
CONSTANT TIME SORTING AND SEARCHING

A Thesis in

Computer Science

Presented to Faculty of University of

Missouri - Kansas City in partial fulfillment of

requirements for the degree

MASTER OF SCIENCE

By

Sai Swathi Kunapuli

B. Tech in Electrical Engineering

Vignan Institute of Technology & Sciences, Hyderabad, India, 2019

Kansas City, Missouri, United States of America

2022

2022

SAI SWATHI KUNAPULI

ALL RIGHTS RESERVED

iii

CONSTANT TIME SORTING AND SEARCHING

Sai Swathi Kunapuli, Candidate for the Master of Science Degree

University of Missouri – Kansas City

ABSTRACT

To study the sorting of real numbers into a linked list on Parallel Random Access

Machine model. To show that input array of n real numbers can be sorted into a linked list in

constant time using n2/logcn processors for any positive constant c.

The searching problem studied is locating the interval of n sorted real numbers for

inserting a query real number. Taking into account an input of n real numbers and organize

them in the sorted order to facilitate searching.Initially, sorting the n input real numbers and

then convert these real numbers into integers such that their relative order is preserved.

Convert the query input real number to a query integer and then search the interval among

these n integers for the insertion point of this query real number in constant time.

iv

APPROVAL PAGE

The faculty listed below, appointed by Dean of School of Science and Engineering,

must examine the thesis titled as “Constant Time Sorting and Searching” presented by Sai

Swathi Kunapuli, candidate for the Master of Science degree, and certify that in their opinion

it is worthy of acceptance.

Supervisory Committee

Yijie Han, Ph. D., Chair

School of Science and Engineering

Gharibi Wajeb, Ph. D.

School of Science and Engineering

Sejun Song, Ph. D.

School of Science and Engineering

v

CONTENTS

ABSTRACT .. iii

Chapter

1. INTRODUCTION .. 1

2. SORTING IN CONSTANT TIME ... 5

3. SEARCHING IN CONSTANT TIME .. 14

4. THEOREM .. 23

5. CONCLUSIONS .. 24

REFERENCES ... 25

VITA .. 29

vi

TABLES

(ii)XOR Table .. 15

1

CHAPTER 1

INTRODUCTION

The requirement for parallel algorithms has become critical in these days and age. Our

algorithm has a series of stages that takes many inputs from the input and can execute various

instructions at the same time, combining all of the separate outputs to produce the final result.

In this study, we use the PRAM (Parallel Random Access Machine) model[23,24] to sort n

real numbers into a linked list. A Parallel Random Access Machine is a model that is used for

the design of many parallel algorithms. In this model, n processors can conduct independent

operations on n data sets in a unit of time. This may result in many CPU's accessing the same

memory cells at the same time. This issue is resolved in various ways on the PRAM model:

On the EREW (Exclusive Read Exclusive Write) PRAM[23,24], no two processors are

allowed to read from or write to the same memory location at the same time, on the CREW

(Concurrent Read Exclusive Write) PRAM[23,24], multiple processors are permitted to read

from the same memory location at the same time but are not permitted to write to the same

memory location at the same time, and in the CRCW (Concurrent Read Concurrent Write)

PRAM[23,24], in which multiple processors are permitted to read from or write to the same

memory location at the same time. Since, the CRCW PRAM allows multiple processors to

read and write simultaneously into a memory cell arbitration schemes are used to resolve

concurrent write conflict. On the Priority CRCW PRAM, the processor with the highest

priority wins the write on the memory cell among the processors writing to the same memory

cell. The processor's index can be used as the priority. On the Arbitrary CRCW PRAM, an

arbitrary processor is chosen to win the write from among the processors to write on the same

memory cell. On the Common CRCW PRAM, processors write to the same memory cell in a

2

step must write the same value, which is then written into the memory cell. Priority CRCW

PRAM is the strongest of the three CRCW PRAM models; Arbitrary CRCW PRAM is weaker

than Priority CRCW PRAM; and Common CRCW PRAM is the weakest of the three. In this

study, we shall design algorithm on the Common CRCW PRAM. Because Common CRCR

PRAM is weaker than Arbitrary and Priority CRCW PRAM and therefore our algorithm also

runs on the Arbitrary and Priority CRCW PRAM.

Let Tp denote the complexity of a parallel algorithm with p processors. Let T1 be the

time complexity of the best serial algorithm for the identical issue. Then pTp ≥ T1. When

pTp=T1,this parallel algorithm is an optimal parallel algorithm.

When we have a TP time algorithm that uses P processors, we can represent or translate the

time as TPP/p+TP when we employ p processors.

A parallel algorithm for a problem of size n that uses polynomial number processors

(i.e., nc processors for a constant c) and runs in polylog time (i.e., O(logcn) time for a

constant c) is considered to belong to the NC class[5], where NC is Nick's class.

