

DATA CONTROL FOR SIGNAL SCAVENGING FOR A PERSONNEL

DETECTION SYSTEM

A Thesis

Presented to

The Faculty of the Graduate School

At the University of Missouri-Columbia

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

UDAY GOVINDRAO SHRINIWAR

Dr. Harry Tyrer, Thesis Supervisor

JULY 2010

The undersigned, appointed by the dean of the Graduate School, have examined the

thesis entitled

DATA CONTROL FOR SIGNAL SCAVENGING FOR A PERSONNEL

DETECTION SYSTEM

Presented by

Uday Govindrao Shriniwar,

A candidate for the degree of

Master of Science

And hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Harry Tyrer

Dr. Guilherme DeSouza

Dr. John Fresen

http://engineering.missouri.edu/people/faculty/desouzag/index.php

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Harry W. Tyrer, my advisor, for

his invaluable guidance and encouragement in the completion of this study.

A special thanks to Richard Oberto, Jim Fischer and Anvari Reza for sharing their

valuable knowledge about embedded engineering with me. I am also grateful to Rohan

Neelgund and Krishna Devarkonda, my project mates, for suggesting ways to implement

the protocols and for motivating me during the course of development. They have made

available their support in a number of ways.

I owe my deepest gratitude to my parents. Special appreciation must be expressed

to them for their belief in me, encouragement and financial support for my study in the

United States. I am also thankful to my fiancé for being supportive and for encouraging

me during my study of this project. Without her support, I could not have completed

this project.

Lastly, I offer my regards and blessings to all of those who supported me in any

respect during the completion of the project.

http://engineering.missouri.edu/people/faculty/fischerj/index.php

iii

Table of Contents

ACKNOWLEDGEMENT………………………………………………………………. ii

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

ABSTRACT .. x

CHAPTER 1 : INTRODUCTION .. 1

CHAPTER 2 : LITERATURE REVIEW ... 3

CHAPTER 3 : METHODS ... 7

3.1. Hardware used .. 8

3.1.1. Microcontrollers used in all the systems ... 8

3.1.2. Programmer/Debugger .. 10

3.1.3. Radio Transceiver Module .. 11

3.2. Protocols/Standards/Bus used .. 13

3.2.1. Recommended Standard-232(RS-232) ... 13

3.2.2. Serial Peripheral Interface (SPI) bus ... 13

3.2.3. MiWi P2P Protocol (IEEE 802.15.4) .. 14

3.3. Integrated development environment (IDE) and compiler used 14

3.4. Software languages used .. 15

3.5. Window Hyper Terminal ... 15

3.6. Development System.. 15

3.6.1. Data acquisition and conditioning for the Development System 15

3.6.2. Microcontroller circuit for the Development system 16

3.6.3. Voltage regulator circuit (5V) used for the Development System 17

iv

3.6.4. Recommended Standard-232 (RS-232) Circuit used for the

 Development System .. 18

3.6.5. Microcontroller program, the algorithm, and the frame format
 implemented for the Development System ... 18

3.6.6. Experimental set up for the tests carried to assess the performance
 of the Development System .. 20

3.6.6.1. Observation of sensor non-activation ... 21

3.6.6.2. Observation of sensor activation ... 21

3.6.6.3. Observation of data acquisition and transmission time 21

3.7. Prototype System.. 22

3.7.1. Data acquisition and conditioning for the Prototype System 22

3.7.2. Microcontroller circuit used for the Prototype System 23

3.7.3. Voltage regulator circuit (5V) used for the Prototype System 24

3.7.4. Recommended Standard-232 (RS-232) Circuit used for the Prototype

System ... 25

3.7.5. Microcontroller program, the algorithm, and the frame format for the

Prototype System .. 26

3.7.6. Experimental set up for carrying out tests to assess the performance of
 the Prototype System .. 28

3.7.6.1. Observation of sensor non-activation in the Prototype System 28

3.7.6.2. Observation of sensor activation in the Prototype System 28

3.7.6.3. Observation of the Prototype System data acquisition and

 transmission time .. 28

3.8. Installed Floor .. 29

3.8.1. Data acquisition and conditioning for the Installed Floor 30

3.8.2. Microcontroller circuit used in the Installed Floor 31

v

3.8.3. Voltage regulator circuit (3.3V) used in the Installed Floor 32

3.8.4. Recommended Standard-232 (RS-232) Circuit used in the
 Installed Floor .. 33

3.8.5. Installation Segment Electronics... 34

3.8.6. Installed Floor Networking ... 34

3.8.7. Installed Floor Frame Formatting ... 36

3.8.8. Experimental set up for the Installed Floor ... 41

3.8.8.1. Observation of sensor non-activation in the Installed Floor 41

3.8.8.2. Observation of sensor activation in the Installed Floor 41

3.8.8.3. Observation of the Installed Floor data acquisition per second 41

CHAPTER 4 : RESULTS ... 42

4.1. Development system .. 42

4.1.1. Observation of sensor non-activation in the Development System 42

4.1.2. Observation of sensor activation in the Development System 43

4.1.3. Observation of the Development system data acquisition and
 transmission time .. 44

4.2. Prototype system .. 46

4.2.1. Observation of sensor non-activation in the Prototype System 46

4.2.2. Observation of sensor activation in the Prototype System 47

4.2.3. Observation of Prototype System data acquisition and transmission time . 48

4.3. Installed floor ... 50

4.3.1. Observation of sensor non-activation in the Installed floor 50

4.3.2. Observation of sensor activation ... 52

4.3.3. Observation of data acquisition per second .. 54

vi

CHAPTER 5 : DISCUSSIONS .. 55

5.1. Microcontroller and software ... 55

5.2. Hardware used for the development, prototype and the installed floor 55

5.3. Protocols used in the development, prototype systems and the installed floor .. 57

CHAPTER 6 : CONCLUSION .. 61

REFERENCES ... 63

APPENDICIES ... 65

vii

LIST OF FIGURES

Figure 3-1: The block diagram made up of three blocks, ... 8

Figure 3-2: The pin description of pins of PIC microcontroller involved in interfacing 11

Figure 3-3: The pin diagram of MRF24J40MA (8) ... 12

Figure 3-4: The connection between radio transceiver module .. 12

Figure 3-5: The block diagram of the Development System. ... 16

Figure 3-6: The picture of microcontroller circuit used in the Development System. 16

Figure 3-7: The schematic of the circuit used for the Development System. ... 17

Figure 3-8: The circuit diagram of regulator used to maintain 5V supply ... 17

Figure 3-9: The circuit diagram of Recommended Standard-232 (RS-232) .. 18

Figure 3-10: The flow chart delineating the program ... 20

Figure 3-11: The block diagram of the Prototype System .. 22

Figure 3-12: The picture of the circuit boards used for the Prototype System. ... 23

Figure 3-13: The schematic of the microcontroller circuit ... 24

Figure 3-14: The circuit diagram of regulator used to maintain the supply voltage 25

Figure 3-15: The circuit diagram of Recommended Standard-232 (RS-232) .. 25

Figure 3-16: The flow chart used for writing the program for the Prototype System. 27

Figure 3-17: The picture of, the host node ... 30

Figure 3-18: The picture of peer node which transfer data to their master... 30

Figure 3-19: The circuit diagram of the host node used in the Installed Floor ... 31

Figure 3-20: The schematic of microcontroller circuit implementation of peer nodes 32

Figure 3-21: The typical application circuit of 3.3V regulator ... 33

Figure 3-22: The circuit diagram of Recommended Standard-232 (RS-232) .. 33

Figure 3-23: The block diagram of the Installation Segment Electronics .. 34

Figure 3-24: The block diagram of the Installation Floor .. 35

Figure 3-25: The flow chart of program written for the host node .. 39

viii

Figure 3-26: The flow chart of program written for the peer nodes ... 40

Figure 4-1: Data received on the Windows Hyper Terminal from microcontroller 42

Figure 4-2: Sensor display program when no sensor was activated (2) ... 43

Figure 4-3: Data received on Windows Hyper Terminal ... 43

Figure 4-4: Sensor display program when 2 sensors were activated (2) .. 44

Figure 4-5: Graph for Time in mS Vs No. of Active sensors ... 46

Figure 4-6: Data received on the Windows Hyper Terminal from microcontroller 47

Figure 4-7: Sensor display program when no sensor was activated (2) ... 47

Figure 4-8: Data received on the Windows Hyper Terminal ... 48

Figure 4-9: Sensor display program ... 48

Figure 4-10: Graph for Time in ms Vs No. of Active sensors ... 50

Figure 4-11: Data received on the Windows Hyper Terminal from microcontroller 51

Figure 4-12: The Sensor display program when no sensor was activated. ... 51

Figure 4-13: The data received on Windows Hyper Terminal via serial port. ... 52

Figure 4-14: Sensor display program ... 52

ix

LIST OF TABLES

Table 2-1: Table of all the microcontrollers available in the market .. 5

Table 3-1: List of all the microcontrollers used in this project ... 9

Table 4-1: The time taken by Development system to complete one polling cycle 45

Table 4-2: The time taken by each system to complete one polling cycle ... 49

x

ABSTRACT

Injurious falls have been one of the major problems in elderly people and not

providing medical assistance to those patients on time may increase complications. We

developed a ‘Smart Carpet’, which detects the personal motion. It can be utilized to

detect the falls and automatically call for assistance. This system has two major parts: the

sensors, which sense the walking and the personal computer with internet connectivity,

which displays the motion as well as can call automatically for assistance after detecting

a fall. The lack of feasibility to maintain one computer per room raises the need of a

smart electronic instrument to gather the sensor data of a room and forward it to a central

computer. The use of a smart electronic device reduces the number of computers used

and hence the cost. Along with this, increases the distance between sensors and the

personal computer. Our aim was to develop a low cost and reliable electronics system,

which can consistently accumulate data from sensors and transmit it to the personal

computer. We used microcontrollers to achieve this electronics system. In the initial

stages of development to gain the confidence on the system, we implemented systems

using low numbers of sensors and after achieving success, built systems with larger

numbers of sensors but using only one microcontroller. In the final stage of development,

we created a wireless network in which 4 microcontrollers act as nodes and communicate

with each other using wireless channel for transferring the sensor data of different areas

to the personal computer. By achieving satisfactory results, we have gained a confidence

that the electronics system developed in the concluding stage is highly reliable, accurate

and can be extensively used for further development.

