Figure 2-19.  
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Figure 2-19.  The tested four-bay and three-story one-third scale model representing a 

segment of a larger planar frame structure (Kunnanth, 2008). 

 

The experiments and the analyses results indicated that three phases were experienced 

during the disproportionate collapse process: elastic, plastic, and catenary phases, Figure 

2-20. 
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Figure 2-20. Middle column load versus unloading displacement of failed middle 

column. (Yi and Kunnanth, 2008) 

 

Based on observations and findings from the experimental study, the following 

conclusions were drawn: 

 The catenary action depends on uniform extension of the reinforcing bars.  

 The calculated capacity of the frame based on the plastic limit state was 

approximately 70% of the tested failure capacity if catenary effects are also included. 

 The beam catenary mechanism can be considered as an alternative load path and can 

resist additional loads. 
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3. MODELLING OF REINFORCED CONCRETE BEAM UNDER 

CATENARY ACTION 

This chapter gives a brief background on catenary action and explains the procedure 

followed to develop the simplified model. The implementation of the models in ANSYS 

will also be covered. 

 

3.1 Response of a reinforced concrete beam under catenary action 

Catenary action is a tensile force that resists vertical loads by mobilizing axial tension 

throughout the beam. This action may be capable of adding to the collapse of the 

resistance of reinforced concrete buildings. In reinforced concrete beams, previous 

research has shown that catenary action depends on beam geometry, material properties, 

reinforcement detailing, axial restraint provided by surrounding structure, and axial 

extension in the beam. 

 

Orton (2007) found that catenary action will not begin until the beam has reached a 

deflection equal to the height of the beam. This is due to the fact that the concrete beam 

behaves as a rigid block. As the beam rotates, the corners of block push outward until it 

reaches the length of the diagonal of the beam (Figure 3-1). 
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Figure 3-1. Rotation of rigid block (Orton, 2007) 

 

Catenary action also depends on reinforcement detailing and properties. Beams without 

continuous reinforcement can develop catenary action by transferring forces through the 

stirrups (Figure 3-2 ). However, this causes greater of axial elongation in the beam due to 

shear deformations as the tensile force is transferred from one layer to another. Beams 

with continuous can transfer directly the axial extension through the line of reinforcement 

if the reinforcement does not fracture due to limited rotational ductility before the onset 

of catenary action (Figure 3-3). 

 
Figure 3-2 . Transfer of catenary action forces through stirrups (Orton, 2007) 
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Figure 3-3. Catenary forces provided through the positive and negative moment 

reinforcement (Orton, 2007) 

 

Also important are reinforcement details in the plastic hinge region. Regan (1975) and 

Orton (2007) stated that “successful development of catenary action requires that the 

members in question possess not only tensile strength but also ductility, which is largely 

determined by the detailing of the longitudinal reinforcement.” The ductility they 

mentioned pertains to, in part the ability of the concentrated rotation locations (hinges) to 

not fracture the rebar before catenary action is developed. 

 
 

Catenary action also depends on development of axial restraint. Orton (2007) mentioned 

that any axial movement that does not require axial force such as extension due to 

geometry or slip in the connection must be overcome before catenary action can develop. 

Therefore, catenary action will be limited until the beam is sufficiently restrained axially. 

 

The amount of axial tension and beam deflection is highly dependent on the axial 

extension of the beam (Orton, 2007). The extension is comprised of primarily of 

elongations in the reinforcement, but also depends on shear deformations in the concrete 
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if the reinforcement is not continuous. Furthermore, due to the non-uniform design of the 

reinforcement along the length of the beam and loading conditions imposed by catenary 

action, the axial stress in the reinforcement varies along the beam.  This variation makes 

it difficult to determine the axial extension of a reinforced concrete beam under catenary 

action and will be closely evaluated in this research. 

 

3.2 Proposed simplified model 

To simulate a reinforced concrete beam behavior under catenary action, a simplified 

model is developed based on available test data, material, and geometric parameters. The 

proposed simplified model uses two-dimensional nonlinear elements. One model 

considers continuous reinforcement and the other model considers non-continuous 

reinforcement.  The models are composed of one beam element with 2-node, three 

degrees of freedom at each node and one or several spring systems that represent the 

behavior of the material component of the reinforced concrete beam. Figure 3-4 and 

Figure 3-5 show the basic components of the proposed model for reinforced concrete 

beam with non-continuous and continuous reinforcement. The models differ slightly 

according to the geometry, the reinforcement detailing and the axial restraint. The beams 

in Figure 3-4 and Figure 3-5 were tested in an inverted position. 

 

The first model considers a specimen without continuous reinforcement. For this 

specimen, hinges will develop at where the reinforcement terminates. This occurs at the 

end of the negative moment reinforcement on the left side of the beam, and the end of the 



 

32 

 

 

positive moment reinforcement where it extends only 6” into the column (positive 

moment reinforcement will pull out of column due to insufficient development length). 

