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ABSTRACT 

 

This dissertation is focused on factors that increase risk for nonalcoholic fatty 

liver disease (NALFD) and the more advanced form nonalcoholic steatohepatitis 

(NASH).  These factors include postprandial lipid handling (chapter II); ceramide 

(CER) turnover (chapter III), hepatic and mitochondrial CER content (chapter III); 

glucose turnover (chapter IV), de novo lipogenesis (chapter IV), and hepatic fatty 

acid oxidation (chapter V).  With regard to postprandial lipemia, healthy men 

consumed an oral isotope (2H11-oleate) in liquid meals of varying fat content and 

labeled triglycerides (TG) tracked into chylomicrons and triglyceride rich 

lipoproteins (TRL).  This method may be applied to future studies of postprandial 

lipemia.  Similar analytical methods (liquid chromatography mass spectrometry) 

were used to track the synthesis of CERs within hepatic tissues of mice 

consuming 13C3 
15N L-serine dissolved in their water and a high fat (60% energy, 

HFD) or a control (low fat, 20%E, CD) diet for two weeks.  The mice fed a HFD 

exhibited greater absolute CER turnover in both whole liver tissue and isolated 

mitochondria.  Furthermore, while total liver concentrations did not differ between 

diet groups, the HFD elicited greater mitochondrial CER content which was 

related to total liver CER only in these animals.  Plasma CER concentrations 

were measured in subjects with advanced NASH before and after a nine-month 

lifestyle program (and a standard care group) and the change in 16:0 CER was 

negatively related to improvements in liver fat.  Similarly, an increase in glucose 

production and disposal were related negatively to histologic improvements.  

Together, these data support a hepatic benefit of routing substrates - glucose 



xvi 
 

and lipotoxic lipids – away from the liver.  In addition to testing changes in 

glucose metabolism, these subjects had significant reductions in lipogenesis but 

no changes in a non-invasive breath test (13C4 Octanoate) to quantify total 

hepatic fatty acid oxidation using expelled breath.  Correlations between baseline 

and the change in octanoate oxidation, glucose turnover, and steatosis support 

the utility of this method to investigate physiological processes that improve 

hepatic lipid burden.  Currently, no drug therapies exist for the treatment of 

NAFLD or NASH and the results from the current studies support future 

investigations in identifying key factors for the regression of advanced liver 

disease through methodological innovation and novel findings with combined 

intensive lifestyle treatment. 
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CHAPTER I – Introduction and literature review  
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SCIENTIFIC PREMISE: Review of background literature  

Nonalcoholic fatty liver disease 

In 1970, the first descriptions of a fatty liver occurring in patients with type 2 

diabetes mellitus (T2D) was published (1).  Ten years later, the disease was 

named nonalcoholic fatty liver disease (NAFLD) because the histopathological 

features were reminiscent of alcohol-associated liver disease but occurred in the 

absence of excess alcohol intake and often in individuals with obesity and T2D 

(2).  Since the first descriptions of this disease, our understanding of the NAFLD 

spectrum of liver injury and the progression to more advanced forms, 

nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis, has grown 

considerably.  NAFLD and NASH are characterized by the presence of steatosis 

(liver fat ≥5% of liver volume) while NASH also includes hepatocellular ballooning 

and lobular inflammation with or without fibrosis (3, 4).  NAFLD is differentiated 

from other liver diseases by the absence of significant alcohol intake (≥14 or ≥21 

drinks per week for women or men, respectively), hereditary disorders (e.g., 

Wilson’s disease, lipodystrophy), use of steatogenic drugs (e.g., corticosteroids), 

or the presence of other conditions that may result in acute liver fat accrual (e.g., 

pregnancy, hepatitis C) (4).  Recently, because NAFLD is characterized as a 

metabolic condition, new nomenclature was proposed – metabolic-associated 

fatty liver disease (MAFLD) (5-7), which puts more emphasis on the role of 

metabolic dysfunction in NAFLD.  For the purposes of this dissertation, the 

commonly accepted nomenclature NAFLD will be used throughout the text.  
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NAFLD prevalence and staging 

NAFLD is the leading cause of liver disease in the U.S., affecting approximately 

25% of people globally (8, 9) with prevalence rates much higher (40-90%) in 

populations with associated clinical risk factors (e.g., obesity, metabolic 

syndrome, T2D) (9).  Liver injury due to NAFLD is the most rapidly increasing 

indication for liver transplantation in the U.S. (10) and it is now well established 

that NAFLD is a multi-organ disease, affecting many extrahepatic tissues (11).  

Indeed, NAFLD is an independent risk factor for cardiovascular-related and all-

cause mortality (8, 12, 13).  

 

Development of NAFLD can occur in the presence or absence of obesity and 

occurs in four general stages (14).  The first stage, hepatic steatosis, is 

characterized by intrahepatic lipid accumulation, mainly triacylglycerols (TG; 

intrahepatic triacylglycerols, IHTG), above 5% of the total liver volume (4, 15).  

When left untreated 20-30% of individuals with hepatic steatosis will progress to 

NASH which is characterized by the presence of hepatocellular ballooning and 

lobular inflammation (16).  Individuals with NASH have higher rates of 

hepatocellular apoptosis and cellular stress which can promote scarring of the 

tissue – fibrosis, the third stage of NAFLD.  Advanced fibrosis (≥3/4 fibrosis 

score) occurs in ~15% of individuals with NASH and on average, these 

individuals progress one stage of fibrosis approximately every seven years (17, 

18).  Permanent liver damage induced by fibrosis promotes the advancement to 

the fourth stage of the disease – cirrhosis and/or hepatocellular carcinoma.  In 
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those individuals with advanced fibrosis, 22% will develop cirrhosis or 

decompensated liver disease within two to four years (19, 20). 

 

Detection of NAFLD in the first two stages remains a crucial treatment goal to 

prevent irreversible liver damage.  While an imprecise measure for diagnosis, 

elevated plasma liver enzymes, alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST), are often the first indication of liver injury (14).  Recent 

work from our lab demonstrated the addition of serum alkaline phosphatase 

(ALP) to a prediction model of liver fibrosis (≥2/4 fibrosis score) in patients with 

obesity and NAFLD (21). Beyond blood markers, imaging techniques (i.e., 

ultrasound, magnetic resonance spectroscopy/imaging- MRS/MRI, transient 

elastography) are also frequently used to detect liver fat and estimate the level of 

scarring.  These imaging methods are useful for establishing IHTG content, but a 

liver biopsy is required to diagnose NASH via histology for grading of steatosis, 

lobular inflammation, and hepatocellular ballooning – the components of the 

NAFLD activity score (NAS, 0-8) (22).  If the disease progresses to cirrhosis and 

associated complications, a liver transplant may be advised, however work is 

ongoing to understand the reversibility of these advanced stages (23, 24).  

Further research is needed to understand the mechanisms that contribute to 

NAFLD progression and identify biomarkers that can detect early stages of 

NAFLD.   

 

NAFLD pathogenesis 
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Despite the growing prevalence, the mechanisms contributing to NAFLD 

development are not fully understood.  For many years a “two-hit” theory was 

used to explain NAFLD pathogenesis with the first “hit” being hepatic steatosis 

and the second “hit” being another factor that predisposed the liver to NASH 

development (e.g., oxidative stress) (25).  With the identification of more 

advanced mechanisms, a new theory suggests multiple parallel “hits” contribute 

to the pathogenesis of NAFLD (26).  These “hits” include the interactions 

between genetic, environmental, hormonal, and dietary factors in addition to 

inter-organ cross talk (26-28).  Overnutrition and inactivity (positive energy 

balance) may result in obesity and excess nutrient flux that overload hepatic 

metabolic pathways.  This is exacerbated through the loss of tissue insulin 

sensitivity, a key factor contributing to the progression of NAFLD (29).   

 

Multi-tissue insulin resistance 

Loss of post-receptor insulin signaling at the adipose tissue disrupts insulin-

mediated suppression of lipolysis which subsequently increases circulating 

concentrations of free fatty acids (FFA) (29, 30).  At the periphery, elevated FFA 

can promote the development of skeletal muscle insulin resistance thus reducing 

glucose uptake (31).  At the liver, FFA can be re-esterified to TG, made into other 

lipid species, or oxidized in the mitochondria (32-34).  Ultimately, some lipid is 

exported from the liver in very low-density lipoproteins (VLDL), however, the sum 

of the hepatic lipid export and oxidation often does not exceed the influx of FFA 

into the liver, resulting in an accumulation of liver fat (35).  At the same time, 
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hepatic insulin resistance results in a failure to suppress gluconeogenesis 

thereby contributing to elevations in endogenous glucose production (EGP) (29, 

36).  Elegant work has demonstrated a paradox known as selective hepatic 

insulin resistance in obesity and T2D where insulin fails to suppress EGP while 

simultaneously maintaining stimulation of key lipogenic regulatory control genes 

(36, 37).  With regard to EGP, insulin should phosphorylate FoxO1 (forkhead box 

O1), a transcription for for gluconeogenesis (GNG), at the liver which prevents 

the translation to the nucleus (38).  Ultimately this downregulates genes required 

for GNG (e.g., phosphoenolpyruvate carboxykinase, PEPCK and glucose-6-

phosphatase, G6P).  In a state of hepatic insulin resistance, the FoxO1 pathway 

becomes insulin-resistance and the expression of PEPCK and G6P remain high 

as does EGP.  On the other hand, lipogenesis promotes the conversion of 

carbons, from predominantly carbohydrate sources, to fatty acids through de 

novo lipogenesis (DNL, figure 1.1) (36) although select amino acids may also 

induce lipogenesis (39).  While dietary and circulating FFA are recognized as 

contributing to steatosis (32-34, 40-42), dietary carbohydrates have been shown 

to play a major role in the development of NAFLD (43-45). 

 

Lipid synthesis 

DNL is a metabolic pathway responsible for the conversion of carbohydrates to 

fatty acids occurring predominantly in the liver (36).  Sterol regulatory element 

binding protein (SREBP-1c), a regulatory control gene of lipid synthesis, is 

activated in the presence of insulin (46).  Once activated, SREBP-1c enhances 
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the transcription of genes involved in fatty acid biosynthesis (47, 48).  As shown 

in figure 1.1, four key enzymes are involved in the lipogenic pathway; acetyl 

coenzyme-A carboxylase (ACC), fatty acid synthase (FASN), stearoyl-CoA 

desaturase (SCD), and a set of enzymes called elongases (ELOV).  The primary 

product of lipogenesis is the saturated palmitic acid (16:0).  Once formed, the 

fatty acids may then be elongated and desaturated by the ELOV and SCD-1 

enzymes, respectively.  They may also be used for energy production through 

beta-oxidation (β-ox) or esterified to form TG, phospholipids, and other bioactive 

lipid species like ceramides (CER).  Both SREBP-1c and the enzymes within the 

DNL pathway are elevated in animal and cell culture models of NAFLD (49-55) 

and secretionas well as humans with NAFLD (49, 56, 57).   

 

Lipid sources:  DNL is uniquely elevated in NAFLD 

In addition to hepatic DNL, two additional sources of fatty acids funnel into liver 

TG synthesis – dietary fatty acids and those that arise from adipose tissue 

lipolysis (58-60).  Within the intestinal lumen, pancreatic lipases hydrolyze dietary 

lipids and the resulting FFA and monoglycerides (MAG) enter the enterocyte 

through a transporter (CD36) for synthesis of TG, phospholipids, and cholesterol 

esters at the endoplasmic reticulum (ER).  The lipids may either be stored in the 

cytosol or added to chylomicrons through microsomal TG transfer protein (MTP) 

with ApoB48, transported to the Golgi, and then released into circulation from the 

basolateral side (61).  The TG rich particle then deposits lipids into peripheral 

tissues through endothelial bound lipoprotein lipase (LPL) and chylomicron 
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remnants are eventually taken up by the liver.  At adipose tissue, stored TG are 

hydrolyzed to FFA and glycerol through adipose TG lipase (ATGL), hormone 

sensitive lipase (HSL), and monoglyceride lipase (MGL) and can be re-esterified 

or released into circulation where they are taken up at the liver for TG synthesis.  

From hepatic DNL, fatty acyl-CoAs are formed, some are elongated and 

desaturated.  Fatty acids from these three (dietary, adipose, and DNL) sources 

are then added to glycerol-3 phosphate, forming lyosphosphatidate.  A second 

acyl-CoA is added to form phosphatidate and then converted to a diglyceride 

(DAG).  DAGs may also be formed directly from monoglycerides and can be 

added to a VLDL particle without receiving a third fatty acid (62).  Alternatively, a 

third fatty acyl-CoA is added to DAG via diacylglycerol acyltransferase enzyme 

(DGAT) to form a TG molecule.  In addition to DAG and TG, CERs are also 

formed from fatty-acyl CoA within the liver.  As shown in figure 1.1, the newly-

formed TG (DAG or CER) may then be shunted to hepatic storage or undergo 

VLDL assembly for secretion.  The isoforms (1 and 2) of the DGAT enzyme are 

used to incorporate TG onto a pre-VLDL particle (in the presence of 

Apolipoprotein B-100 (apoB100) or into a lipid droplet for storage, respectively.  

MTP is responsible for transferring the bulk of TG (and other lipids like CERs 

(63)) to the endoplasmic reticulum for VLDL assembly and is required for the 

secretion of apoB100 from the liver (64).  CERs are also transferred directly from 

the ER to the Golgi through CER transfer protein (CERT).  Using stable isotopic 

labeling, our group previously demonstrated a strong correlation between labeled 

liver-TG and labeled VLDL-TG (arising from diet, adipose, or DNL) (60, 65) 
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supporting the utility of VLDL-TG in noninvasively measuring the incorporation of 

various sources of fatty acids into hepatic TG synthesis .   

 

Previous work from the Parks lab studying individuals with NAFLD has 

demonstrated more than half of hepatic TG arises from circulating FFA (60%), 

around 15% from dietary fat, and greater than 25% originates from DNL (65).  

Our group (60, 65), and others (46, 66-68), have demonstrated VLDL-TG arising 

from DNL is uniquely elevated in individuals with high liver fat when compared to 

subjects with low liver fat.  Considering these strong data, pharmacological 

therapies targeting enzymes within the DNL pathway have been developed and 

tested.  In early clinical trials, these drugs have been shown to reduce DNL and 

IHTG in subjects with NAFLD and the metabolic syndrome (49, 69-73).  Other 

drugs including glucose-lowering drugs, statins or other lipid-lowering 

medications, antioxidants, and bile agonists have also been targets to treat 

NAFLD (reviewed here: (74-79)), however, no pharmacological therapies are 

approved for the direct treatment of NAFLD.  Instead, the current guidelines 

support general strategies like lifestyle modification promoting weight loss and 

the control and correction of associated risk factors (cardiovascular, hepatic, 

extra-hepatic etc.) for the treatment and prevention of the disease (74). 

 

NAFLD treatment 

General strategies 
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Four general strategies have been applied for the treatment and management of 

NAFLD, they include: 1 – indirect pharmacological treatments (e.g., glucose-

lowering therapies, antioxidants), 2 – bariatric surgery, 3 – in select cases, liver 

transplantation, and 4 – in most cases, lifestyle modifications.  While no specific 

agents are available for the treatment of NAFLD, many potential pharmacological 

therapies have been investigated over the last few decades (74-79).  These 

therapies have specifically targeted insulin resistance and/or lipid metabolism1, 

lipotoxicity and oxidative stress2, inflammation and immune activation3, apoptosis 

and necrosis4, and fibrogenesis or collagen turnover5.  Alternatively, data support 

bariatric surgery in reducing histological severity of steatosis, inflammation, 

ballooning, and fibrosis in many, but not all who undergo the surgery (80-84).  In 

the most advanced cases of the disease, like NASH-cirrhosis, liver 

transplantation may be indicated (85).  Finally, a large body of evidence supports 

lifestyle modification with an emphasis on gradual weight loss as an effective 

approach to manage NAFLD and NASH (14, 86-89).  Indeed, these 

investigations have demonstrated improvements in plasma liver enzymes, liver 

fat content, degree of hepatic inflammation, and fibrosis in addition to the 

 
1 Glucose lowering: biguanides, PPARγ agonists - thiazolidinediones, GLP-1 receptor 
agonists, SGLT-2 inhibitors 
Lipid lowering: statins, ezetimibe, fibrates, omega – 3 PUFAs 
Farnesoid X receptor agonists: obeticholic acid, tropifexor 
DGAT2 inhibitors 
Thyroid hormone receptor agonists 
2 Antioxidants: vitamin E 
3 CCR2/5 inhibitor: Cenicriviroc 
4 Pan-caspase inhibitor: Emricasan  
5 Immunomodulator via LOXL2: simtuzumab 
ASK-1 inhibitor: selonsertib 
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regression of many underlying factors associated with NAFLD risk like obesity, 

T2D, and hyperlipidemia (90).  These lifestyle investigations are described in 

more detail below.  

 

Energy restriction, exercise training, and combined lifestyle interventions 

The current guidelines set forth by the American Association for the Study of 

Liver Diseases (AASLD), the European Association for the Study of the Liver 

(EASL), and the National Institute for Health and Care Excellence (NICE) 

recommend a 5-10% weight loss through energy restriction (500-1,000 kcal/day) 

and moderate intensity physical activity (14, 86, 87).  Many dietary patterns have 

been tested in individuals with NAFLD (91).  In particular, the Mediterranean diet 

is recommended by AASLD.  Small clinical trials testing this diet in NAFLD 

subjects reported reductions in liver fat and improvements to metabolic profiles, 

regardless of weight loss (14, 86).  Nevertheless, energy restriction lessens the 

burden on the liver by relieving it of chronic overnutrition and the associated 

nutrient toxicity that contributes to IHTG accumulation (92-95) and therefore 

remains the key recommendation for the management of NAFLD.  In a study 

from the Parks lab including 10 men and women with NAFLD, weight loss 

through energy restriction (~550 kcal/day) over six months resulted in a 

significant reduction in liver fat content measured via MRS (figure 1.2, (59, 60)).  

Many other studies examining impacts of dietary restrictions on liver fat have 

used noninvasive imaging methods (92, 96-99) while very few studies have 

reported direct histological outcomes (100, 101).  One pilot study examining the 
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effects of a low carbohydrate, ketogenic diet in five subjects with biopsy-proven 

NAFLD reported a reduction in steatosis, inflammation, and fibrosis after an 

average weight loss of 10.9% (101).  While these data are promising, dietary 

modification is only one method to offset energy balance.  Increasing energy 

expenditure through physical activity is another method that has been studied 

extensively in subjects with NAFLD. 

 

Increased physical activity through both aerobic and resistance training, with 

(102-105) or without (106-113) weight loss has reduced hepatic fat content.  

Recently, high intensity interval training (HIIT) has gained popularity owing to its 

effectiveness in the treatment of NAFLD (112, 114, 115), through reductions in 

liver fat (116), the time effectiveness, and safety of the exercise modality (117, 

118).  Recent work from our group showed similar reductions in IHTG when 

adults with obesity underwent HIIT or moderate intensity continuous training 

(MICT), matched for energy expenditure (~400 kcal/session) (108).  Subjects 

were randomized to complete four weeks of HIIT (n = 8) or MICT (n = 8) and liver 

fat, measured via MRS, was tightly matched between the training groups at 

baseline.  After training, a 20.1 ± 6.6% and 37.0 ± 12.4% reduction in IHTG was 

reported in MICT and HIIT groups, respectively (figure 1.3).  Overall, this study 

demonstrated the effectiveness of HIIT in reducing liver fat in subjects with 

obesity, independent of any significant reductions in body weight.   
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Lifestyle intervention programs in which both energy restriction and exercise are 

combined have demonstrated robust reductions in liver fat (90, 119-122) and a 

some studies have assessed histological changes (89, 90, 100, 119, 123-126).  

In lifestyle intervention studies with repeat liver biopsies, a weight loss of 5% 

reduced steatosis, 7-9% reduced inflammation and ballooning, while a 10% or 

greater weight loss exerted the greatest effect on fibrosis and resolved NASH in 

90% of subjects (74, 89).  While these are promising findings, studies with repeat 

liver biopsies examining the effect of lifestyle modifications, via energy restriction 

and exercise, on NASH regression are limited.  Thus, we will examine the impact 

of a lifestyle intervention – weight loss via energy restriction and exercise – on 

histological outcomes in individuals with NASH (Aim 1a, figure 1.8A).  Beyond 

liver fat and histology, both energy restriction and exercise have been shown to 

modulate key factors that characterize NAFLD – e.g., insulin sensitivity and lipid 

synthesis.  While the precise mechanisms by which energy restriction and 

exercise exert beneficial impacts on hepatic and peripheral outcomes is not well 

understood and is likely multifactorial.  Further investigation is needed to 

understand the combined effects of a rigorous lifestyle intervention on said 

factors associated with NAFLD. 

 

Lifestyle interventions on insulin sensitivity 

It is well established that insulin sensitivity declines in NAFLD (97, 127-129).  

Development of insulin resistance has been implicated in contributing to the 

pathogenesis of NAFLD and progression to more advance forms of the disease, 
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like NASH (130, 131).  Thus, treatments that improve insulin resistance may be 

effective therapies to manage NAFLD.  Lifestyle interventions have been tested 

in NAFLD patients to understand their impact on glucose control and insulin 

sensitivity.  Most of these studies report data from oral glucose tolerance tests 

(OGTT) and validated models like the homeostatic model assessment for insulin 

resistance (HOMA-IR) (132), while fewer treatment studies have utilized the gold 

standard, hyperinsulinemic-euglycemic clamp technique.  In regards to dietary 

interventions, many studies have reported a reduction in EGP with an improved 

ability to suppress EGP (92, 96, 133-135) while some (96-98, 134), but not all 

(92, 94), demonstrated increased glucose rate of disposal (Rd) or overall insulin 

sensitivity (as reported by glucose infusion rates).  These improvements in EGP 

and glucose disposal have been shown with (92, 96, 97, 133-135) and without 

(98) significant weight loss.  Interventions specifically testing exercise training 

have reported improvements in Rd with little change in absolute EGP or EGP 

suppression (109, 110, 136-141).  In general, these results are similar between 

aerobic and resistance training although one study in adolescent boys with 

obesity found resistance exercise improved Rd compared to sedentary controls 

while aerobic exercise did not (138).  Some (109, 110, 138) but not all (136, 137) 

of the reported improvements in Rd with exercise are independent of significant 

weight loss.  One study compared an exercise intervention with and without 

weight loss and observed similar improvements in Rd with no change in EGP in 

both groups (140).  Conversely, a similar study found exercise with or without 

weight loss improved both glucose disposal and EGP suppression (141).  Fewer 
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studies have examined the combined effects of diet and exercise programs on 

insulin sensitivity in NAFLD (94, 123, 140, 142, 143).  In a population of biopsy-

diagnosed NASH patients, a hypocaloric diet and daily aerobic exercise (40 

minutes) reduced liver disease severity (as reported by NAS) by 50% on average 

and insulin sensitivity via the HOMA-IR improved significantly (35% reduction) 

(123).  Another report found reduced IHTG and increased glucose infusion rate, 

suggesting improved glucose sensitivity, in subjects with T2D who underwent a 

two-week diet and exercise intervention (94).  A one-year intensive lifestyle 

intervention (body weight reduction ~10% via 500 kcal/day deficit and moderate 

physical activity ≥175 minutes/week) in subjects with obesity demonstrated a 

reduction in liver fat with concomitant increase in Rd (142).  In a similar study of 

subjects with T2D, six months of nutritional therapy (~500 kcal/day deficit) with 

encouragement to gradually increase moderate physical activity (40-60 

minutes/week) reduced EGP by 46% while Rd significantly increased by 35% 

(143).  In sum, these data support lifestyle interventions that include both energy 

restriction and exercise in improving both hepatic and peripheral insulin 

sensitivity in subjects with obesity and elevated liver fat.   