NC algorithms, as well as fast and efficient parallel algorithms, are being developed by

researchers in the field of parallel algorithms.

In this paper, we will study sorting real numbers into a linked list in constant time

using n2/logcn processors. Previously it is known that n real numbers can be sorted into a

linked listin constant time using n2 processors [10,14,15,16].

3

On the CRCW PRAM with polynomial number of processors, it is known that sorting n

real values into an array takes at least (logn/loglogn) time [3]. If we want to sort them into

a padded array, we need at least (loglogn) time [8]. There are fast merging and sorting

algorithms [23] but they do not achieve constant time. However, if we arrange them into a

linked list, we can demonstrate that it is possible to do so in constant time. Thus, the lower

bounds of (logn/loglogn) [3] and (loglogn) [8] are the bottom bounds for arranging integers

in an array rather than "sorting" them.

There have been previous results for sorting integers into a linked list[4, 9]. It is known

there that n numbers in the range of {0, 1, …, m-1} may be sorted into a linked list in

constant timeusing nlogm processors. Functions of n cannot constrain m in this case. Except

for prior resultsfor sorting real numbers into a linked list [10,14,15,16], we do not know any

other results for parallel sorting real numbers into a linked list in constant time.

In [10,14,15] sorting integers and real numbers into a linked list is considered. The best

resultto sort real numbers into a linked list in constant time used n2 processors [14]. Although

in [15] the number of processors is reduced to less than n2 by using linked list contraction

[1,18,19] but the time is not constant.

The traditional way of searching a query number among n numbers is to sort these n

numbersand then use binary search to search for the query number. Traditionally the sorting is

done bycomparison sort. This requires O(nlogn) time for the sorting and the binary search

takes O(logn) time [6].

When the numbers are integers, the sorting can be done in O(nloglogn) time [11] and

the searching can be done in min{O(logn), O(loglogm)} time [13] where logm is the number

4

of bits in the integers, i.e. the input integers are in {0, 1, …, m-1}.

We use the computation model which is basically the computation model used in

computational geometry [26]. Besides normal arithmetic and index operations used in

computational geometry, we also use some logical operations such as bitwise AND () and

XOR (exclusive-or) operation. These logical operations, when applied to integers and real

numbers, enable our algorithms run better. However, these logical operations may not allowed

in computational geometry. In the first version of our algorithm, we use the XOR operation

on real numbers and use AND and XOR operations on integers. In the second version of our

algorithm, we only use AND on integers. We do these because we want to keep the use of

logical operations to minimum.

We consider the situation that the input numbers are real numbers, as this is assumed in

computational geometry.

We show, by using Han’s real number sorting algorithm [12] (which runs on the same

computation model as used in computational geometry) , we can sort the input numbers in

𝑂(𝑛√log 𝑛) time. After sorting we convert these n real numbers into integers while preserving

their order. These converted integers can then be packed into one word to facilitate search in

constant time.

5

CHAPTER 2

SORTING IN CONSTANT TIME

2.1 Sorting real numbers into a linked list using 𝑛2 processors in constant time.

We assume that the n input real numbers are distinct. This can be achieved by

replacingevery real number a by a pair (a, i) where i is the index of the number a in the input

array.

Firstly, let us discuss about the algorithm on how to sort the real numbers in linked list

usingconstant time using n3 processors. Let us say, A[0 n-1] be the input array of n real

numbers and we have n3 processors to achieve constant time.

Assign n processors to each element of the array to compare it with the other elements

in the array. It will write as 1 for the elements that it greater than the given element and 0 for

the elements if it is less than it. For example, we have the given input array elements as

4,2,5,1,6,3,9. Let us pick an element 5 from the array. As said above, it marks 1 to the

elements greater than5 and 0 for the ones lesser than 5. So, the output is 0,0,0,0,1,0,1. We use

the n2 processors to theelements marked as 1 and find the smallest number among them (i.e., 6)

in constant time [25,27]and link it to the element 5. So, here we have 6 and 9 out of which 6

is the minimum. So, 6 islinked to 5. This process is executed in parallel to all the elements in

the array, and we get thefinal sorted linked list of elements. This algorithm can be done in

constant time using n3 processors.

Now, we let us show the algorithm on sorting the real numbers into a linked list using

n2 processors in O(loglogn) time on the Common CRCW PRAM. This algorithm is like the

abovealgorithm where we assign n processors to compare a number to the rest of the elements

6

in thearray. Now, we need to compute the minimum of n numbers using n processors. This

can be done in O(loglogn) time [25,27]. Let us say A[0. n-1] be the input array of n real

numbers. As above, the comparison task of comparing one element A[i] to other elements

takes constant time. Now, we need to find the minimum of elements in A that are larger than

A[i]. Let us saym is the smallest element. Now, for each element in A[i] we will copy it into

a new array Ai. This usually take constant time. We now compare A[i] with every element

Ai[j] in Ai. If A[i] ≥Ai[j] then we will do Ai[j] =MIN. Then we will find the smallest element

Ai[k] in Ai. This takes constant time using n1+e processors (or O(loglogn) time with n

processors) for Ai [22,24]. For all i=0, 1… n-1, this takes constant time with n2+e processors

(or O(loglogn) time with n2 processors). Ai[k] is the smallest element larger than A[i]. Thus,

we can make a link from A[k]to A [i].