1

CHAPTER 1 : INTRODUCTION

Falls are one of the major issues in Alzheimer’s elderly patients. Study shows that

30% of elders fall each year and 5% of those falls result in fractures. An injury caused by

falls might shorten the life anticipation and might increase the cost of care for the patient.

Many researchers have conducted studies to prevent falls (16).

Temporary or permanent memory loss is the main cause of Alzheimer disease (7).

After falling, patients might fail to remember to call for medical assistance, which result

in late treatment, and hence more serious problems. On the other hand, monitoring

requires manpower, and increased expenses.

Our motivation behind developing this system was to monitor elderly people and

possibly detect their falls. Connectivity of the monitoring system to the internet helps

distantly located family members to know the daily activities of their loved ones by

visiting their respective web page. Achieving such a system will reduce the need of

continuous monitoring and hence the cost.

We placed low cost sensors, aluminum foils, under a carpet to provide a sensor

floor, amplified the signals generated from the sensors (1) and used that data to display

on the computer monitor (2). A smart electronic device was implemented to process the

sensor data, to format and to transfer it to the personal computer for display purpose. The

use of the smart electronic device increased the scope for longer distance between the

personal computer and the sensors, which in turn helped to cover a larger area. The

http://www.alz.org/alzheimers_disease_10_signs_of_alzheimers.asp

2

microcontrollers that are small, low cost and can be programmed to receive sensor data,

process and transfer it to the personal computer were used to implement smart electronic

device. This whole thesis discusses the role of microcontroller in this system.

Initially, to achieve confidence, we built faux floors with a low number of sensors

i.e. the development system (4 sensors). This was followed by the prototype system (21

sensors); and after gaining confidence in these systems, we took a bigger step of

implementing a floor with a larger number of sensors i.e. the installed floor (128 sensors).

The results achieved are reasonable in terms of efficiency, accuracy and

repeatability. The results of one of the floors (development faux floor) have been

published (3). A major concern was scalability of sensors; typically, a 12’ X 10’ room

might require 120-240 sensors. For each circuit we designed, there was a sufficient

margin to support such a scalability. This dissertation focuses on the evolution of the

microcontroller circuitry which detects personnel walking on the carpet.

3

CHAPTER 2 : LITERATURE REVIEW

Falls in elderly patients of Alzheimer’s disease have been a major concern, since

they may cause serious injuries, which may lead to broken bones (16). Timely delivery of

medical treatment becomes of prime importance in the event of fall to avoid causing

more serious problems. The application we developed is low cost, reliable, and efficient

and in the event of falls can automatically call for medical assistance through the internet.

Moreover, it can store sensor data and display it on a web page. Apart from monitoring

the Alzheimer’s patients, the application can also be used to monitor the elderly people’s

daily activities, mainly the people living alone, by accessing their web page.

We needed sensors and a visualizing program to sense and display the walking of

a personal. For sensing the gait of a person we used aluminum foils as sensors. The

aluminum foils generate an increased voltage when touched in some form compared to

the untouched situation, Rohan Neelgund designed a circuit to amplify the voltage from

mV to V (1). Furthermore, for displaying activated sensors on the personal computer

Krishna Devarakonda wrote code to process the data frames sent from the

microcontroller and use them for display purposes (2).

It is clear from the above discussion that there is a need of interface between the

computer and the sensors. The main duty of the electronics we developed here is to create

a communication path between the sensors and the personal computer by gathering data

4

from sensors and transferring it to the personal computer. So there are total two interfaces

involved: one from sensors to the microcontroller and the second from the

microcontroller to the personal computer.

Our major concern was to build a cost effective system by using satisfactory

microcontrollers to cover a larger area i.e. to connect as many sensors as possible to one

microcontroller, so we needed a microcontroller with an adequate number of input output

pins. Furthermore, the Universal asynchronous receiver transmitter (UART)/Universal

synchronous asynchronous receiver transmitter (USART) port is commonly available

with all the personal computers and establishing communication between the computer

and the microcontroller is easy and low cost.

We gained confidence by implementing systems with low numbers of sensors.

Finally, for covering larger area i.e. with bigger numbers of sensors, we built a wireless

network in which 4 microcontrollers associated with 4 groups of 32 sensors communicate

with each other through wireless channel and transfer sensor data to a personal computer.

For building the wireless network, we interfaced a radio transceiver module to the

microcontroller using a Serial Peripheral Interface (SPI).

Because of the prior knowledge, we used PIC microcontrollers for developing our

system. The Table 2-1 shows the list of some of the other microcontrollers in the market

along with their manufacturers, which have all the features required for our application

and can be used instead of PIC microcontroller.

5

Table 2-1: Table of all the microcontrollers available in the market

 along with their features useful for our application

Microcontrol

lers

ATmega16

A

(Atmel)

(4)

MC68HC908AB3

2

(Freescale

Semiconductor)

(5)

P87C52SBPN

(NXP)

(6)

PIC16F871

(Microchip)

PIC18F4455

(Microchip)

Cost($) $4.61 $12.50 $2.60 $3.41 $4.43

Memory 16K 32K 32K 3.5K 24K

Input/Output

Pins

32 51 32 32 25

UART Yes Yes Yes Yes Yes

SPI Yes Yes Yes No Yes

Moreover, many wireless networking protocols are available in the market such as

Zigbee, WiFi, MiWi, MiWi P2P, and Bluetooth. Out of these, we chose to use MiWi

Peer to Peer (MiWi P2P) since it was compatible with PIC microcontroller and it did not

require much change in the circuit we used for previous systems; however, we did use a

different PIC microcontroller but other than that there were minor modifications.

Demo codes for MiWi Peer-to-Peer protocol are available in MiWi(TM) IEEE

802.15.4 Wireless Networking Protocol Stack, which is compatible to PIC18F87J11 (9).

These demo codes had programs for two nodes, P2P Node 1 and P2P Node 2 in which

the P2P Node 1 selects the least noise channel and waits for P2P Node 2 to get connected.

After powering up, P2P Node 2 looks for P2P Node 1, after finding, gets connected and

waits for user’s actions on the hardware mentioned in the code. For initial studies, we

preferred to use PDIP packaged microcontrollers over the surface mountable devices. The

non-availability of PIC18F87J11 in PDIP package made us look for another PIC

microcontroller. We chose PIC18F4455, studied the demo code and made changes in the

6

code as per our requirements and according to pin configurations of PIC18F4455

microcontroller.

7

CHAPTER 3 : METHODS

For sensing the location of a person we used aluminum foils as a sensor (1). We

activated the foils by touching it in some form, the aluminum foils then generate an

increased voltage in comparison to the untouched situation. Rohan Neelgund designed a

circuit to amplify the voltage from mV to V (1).

The data gathered from the amplifiers can be interfaced directly to a personal

computer but with unnecessary complexity. Furthermore, as the number of sensors

increases the complexity increases so we avoid connecting the sensors directly to the

personal computer. The microcontroller can provide a useful interface by taking the data

from the amplifiers, processing it and forwarding it to the personal computer. While

working on this project my focus was to build microcontroller circuits for each system we

developed. Moreover, on the personal computer we needed a display program to show

the activated sensors. Krishna Devarakonda wrote code to process the data frames

received from the microcontroller and display them. We used serial communication to

transfer the data from the microcontroller to the personal computer (2).

For testing purposes, we developed several different floors beginning with a low

number of sensors and increasing the number of sensors after successful installation of

each floor system. We built a development board using 4 (2 by 2) sensors. After

successful accomplishment of this system, we moved on to 21 (7 by 3) sensors and

named it the Prototype System. Then we built a 32 (8 by 4) sensors and called it as the

8

Installation Segment. Finally took a bigger step of development where we built a

wireless network using 4 Installation Segments and referred it as the Installed Floor.

Figure 3-1 shows the block diagram made up of three blocks, where the first

block consists of sensors and amplifiers, the second block consists of the microcontroller

and the third consists of a personal computer.

Figure 3-1: The block diagram made up of three blocks,

where the first block consists of sensors and amplifiers, the second block consists of

microcontroller and the third consists of a personal computer.

The microcontroller program polls all the connected sensors for activation, and sends a

formatted frame to the personal computer using Recommended Standard-232 (RS-232).

3.1. Hardware used

3.1.1. Microcontrollers used in all the systems

 We required a low cost, fast processing microcontroller with an adequate number

of input/output pins to connect variable numbers of sensors. Moreover, in order to

establish the communication with the personal computer, we required a Universal

asynchronous receiver transmitter (UART)/Universal synchronous asynchronous receiver

transmitter (USART) port.

9

Table 3-1 shows list of all the microcontrollers along with some of the important

features used in each system.

Table 3-1: List of all the microcontrollers used in this project

 along with some of the important features used in each system

Applications Development system,

Prototype system

Installed floor

Microcontrollers Used PIC16F871 PIC18F4455

Program Memory Type Flash Flash

Program Memory Size 3.5K 24K

Additional data

storage(Data EEPROM)

64 Bytes 256 Bytes

CPU Speed 5MIPS 12MIPS

Digital Communication

Peripherals

1-A/E/USART, 1-A/E/USART, 1-

MSSP(SPI/I2C)

Voltage range 2v to 5.5v 2v to 5.5v

Input / Output Pins 32 35

Package Plastic Dual-In-line Package

(PDIP)

Plastic Dual-In-line

Package (PDIP)

Pin Count 40 40

There were only 4 and 21 sensors in the Development and the Prototype Systems

so the size of the program written for them was smaller as in comparison to that of the

Installed Floor. The 3. 5Kbytes of program memory was sufficient for them, so we could

continue using PIC16F871 for both the systems. Also, the program memory is of flash

type, which enables us to erase and program it several thousand times. Furthermore, we

utilized the Universal asynchronous receiver transmitter (UART)/Universal synchronous

asynchronous receiver transmitter (USART) port to establish the communication with the

personal computer.