 

Lifestyle interventions on hepatic lipogenesis 

As described above, an interaction exists between insulin resistance and lipid 

synthesis in NAFLD.  Recent work demonstrated hepatic lipogenesis was 

inversely related to hepatic and whole-body insulin sensitivity while 

hyperglycemia and hyperinsulinemia were positively related to DNL (97).  These 



16 
 

results suggest hepatic DNL, a key contributor to hepatic fat content, is partially 

driven by factors associated with insulin resistance, namely elevated circulating 

glucose and insulin concentrations.  Utilizing stable isotope methods described 

above, the Parks lab (59, 60) and others (97) have measured DNL in individuals 

with NAFLD, before and after weight loss through energy restriction.  In the same 

subjects from figure 1.2 who underwent energy restriction for weight loss, our 

group found VLDL-TG DNL was reduced 57% (figure 1.4).  Another study found 

a 35% reduction in TG-rich lipoproteins (TRL)-TG DNL with the same amount of 

weight loss (97).  Overall, newly-made lipids contribute significantly to IHTG and 

their synthesis is stimulated in hyperinsulinemic and hyperglycemic states.  In 

subjects with NASH, we will quantify the changes in peripheral and hepatic 

nutrient kinetics to understand the effects of a lifestyle intervention on insulin 

sensitivity, lipid metabolism, and the relationships with liver histology (Aim 1b, 

figure 1.8B).   

 

Liver fat accumulation contributes to hepatic lipotoxicity (144, 145) through the 

accumulation of bioactive lipid species (144, 146-148).  For example, CERs and 

DAGs have received attention for their pro-inflammatory and pro-apoptotic 

effects in the liver (149-154) and other tissues (e.g., promoting insulin resistance) 

(155-158).   

 

Ceramides: Structure and metabolism 
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CERs are sphingolipids which consist of a sphingoid base (sphingosine) N-linked 

to a variety of fatty acyl groups (figure 1.5A).  Unlike DAGs, CERs are structural 

lipid molecules often found in membranes and are minor constituents of the 

cellular lipidome when compared to glycerolipids (62, 159).  CERs may be 

synthesized through multiple pathways – the three most common are the de 

novo, recycling, and salvage pathways.  De novo CER synthesis occurs in the 

endoplasmic reticulum (ER) with strong evidence to suggest the enzymes 

involved are located on the cytosolic leaflet (160).  The pathway, shown in figure 

1.5B, begins with the rate-limiting step catalyzed by serine palmitoyl transferase 

(SPT).  Through condensation of serine and palmitoyl coenzyme-A (CoA), 3-

keto-dihydrosphingosine is formed and then rapidly reduced to 

dihydrosphingosine (161).  From here, dihydrosphingosine is N-acylated by one 

of six ceramide synthases (CerS1-6, specific to fatty acid, figure 1.5C) to form 

dihydroceramides (dhCERs) which are desaturated to form CERs.  The enzymes 

within the CER biosynthetic pathway have also been located within the 

mitochondria, thus CERs may also be formed in other cellular organelles (162).  

The recycling pathway converts sphingomyelin to CER through 

sphingomyelinase and the salvage pathway reforms CER via a synthase from 

sphingosine (derived from more complex sphingolipids) (163).   

 

Many early studies used thin layer chromatography and the diacylglycerol kinase 

assay to quantify CERs, however within the past 20 years, mass detection and 

quantitation of CER has been accomplished with mass spectrometry (MS) (164, 
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165).  Most of the recent literature reporting CER content has employed liquid 

chromatography tandem MS (LC-MS/MS) multiple reaction monitoring (MRM) to 

quantify multiple CER species within a single run.  These methods have been 

used to measure CERs within a context of insulin resistance, T2D, 

cardiovascular disease, and NAFLD (156, 166-169).  While CER synthesis can 

occur in all organs, evidence from cell culture, animal models, and humans 

suggest the liver is a key site for CER production (63, 168, 170, 171).  Data 

support de novo synthesis as contributing the greatest amount of CER to the 

total liver pool, thus this pathway is a target for development of new 

pharmacologic compounds to reduce CER synthesis in humans (150).  Once 

formed in the ER, de novo CERs are transferred to the Golgi to serve as a 

substrate for more complex sphingolipids (172) or may be packed in very low-

density lipoproteins (VLDL) and secreted into circulation (173-175).  The amount 

of CER within the plasma compartment is predictive of metabolic disease risk 

including NAFLD/NASH (120, 148, 149, 155, 176-181).   

 

Ceramides in NAFLD and lifestyle interventions 

An increasing number of studies have highlighted the link between elevated 

plasma and liver CER concentrations and various measures of NAFLD/NASH 

and other metabolic and cardiovascular diseases (120, 148-150, 152, 153, 155, 

176-195).  In a recent report, serum CERs were measured in 104 humans across 

a spectrum of liver injury (healthy, NASH, and hepatitis B) (196).  Total circulating 

CERs were highest in subjects with NASH (irrespective of hepatitis B status) 
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although limited data on specific CER species were available.  In eight subjects 

undergoing bariatric surgery, total CER concentrations were compared between 

serum and liver tissue (197).  The relative amount of CERs were similar in the 

serum and liver but overall made up a very small portion of the lipidome.  

Unfortunately, this study did not report the content of individual CER species.  

Specific CER species have been characterized as lipotoxic (16:0, 18:0) (149-

153) while others appear protective (24:0) (191, 192) and ratios between these 

species (16:0/24:0 and 18:0/24:0) have recently been used to assess disease 

risk (195).   

 

Dietary (194, 198-202) and exercise (202-206) interventions have been applied 

in human populations to determine the impact on plasma CER content and 

composition.  In terms of dietary interventions, a subtrial of the PREDIMED 

studies showed a Mediterranean diet maintained CER concentrations over a year 

while participants with no dietary modifications increased plasma CER 

concentrations and risk of a cardiovascular event (198).  Alternatively, in subjects 

with obesity, overfeeding saturated fatty acids for three to eight weeks resulted in 

elevated IHTG and plasma CER concentrations while overfeeding unsaturated 

fat or carbohydrates did not (194, 201).  These findings were recently confirmed 

in healthy subjects during a short-term (two-week) study demonstrating a diet 

enriched with saturated fat (when compared to unsaturated fat) increased plasma 

CER and HOMA-IR (200).  Interestingly, calorie restriction following saturated fat 

overfeeding reduced the adverse metabolic effects of the diet, including a 
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reduction of CER concentrations to the level of control subjects (201).  Most 

(194, 198, 200-202), but not all (199, 202), studies support dietary modifications 

positively impacting plasma CERs through reductions in total CERs and specific 

lipotoxic species.  No studies in humans have investigated CER concentrations 

directly in liver tissue in a setting of dietary modifications although many studies 

in rodent models have (149, 167, 207).  

 

With regard to exercise interventions, most of the data available suggest an 

improvement in the CER plasma profile following training (i.e., less lipotoxic 

CER/reduced concentrations).  In individuals with obesity, a 12-week high 

intensity training program reduced body weight and increased insulin sensitivity 

with a simultaneous reduction in total plasma CER.  The change in CER was 

related to the change in insulin sensitivity – as CER went down, insulin sensitivity 

improved (204, 205).  A collection of work has investigated CER within skeletal 

muscle.  These studies reported an acute increase in skeletal muscle CER 

concentrations during or immediately following a bout of activity and a decrease 

in CER during recovery (203, 206).  The reduction in muscle CER may be one 

mechanism that supports the insulin sensitizing effect of exercise on skeletal 

muscle (203, 206, 208-213).  No studies have reported changes in liver CER 

content in a setting of exercise interventions. 

 

Only one study has tested the impact of a diet and exercise intervention (two-

month) in humans on plasma CER concentrations (214).  Unexpectedly, the 
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lifestyle changes resulted in increased plasma CERs.  One potential explanation 

for these results was the increase in physical activity.  However, the intervention 

also resulted in no changes in weight, HOMA-IR, or lipid profiles, and therefore 

the results may also be explained by poor program efficacy.  Strong evidence 

from patients who underwent gastric bypass surgery demonstrated significant 

reductions in plasma CER content that were related to the improvements in 

insulin sensitivity (185, 215, 216).  Indeed, the addition of exercise following 

surgery resulted in even greater reductions in CER concentrations (216).  Thus, 

we aim to test the therapeutic effects of a nine-month lifestyle intervention on 

reducing plasma CER concentrations and improving the composition of the CER 

lipidome in subjects with NASH (Aim 1b, figure 1.8B). 

 

Ceramide kinetics 

As already established, elevated plasma CER concentrations contribute to tissue 

dysfunction (149, 150, 176, 177, 182-187, 217) and are linked to NAFLD (150, 

194).  The kinetics of CER synthesis, which are not fully documented, may be 

more mechanistically related to cellular injury.  New methods for isotopic labeling 

of CER synthesis have recently been published (164, 218).  In cell culture and 

rodent models, kinetic studies using stable isotopes (168, 219-229) and non-

naturally occurring odd-chain analogs (230, 231) are available, and in humans, 

CER synthesis in skeletal muscle has been measured via isotope labeling (232-

234).   
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Much of the available literature measuring CER synthesis has focused on the 

incorporation of a tracer molecule into CER within cell culture lines (164).  

Studies have labeled CERs using polar molecules like serine (168, 223, 224, 

226, 227), labeled fatty acids like palmitate (222, 223, 225, 228, 229), and, in 

rare cases, sphingolipids containing labeled fatty acids (228).  Both labeled 

serine and palmitate can be incorporated into the backbone of the sphingolipid 

(figure 1.5A-B) through the SPT enzymatic reaction between palmitoyl-CoA and 

L-serine while palmitate can also be incorporated into the fatty acyl chain through 

CerS5 and CerS6 enzymes (figure 1.5C).  Labeled serine and palmitate have 

been used in rodent models (219-221) while only one study has used labeled 

water (D2O) to quantify CER kinetics in mice (219).  In humans, a U-13C palmitate 

infusion has been used to determine the in vivo incorporation of plasma FFA into 

intramyocellular CER (232).   

 

Our lab has recently labeled CER synthesis with a stable isotope of serine 

(13C3,
15N L-serine) in the serum, liver, and hepatic mitochondria of C57Bl/6 mice.  

Figure 1.6 demonstrates the de novo synthesis pathway of CER using a 13C3,
15N 

L-serine molecule.  The first and rate-limiting reaction, catalyzed by SPT, results 

in the loss of a CoA and a labeled CO2 resulting in a mass shift of three for the 

labeled CER species on the MS (e.g., CER 16:0 unlabeled: 538 m/z, labeled: 

541 m/z).  Figure 1.7 presents preliminary data in which serum, liver, and 

mitochondrial CER 16:0 was labeled with 13C3,
15N L-serine – dissolved in the 

drinking water.  This results in an isotopic enrichment (%E) of the CER molecules 
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extracted from the respective biological specimens between 1-3%E.  The same 

method will be used to quantify CER 16:0 kinetics in the current study.  The 

ability to measure ceramide kinetics in vivo may support the investigation of 

potential therapeutic targets aimed at altering CER pathway biology.  We will use 

stable isotopes to establish and optimize a method in mice to measure liver and 

mitochondrial CER synthesis (Aim 2a, figure 1.8C).  Furthermore, we aim to test 

whether liver CER synthesis plays a role in mitochondrial CER content and 

measure how an acute, high fat diet alters the synthesis and composition of 

newly-made CERs (Aim 2b, figure 1.8C). 
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SPECIFIC AIMS 

Aim 1a:  Determine the therapeutic effect of a lifestyle intervention (energy 

restriction and exercise) on histology in individuals with biopsy-proven 

NASH.  Subjects with histologically-confirmed NASH enter a nine-month lifestyle 

intervention aimed at weight loss through energy restriction and HIIT.  Subjects 

undergo liver biopsies before and after the intervention to grade for severity of 

disease.  Changes in liver histology are compared to subjects receiving standard 

care.  We hypothesize the lifestyle intervention will reduce histological features of 

NASH including steatosis, hepatocellular ballooning, lobular inflammation, and 

fibrosis.  

Aim 1b:  Using stable isotopes, quantify the changes in peripheral nutrient 

disposal and hepatic nutrient flux to understand the impact on insulin 

sensitivity, plasma CERs, and the relationship with liver histology.  The 

same subjects from aim 1a undergo extensive metabolic testing pre- and post-

intervention to determine the rates of nutrient production and clearance (glucose 

and FFA) during fasting and insulin-stimulated conditions.  Plasma CERs are 

measured to investigate the impact of a lifestyle intervention on species 

composition and content.  We hypothesize, when compared to standard care, 

active treatment will improve hepatic and peripheral glucose metabolism, lipid 

metabolism – FFA suppression and DNL, and plasma CER profiles.  These 

findings will be related to the changes in liver histology.  
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Aim 2a:  Using an L-serine stable isotope, quantitate the synthesis of 

newly-made CER in liver and hepatic mitochondria in male and female 

mice.  Control diet (20% protein, 70% carbohydrate, 10% fat) fed male and 

female C57Bl/6 consume 13C3,15N L-serine, dissolved in the drinking water, to 

labeled newly-made liver and hepatic mitochondria CER.  Labeled CER is 

measured using targeted high performance (HP)LC-MS/MS MRM analysis.  

While this aim is designed for method development and optimization, we 

hypothesize the synthesis of liver CER will be related to mitochondrial CER 

content.  

Aim 2b:  Determine if an acute, high fat diet alters the composition or 

synthesis of hepatic and mitochondrial CERs in male and female mice.  The 

composition and turnover of liver and mitochondrial CER will be measured in 

male and female C57Bl/6 mice fed a high fat diet for two weeks (20% protein, 

20% carbohydrate, 60% fat; sucrose content matched across aim 2a and 2b 

diets).  We hypothesize that an acute, high fat diet will shift the distribution of the 

CER profile to reflect the fatty acid composition of the diet and increase the 

synthesis of CER species when compared to control diet fed mice. 
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Impact and innovation  

This project 1- examines the effects of lifestyle intervention on histologic features 

in a population with NASH, 2- in the same subjects, quantifies nutrient flux and 

plasma CERs for direct comparisons with liver health changes, 3- optimizes a 

method to quantify the synthesis of newly-made liver and mitochondrial CERs, 

and 4- measures the impact of dietary fat on altering CER synthesis in vivo.  The 

experiments described in this proposal are translational in nature, technically and 

conceptually innovative, and will produce results that will be applicable to multiple 

disciplines.   

With specific regard to aim 1, the work proposed here translates the findings from 

multiple animal and human studies to an intervention in humans with direct 

measurements of liver histology before and after treatment.  The results from our 

lifestyle intervention study will contribute to the development of future therapies 

to treat and prevent NASH.  Additionally, it will advance our understanding of the 

role of liver energy partitioning in improving liver health and function.  Together, 

these will support the therapeutic advancement of treatments for NASH and 

other metabolic diseases.   

 

In aim 2, for the first time, liver and mitochondrial CER turnover will be measured 

in vivo.  We will optimize a novel method to track CER synthesis and test these 

methods in an acute setting of overnutrition to determine the impact on CER 

turnover and composition.  An overwhelming amount of evidence supports CERs 

in contributing to disease and the methods developed here will provide a better 
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understanding of CER flux in vivo.  For future therapies aimed at modulating 

CER concentrations, the ability to measure and alter metabolic flux through the 

CER synthesis pathways represents the first step to achieve this goal.  This 

proposal will advance the understanding of liver and mitochondrial CER 

synthesis and support the use of this method in future investigations, both clinical 

and preclinical, aimed at understanding the impact of CERs on metabolic 

diseases.  In sum, this project is both highly impactful – through the translational 

nature of the experiments – and technically and conceptually innovative – 

through the development and use of methodology to measure newly-made CER.  



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURES  



29 
 

Figure 1.1.  Integration of hepatic metabolic pathways  
 

 
 

Abbreviations:  ACC, acetyl-CoA carboxylase; ACL, ATP citrate lyase; ATGL, 
adipose triglyceride lipase, β-Ox, beta oxidation; CERT, ceramide transfer 
protein; CD36, cluster of differentiation 36 (fatty acid transporter); CoA, 
coenzyme A; DGAT1/2, diacylglycerol acyltransferase enzyme; DNL, de novo 
lipogenesis; ELOV, elongases; SCD, stearoyl CoA-desaturase; ETC, electron 
transport chain; FADH2, flavin adenine dinucleotide; FASN, fatty acid synthase 
complex; FK, fructose kinase; F1P ALD, fructose 1-phosphatase aldolase; 
F1,6BPT, fructose 1,6 bisphosphatase; GNG, gluconeogenesis; G6PT, glucose 6 
phosphatase; HK, hexokinase; MTP,  microsomal TG transfer protein; NADH, 
nicotinamide adenine dinucleotide; NEFA, non-esterified fatty acids; PEPCK, 
phosphoenoyl pyruvate carboxykinase; PFK, phosphofructokinase; PK, pyruvate 
kinase; TCA, tricarboxylic acid cycle; TG, triglyceride; VLDL, very low density 
lipoproteins. 
Not pictured:  Glucose activation of carbohydrate response element binding 
protein (ChREBP) and insulin activation of sterol regulatory element-binding 
protein 1 (SREBP1c).  
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Figure 1.2.  Reductions in liver fat with energy restriction 
 

 
 

EJP unpublished data from (59, 60). 
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Figure 1.3.  Reductions in liver fat with HIIT and MICT in adults with obesity 
 

 
 

Data adapted from (108). 
Data are mean ± SEM. * P < 0.05  
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Figure 1.4.  Reductions in VLDL-TG DNL with diet 
 

 
 

EJP unpublished data from (59, 60).  
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Figure 1.5.  16:0 CER (A), a product of de novo CER synthesis (B), and (C) acyl 
chain length specific to the CERS1-6 
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Figure 1.6.  De novo CER synthesis with 13C3,15N L-serine 
 

 
 

Abbreviations: SPT, Serine-palmitoyl transferase; KDHR, 3-
ketodihydrosphingosine reductase; CERS, ceramide synthase 1-6 – fatty acyl 
chain length listed in figure 1.5C; DES, dihydroceramide desaturase  
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Figure 1.7.  Serine-labeled serum, liver, and mitochondrial 16:0 CER 
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Figure 1.8.  Schematic illustrating specific aims 1 and 2 
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Abbreviations: CER, ceramide; EGP, endogenous glucose production; FFA, free 
fatty acids; IHTG, intrahepatic triglyceride; NASH, nonalcoholic steatohepatitis 
Rd, rate of glucose disposal. 
 
A: Aim 1a - Impacts of lifestyle intervention (weight loss via energy restriction and 

exercise) on histological outcomes in subjects with NASH. 
B: Aim 1b - Changes in nutrient flux – hepatic and peripheral – on insulin 

sensitivity and plasma ceramides in relation to the histological changes 
observed from aim 1a.  

C: Aim 2a - Tracing the synthesis of ceramides in mouse liver and mitochondria 
using a labeled L-serine stable isotope, and Aim 2b - assessing the impacts of 
an acute, high fat diet on the composition and turnover of ceramides. 

.  
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CHAPTER II – High-throughput LC-MS method to investigate postprandial 

lipemia:  Considerations for future precision nutrition research  
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ABSTRACT  
 

Elevated postprandial lipemia is an independent risk factor for cardiovascular 

disease, yet methods to quantitate post-meal handling of dietary lipids in humans 

are limited.  This study tested a new method to track dietary lipid appearance 

using a stable isotope tracer (2H11-oleate) in liquid meals containing three levels 

of fat (low-LF, 15 g; moderate-MF, 30 g; high-HF, 60 g).  Meals were fed to 12 

healthy men (mean ± SD, age 31.3 ± 9.2y, BMI 24.5 ± 1.9 kg/m2) during four 

randomized study visits; the HF meal was administered twice for reproducibility.  

Blood was collected over eight hours postprandially, TG-rich lipoproteins (TRL) 

and particles with a Svedberg flotation rate >400 (Sf>400, n = 8) were isolated by 

ultracentrifugation, and labeling of two TG species (54:3 and 52:2) quantified by 

LC-MS.  Total plasma TRL-TG concentrations were three-fold greater than 

Sf>400-TG.  Both Sf>400- and TRL-TG 54:3 were present at higher 

concentrations than 52:2 and singly-labeled TG concentrations were higher than 

doubly-labeled.  Further, TG 54:3 and the singly-labeled molecules demonstrated 

higher plasma absolute entry rates differing significantly across fat levels within a 

single TG species (P < 0.01).  Calculation of fractional entry showed no 

significant differences in label handling supporting the utility of either TG species 

for appearance rate calculations.  These data demonstrate the utility of labeling 

research meals with stable isotopes to investigate human postprandial lipemia 

while simultaneously highlighting the importance of examining individual 

responses.  Meal type and timing, control of pre-study activities, and effects of 

sex on outcomes should match the research goals.  The method, optimized here, 
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will be beneficial to conduct basic science research in precision nutrition and 

clinical drug development.  
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NEW & NOTEWORTHY 

A novel method to test human intestinal lipid handling using stable isotope 

labeling is presented and, for the first time, plasma appearance and lipid turnover 

was quantified in 12 healthy men following meals with varying amounts of fat.  

The method can be applied to studies in precision nutrition characterizing 

individual response to support basic science research or drug development.  This 

report discusses key questions for consideration in precision nutrition that were 

highlighted by the data  
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INTRODUCTION 

Elevated postprandial lipemia is an independent risk factor for the development 

of cardiovascular disease and related metabolic conditions (i.e., metabolic 

syndrome, NAFLD, type 2 diabetes) (1-4).  As a result, numerous studies have 

focused on investigating chylomicron production and turnover in plasma to 

understand its contribution to hyperlipidemia (5).  Seminal work by Grundy et al 

measured postprandial chylomicron fractional clearance rates (FCRs) in healthy 

and hyperlipidemic men who underwent an enteral infusion of a high-fat lipid 

emulsion (6).  Chylomicron FCRs were calculated based on the assumption that 

the rates of appearance of TG in chylomicron particles in plasma were equivalent 

to the duodenal lipid infusion rates, and by extension, the results were based on 

the assumption that enterocyte lipid handling was similar between 

normolipidemic and hyperlipidemic individuals.  However, methods utilizing direct 

intestinal tissue sampling during bariatric and other surgeries, followed by gene 

expression studies, have supported greater expression of genes related to 

chylomicron assembly and secretion in individuals who were obese and insulin-

resistant (7, 8).  More recent in vivo methods quantifying postprandial 

chylomicron apolipoprotein B48 (apoB48) production have utilized protocols of 

continuous feeding of small meals every 30 minutes to one hour (h), over 8-15h 

in duration, with simultaneous IV infusion of the stable isotope 2H3-leucine (5, 9-

11).  Such oral feeding regimens result in steady-state production of chylomicron 

particles that are smaller than intestinal particles produced when fat is fed in a 

bolus (i.e. similar to regular intake of meals containing fat).  Nonetheless, isotopic 
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apoB48 labeling has been an important innovation revealing elevations in particle 

production rates, as well as delayed clearance of postprandial chylomicrons, in 

individuals who are insulin resistant (5, 9).  These apoB48 data suggest that 

insulin resistance may also be associated with altered enterocyte lipid handling 

(less lipid storage) and highlight the need for better methods to measure 

intestinal lipid processing in vivo in humans.  Recently, a comprehensive report 

highlighted the high variability between healthy subjects with regard to their 

postprandial lipemic responses to a standardized meal (12).  Similar subject 

variability has been reported in clinical trials investigating weight loss through 

dietary interventions where wide ranges of weight change were observed from 25 

kg body weight lost up to 5 kg body weight gained (13-15).  These observations 

have prompted a recent shift in the focus of nutritional research to place greater 

emphasis on understanding variations in individual response (16) driven by both 

genetic and environmental factors (e.g., gut microbiome, glycemic profile, sleep 

status, activity level, meal timing) (12, 17, 18).  Future postprandial studies 

focusing on lipid metabolism require methods to quantify the entry of dietary fat 

into the blood.  Such quantitation would be also clinically relevant because a 

number of important research investigations currently utilize specialized diets to 

bring about weight loss and treat seizure disorders (19) or Alzheimer’s disease 

(20), study drugs in development to target intestinal lipid handling (21-27), and 

aim to understand the effects of varying the timing of food intake (28, 29). 
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To track the postprandial presence of meal lipid in blood, we (30-34) and others 

(35, 36) have added stable isotopes of fat to meals that were of moderate fat 

content.  These studies have shown that between eating occasions, fat from a 

previous meal is stored in the enterocyte and is mobilized to support chylomicron 

synthesis during the next meal - i.e., fat from dinner is stored overnight and 

released at the onset of breakfast the next morning, and can continue to be 

secreted for as long as 16h after original consumption (30, 32, 37).  Although it is 

known that monounsaturated fatty acids are highly absorbable (98-99%) (38), the 

duration of time to full absorption can be surprisingly long.  These effects can 

confound measurements of meal-lipid absorption and likely underscore the 

observation of multiple peaks of postprandial lipemia in plasma after a 

standardized meal (39).  Further, the quantity of lipid stored in the enterocyte can 

vary between individuals based on the meals consumed and metabolic health 

status of the subject(s), thus contributing to interindividual variations observed in 

feeding studies (7, 8).  Here, we tested a strategy for quantifying plasma 

chylomicron appearance in vivo by labeling meal fat with 2H11-oleate and 

investigating the effects of meals with varying fat contents (low, LF; medium, MF; 

and high, HF).  We compared two different TG species (54:3 and 52:2) becoming 

labeled within the 1) TG-rich lipoprotein (TRL) fraction and 2) lipoprotein particles 

with a Svedberg flotation rate (Sf) of >400, isolated using additional 

ultracentrifugation steps (40).  These effects were investigated to allow future 

research to employ the most practical method that best quantifies the intestinal 

lipid entry into circulation, while optimizing protocol efficiency for larger studies in 
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precision nutrition (16).  Active areas of research that may benefit from this 

methodology include the influence of intestinal hormones on lipid transport and 

insulin sensitivity (e.g., GIP, GLP) (21, 22, 27), discovery of an axis of gut-brain 

communication that may impact bile acids, endocannabinoids, and satiety (41), 

and the potential for drug development in the field of obesity and NAFLD (21, 23-

27).  
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METHODS 

Protocol 

The project's research protocol was approved by the University of Texas 

Southwestern Medical Center (UTSW IRB#: STU 102011001) and the study was 

conducted according to the principles expressed in the Declaration of Helsinki.  