Now we show our new algorithm which allows to sort n real numbers into a linked list

in constant time with n2 processors. We divide the input numbers into √𝑛 groups. So, now

each group has √𝑛 numbers. Assign n3/2 processors for each group. So now the total number

of processors to do this will be √𝑛 x n3/2 processors which is n2 processors. We already know

thatbuilding a sorted linked list with n3/2 processors of √𝑛 numbers take constant time. Now

we have √𝑛 groups with sorted linked lists. Since we have √𝑛 groups there will be O(n) pairs

of groups in total. Let us assign n processors for every pair of groups. So, we require n

processors x O(n) pairs which is O(n2) processors total. So, for every number in the group, we

can use √𝑛 processors. So, we require n processors for each group. Now, let us say we have a

number A inGroup 1. It finds the smallest number B larger than it in Group 2 by comparing

with every number in group 2 and using the sorted linked list already built for group 2. This

process is repeated for all the pairs of groups like Group 1, Group 3 and Group 1, Group 4

7

etc. We find √𝑛 − 1 smallest numbers larger than A. In general, if we do it in parallel each

number find √𝑛 − 1 smallest numbers larger than it. Each number then uses n

processors to find the minimum among these √𝑛 − 1 smallest numbers in constant time

[25,27]. So, in total the proposed algorithm uses n2 processors to sort the n real numbers in a

linked list in constant time.

Finally, let us discuss about the algorithm which is used to sort the real numbers in the

linked list using less then n2 processors. Divide n numbers into n/t groups with t numbers in

each group. First sort the t numbers in each group into a linked list in constant time using (n/t)t2

processors. Now for about every m nodes (between m and 2m nodes), we build a supernode.

Initially we have n/t linked lists. Each linked list has t nodes. Combine about every consecutive

m nodes to form a supernode. We have t nodes in linked list so we have O(t/m) super nodes.

This can be down in O(n/p+log(c)nlogt) time [1,14,15], where log(1)n=logn and log(c)n =

loglog(c-1)n. The t/m supernodes for each sorted link of t nodes forms a sorted supernode linked

list. Two supernode sorted linked lists with t/m nodes each can be merged into one lined list in

constant time using (t/m)2 processors. Let us say supernode s in one supernode linked list is to

be inserted between supernode s1 and supernode s2 of the other supernode linked list. Then s

uses O(m) processors to compare it with every nodes in s1 and s2 to find the exact position it

needs to be inserted. Now merge every pair of about m nodes using m2 processors in constant

time.

Finally, let us discuss about the algorithm which is used to sort the real numbers in the

linked list using less then n2 processors. Divide n numbers into n/t groups with t numbers in

each group. First sort the t numbers in each group into a linked list in constant time using (n/t)t2

processors. Now for about every m node (between m and 2m nodes), we build a supernode.

8

Initially we have n/t linked lists. Each linked list has t nodes. Combine about every consecutive

m node to form a supernode. We have t nodes in linked list, so we have O(t/m) super nodes.

This can be down in O(n/p+log(c)nlogt) time [1,8,9], where log(1)n = logn and log(c)n = loglog(c-

1)n. The t/m supernodes for each sorted link of t nodes forms a sorted supernode linked list.

Two supernode sorted linked lists with t/m nodes each can be merged into one linked list in

constant time using (t/m)2 processors. Let us say supernode s in one supernode linked list is to

be inserted between supernode s1 and supernode s2 of the other supernode linked list. Then s

uses O(m) processors to compare it with every node in s1 and s2 to find the exact position it

needs to be inserted. Now merge every pair of about m nodes using m2 processors in constant

time.

Therefore there are (n/t)2 pairs of linked lists. For every pair, we use (t/m)2 processors

to merge supernode linked lists. So, we use (n/m)2 processors for merging the supernodes.

For each supernode s we used nm/t processors (m processors for each of the n/t pairs) for

comparingit with the nodes in other supernodes. Because we have n/m supernodes, therefore

the processused is n^2/t processors. For merging the m nodes in one supernode list with m

nodes in othersupernodes list we used (n/t)2(t/m)m=(n/m)(n/t)m=n2/t processors and logm time.

If we let m2=tthen we used n2/t processors and logt time.

The two extremes are t=1 which we use n2 processors and sort real numbers into a linked

list in constant time and when t=n where we use n processors and sort real numbers into a linked

list in logn time.