In the Installed Floor, we created a Peer-to-Peer wireless network. A radio

transceiver module was interfaced to the microcontroller using Serial Peripheral Interface

(SPI). The program for a wireless network involves the implementation of all the layers

10

of the networking so the required Program Memory Size was much larger than

3.5Kbytes. We used PIC18F4455 since it has Serial Peripheral Interface (SPI) as well as

24Kbytes of flash type program memory. Additionally, the 35 input/output pins gave us

scope to test our system by connecting more sensors to one microcontroller, a Universal

asynchronous receiver transmitter (UART)/Universal synchronous asynchronous receiver

transmitter (USART) port supports RS-232 so the use of different microcontroller did not

require much of changes in the previous system’s circuit.

We used PIC16F871 and PIC18F4455 microcontrollers with 40 pin count and

Plastic Dual-In-line Package (PDIP) so we could use the same circuit designs for all the

three systems i.e. the Development System, Prototype System and the Installed Segment.

3.1.2. Programmer/Debugger

The requirements of programmer/Debugger are cost effectiveness, portability, and

user friendly; it should be compatible with most of the PIC microcontrollers. We chose

PICKit 2 Programmer/Debugger since it is portable, easy to use, easy to interface,

compatible with almost all the PIC microcontrollers, and costs $34.99 (12).

Figure 3-2 shows the pin description of pins of PIC microcontroller involved in

interfacing the PIC microcontroller with PICkit 2. For interfacing PICKit 2 with the

microcontroller we need to mount a 6 pin header on the circuit board (13).

11

Figure 3-2: The pin description of pins of PIC microcontroller involved in interfacing

 the PIC microcontroller with PICkit 2. For interfacing PICKit 2 with

 the microcontroller we need to mount a 6 pin header on the circuit board (13).

The PICKit 2 comes with a Universal Serial Bus (USB) cord whose one end is of

type ‘A’ plug while its other end is ‘Mini-B’ type plug. The personal computer should

have a Universal Serial Bus (USB) port in order to connect to the PICKit 2. The ‘A’ type

plug of Universal Serial Bus (USB) goes to the personal computer and ‘Mini-B’ type

plug to PICKit 2. In addition to programming the PICKit 2 can also be used as a

debugger; to step through the program, find errors and debug (13).

3.1.3. Radio Transceiver Module

At the later stage of development, we created a wireless sensor network using

MiWi Peer-to-Peer protocol (IEEE802.15.4). For creating a wireless sensor network, we

selected MRF24J40MA, a transceiver supporting MiWi Peer-to-Peer protocol. This

module is a certified 2.4 GHz IEEE 802.15.4 radio transceiver module. It has an

integrated PCB antenna, matching circuitry, and it supports the ZigBee, MiWi and MiWi

12

Peer-to-Peer protocols. The MRF24J40MA module connects to most of the PIC

microcontrollers via a 4-wire Serial Peripheral Interface (SPI) (8).

The Figure 3-3 shows the pin diagram of MRF24J40MA and the Figure 3-4

shows the connection between radio transceiver module and any PIC microcontroller

with SPI capability. (8)

Figure 3-3: The pin diagram of MRF24J40MA (8)

Figure 3-4: The connection between radio transceiver module

and any PIC microcontroller with SPI capability (8)

13

3.2. Protocols/Standards/Bus used

3.2.1. Recommended Standard-232(RS-232)

We chose to establish the connection between the microcontroller and the

personal computer through Recommended Standard-232 (RS-232) because it takes only 4

pins of microcontroller to create the interface. Also it is common to have a serial port in

all the personal computers. In our project, the microcontroller was the transmitter of data

and the personal computer was the receiver of data, so for communication we used only 3

pins (TXD, GND, Vcc) out of 9 pins provided on the serial port.

3.2.2. Serial Peripheral Interface (SPI) bus

The radio transceiver module required to be interfaced with PIC microcontroller

using Serial Peripheral Interface. The Serial Peripheral Interface (SPI) enables us to use

only 4 pins and establish communication between two electronic devices. In this

interface, the devices communicate with each other in Master and Slave fashion, in which

the master initiates the communication. This connection is synchronous and the signals

carrying data go in both the direction concurrently. Following is the list of 4 pins used for

establishing interface,

1. SCK Serial Clock (Clock from master for synchronizing purpose)

2. SDI Serial Data In (Data received from master)

3. SDO Serial Data Out (Data sent to master)

4. CS Chip Select (Since there can be many slaves connected to only one master,

master has to select the chip before starting communication. This pin is active

http://thesaurus.com/browse/concurrently

14

low, so master has to give low on this pin to select the slave. Since we used only

one transceiver module per node, this pin was always kept low).

3.2.3. MiWi P2P Protocol (IEEE 802.15.4)

For increasing the number of sensors and cover a larger area, we used wireless

technology. The wireless communication reduces the need of cables and other supporting

hardware, and hence the cost and maintenance of the hardware. Our aim was to

implement a simple wireless network which will satisfy our requirement of covering

larger area. We chose to use MiWi Peer-to-Peer. It is a wireless networking protocol

developed by Microchip, which works on 2.4GHz IEEE 802.15.4. It has modified Media

Access Control (MAC) layer of IEEE 802.15.4. This protocol allows the transceiver to

choose least noise channel among the 16 available channels and work on the same. It also

has a unique feature in which in the event of collision of data or loss of data due to the

noise in the channel the transceiver can switch to low noise channel (8).

3.3. Integrated development environment (IDE) and compiler used

We utilized Microchip’s MPLAB Integrated development environment (IDE) v8.50

to develop programs for PIC microcontrollers using assembly and Embedded C

languages (11). The compiler used was MPLAB C18 v3.35 in LITE mode (10). The

Integrated development environment (IDE) and C18 compilers are for free and can be

downloaded from Microchip website (11) (10).

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://www.microchip.com/Microchip.WWW.SecureSoftwareList/secsoftwaredownload.aspx?device=en010014&lang=en&ReturnURL=http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014
http://en.wikipedia.org/wiki/Integrated_development_environment

15

3.4. Software languages used

The PIC microcontroller is a Reduced Instruction Set Computer (RISC). The

assembly language of PIC is consisting of only 35 instructions, which simplified the code

development. We developed the software for the Development System and the Prototype

System, and the size of code increased. Also writing the code in assembly language

slowed down the speed of coding. So we switched to Embedded C, which made writing

the code easier, and hence easier to read and understand the code. Moreover, training in C

language is wide spread and easier for the development.

3.5. Window Hyper Terminal

Use of the Windows Hyper Terminal helped us to check the proper initialization of

the serial port and also the communication between the microcontroller and the personal

computer. This application comes with all versions of Windows operating system except

Windows 7.

3.6. Development System

3.6.1. Data acquisition and conditioning for the Development System

We constructed a 4 sensor faux floor and called it the Development System. The

four sensors were connected to 4 amplifiers and the outputs of amplifiers were connected

to the 4 input pins of the microcontroller. Figure 3-5 shows the block diagram of the

development system. The sensors were arranged in 2 rows and 2 columns (1) (3).

16

Figure 3-5: The block diagram of the Development System.

 The sensors were arranged in 2 rows and 2 columns.

Figure 3-6 shows the picture of microcontroller circuit used in the Development

System. The wires with labels A, B, C, and D are input pins of the microcontroller and

are connected to the outputs of the amplifiers (3).

Figure 3-6: The picture of microcontroller circuit used in the Development System.

The wires with labels A, B, C, and D are input pins of the microcontroller and are connected to the outputs

of the amplifiers.

3.6.2. Microcontroller circuit for the Development system

Figure 3-7 shows the schematic of the circuit used for the Development System. It

includes a PIC16F871 microcontroller, a 20MHz crystal, 5V voltage regulator, a Light

Emitting Diode, a pin header (Section 3.1.2) to get connected with PICKit 2

programmer/debugger (3).

17

Figure 3-7: The schematic of the circuit used for the Development System.

It includes a PIC16F871 microcontroller, a 20MHz crystal, 5V voltage regulator, a Light Emitting Diode, a

pin header (Section 3.1.2) to get connected with PICKit 2 programmer/debugger.

3.6.3. Voltage regulator circuit (5V) used for the Development System

The Figure 3-8 shows the circuit diagram of regulator used to maintain 5V supply

the microcontroller circuit.

Figure 3-8: The circuit diagram of regulator used to maintain 5V supply

 for the microcontroller circuit.

18

3.6.4. Recommended Standard-232 (RS-232) Circuit used for the

Development System

Figure 3-9 shows the circuit diagram of Recommended Standard-232 (RS-232)

used for establishing the connection between the microcontroller and the personal

computer (17).

Figure 3-9: The circuit diagram of Recommended Standard-232 (RS-232)

used for establishing the connection between the microcontroller and the personal computer (17).

3.6.5. Microcontroller program, the algorithm, and the frame format

implemented for the Development System

The microcontroller program continuously polls the four input pins of the

microcontroller and, sends a formatted frame to the personal computer through the serial

port. We defined a frame for each polling cycle. The frame begins with ASCII character

19

‘S’ includes the polled data and ends with ASCII character ‘E’. Each sensor is

represented with ASCII character A, B, C, and D.

Following is a sequence of instructions for each polling cycle

1. The microcontroller sends ASCII character ‘S’ on the serial port which represents

a start of a data frame.

2. The microcontroller sends the ASCII character 1, 2, 3, and 4, which represent

sensors A, B, C, and D respectively (Shown in Figure 3-6), if any sensor is found

active.

3. After polling all the sensors, it sends ASCII character ‘E’ which represents the

end of a data frame.

Figure 3-10 a flow chart delineating the program written for the Development

System. It also includes the details of the implementation of the list of instructions

20

mentioned above.

Start

Initialize the Hardware & serial port

Send ASCII character ‘S’ on serial port

Send ASCII character ‘A’ on serial port

Is sensor ‘A’

active?

Is sensor ‘B’

active?

Is sensor ‘C’

active?

Is sensor ‘D’

active?