These hinges have no moment resistance. Therefore, the model is simply comprised of 

springs that represent the support movement and axial elongation of the beam. The 

effects of geometry in the model are represented by a rigid beam element that represents 

the diagonal of the concrete block.  

 

For beams with negative continuous moment reinforcement, hinges with moment 

resistance can develop and must be accounted for in the model. In Figure 3-5 this occurs 

at the left hand side of the beam. On the right side the positive moment reinforcement 

will pull out of the column.  For most beams, even if the positive moment reinforcement 

was continuous, due to limited rotational ductility at that section, the positive moment 

reinforcement would fracture prior to the onset of catenary action.  This was the case in 

the specimen tested by Sasani and Kropelnicki (2007). 
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Figure 3-4. a. Reinforced concrete beam with non-continuous reinforcement Orton 2007). 

b. Schematic of Reinforced concrete beam with non-continuous reinforcement. 

c. Modeling of a reinforced concrete beam with non-continuous reinforcement. 
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Figure 3-5. a. Reinforced concrete beam with continuous reinforcement (Orton 2007). 

b. . Schematic of Reinforced concrete beam with continuous reinforcement. 

c. Modeling of a reinforced concrete beam with continuous reinforcement. 

 

3.3 Definition of the elements of the simplified model 

Constitutive relationships are developed to define the load deformation response of the 

model on the basis of available test data, material, geometric, and design parameters. The 

results of the experimental investigation by Orton (2007), and Sasani and Kropelnicki 
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(2007) are used as a basis for validating the different elements of the models. They 

provide the most complete and comprehensive data set for developing the models. 

Assumptions based on engineering judgment were also used. 

 

3.3.1 Beam Element 

The beam element represents the effect of the geometry in the model. It is represented by 

a diagonal of the concrete block (concrete beam between hinge regions). BEAM3 is 

chosen to model the beam element in ANSYS. The BEAM3 element is a uniaxial 

element with tension, compression, and bending capabilities. The element has three 

degrees of freedom at each node: translations in the nodal x and y directions and rotation 

about the nodal z-axis (Figure 3-6). The geometry (width, height, length) and the material 

parameters (Young’s modulus, Poisson’s ratio) are used to define this element. 

 

 
Figure 3-6. BEAM3 element (ANSYS 2005) 

 

3.3.2 Concrete compression and steel tension spring 

The concrete compression spring and steel tension spring from the moment couple to 

model the moment rotation at the end of the beam. The element COMBIN39 (Figure 3-7) 
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is chosen to model these two springs. The element is defined by two node points and a 

generalized tension-compression force-deflection curve (Figure 3-7). Each node has three 

degrees of freedom: translations in the nodal x, y, and z directions. The element also has 

large displacement capability.  

   
Figure 3-7. COMBIN39 element defined by a tension-compression force-deflection curve 

(ANSYS 2005) 

 

The properties of the concrete compression and steel tension springs are derived from 

moment-curvature analysis (Figure 3-8) for the section in the hinge region. The outcome 

of this analysis is the relation between the concrete compression force Cc, the steel 

tension force T and the concrete and steel strains. The strain is multiplied by the effective 

depth of the section (d) to determine the displacements in the spring.   
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Figure 3-8. Moment-curvature analysis in a concrete section 

 

In Figure 3-8, Cc is compressive force in the concrete which include the compressive 

force in the compression steel, T is the tension force in the tension steel, εc is the 

compression strain in the concrete, εs’ is the strain in the compression steel, and εt is the 

strain in the tension steel. 

 

The combination of concrete compression and steel tension spring replicates the moment 

rotation behavior in the hinge. Figure 3-9 and Figure 3-10 show examples of force-

displacement curves results of the concrete compression spring and the steel tension steel 

for a reinforced concrete beam with continuous reinforcement (Orton 2007). 
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Figure 3-9. Force – displacement curve example of a concrete compression spring for a 

reinforced concrete beam with continuous reinforcement (Orton 2007). 

 

 
Figure 3-10. Force – displacement curve example of a steel tension spring for a 

reinforced concrete beam with continuous reinforcement 
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3.3.3 Axial Extension Spring  

One of the key elements of the simplified model is the axial extension spring. It 

represents the axial extension that occurs within the beam. The axial extension controls 

the slope of the load deflection response of the beam during catenary action.  The same 

COMBIN39 element as the concrete compression and steel tension spring is used for this 

element. The following paragraphs explain the steps followed to define the force 

displacement relationship of the axial extension spring and the method adopted. 