9

2.2 Prepare for sorting real numbers into a linked list using n2/logcn processors.

A parallel algorithm for sorting n input real numbers into a linked list in constant time is

described. This algorithm works by grouping input real numbers, let us say, splitting A[0…n-

1] real numbers into 𝑛/√log 𝑛 groups. We enumerate all permutations of the √log 𝑛

numbersin every group. Among all these √log 𝑛! permutations there is only one permutation

in which these √log 𝑛 numbers are in sorted order (assuming that all input numbers are

different). For each permutation of the numbers in a group we use √log 𝑛 processor (one

processor for each number) and therefore we used √log 𝑛! *√log 𝑛 processors for each group

and for the n input real numbers we used (n/√log 𝑛) ∗ √log 𝑛! *√log 𝑛 =𝑛√log 𝑛! processors.

For each group thepermutation with the sorted order of numbers is selected in constant time

by verifying the √log 𝑛 numbers are in sorted order using √log 𝑛 processors. This is how

internal sorting is carried out.

To continue the sorting process, each element e in a group G is compared to the

elements in the next group Gi, 0 ≤ i < √log 𝑛, and fitted in a suitable position by determining

its rank in Gi.This is done by using √log 𝑛 processors to compare it to every number in the

(sorted) group G1. e then enumerates (1 + √log 𝑛)√log 𝑛 possibilities using √log 𝑛 base √log

𝑛 digits. There

are (1 + √log 𝑛)√log 𝑛 patterns in these digits. The pattern 𝑎0𝑎1 … 𝑎√𝑛−1 denotes that e has

rank 𝑎𝑖 in Gi. Associated with pattern 𝑎0𝑎1 … 𝑎√𝑛−1 is the pre-computed value 𝑎0+𝑎1 +

⋯ 𝑎√𝑛−1which is the rank of e in 𝐺0𝐺1…𝐺√log 𝑛−1. For each permutation e then uses

√log 𝑛 processors with the i-th processor pi to verify whether the rank of e in group Gi is ai. If

10

the rank is not ai then pi will cancel this permutation by (concurrent) write to a predefined

memory cell for this permutation. Thus only one permutation is not cancelled and the rank

precomputed for this permutation is fetched. This determines the rank of e in

𝐺0 𝐺1 … √𝐺 log 𝑛−1 . e used (1 + √log 𝑛)√log 𝑛 ∗ √log 𝑛 processors. Thus for n real

numbers the total number of processors used is 𝑛 ∗ (1 + √log 𝑛)√log 𝑛 ∗ √log 𝑛 . The time

complexity is constant time.

In the next step we again combine √log 𝑛 groups into one group. This time we have, for

each number e, (1 + log 𝑛)√log 𝑛 patterns because the rank of e in each group of log 𝑛

numbers canbe from 0 to log 𝑛. Thus we will use 𝑛 ∗ (1 + log 𝑛)√log 𝑛 ∗ log 𝑛 processors.

For a positive integer c we will run the above process 2c times. Thus we will use O(c) steps

and use 𝑛 ∗ (1 + (log 𝑛)𝑐)√log 𝑛 ∗ (log 𝑛)𝑐 processors. We have sorted (log 𝑛)𝑐 numbers in

each of the 𝑛⁄(log 𝑛)𝑐 groups.

EXAMPLE:

Let us now demonstrate our above approach using different numbers as an example.

AssumeA[0,...,n-1] is the input array of n real values. Using 𝑛 ∗ (1 + log 𝑛)√log 𝑛 ∗ log 𝑛

processors, we achieve this in constant time. For example, consider an input array of

2,3,8,6,12,19,5,4,1,0,9,7,10,18,16,13 where n=16.

In stage one of the process, we divide into groups depending on √log 𝑛. When we

solve, we get √log 16=2, which represents two processors for each group. Following the

procedure, we divided numbers into 8 groups with 2 numbers in one group, as indicated in

11

[2,3],[8,6],[12,19],[5,4],[1,0],[9,7],[10,18],[16,13]. Each group is solved by determining the

proper order from the all potential √log 𝑛! (For our example, 2!=2.) permutations. Thus the

first group will have two permutations: 2, 3, and 3, 2 and it determined that 2. 3 is in sorted

order. The second group will have two permutations: 8, 6 and 6, 8 and it determined that 6, 8

is in the sorted order. And so on. Thus for each group we used 4 processors and the total number

of processors used is 16/2*4=32. The time is constant. After this stage we get

[2,3],[6,8],[12,19],[4,5],[0,1],[7,9],[10,18], [13,16].