Send ASCII character ‘1’ on serial port

Send ASCII character ‘2’ on serial port

Send ASCII character ‘3’ on serial port

Send ASCII character ‘4’ on serial port

End

Send ASCII character ‘E’ on serial port

YES

NO

NO

NO

NO

YES

YES

YES

Figure 3-10: The flow chart delineating the program

written for the Development System. It also includes the details of the implementation of the list of

instructions mentioned above.

3.6.6. Experimental set up for the tests carried to assess the performance of

the Development System

 We describe below the experimental setup of the tests carried out to assess the

performance of the Development System. The setup consisted of a power supply,

microcontroller circuit, an RS-232 cable and a personal computer.

21

3.6.6.1. Observation of sensor non-activation

 All the input pins of the microcontroller (shown in Figure 3-6) were connected to

ground and output data was read on the Windows Hyper Terminal program. Using the

same grounded input pins we displayed the sensor data on the sensor display program (2).

3.6.6.2. Observation of sensor activation

 All the input pins from the microcontroller (Shown in Figure 3-6) except ‘A’ and

‘B’ were directly connected to ground, pins ‘A’ and ‘B’ were connected to 5v supply and

output data was taken on the Windows Hyper Terminal. The sensor display program was

observed after keeping the same activation on the input pins (2).

3.6.6.3. Observation of data acquisition and transmission time

 For this test, we wrote a new program in which the microcontroller follows

instructions as follows, Start the clock ticks, send ASCII character ‘S’, poll all the

sensors, send data if any sensor is found active, complete the data frame by sending ‘E’,

stop the timer, convert the count in timer into ASCII characters and send the number to

the Windows Hyper Terminal, this number we converted into ms. We recorded time for

0 sensors activated, then 1 sensor activated and then 2, 3, and 4 sensors activated. The

same tests were repeated using 3 baud rates (19200, 57600, and 115200). These tests

were undertaken to determine the expected data acquisition time. Since the future

implementation requires more sensors, it is essential to know the margin of time available

for data acquisition.

22

3.7. Prototype System

The successful demonstration of the Development S was followed by the Prototype

System containing 21 sensors arranged in 3 columns referred as A, B, and C each column

having 7 sensors named as A1-A7, B1-B7, and C1-C7 (1).

3.7.1. Data acquisition and conditioning for the Prototype System

In this system, we used 21 amplifiers for 21 sensors. The outputs of 21 amplifiers

were given to input pins of three 8:1 digital multiplexers. The select lines of multiplexers

were connected to the output pins of the microcontroller, 3 output pins for each

multiplexer’s select lines, making a total of 9 pins for three 8:1 multiplexers. The outputs

of multiplexers were given to the microcontroller through a buffer. The GND and Vcc of

the microcontroller, the multiplexers and the buffer were connected together.

Figure 3-11 shows block diagram of the Prototype System consisting of the

microcontroller, buffer, and three 8:1 multiplexers.

Figure 3-11: The block diagram of the Prototype System

 consisting of the microcontroller, buffer, and three 8:1 multiplexers.

23

Figure 3-12 shows the picture of circuit boards used for the Prototype System.

This includes boards of the PIC16F871 microcontroller circuit, a buffer circuit, three 8:1

multiplexers’ circuit, and a Recommended Standard-232 (RS-232) circuit.

Figure 3-12: The picture of the circuit boards used for the Prototype System.

This includes boards of the microcontroller circuit, a buffer circuit, three 8:1 multiplexers’ circuit, and a

Recommended Standard-232 (RS-232) circuit.

3.7.2. Microcontroller circuit used for the Prototype System

 Figure 3-13 shows the schematic of the microcontroller circuit used for the

Prototype System. The circuit used for the Prototype System is similar to that used in the

Development System i.e. it also has the PIC16F871 microcontroller, a 20MHz crystal, a

Light Emitting Diode, a pin header (Section 3.1.2) for connecting the microcontroller to

the PICKit 2 programmer. In addition to these it has a buffer and multiplexer circuit. The

microcontroller is connected to three 8:1 digital multiplexers and the output of

multiplexer is given to the microcontroller through buffers.

24

Figure 3-13: The schematic of the microcontroller circuit

used for the Prototype System. The circuit used for the Prototype System is similar to that used in the

Development System i.e. it also has the PIC16F871 microcontroller, a 20MHz crystal, a Light Emitting

Diode, a pin header (Section 3.1.2) for connecting the microcontroller to the PICKit 2 programmer. In

addition to these it has a buffer and multiplexer circuit.

3.7.3. Voltage regulator circuit (5V) used for the Prototype System

The Figure 3-14 shows the circuit diagram of regulator used to maintain the

supply voltage of 5V to the microcontroller circuit. This regulator circuit is exactly

similar to the one used in the Development System.

25

Figure 3-14: The circuit diagram of regulator used to maintain the supply voltage

of 5V to the microcontroller circuit. This regulator circuit is exactly similar to the one used in the

Development System.

3.7.4. Recommended Standard-232 (RS-232) Circuit used for the Prototype

System

The Figure 3-15 shows the circuit diagram of Recommended Standard-232 (RS-

232) used for establishing the connection between the microcontroller and the personal

computer. This circuit is exactly similar to the one used in the Development System (17).

Figure 3-15: The circuit diagram of Recommended Standard-232 (RS-232)

used for establishing the connection between the microcontroller and the personal computer. This circuit is

exactly similar to the one used in the Development System (17).

26

3.7.5. Microcontroller program, the algorithm, and the frame format for the

Prototype System

 The microcontroller program selects each of the 21 lines of multiplexer (for each

sensor in each column) connected to amplifiers, polls the three inputs pins, and sends a

formatted frame to the personal computer via the serial port. The 7 sensors in each

column are referenced by ASCII characters from 1 to 7. We defined a frame with some

addition to the one implemented for the Development System. The frame begins with the

ASCII character ‘S’, adds character ‘A’, includes activated sensors’ data in column ‘A’,

adds the character ‘B’, includes the activated sensors’ data in column ‘B’, adds the

character ‘C’, includes the activated sensors’ data in column ‘C’ and ends with character

‘E’.

Following section discusses the instructions followed in the software to implement the

data frame.

1. Before the polling starts the microcontroller sends ASCII character ‘S’ (Start of a

frame) on the serial port,

2. It sends ASCII character ‘A’ to notify that column ‘A’ is being polled.

3. If any sensor is found active then ASCII character of respective sensor is sent on

the serial port.

4. After polling column ‘A’ the microcontroller sends ASCII character ‘B’

indicating that column ‘B’ is being polled.

5. If any sensor is found active then ASCII character of respective sensor is sent on

the serial port.

27

6. After polling column ‘B’ the microcontroller sends ASCII character ‘C’

indicating that column ‘C’ is being polled.

7. If any sensor is found active then ASCII character of respective sensor is sent on

the serial port.

8. After polling all the sensors, it sends ASCII character ‘E’ (End of a frame).

Figure 3-16 shows the flow chart used for writing the program for the Prototype System.

It also includes the instructions mentioned above.

Start

Initialize the Hardware & serial port

Send ASCII character ‘S’ & ‘A’on serial port

0th line of 1st

Multiplexer Active?

7th line of 1st

Multiplexer Active?

Send ASCII character ‘1' on serial port

Send ASCII character ‘8' on serial port

Send ASCII character ‘B’ on serial port

For the Second

Multiplexer check

lines 0 to 7

Send ASCII character ‘C’ on serial port

For the Third

Multiplexer check

lines 0 to 7
Send corresponding ASCII character 1 through 7 on serial port

Send corresponding ASCII character 1 through 7 on serial port

Send ASCII character ‘E’ on serial port

End

YES

Figure 3-16: The flow chart used for writing the program for the Prototype System.

It also includes the instructions mentioned above.

28

3.7.6. Experimental set up for carrying out tests to assess the performance

of the Prototype System

 The three tests carried out were the duplicate of those described in section 2.8. As

before, the setup consisted of a power supply, the microcontroller circuit, a RS-232 cable

and the personal computer.

3.7.6.1. Observation of sensor non-activation in the Prototype System

 All the input pins of 3 multiplexer’s were connected to the ground and output

data was read on Windows Hyper Terminal program. Using the same grounded input pins

we displayed the sensor data on the sensor display program (2).

3.7.6.2. Observation of sensor activation in the Prototype System

 The input pins of 3 multiplexers corresponding to the first sensors in columns ‘A’,

‘B’ and ‘C’ were connected to 5V, the remaining pins were connected to ground and

output data was taken on Windows Hyper Terminal program. The sensor display program

was observed after keeping the same activation on input pins (2).

3.7.6.3. Observation of the Prototype System data acquisition and

transmission time

 For this test, we wrote a new program in which the microcontroller follows the

instructions as follows, Start the clock ticks, follow the steps described in Section 3.8.5

i.e. send ASCII character ‘S’ via the serial port, send characters A, B, and C and in

between those characters sends polled data of all the sensors in each column, complete

the data frame by sending ASCII character ‘E’, stop the timer, convert the number in

timer into ASCII character and sent it to Windows Hyper Terminal. This number we

converted into ms. The sensors were activated one after the other and time was recorded.

29

So we recorded time for 0 sensors activated, then 1 sensor from column A activated then

2, 3, 4, 5, 6, and 7 sensors activated. The same tests were repeated using 3 baud rates

(19200, 57600, and 115200). The purpose of carrying out this test was similar to that for

the Development System i.e. to know the expected data acquisition time as well as to

gain an idea about the margin of time available for the data acquisition.

3.8. Installed Floor

The successful demonstration of the Prototype System was followed by the Installed

Floor consisting of 4 Installation Segments. Each Installation Segment contains 32

sensors arranged in 4 columns referred as A, B, C, and D, each having 8 sensors named

as A1-A8, B1-B8, C1-C8, and D1-D8. A microcontroller and a wireless transceiver are

associated with each Installation Segment making a total of 4 microcontrollers and 4

wireless transceivers in the Installed Floor (1).