 

First, a comparison is made between the tension properties of the axial extension spring 

back-calculated from experimental data from Orton’s test NM-1 and the tension 

properties of the same area of steel under uniform axial tension (based on stress strain 

curve of steel). As can be seen in Figure 3-11 the comparison between the two shows that 

both indicate the same level of yield of the reinforcement (at about 32 kips of axial 

tension), however the strain (or displacement) at which the yield occurs is much larger in 

the experimental test data.  The reason for this difference comes from the fact that the 

stress in the steel under catenary action is not uniform due to effects from the concrete 

and moments applied to the beam.   
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Figure 3-11. Force-displacement curves of the axial extension spring from experimental 

data from Orton’s test NM-1 and a piece of steel under uniform axial tension. 

 

Figure 3-12 shows strain gage readings from Orton’s test NM-2 (similar to NM-1).  

These gages indicate that as the distance from the removed column increases, the axial 

tension when the gage reaches yield also increases.  Or, that not all of the reinforcement 

reaches yield at the same time, with some gages reaching yield much before the predicted 

yield capacity of 32 kips.  Therefore the yielding (and stress) varies along the length of 

the beam.  This helps explain the difference between the results for the axial extension 

spring properties from the experimental results and the stress-strain curve of the same 

area of steel under a uniform axial tension.  Therefore, because of the distributed yielding 

along the length of the beam the initial slope of the force deformation curve is shallower 

as some sections of steel yield early.  Then, as a greater percentage of the steel reaches 

yield the curve starts to flatten out. 
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Figure 3-12. Variation of yielding along beam (NM-2), Orton (2007) 

 

In order to find a way to approximate the axial extension behavior of a reinforced 

concrete beam under catenary action, it was decided to attempt to use modified equations 

for the stress strain behavior of steel.  These equations are the Ramberg-Osgood (1943) 

equation (Equation 3-1) which approximates the stress strain behavior of steel as a 

smooth non-linear curve, and the Sargin (1971) equation (Equation 3-2, 3-3 and 3-4) 

which uses a piece-wise non-linear function to better approximate the yield plateau.  

 

The Ramberg-Osgood equation has the form: 
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(3-1)

 
Where Es is the elastic modulus, εsp is the strain in the plastic region, ζsp is the stress in 

the plastic region, and ns is a parameter that depend on the material considered. 
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The Sargin equation has the form: 

         for               ( 3-2) 

       for               ( 3-3) 

         (      ) [  
   (      )

 (      )
]  for         ( 3-4) 

Where    and    represent stress and strain in the steel in general, the subscript y refers to 

yielding, the subscript sh refers to strain hardening, and the subscript su to ultimate or 

maximum stress. 

 

The equations, with parameters listed in Table 3-1 and Table 3-2, are compared to an 

experimental test on a piece of steel from the Orton data, Figure 3-13.  These equations 

are able to accurately reproduce the stress-strain behavior of steel. 

 
Figure 3-13. Steel stress-strain curves from Orton’s data, Ramberg-Osgood and Sargin 

equation. 
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Table 3-1 Ramberg-Osgood parameters 

εsp [in/in] 0.01

σsp [ksi] 63

ns 4  
 

Table 3-2. Sargin parameters 

 y [in/in] 0.002

 sh [in/in] 0.01

Esh [ksi] 1,000

fy [ksi] 60

fsu [ksi] 100

E  [ksi] 29,000  
 

The next step is to modify the parameters in the equations in order to replicate the 

experimental force-deflection behavior of a reinforced concrete beam under catenary 

action.  

 

For reinforced concrete beam with continuous reinforcement, Figure 3-14 compares the 

force-displacement curves back calculated from experimental data, and for the modified 

Ramberg-Osgood and Sargin equations.  For reference a curve for the unmodified 

behavior of a piece of steel is also shown. 
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Figure 3-14. Force-displacement curves of model with continuous reinforcement from 

Orton’s experimental data, the modified Ramberg-Osgood and the Sargin equation. 

 

The parameters for the modified Ramberg-Osgood and Sargin equations are summarized 

in Table 3-3: 

Table 3-3. Ramberg-Osgood and Sargin parameters for model with continuous 

reinforcement 
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εsp (in/in) 0.01 0.003 

σsp (ksi) 63 63 

ns 4 4 

Sargin 

εy 0.002 0.005 

εsh 0.01 0.005 

Esh 1,000 4000 

fy 60 60 

fsu 100 100 

E 29,000 15000 
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For the Ramberg-Osgood equation the so parameter is changed from 0.01 to 0.003 which 

essentially steepens the initial part of the Ramberg-Osgood curve.  This is important 

because the unmodified Ramberg-Osgood curve does not closely follow the actual stress 

strain behavior of the steel when it is near the yield plateau.  By changing the value of so 

a better approximation is made early in the stress strain curve. 