As we move on to stage II of the process, after we have completed internal group

sorting, we will combine √log 𝑛=2 groups into one group. To combine [2,3] and [6,8] into one

group each of the 2, 3, 6, 8 will use 4 processors to determine its rank in each group. For

example, 3 will use 4 processors, use 2 processors to determine its rank in [2,3] as 1 and use

2 processors to determine its rank in [6,8] as 0. Then for each number we form (√log 𝑛 +

1)√log 𝑛 = 32 = 9 permutations: p0=00, p1=01, p2=02, p3=10, p4=11, p5=12, p6=20, p7=21,

p8=22 and use (√log 𝑛 + 1)√log 𝑛√log 𝑛=9*2=18 processors, two processors for each

permutation. Thus 3 use 2 processors to check p0 and finds that p0 is incorrect as it

indicates that 3 has rank 1 in [2,3] and rank 0 in [6,8]. Thus p0 will be taken out of

consideration (crossed out). The only permutation that is not crossed out is p3=10 as it

indicates that 3 has rank 1 in [2,3] and rank 0in [6,8]. Thus 3 picks the pre-computed rank of

0+1=1 for p3. Thus at the end of this stage wegot [2,3,6,8],[4,5,12,19],[0,1,7,9],[10,13,16,18].

12

2.3 Sorting real numbers into a linked list with n2/logcn processors.

For a given total number of “n” inputs, dividing them into 𝑛⁄(log 𝑛)𝑐 groups with (log 𝑛

)𝑐numbers in each group. As described in the Section 2 we use 𝑛 ∗ (1 + (log 𝑛)𝑐)√log 𝑛 ∗

(log 𝑛)𝑐 processors to sorted (log 𝑛)𝑐 numbers in each of the 𝑛⁄(log 𝑛)𝑐 groups in constant

time.

For each group of sorted (log 𝑛)𝑐 numbers we sample every (log 𝑛)𝑑-th number (with

0 <d< c) and thus we sampled (log 𝑛)𝑐−𝑑 numbers from each group and among the n input

numbers we sampled n/(log 𝑛)𝑑 numbers.

We now sort these n/ (log 𝑛)𝑑 numbers into a sorted linked list in constant time

using(n/ (log 𝑛)𝑑)2 processors using the algorithm in[14] .

Now for each number a we use n/(log 𝑛)𝑑 processors to compare it to all the numbers

on the sorted linked list to s: the largest number smaller than a and l: the smallest number

larger thana among numbers in the sorted linked list. Because numbers in the linked list are

sorted and therefore s and l can be found in constant time. s and l are neighboring elements

on the sortedlinked list.

Now between two neighboring elements s and l on the sorted linked list there can be at-

most n/(log 𝑛)𝑑 numbers fell in between. This is because for each group of sorted (log 𝑛)𝑐

numbersthere can be at most (log 𝑛)𝑑 numbers fell between s and l. For otherwise if more than

(log 𝑛)𝑑 numbers fell in between s and l then there is at least sampled number fell in

between s and l because we sampled every (log 𝑛)𝑑-th number from these (log 𝑛)𝑐 numbers.

13

But between s and l there is no another sampled number.Thus there are at most n/(log 𝑛)𝑑

numbers fell in between s and l.

Now for all numbers fell in between s and l we sort them into a linked list. We use

n/(log 𝑛)𝑑 processor for each number (thus we used a total of 𝑛2 /(log 𝑛)𝑑 processors).

Because there nomore than n/(log 𝑛)𝑑 numbers between s and l and therefore we have at least

m2 processors for the m numbers between s and l. Thus we can sort the numbers between s and l

into a sortedlinked list in constant time use[14] .

After the numbers in each interval between s and l are sorted into a linked list we can

connectsthese linked lists into one sorted linked list.Because c is an arbitrarily large constant

and d < c thus d can be an arbitrarily large constant.

14

CHAPTER 3

SEARCHING IN CONSTANT TIME

3.1 Converting real numbers to integers while preserving their order.

Let a0, a1, …, an-1 be the n input real numbers. As our method is not convenient to deal

with negative numbers, we will convert negative numbers to nonnegative numbers by finding

the minimum number m among a0, a1, …, an-1 and if m is negative then we will add –m to

every ai, i=0, 1, …, n-1.

First, we sort a0, a1, …, an-1 in 𝑂(𝑛√log 𝑛) time [12]. Let ai0, ai1, …, ai(n-1) be these real

numbers in the sorted order. In the first version of our algorithm, we view these numbers as

binary numbers and we do aij XOR ai(j+1), and then find the most significant bit bij of aij XOR

ai(j+1) that is 1, for j=0, 1, n-2. The most significant bit can be found in multiple ways as we will

mention below. Here the least significant integral bit is bit 0. If we cut aij and ai(j+1) at bit bij ,

i.e. take bits that are at least as significant as bij and discard bits that are less significant than

bij, then the relative order aij and ai(j+1 is preserved in the result integer a’ij and a’i(j+1) (may need

to shift or multiply by 2 -bij if bij < 0 to convert fraction part into integer). Here we got n-1 bits

bij, j=0, 1, …, n-2, and we will find the smallest one b among them. We then cut all n real

numbers a0, a1,.., an-1 at bit b. To cut real number we do int(a*2-b).