This was a four-period, crossover study and given the level of early development 

of this technology (phase I use of synthesized 2H11-oleate), only healthy male 

participants were recruited.  Inclusion criteria included male sex, age 18-40y and 

healthy, based on medical history completed at a screening visit, physical 

examination, vital signs, biochemical tests, creatinine clearance >80 mL/min, and 

no use of nicotine containing products.  Each participant agreed to refrain from 

consuming alcohol for the duration of the study.  Exclusion criteria included a 

history of metabolic illness or disease, clinically-significant abnormalities, 

excessive alcohol or caffeine use, recent surgical procedures, or allergies to the 

ingredients in the meal tests. 

 

Study design 

As shown in figure 2.1A, each of the four study visits consisted of a 24h, 

inpatient stay at the Clinical Translational Research Center (CTRC) at UTSW 

Medical Center.  At 6:00 PM the subject was fed a low-fat dinner of their 

preference, chosen ahead of time from a standard list of menu items (e.g., baked 

chicken, salad, pita chips, jello).  This same low-fat meal was fed the night before 

each of the four meal tests and averaged 1,067 ± 112 kcal, 23.4 % of energy 
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(%E) from protein, 57.9 %E carbohydrate, and 18.7 %E fat and provided 

approximately 40% of each subjects’ daily energy needs (table 2.1).  The 

participants slept overnight in the unit and the next morning arose at 6:00 AM to 

wash up, after this, an IV line was placed in an antecubital vein for blood 

drawing.  Indirect calorimetry was performed in the fasted state using the hooded 

mode and a metabolic cart (VMax Encore, Viasys Healthcare, San Diego, CA) 

and energy expenditure, fat, and glucose oxidation were calculated using the 

standard equations of Jequier (42).  At 8:00 AM, the participant received one of 

three liquid test meals.  Blood samples were collected at -10 and -5 min., and at 

0.5h, 1h, 1h 20 min., 1h 40 min., 2h, 2.5h, 3h, 4h, 6h, and 8h after the meal 

(figure 2.1A).  Whole blood was collected into chilled EDTA tubes and the 

samples centrifuged at 4°C.  Plasma was transferred to an Eppendorf tube 

containing 0.5 mg of paraoxon to prevent in vitro lipolysis (43).  An aliquot was 

immediately processed for lipoprotein isolation and other aliquots were stored at -

80°C until further analysis.  At noon, indirect calorimetry was again performed to 

measure fed-state substrate oxidation.  Body composition was measured by 

DEXA (Hologic Discovery W, QDR series; Bedford, MA). 

 

Meal tests  

Each participant completed four meal tests on four occasions, separated by a 

washout period of two weeks (figure 2.1A).  The tests were as follows:  LF (15g 

total fat in the meal), MF (30g), and HF (60g), with the HF test being 

administered twice in sequential order to assess reproducibility.  The LF, MF, and 
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HF tests were administered in a randomized order and table 2.1 presents the 

composition of the meals.  The stable isotope, 2H11-oleate (figure 2.1B), was 

added to the liquid meals with the goal to achieve a consistent ~17% enrichment 

of total meal oleic acid.  An Ensure Plus® shake (350 kcal, 10 mg cholesterol, 13 

g protein, 49 g carbohydrate, 11 g fat) was used as the base ingredient and 

differing quantities of heavy cream, corn oil, and canola oil were added to 

maintain a consistent fatty acid composition of 14.4% saturated, 50.5% 

monounsaturated, and 35.0% polyunsaturated fatty acids.  The three primary 

fatty acids in the shake (palmitate, linoleate, and oleate) made up 7.8%, 24.0%, 

and 44.6% of the total fatty acids, respectively.  The label and other fats were 

warmed briefly to achieve melting, and all ingredients were blended on high 

speed for eight minutes to achieve a homogenous solution.  The meal was 

presented to the participants within five minutes of preparation and the 

participant was instructed to complete meal consumption within 15 minutes.  At 

the end of the meal the participant drank a four oz glass of water that had been 

used to rinse the container holding the liquid meal. 

 

Laboratory analysis  

Immediately following the completion of the daily testing protocol, aliquots of the 

plasma underwent ultracentrifugation (1.3 x 108 g at 15°C) in a Beckman 50.3 

rotor to isolate TRL as described previously (44).  For eight participants, large 

lipoproteins containing mainly chylomicrons and some very large VLDL were 

isolated with a Svedberg flotation rate (Sf) of >400 (40).  Because isolation of 
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Sf>400 fraction is associated with greater time and effort (two additional days of 

dialysis followed by two separate ultracentrifugation spins), the isolation was 

completed in eight subjects only.  Concentrations of TG in plasma, TRL, and 

Sf>400 aliquots were quantified by enzymatic assay (Wako #994-02891, CV 

11.2%, Mountain View, CA).  Other aliquots from the TRL and Sf>400 fractions 

were used for liquid chromatography – multiple reaction monitoring (LC-MRM) 

analysis of intact, individual TG, as described in detail previously (45).  Briefly, 40 

µl of sample (TRL or Sf>400 fractions) was diluted with 180 µl of phosphate 

buffer solution and 20 µl of internal standard then underwent protein precipitation 

(350 µl of 3:1 pentanol:methanol).  Following centrifugation, 10 µl of the 

supernatant was diluted (90 µl of 3:1 pentanol:methanol) and then 1 µl was 

injected into a Sciex 5000 triple quadrupole mass spectrometer (SCIEX, 

Framingham, MA, USA) coupled with a Waters Acquity UPLC system (Waters, 

Milford, MA, USA) for LC-MRM analysis.  An Acquity UPLC BEH C18 column 

(2.1 x 100mm, 1.7µm, Waters, MA, USA, Part # 186002350) was used for 

chromatographic separation of the analytes. 

 

Calculations and statistical analysis 

Given that the 2H11-oleate label was added to the meals, 54:3 and 52:2 were 

chosen as representative TG species to track the entry of dietary label into the 

plasma compartment.  Figure 2.1C shows the molecular structure of these two 

TG species, triolein (54:3) and palmitate-diolein (52:2, which contains 

18:1/16:0/18:1).  Concentrations obtained during the postprandial period between 
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one and three hours were used for production rate calculations because after this 

time, recycling of the label would likely occur through the liver resulting in plasma 

lipoproteins containing TG made from two different precursor pools (the intestine 

and the liver) (30, 46-48).  Plasma fractional entry rates of dietary fat (denoted k) 

were calculated as follows: 

k = slope/(concentration at 3h – concentration at 1h)         (equation 2.1) 

The slope of the increase in concentrations of labeled 54:3 and 52:2 in TRL 

between 1h and 3h after meal consumption was divided by the absolute 

concentration rise between 1h and 3h (45).  Calculations were performed using 

Microsoft Excel 2013 and statistics performed using StatView®, 5.0.1 software 

(2008) and R, 3.5.1 (2018) (49).  One-way, repeated measures ANOVAs were 

completed using the ezANOVA function (ez package) in R when comparing 

absolute entry rates and k across fat levels.  Post-hoc pairwise t-tests with 

Bonferroni adjustments were completed when significance (alpha level < 0.05) 

was achieved.  Paired, two-tailed t-tests were used when comparing means of 

independent observations.  Data are presented as mean ± SD for static variables 

(body weights, age) and as mean ± SEM for values measured over time.  
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RESULTS 

All participants (n = 12) were healthy men with the mean (± SD) ages of 31.3 ± 

9.2 y, BMI of 24.5 ± 1.9 kg/m2, and body weights of 75.6 ± 6.6 kg.  Weight was 

stable during the two months of subject participation – remaining within 2-3% of 

baseline body weight.  All subjects had normal fasting concentrations of plasma 

glucose (81 ± 8 mg/dL), TG (82 ± 35 mg/dL), and total cholesterol (162 ± 27 

mg/dL).  No differences were observed between fasting and fed levels of 

substrate oxidation for any of the tests (data not shown).  Reproducibility of the 

HF tests revealed that no differences were detected in absolute area-under-the-

curve (AUC) of TG concentrations for either TRL or Sf>400 lipoproteins 

(supplementary fig. 2.1A & 2.1B, bar graphs).  Therefore, for further analysis of 

the effect of the quantity of meal fat on the study outcomes, data from the HF test 

completed on a date closest to the dates of the LF and MF tests were used for 

subsequent analysis.  The mean concentrations of total TRL-TG and Sf>400-TG 

for the three meal tests are presented in figure 2.2.  The LF meal (15 g of fat) is 

represented by the light blue line, the MF meal (30 g) by the darker blue line, and 

the HF meal (60 g) by the black line.  For all fat levels, the TG concentrations in 

either TRL or Sf>400 lipoproteins peaked at approximately three hours following 

meal consumption.  Although the ANOVA across meals demonstrated an 

increase in TRL-TG AUC (figure 2.2A, bar graph), no significant post-hoc 

differences in AUC of the TRL-TG concentrations were observed between meal 

types.  A high variability between subject responses was observed as shown in 

figures 2.3 and 2.4 (discussed below).  Interestingly, when examining the mean 
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data for the LF and MF meals (figure 2.2A), the nadirs in average TRL-TG 

concentrations occurring at hour eight were lower than the fasting levels.  For 

large chylomicron particles (Sf>400, figure 2.2B, bar graph), a significant 

difference in AUC was observed between LF and MF (P < 0.01) and between LF 

and HF (P < 0.01).  The AUCs for Sf>400-TG concentrations of the MF and HF 

meals were similar. 

 

Individual responses 

Unique patterns in TRL-TG and Sf>400-TG concentrations were observed for 

each subject, and upon close inspection of figures 2.3 and 2.4, it is clear no one 

subject exhibited a TG pattern that mirrored the mean pattern of the group.  The 

stars on figures 2.3A and 2.3B highlight the distinct patterns observed for a 

single subject (#9) both in the the dramatic peak in total TRL-TG concentrations 

observed following the MF meal (figure 2.3B) and the sawtooth pattern of label 

appearance (figure 2.3A), suggesting either intermittent gastric emptying 

following the LF meal, or a pulsatile rate of production or clearance of 

chylomicrons.  Similar variability was observed in the Sf>400-TG (figure 2.4A); 

for example, following the LF meal, one subject (#7) had an AUC that was two 

times that of the next greatest subject (figure 2.4A, bar graph) and a different 

individual (#11) had a substantially larger peak in Sf>400-TG than any other 

subject following the HF meal (figure 2.4C).  These data highlight the importance 

of analyzing both the mean of the group and individual subject data, and the 
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significant impact differences in lipid clearance can have four to eight hours after 

a meal. 

 

Singly- and doubly-labeled TG  

Two representative TRL- and Sf>400-TG species (54:3 and 52:2, figure 2.1C) 

were analyzed by LC-MRM to track the dietary label into the plasma 

compartment.  The concentrations of doubly-labeled and singly-labeled species 

of both TRL- and Sf>400-TG 54:3 and 52:2 are presented in figures 2.5 and 2.6, 

respectively.  A number of independent observations based on these data 

underscore the internal validity of the method.  First, as shown in all graphs in 

figure 2.5, TRL-TG 52:2 (grey line) was found in smaller concentrations than 

TRL-TG 54:3 (black line).  This reflects the meal fatty acid composition which 

averaged 44.6% oleic acid and 7.8% palmitic acid; thus, a large amount of oleate 

was available to support 54:3 synthesis and only a small amount of palmitate 

was available to support 52:2 synthesis.  Second, the doubly-labeled (i.e., two 

labeled fatty acid moieties incorporated into the molecule) TRL-TG species 

(figure 2.5F-H, note y-axis) were three-times lower in concentration than the 

singly-labeled species (figure 2.5A-C, compare y-axis).  This results from the 

fact that at any given enterocyte label precursor enrichment, the probability of 

making a doubly-labeled species is lower than the probability of making a singly-

labeled molecule.  Third, with regard to the Sf>400 fraction (figure 2.6), similar to 

past studies (30), the concentration of total Sf>400-TG observed here was less 

than 1/3 that of the total TG in the TRL fraction (figure 2.5) highlighting the 
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contribution of remnant lipoproteins to TRL.  Lastly, similar to TRL-TG, across all 

levels of meal fat, the concentration of Sf>400 TG 54:3 (figure 2.6, black lines) 

was two-fold greater than 52:2 (figure 2.6, grey lines) and doubly-labeled 

species (figure 2.6F-H) were three-times lower in concentration than the singly-

labeled species (figure 2.6A-C).  With regard to the two HF meals, similar 

observations in both the quantity of 54:3 versus 52:2 and concentration of 

doubly-labeled versus singly labeled TRL- and Sf>400-TG are shown in 

supplementary figures 2.2 and 2.3.  These data support a high level of 

reproducibility between HF test meals in these subjects. 

 

Fractional entry rates  

We used the slope of the early rise in labeled TRL-TG entering the plasma to 

estimate early production of 54:3 and 52:2 both doubly- and singly-labeled 

across meal fat level (a single example of this was introduced in a previous 

preliminary report (43)).  The linear rises between one to three hours in TRL-TG 

label concentrations were plotted and a linear regression model generated.  

Given the accuracy of the model fits (r2=0.95 – 0.98, table 2.2), the absolute 

turnover rates were calculated.  The slopes of the early rise in TRL-TG label 

entering the plasma represents the actions of intestinal lipid secretion and 

clearance.  At early timepoints, before insulin would have had its effect to 

increase clearance (56), this slope predominantly represents the intestinal 

secretion rate.  As expected, given the higher concentration of 54:3, the absolute 

entry rates (in µmol/L/h) were larger than 52:2 (table 2.2, horizontal 
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comparisons).  Similarly, doubly-labeled molecules were found in lower 

concentrations than the singly-labeled molecules (figures 2.5 & 2.6) and this 

resulted in higher observed absolute entry rates (µmol/L/h) for the TG species 

containing one labeled oleic acid.  Further, within a TG species, absolute entry 

rate was significantly different across fat levels, increasing as quantity of fat 

increased (table 2.2, vertical comparisons).  The fractional entry rate (k, the 

proportion of the pool that is becoming labeled in units of pools/h) of the meal 

lipid in TRL was then calculated by dividing the slope (µmol/L/h) by the change in 

TRL concentration (µmol/L) over time (one to three hours) for both doubly- and 

singly-labeled TRL-TG 54:3 and 52:2 (see equation 2.1). 

 

We would not expect any differences in the entry rates (pools/hr) of TG 

molecules based on species (54:3 and 52:2) or number of labels integrated into a 

TG molecule as this would suggest an inconsistency in the export of the labeled 

molecules into the plasma (i.e., discrimination in intestinal handling of label).  

Indeed, no differences in k were observed between singly-labeled or doubly-

labeled 52:2 and 54:3 at each level of fat.  Further, no significant differences 

were found when k was compared across fat levels within a specific TG 

molecule.  This means either TRL-TG species (52:2 or 54:3) may be used for the 

calculations of production rate.  The same analysis was completed for the Sf>400 

fraction and similar observations were noted (table 2.3).  First, absolute entry 

rates are higher in 54:3 when compared to 52:2 and in singly-labeled TG when 

compared to doubly-labeled (horizontal comparison within the same level of fat).  
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Second, for singly- and doubly-labeled 52:2, a similar significant trend in 

increasing absolute entry rates were found across meal fat levels (vertical 

comparison within a TG species with the same number of labels).  For singly-

labeled 54:3, entry rates were significantly different as meal fat increased and 

trended towards significance for doubly-labeled 54:3.  Third, fractional entry rate 

(k) was not different between TG species, number or labels, or amount of fat. 
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DISCUSSION 

This is the first study to utilize meal-lipid labeling in vivo to quantify newly-made, 

intact TG in lipoproteins using LC-MRM.  Further, the present method was tested 

during postprandial meal tests with differing fat contents and used a stable 

isotope tracer, homogenized into test meals, to unequivocally identify meal fat 

present in plasma chylomicrons (50).  In the area of nutritional research, a recent 

recommendation (51) has been made highlighting the concept that to investigate 

the physiologic impact of any food component, it should be tested using various 

“doses” of the component – similar to pharmacological investigations of drugs in 

development.  Thus, the present project investigated labeling of dietary fat across 

test meals containing low, medium, and high fat contents to determine how 

increasing meal fat altered post-meal lipid handling in healthy men. 

 

The quantity of fat fed in the meal tests 

The seminal work of Dubois and colleagues was crucial to understanding how 

the greater the quantity of fat fed in meals, the more TG are found in plasma 

chylomicrons and TRL particles (46, 48).  In this well-designed study, without the 

addition of an isotope to the test meals, the data could not be used to distinguish 

between endogenous and dietary lipid contributions to postprandial lipemia.  By 

comparing meals of increasing fat content, from 0-50 g/meal, Dubois 

demonstrated that 15 g of dietary fat may be the lower threshold needed to 

stimulate lipid absorption in healthy humans (46).  Data from the LF meal in the 

current study, which also provided 15 g of fat, exhibited an irregular pattern of 
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rise in blood lipids (figure 2.2A) suggesting that gastric emptying was 

intermittent.  Indeed, data from one subject’s TRL-TG concentrations (denoted by 

a star on figure 2.3A) demonstrated a sawtooth pattern following the LF meal.  

These data raise the question of how the effects of gastric emptying, slower or 

faster based on the fat content and meal type, impact the observed appearance 

of blood lipid.  The AUC of the MF and HF meals (figure 2.2, bar graphs) were 

similar suggesting a certain threshold of fat fed in a liquid bolus may decrease 

gastric emptying, which would slow absorption, and promote a more efficient 

clearance of TG from the blood.  Whether this holds true for solid meals requires 

further investigation.  These observations demonstrate the importance of feeding 

enough fat to accurately measure label absorption in studies such as this.  

Further, the small rise in concentrations of the labeled 54:3 and 52:2 after LF 

feeding (figures 2.5 & 2.6) made it more challenging to model the slopes of their 

appearances, resulting in less accuracy in the calculated entry rates of the 

labeled TG species, and their doubly- and singly-labeled forms (tables 2.2 & 

2.3).  The Sf>400 lipoprotein responses to the MF (30 g) meal observed here 

were similar to the chylomicron-TG responses observed with the 31 g fat 

challenge of Dubois et al (46, 48).  These data suggest that future postprandial 

lipemia research should include at least 30 g of fat in the test meals.  One goal of 

this study was to optimize this methodology for future, high-throughput 

investigations of postprandial metabolism and disease risk which can be utilized 

to develop targeted nutrition therapies for diverse populations.  Presented next is 
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a discussion of how these findings can inform future precision nutrition research.  

These concepts are also presented in table 2.4. 

 

Meal type and timing 

The current study utilized a liquid meal, which is advocated to reduce significant 

confounding results of delayed gastric emptying (34, 52).  On the other hand, the 

use of solid meals offers greater generalizability as most humans consume 

meals in solid form.  Whether in liquid or solid form, mixed meals containing 

carbohydrate, fat, and protein provide a more physiological measurement 

compared to single nutrient challenge tests (an oral glucose tolerance test (12)).  

With regard to the length of data collection, feeding a solid meal may require 

longer postprandial sampling.  Furthermore, feeding two meals in succession 

may be necessary to fully characterize the postprandial response (32).  

Historically, data have been collected out to eight hours post-meal (53) keeping 

in mind that late events in the postprandial phase will be strongly influenced by 

lipid clearance from plasma.  Similar to Dubois’ observations of late (seven 

hours) postprandial TRL-TG concentrations falling below the fasting values after 

a moderate 31 g fat challenge (46, 48), the nadir in TRL-TG concentrations in the 

present study occurred eight hours after the LF and MF meal tests were 

consumed (figure 2.2A).  This observation is thought to be due to a delayed 

upregulation of lipoprotein lipase by insulin following a meal containing 

carbohydrate (54-56).  Another key question that requires considerable thought 

when designing nutritional studies is the timing of the meal – whether the meal 
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should be fed early in the morning (i.e., breakfast) or later in the day (lunch or 

dinner).  This, along with the fasting status of the subject, will impact the 

appearance of label in the blood and the metabolic fates of the macronutrients 

consumed.  For example, multiple reports have demonstrated nocturnal feeding 

can contribute to metabolic dyshomeostasis (57-63), which may be a target of 

future research utilizing the present method.  The importance of distribution of 

macronutrients consumed across the day is also highlighted by these data.  It is 

likely that a standardized lunch following a HF breakfast will result in greater 

lipemia because, 1) lipid from the breakfast has not cleared from the blood yet 

(figure 2.2) and 2) the second meal effect will cause intestinally-stored fat from 

breakfast to be released upon consumption of lunch (30, 32).  In the present 

study, to reduce the effect of an intestinal cold (unlabeled) pool, the evening meal 

fed the night before the meal test was low in fat (19% of energy, or ~22 g of fat).  

Nonetheless, some of this lipid may have remained in the intestine overnight.  

With the development of the present technique, it is now possible to test a 

hypothesis suggested by our earlier studies (30), that prestored-TG are more 

likely to be packaged into larger chylomicrons compared to smaller chylomicrons.  

If true, this would provide a physiologic benefit since larger chylomicrons are 

more easily lipolyzed by lipoprotein lipase (64).  It is also possible that larger 

chylomicrons may be supported by greater basolateral uptake of plasma free 

fatty acids (65).  Lastly, because chylomicrons of all sizes are made in the 

postprandial period (66), small and large TRL carrying the dietary lipid label 

(within the first one-two hours of meal ingestion) represent intestinally-produced 
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lipoproteins, even if hepatically-derived VLDL and IDL are present in the TRL 

fraction at the same time. 