 

Because the Sargin equation better replicated the early stress strain behavior of steel, 

more information can be learned by its changed parameters.  For the Sargin equation the 

strain at which yielding begins (y) is adjusted from 0.002 to 0.005 and the strain in the 

strain hardening region is also adjusted from 0.01 to 0.005.  This essentially says that the 

yielding does not start until later (as was evidenced by the experimental data) and the 

specimen immediately goes into strain hardening.  The elastic Young’s modulus E is also 

changed so that “yielding” occurring at 0.005 will still occur at a stress of 60 ksi.  The 

strain hardening modulus is increased from 1000 ksi to 4000 ksi because of the 

distribution of stress in the beam. This distribution causes some sections of the steel to be 

in the elastic region while others are in strain hardening. Therefore, the effective strain 

hardening modulus is increased. 

 

For reinforced concrete beam with non-continuous reinforcement, Table 3-13 compares 

the force-displacement curves back calculated from experimental data, and for the 

modified Ramberg-Osgood and Sargin equations.  
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Figure 3-15. Force-displacement curves of model with non-continuous reinforcement 

from Orton’s experimental data, the modified Ramberg-Osgood and the Sargin equation. 

 

The parameters for the modified Ramberg-Osgood and Sargin equations are summarized 
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Table 3-4. Ramberg-Osgood and Sargin parameters for model with non-continuous 

reinforcement 

   
Unmodified Modified 

Ramberg-Osgood 

 

εsp (in/in) 0.01 0.005 

σsp (ksi) 63 60 

ns 4 4 

Sargin 

εy 0.002 0.004 

εsh 0.1 0.004 

Esh 1,000 2,000 

fy 60 60 

fsu 100 100 

E 29,000 20,000 

 

For the Ramberg-Osgood equation the so parameter is changed from 0.01 to 0.005 which 

steepens the initial part of the Ramberg-Osgood curve. This is the same modification that 

was made for the beam with continuous reinforcement.  Therefore, in terms of the 

Ramberg-Osgood equation, there is no difference in the beam with continuous 

reinforcement and one without continuous reinforcement. 

 

For the Sargin equation the strain at which yielding begins (y) is adjusted from 0.002 to 

0.004 and the strain in the strain hardening region is also adjusted from 0.01 to 0.004.  

The 0.004 value is a little less than the 0.005 value used for the case with continuous 

reinforcement.  This possibly indicates a more uniform state of stress in the reinforcement 

or additional deformation due to the transfer of forces from one layer of steel to another.  

The elastic Young’s modulus E is also changed so that “yielding” occurring at 0.004 will 

still occur at a stress of 60 ksi.  The strain hardening modulus is increased from 1000 ksi 

to 2000 ksi because of the distribution of stress in the beam.  Again, because of a more 
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uniform state of stress in the steel, the Young’s modulus does not increase as much as in 

the beam with continuous reinforcement.  

 

For the compression side of the axial extension spring, the properties of the spring are 

determined from the properties of concrete.  First the compressive stress strain curve for 

concrete is determined by the commonly used Hognestad (1955) stress strain curve 

relationship. For the force-displacement curve used in ANSYS, the displacement is 

calculated by the strain times the length of the beam element.  The force is calculated as 

the stress time the average area of the compressive stress block. Because of limitations in 

ANSYS, the descending portion of the stress strain curve is not modeled.  Therefore, the 

curve deviates at the highest force, and then continues at a near constant force, Figure 

3-16. 

 
Figure 3-16. Concrete force-displacement curves from experimental data and Hognestad 

equation 
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3.3.4 Shear Spring 

The shear spring models the shear deformation of concrete in the hinge region. 

COMBIN39 element is used to represent the shear spring. An equation based on 

mechanics of materials is used as a basis for developing a constitutive model that enables 

a user to generate the load-deformation response of the shear spring. The equation is 

based on the material properties and beam geometry. This equation gives the following 

relationship between the shear stress , shear modulus G and the shear strain γ: 

      (3-5) 

Where:     
 


12

E
G                       (3-6) 

Ls

s               (3-7) 

Ls - Shear span - hinge length d 

δs - Shear deformation 

 

The shear stress can be expressed by: 

A

V
       (3-8) 

Where V is the shear force and A is the cross section area of the concrete beam. 

 

The force-displacement relationship is obtained by combining Equation (3.5) through 

Equation (3-8). It becomes: 

Ls

sGAV 

  

   (3-9) 

𝜏  𝐺𝛾 
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Figure 3-17 shows an example of force V versus displacement δs curve of a shear spring 

for a reinforced concrete beam with continuous reinforcement (Orton 2007). 

 
Figure 3-17. Shear spring force-displacement curve for a reinforced concrete beam with 

continuous reinforcement (Orton 2007). 