The way to find the most significant bit can be either by techniques presented in [7], or

by taking the logarithm base 2 (then take the ceiling of it to make it an integer), or we can

first scale all input real numbers by a factor to make the absolute value of every one of them

to be less than 1. Say scaled value of a0, a1, …, an-1 is s0, s1, …, s n-1. Then we take

scalei=1/|si|,

15

i=0, 1, …, n-1. The largest scalei value scalemax is chosen to scale all si’s. That is we do

int(si*scalemax) for i=0, 1, …, n-1.

Here is an example of these operations:

Now,let us follow this version with the use of XOR:

Remembering the truth table of XOR as described below:

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

Table(i). XOR Table

Let me illustrate the procedure with the help of example. A set of real numbers are considered

along with a query input number as shown below.

Let the real numbers be,

0 1 1 0

1 1 0 1

0 1 0 0

0 1 0 0

A query input q, 0

1

1

0

16

As mentioned earlier, initially we need to sort the input real numbers in smaller to larger

orderor larger to smaller order. I have arranged them from smaller to larger and re-arranged

input can be seen below.

Now, XOR is performed with each number with its adjacent number which let us find

the bit position to cut. We will find the lowest bit position b among these found cut bit

positions and cut all input integers and the query integer at bit b. And operation can be

continued with bits that are at least as significant as the b-th bit.

Step I: 0 0 1 1 0

0 1 0 1 1

0 0 1 0 1

0 0 1 0 0

0 1 0

1 1 1

0 1 1

0 1 1

Thus, the first two number needs to be cut at bit 2 (bits are counted from the least

significant integral bit at 0 with bits after decimal point being at negative positions). The

second and the third number need to be cut at bit 3 and the third and the fourth, number need

to be cut at bit

17

2. Thus bit 2 is the lowest bit for us to cut. Thus, all the input numbers will be cut at the second

bit position as shown below.

Step II: 0 0 1 1 0

0 1 0 1 1

0

0

1

0

1

0 0 1 0 0

In the second version of our algorithm, we do not use XOR. Instead, we do subtraction

for each number with its adjacent number which let us find the bit position to cut. This is

shown here:

Step I: 0 0 1 1 0

0 1 0 1 1

0 0 1 0 1

0 0 1 0 0

0 0

0

1 1

0

0 1

0

0 1

1

And thus, in this version the bit for cutting all input real numbers is at bit position 0.

18

3.2 Our Algorithms

After these real numbers are cut, they become integers. Now we will perform Step III.

Step III: Now we will pack all the cut integers (not the cut query integer) into a word. When

we pack them, we will add a sign bit which is 1 at the front of each integer. The idea of using

the sign bit can be found in [2].

If the cut integers have t bits each after adding the sign bit each of them has t+1 bit. In

the first version of our algorithm, we arranged the integer from larger to smaller and have them

packed as shown here:

1 1 1 1 1 0 1 0 1 1 0 0

Here the bits in boldface are the sign bits.

In the second version of our algorithm, we will arrange integers from small to larger

and thusthe packed word of the integers will be like this:

1 0 0 1 0 1 1 1 0 1 1 1

We will call this word A. Up so far; we have accomplished the preprocessing and it takes

𝑂(𝑛√log 𝑛) time.

To search for the query real number, we first cut it at the b-th bit position as we have the cut

query integer here as
0

.

1

19

Note that if the minimum value m of a0, a1, …, an-1 is negative then we need add -m

to thisquery number before cutting it at the b-th bit.

We then make n copied of the cut query integer by multiply it with (0b1)n. This is a constant

that can be prepared in O(logn) time in the preprocessing stage. What we got is:

 (0 0 1 0 0 1 0 0 1 0 0 1) * 0 1

= 0 0 1 0 0 1 0 0 1 0 0 1

The bits in boldface are sign bits. We will call this word B. Now we do A-B. In the

firstversion of our algorithm, we got:

 (0 0 1 0 0 1 0 0 1 0 0 1) * 0 1

= 0 0 1 0 0 1 0 0 1 0 0 1

The bits in boldface are sign bits. We will call this word B. Now we do A-B. In the

firstversion of our algorithm, we got:

 1 1 1 1 1 0 1 0 1 1 0 0

- 0 0 1 0 0 1 0 0 1 0 0 1

1 1 0 1 0 1 1 0 0 0 1 1

20

In the difference C we got the first 3 sign bits are 1’s and the last sign bit is 0. This says

that the first three numbers are no less than 01 and the last number is less than 01. Thus 01 is

fallingbetween the third and the fourth integers. We need to extract out this information. To

do this we first extract the sign bits by AND C with a constant (10b)n. This constant, again,

can be prepared in the preprocessing stage in O(logn) time. The result of this AND is shown

here:

 1 1 0 1 0 1 1 0 0 0 1 1

AND 1 0 0 1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0 0 0 0 0

We will call this result D1.