 

Pre-study activities 

Similar to previous reports (12, 67), wide variations in individual responses were 

observed in the current cohort of healthy men (figures 2.3 & 2.4).  Presenting 

individual data in studies also highlights that fact that no single subjects’ 

postprandial-TG pattern is identical to the mean presented in most past 

publications.  However, this raises the important question of how the individual 

data will aid to inform researchers and policy makers in developing nutritional 

recommendations for varying populations across the lifespan.  Past research in 

large populations (e.g., using GWAS) has uncovered important physiologic 

concepts by analyzing outliers.  Since blood TG concentrations are highly 

sensitive to many factors, these were controlled for in the present study (e.g., 

alcohol consumption, time of day, exercise) (68).  Future investigations should 

consider the outcomes they wish to study when deciding which pre-study 

activities should be tightly controlled, if any.  If the research goals are to 

investigate the meal composition’s effect on absorption (e.g., gastric emptying, 

lipid clearance, specific components of the meal) then it would be prudent to 

control pre-study activities as described by our group previously (68).  It is 

equally beneficial to study individuals in their natural environment.  Thus, if 

natural variability within a population is the primary outcome, pre-study activities 

should remain uncontrolled and consistent with each subjects’ daily habits. 
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Effects of sex and reproducibility of response 

Future research will include the test of sex as a biological variable on the study 

outcomes because factors of daily living will impact postprandial lipemia 

differently in men and women.  For example, men are more susceptible to 

fructose-induced hypertriglyceridemia than women (69, 70).  With regard to 

reproducibility, individual responses can also be compared within the same 

subject.  Here, a HF test was administered twice to each subject and high 

reproducibility of this meal test was observed (supplementary figures 2.1-2.3), 

perhaps due to control of pre-study actions.  This was in line with a recent 

publication presenting a machine-learning model that predicted an individual’s 

response to a food intake (12).  Berry et al reported high variations between 

subjects, but individual responses to the same meal were similar and therefore 

predicable.  This is a key finding especially because studies in precision nutrition 

aim to predict an individual’s response to various meal components in an effort to 

improve individualized dietary recommendations (12).  While high reproducibility 

of the HF meal was observed in the current study, we cannot extend this 

observation to the low and moderate fat meal tests.  Future work should test 

reproducibility of low and moderate fat meals in a similar manner.  

 

Limitations and potential applications of the method 

This study had a number of limitations important to consider.  First, given the 

newly-synthesized isotope used here, only men were included as participants.  
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Compared to women, past data suggest that men are more susceptible to 

elevations in postprandial lipemia as dietary fat increases (71) - thus, studies in 

women are warranted to determine if a sex effect exists in intestinal lipid 

handling.  Second, the total energy in the meals increased as more fat was 

added from the LF to HF tests, and thus ratios of energy from fat and 

carbohydrate in the meals varied – factors shown to influence postprandial 

lipemia (46, 48, 68, 72).  The present study was designed to determine the effect 

of increasing levels of fat and therefore both fat and carbohydrate would have to 

be increased to keep their ratio constant and this would have increased the total 

energy in the meal tests in a non-physiologic manner.  Third, only two TG 

species were measured and for dietary lipid entry and turnover rates, data from 

hours one-three were used.  Beyond modeling the rise of blood lipid, data from 

these time points were used because late in the postprandial period (after four 

hours), recycling of label through the liver, followed by re-secretion of label in 

newly-made VLDL particles would make calculations of entry rate and turnover of 

the lipid pools inaccurate (46, 48).  On the other hand, the utility of this method 

demonstrates that it can be used in studies of larger sample size while analyzing 

lower amounts of plasma (51).  The present study labeled meals with 2H11-oleate, 

while our past studies have utilized dietary per-deuterated tripalmitin (31, 73, 74).  

It is quite likely that similar methods can be employed when palmitate is used to 

label the test meal, although this fatty acid may be less absorbable (38).  The two 

TG species analyzed in this report, triolein and palmitate-diolein, were 

appropriate targets for current analysis considering the stable isotope of oleate 
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was used.  If future projects utilize a different label (e.g., 13C4 palmitate), the TG 

species analyzed should of course, be chosen accordingly.  With regard to 

applications, this method may aid in facilitating research across a number of 

scientific fields.  For instance, similar studies could be conducted in individuals 

who are lean, overweight, and obese to test whether insulin-resistant individuals 

increase their absorption of meal lipid resulting in greater production of 

chylomicron particles in the immediate postprandial phase. 

 

Summary and conclusions 

The National Institutes of Health (NIH) recently developed a strategic plan for 

precision nutrition research that cites four goals aimed at answering key 

questions surrounding the role of diet in health and disease (16).  This strategic 

plan calls for high-throughput, large-scale clinical trials in which advanced 

methodology is utilized to better characterize dietary habits and the impact on 

health.  The method described here can easily be scaled-up to meet the goals 

set forth by the NIH and applied in conjunction with other ‘omics and 

bioinformatic methods (75) to understand the impact of the gut microbiome, 

exercise, circadian rhythms, meal timing, glycemic profile, macronutrient 

composition, or varying types of fats on human intestinal lipid secretion.  Further, 

interest has grown in the area of intestinal signaling events that may influence 

post-meal satiety (endocannabinoids, bile acids) and future pharmacological 

studies may investigate the impact of drugs that alter lipid absorption from the 

intestine (21, 23-26). 
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In conclusion, the use of meal-fat labeling, followed by LC-MRM analysis, holds 

substantial promise as a technique to investigate chylomicron appearance and 

handling in humans.  The method will enable future studies of basic enterocyte 

biology to discover how lipid handling varies across physiological states and 

identify factors that can be manipulated to lower postprandial hyperlipidemia and 

reduce risk of cardiovascular and metabolic diseases, including NAFLD and type 

2 diabetes.  Precision nutrition studies will be designed with large sample sizes, 

generalizability, and simplicity of study design to understand how an individual’s 

dietary pattern influences their health throughout the lifespan.  
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Table 2.1.  Composition of the test meals 
 

    
Prior evening meal composition 1 

Energy (kcal) 1067 ± 112 
Protein (%E) 23.4   
Carbohydrate (%E) 57.9   
Fat (%E) 18.7   
    

Test meals contents Low fat Moderate fat High fat 
Ingredients    

Ensure (fl. oz) 8.0 8.0 8.0 
Dextrose (g) 14.0 14.0 14.0 
Heavy cream (g) 0.0 9.0 22.0 
Corn oil (g) 0.0 6.0 16.0 
Canola oil (g) 2.0 7.0 21.0 
Labeled oleate (g) 1.7 2.7 5.3 

Composition    
Energy (kcal) 439 577 859 
Cholesterol (mg) 10.0 20.5 35.7 
Protein (g) 13.0 13.2 13.4 
Carbohydrate (g)  63.0 63.2 63.6 
Fat (g)  14.7 30.0 61.4 

Fatty acid content    
16:0 (g) 1.0 2.6 5.5 
18:2, n-6 (g) 3.6 7.7 15.7 
18:1, n-9 (g) 2 8.2 13.3 25.7 
Meal enrichment of 18:1 17.2% 16.9% 17.1% 

 

1  Data are mean ± SD, n = 12 participants.  The same low-fat meal was fed the 
evening before all meal tests and provided 40% of the subject's estimated total 
daily energy needs (%E, energy as a percentage of total daily energy needs).   
 
2  The sum of the unlabeled 18:1 in the various meal ingredients.  
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Table 2.2.  TRL-TG:  Model fit, absolute entry rate (slope), and fractional entry 

rate (k) of label in singly- and doubly- labeled 54:3 and 52:2 
 

Meal fat 
quantity  

Units 
Singly-

labeled 54:3 
Doubly-

labeled 54:3 
Singly-

labeled 52:2 
Doubly-

labeled 52:2 

Low Fat r2 0.95±0.06 0.96±0.06 0.95±0.03 0.95±0.05 

 
Absolute 
entry rate 
(µmol/L/h) 

42.1±23.0 ¶ ╪ 13.0±6.4 ¶ ╪ 18.7±10.3 ¶  1.5±0.8 ¶  

 k (pools/h) 1.1±0.3 1.2±0.4 0.9±0.3 1.2±0.4 
      

Moderate 
Fat 

r2 0.96±0.03 0.97±0.03 0.98±0.02 0.96±0.03 

 
Absolute 
entry rate 
(µmol/L/h) 

39.9±13.7 ¶ ╪ 12.1±3.9 ╪ 25.6±8.4 #  2.4±0.7 

 k (pools/h) 1.1±0.3 1.1±0.2 1.0±0.2 1.1±0.3 

      
High Fat r2 0.97±0.03 0.98±0.03 0.95±0.07 0.98±0.03 

 
Absolute 
entry rate 
(µmol/L/h) 

68.6±33.7 ╪ 21.9±12.8 ╪ 40.0±17.0 4.4±3.0 

 k (pools/h) 1.1±0.3 1.2±0.3 1.1±0.3 1.2±0.3 

 P – value* 0.002 0.008 <0.001 0.001 
 

Data are mean ± SD, n = 12.  
Absolute entry rate (µmol/L/h) 
Horizontal comparison  

╪ Significantly different (P < 0.001) absolute entry rate (µmol/L/h), when 54:3 is 
compared to the 52:2 TG species with the same number of labels by t-test – 
e.g., horizontally across the table, LF singly-labeled 54:3 compared to LF 
singly-labeled 52:2. 

 
Vertical comparison  

* P-value for repeated measures ANOVA comparison of absolute entry rate 
(µmol/L/h) between LF, MF, and HF, data within a single column of TRL-TG 
species. 
¶ Post-hoc analysis (pairwise t-test with Bonferroni adjustment), significantly 
different (P < 0.05) absolute entry rate (µmol/L/h), when compared to HF entry 
rate – e.g., vertically down the column, LF singly-labeled 54:3 compared to HF 
singly-labeled 54:3. 
# Absolute entry rate for the MF singly-labeled 52:2 compared to HF singly-
labeled 52:2 
(P = 0.078, t-test with Bonferroni adjustment post-hoc test). 
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k (fractional entry rate) = slope of the early rise of labeled TG/absolute change in 
TRL-TG concentration 1h to 3h (µmol/L).   
No significant differences in k were detected by ANOVA across (vertical 

comparison) fat levels within specific TG species, singly- or doubly- labeled, or by 

t-tests (horizontal comparison) between singly-labeled TG 54:3 and 52:2 or 

doubly-labeled TG 54:3 and 52:2 in LF, MF, or HF.  
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Table 2.3.  Sf>400 -TG:  Model fit, absolute entry rate (slope), and fractional 

entry rate (k) of label in singly- and doubly- labeled 54:3 and 52:2 
 

Meal fat 
quantity  

Units 
Singly-

labeled 54:3 
Doubly-

labeled 54:3 
Singly-

labeled 52:2 
Doubly-

labeled 52:2 

Low Fat r2 0.94±0.05 0.95±0.05 0.94±0.07 0.95±0.05 

 
Absolute 
entry rate 
(µmol/L/h) 

19.3±14.7 ╪ 5.5±4.2 ╪ 6.1±5.4  0.6±0.4  

 k (pools/h) 0.9±0.4 1.0±0.4 1.0±0.5 1.0±0.4 
      

Moderate 
Fat 

r2 0.96±0.03 0.97±0.03 0.97±0.03 0.97±0.02 

 
Absolute 
entry rate 
(µmol/L/h) 

19.1±11.1 ╪ 4.9±2.8 ╪ 10.2±5.7  1.0±0.6  

 k (pools/h) 0.8±0.5 1.0±0.5 0.9±0.4 1.0±0.4 

      
High Fat r2 0.96±0.03 0.96±0.03 0.96±0.03 0.97±0.03 

 
Absolute 
entry rate 
(µmol/L/h) 

42.5±40.8 ╪ 11.9±12.4 ╪ 24.6±24.1  2.6±2.7  

 k (pools/h) 1.1±0.4 1.0±0.3 1.2±0.4 1.1±0.4 

 P – value* 0.040 0.065 0.022 0.033 
 

Data are mean ± SD, n = 8.  
Absolute entry rate (µmol/L/h) 
Horizontal comparison  

╪ Significantly different (P < 0.05) absolute entry rate (µmol/L/h), when 54:3 is 
compared to the 52:2 TG species with the same number of labels by t-test – 
e.g., horizontally across the table, LF singly-labeled 54:3 compared to LF 
singly-labeled 52:2. 
 

Vertical comparison  
* P-value for repeated measures ANOVA comparison of absolute entry rate 
(µmol/L/h) between LF, MF, and HF, data within a single column of Sf>400-TG 
species. 
Post-hoc analysis (pairwise t-test with Bonferroni adjustment), indicated no 
significant differences in absolute entry rates (µmol/L/h) when compared to HF 
entry rate. 
 

k (fractional entry rate) = slope of the early rise of labeled TG/absolute change in 
Sf>400-TG concentration 1h to 3h (µmol/L).   
No significant differences in k were detected by ANOVA across (vertical 
comparison) fat levels within specific TG species, singly- or doubly- labeled, or by 
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t-tests (horizontal comparison) between singly-labeled TG 54:3 and 52:2 or 
doubly-labeled TG 54:3 and 52:2 in LF, MF, or HF.  
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Table 2.4.  Key factors to consider when designing studies for precision nutrition 
 

1) Type and timing of the study meal? 

- Solid versus liquid meals? 

- Length of postprandial sample collection? 

- Fasting status of the subjects? 
- Previous meal timing and composition (second 

meal effect)? 

- Distribution of macronutrients across the day? 
- Nocturnal effects of feeding on postprandial lipid 

metabolism? 

 

2) Controlling pre-study activities? 
- If yes, the outcomes should be focused on 

biology and metabolism. 
- If no, the goals should be focused on behavior 

and generalizability. 
- Individual responses 

 
3) Effects of sex on metabolism? 

- Factors, such as fructose (5, 61), affect 
postprandial lipemia in men and women 
differently. 

- Which factors should be controlled for when 
including men and women? 

- How do these factors impact the sexes 
differently? 
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FIGURES  
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Figure 2.1.  Overall study design, protocol for meal tests, and molecular 
structures of the stable isotope and the TG 54:3 and 52:2 containing 
oleic acid moieties that were measured. 

 

 
 

2.1A:  The four fat challenges containing 2H11-oleate were low fat (LF, 15 g), 
moderate fat (MF, 30 g), and two high fat (HF, 60 g) tests to evaluate 
reproducibility.  The two HF test meals were given in succession and the 
results of one of the HF meals was chosen for comparison with LF and MF 
as described in the methods section. 

2.1B:  The structure of 2H11-oleate. 
2.1C:  Note that after feeding 2H11-oleate, circulating TG species will contain 

labeled oleic acid in either one (singly) or two (doubly) positions on these 
TG molecules.  
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Figure 2.2.  TRL- and Sf>400-TG:  Total TG concentrations following the meal 
tests 

 

 

Data are mean ± SEM, n = 12 for TRL-TG and n = 8 for Sf>400 lipoprotein-TG. 
Main effect of meal fat level was compared for AUC of TRL-TG and Sf>400 
lipoprotein-TG using ANOVA and post-hoc analysis (pairwise t-test with 
Bonferroni adjustment). 
ǂ post-hoc testing indicated significant (P < 0.01) differences between the LF and 
the MF and HF meals.  
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Figure 2.3.  TRL-TG:  Variability in concentrations across subjects 

 

 
 

Grey lines are individual subject data with the mean ± SEM plotted in black on 
top, n = 12.  Stars are indicative of outliers in the group and are discussed in the 
text in detail.  Bar graphs show individual subject AUC.  
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Figure 2.4.  Sf>400-TG:  Variability in concentrations across subjects 
 

 
 

Grey lines are individual subject data with the mean ± SEM plotted in black on 
top, n = 8.  Stars are indicative of outliers in the group and are discussed in the 
text in detail.  Bar graphs show individual subject AUC.  
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Figure 2.5.  TRL-TG:  Temporal patterns of 54:3 and 52:2 TG containing singly- and doubly-labeled oleate  
 

 
 

Data are mean ± SEM, n = 12.  Note the differing magnitudes on the ordinate of the singly- (figure 2.5A-C) versus 
doubly-labeled (figure 2.5F-H) graphs.  
§ Significant main effect (P < 0.00001) of meal fat level on AUC of labeled TRL-TG using ANOVA and post-hoc 
analysis (pairwise t-test with Bonferroni adjustment). 
ǂ Significantly (P < 0.05) different than MF and HF meals.  
* Significantly (P < 0.001) different than HF meal.  
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Figure 2.6.  Sf>400-TG:  Temporal patterns of 54:3 and 52:2 TG containing singly- and doubly-labeled oleate 
 

 
 

Data are mean ± SEM, n = 8 for Sf>400 lipoproteins. 
§ Significant main effect (P < 0.05) of meal fat level on AUC of labeled Sf>400-TG using ANOVA and post-hoc 
analysis (pairwise t-test with Bonferroni adjustment). 
ǂ Significantly (P < 0.05) different that MF and HF meals.  
* Significantly (P < 0.05) different than HF meal.
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SUPPLEMENTARY DATA  
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Supplementary Figure S2.1.  TRL- and Sf>400-TG:  Reproducibility of total TG 
between two HF test meals 

 

 
 

Data are mean ± SEM, n = 12 for TRL and n = 8 for Sf>400 lipoproteins.  The two 
HF test meals were given in succession and randomized amongst LF and MF. 
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Supplementary Figure S2.2.  TRL-TG:  Reproducibility of singly- and doubly- 
labeled 54:3 and 52:2 between two HF test meals 

 

 
 

Data are mean ± SEM, n = 12.  
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Supplementary Figure S2.3.  Sf >400 – TG:  Reproducibility of singly- and 
doubly- labeled 54:3 and 52:2 between two HF 
test meals. 

 

 
 

Data are mean ± SEM, n = 8.  
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ABSTRACT 

 

Ceramides (CERs) are key intermediate sphingolipids implicated in contributing 

to mitochondrial dysfunction and the development of multiple metabolic 

conditions.  Despite the growing implication of CERs role in disease risk, kinetic 

methods to measure CER turnover are lacking, particularly using in vivo models.  

We demonstrate the utility of an orally-delivered stable isotope, 13C3, 15N L-serine 

dissolved in the drinking water, to quantify CER 18:1/16:0 synthesis in 10 week 

old male and female C57Bl/6 mice.  Animals consumed either a control or high 

fat diet (CD, HFD; n = 24/diet) for exactly two weeks and the serine-labeled water 

for 0-12 days (0, 1, 2, 4, 7, and 12; n = four/day/diet) to generate labeling curves.  

Hepatic and mitochondrial CERs and dihydroceramides (dhCERs) were 

quantified using liquid chromatography tandem mass spectrometry.  Within 

hepatic and mitochondrial pools, HFD induced greater saturated CER 

concentrations (P < 0.05) and absolute turnover of 16:0 CER (liver: 28% and 

mitochondria: 159%).  Total hepatic CER content did not differ between the two 

groups while total mitochondrial CERs increased with HFD feeding (60%, P < 

0.001).  Fractional synthesis of 16:0 mirrored these observations; HFD elicited a 

2.5- fold increase in 16:0 CER turnover only in mitochondria while diet groups 

were not different with respect to fractional liver 16:0 turnover.  Our findings 

demonstrate an acute HFD alters 16:0 CER turnover and content of 

mitochondrial CERs which may be an early event in the progression of hepatic 

mitochondrial dysfunction.  Future studies should complete basic functional 

mitochondrial measurements in conjunction with this novel method to 
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characterize the relationship between early increases in mitochondrial CER with 

progressive losses in function.  
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INTRODUCTION 

 

Ceramides (CERs) are a central hub of sphingolipid metabolism, often leading to 

the production of more advanced lipid molecules (e.g., sphingomyelin).  The 

main biosynthetic pathway (de novo synthesis) occurs primarily in the 

endoplasmic reticulum (ER) (1, 2) and begins with the condensation of L-serine 

and, most often, a 16-carbon fatty acid (16:0, palmitate) by serine palmitoyl 

transferase (SPT).  Other key enzymes within CER biosynthesis include CER 

synthase, which has six distinct isoforms (CERS1-6), and dihydroceramide 

desaturase (DEGS).  While SPT has restricted ability to use acyl-chains of 

varying lengths (3), the addition of a second fatty acyl is completed through the 

CERS enzymes, each of which have specificity for different fatty acids (FA).  For 

example, CERS1 catalyzes the addition of 18:0 (4), while CERS2 uses very long-

chain FA (preferentially 20:0 and longer (5)) and CERS6 is specific to 14:0 and 

16:0 (6).  Finally, DEGS desaturates the ∆4-5 carbon bond (trans) in the 

backbone thereby converting dihydroCER (dhCER) to CER.  Other pathways 

also contribute to the formation of CERs, for example the salvage and 

sphingomyelinase pathways.  The salvage pathway recycles sphingosine 

through re-acylation to CER by CERS (7), whereas acid sphingomyelinase 

(SMPD) catalyzes the conversion of sphingomyelin (SM) to CER (8).  Both SPT 

and CERS are also present within mitochondrial membranes (9, 10) and an 

increase in mitochondrial CERs are implicated in contributing to organelle 

dysfunction (11-21) which is characteristic of multiple metabolic diseases (22). 

 



118 
 

Mitochondrial CERs contribute to increased cellular ROS (11-14) and apoptosis 

(11, 15) and decreased mitochondrial respiration and tissue function (12, 16-19).  

Additionally, a large body of evidence supports elevated plasma and tissue CERs 

in contributing to metabolic dysfunction (12, 23-35) and cardiovascular risk (34-

43), with specific species (e.g., 16:0, 18:0) conferring greater cardiometabolic risk 

than others (e.g., 24:1).  Despite an overwhelming amount of evidence 

implicating CERs in disease risk, minimal work has quantified the kinetics of de 

novo CER synthesis.  Turnover of CER may be more mechanistically related to 

CER toxicity (compared to absolute concentrations) and this knowledge may be 

useful in the development of therapies to lower concentrations and thus reduced 

disease burden. 

 

With advances in mass spectrometry (MS) sensitivity, new methods for isotopic 

labeling of CER synthesis have recently been published (44, 45).  In cell culture 

and rodent models, kinetic studies using stable isotopes (19, 46-56) and non-

naturally occurring odd-chain analogs (57, 58) are available, and in humans, 

CER synthesis in skeletal muscle has been measured via isotope labeling (59-

61).  Isotopically-labeled serine and palmitate can be incorporated into the 

backbone of the sphingolipid through the SPT enzymatic reaction, while 

palmitate can also be incorporated into the fatty acyl chain through CERS5 and 

CERS6.  Labeled palmitate has been used in rat models (47, 48) for tissue CER 

kinetics, while only one study has used labeled water (D2O) or serine to quantify 

plasma CER kinetics in mice (46).  Only two studies, to our knowledge, have 
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comprehensively measured CER concentrations within hepatic mitochondria (9, 

62) and no one has measured mitochondrial CER synthetic rates or compared 

the organelle content or synthesis to whole liver tissue content or synthesis.   

 

The aim of the current study was to utilize the stable isotope 13C3, 15N L-serine, 

delivered orally, to quantify the production of whole liver and isolated hepatic 

mitochondrial CERs in C57Bl/6 mice fed a control (CD; low-fat) or high fat diet 

(HFD).  We hypothesized the HFD would induce elevated tissue and organelle 

CER concentrations which would be associated with elevated turnover rates.  

Our results support the use of serine in quantifying 16:0 CER synthetic flux in 

hepatic tissue and mitochondria and may be adapted for use in other 

tissues/organelles, CER species, and experimental models.  
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METHODS 

 

Study design 

Following acclimatization, 10-week old male (n = 24) and female (n = 24) 

C57Bl/6 mice received either a CD (Research Diets Inc., D12450J) or HFD 

(Research Diets Inc., D12492).  The animals remained on the assigned diet for 

exactly two weeks.  Body composition was measured via echoMRI (4 in 1-1100 

analyzer) before the start of the diet and the day before euthanasia.  The animals 

received a stable isotope of serine (13C3,15N L-serine, Cambridge Isotope 

Laboratories, Andover MA) to label the backbone of de novo CERs.  The isotope 

was delivered by intraperitoneal bolus (20 mg/kg BW) on day 0 and in the 

drinking water (0.90 mg/mL) until the day of euthanasia.  To obtain CER kinetics, 

four mice/group (two males, two females) were euthanized on days -1 

(unlabeled), 1, 2, 4, 7, and 12 after administration of the tracer as shown in 

figure 3.1.  CERs and dhCERs were isolated from liver tissue and hepatic 

mitochondria and analyzed by high performance liquid chromatography – tandem 

mass spectrometry (HPLC-MS/MS) with multiple reaction monitoring (MRM). 