 

3.4 Implementation of the simplified models in ANSYS 

The finite element analysis commercial code ANSYS is used to implement and simulate 

the numerical models. Three models, based on Orton (2007), Sasani and Kropelnicki 

(2007) experimental data, are analyzed, two continuous and one non-continuous 

reinforcement. The models are analyzed under large deformation transient analysis with 

ramped loading. 

 

3.4.1 Model with non-continuous reinforcement – Orton beams NR-2 and PM-2 

Figure 3-19 and Figure 3-20 show the first model implemented in ANSYS. It is a model 

with non-continuous reinforcement based on Orton’s experimental data NR-2 and PM-2 

(2007). The beam element has a 12 in. by 6 in. cross section, and is 96 in. in length. The 
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reinforcement consisted of #3 (0.11 in2) and #4 (0.2 in2) reinforcing bars with 60 ksi of 

yield strength. 

 

 
Figure 3-18. Orton beam with non-continuous reinforcement. 

 
Figure 3-19. Simplified model of the Orton beam with non-continuous reinforcement. 
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Figure 3-20. Simplified model with non-continuous reinforcement in ANSYS. 

 

The geometry and material properties input for the model are summarized in Table 3-5. 

Table 3-5. Geometry and material properties 

Geometry 
 

Material 

L 96 in 
 

E 29,000 ksi 

h 12 in 
 

At 0.51 in2 

b 6 in 
 

As 0.42 in2 

d 10.75 in 
 

fy 62 ksi 

d' 0.66 in 
 

      

 

The concrete beam (BEAM3 - Set 1) input for the model is summarized in Table 3-6. 
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Table 3-6. Concrete beam input for Orton beam with non-continuous reinforcement 

Cross-sectional area AREA: 72 in2 

Area Moment of Inertia IZZ:  864 in4 

Total beam height HEIGHT:  10 in 

 

The axial extension spring (Combin39 - Set 2) is calculated based on the information 

presented in section 3.3.3.  The axial extension spring is back calculated from the 

experimental data, and calculated using the Ramberg-Osgood and Sargin equations for 

comparisons.  The input for the spring data is given in Table 3-7 and a graph of the 

springs is shown in Figure 3-21. 
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Table 3-7. Input for axial extension springs for Orton beam with non-continuous 

reinforcement 

 
Experimental Ramberg-Osgood Sargin 

Material 
Displacement Axial Load Displacement Axial Load Displacement Axial Load 

in kip in kip in kip 

Concrete 

-6.000 -73.0 -6.000 -73.0 -6.000 -73.0 

-0.191 -67.7 -0.191 -67.7 -0.191 -67.7 

-0.146 -69.0 -0.146 -69.0 -0.146 -69.0 

-0.100 -62.9 -0.100 -62.9 -0.100 -62.9 

-0.055 -43.2 -0.055 -43.2 -0.055 -43.2 

-0.009 -8.1 -0.009 -8.1 -0.009 -8.1 

Steel 

0.000 0.0 0.000 0.0 0.000 0.0 

0.008 3.4 0.032 4.2 0.144 8.4 

0.036 8.5 0.067 8.4 0.288 16.8 

0.085 12.6 0.118 12.6 0.432 25.2 

0.123 14.8 0.199 16.8 0.576 25.2 

0.213 18.8 0.337 21.0 0.864 26.8 

0.289 21.3 0.563 25.2 1.152 28.4 

0.512 24.3 0.913 29.4 1.440 29.9 

9.150 42.0 1.434 33.6 1.728 31.2 

    2.177 37.8 2.016 32.55 

    2.972 41.2 2.304 33.768 
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Figure 3-21. Axial extension spring force-displacement curve for Orton beam with non-

continuous reinforcement 

 

During testing Orton measured the axial movement at the supports of the beams.  A 

support spring representing this movement is included in the ANSYS model.  The 

support spring (Combin39 - Set 3) input is shown in Table 3-8. 

Table 3-8. Support spring input data for Orton tests 

Displacement Force 

in kip 

-8 -3 

-0.3 -2.5 

-0.05 -0.8 
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0.4 35 
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Figure 3-22. Support spring force-displacement curve for Orton beams 

 

3.4.2 Model with continuous reinforcement – Orton beams NM-1 and NM-2 

The second model implemented in ANSYS is a model with continuous reinforcement 

based on Orton’s experimental data for tests NM-1 and NM-2 (2007). The beam element 

has 12 in. by 6 in. cross section, and 144 in. in length. The reinforcement consisted of #3 

(0.11 in2) and #4 (0.2 in2) reinforcing bars as shown in Figure 3-23. 
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Figure 3-23. Orton beam with continuous reinforcement 

 

 
Figure 3-24. Simplified model of the Orton beam with continuous reinforcement. 
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Figure 3-25. Model of the beam with continuous reinforcement in ANSYS 

 

The geometry and material properties input for the model are summarized in Table 3-9 

and Table 3-10 

Table 3-9. Geometry 

L 96 in 

h 12 in 

b 6 in 

d 10.75 in 

d' 0.66 in 
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Table 3-10. Material property 

E 29,000 ksi 

At 0.51 in2 

As 0.42 in2 

fy 62 ksi 

 

The concrete beam (BEAM3 - Set 1) input is given in Table 3-11. 