In the second version the result of subtraction is:

 1 0 0 1 0 1 1 1 0 1 1 1

- 0 0 1 0 0 1 0 0 1 0 0 1

0 1 1 1 0 0 1 0 1 1 1 0

And the AND operation will give us:

 0 1 1 1 0 0 1 0 1 1 1 0

AND 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0 1 0 0

We will call this result D2.

21

In the first version of our algorithm, we need to find the least significant bit that is 1

This isachieved by doing:

((D1 XOR (D1-1)) +1)/2:

 1 0 0 1 0 0 1 0 0 0 0 0

XOR 1 0 0 1 0 0 0 1 1 1 1 1

0

0

0

0

0

0

1

1

1

1

1 1

+

1

0

0

0

0

0

1

0

0

0

0

0

0

/

2

0

0

0

0

0

0

1

0

0

0

0

0

We will call this result E1. After we find the most significant bit of 𝐸1 that tells us that

01 is between the third and the fourth integer. Now we need to compare the cut query

integer 01 with the third and the fourth integer and we found that 01 is equal to the third

integer. At this point we need compare the input query real number q which is 0110 here

with the real numberwhere the third integer is derived, i.e., 0100. Because 0110 > 0100 and

therefore we know that0110 is between 0100 and 1011.

In the second version of our algorithm, we just need to find the most significant bit that is 1.

This turn out to be the 1 shown in italic here:

22

0 0 0 1 0 0 1 0 0 1 0 0

This says that 01 is between the first integer and the second integer and thus we need to

compare it with the first and the second integers. It turns out that 01 is equal to the second

integer and thus we need to compare the real query number 0110 to the real number the second

integer is derived from, i.e., 0100. Because 0110> 0100 and therefore we know that 0110 is

between 0100 and 1011.

Note that in the second version we did not use the XOR operation.

23

CHAPTER 4

THEOREM

Theorem 1. n real numbers can be sorted into a linked list in constant time using n2

processors on the Common CRCW PRAM.

We have been able to optimize the existing algorithms with less number processors and

time. Earlier, we had algorithms like sorting of n real numbers into a linked list in constant

time using n3 processors and sorting of n real numbers into a linked list in O(loglogn) time

using n2processors [10,16].

Theorem 2. n real numbers can be sorted into a linked list in O(logt) time with n2/t

processors, where t can range from constant up to n.

Earlier, we had algorithms like sorting of n real numbers into a linked list in constant time

usingn3 and sorting of n real numbers in O(loglogn) time using n2 processors [16]. We also

came upwith an algorithm to sort the n real numbers in linked list using less than n2 processors

[16].

Theorems 1 and 2 are the results achieved before me[14,15].

Theorem 3. n Real Numbers can be sorted into a linked list in Constant Time Using

n2/logcn Processors

Theorem 4.n real numbers can be preprocessed in 𝑶(𝒏√𝐥𝐨𝐠 𝒏) time to support searching

in constant time.

Theorems 3 and 4 are achieved by me together with my advisor[20,21].

24

CHAPTER 5

CONCLUSIONS

We discussed about sorting n real numbers into a linked list using o(n2) processors in

constant time. We have followed the approach to assign the processors by dividing the given

input into groups. The approaches of solving correct order from potential permutations and

finding rank made algorithm work efficiently to sort the given input of array.

Currently we do not know how to reduce the number of processors further to reach

constant time for sorting ‘n’ real numbers into a linked list. The problem is that after we

sorted real numbers into a linked list we cannot sample every k-th number in constant time

because sortednumbers are on linked list.

We showed the approach to preprocess n real numbers to support search in constant time.

We are exploring this approach for other prominent computational geometry problems.

25

REFERENCES

[1]. R. Anderson, G. Miller. “Deterministic parallel list ranking”. Algorithmic, Vol. 6, 859-

868,1991.

[2]. A. Andersson, T. Hagerup, S. Nilsson, R. Raman. “Sorting in linear time?” Proc. 1995

Symposium on Theory of Computing STOC'1995, 427-436(1995). Also, in Journal of

Computer and System Science, Vol. 57, 74-93,1998.

[3]. P. Beame, J. Hastad, “Optimal bounds for decision problems on the CRCW PRAM” ,

Proc.1987 ACM Symp. On Theory of Computing (STOC’1987), 83-93(1987).

[4]. P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, S. Saxena, “Improved

deterministic parallel integer sorting,” Information and Computation, Vol. 94, 29-47(1991).

[5]. S. A. Cook, “Towards a complexity theory of synchronous parallel computation,” L’

Enseignement Mathématique,Vol. 27, 99-124(1981).

[6]. T.H. Corman, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to algorithms. 3rd

Edition, The MIT Press. 2009.

[7]. M. L. Fredman, D. E. Willard. “BLASTING through the information theoretic barrier

with FUSION TREES”. Proc.1990 ACM Symposium on Theorem of Computing

(STOC’1990),1-7(1990).