 

Animal groups and diet 

The mice were split into two groups based on diet.  The formulated CD contained 

20% kilocalories (kcal) protein, 10% kcal fat, and 70% kcal carbohydrate (7% 

kcal sucrose).  The HFD contained 20% kcal protein, 60% kcal fat, and 20% kcal 

carbohydrate (7% sucrose).  Table 3.1 shows the macronutrient distribution and 
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ingredient list for each diet and table 3.2 presents the fatty acid composition in 

units of gram/100 grams of diet.   

 

Animal care and terminal procedures 

Animals were obtained from Jackson Laboratories and housed two per cage with 

a light cycle from 0700 to 1900h in constant room temperature of 21-22°C.  Food 

and water intake and body weight were recorded weekly.  Body composition (fat 

and lean mass) was measured before starting the diet and the day prior to 

euthanasia.  Energy intake was calculated by taking the difference in grams of 

food provided and grams of food remaining on the weighing day and multiplying 

the total amount food consumed by the energy content of the diet (CD: 3.83 

kcal/g and HFD: 5.22 kcal/g, table 3.1).  This was then divided by the number of 

days between food weighing to give kcal/day (table 3.3).  Prior to each study day 

(-1 to 12, figure 3.1), food was removed from cages at 0500 and mice 

euthanized at 1000 (5-h fast, 2h dark & 3h light phase).  The animals had free 

access to serine-labeled (or unlabeled for -1 day mice) water during this fast.  

Mice were anesthetized (sodium pentobarbital, 100 mg/kg) as described 

previously (63) and euthanized through cardiac exsanguination and removal.  

Blood was obtained through intra-aortic puncture and the liver was harvested 

immediately.  From each mouse, serum samples were divided into aliquots for 

quantification of metabolites (glucose, insulin, TG, and free fatty acids).  Livers 

were quickly excised, weighed, and aliquots were 1) placed in an ice-cold 

isolation buffer for mitochondrial isolation and 2) flash frozen in liquid nitrogen to 
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be stored at -80°C for later processing.  All animals included in this study were 

cared for in accordance with NIH guidelines and the protocol approved in 

advance by the University of Missouri IACUC. 

 

Mitochondrial isolation 

Hepatic mitochondria were isolated as previously described (64).  Once excised 

and weighed, approximately 333 ± 58 mg of liver tissue was minced and gently 

homogenized using a smooth surface probe in mitochondrial isolation buffer A 

(220 mM Mannitol, 70 mM sucrose, 10 mM tris-base, 1 mM EDTA; pH 7.4) (64).  

The sample was then centrifuged at 1,500 g for 10 minutes at 4°C.  The pellet 

was discarded, and the supernatant underwent three centrifugations (6,000-

8,000 g) where the resultant pellet was retained and resuspended (in buffer A or 

A with 0.1% bovine serum albumin) with gentle glass-on-glass homogenizations.  

The final pellet was homogenized with 400 µL of phosphate buffered saline (~1:1 

starting wt/vol), and the sample was stored at -80°C and used for protein 

determination via BCA assay (# 23225, ThermoFisher Scientific), CER 

extraction, and citrate synthase activity assays. 

 

CER concentrations and enrichment 

CERs were extracted from liver homogenate and isolated hepatic mitochondria.  

Briefly, ~50 mg (52.2 ± 0.4 mg) of frozen liver tissue was weighed and 

homogenized in buffer B (1,000 µL, sucrose 250 mM, KCl 25 mM, tris-base 50 

mM, and EDTA 0.5 mM).  Following protein determination, CERs were extracted 
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from 200 µL of the liver homogenate (equivalent to 1.2 ± 0.1 mg of protein or ~10 

mg starting tissue).  The homogenate was spiked with 50 µL of C18:1/17:0 (50 

ng) and then extracted according to the protocol of Bligh & Dyer (65).  The 

organic phase was removed and dried under nitrogen gas.  An azeotropic agent 

(methylene chloride) was used to remove any additional water and samples were 

stored in -80°C until LC/MS analysis.  For mitochondrial CERs, 200 µL of the 

mitochondrial extract (equating to 1.5 ± 0.2 mg of protein or ~ 150 mg starting 

tissue) was extracted as described for liver tissue.  Both liver and mitochondria 

samples were analyzed using the same LC/MS method (66).  CERs were 

quantified using HPLC-MS/MS electrospray ionization (ESI) in positive ion 

scanning mode.  Standards and samples were dissolved in 100 µL of 0.1% 

formic acid solution in methanol-water (85:15) and then injected into a Waters 

HPLC device (2690 Separation Module, Milford, MA) and separated through an 

Vydac® 200MS™ C8 column (2.1 x 100 mm, 5 µm, P.J.Cobert Associates, St. 

Louis, MO).  CERs were analyzed using MRM scanning each molecular ion with 

the combination of mass to charge ratio (m/z) 264 daughter ion across all 

species.  Chromatograms were analyzed using Xcalibur™ (Thermo Scientific™ 

3.0.63).  Individual unlabeled CER species and the labeled 16:0 CER MRM 

transitions are listed in extended methodology (table EM3.2).  To label the 

backbone of 16:0 CER, each animal received an intraperitoneal bolus of 13C3,15N 

L-serine (20 mg/kg) and the drinking water was enriched with 0.90 mg/mL of the 

same stable isotope (figure 3.1).  Percent enrichment (%E) was calculated as 

the area under the peak for the labeled isotopomer (M3 16:0 CER) divided by the 
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sum of the area under the peaks for total label and unlabeled isotopomers (M0, 

M1, and M3 16:0 CER).  To assess the accuracy of using the area ratios, we 

used exponential curves to model hypothetically-mixed labeled and unlabeled 

CER pools.  Using the generated equations, we found excellent agreement 

between the enrichments observed and those generated using the model, 

therefore we used the calculated %E to generate labeling curves across time.  

The average of four mice per group represented a single data point within the 

labeling curves (unlabeled: -1 days and labeled: 1, 2, 4, 7, and 12 days).  

Fractional synthetic rates of de novo 16:0 CER (pools/day or k) were calculated 

by fitting single exponential curve (equation:  y = A∞ x [1−e−kt]) to the enrichment 

curves (67).  Absolute synthetic rates were calculated as the product of k and the 

absolute pool size.   

 

Assay precision 

Intra- and inter-assay reproducibility was determined by multiple analyses of a 

pooled liver or mitochondria sample.  To measure intraassay variability, one 

sample was analyzed five times and for interassay variability, pooled liver and 

mitochondria samples were extracted on five separate occasions over a two 

week period. 

 

Precursor enrichment (free hepatic serine) 

Enrichment of the precursor pool (free L-serine) was analyzed as previously 

described (68).  In brief, 500 µL of liver homogenate (equivalent to ~25 mg liver 
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tissue) was eluted using an ion exchange column (50WX8-400, hydrogen form) 

with formic acid.  Bonded amino acids were released using ammonium hydroxide 

and the eluate was dried under nitrogen.  An azeotrope agent was added to the 

sample and dried under nitrogen to remove any remaining water.  Samples were 

derivatized using 100 µL bis(trimethylsilyl) trifluoroacetamide 10% 

trimethylchlorosilane (BSTFA + 10% TMCS) and then analyzed by GC/MS as 

described previously (68).  The enrichment of L-serine was determined using 

electron impact ionization (70 eV) and selected ion monitoring (m/z: 204-207, see 

extended methodology section). 

 

Western blots and citrate synthase activity 

To assess if differences in CER content and turnover were driven by changes in 

protein content, key proteins involved in CER synthesis were measured via 

western blot in whole liver homogenate.  Details of western blot methods can be 

found in the extended methodology section.  Briefly, liver tissue (50.4 ± 1.4 mg) 

was homogenized in protein lysis buffer (1:10 wt/vol) and following centrifugation 

(4°C, 25 minutes, 1,500 g), the supernatant was used to determine protein 

content by BCA protein assay (# 23225, ThermoFisher Scientific).  Samples (20 

µg) were loaded into gels and, following electrophoresis, transferred to 

polyvinylidene difluoride transfer membrane.  Primary antibodies were diluted 

1:1,000 and secondary antibodies 1:5,000.  Blots were analyzed via densiometric 

analysis (Image Laboratory Beta 3, Bio-Rad Laboratories, Hercules, CA).  Total 

protein was assessed with amido black (0.1%) to control for differences in protein 
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loading and transfer as previously described (69).  The proteins quantified 

included dihydroceramide desaturase (DEGS1), ceramide synthases (CERS1, 2, 

6), acid sphingomyelinase (SMPD1), acid ceramidase (ASAH1), and the 

oxidative phosphorylation complexes (I-V).  Mitochondrial citrate synthase 

activity, a well-established surrogate of mitochondrial content, was measured as 

previously described (69) and expanded upon in extended methodology. 

 

Serum and liver assays 

Liver TG content was quantified by enzymatic assay using TG (#T2449, Sigma) 

and free glycerol reagent (#F6428, Sigma) following Folch lipid extraction.  

Serum glucose (#997-03001, Wako), triglycerides (same reagents listed for liver 

TG), and free fatty acids (#999-34691; #995-34791; #994-02891; #990-02991, 

Wako) were quantified using commercially available enzymatic reagents.  Serum 

insulin concentrations were determined using a commercially available ELISA 

(EZRMI-13K, Millipore Sigma). 

 

Statistical analysis and calculations 

Calculations were performed using Microsoft Excel (2016, Redmond, WA) and 

statistical analysis using R (version 4.1.3) and R studio (Boston, MA).  Weight 

and body composition were compared across time with a two-way between 

factors analysis of variance (ANOVA, time x diet).  The R packages ez and rstatix 

were used for ANOVA testing.  Unpaired, two-tailed t-tests were used to compare 

static outcomes between diets.  Supplemental analysis of sex differences were 

analyzed by a two-way factorial ANOVA (diet x sex).  Significant interactions (P < 
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0.05) were followed-up by a post-hoc comparison with a Bonferroni correction.  

Pearson’s R was used to quantify linear relationships between continuous 

variables.  Data varying across time were reported as mean ± standard error 

(SEM) while static variables were reported as a mean ± standard deviation (SD).  

Significance was set at P < 0.05, and P < 0.10 reported as a trend.  The 

homeostatic model assessment for insulin resistance (HOMA-IR) was calculated 

using glucose (mmol/L) and insulin concentrations (µIU/mL) divided by the 

constant 22.5 (70, 71).  
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RESULTS 

 

Animal Characteristics 

Body weight was similar in all animals at the start of the diet (figure 3.2) with 

males weighing ~23-25% more than females (supplementary table 3.1).  The 

two-week HFD induced significantly greater increases in total body mass than 

CD (figure 3.2).  Animals consuming the HFD had increased percent fat mass 

and reduced percent lean mass after two weeks of feeding (figure 3.2B).  

Animals consuming the CD had minimal changes in either lean or fat mass.  

Liver weight was similar between groups (figure 3.2C).  

 

While all animals had similar total daily food intake (in grams) throughout the two-

week diet, the total energy intake was significantly higher (table 3.3) in the HFD 

animals due to the higher diet energy density when compared to CD (table 3.1; 

3.4 vs 5.2 kcal/g).  As expected, both total quantity and energy intake of 

macronutrients were different across groups, due to the differences in diet 

composition.  Neither length of serine supplementation nor diet impacted daily 

water or food intake in either group, thus labeled serine intake was similar 

between groups (table 3.3).   

 

Animals consuming HFD had elevated serum glucose while serum insulin was 

similar between diets and HOMA-IR also did not differ (figure 3.3A-C).  Serum 

NEFA concentrations were higher in mice consuming the HFD.  While serum TG 

was lower with HFD-feeding, hepatic TG content was elevated.  With regard to 
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sex, female mice had lower serum glucose, insulin and TG, similar NEFA, and 

elevated liver TG concentrations compared to male mice (P < 0.01 – main effect 

of sex, supplementary table S3.1). 

 

Liver and mitochondrial CER and dhCER content 

Using a sophisticated MRM analytical technique, we are able to distinguish 

between CERs and dhCERs with the same fatty acyl chain (e.g., CER 16:0 and 

dhCER 16:0) due to the combined analysis of parent to daughter ion transition (a 

result of collision induced ionization within the second MS chamber, see figure 

EM3.1) and retention times which differ for CERs and dhCERs (see table 

EM3.2).  Based on the area ratio of the sample to internal standard and the 

standard curves, absolute concentrations were calculated in units of nmol/gram 

tissue.  Surprisingly, total liver CER concentrations were not impacted by diet 

(figure 3.4A) but were higher in female animals (P = 0.042, supplementary 

figure S3.1).  Individual hepatic CER species are shown in figure 3.4C.  

Following the two-week diet, HFD-fed animals had significantly higher liver 16:0 

(30%), 18:0 (100%), and 20:0 (115%) saturated CER species than animals fed a 

CD.  The major species contributing to the total hepatic CER pool (figure 3.5) 

were 22:0, 24:0, and 24:1 which together, encompassed 98.04 ± 0.45% and 

96.58 ± 0.60% of the total CERs in CD and HFD animals, respectively.  In 

addition to the elevated absolute concentrations of 16:0, 18:0, and 20:0 liver 

CERs, the molar percent of the total hepatic CER pool made up by each of these 

species was elevated in HFD animals while the percentage of 24:0 was reduced 
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(figure 3.5C, inset table).  Total liver dhCER concentrations tended to be lower in 

HFD animals (31%, figure 3.4B), which was driven by lower dhCER 24:0 (32%; 

figure 3.4D).   

 

Total mitochondrial CERs and dhCERs were elevated in HFD animals (figure 

3.6A-B), with significant increases in 16:0 (CER: 46%; dhCER: 50%), 18:0 (CER: 

128%; dhCER: 156%), 20:0 (CER: 255%), 22:0 (CER: 68%), and 24:0 (CER: 

116%; dhCER: 158%) species.  Further, females had higher total mitochondrial 

CERs and dhCERs than male mice (supplementary figure S3.2).  Similar to 

total liver CERs, the species 22:0, 24:1, and 24:0 were in highest concentration 

within mitochondria (figure 3.6C) and thus, were proportionally the largest CER 

contributors to the total mitochondrial pool (figure 3.7), regardless of diet (CD: 

96.55 ± 1.15% and HFD: 93.59 ± 1.56% of the total pool).  Despite different 

absolute concentrations, the proportion of the total mitochondrial pool made up 

by 16:0 and 22:0 CER was not different between HFD and CD animals.  The 

saturated CER species 18:0, 20:0, and 24:0 made up a greater portion of the 

total mitochondrial pool in animals consuming a HFD while the percentage of 

14:0, 18:1, and 24:1 were lower in the same animals (figure 3.7C, inset table).   

 

The relationship between total liver and hepatic mitochondrial CER has never 

been examined.  Per gram of liver tissue, HFD-fed animals had a greater 

proportion of total liver CER within the mitochondrial pool than CD-fed animals 

(46 ± 12% versus 30 ± 11%, respectively; P < 0.0001).  When all animals were 
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analyzed together, a significant positive relationship was found between the two 

pools (r = 0.328, P = 0.023) however, this relationship was driven solely by the 

HFD animals (figure 3.8).  Whereas this observation was consistent with the 

individual species in greatest concentrations (20:0, 22:0, and 24:0), individual 

analysis revealed CER 16:0 and 18:0 hepatic and mitochondrial concentrations 

were positively related in both HFD and CD animals (supplementary figure 

S3.3).  

 

Our analysis of the inter- and intraassay variability demonstrated high precision 

levels both between sample extractions and within the analytical method (table 

3.4).  Specifically, we observed interassay coefficient of variations (CV) between 

0.5-5.4% for both hepatic CER pools (liver and isolated mitochondria) and 0.6-

7.8% CV for the intraassay precision.  These values agree with previous reports 

using the same analytical methods (66). 

 

CER 16:0 turnover 

A portion of newly-made CER within liver and hepatic mitochondria were labeled 

with 13C3, 15N L-serine and the percent enrichment of these labeled CER across 

days are presented in figure 3.9.  CD animals are shown in white, HFD animals 

in green, and the mean of all animals within a labeling day and diet shown in 

black.  Animals fed a HFD tended to reach plateau enrichments earlier (~2 to 4 

days of labeling) than CD animals (between 4 and 7 days).  As expected, 

enrichment across labeling days significantly increased (P < 0.0001), with 
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enrichments of day 12 animals being significantly higher than the unlabeled mice 

(day 0).   

 

We generated exponential models using hypothetical mixtures of unlabeled and 

labeled CER 16:0 pools to test whether our enrichment data calculated using the 

area ratio of the labeled CER (M3/all) was similar to the expected distribution.  

Upon testing the LC/MS-generated area ratios of CER (triply-labeled and the 

ratios of triply-: singly-labeled) against the exponential models, we found 

excellent reproducibility between the results (%E from day 12 animals - 

calculated: 1.9 ± 0.1%; model: 2.0 ± 0.1%).  Despite a lack of labeled CER 

standard curve, good agreement between the observed and modeled 

enrichments supports our use of the enrichment data generated from the area 

ratios to calculate turnover rates.  Exponential growth curves were fit to the 

enrichment data (figure 3.9) and fractional turnover rates (k, pools per day) were 

generated (figure 3.10).  We also generated the predicted asymptote of each 

curve, the amount of de novo 16:0 CER, and the half-life of the molecule (table 

3.5). 

 

Fractional whole liver CER 16:0 synthesis in pools per day was similar between 

diet groups while isolated mitochondrial 16:0 fractional synthesis was 43% 

greater in HFD animals (figure 3.10C).  When comparing mitochondrial to liver 

16:0 synthesis in pools per day (k), CD animals had 36% lower while HFD 

animals had 44% higher mitochondrial fractional synthesis than hepatic fractional 
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synthesis (figure 3.10 A versus C).  Absolute synthesis rates in nmol/g 

tissue/day were calculated using the total 16:0 pool size and HFD animals 

demonstrated higher synthetic rates than CD in both liver (28%) and 

mitochondrial (159%) pools (figure 3.10B and D).  In line with these 

observations, the half-life for liver 16:0 CER was similar between diets while 

mitochondrial half-life was almost double in CD when compared to HFD 

mitochondrial 16:0 CER (table 3.5).  Further, the 16:0 CER made de novo that 

was labeled was significantly greater in HFD mitochondria than CD.  Despite an 

extended labeling period, a large portion of the CER pool remained unlabeled 

due to intrahepatic stores and use of unlabeled serine during synthesis.  Sex 

differences are shown in supplementary figure S3.4.  Fractional liver synthesis 

was higher in CD males than females (29%, white bars, S3.4A) but lower in HFD 

males than females (-14%, green bars).  Reflecting total pool size, female HFD-

fed mice had the greatest absolute 16:0 synthesis (S3.4B).  Mitochondrial 

fractional synthesis was similar between males and females within a diet (S3.4C) 

while HFD animals, regardless of sex, had greater absolute 16:0 mitochondrial 

synthesis (S3.4D). 

 

Free serine enrichment was measured in total liver homogenate and is shown in 

supplementary table S3.3 and figure S3.5.  Enrichments reached 1.0-1.5% in 

hepatic tissues on day 12 of labeling and were significantly different across 

labeling days.  Plateau enrichment was achieved within two days of labeling and 

the increase %E observed after day 7 is likely recycling of serine from muscle 
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protein breakdown.  Male and female mice did not differ in serine enrichments 

(data not shown). 

 

Hepatic protein and mitochondrial content 

Liver protein expression of CERS1, responsible for CER 18:0 synthesis, was 

similar between the diet groups.  CERS2 (CER 20:0+) was significantly 

decreased (-22%) and CERS6 (CER 14:0 and 16:0) tended to be lower (-21%) in 

HFD animals (figure 3.11A).  Other key enzymes within the CER synthetic 

pathway, either did not differ between groups (SPT, figure 3.11B) or was 

similarly lower in HFD animals (DEGS -20%, figure 3.11B).  Protein content of 

acid sphingomyelinase, a key step in the sphingomyelinase CER synthetic 

pathway, was lower in HFD animals (-19%, figure 3.11C).  Acid ceramidase, an 

enzyme within the CER salvage pathway that converts CER to sphingosine, was 

not different between groups (+6%, figure 3.11C).  Markers of mitochondrial 

content, citrate synthase activity and mitochondrial electron transport chain 

complexes I-III and V, were lowered by the HFD (figure 3.12).  Sex differences 

for each of these proteins are presented in supplementary table S3.4 which 

demonstrates female animals had greater CERS2, CERS6, and SPT while male 

mice had greater CERS1 content. 

 

Across all animals, CERS1 was negatively related to CER and dhCER 18:0 

concentrations in both total liver and hepatic mitochondria (supplementary 

tables S3.5-3.6).  CERS2 was negatively related to very long chain liver and 
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mitochondrial CER (e.g., 20:0, 22:0) only in HFD animals.  Conversely, CERS6 

was positively related to CER and dhCER 16:0 in both diets and pools.  

Correlation matrixes were generated between SPT, DEGS, SMPD, and ASAH 

and CER and dhCER content.  While SPT protein content did not differ between 

diet groups, we observed varying relationships with specific mitochondrial CERs 

(supplementary table S3.8).  In HFD animals, mitochondrial CERs with fatty 

acyl chains between 14:0-18:0 were positively related to SPT content, while 

longer chain mitochondrial CERs (20:0 and 22:0) correlated negatively.  This 

may suggest longer chain CERs are inhibitory to the SPT enzyme.  This was also 

consistent for liver CER 18:0 and 20:0 in HFD animals (supplementary table 

S3.7).  HFD animals had lower DEGS1 content which was negatively related to 

mitochondrial CER 20:0 and 22:0.  Finally, SMPD content was also lower with 

HFD and negatively related to mitochondrial 22:0 and 24:1 and both liver and 

mitochondrial 20:0.  Results from these studies are combined in the model 

presented in figure 3.13.  
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DISCUSSION 

For the first time, an orally-delivered stable isotope of L-serine was used to 

quantify total liver and hepatic mitochondrial CER 16:0 synthesis in mice fed a 

CD or HFD.  Animals consuming a HFD exhibited faster absolute synthesis rates 

in both liver tissue and isolated mitochondria, which was mirrored by an elevation 

in the saturated liver CERs as well as total and saturated mitochondrial CERs.  

With the expanding literature supporting CERs in contributing to metabolic 

diseases like type 2 diabetes, NAFLD, and cardiovascular disease (29, 30, 33, 

34, 72-74), deeper knowledge of in vivo CER biology is needed.  Methods to 

track CER synthesis would facilitate the development of therapies for reducing 

lipotoxicity of CERs, potentially through total content reduction, targeting 

synthesis of individual species, or increasing the degradation of the sphingolipid.  

While cell culture techniques are established (49-56), the translation to whole 

body models presents technical and analytical challenges for tracking CER 

synthesis. 