The circuit consisting of a PIC18F4455 microcontroller, a MRF24J40MA wireless

transceiver module and an Installation Segment is called a node. All the nodes

communicate with each other through a wireless network. This wireless sensor network

was built by connecting 4 nodes in linear fashion. The node connected to the computer is

called the host node, while the node which initiates the transmission is called the end

node, rest of the two nodes are called peer nodes. The end node connects to one of the

unconnected peer nodes, which in turn connects to another unconnected peer node, which

in turn connects to the host node.

30

3.8.1. Data acquisition and conditioning for the Installed Floor

 Figure 3-17 and Figure 3-18 show the pictures of circuit boards of the host node

and peer/end node respectively. The host node processes the data and transfers the

formatted data to the personal computer using RS-232. The hardware used for all other

nodes (except the host) is exactly similar.

Figure 3-17: The picture of, the host node

(the node connected to the personal computer) for the Installed Floor

Figure 3-18: The picture of peer node which transfer data to their master

 for the Installed Floor

 The transceiver requires 3.3V for Vcc. To drive 5v select lines in the analog

multiplexer we used a driver IC to convert 3.3v select lines to 5v (15). However, the 5v

31

output from the analog multiplexer to the microcontroller was reduced to 3.3V by using a

voltage divider.

3.8.2. Microcontroller circuit used in the Installed Floor

The Figure 3-19 and Figure 3-20 shows the circuit diagram of the host node and

the peer node respectively. As before these boards contain of a 20MHz crystal, a Light

Emitting Diode, and a pin header for connecting it to the PICKit 2 programmer. This

board uses 3.3V regulator instead of the regulator.

Also the difference between the boards used for the host node and the peer/end is

the host node has Recommended Standard-232 circuit connected with it.

Figure 3-19: The circuit diagram of the host node used in the Installed Floor

32

Figure 3-20: The schematic of microcontroller circuit implementation of peer nodes

used in the Installed Floor

3.8.3. Voltage regulator circuit (3.3V) used in the Installed Floor

Figure 3-21 shows the typical application circuit of 3.3V regulator used for

stepping down the voltage from 9V to 3.3V for supplying the microcontroller circuit as

well as the radio transceiver module. The voltage regulator is different than that used in

the Development System and the Prototype System, since they both use 5V Vcc (14).

33

Figure 3-21: The typical application circuit of 3.3V regulator

used for stepping down the voltage to 3.3V for supplying the microcontroller circuit as well as the radio

transceiver module (14).

3.8.4. Recommended Standard-232 (RS-232) Circuit used in the Installed

Floor

The Figure 3-22 shows the circuit diagram of Recommended Standard-232 (RS-

232) which establishes a connection between the host node and the personal computer.

This circuit is exactly similar to that used in the Development System and the Prototype

System (17).

Figure 3-22: The circuit diagram of Recommended Standard-232 (RS-232)

 which establishes connection between the host node and the personal computer (17).

34

3.8.5. Installation Segment Electronics

Figure 3-23 shows the block diagram of the electronic circuitry of an Installation

Segment. Each Installation Segment Electronics consists of 32 sensors connected to input

lines of four 8:1 analog multiplexers, while the outputs of the four 8:1 analog

multiplexers are connected to the input lines of 4:1 analog multiplexer, and the output of

4:1 multiplexer is connected to the microcontroller input pins. Each select line of all the

8:1 multiplexers are connected together and driven with 3 microcontroller signals and

additionally 2 microcontroller signals drive select lines of 4:1 analog multiplexer. In

summary, the microcontroller selects one of the four 8:1 analog multiplexers, and then

selects one sensor at a time so that the software polls the output pin of a 4:1 multiplexer.

Figure 3-23: The block diagram of the Installation Segment Electronics

used in the Installed Floor

3.8.6. Installed Floor Networking

Figure 3-24 shows the block diagram of installed floor in which the arrows show

the direction of data flow in the network after establishing the network.

35

Figure 3-24: The block diagram of the Installation Floor

consisting of 4 Installation Segment The arrows represent the direction of data flow in the network, from D

to C, then C to B, then B to A and then from A to the computer.

In the Installed Floor, the node A is called the host node since it is connected to the

computer; the remainders are called peer nodes. For establishing the wireless network

steps below are followed,

1. The host node starts first, selects a least noise channel, and waits for another node

to get connected on the selected channel.

2. Upon powering ‘B’ looks for another node in one of the 16 channels, ‘B’ finds

and establishes a connection with ‘A’, saves it as a master, starts the timer, and

waits for another node to get connected. After establishing connection with node

B, the node A rejects further search requests from other nodes in the network.

3. After powering node C looks for a node in one of the 16 channels, finds node B,

establishes a connection, saves it as a master, starts the timer and waits for

another node to get connected. After establishing connection with C node B

rejects further search requests from other nodes in the network.

4. After powering node D it looks for another node in one of the 16 channels, finds

node C, establishes a connection, and saves it as a master, starts the timer and

waits for another node to get connected. After establishing connection with D

36

node C rejects further search requests from other nodes in the network. After D is

connected and timer has timed out it declares itself as an end node and starts the

transmission of data to its master, node C.

Figure 3-24 also shows the sequence of data transmission. The node D sends data to

node C, after receiving data from node D, node C transfers its own data and the data

received from node D to, its master, node B. The node B sends its own data and the data

received from C to its master, node A which is the host node. Then the host node

processes the received data and sends it to the personal computer. The node D waits for

100ms before it again sends data to node C.

At the end of this waiting period the following has occurred.

1. The host node has finished formatting received data, has transferred data to the

computer and is ready to receive data from its slave.

2. Every node has finished sending data to their respective master node.

3. Every node has finished polling all the sensors connected to it.

4. Every node is ready to receive data from previous node and also to transfer

received data along with its own data.

3.8.7. Installed Floor Frame Formatting

To transfer data received from the entire nodes the host node uses a frame format. At

the end of the each polling cycle the host node receives 36 bytes of data from node B as

follows. The data includes 8 address bytes and 4 data bytes from each node B, C, and D.

After adding host node’s address and data bytes it has a total of 48 bytes for sending to

the personal computer. Furthermore, to differentiate data between different polling cycles

37

the host node adds ASCII character ‘S’ and ‘E’ at the beginning and end of each data

frame so then it has 50 data bytes for the personal computer.

To reduce the transmission load, the host node replaces 8 address bytes of each node

with one unique ASCII character, which reduces the transmission load from 50 to 22

bytes. Also the value of each data byte varies from 0x00h to 0xFFh but the computer

works with only ASCII characters, which vary from 0x00h to 0x7Fh. The host node

processes the data bytes and converts 16 data bytes into 32 ASCII characters.

In summary, after each polling cycle the host node sends 38 bytes consisting of 32

data bytes in ASCII form, 4 unique characters to differentiate the nodes and 2 characters

to differentiate data from different polling cycles, to the computer.

The following section describes the steps followed by the program in the host node to

processes the data received from its peer, put into a frame and sends it to the personal

computer.

1. The program sends ASCII character ‘S’ to represent the start of a frame to buffer

in the personal computer.

2. The program removes the 8 address bytes of the host node and sends ASCII

character the installation segment (say the letter ‘A’) which causes the Installation

Segment producing the data. For ease of programming the character A will

always represent the host node.

3. Starting from 0
th

 data byte, the program copies the 0
th

 data byte to temp register,

shifts temp register to the right by 4 bits to remove last four bits of the data byte,

bitwise ORs it with hex value 0x30 to convert it to ASCII character and then send

it to the computer via the serial port. Then again, the host program takes the 0
th

38

data byte, ANDs it with hex value 0x0F to get rid of first 4 bits, ORs it with 0x30

to convert it to ASCII character, and then send it to the computer.

4. The program repeats the same steps mentioned above for 1, 2, and 3 data bytes to

finish a segment.

5. Starting on the next segment, the host program sends ASCII character ‘B’ on the

serial port to represent that following data will be of installed segment B, takes

data received from its slave, installed segment B.

6. The program gets rid of the 8 address bytes of node B, takes 4 data bytes and

again follows the same steps mentioned in 3 and 4 for sending data of installed

segment B to the computer.

7. Then the host node program sends ASCII character ‘C’ on the serial port to

represent that following data will be of installed segment C.

8. The program gets rid of the 8 address bytes of node C, takes 4 data bytes and

again follows the same steps mentioned in 3 and 4 for sending installed segment

C’s data to the computer.

9. Then the host node program sends ASCII character ‘D’ on the serial port to

represent that following data will be of installed segment D.

10. The program gets rid of 8 address bytes of node D, takes 4 data bytes and again

follows the same steps mentioned in 3 and 4 for sending node D’s data to the

computer.

11. The host node sends ASCII character ‘E’ to represent the end of the data frame.

39

Figure 3-25 shows the flow chart of program written for the host node. It also includes

the instructions mentioned above.

Start

Initialize the hardware, Serial Port, Serial Peripheral
Interface (SPI), the Radio Transceiver Module

Scan 16 channels and select the lowest noise channel

Is there any

connection

request?

Accept the connection, save it as a peer & ignore further

connection request

NO

YES

Is 0th line of the First

multiplexer active?

Is 7th line of the First

multiplexer active?

Set the 0th bit of 1st data byte

Set the 7th bit of 1st data byte

For the Second

Multiplexer check lines 0

to 7
Set the corresponding bits 0 to 7 of 2nd data byte

For the Third

Multiplexer check lines 0

to 7

Set the corresponding bits 0 to 7 of 3rd data byte

For the Fourth

Multiplexer check lines 0

to 7

Set the corresponding bits 0 to 7 of 4th data byte

Data from peer node?

Process the data received from ‘B’ by replacing 8 address byte with ASCII

characters A,B,C, and D. Convert 16 data bytes into 32 ASCII characters,

put it into frame between ASCII characters S & E, and send it to the

personal computer through serial port .

End

NO

YES

Figure 3-25: The flow chart of program written for the host node

40

Figure 3-26 shows the flow chart of the program written for the peer nodes which

excludes the instructions followed for processing and transferring the data to the

computer.

Start

Initialize the hardware, Serial Port, Serial Peripheral

Interface (SPI), the Radio Transceiver Module

Scan 16 channels to find the similar PAN ID

Is there any PAN

ID?