Table 3-11. Concrete beam input for Orton beam with continuous reinforcement 

Cross-sectional area AREA: 72 in2 

Area Moment of Inertia IZZ:  864 in4 

Total beam height HEIGHT:  10 in 

 

For beams with continuous reinforcement, moment restraint exists at the section near the 

support.  As presented in section 3.3.2 this moment restraint is represented by a couple of 

a concrete compression spring and steel tension spring.  The concrete compression spring 

input is summarized in Table 3-12. 

Table 3-12. Concrete compression spring input for Orton beam with continuous 

reinforcement 

Displacement Force 

in Kip 

0.000 0 

0.011 26 

0.022 32 

0.043 34 

0.054 36 

0.065 38 

0.075 39 

0.086 40 

0.215 51 

0.500 51 
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Figure 3-26. Concrete compression spring force-displacement curve for Orton beam with 

continuous reinforcement 

 

Steel tension spring input is summarized in Table 3-13. 

Table 3-13. Input data for steel tension spring for Orton beam with continuous 

reinforcement 

Displacement Force 

in kip 

0.000 0 

0.027 26 

0.073 32 

0.246 34 

0.317 36 

0.381 38 

0.440 39 

0.495 40 

2.150 51 

5.000 51 
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Figure 3-27. Steel tension spring force-displacement curve for Orton beam with 

continuous reinforcement 

 

The axial extension spring (Combin39 - Set 2) is calculated based on the information 

presented in section 3.3.3.  The axial extension spring is back calculated from the 

experimental data, and calculated using the Ramberg-Osgood and Sargin equations for 

comparisons.  The input for the spring data is given in Table 3-14 and shown in Figure 3-

28. 
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Table 3-14. Input for axial extension spring for Orton beam with continuous 

reinforcement 

 
Experimental Ramberg-Osgood Sargin 

Material 
Displacement Axial Load Displacement Axial Load Displacement Axial Load 

in kip in kip in kip 

Concrete 

-6.000 -73.0 -6.000 -73.0 -6.000 -73.0 

-0.191 -67.7 -0.191 -67.7 -0.191 -67.7 

-0.146 -69.0 -0.146 -69.0 -0.146 -69.0 

-0.100 -62.9 -0.100 -62.9 -0.100 -62.9 

-0.055 -43.2 -0.055 -43.2 -0.055 -43.2 

-0.009 -8.1 -0.009 -8.1 -0.009 -8.1 

Steel 

0.000 0 0.000 0.0 0.000 0.0 

0.425 23 0.050 5.1 0.144 7.7 

0.549 29 0.135 12.8 0.288 15.3 

0.645 32 0.215 17.9 0.432 23.0 

0.795 33 0.336 23.0 0.576 30.6 

10.000 38 0.524 28.1 0.864 32.6 

    0.653 30.6 1.152 36.3 

    0.812 33.2 1.440 39.5 

    1.006 35.7 1.728 42.4 

    1.240 38.3 2.016 44.8 

    1.521 40.8 2.304 46.9 
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Figure 3-28. Axial extension spring force-displacement curve for Orton beam with 

continuous reinforcement 

 

The support spring (Combin39 - Set 3) input and shear spring input is the same as for the 

Orton beam without continuous reinforcement. 

 

3.4.3 Model with continuous reinforcement – Sasani and Kropelnicki (2007) 

The third model implemented in ANSYS is a beam element part of an experimental 

program carried out by Sasani and Kropelnicki (2007). The beam has fixed boundaries 

and is 13ft 8 1/4 in. long with a cross-section of 12 in. by 20 in. The reinforcement is 

continuous. The detailing is shown in Figure 3-29. Reinforcement of grade 75 ksi was 

used along with concrete compressive strength of 6 ksi.  

 

0

10

20

30

40

50

60

0.00 1.00 2.00 3.00 4.00 5.00

F
o
rc

e
 (

k
ip

s
) 

Displacement (in) 

Ramberg-Osgood Experimental

sargin Unmodified Steel



 

64 

 

 

 

 
Figure 3-29. Reinforcement detailing of Sasani and Kropelnicki’s experimental beam 

(Sasani and Kropelnicki, 2007). 