 

Methodology: Selection of tracer, method of delivery, and analytical 

challenges 

Studies measuring CER kinetics have used palmitate (e.g., U-13C, d3) (55, 59-61, 

75), D2O (46), or L-serine (e.g., U-13C, d3, 13C3,15N) (19, 46, 53, 54) isotopes to 

quantify synthesis, however most of these measurements were completed using 

cell culture models.   
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Recently, Chen and colleagues were the first to use D2O to quantify plasma CER 

flux in mice (46).  While the utility of D2O supports the use for measurements of 

hepatic and plasma CER kinetics, multiple analytical challenges limit the use of 

this isotope for CER kinetic studies.  One benefit of LC/MS is the ability to 

examine whole molecules without requiring derivatization.  The incorporation of 

deuterium into a whole molecule like CER produces complicated labeling 

patterns (i.e., the potential for M1, M2, M3 isotopomers, and so on) that prove 

difficult to deconvolute.  One must consider all of the potential locations and 

metabolic processes that may result in the incorporation of a deuterium into a 

newly-made CER molecule.  To name a few, 1 - NADPH may add a 2H during 

the second and fourth steps in CER biosynthesis (76), 2 - de novo lipogenesis 

will result in the incorporation of deuterium into palmitate which can then enter 

CER synthesis and be added to serine, forming the sphingosine backbone, or the 

fatty acyl chain (77), and 3 - D2O may also be incorporated into serine during 

serine-glycine transfer (78).  Additionally, no study has completed the basic cell 

culture experiments to identify the maximum number of deuterium labels any 

individual CER may gain through metabolism and synthesis (i.e., ‘polymerization 

factor’ or ‘n’).  Together these complications are driven by the ubiquitous use of 

deuterium in many metabolic processes.  This knowledge however can be used 

to estimate the number of monomers (2H) that may be incorporated in the 

polymer (CER in this case) (79, 80).  Assuming the consistent incorporation of 

the equilibrated 2H into newly-made FA, according to the methods of Lee et al 

(79, 80), Chen and Colleagues estimated HFD-fed animals had lower 
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contributions of deuterium-labeled palmitate formed by hepatic lipogenesis that 

fed into de novo CER synthesis (when compared to a standard carbohydrate-

based diet).  Overall, oral D2O deserves further testing and optimization for the 

quantification of CER biosynthesis and future studies should build upon the 

elegant method described by Chen et al to expand to tissue CER turnover.  

 

The only data available in humans is a collection of publications from Jensen and 

colleagues who optimized a method to measure skeletal muscle CER synthesis 

using an infusion of 13C palmitate (59-61).  Labeled palmitate, as an alternative 

tracer option, reduces the analytical challenges associated with D2O, although 

the method of delivery - via infusion or orally in the food - adds an additional 

technical hurdle.  With regard to feeding labeled palmitate to track hepatic lipid 

handling, our group has used d31 tripalmitin, incorporated into the animal’s food, 

to measure the liver TG arising from dietary sources (81).  Using similar 

techniques, feeding a labeled palmitate FA could be adapted to track CER 

synthesis within the liver although it is likely this method would result in 

substantial label loss before reaching the liver where it could be used for CER 

synthesis – both to peripheral tissues and in the stool (82).  Beyond the oral use 

of palmitate, which has not been evaluated for quantification of CER synthesis, 

infusing the isotope has demonstrated labeling of skeletal muscle CER in 

humans (59-61) and mice (48) as well as labeling of liver CERs in mice (47, 83).  

However, similar methods are challenging in rodent models due to the invasive 

nature of infusions over long periods of time (six+ hours) and the difficulty 
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associated with repeated blood and tissue samples in the same animal.  

Regardless, infusing palmitate to measure hepatic CER synthesis is an attractive 

method that should be tested and optimized further.  Using a palmitate FA – 

either dietary or infusion, mass isotopomer distribution analysis (MIDA) could be 

applied to calculate the intracellular precursor enrichment for 16:0 CER synthesis 

as a direct result of the potential for two labeled palmitates being incorporated 

into the CER molecule (55).   

 

Unlike, D2O and palmitate, L-serine can be incorporated at only one location 

within any CER molecule and only during the first and rate-limiting step of de 

novo CER synthesis (via SPT).  Theoretically, this would simplify the labeling 

distribution, however due to systemic metabolism of serine (84) and depending 

on the positional labeling within the molecule (e.g., d3 or 13C3, 
15N L serine), CER 

may become labeled with singly-, doubly-, and triply-labeled serine.  Because 

serine is a common source for one-carbon units within the liver, the degradation 

and resynthesis (supplementary figure S3.6) may result in a shift of the labeling 

pattern within the molecule.  However, this is greatly dependent upon the stable 

isotope used.  For example, Gregory et al elegantly demonstrated d3 serine 

infusion (2,3,3-2H3) in a single male human resulted in the formation of 2H1, 2H3, 

and 2H2 serine within apolipoprotein B100 (descending enrichments in the same 

order).  The interconversion of serine and tetrahydrofolate to glycine and 5,10 

methylenetetrahydrofolate produced the singly- and doubly-labeled serine within 

that subject.  With regard to the current experiment, 13C3, 15N L-serine may 
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undergo cytosolic or mitochondrial metabolism including serine-glycine cycling.  

However, due to the positional isotope labeling of 13C3, 15N, serine-glycine cycling 

would not result in a shift of CER labeling.  In other words, the 13C that is cleaved 

when serine is converted to glycine is the same that is lost during the first step in 

CER synthesis.  Hence, our labeling pattern within CER would not be affected by 

this metabolic occurrence although, at the same time, we are unable to 

distinguish if the labeled serine used in CER synthesis had undergone serine-

glycine interconversion.  Alternatively, serine enters hepatic metabolism through 

pyruvate and, from here, has many fates.  It is possible for singly- and doubly-

labeled serine to be reformed following TCA cycling and gluconeogenic 

contributions to serine synthesis (an example is shown in supplementary figure 

S3.6).  Indeed, we observed an increase in singly-labeled CER across labeling 

days (data not shown) and were able to test our enrichment data against 

hypothetically-derived exponential models which when applied to our data, were 

in agreement with our enrichment observations.  In addition to the global 

metabolic use of serine, a second challenge is serine’s rapid turnover rate that 

exceeds the rate of CER turnover.  This can be observed in our free hepatic 

serine enrichment data that are lower than the CER 16:0 enrichments.  Multiple 

explanations for this finding are possible.  1 – The serine enrichments reported 

here represent the fully-labeled molecule.  As discussed above, it is likely hepatic 

metabolism of serine to generate a singly- or doubly-labeled serine (i.e., TCA and 

gluconeogenic activity) is partially responsible for the lower enrichments 

observed.  In conjunction with fasting conditions and the rapid rate of serine 
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turnover, increased M1 or M2 serine would lower the observed enrichment of 

13C3, 15N L-serine.  2 – Reduced water intake during the five hour fast prior to 

euthanasia may have resulted in rapid reductions in free serine enrichment that 

take much longer to translate to CERs.  3 – Muscle protein breakdown during the 

fast may have increased the pool of unlabeled or labeled serine (single or 

double) which could have diluted the fully-labeled pool in the liver.  Based on 

these observations, free serine may not be the best precursor pool for measuring 

CER synthesis.  Chen et al proposed the use of dhCERs as an appropriate 

precursor pool although our method was unable to detect any labeled 16:0 

dhCERs due to low abundance.  This is in opposition to previous findings (46) 

where CER enrichments were only 5-10% of the dhCER enrichments following a 

bolus dose of 13C 15N serine which suggested a slow conversion of dhCERs to 

CERs.  These conflicting results require further investigation and emphasize the 

importance of identifying an appropriate precursor pool that can be reliably 

quantified.   

 

In sum, as more data are generated implicating CERs in many metabolic 

conditions, methods to measure turnover are becoming increasingly crucial to 

better understand CER biology.  The choice of stable isotope and the method of 

delivery deserve consideration when designing in vivo flux studies, particularly for 

analysis of whole molecules like CERs.  The method presented here represents 

the first in depth investigation into total hepatic and liver mitochondrial turnover 
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using an oral serine isotope.  In addition to development of the turnover method, 

we also tested the effects of a two-week HFD on CER content. 

 

Interaction between total hepatic CERs and isolated mitochondrial CERs 

For the first time, the amount of CERs within whole liver homogenate was 

compared to the hepatic mitochondrial pool.  Both pools had increased saturated 

CERs with HFD feeding yet only mitochondria demonstrated significantly 

elevated total CER concentration with the HFD.  A growing collection of work has 

demonstrated increased mitochondrial CERs contribute to the induction of 

apoptosis (20, 21, 85, 86).  Mechanistically, CERs support the formation of large 

channels within the outer mitochondrial membrane (15, 87-90), increasing the 

permeability to small proteins like cytochrome c (15).  However much of this work 

was completed in cell culture lines and using very short chain CER analogs to 

increase concentrations from exogenous sources (e.g., CER 2:0-6:0).  While the 

current study did not characterize mitochondrial function beyond content, which 

was reduced in HFD animals, chronic elevations in energy intake result in 

deleterious metabolic derangements like nonalcoholic fatty liver disease and 

insulin resistance (91-94) and mitochondrial dysfunction may precede these 

developments (95).  Altogether, increased mitochondrial CER concentrations 

may be an early event in the development of mitochondrial dysfunction and 

associated metabolic diseases.  Our findings extend this hypothesis through the 

strong positive relationship between total hepatic and mitochondrial CERs only in 

HFD animals.  This relationship supports an acute dietary effect on the storage or 

synthesis of hepatic CERs with preference for the mitochondrial pool.  Simply 
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put, even with similar total hepatic content, two weeks of a 60% fat diet elicited 

elevations in mitochondrial CERs.  Surprisingly, this relationship was driven by 

very long chain CER species.  In other words, CER 16:0 and 18:0, which have 

been implicated in inducing mitochondrial apoptosis (20, 21), accumulated within 

mitochondrial and hepatic tissue linearly in both animal groups.  The groups 

diverged with respect to CER 20:0, 22:0, and 24:0 – with higher total 

mitochondrial content being related to higher liver content in HFD animals only.  

The mechanism of increased CER only within mitochondria of HFD animals 

remains unclear and raises multiple questions regarding hepatic CER handling.  

1- Are all mitochondrial CERs made locally, or can they be transported from 

other organelles (e.g., ER)?  2 – the opposite of #1 is also of interest: Are 

mitochondrial CERs trafficked away from mitochondria for storage or secretion?  

Might this be a protective mechanism for the organelle?  3 – Are hepatic CERs 

secreted to a greater extent with HFD, thus eliciting similar whole liver 

concentrations regardless of dietary composition or is it rather a matter of where 

the CER are located within hepatic tissues?  4 – What drives the differences in 

accumulation of specific CERs within mitochondrial and total hepatic tissues?  

Answers to these key questions will be important in understanding early 

developments of CER-related mitochondrial dysfunction. 

 

Key genes within the CER synthetic pathway were measured and demonstrated 

a unique negative feedback pattern of regulation shown graphically in figure 

3.13.  The rate limiting step in CER biosynthesis, SPT, was unaffected by the 



144 
 

HFD.  We expect this is partially due to a protective mechanism for this enzyme, 

as CERs are necessary for survival (96), however another possibility is the length 

of the diet was not sufficient to produce noticeable hepatic SPT changes.  

Correlation analysis revealed some CERs were positively related to SPT content 

while others correlated negatively.  Thus, differential regulation of the enzyme 

may be occurring in a setting of high fat feeding with specific CERs potentially 

inhibiting the enzyme (97).  Previous reports found eight weeks of the same HFD 

elicited an increase in hepatic SPT protein content (47, 83) and mRNA (98).  

Thus, a longer dietary intervention may have greater impacts on the SPT 

enzyme.  Similar to SPT, hepatic CERS1 was also unchanged by the two-week 

HFD while in contrast, both CERS2 and CERS6 were reduced in the same 

animals.  Previous studies report varying results regarding gene expression or 

protein content of these CERS.  With regard to gene expression, hepatic mRNA 

of CERS1 and 2 were elevated following an eight-week HFD in rats (98) while 

the same length diet in C57Bl/6 mice resulted in no changes to CERS2 or 6 

mRNA (99).  A 12-week HFD in mice resulted in decreased mRNA of the CERS2 

and 6 (12) whereas 18 weeks of a HFD (but not six or 12 weeks) yielded 

increased mRNA of CERS1 and CERS6 (100).  As for protein content, the same 

study (100) reported reduced CERS2 after six weeks of HFD and increased 

CERS6 after 18 weeks of HFD.  It is clear the regulation of gene expression and 

protein content of the CERS enzymes is complicated.  Our results support a 

feedback inhibition model of excess CER content early in nutrient excess.  While 

CERS1 was unchanged between diets, CER and dhCER 18:0, the main products 
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of this enzyme, were negatively related the hepatic protein content of this 

synthase, suggesting excess CER 18:0 may inhibit this enzyme.  Similarly, 

CERS2, which was reduced in HFD animals as has been previously reported 

with longer dietary interventions (100), may have been inhibited by the CER 

products 20:0, 22:0 and 24:1.  CERS6 did tend to be reduced with the HFD but 

correlated positively with the content of CER and dhCER 16:0.  We hypothesize 

that this enzyme may be susceptible for feedback regulation through other CER 

species as we report strong negative correlations with hepatic and mitochondrial 

20:0 and 22:0.  The next step within CER biosynthesis, DEGS1, was lower with 

the HFD feeding, and has been the target of recent research for lowering CER 

concentrations and improving hepatic steatosis and insulin resistance (19, 101).  

Finally, to monitor if changes in the other CER pathways were impacted through 

high fat feeding, we measured both acid sphingomyelinase and acid ceramidase, 

the former of which was lowered by HFD.  This was in opposition to an eight-

week HFD feeding study which reported increased mRNA and protein content of 

both SMPD and ASAH in rat liver (98).  In sum, our results support early 

increases in hepatic and mitochondrial CERs may be interacting with the protein 

content of key biosynthetic enzymes in CER synthesis.  Regardless of lower 

protein expression, we observed comparable changes between 16:0 CER 

content and turnover rates in hepatic and mitochondrial pools. 

 

Turnover of hepatic and mitochondrial CER 

We could detect the continuous incorporation of 13C3, 15N L-serine into the 

backbone of 16:0 liver and mitochondrial CERs.  The enrichments rose 
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throughout the 12-day labeling period and reached steady state in both groups 

around day 4.  The mice received an intraperitoneal bolus of the isotope on day 1 

and then consumed the label in the drinking water until euthanasia.  Thus, this 

labeling technique is analogous to a primed continuous infusion promoting the 

rapid attainment of steady state enrichments.  Using the generated labeling 

curves, an exponential model was fit to the data and produced fractional 

synthetic rates.  We report minimal differences in fractional liver 16:0 CER 

although absolute synthesis was 22% greater in HFD, due to higher liver 16:0 

concentrations.  Chen and colleagues (46) reported a 5-10 fold difference of 

plasma 16:0 CER within the same animal strain fed similar diets (HFD contained 

only 45% fat whereas the current study had a 60% fat diet).  However, the 

previous study fed the diet for 12 weeks and measured synthesis in plasma 

whereas the current animals consumed the diet for only two weeks and hepatic 

synthetic rates were measured.  Strong data from humans (102) and animals 

(19, 102) support the liver as the primary source of plasma CER (60-80%).  

Knowing this, plasma CER synthesis may reflect total hepatic CER synthesis.  

Compared to Chen et al, we observed similar but slightly lower fractional turnover 

rates in CD animals (~0.5 versus ~0.6 pools/day) whereas our HFD elicited much 

lower fractional hepatic turnover (~0.5) than previously reported (~1.1 pools/day).  

We believe these differences are due to the length of the dietary intervention (two 

versus 12 weeks).  Although plasma 16:0 CER turnover may not reflect the 

hepatic pool, our results from CD animals encourage future studies to compare 

the two pools to determine their relationship.  While a plasma measure of CER 
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turnover would eliminate the need for invasive tissue biopsies, it remains unclear 

how various hepatic pools of CER, particularly mitochondria may differ from 

plasma turnover. 

 

In opposition to liver, synthesis of mitochondrial CER 16:0 was strikingly different 

between the diet groups, with HFD animals having 2.5-fold greater synthetic 

rates than the CD animals.  In comparing these two related pools, we were 

surprised to find such vast differences in the turnover rate of the same CER 

species.  Mitochondrial 16:0 CER accounted for 17-18% of the total liver pool in 

both groups, thus it is evident that the other hepatic CER pools (e.g., ER, cellular 

membranes) must be turning over at different rates (some much slower) in HFD 

diet animals.  The same logic must then be applied to CD animals who 

demonstrated 36% greater total liver fractional synthesis when compared to 

mitochondria.  In other words, with greater total hepatic turnover than 

mitochondria specific turnover, the other hepatic pools must have had greater 

synthetic rates with CD.  A potential explanation for this finding is an inhibitory 

feedback response to greater total hepatic CER content in response to excess 

energy from the HFD which agrees with our observed decreases in protein 

content of multiple CER biosynthetic enzymes described above.  This raises the 

question whether mitochondria also exhibit a similar early feedback inhibitory 

mechanism with HFD feeding that was not detected in the current investigation.  

Finally, dhCER concentrations deserve some mention as an intermediate lipid 

within the CER synthetic pathway.  It remains unclear whether dhCERs 
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themselves are signaling molecules (101) or ‘innocent’ intermediates to 

sphingolipid synthesis thereby conferring minimal lipotoxic risk (19).  Our data 

support dhCERs as markers of the rate of CER synthesis, as has been 

previously proposed (19).  Specifically, total liver and mitochondrial dhCER 16:0 

content mirrored our observed changes in 16:0 turnover; both hepatic dhCER 

16:0 concentrations and fractional synthesis were unchanged between diet 

groups whereas the HFD animals exhibited significantly higher mitochondrial 

16:0 dhCERs as well as 16:0 fractional turnover.  Taken together, our basic 

kinetic studies demonstrate the regulation of hepatic CER pools are independent 

from whole tissue handling but may impact turnover rates in other pools and 

should be the focus of deeper investigation going forward.  

 

Strengths, limitations, and future directions 

The current study has many strengths that deserve mention.  1- this is the first 

investigation to present a method of oral-delivery of L-serine to quantify tissue 

and organelle CER synthesis.  Oral delivery is simple, increases the throughput 

of the method, and may be translated to other models.  With the elimination of an 

infusion, oral serine may allow for better understanding of CER synthesis in free 

living situations.  The use of L-serine is especially convenient as it can be applied 

to measure the synthesis of all CER species and theoretically can be applied to 

measure dhCERs as well.  However, a key limitation of the current method is the 

reproducibility of the isotope labeling with the LC/MS fragmentation scheme.  It is 

likely with the current method, CERs in very small quantities along with dhCERs 



149 
 

may be unreliably detected and will require more sensitive techniques to 

minimize the background noise.  Aggregating this analytical hurdle is the cost 

associated with labeled serine and the quantity required to achieve a detectable 

peak.  Nevertheless, as we gain more knowledge regarding CERs implicated in 

disease progression, this method can be adapted and optimized for other CER 

species.  2- Unlike other precursors, L-serine is incorporated at only one location 

in the product molecule and the likelihood of recycling a serine-derived label into 

other parts of the molecule (i.e., palmitate) is expected to be low.  Therefore, the 

use of this isotope allows for direct labeling of the CER backbone and 

subsequent incorporation into CER biosynthesis rather than indirect through the 

synthesis of palmitate with a deuterium label.  3- With the isolation of hepatic 

mitochondria, we were able to gain a greater understanding of the hepatic 

handling of CERs.  Additionally, the inclusion of a HFD animal group allowed us 

to test how our method worked in a setting of perturbed metabolism and 

significantly contributed to our discovery of early hepatic partitioning of CERs that 

may be important in the development of mitochondrial dysfunction.   

 

Above we outlined the technical and analytical considerations of this and other 

kinetic methods for CER synthesis.  In addition to these considerations, our 

results are also limited in other ways.  1- As this was a method development 

project aimed at establishing turnover protocols, we did not measure 

mitochondrial function (e.g., respiration rates, apoptosis, ROS production).  

Future studies should combine these basic assessments with the current labeling 
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paradigm to ascertain if early alterations in CER synthesis are related to early in 

vivo mitochondrial dysfunction.  2- We did not measure serum CER 

concentrations or 16:0 synthetic rates.  The background noise associated with 

serum extractions significantly limited the accuracy and reproducibility of the 

data.  Thus, we are unable to determine how circulating CERs were related to 

hepatic and mitochondrial content.  Future studies should allocate larger 

quantities for measurement of circulating serum CERs and turnover.  3- The 

concentrations reported here are above many previous reports (although not all 

(12)) which may be a result of greater sensitivity of the current protocol or could 

be a result of poorly-matched internal standards.  Specifically, the very long chain 

CERs were found in high concentrations, greater than what was expected, which 

may be a result of the CER 18:1/17:0 internal standard which may unreliably 

inflate the area ratios of very long chain CERs based on the analytical detection 

of the various species.  Currently the lack of a very long chain internal standard 

limits the quantification precision of these CER species and stable isotope 

internal standards may offer greater assay precision if they do not interfere with 

the labeling pattern within the biological samples.  It is of note that the current 

method was optimized for the quantification of 16:0 CER and we are highly-

confident in the results for this species which match other publications (19, 62, 

66). 

 

Conclusion 

Strong genetic and pharmacologic evidence supports CERs directly contributing 

to many metabolic diseases thereby extending the sphingolipids role from simply 
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a biomarker to a functional driver in disease pathogenesis and progression.  With 

our constantly evolving knowledge of CERs, methods for tracking CER synthesis 

will be essential for drug development in this area.  Here we present evidence of 

an LC/MS method combined with a L-serine stable isotope to track the synthesis 

of hepatic and mitochondrial CERs.  We are the first to report the robust increase 

in the turnover and content of CERs within mitochondria of HFD-fed animals.  

Future studies should assess whether early increases in mitochondrial CERs are 

implicated in the pathogenesis of related conditions like nonalcoholic fatty liver 

disease, which is characterized by mitochondrial dysfunction.  
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EXTENDED METHODOLOGY 

 

Ceramide – Extraction and LC/MS 

Liver and mitochondrial (200 µL) samples and internal standard (CER 18:1/17:0, 

50 ng) were extracted with chloroform and methanol according to Bligh and Dyer 

(65).  The bottom (organic) layer was removed and dried and the remaining 

water layer re-extracted with an additional two mL of chloroform, and the organic 

layers collapsed then dried under nitrogen gas.  An azeotropic agent (methylene 

chloride) was used to remove any remaining water.  Samples were dissolved in 

100 µL of 0.1% formic acid solution in methanol-water (85:15) then were injected 

(5 µL) into a Waters HPLC device (2690 Separation Module, Milford, MA) and 

separated through an Vydac® 200MS™ C8 column (2.1 x 100 mm, 5 µm, 

P.J.Cobert Associates, St. Louis, MO).  Details of the LC methodology are shown 

in table EM3.1.  A Thermo Scientific TSQ (Triple-Stage Quadrupole) Quantiva 

mass spectrometer was used for ceramide identification and table EM3.2 

presents the transitions and retention times for all CERs and dhCERs monitored.  

Figure EM3.1 demonstrates an example of the collision induced ionization for 

CER 18:1/16:0 (CER containing a palmitate on the fatty acyl chain, catalyzed by 

CERS5 or 6) using this method.  The daughter ion includes the backbone of the 

CER or dhCER molecule, thus the transition would include the unlabeled or 

labeled (M3) serine molecule.  An important note for the monitored transitions is 

the process of CER synthesis results in a loss of a single labeled 13C within the 

original labeled serine (see figure 1.6). 
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Serine – Extraction and GC/MS 

Serine was extracted from 500 µL (~25 mg starting tissue) of whole liver 

homogenate (homogenized as described for CER extraction in buffer B: 1,000 

µL, sucrose 250 mM, KCl 25 mM, tris-base 50 mM, and EDTA 0.5mM).  Formic 

acid (# AC270480010, Acros Organics, Waltham, MA) was added to the 

homogenate (forming a six percent formic acid solution) and the mixture diluted 

with two volumes of water (~1.1 mL) then run over an ion exchange column (# 

L13922.30, Alfa Aesar, Dowex 50WX8 resin, 200-400 hydrogen form) as 

described previously (68).  The column was washed with water (six mL) and then 

the serine was eluted with 4N ammonium hydroxide (two mL; # AC423305000 

Acros Organics, Waltham, MA). The eluent was dried and derivatized with 100 

µL of bis(trimethylsilyl) trifluoroacetamide + 10% trimethylchlorosilane (BSTFA + 

10% TMCS; # 15209, Supelco, Bellefonte, PA) at 80°C for two hours.  The TMS 

serine derivatives were injected (one µL) into a 6890N gas chromatography 

coupled to a 5975 mass spectrophotometry detector (Agilent Technologies, Palo 

Alto, CA) using a DB-17MS capillary column (30 m length, inner diameter 0.25 

mm, and 0.25 μm film, Part# 122-4732, Agilent J&W GC Columns, ChromTech, 

Inc., Apple Valley, MN) and helium as a carrier gas.  Details of the serine GC/MS 

method are shown in table EM3.3.  The free serine enrichment was determined 

using electron impact ionization (70 eV) and selected ion monitoring (m/z 204-

207).  The unlabeled and labeled serine derivatives (tri-trimethylsilyl) are shown 

in figure EM3.2 with the GC/MS ion fragmentation. 