NO

YES

Is 0th line of the First

multiplexer active?

Is 7th line of the First

multiplexer active?

Set the 0th bit of 1st data byte

Set the 7th bit of 1st data byte

For the Second

Multiplexer check lines 0

to 7

Set the corresponding bits 0 to 7 of 2nd data byte

For the Third

Multiplexer check lines 0

to 7

Set the corresponding bits 0 to 7 of 3rd data byte

For the Fourth

Multiplexer check lines 0

to 7

Set the corresponding bits 0 to 7 of 4th data byte

Data from peer node?

Send the 4 data bytes along with its 8 address bytes to master

End

Start the timer of 1.5 min

Is timeout?

Is there any

connection

request?

Accept the connection, save it as a peer & ignore further

connection request

Establish connection with it and save it as a master

Is it an End node?

NO

YES

NO

YES

If no connection request declare itself as an End node

YES

Figure 3-26: The flow chart of program written for the peer nodes

which excludes the instructions followed for processing and transferring the data to the computer.

41

3.8.8. Experimental set up for the Installed Floor

 Three tests were carried out to assess the functioning of the system. The setup was

similar to those for the Development System and the Prototype System i.e. a supply,

microcontroller system and computer but with an addition of Oscilloscope.

3.8.8.1. Observation of sensor non-activation in the Installed Floor

 All 32 input pins from all the Installation Segments were directly connected to

ground and output data was taken on the Windows Hyper Terminal. The computer

display was observed after keeping the same input signal on microcontroller’s input pins

after running the software (2).

3.8.8.2. Observation of sensor activation in the Installed Floor

 All 32 input pins from all the Installation Segments except the one connected to

‘A1’ from each installation system were directly connected to ground, pins ‘A1’ from

each I S was connected to 5v supply and output data was taken on the Windows Hyper

Terminal. The computer display was observed after keeping the same input signal on

microcontroller’s input pins after running the software (2).

3.8.8.3. Observation of the Installed Floor data acquisition per second

 The time to scan all the sensors and to send data to the computer was carried out

by writing new code in host node to change the status of an output pin from high to low

and vice versa every time it forwards data to the computer. The output of that pin was

seen on an oscilloscope to calculate the time. This test was carried to know the number of

times all the sensors are polled per second.

42

CHAPTER 4 : RESULTS

In this chapter, we will present the results of the experiments on the development

system, prototype system and installed floor. The results of each system are divided into

three different parts: the first part shows the microcontroller output when no sensors are

active; the second part shows the result of activation of a number of sensors; and for the

Development and Prototype Systems the third part describes the time to execute a single

complete polling cycle. In contrast, the third part of the Installed Floor describes the

number of times the system polls all the 128 sensors each second. For both the

Development and Prototype Systems (or floors) the polling time depends on the baud rate

used for communication between microcontroller and the computer and on the number of

active sensors.

4.1. Development system

4.1.1. Observation of sensor non-activation in the Development System

 Figure 4-1 shows the data received on the Windows Hyper Terminal when no

sensors were activated. ‘S’ and ‘E’ represent the start and end of a received frame, since

there is no activation, there is no value between ‘S’ and ‘E’.

Figure 4-1: Data received on the Windows Hyper Terminal from microcontroller

 when no sensor is active. ‘S’ and ‘E’ represent the start and end of received frame respectively.

43

 Figure 4-2 shows the screen capture of the computer display. The letters A, B, C

and D represent the 4 sensors on the Development System and as expected the display

shows green background since no sensor was activated (2).

Figure 4-2: Sensor display program when no sensor was activated (2)

4.1.2. Observation of sensor activation in the Development System

 Figure 4-3 shows data received on the Windows Hyper Terminal via the serial

port when sensors ‘A’ and ‘B’ were activated this places ‘1’ and ‘2’ between ‘S’ and ’E’

which represent the activation on sensor ‘A’ and ‘B’.

Figure 4-3: Data received on Windows Hyper Terminal

when two sensors are activated, 1 corresponds to sensor A and 2 to B.
 Figure 4-4 shows screen capture of the computer display. The sensor activation

appears red on the display with a green background (2).

44

Figure 4-4: Sensor display program when 2 sensors were activated (2)

4.1.3. Observation of the Development system data acquisition and

transmission time

 A test was carried out using 3 baud rates (19200, 57600, and 115200). We

counted the number of pulses in a single poll to show the time taken by the

microcontroller to perform a single complete polling cycle. The personal computer

received the data via a serial port. Since the microcontroller timer increments after 4

clock Cycles, at 20 MHz frequency the timer increments, we get 5 million pulses per

second.

 For example, for activation of sensors ‘A’ and ‘B’ we get S12E10343 on the

Windows Hyper Terminal. This means that the timer in the microcontroller produced

10343 pulses for one polling cycle which in turn means it took 2. 0686ms for the

microcontroller to poll all the sensors and transfer the formatted data to the computer via

45

the serial port at 19200 baud. This same data is shown on 3
rd

 row of 2
nd

 column in Table

4-1

Similarly, the Table 4-1 shows the time to complete one polling cycle and transfer

data to the personal computer. The first column of the Table 4-1 describes the total

number of active sensors read by the microcontroller; the next three columns describe the

time for data acquisition and transmission in ms, for using 3 baud rates (19200, 57600,

and 115200).

Table 4-1: The time taken by Development system to complete one polling cycle

 and transfer data to the computer via serial port. First column of table describes the total number of active

sensors read by the microcontroller while other three columns describe the data acquisition and

transmission time in ms, for using 3 baud rates (19200, 57600, and 115200).

Active Sensors
1
 For 19200 baud

2
 For 57600 baud

3
 For 115200 baud

4

0 1.0284 0.3408 0.1644

1 1.4288 0.5162 0.2522

2 2.0686 0.6928 0.3406

3 2.5884 0.8688 0.4284

4 3.1082 1.0448 0.5168
1
 Total number of active sensors read by the microcontroller system.

2
 Microcontroller data acquisition & transmission time in ms, using 19200 baud, for single polling of all the

sensors and when numbers of sensors in
1

were active.

3
 Microcontroller data acquisition & transmission time in ms, using 57600 baud, for single polling of all the

sensors and when numbers of sensors in
1

were active.

4
 Microcontroller data acquisition & transmission time in ms, using 115200 baud, for single polling of all

the sensors and when numbers of sensors in
1

were active.

Figure 4-5 shows graphical representation of Similarly, the Table 4-1 shows the

time to complete one polling cycle and transfer data to the personal computer. The first

column of the Table 4-1 describes the total number of active sensors read by the

microcontroller; the next three columns describe the time for data acquisition and

transmission in ms, for using 3 baud rates (19200, 57600, and 115200).

46

Table 4-1. The 3 different baud rates are multiples of each other and show the

reduced acquisition time as a result of increasing the baud rate. For our purpose, the

increase in baud rate did not affect the low persistence display, neither was it apparent

that the data was lost, indicating a substantial margin for the time to acquire and transmit

data.

Figure 4-5: Graph for Time in mS Vs No. of Active sensors

4.2. Prototype system

4.2.1. Observation of sensor non-activation in the Prototype System

 The tests taken were similar to test taken in case of the Development S The setup

consisted of power supply, microcontroller system and computer, where for an

operational purpose, we used the power supply to provide 5v on activated sensor. The

Figure 4-6 shows the data received on Windows Hyper Terminal when no sensor was

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
im

e
(M

S
)

No. of active sensors

Development System Polling Time

For 19200

For 57600

For 115200

19200 Baud

57600 Baud

115200 Baud

47

active. ‘S’ and ‘E’ represent the start and end of a received frame respectively while the

letters A, B, C represent three columns each consisting of 7 sensors.

Figure 4-6: Data received on the Windows Hyper Terminal from microcontroller

 when no sensor is active. ‘S’ and ‘E’ represent the start and end of received frame respectively while the

letters A, B, C represent three columns each consisting of 7 sensors.

Figure 4-7 shows the screen capture of computer display. The alphanumeric

letters A1-A7, B1-B7, and C1-C7 represent the 21 sensors on the Prototype System. As

before the display shows green background since no sensor was activated (2).

Figure 4-7: Sensor display program when no sensor was activated (2)

4.2.2. Observation of sensor activation in the Prototype System

 This test was performed to observe the output of microcontroller under the sensor

activation. Figure 4-8 shows data received on Windows Hyper Terminal via the serial

port when sensor 1 from different columns was activated, so that the characters between

‘S’ and ’E’ represent the activation on sensor ‘A1’, ‘B1’, and ‘C1’.

48

Figure 4-8: Data received on the Windows Hyper Terminal

when three sensors from different columns were activated. ‘A’, ‘1’, ‘B’, ‘1’ and ‘C’, ‘1’ between ‘S’ and

’E’ represent the activation on sensor ‘A1’, ‘B1’, and ‘C1’

 Figure 4-9 shows screen capture of the computer display. As before the sensor

activation appears red on the display with a green background (2).

Figure 4-9: Sensor display program

when 3 sensors from different columns were activated.The sensor activation appears red on the display

with a green background. (2)

4.2.3. Observation of Prototype System data acquisition and transmission

time

 Again the poll timing was carried out using 3 baud rates (19200, 57600, and

115200). In a poll, we obtained the time taken by the microcontroller to poll all the

sensors and send data to the computer via the serial port.

 As similar to the Development System in the Prototype system for activation of

sensors ‘A1’ and ‘A2’ we get SA12BCE18150 on the Windows Hyper Terminal. This

49

means that the timer in the microcontroller produced 18150 pulses for one polling cycle

which in turn means it took 3. 63ms for the microcontroller to poll all the sensors and

transfer the formatted data to the computer via the serial port at 19200 baud. This same

data is shown on 3
rd

 row of 2
nd

 column in Table 4-2

 Table 4-2 shows the time to complete one poll cycle and transfer data produced

by the number of active sensors read by the microcontroller, as shown in 1
st
 column, the

other three columns describe the data acquisition and transmission time (ms), for 3 baud

rates (19200, 57600, and 115200).