 

 
Figure 3-30. Simplified model of Sasani and Kropelnicki’s beam. 
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Figure 3-31. Simplified model in ANSYS 

 

The concrete beam (BEAM3 - Set 1) input is summarized in Table 3-15. 

Table 3-15. Concrete beam input for Sasani and Kropelnicki beam 

Cross-sectional area AREA: 28 in2 

Area Moment of Inertia IZZ:  6667 in4 

Total beam height HEIGHT:  7.5 in 

 

For beams with continuous reinforcement, moment restraint exists at the section near the 

support.  As presented in section 3.3.2 this moment restraint is represented by a couple of 

a concrete compression spring and steel tension spring.  The concrete compression spring 

(2 Comb39 - Set 3) input is summarized in Table 3-16. 
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Table 3-16.  Concrete compression spring input for Sasani and Kropelnicki beam 

Displacement Force 
in Kip 

0.000 0 

0.007 28 

0.013 35 

0.026 37 

0.033 39 

0.040 41 

0.046 42 

0.053 43 

0.132 55 

0.500 55 

 
Figure 3-32. Concrete compression spring force-displacement curve - Sasani and 

Kropelnicki (2007) 

 

The steel tension spring (2 Comb39 - Set 4) input is summarized in Table 3-17. 
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Table 3-17.  Steel tension spring input for Sasani and Kropelnicki beam 

Displacement Force 
in kip 

0.000 0 

0.010 28 

0.019 35 

0.047 37 

0.073 39 

0.099 41 

0.119 42 

0.128 43 

0.500 55 

5.000 55 

 

 

 
Figure 3-33. Steel tension spring force-displacement curve- Sasani and Kropelnicki 

(2007) 

 

The axial extension spring (Combin39 - Set 2) is calculated based on the information 

presented in section 3.3.3.  Based on the results of the Orton beam with continuous 
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Kropelnicki beam.  The axial extension spring (2 Comb39 - Set 5) input is given in Table 

3-18 and shown in Figure 3-34. 

Table 3-18.  Axial extension spring input for Sasani and Kropelnicki beam 

Material 
Displacement Axial Load 

in kip 

Concrete 

6 25 

0.151 23.8 

0.115 24.2 

0.079 22.1 

0.043 15.2 

0.007 2.8 

Steel 

0.000 0.0 

0.072 14.4 

0.144 28.9 

0.216 43.3 

0.288 57.8 

0.432 64.8 

0.576 70.4 

0.720 74.7 

0.864 77.6 

1.008 79.1 

1.152 79.2 
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Figure 3-34. Axial extension spring force-displacement curve for Sasani and Kropelnicki 

beam 

 

The shear spring (3 Combin39 - Set6) input is summarized in Table 3-19. 

Table 3-19. Shear spring input for Sasani and Kropelnicki beam 

Displacement Force 
in kip 

-0.01 -20.0 

0.0 0.0 

0.01 20.0 

 
Figure 3-35. Shear spring force-displacement curve for Sasani and Kropelnicki beam  
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4. COMPARISON OF SIMPLIFIED MODEL RESULTS AND PREVIOUS 

EXPERIMENTAL TEST RESULTS 

The responses from the simplified model are compared and validated using Orton (2007), 

Sasani and Kropelnicki (2007) experimental data. This chapter compares and discusses 

the results of the analysis from ANSYS and these experimental data. 

 

4.1 Model with non-continuous reinforcement – Orton beams NR-2 and PM-2 

Figure 4-1 and Figure 4-2 shows the results of the model for non-continuous 

reinforcement defined in ANSYS using the properties presented in section 3.4.1 

experimental test data from Orton’s tests NR-2 and PM-2. 
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Figure 4-1. Vertical load-central displacement curve of Orton’s test and simplified model 

for non-continuous reinforcement 
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Figure 4-2. Axial load-central displacement curve of Orton’s test and simplified model 

for non-continuous reinforcement 

 

For Orton’s specimen PM-2, CFRP was applied to provide continuity of the positive 
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had non-continuous reinforcement.  For both NR-2 and PM-2 hinges formed at the 

sections where the reinforcement terminated (see Figure 3-4).  The beam underwent a 

compressive arch phase until about 16 in. of displacement. Afterwards, the specimen 

picked up catenary tension until the testing was stopped at about 30 in. of displacement. 
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The simplified model was able to accurately predict both the vertical and axial loads vs 

displacement. The spring data back calculated from the experimental data and the 

modified Ramberg-Osgood equation both produced very accurate results.  The Sargin 

equation is not as accurate, containing a slightly different curvature than the other two 

curves.  This is due to the fact that the initial portion of the axial extension spring data for 

the Sargin curve is linear whereas the initial portion of the experimental and Ramberg-

Osgood curves are curved (see Figure 3-21).  This produces some inaccuracy in the test 

results.  It also indicates that although the tension in the beam is at a low level, the axial 

extension is not linear (as would be expected for steel in its elastic range). 