 

Liver TG content 
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Liver tissue (29.9 ± 0.9 mg) was combined with one mL of a chloroform: 

methanol (2:1, vol:vol) mixture and homogenized at 20hz for two minutes and 

then an additional two minutes following ten minutes on ice.  The samples were 

gently homogenized overnight on a slowly spinning wheel.  The next day one mL 

of four mM magnesium chloride was added to each sample and the samples 

were centrifuged for one hour at 1000 g at 4°C.  The bottom (organic) phase was 

removed (500 µL) and dried overnight.  The dried lipids were reconstituted with a 

tert-butanol (#471712 Sigma, St. Louis, MO) Triton-x114 (#X114, Sigma, St. 

Louis, MO) mix (3:2).  Using reverse pipetting, three µL of standards (#F7793, 

Sigma, St. Louis, MO) and samples were loaded into a 96 well plate and the 

reaction buffer (300 µL; TG reagent #T2449 and free glycerol reagent #F6428, 

Sigma, St. Louis, MO) was added and the plate incubated at 37°C for 40 

minutes.  After the incubation, the plate was shaken for ~five minutes (or until the 

blank became clear) and read at 540 nm to quantify absorbance.  The final value 

was reported in milligram TG per gram of liver tissue and the percent of total liver 

TG was calculated as the gram TG per gram of liver tissue.  

 

Western blotting 

Sample processing:  Liver tissue (50.4 ± 1.4 mg) was weighed and homogenized 

in protein lysis buffer (ten µL:one mg tissue, see below) at 20hz for two minutes 

and then an additional two minutes following ten minutes on ice.  Samples were 

then centrifuged at 4°C and 1,500 g for 25 minutes and the supernatant 

removed.  Protein content was measured via BCA assay (#23225, Thermo 
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Fisher Scientific, Rockford, IL).  Using the protein concentration, the volume of 

sample needed to reach three µg protein/µL was calculated and combined 1:1 

with Laemmli 2X buffer (see below).  The samples were heated within a water 

bath (100°C) for five minutes, immediately removed, vortexed, and frozen in -

80°C for storage.  

Sample run and analysis:  Thawed samples (20 µg) were loaded into 4-20% gels 

(#5671085, Bio-Rad, Hercules, CA) in 1X tris-glycine sulfate-polyacrylamide 

(SDS) buffer (#1610772, Bio-Rad, Hercules, CA) and electrophoresed at 100 

volts (V) for 10 minutes and then 200V for 40 minutes.  Blots were transferred to 

a polyvinylidene difluoride transfer membrane (#88518; Thermo Fisher Scientific, 

Rockford, Ill., USA) and blocked with five percent milk in tris-buffered saline 

(TBS, #BP1525, Fisher Scientific, Fair Lawn, NJ) + tween 20 buffer (TBST, 

#B7337-500, Fisher Scientific, Fair Lawn, NJ) for one hour at room temperature.  

Primary antibodies (1:1,000) were then added to the membranes and left 

overnight in a cold room on a rocker.  Membranes were washed with TBST and 

then secondary antibodies (1:5,000) were added and left to incubate at room 

temperature for one hour.  Membranes were washed again with TBST, then TBS, 

and analyzed via densitometric analysis using ChemiDocTM MP Imaging System 

(Image Laboratory Beta 3, Bio-Rad Laboratories, Hercules, CA).  Each sample 

was adjusted to the average intensity of all samples on the membrane and total 

protein was quantified with 0.1% amido black (#100563, MP Biomedicals, Solon, 

OH) solution (500 ml distilled water, 400 ml methanol, 100 ml acetic acid, and 

one g Amido black).  The staining controls for the differences in protein loading 
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and gel-membrane transfer.  The total protein staining for each lane, quantified 

by laser densitometry was used to correct for any differences in protein loading 

or transfer of all band densities (69). 

 

Protein lysis buffer:  Stock solution (44.2 ml) containing 50 mM HEPES (#BP310-

1, Fisher Scientific, Fair Lawn, NJ), 12 mM sodium pyrophosphate (#7772-88-5, 

Aldrich Chemicals, Milwaukee, WI), 100 mM sodium fluoride (#S6776, Sigma, St. 

Louis, MO), and 10 mM EDTA (#BP120-500, Fisher Scientific, Fair Lawn, NJ) 

was mixed with 400 μL of each phosphatase inhibitors (#P0044 and P52726, St. 

Louis, MO) and five mL of 10% Triton (100X-Triton, #7-X198, JT Baker 

Chemicals, Phillipsburg, NJ). A protease inhibitor tablet (#1187358001, Roche 

Diagnostics, Indianapolis, IN) was added to this solution. 

Laemmli buffer:  β-mercaptoethanol (BME, #BP176, Fisher Scientific, Fair Lawn, 

NJ) was mixed with 2X Laemmli (#1610737, Bio-Rad, Hercules, CA) in a 1:20 

ratio.  

Primary and secondary antibodies:  Primary antibodies used are as follows: 

SREBP-1 (Santa Cruz #13551, anti-mouse monoclonal IgG1; 1:1,000 dilution), 

serine palmitoyl transferase (SPTLC1; Santa Cruz #374143, anti-mouse 

monoclonal IgG1; 1:1,000 dilution), dihydroceramide desaturase (DES1/FADS7; 

Santa Cruz #134338, anti-mouse monoclonal IgM; 1:1,000 dilution), ceramide 

synthase 1 (CERS1/LASS1; Sigma Aldrich SAB2104843, anti-rabbit polyclonal; 

1:1,000 dilution), ceramide synthase 2 (CERS2/LASS2; Santa Cruz #390745, 

anti-mouse monoclonal IgG1; 1:1,000 dilution), ceramide synthase 6 
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(CERS6/LASS6; Santa Cruz #100554, anti-mouse monoclonal IgG2a; 1:1,000 

dilution), acid sphingomyelinase (SMPD1; Bio-Rad #AHP3001, anti-rabbit 

polyclonal IgG; 1:1,000 dilution), and acid ceramidase (ASAH1; Sigma-Aldrich 

#ABN468, anti-rabbit polyclonal; 1:1,000 dilution).  The oxidative phosphorylation 

complexes I-V were also quantified by western blot (Total OxPhos cocktail; 

AbCam #ab110413, anti-mouse; 1:1,000 dilution).  Secondary antibodies used 

include HRP-linked anti-mouse (#7076S, Cell Signaling, Danvers, MA) and anti-

rabbit (#7074S, Cell Signaling, Danvers, MA) IgG at 1:5,000 dilution.   

 

Citrate synthase activity 

Isolated mitochondria used for CER analysis were diluted to reach a 1:30 dilution 

and freeze fractured (three times) in liquid nitrogen.  The samples (ten µL, in 

triplicate) were loaded into a 96 well plate, six samples at a time along with a 

blank (water) and then the reaction buffer (see below) was added (170 µL).  The 

samples and reaction buffer were incubated at 37°C for two minutes and then 

three mM acetyl-CoA (30 µL) was added immediately.  The activity was 

monitored using a BioTek spectrophotometer (Synergy H1, New Castle, DE) at 

405 nm over seven minutes, producing activity curves.  The fit of the curves were 

examined (r2 = 0.98-1.00), activity triplicates were averaged, the value divided by 

73.82, multiplied by 1000 and divided by the quantity of protein loaded to 

produce nmol citrate produced /minute /µg protein. 

Reaction buffer:  10.5 mL of 100 mM tris stock (#BP152, Fisher Scientific, Fair 

Lawn, NJ) was mixed with one and a half mL of one mM DTNB in tris stock 
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(#D8310, Sigma, St. Louis, MO) and 750 µL of ten mM oxaloacetate in tris stock 

(#04126, Sigma, St. Louis, MO).   

 

Power calculation 

A power analysis (extended methodology table EM4.4) demonstrated two to 

four mice would be required to detect dietary and sex differences in liver CER 

16:0 concentrations.  With a current sample size of 24 animals per group 

(12/sex), we have 90% power to detect differences in these outcomes at 

between CD and HFD or male and female mice.  
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Extended Methodology Tables and Figures 

 

Table EM3.1.  Details of CER LC/MS methodology 

 

Table EM3.2.  Transitions and retention time for all species analyzed 

Ceramide Transition  
(m/z) 

Retention time 
(minutes) 

18:1/17:0 552.6 → 264 4.42 

18:1/14:0 510.5 → 264 4.10 

18:1/16:0 538.5 → 264 4.32 

18:1/18:0 566.4 → 264 4.50 

18:1/18:1 564.4 → 264 4.35 

18:1/20:0 594.4 → 264 4.69 

18:1/22:0 622.6 → 264 4.84 

18:1/24:0 650.6 → 264 4.98 

18:1/24:1 648.6 → 264 4.81 

   

Labeled Ceramide Transition  
(m/z) 

Retention time 
(minutes) 

18:1/16:0- M1 539.5 → 265 4.32 

18:1/16:0- M3 541.5 → 267 4.32 

   

Dihydroceramide Transition  
(m/z) 

Retention time 
(minutes) 

18:0/16:0 540.6 → 266 4.40 

18:0/18:0 568.4 → 266 4.57 

18:0/24:0 652.6 → 266 4.98 

18:0/24:1 650.6 → 266 4.88 

 

 

 

 

Mobile phases A) Water + 0.2% formic acid 
B) Acetonitrile/2-propanol (50/50) + 0.2% formic acid 

Flow 0.3 mL/min 

Gradient 0-1 minutes: 65% B 
1-4 minutes: 65%B to 100%B 
4-16 minutes: 100%B 
16-16.1 minutes: 100%B to 65%B 
16.1-22 minutes: 65%B 
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Table EM3.3.  Details of GC/MS serine methodology 

 

Table EM3.4.  Power calculation based on previous studies and pilot data 

 

Two group  
comparisons 

Control  
diet 

High fat  
diet 

Pooled  
SD 

Power Alpha n/group 

Liver total [CER]1 2.75 10.25 3.3 90% 0.05 4 
 Male Female     
Liver [16:0 CER]3 2.3 3.2 0.3 90% 0.05 2 

1 Data from ref. (103), 3-day control and high fat diet fed C57Bl/6; Units: µg/mg 
protein 
2 Data from Mucinski-pilot data, Control diet; Units: nmol/g tissue 
 
  

Injection volume 1 µL 

Injector temperature (°C) 240°C 

Transfer line 
temperature (°C) 

310°C 

Split Ratio 1:30 

Oven 0-2 minutes: 80°C 
2-19.5 minutes:  80°C to 220°C (8°C/min) 
19.5-21.5 minutes: 220°C to 310°C (45°C/min) 
21.5-27.5: 310°C 
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Figure EM3.1.  Collision induced induced ionization of CER 18:1/16:0 

 

Figure EM3.2.  Unlabeled and labeled serine derivatives (tri-trimethylsilyl) 
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Table 3.1.  Macronutrient composition and ingredients for control and high fat 

diets 
 

 Control Diet High Fat Diet 

Macronutrient 
% total 
grams 

% total 
kcal 

% total 
grams 

% total 
kcal 

Protein 19% 20% 26% 20% 

Carbohydrate 67% 70% 26% 20% 

Fat 4% 10% 35% 60% 
     

Ingredient gram kcal gram kcal 

Casein 200 800 200 800 

L-Cystine 3 12 3 12 

Corn Starch 506.2 2,024.8 0 0 

Lodex 10 1 125 500 125 500 

Sucrose 72.8 291.2 72.8 291.2 

Solka Floc 2 50 0 50 0 

Soybean Oil 25 225 25 225 

Lard 20 180 245 2,205 

Mineral Mix3 50 0 50 0 

Vitamin Mix4 1 4 1 4 

Choline 
Bitartrate 

2 0 2 0 

Yellow Dye #5 0.04 0.00 0.00 0.00 

Blue Dye #1 0.01 0.00 0.05 0.00 

          

Total 1,055.05 4,037.00 773.85 4,037.00 

Kcal/gram 3.38 5.22 
 

Data adapted from researchdiets.com (CD: # D12450J and HFD: # D12492) 
1 Maltodextrin, 2 Cellulose, 3 S10026, 4 V10001 
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Table 3.2.  Fatty acid composition of control and high fat diets 
 

Fat source 

Control Diet 
g/100g 

High Fat Diet 
g/100g 

Soybean oil 2.37 3.23 
Lard 1.90 31.66 
   

Fatty acid g/100g (%TFA) g/100g (%TFA) 

Capric (10:0) <0.01  (0.04%)   0.03  (0.09%) 

Lauric (12:0) <0.01  (0.04%)   0.03  (0.09%) 

Myristic (14:0)   0.03  (0.73%)   0.48  (1.38%) 

Palmitic (16:0)   0.74  (17.52%)   8.57  (24.76%) 

Palmitoleic (16:1)   0.06  (1.53%)   1.05  (3.03%) 

Stearic (18:0)   0.35  (8.26%)   4.40  (12.71%) 

Oleic (18:1)   1.38  (32.53%) 14.65  (42.29%) 

Linoleic (18:2)   1.45  (34.20%)   4.74  (13.69%) 

Linolenic (18:3)   0.19  (4.42%)   0.37  (1.07%) 

Arachidic (20:0)   0.01  (0.26%)   0.07  (0.21%) 

Gondoic (20:1)   0.01  (0.31%)   0.22  (0.64%) 

Behenic (22:0)   0.01  (0.17%)   0.01  (0.03%) 
 

Data are presented as grams of the fat source or fatty acid per 100 g of the 
respective diet (g/ 100 g) and percent of total fatty acids (%TFA). 
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Table 3.3.  Energy and water intake 
 

 Control Diet High Fat Diet P - value 

Food intake (g/day) 2.38 ± 0.29   2.49 ± 0.23 0.156 
Carbohydrates 1.60 ± 0.22   0.65 ± 0.08 < 0.0001 
Protein 0.45 ± 0.06   0.65 ± 0.08 < 0.0001 
Fat 0.10 ± 0.01   0.87 ± 0.11 < 0.0001 

Energy intake (kcal/day) 9.35 ± 0.68 13.00 ± 1.21 < 0.0001 

Carbohydrates 6.56 ± 0.56   2.61 ± 0.32 < 0.0001 

Protein 1.87 ± 0.16   2.61 ± 0.32 < 0.0001 

Fat 0.94 ± 0.08   7.82 ± 0.95 < 0.0001 

Water intake (mL/day) 4.4 ± 0.6   4.3 ± 0.6 0.875 

Labeled serine intake1 3.9 ± 0.6   3.9 ± 0.6 0.875 
 

Data are presented as mean ± SD; n = 24 per group; P-value represents one-
tailed, unpaired t-test.  
1 mg/day; Calculated as the product of the water serine concentration (0.9 

mg/mL) and average daily water intake.  
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Table 3.4.  Inter- and intraassay precision for liver and mitochondrial CER 
 

Liver ceramide Interassay Intraassay 

18:1/14:0 0.8% 1.0% 
18:1/16:0 3.5% 4.4% 
18:1/18:0 0.5% 0.6% 
18:1/18:1 4.5% 3.6% 
18:1/20:0 3.7% 4.3% 
18:1/22:0 0.5% 1.4% 
18:1/24:0 2.1% 3.6% 
18:1/24:1 2.3% 4.4% 
   
Mitochondrial ceramide Interassay Intraassay 

18:1/14:0 1.7% 1.6% 

18:1/16:0 5.0% 2.9% 

18:1/18:0 2.1% 4.3% 

18:1/18:1 5.4% 3.7% 

18:1/20:0 3.6% 5.8% 

18:1/22:0 2.6% 5.9% 

18:1/24:0 4.4% 7.8% 

18:1/24:1 3.6% 4.3% 
 

  

 

Data are presented as the coefficient of variation (CV) of the same pooled 
sample analyzed five times (inter-) and a pooled sample extracted five times on 
different days across two weeks (intra-).  
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Table 3.5.  Kinetics of liver and mitochondrial CER 16:0 
 

Liver ceramide Control diet High fat diet 

Predicted asymptote 2.7% 2.4% 
16:0 CER made de novo1  0.07 ± 0.02 0.08 ± 0.03 
FSR (pools/d)2 0.47 0.47 
ASR (nmol/g tissue/day)2 1.33 1.71 
T1/2 (pools/ day) 1.5 1.5 
   
Mitochondrial ceramide Control diet High fat diet 
Predicted asymptote 2.5% 3.0% 
16:0 CER made de novo1  0.03 ± 0.01       0.06 ± 0.02*** 
FSR (pools/d)2 0.35 0.62 
ASR (nmol/g tissue/day)2 0.47 1.21 
T1/2 (pools/ day) 2.0 1.1 
 

  

 

1 µmol/g tissue containing the serine label.  It is important to note that not all 
newly-made 16:0 CER become labeled.  Steady state contribution of the liver or 
mitochondrial CERs (days 4-12) were multiplied by the respective pool size.   
2 FSR, fractional synthesis rate and ASR, absolute synthesis rates are also 
shown in figure 3.10. 
*** P < 0.001 compared to CD  
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Figure 3.1.  Experimental design and labeled serine stable isotope 
 

 
 

Blue stars on the serine molecule indicate a 13C or 15N isotope.   
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Figure 3.2.  Anthropometrics and liver weight 
 

 
 

Data are presented as mean ± SEM (A-B) and mean ± SD (C); n = 48 (CD = 24; 
HFD = 24).  ** P < 0.01; *** P < 0.001. 
A:  Changes in total body weight across the diet.  Three-way between factors 

ANOVA (time x diet).  
B:  Changes in percent lean and fat mass across the pre- and post-diet.  Two-

way between factors ANOVA (time x diet).  
C:  Total liver weight; Unpaired, two-tailed t-test.  
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Figure 3.3.  Serum and liver biochemistries 
 

 
 

Data are mean ± SD;  unpaired, two-tailed t-tests.  
A-C:  Serum (A) glucose (n = 47, 1 HFD missing) and (B) insulin (n = 45, 2 HFD 

and 1 CD missing) and (C) the homeostatic model assessment for insulin 
resistance (HOMA-IR, n = 45, 2 HFD and 1 CD missing) which was 
calculated at the product of glucose (mmol/L) and insulin (µIU/mL) divided 
by the constant 22.5 (70, 71).   

D:  Serum NEFA concentrations (n = 47, 1 HFD missing). 
E-F:  Serum (E, n = 47, 1 HFD missing) and intrahepatic (F, n = 47, 1 HFD 

missing) TG (IHTG) concentrations.  Percentages within the IHTG bars 
represent the mean ± SD of the percent of liver fat present in each group.  
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Figure 3.4.  Whole liver CER and dhCER concentrations 
 

 
 

Data are presented as mean ± SD; n = 24/diet; unpaired, two-tailed t-tests.   
CD (white bars) verses HFD (green bars) within total or individual species: # P < 
0.10, * P < 0.05, ** P < 0.01, *** P < 0.001.  All CER presented contain an 18:1 
backbone whereas dhCER contain an 18:0 backbone. 
A-B:  Total liver (A) CER or (B) dhCER. 
C-D:  Individual liver (C) CER and (D)  dhCER species. 
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Figure 3.5.  Molar percent of individual liver CER 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data are presented as mean molar percent ± SD; n = 24/diet; unpaired, two-
tailed t-tests.  All CER presented contain an 18:1 backbone. 
A-B:  Proportions of individual hepatic CER making up the total pool in animals 

consuming a (A) control or (B) high fat diet.  
C:  Comparison of the molar percentages of each individual liver CER species 

between the animal groups.  

Molar percent of total liver CER 

CER species Control diet High fat diet P value 

14:0   0.10 ± 0.03%   0.10 ± 0.02% 0.365 

16:0   0.55 ± 0.19%   0.68 ± 0.17% 0.015 

18:0   0.32 ± 0.15%   0.61 ± 0.31% < 0.001 

18:1   0.15 ± 0.04%   0.15 ± 0.03% 0.589 

20:0   0.84 ± 0.30%   1.87 ± 0.67% < 0.0001 

22:0 29.67 ± 6.55% 29.49 ± 5.28% 0.916 

24:0 25.87 ± 3.81% 23.21 ± 2.67% 0.007 

24:1 42.50 ± 5.63% 43.90 ± 5.73% 0.399 
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Figure 3.6.  Isolated mitochondrial CER and dhCER concentrations 
 

 
 

Data are presented as mean ± SD; n = 24/diet; unpaired, two-tailed t-tests.   
CD (white bars) verses HFD (green bars) within total or individual species: # P < 
0.10, * P < 0.05, ** P < 0.01, *** P < 0.001.  All CER presented contain an 18:1 
backbone whereas dhCER contain an 18:0 backbone. 
A-B:  Total mitochondrial (A) CER or (B) dhCER. 
C-D:  Individual mitochondrial (C) CER and (D) dhCER species. 
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Figure 3.7.  Molar percent of individual mitochondrial CER 
 

 

Molar percent of mitochondrial CER 

CER species Control diet High fat diet P value 

14:0   0.06 ± 0.02%   0.04 ± 0.02% < 0.0001 

16:0   0.89 ± 0.25%   0.90 ± 0.49% 0.955 

18:0   0.56 ± 0.32%   0.90 ± 0.51% 0.008 

18:1   0.09 ± 0.03%   0.06 ± 0.02% < 0.001 

20:0   1.84 ± 1.08%   4.50 ± 1.82% < 0.0001 

22:0 19.60 ± 5.29% 20.09 ± 6.43% 0.774 

24:0 28.90 ± 4.62% 41.39 ± 4.90% < 0.0001 

24:1 48.04 ± 7.99% 32.11 ± 9.47% < 0.0001 
 

Data are presented as mean molar percent ± SD; n = 24/diet; unpaired, two-
tailed t-tests.  All CER presented contain an 18:1 backbone. 
A-B:  Proportions of individual hepatic mitochondria CER making up the total 

pool in animals consuming a (A) control or (B) high fat diet.  
C:  Comparison of the molar percentages of each individual mitochondrial CER 

species between the animal groups.  
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Figure 3.8.  Relationship between total liver and mitochondrial CER 
 

 
 

Relationship between total liver and hepatic mitochondrial CER (Pearson 
correlation).  Animals fed a CD (n = 24) are shown in white and HFD in green (n 
= 24).  
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Figure 3.9.  Percent enrichment of 16:0 CER across days  
 

 
 

Data are presented as mean ± SEM in black and individual animals are 
presented in white for CD and green for HFD (n = 2-4/timepoint).  ANOVA for 
differences across labeling days (all P < 0.0001) and post-hoc t-test with 
Bonferroni adjustments # P < 0.10, * P < 0.05, ** P < 0.01, *** P < 0.001 versus 
unlabeled (day 0).  
A-B:  Liver CER 16:0 percent enrichment across labeling days (0, 1, 2, 4, 7, 12) 

for (A) CD and (B) HFD.  
C-D:  Mitochondrial CER 16:0 percent enrichment across labeling days (0, 1, 2, 

4, 7, 12) for (C) CD and (D) HFD.  
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Figure 3.10.  Fractional and absolute synthesis rate of 16:0 CER in liver and 
isolated mitochondria 

 

 
 