Table 4-2: The time taken by each system to complete one polling cycle

 and transfer data to the computer via serial port. First column of table describes the total number of active

sensors read by the microcontroller while other three columns describe the data acquisition and

transmission time ms, for using 3 baud rates (19200, 57600, and 115200).

Active Sensors
1
 For 19200 baud

2
 For 56700 baud

3
 For 115200 baud

4

0 2.59 0.87 0.43

1 3.11 1.04 0.52

2 3.63 1.22 0.60

3 4.15 1.40 0.69

4 4.67 1.57 0.78

5 5.12 1.75 0.87

6 5.71 1.92 0.95

7 6.23 2.10 1.04
1
 Total number of active sensors read by the microcontroller system.

2
 Microcontroller data acquisition & transmission time in ms, using 19200 baud, for single polling of all the

sensors and when numbers of sensors in
1

were active.

3
 Microcontroller data acquisition & transmission time in ms, using 57600 baud, for single polling of all the

sensors and when numbers of sensors in
1

were active.

4
 Microcontroller data acquisition & transmission time in ms, using 115200 baud, for single polling of all

the sensors and when numbers of sensors in
1

were active.

The Figure 4-10 shows graphical representation of Table 4-2. Similar to the

Development System as expected the 3 baud rates show the reduced acquisition time as a

50

result of increasing the baud rate in multiple of each other. As before this demonstrated a

substantial margin for a number of polled sensors.

Figure 4-10: Graph for Time in ms Vs No. of Active sensors

4.3. Installed floor

4.3.1. Observation of sensor non-activation in the Installed floor

 The tests taken for the installed floor were similar to that of the Development

System and the Prototype System. The setup consisted of power supply, microcontroller

system and computer, where for an operational purpose, we used the power supply to

provide 5v on activated sensor. Figure 4-11 shows the data received on Windows Hyper

Terminal when no sensor was active. ‘S’ and ‘E’ represent the start and end of a frame

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

T

i

m

e

i

n

(

m

S)

No. of Active Sensor

Prototype System Polling Time

For 19200

For 57600

For 115200

For 19200

For 57600

For 115200

51

but A, B, C, and D represent the 4 installation segments each consisting of 32 sensors.

The 8 0s after A, B, C and D show that none of the sensors were active.

Figure 4-11: Data received on the Windows Hyper Terminal from microcontroller

 when no sensor was active. ‘S’ and ‘E’ represent the start and end of frame received respectively while A,

B, C, and D represent the 4 installation systems. The 8 0s after A, B, C and D show that none of the sensors

were active.

As we will show in the next section this is a consequence of the logic operations, we used

to represent the reduced data.

Figure 4-12 shows the screen capture of computer display. The letters A1-A8, B1-

B8, C1-C8 and D1-D8 represent the 32 sensors on each installation system. Furthermore,

the 4 installation systems are visually differentiated using different colors and thick line

dividers (2).

Figure 4-12: The Sensor display program when no sensor was activated.

The letters A1-A8, B1-B8, C1-C8 and D1-D8 represent the 32 sensors on each installation system. Also the

4 installation systems are visually differentiated using different colors and thick line divider. (2)

52

4.3.2. Observation of sensor activation

 This test was performed to observe the output of sensor activation. The Figure

4-13 shows the data received on computer via the serial port when four sensors from the

different I segment were activated. The activation of ‘A1’ sensors from all the installation

system was shown by ‘01000000’ after A, B, C and, D. While ‘S’ and ’E’ represent the

start and end of a frame respectively.

Figure 4-13: The data received on Windows Hyper Terminal via serial port.

 when four sensors from different installation system were activated. The activation of ‘A1’ sensors from

all the installation system was shown by ‘01000000’ after A, B, C and, D. While ‘S’ and ’E’ represent the

start and end of frame respectively

 Figure 4-14 shows screen capture of computer display. The activation of 4 sensors

from different installation systems is shown by changing the block color to red (2).

Figure 4-14: Sensor display program

when 4 sensors from different installation system were activated The activation of 4 sensors from different

installation systems is shown by changing the block color to red (2)

53

We demonstrate the mapping for segment A and specifically for the excitation of A1. To

get A01000000 required the following operations as explained in 3.10.7 and the code in

appendix. The original byte of excitation data corresponding to say segment A in Figure

4-14 is Data_byte[0] = 00000001 where the most significant and least significant bit

represent the status of sensors A8 and A1, we show the explicit operation.

Data_byte[0] = 00000001b

Temp_reg = 00000001b

4 times Right shift of Temp_reg causes Temp_reg = 00000000b

Temp_reg OR 0x30h = 00000000b OR 00110000b = 00110000b = 0x30h, which is

ASCII character ‘0’

Data_byte[0] = 00000001b

Data_byte[0] AND 0x0Fh = 00000001b AND 00001111b = 00000001b = 0x01h

Data_byte[0] OR 0x30h = 00000001b OR 00110000b = 00110001b = 0x31h, which is

ASCII character ‘1’

So we have 01 followed by ‘A’

Similarly if at Segment A, Column C, say we excite foils C2, C4, C5 and C7 so we get

 Data_byte[0] = 01011010b

Temp_reg = 01011010b

54

4 times Right shift of Temp_reg causes Temp_reg = 00000101b

Temp_reg OR 0x30h = 00000101b OR 00110000b = 00110101b = 0x35h, which is

ASCII character ‘5’

Data_byte[0] = 01011010b

Data_byte[0] AND 0x0Fh = 01011010b AND 00001111b = 00001010b = 0x0Ah

Data_byte[0] OR 0x30h = 00001010b OR 00110000b = 00111010b = 0x3Ah, which is

ASCII character ‘:’

So we have ‘:5’

This is transmitted as A0000:500

4.3.3. Observation of data acquisition per second

 A test was carried out for observing the time taken to poll all the sensors and send

data to the computer via the serial port. A program was written in the host node to change

an input output pin status from high to low and vice versa whenever it finishes sending

data to the computer. An oscilloscope was connected at that pin. The reading taken was

132ms. We can calculate the number of time the whole Installed Floor polled per second

is (1000ms/132ms) = 7.5 folds. There is a sufficient time to acquire the sensor data

several times each second. This 8 folds margin allows us to scale the numbers of sensors

by at least a factor of 2.

55

CHAPTER 5 : DISCUSSIONS

In this chapter, we will be discussing the microcontroller, the software, the hardware

as well as the protocols used for the development, prototype systems and the installed

floor.

5.1. Microcontroller and software

 There are plenty of other microcontrollers available in the market provided by

different manufacturers which would be also adequate for this application. We chose PIC

microcontroller because of prior knowledge and the knowledge of PIC microcontroller

made our development relatively easier. Also we switched from assembly language to

Embedded C because it made the code more readable and intuitive. Moreover, the next

team of developer will not require having knowledge of assembly. Furthermore, the cross

compilers for Embedded C is available for free on Microchip website.

5.2. Hardware used for the development, prototype and the installed floor

 In the early stage, the development system required only 4 sensors. The PIC16F871

microcontroller had adequate number of input pins to connect to the outputs of amplifiers

directly. This made program writing and testing fairly straightforward and we could read

and display the sensor data on the personal computer.

56

In the prototype system, the number of sensors increased from 4 to 21, we could have

managed to connect 21 sensors to the PIC16F871 microcontroller but it would have made

an unnecessary complex circuit. Furthermore, from the future point of view, it would

have been difficult to expand the number of sensors in the same circuit. We used a digital

multiplexer to handle each column of 7 sensors. We used 3 digital 8:1 multiplexers to

connect 21 sensors. The 3 digital multiplexers gave us a scope for connecting 24 sensors

and the output of the multiplexers required a buffer to connect to the microcontroller.

This in turn, increased the hardware but with lesser complexity and easier

implementation. If we could find multiplexers with built in buffers, then we can reduce

the hardware. Also, we used 9 pins of microcontroller for connecting it to the 9 select

lines of 3 8:1 multiplexers. If we had shorted all the select lines together and used only 3

output pins of microcontroller to drive them then, we would have simplified the circuit

little more and also the code size would have been decreased a lot, saving the code

memory.

Furthermore, it would have been better if we could find a 16:1 multiplexer. Then we

would need only 2 multiplexers (one 16:1 multiplexer and one 8:1 multiplexer) which

will reduce more hardware. Also, because of using 2 multiplexers some of the input pins

of microcontroller will be unused. This will give us an opportunity to connect more than

21 sensors through greater than 3 8:1 multiplexers. Had the prototype system been our

goal, clearly we should have made the improvements proposed here.

Here we went directly to the installed floor. Installed floor was lot different than

previous systems. We needed wireless capability along with the support for connecting

57

more sensors. For connecting more sensors Rohan Neelgund implemented 32:1 analog

multiplexer which simplified my work a lot (1). To implement the wireless network, we

used a radio transceiver module. The radio transceiver modules should be kept at least 1ft

apart from each other. Moreover, the radio transceiver module works on 3. 3v, we

operated microcontroller using 3.3v supply. However, the analog multiplexer operates on

5v so we had to use a driver to convert the microcontroller select lines from 3. 3v to 5v

and a voltage divider was used to give the output of multiplexer to the PIC18F4455

microcontroller, which in turn increased hardware and complexity of the circuit. we

could operate the analog circuit using 3. 3v supply then it will reduce the hardware and

complexity of the circuit(1).

5.3. Protocols used in the development, prototype systems and the installed floor

For development system, the data sent to the computer was ranging from 0 to 4 bytes.

To understand when one polling cycle is over and to differentiate data from different

polling cycles, we decided to define a simple frame with the addition of symbols for a

start (ASCII character of S) and end (ASCII character of E) of a frame. We chose to use

ASCII characters of letters S, 1, 2, 3, 4 and E to make it easy to understand after seeing

the received data on the personal computer. There could be many ways of defining the

frame, but we used this format since it satisfied our requirements. We made sure that data

related to active sensors won't conflict with ASCII characters ‘S’ and ‘E’. We were able

to test this using Windows hyper terminal.