[8]. T. Goldberg, U. Zwick, “Optimal deterministic approximate parallel prefix sums and

their applications”, Proc. 3rd. Israel Symp. On Theory and Computing Systems, 220-

26

228(1995).

[9]. T. Hagerup. “Towards optimal parallel bucket sorting”, Information and

Computation. Vol. 75,39-51(1987).

[10]. Y. Han, N. Goyal, H. Koganti, “Sort Integers into a Linked List”, Computer and Information

Science. Vol. 13, No. 1, 51-57(2020).

[11]. Y. Han. “Deterministic sorting in O (nloglog n) time and linear space”. Journal of

Algorithms, Vol. 50, 96-105(2004).

[12] Y. Han. “Sorting real numbers in 𝑂 (𝑛√log 𝑛) time and linear space”. Algorithmic

Vol. 82, 966-978(2020).

[13] Y. Han, H. Koganti. “Searching in a sorted linked list”. In Proceedings of the 17th Int.

Conf. on Information Technology (ICIT'2018).

[14] Y. Han, P. Kasani, “Sorting real numbers into a linked list on the PRAM model”,

Proc. of the 2021 Int. Conf. on List Science, Engineering and Technology, 45-49(2021).

[15]. Y. Han, P. Kasani. “Time processor trade-off for sorting real numbers into a linked

list”. Proc. International Conference on Computation Structures and Algorithms. 40-

44(2021).

[16]. Y. Han, T. Sreevalli, “Parallel merging and sorting on linked list”, International Journal

27

of Computer, and Information Technology (IJCIT). Vol. 10, No. 2, (March 2021), to

appear.

[17]. Y. Han, “Uniform linked list contraction”, Paper 2002.05034 in arXiv.org.

[18]. Y. Han. “Matching partition a linked list and its optimization”. Proc. 1989 ACM

Symposium on Parallel Algorithms and Architectures (SPAA'89), 246-253 (June 1989).

[19]. Y. Han. “Parallel algorithms for computing linked list prefix”. Journal of Parallel and

Distributed Computing Vol. 6, 537-557(1989).

[20]. Y. Han, S.S Kunapuli. “Sorting real Numbers into a linked list in Constant Time Using

n2/logcn Processors”. In IAARHIES Conference on IT & Computer Science. Edmonton,

Canada 21-22 May,2022.

[21]. Y. Han, S.S Kunapuli. “Preprocess of n real numbers in 𝑂 (𝑛√log 𝑛) time to support

searching in constant time”. To appear in World Congress on Information Technology and

Computer Science (WCITSC), 2022.

[22]. P. Kasani. “Sorting real numbers into a linked list on the PRAM model”. Master’s

Thesis. University of Missouri at Kansas City, 2022.

[23]. J. J´aJ´a. An Introduction to Parallel Algorithms. Addison Wesley, Reading, MA, 1992.

28

[24]. R. M. Karp, V. Ramachandran, “Parallel algorithms for shared-memory machines”. In

Handbook of Theoretical Computer Science (Vol. A): Algorithms and Complexity, J. van

Leeuwen, Ed., New York, NY: Elsevier, 869-941(1991).

[25]. C. P. Kruskal. “Searching, merging, and sorting in parallel computation”. IEEE

Trans.Compute., C-32, 942-946(1983).

[26] F.P. Preparata, M. Ian Shamos. Computational Geometry, An Introduction.

Springer-Verlag, 1985.

[27]. L. G. Valiant. “Parallelism in comparison problems”. SIAM Journal on Computing,

Vol. 4. No.3, 348-355(1975).

29

VITA

Sai Swathi Kunapuli was born in Hyderabad, Telangana, India on October 4th, 1997.

She attended elementary school named as Gautami Talent High School and graduated in the

academic year 2013. Later, she got admitted into one of the top colleges and finished her

bachelor’s from “Vignan Institute of Technology & Sciences, Hyderabad” in 2019. In the year

2020, she was placed in a MNC called Wipro Limited and worked for a year and half. During

Aug 2021, she entered University of Missouri Kansas City to complete his Master of Science

Degree in Computer Science in Dec 2022.

	2.1 Sorting real numbers into a linked list using 𝑛2 processors in constant time.
	2.2 Prepare for sorting real numbers into a linked list using n2/logcn processors.
	2.3 Sorting real numbers into a linked list with n2/logcn processors.
	3.1 Converting real numbers to integers while preserving their order.
	3.2 Our Algorithms
	Theorem 1. n real numbers can be sorted into a linked list in constant time using n2 processors on the Common CRCW PRAM.
	Theorem 2. n real numbers can be sorted into a linked list in O(logt) time with n2/t processors, where t can range from constant up to n.
	Theorem 3. n Real Numbers can be sorted into a linked list in Constant Time Using n2/logcn Processors