 

4.2 Model with continuous reinforcement – Orton beams NM-1 and NM-2 

Figure 4-3 and Figure 4-4 shows the results of the model for continuous reinforcement 

defined in ANSYS using the properties presented in Section 3.4.2 and experimental test 

data from Orton’s tests NM-1 and NM-2. 
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Figure 4-3. Vertical load-central displacement curve of Orton’s test and simplified model 

for continuous reinforcement 
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Figure 4-4. Axial load vs central displacement curve of Orton’s test and simplified model 

for continuous reinforcement 
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of 30 in and an axial tension of 35 kip before failure. The proposed model represents a 

close agreement of all these aspect of the beam response.  Furthermore, there was little 

difference in the response of the models for the three different axial spring definitions 

(experimental, Ramberg-Osgood, and Sargin). 

 

4.3 Model with continuous reinforcement – Sasani and Kropelnicki beam 

Figure 4-5 shows the results of the model for continuous reinforcement defined in 

ANSYS using the properties presented in Section 3.4.3 and experimental test data from 

Sasani and Kropelnicki (2007). 

 

 
Figure 4-5. Force-displacement curve of Sasani and Kropelnicki’s test and simplified 

model. 
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During Sasani and Kropelnicki’s experiment (Figure 4-5), the two bottom bars fractured 

at a vertical displacements of about 6.0 in. and 7.5 in. Following the bar fractures, 

catenary action provided by the top reinforcement results in the increasing resistance of 

the beam. At a vertical displacement of about 8.5 in the top continuous bars at the center 

of the beam yielded in tension. The test was stopped at 16 in. of vertical deformation due 

to geometric constraints. 

 

The simplified model only models the response of the beam after the fracture of the two 

bottom bars. It represents quite well the catenary phase of the response which is the focus 

of this research. The model was able to accurately predict the load and displacement at 

which catenary action begins.   Afterward, the slope of the model’s curve is shallower 

than the experimental data.  This might be due to the fact that in the experimental test, the 

reinforcement fractured on only one side of the column resulting in unsymmetrical 

loading of the beam. 
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5. CONCLUSIONS 

 

5.1 Conclusion 

A simplified model was developed for use in simulating the response of reinforced 

concrete beams under catenary action. The simplified model was developed based on 

material properties, geometric constraints, and the reinforcement detailing of the beam. 

The proposed simplified model included a beam element and a system of springs that 

represents the load extension behavior and moment rotation behavior of a reinforced 

concrete beam element.  The tensile definition of the axial extension spring was 

approximated by a steel stress-strain curve modified to account for uneven stress in the 

steel along the length of the beam.  Two types of models were created: to model beams 

with non-continuous and beams with continuous negative moment reinforcement. The 

simplified model was analyzed using the commercial finite element analysis code 

ANSYS. The results of the models are then compared to Orton (2007) and Sasani and 

Kropelnicki (2007) experimental tests on reinforced concrete beams. It was found that the 

models predict accurately predict accurately the response of reinforced concrete beams 

under catenary action. 

 

 The conclusions drawn from the results of this research are: 

 Simplified models, consisting of a series of spring and beam elements, can be 

used to accurately predict the catenary action behavior of the beam. 
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 The choice of model depends on the continuity of the reinforcement.  Beams with 

continuous negative moment reinforcement require a model that replicates the 

moment rotation response at the support.  Beams with non-continuous 

reinforcement have no moment resistance at either end of the beam element. 

 The axial extension of the beam can be represented by a modified stress-strain 

curve for steel.  The modification adjusts for the non-uniform distribution of 

stress along the reinforcement in the beam.  For beams with continuous steel, the 

modification effectively delays the onset of yielding in the steel and eliminates the 

yield plateau.  For beams with non-continuous steel, the modification is similar, 

but the effective yielding occurs at a lower value of strain. 

 

5.2 Future Research 

Future research still needs to be conducted on: 

 The simplified models developed in this research needs to be expanded to a 

complete reinforced concrete frame to evaluate the possible resistance to 

disproportionate collapse. 

 The simplified models need to be compared to more experimental tests on 

reinforced concrete beams under catenary action.  This will further validate the 

models, or suggest possible improvements.  

 A parametric study needs to be conducted using the simplified models to evaluate 

the effects of beam geometry, span, and reinforcement details on the catenary 

response of the beam. 
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 The simplified models needs to be implemented in programs other than ANSYS 

(such as SAP) to allow design engineers easier access to the model. 

 The simplified model needs to be used to develop design equations for possible 

use in codes or guidelines. 
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