58

As we moved on to the prototype system, there was an increase in a number of

sensors from 4 to 21. We tried using 21 different ASCII characters for representing each

sensor on the system this made it difficult to read the data received on the personal

computer so to make it easier to understand and more intuitive we used similar format as

that of the sensor board i.e. 3 columns each of 7 sensors. We used the ASCII characters

of letters A, B and C in the frames to represent columns and ASCII characters 1-7 to

represent each sensor in one column. Each sensor we then identified by the column and

sensor number (e.g. A5). We also added ASCII characters S and E at the start and the end

respectively in each frame to separate the polling cycles.

 For the installed floor, we built a daisy chain of 4 installed segments; we thought

of keeping the same frame format. This time there were 128 sensors if we used same

frame format then there would have been 1 data byte for each sensor making a total of

approximately 128 bytes data bytes for whole installed floor. Furthermore, each wireless

node sends its own 8 address bytes making a total of 32 address bytes for 4 nodes. So for

one polling cycle the host node would have sent more than 160 bytes to the computer.

This was a lot of data, which would have increased the acquisition and transmission time.

To reduce the number of data bytes, we decided to represent the status of a single sensor

as a bit in an 8 bit map for each column this reduced the number of data bytes from 128

to 16 bytes. However, as the personal computer can understand only ASCII characters,

which range from hex 0x00 to 0x7F (decimal 0 to 127) we decided to process the data for

the personal computer. The host node is connected to the personal computer so it does bit

manipulation and converts the 16 byte data to 32 byte ASCII characters and sends it to

59

the personal computer. This made the total of 64 bytes, which consisted of 32 data bytes

and 32 address bytes. This made the data received on the personal computer little less

intuitive but with a reduced number of bytes. There was an overhead of 32 address bytes,

so we decided to further process the data and replace the 32 address bytes with ASCII

characters A, B, C, and D which in this system were representing each of installation

segments in the Installed Floor sending 38 bytes to the personal computer.

 The addresses of nodes can be kept minimum 2 bytes long and maximum 8 bytes

long. In our system, we have used 8 bytes long addresses but keeping the addresses 2

bytes long will make the system little faster. Because of reduction in the bytes, the

transmission among the nodes will be faster also the processing of data at the host node

will be faster. Moreover, each microcontroller in the network waits for 1ms after

selecting each sensor through select lines of analog multiplexers; by modifying the delay

routine in the code we could wait for a lesser amount of time speeding the system further.

In addition to that node D which is the end node in the network, initiates the data

transmission and after transferring its data to node C it waits for a programmable 100ms

before it starts polling the sensors. After finishing waiting time, node D takes 32ms to

poll the sensors and then again transfers its data to node C. We can program less waiting

time for a faster speed. Speculating that we reduce the polling and waiting time by 50%,

all the 128 sensors will be scanned approximately 15 times per second which in turn will

increase the data acquisition per second.

 A star network which is easier to implement and can handle 4 installed segments

was possible but the star network is not appropriate for covering larger area of larger

length, where as the linear system gives larger length or reach. The linear system was

60

more suitable for our application. Moreover, the star network is more robust while in the

daisy chain network if anyone of the nodes goes down the whole network goes down.

61

CHAPTER 6 : CONCLUSION

We successfully built and tested the microcontroller circuitry for the Development

System, the Prototype System as well as the Installed Floor. Acquisition time is

important, and we show that increasing the baud rate for polling and transferring data

speeds up the system linearly. In the Development and the Prototype Systems, the highest

data polling and acquisition times, no sensors were active and at 19200 baud rate came in

at 1ms and 2. 59ms, while the lowest time for 115200 baud rate came in at 0.16ms and

0.43ms. The increase in baud rate did not affect the appearance of the display, neither

was the data lost, which indicates that the system has a significant margin for the time to

acquire and transmit data. In case of the Installed Floor, the microcontrollers efficiently

communicate with each other through a peer-to-peer wireless network. All the systems

displayed appropriate sensors, corresponding to the activated sensors. Further work

indicating that the systems are reasonably accurate and lossless. The low price of the

electronic parts confirmed the low cost of the systems. The circuitry and the algorithms

can be used for future expansions with minor modifications; the same hardware and the

algorithm architecture can be used for similar products using different sensors.

From the Table 2-1 it is apparent that P87C52SBPN (not used) has a lower cost

than the PIC18F4455 microcontroller (used for the Installed Floor). By utilizing the

Serial Peripheral Interface port and making appropriate changes in the software functions

used for interfacing the radio transceiver module, the P87C52SBPN microcontroller can

62

replace PIC18F4455 microcontroller (8). Moreover, P87C52SBPN has more

input/output pins, 32 pins. These pins can be utilized to connect larger number of sensors,

which in turn will reduce the number of nodes required per room, and thus improve the

scalability of the system. In summary, by replacing PIC18F4455 with P87C52SBPN we

can cover a bigger area using an adequate number of microcontrollers and hence reduce

the cost of the system (6).

All the microcontrollers mentioned in Table 2-1 except PIC16F871 support

Universal Serial Bus (USB) interfacing. USB has the potential for higher speed. The

increase in data acquisition rate speeds up the data communication for the display

computer. Future implementation will benefit by using USB to communicate with the

computer. Additionally, the serial port is gradually being replaced by the USB, the USB

has the potential for higher speed, and hence to increase the data acquisition rate of the

personal computer.

 In the electronics of the microcontroller as well as the software there is good

scope for improvement. Use of surface mountable ICs instead of PDIP packages can

reduce the size of the electronics. A single box containing electronics associated with

microcontroller could be powered up using a single voltage adapter. The use of a

standard version of the compiler (instead of student or lite versions which we used) will

reduce the code size reducing the code memory space required. Of course the standard

versions are not freely available.

63

REFERENCES

1. Rohan Neelgund. Floor sensor development using signal scavenging for personnel

detection system. Computer Engineering, University Of Missouri, Columbia.

2010. Masters thesis for fulfilment of MS degree.

2. Krishna Devarkonda. Data display for a signal scavenging personnel detective

system. Computer Engineering, University of Missouri, Columbia 2010. Masters

thesis for fulfilment of MS Degree.

3. Harry W. Tyrer, Rohan Neelgund, Uday Shriniwar, KrishnaKishor D. Faux-Floor

Development System for Personnel Detection Using Signal Scavenging

Sensors.32
nd

 Annual International IEEE EMBS Conference, Argentina, August

31-September 4, 2010 Under review.

4. Atmel Corporation, ATmega16A datasheet, Document number: 8154B–AVR–

07/09, Atmel Corporation 2325, Orchard Parkway San Jose, CA 95131 USA.

5. Freescale Semiconductor, MC68HC908AB32 — Rev. 1.1, Technical Data,

Freescale Semiconductor, Email: support@freescale.com, August 2, 2005

6. Philips Semiconductors, P87C52SBPN, Product specification, Philips

Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California

94088–3409, 2000 Aug 07

7. Alzheimer's Association, Alzheimer's Association National Office 225 N.

Michigan Ave., Fl. 17, Chicago, IL 60601, 24/7 Helpline: 1.800.272.3900.

http://www.alz.org/alzheimers_disease_alzheimers_disease.asp

8. Microchip Technology Inc., MRF24J40MA the Radio Transceiver module,

Advance Information, Document number: DS70329A, Microchip Technology

Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199

mailto:support@freescale.com
http://www.alz.org/alzheimers_disease_alzheimers_disease.asp

64

9. Microchip Technology Inc., MiWi(TM) IEEE 802.15.4 Wireless Networking

Protocol Stack, Microchip Technology Inc. 2355 West Chandler Blvd. Chandler,

AZ 85224-6199, 2009

10. Microchip Technology Inc., MPLAB C18 for PIC18 v3.35 in LITE mode, Part

Number: SW006011, Microchip Technology Inc. 2355 West Chandler Blvd.

Chandler, AZ 85224-6199, 2009

11. Microchip Technology Inc., MPLAB IDE v8.50 Full Release Zipped Installation,

Part Number: SW007002, Microchip Technology Inc. 2355 West Chandler Blvd.

Chandler, AZ 85224-6199, 2009

12. Microchip Technology Inc., PICkit™ 2 Development Programmer/Debugger,

Part Number : PG164120, Microchip Technology Inc. 2355 West Chandler Blvd.

Chandler, AZ 85224-6199, 2009

13. Microchip Technology Inc., PICkit™ 2 Microcontroller Programmer USER’S

GUIDE, Document number: DS51553E, Microchip Technology Inc. 2355 West

Chandler Blvd. Chandler, AZ 85224-6199, 2008

14. Microchip Technology Inc., MCP1702 datasheet, Document number: DS22008B,

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199,

2007

15. Fairchild Semiconductor Corporation, MM74HC245AN datasheet, Document

number: DS005165, www.fairchildsemi.com

16. Dementia Education & Training Program, PREVENTION OF FALLS IN THE

DEMENTIA PATIENT, 1-800-457-5679.

17. National Semiconductor Corporation, DS14C232 Datasheet, Document number:

DS010744, www.national.com

http://www.microchip.com/Microchip.WWW.SecureSoftwareList/secsoftwaredownload.aspx?device=en010014&lang=en&ReturnURL=http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_IDE_8_53.zip
http://www.fairchildsemi.com/

65

APPENDICIES

Following appendices are provided in different document

Appendix A – Program written for the Development System

Appendix B – Program written for the Prototype System

Appendix C – Modified HardwareProfile.c to make the program work for PIC18F4455

in case of the Installed Floor

Appendix D – Modified FeatureDemoNode1.c of P2P Node 1 in as per our requirements

for the host node

Appendix E – Modified FeatureDemoNode2.c of P2P Node 2 as per our requirements

for the peer nodes

Appendix F – Pages from datasheet of PIC16F871 used for the Development System and

the Prototype System

Appendix G – Datasheet of SN7417N used in the Prototype system

Appendix H – Pages from datasheet of PIC18F4455 used for the Installed Floor

Appendix I – Datasheet of MRF24J40MA Datasheet used in the Installed Floor

Appendix J – Datasheet of MCP1702-3302 Datasheet used in the Installed floor

Appendix K – Datasheet of DS14C232 used in all the systems

	First
	Second
	research