Data are calculated as fractional (pools/day) and absolute (nmol/g tissue/day) 
turnover.  Enrichment data were fitted to a single exponential curve to produce 
fractional turnover and plateau %E.  Fractional turnover was multiplied by the 
total pool of 16:0 CER to calculate absolute synthesis.  Due to the nature of the 
experiment and the average of animals within a day used to create a single curve 
(black lines in figure 3.9), a single turnover rate was calculated within a diet and 
thus no statistical analysis was performed. 
A-B:  Liver 16:0 CER (A) fractional and (B) absolute synthesis rates. 
C-D:  Mitochondrial 16:0 CER (C) fractional and (D) absolute synthesis rates.  
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Figure 3.11.  Whole liver homogenate protein expression of key CER synthetic 
enzymes 

 

 
 

Data are mean ± SD; unpaired, two-tailed t-tests. Animal fed a CD are shown in 
white bars and HFD in green bars.  
A:  Total liver protein content of CER synthases 1,2, and 6 (n = 24/diet).   
B:  Total liver protein content of serine palmitoyl transferase (SPT 1, n = 24/diet) 

and dihydroceramide desaturase (DEGS1, n = 24/diet). 
C:  Total liver protein content of acid sphingomyelinase (SMPD 1, n = 24/diet) 

and acid ceramidase (ASAH 1, n = 23/HFD and 24/CD). 
D:  Representative blots for the target proteins for each diet.  
.  
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Figure 3.12.  Mitochondrial citrate synthase activity and hepatic protein 
expression of the oxidation phosphorylation complexes 

 

 
 

Data are mean ± SD; unpaired, two-tailed t-tests. Animal fed a CD are shown in 
white bars and HFD in green bars.  
A:  Whole liver homogenate citrate synthase activity (n = 24/diet).   
B:  Total liver protein content of the oxidative phosphorylation complexes (n = 

24/diet). 
C:  Representative blots for the target proteins for each diet.  
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Figure 3.13.  Model demonstrating effects of HFD on hepatic CER synthesis 
 

 
 

Blue arrows indicate an effect of the HFD and the dotted lines signify the 
hypothesized feedback inhibition of elevated CER concentrations.   
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Supplementary Table S3.1.  Sex differences for serum biochemistries and 

hepatic TG content 
 

 Control Diet High Fat Diet 

 Male Female Male Female 

Body weight (g)*,# 26.3 ± 2.5 20.5 ± 0.8 28.1 ± 1.5 23.0 ± 2.1 
Lean mass (%)    83 ± 3    78 ± 3    72 ± 3    73 ± 5 
Fat mass (%)*    12 ± 3    15 ± 3    24 ± 3    22 ± 5 
Serum glucose (mg/dL)*,#  236 ± 60  185 ± 33  273 ± 40  217 ± 24 
Serum Insulin (ng/dL)#  170 ± 53  101 ± 30  195 ± 46    92 ± 31 
HOMA-IR#    31 ± 14    13 ± 4    39 ± 12    14 ± 5 
Serum NEFA (mmol/L)* 0.27 ± 0.04 0.26 ± 0.05 0.31 ± 0.05 0.30 ± 0.06 

Serum TG (mg/dL)*,#, ҂    41 ± 6    28 ± 4    27 ± 8    24 ± 6 
Hepatic TG (mg/g)*,#    11 ± 3    18 ± 6    20 ± 6    22 ± 6 

 

Data are presented as mean ± SD and are post-diet measurements (n = 
12/diet/sex). 
* Main effect of diet (P < 0.01) 
# Main effect of sex (P < 0.001) 
҂ Interaction effect (P < 0.05)  
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Supplementary Table S3.2.  Day of euthanasia body and organ weights 
 

 Control Diet High Fat Diet  

Total body weight (g)**   23.0 ± 3.6   26.8 ± 4.7 
Liver (mg) 946.9 ± 175.9 971.7 ± 190.7 
Heart (mg) 107.7 ± 16.8 113.1 ± 14.9 
Kidneys (mg)* 236.7 ± 38.8 267.1 ± 48.8 
Epididymal fat (mg)*** 433.8 ± 140.0 899.2 ± 357.8 
Inguinal fat (mg)*** 110.5 ± 34.4 196.7 ± 88.8 
Gastrocnemius (mg) 181.9 ± 30.2 190.9 ± 31.0 
Heart:body weight (mg/g)**     4.7 ± 0.4     4.3 ± 0.5 

 

Data are presented as mean ± SD; (n = 24/diet). 
Two-tailed, unpaired t-test; # P < 0.10, * P < 0.05, ** P < 0.01, *** P < 0.001  
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Supplementary Table S3.3.  Liver free serine enrichment 
 

Days on isotope High Fat Diet  Control Diet 

 Male Female Male Female 

Unlabeled (zero days) 0.03 ± 0.00% 0.03 ± 0.00% 0.03 ± 0.00% 0.03 ± 0.00% 

One day 0.52 ± 0.09% 0.58 ± 0.07% 0.68 ± 0.01% 0.66 ± 0.03% 

Two days 1.21 ± 0.25% 0.98 ± 0.20% 0.98 ± 0.00% 0.96 ± 0.02% 

Four days 1.04 ± 0.08% 0.88 ± 0.08% 0.88 ± 0.04% 1.00 ± 0.16% 

Seven days 0.96 ± 0.02% 1.17 ± 0.20% 1.01 ± 0.14% 1.31 ± 0.39% 

Twelve days 1.18 ± 0.28% 1.21 ± 0.13% 1.35 ± 0.13% 1.43 ± 0.07% 
 

Data are presented as mean ± SD. 
Taken from the average of two animals within a sex per day.
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Supplementary Table S3.4.  Sex differences for hepatic protein expression of key enzymes related to CER synthesis, 

oxidative phosphorylation complexes, and mitochondrial citrate synthase activity 
 

 Control Diet High Fat Diet 

 Male Female Male Female 

CER synthase 1#, 1,143 ± 102 1,019 ± 94 1,105 ± 129    981 ± 69 

CER synthase 2*,# 1,098 ± 128 1,273 ± 114    908 ± 181 1,037 ± 166 

CER synthase 6*,#    807 ± 155 1,500 ± 230    659 ± 102  1,249 ± 122 

SPT#    978 ± 134 1,156 ± 283    908 ± 132 1,141 ± 129 

dhCER desaturase* 1,142 ± 86 1,169 ± 95    937 ± 102    995 ± 56 

Acid sphingomyelinase* 1,181 ± 75 1,138 ± 103    936 ± 180 1,009 ± 133 

Acid ceramidase 1,006 ± 129 1,040 ± 92 1,047 ± 213 1,136 ± 146 

SREBP 1 2,094 ± 265 2,111 ± 303 1,978 ± 477 2,303 ± 262 

Complex I* 1,135 ± 96 1,113 ± 131 1,019 ± 126 1,028 ± 139 

Complex II*,# 1,130 ± 76 1,174 ± 80    947 ± 139 1,050 ± 80 

Complex III* 1,153 ± 113 1,099 ± 154 1,024 ± 142 1,022 ± 95 

Complex IV 1,031 ± 134 1,050 ± 179 1,102 ± 121 1,099 ± 130 

Complex V* 1,137 ± 153 1,167 ± 142    977 ± 98 1,031 ± 71 

Citrate synthase1    22.4 ± 2.9   25.4 ± 1.9   19.6 ± 1.5   19.0 ± 1.9 
 

Data are presented as arbitrary units, corrected for stain ± SD unless otherwise stated; (n = 12/diet/sex). 
1 nmol/ minute/ µg protein 
* Main effect of diet (P < 0.01) 
# Main effect of sex (P < 0.01) 
҂ Interaction effect (P < 0.05) 

  

1
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Supplementary Table S3.5.  Correlation matrix for CERS protein content and liver CER and dhCER 

concentrations 
 

 Control Diet High Fat Diet 

Liver CERS1 CERS2 CERS6 CERS1 CERS2 CERS6 

CER r P r P r P r P r P r P 

Total -0.226 0.288 0.171 0.424 0.269 0.203 -0.237 0.264 -0.244 0.251 0.175 0.413 

14:0 -0.488 0.015 0.259 0.222 0.380 0.067 -0.288 0.172 -0.188 0.379 0.153 0.476 

16:0 -0.612 0.001 0.286 0.175 0.684 0.000 -0.387 0.062 0.087 0.686 0.538 0.007 

18:1 0.057 0.790 0.004 0.986 -0.119 0.578 -0.197 0.357 -0.257 0.226 -0.024 0.911 

18:0 -0.597 0.002 0.375 0.071 0.826 0.000 -0.478 0.018 -0.002 0.993 0.665 0.000 

20:0 -0.438 0.032 0.089 0.678 0.244 0.250 0.071 0.743 -0.446 0.029 -0.512 0.011 

22:0 0.149 0.488 -0.055 0.798 -0.256 0.227 0.068 0.752 -0.453 0.026 -0.451 0.027 

24:1 -0.266 0.208 0.206 0.335 0.407 0.049 -0.210 0.326 -0.161 0.452 0.252 0.235 

24:0 -0.174 0.417 0.129 0.548 0.113 0.600 -0.314 0.135 -0.234 0.271 0.195 0.360 

Liver CERS1 CERS2 CERS6 CERS1 CERS2 CERS6 
dhCER r P r P r P r P r P r P 

Total -0.010 0.962 0.130 0.544 0.159 0.458 -0.333 0.112 0.014 0.947 0.458 0.024 

16:0 -0.644 0.001 0.241 0.257 0.345 0.098 -0.302 0.151 0.452 0.027 0.444 0.030 

18:0 -0.767 0.000 0.244 0.251 0.575 0.003 -0.446 0.029 0.347 0.097 0.648 0.001 

24:1 -0.379 0.067 0.289 0.171 0.336 0.109 -0.273 0.197 0.173 0.419 0.519 0.009 

24:0 -0.001 0.996 0.127 0.555 0.153 0.475 -0.325 0.121 0.002 0.993 0.445 0.029 

 

n = 24/diet; Pearson’s correlation was used to assess linear relationships between continuous variables.  
Significant (P < 0.05) relationships are highlighted by a dark grey cell and trending significant (P < 0.10) 
relationships are highlighted by a light grey cell.  

1
8
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Supplementary Table S3.6.  Correlation matrix for CERS protein content and mitochondrial CER and dhCER 

concentrations 
 

 Control Diet High Fat Diet 

Mito CERS1 CERS2 CERS6 CERS1 CERS2 CERS6 

CER r P r P r P r P r P r P 

Total -0.317 0.131 0.223 0.296 0.551 0.005 -0.342 0.102 -0.421 0.041 0.089 0.679 

14:0 -0.461 0.023 -0.461 0.021 0.742 0.000 -0.483 0.017 0.361 0.083 0.777 0.000 

16:0 -0.519 0.009 -0.519 0.073 0.875 0.000 -0.455 0.026 0.342 0.102 0.750 0.000 

18:1 -0.359 0.085 -0.359 0.092 0.544 0.006 -0.430 0.036 0.407 0.049 0.701 0.000 

18:0 -0.408 0.048 -0.408 0.081 0.709 0.000 -0.574 0.003 0.069 0.748 0.795 0.000 

20:0 -0.050 0.817 -0.050 0.757 0.263 0.215 0.263 0.215 -0.515 0.010 -0.743 0.000 

22:0 -0.128 0.551 -0.128 0.592 0.205 0.336 0.364 0.080 -0.438 0.032 -0.735 0.000 

24:1 -0.331 0.114 -0.331 0.236 0.609 0.002 -0.424 0.039 -0.400 0.053 0.121 0.572 

24:0 -0.244 0.251 -0.244 0.568 0.352 0.091 -0.342 0.101 -0.293 0.164 0.310 0.140 

Mito CERS1 CERS2 CERS6 CERS1 CERS2 CERS6 

dhCER r P r P r P r P r P r P 

Total -0.491 0.015 0.281 0.183 0.599 0.002 -0.311 0.139 0.159 0.458 0.609 0.002 

16:0 -0.576 0.003 0.509 0.011 0.816 0.000 -0.344 0.100 0.361 0.083 0.567 0.004 

18:0 -0.430 0.036 0.335 0.109 0.662 0.000 -0.490 0.015 0.273 0.197 0.854 0.000 

24:1 -0.436 0.033 0.401 0.052 0.756 0.000 -0.480 0.018 0.083 0.698 0.603 0.002 

24:0 -0.487 0.016 0.276 0.192 0.590 0.002 -0.307 0.144 0.156 0.466 0.604 0.002 
 

n = 24/diet; Pearson’s correlation was used to assess linear relationships between continuous variables.  
Significant (P < 0.05) relationships are highlighted by a dark grey cell and trending significant (P < 0.10) 
relationships are highlighted by a light grey cell.
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Supplementary Table S3.7.  Correlation matrix for SPT, DEGS, SMPD, and ASAH protein content and liver CER 

and dhCER concentrations 
 

 Control Diet High Fat Diet 

Liver SPT DEGS SMPD ASAH SPT DEGS SMPD ASAH 

CER r P r P r P r P r P r P r P r P 

Total 0.164 0.445 0.167 0.434 -0.014 0.948 -0.086 0.690 0.067 0.757 0.079 0.712 -0.066 0.761 -0.049 0.824 

14:0 0.471 0.020 -0.188 0.379 -0.553 0.005 -0.255 0.228 0.182 0.394 0.075 0.726 -0.089 0.679 0.105 0.635 

16:0 0.399 0.053 0.078 0.718 -0.368 0.077 0.052 0.810 0.315 0.134 0.170 0.428 -0.066 0.760 0.098 0.655 

18:1 -0.086 0.691 -0.197 0.357 -0.268 0.206 -0.303 0.151 0.081 0.705 -0.038 0.859 -0.122 0.569 0.071 0.746 

18:0 0.168 0.434 -0.027 0.901 -0.073 0.736 0.177 0.409 0.413 0.045 0.208 0.328 0.053 0.807 0.103 0.640 

20:0 0.481 0.017 0.140 0.514 -0.189 0.377 -0.095 0.660 -0.419 0.042 -0.357 0.087 -0.409 0.047 -0.286 0.187 

22:0 0.037 0.864 0.080 0.709 -0.117 0.585 -0.351 0.093 -0.279 0.186 -0.216 0.311 -0.267 0.207 -0.074 0.736 

24:1 0.081 0.705 0.127 0.555 0.051 0.813 0.041 0.850 0.084 0.695 0.151 0.481 0.038 0.860 -0.039 0.861 

24:0 0.246 0.246 0.209 0.327 -0.064 0.768 -0.192 0.369 0.151 0.481 0.037 0.864 -0.150 0.484 -0.019 0.933 

Liver SPT DEGS SMPD ASAH SPT DEGS SMPD ASAH 

dhCER r P r P r P r P r P r P r P r P 

Total 0.246 0.246 0.261 0.218 -0.038 0.860 -0.216 0.312 0.283 0.180 -0.038 0.861 -0.113 0.600 0.086 0.698 

16:0 0.789 0.000 -0.030 0.889 -0.615 0.001 -0.338 0.106 0.697 0.000 0.269 0.204 -0.087 0.686 0.397 0.061 

18:0 0.698 0.000 -0.226 0.288 -0.571 0.004 -0.254 0.231 0.694 0.000 0.225 0.291 -0.018 0.933 0.279 0.197 

24:1 0.315 0.133 0.155 0.469 -0.107 0.618 -0.084 0.697 0.424 0.039 0.361 0.083 0.128 0.551 0.273 0.208 

24:0 0.238 0.263 0.262 0.216 -0.031 0.885 -0.213 0.318 0.264 0.212 -0.049 0.819 -0.115 0.594 0.075 0.734 

 

n = 24/diet (n = 1 missing for ASAH HFD); Pearson’s correlation was used to assess linear relationships between 
continuous variables.  Significant (P < 0.05) relationships are highlighted by a dark grey cell and trending significant 
(P < 0.10) relationships are highlighted by a light grey cell. 
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Supplementary Table S3.8.  Correlation matrix for SPT, DEGS, SMPD, and ASAH protein content and 

mitochondrial CER and dhCER concentrations 
 

 Control Diet High Fat Diet 

Mito SPT DEGS SMPD ASAH SPT DEGS SMPD ASAH 

CER r P r P r P r P r P r P r P r P 

Total -0.122 0.570 -0.279 0.187 0.052 0.809 0.285 0.177 -0.108 0.616 -0.324 0.123 -0.350 0.094 -0.271 0.211 

14:0 0.329 0.116 0.163 0.448 -0.096 0.656 0.350 0.093 0.537 0.007 0.081 0.708 0.008 0.972 0.227 0.297 

16:0 0.158 0.460 0.123 0.568 0.132 0.540 0.245 0.249 0.634 0.001 0.221 0.300 0.160 0.455 0.351 0.101 

18:1 0.303 0.150 0.058 0.786 -0.122 0.571 0.435 0.034 0.541 0.006 0.116 0.591 0.056 0.794 0.199 0.362 

18:0 0.127 0.554 -0.264 0.212 -0.126 0.558 0.301 0.153 0.550 0.005 0.207 0.332 0.085 0.692 0.129 0.557 

20:0 0.203 0.342 -0.434 0.034 -0.339 0.105 0.132 0.540 -0.616 0.001 -0.552 0.005 -0.419 0.041 -0.371 0.081 

22:0 0.065 0.763 -0.303 0.150 -0.087 0.684 0.405 0.049 -0.649 0.001 -0.516 0.010 -0.344 0.099 -0.353 0.099 

24:1 -0.205 0.336 -0.141 0.511 0.179 0.403 0.280 0.186 -0.057 0.791 -0.335 0.109 -0.413 0.045 -0.275 0.204 

24:0 -0.010 0.962 -0.452 0.026 -0.143 0.505 0.185 0.387 0.042 0.846 -0.114 0.596 -0.121 0.574 -0.131 0.551 

Mito SPT DEGS SMPD ASAH SPT DEGS SMPD ASAH 

dhCER r P r P r P r P r P r P r P r P 

Total 0.343 0.101 -0.339 0.105 -0.271 0.201 -0.100 0.643 0.336 0.109 0.179 0.402 0.285 0.178 0.133 0.546 

16:0 0.393 0.057 0.224 0.292 -0.093 0.666 0.158 0.462 0.580 0.003 0.241 0.258 0.268 0.205 0.407 0.054 

18:0 0.098 0.648 -0.293 0.164 -0.100 0.642 0.314 0.135 0.611 0.002 0.281 0.184 0.319 0.128 0.201 0.359 

24:1 0.098 0.648 -0.036 0.867 0.103 0.631 0.321 0.126 0.309 0.142 -0.102 0.635 -0.198 0.354 0.026 0.905 

24:0 0.343 0.101 -0.343 0.101 -0.274 0.196 -0.107 0.620 0.331 0.115 0.178 0.405 0.285 0.177 0.130 0.554 

 

n = 24/diet; Pearson’s correlation was used to assess linear relationships between continuous variables.  
Significant (P < 0.05) relationships are highlighted by a dark grey cell and trending significant (P < 0.10) 
relationships are highlighted by a light grey cell.
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Supplementary Figure S3.1.  Sex differences in liver CER and dhCER 
 

 
 

Data are presented as mean ± SD; n = 12/diet/sex.  Two-way, between-factors 
ANOVA for total liver CER and dhCER (sex and diet).  CD (white bars) verses 
HFD (green bars) with males (M) and females (F).   
A-B:  Total liver CER (A) or dhCER (B). 
C-D:  Individual liver CER (C) and dhCER (D) species.  
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Supplementary Figure S3.2. Sex differences in mitochondrial CER and dhCER 
 

 
 

Data are presented as mean ± SD; n = 12/diet/sex.  Two-way, between-factors 
ANOVA for total mitochondrial CER and dhCER (sex and diet).  CD (white bars) 
verses HFD (green bars) with males (M) and females (F).   
A-B:  Total mitochondrial CER (A) or dhCER (B). 
C-D:  Individual mitochondrial CER (C) and dhCER (D) species.  
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Supplementary Figure S3.3.  Relationships between liver and mitochondrial 
CER 

 

 
. 

Data accompany figure 3.8.  
Relationships between individual liver and hepatic mitochondrial CER.  Animals 
fed a HFD (n = 24) are shown in green and CD in white (n = 24).  
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Supplementary Figure S3.4.  Fractional and absolute liver and mitochondrial 
16:0 CER turnover by sex 

 

 
 

Data accompany figure 3.10. 
Data are calculated as fractional (pools/day) and absolute (nmol/g tissue/day) 
turnover.  Enrichment data were fitted to a single exponential curve to produce 
fractional turnover and plateau %E.  Fractional turnover was multiplied by the 
total pool of 16:0 CER to calculate absolute synthesis.  Due to the nature of the 
experiment and the average of animals within a day and sex used to create a 
single curve, a single turnover rate was calculated within a diet and sex and thus 
no statistical analysis was performed. 
A-B:  Fractional (A) and absolute (B) synthesis of liver 16:0 CER. 
C-D:  Fractional (C) and absolute (D) synthesis of mitochondrial 16:0 CER.  
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Supplementary Figure S3.5.  Percent enrichment of free serine across days 
 

 
 

Data accompany supplementary table S3.3. 
Data are presented as mean ± SEM in black and individual animals are 
presented in white for CD and green for HFD (n = 3-4/timepoint).  ANOVA for 
differences across labeling days and post hoc t-test with Bonferroni adjustments 
# P < 0.10, * P < 0.05, ** P < 0.01, *** P < 0.001 versus unlabeled (day 0).  
A-B:  Liver free serine percent enrichment across labeling days (0, 1, 2, 4, 7, 12) 
for CD (A) and HFD (B).  
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Supplementary Figure S3.6.  Metabolic conversion for the generation of a 13C2 
labeled serine 

 

 
 

Blue indicates a labeled molecule.  
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CHAPTER IV – Histological improvements from increased peripheral substrate 

disposal:  Muscle glucose uptake spares the liver  
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ABSTRACT 

 

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis 

(NASH) are characterized by multi-tissue insulin resistance and elevations in 

hepatic lipogenesis.  The present study tested the effects of lifestyle intervention 

(9 months, energy restriction, high intensity interval training) or standard care on 

histologic regression, glucose utilization (production, EGP and disposal Rd), and 

lipid metabolism in twenty six patients (mean ± SD; treatment:  n = 18, age 47 ± 

10y, BMI 40.2 ± 7.7 kg/m2; standard care:  n = 8, age 47 ± 10y, BMI 37.3 ± 7.2 

kg/m2) with biopsy-proven NASH (NAFLD activity score, NAS ranging from 1-8; 

treatment: 5.4 ± 1.1 and standard care: 5.4 ± 1.1).  Subjects underwent 

measurements of insulin sensitivity via two-step, labeled (13C6 glucose) 

hyperinsulinemic-euglycemic clamps, hepatic DNL using D2O, and sources of 

triglycerides (TG) contained within very low-density lipoproteins (VLDL-TG) with 

palmitate isotopes.  Nineteen (n = 14 treatment, n = 5 standard care) subjects 

completed follow-up testing and had significant reductions in body weight (P = 

0.001), liver fat (P < 0.001), and plasma glucose (P = 0.034).  Despite similar 

reductions in BW, steatosis, and blood biochemistries across all subjects, only 

treatment subjects reduced total NAS (P < 0.001) and the components lobular 

inflammation (P = 0.035) and hepatocellular ballooning (P < 0.001).  Improved 

liver histology was negatively related to improvements in VO2 peak (r = -0.514, P 

= 0.029) which tended to increase with treatment (P = 0.059).  Absolute changes 

in NAS were associated with EGP (r = -0.524, P = 0.021) and Rd (r = -0.654, P = 

0.002).  Further, absolute change in lobular inflammation and EGP (r = -0.507, P 
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= 0.027) and change in hepatocellular ballooning and Rd (r = -0.625, P = 0.004) 

were negatively related.  These data demonstrate improvements in liver health 

may be driven by enhancing peripheral insulin sensitivity through the combined 

effect of weight loss and exercise.  Fasting VLDL-TG DNL was reduced in both 

groups (treatment: 33% and standard care: 24%) and related to the change in 

glucose disposal (r = -0.819, P = 0.007).  With specific regard for exercise, the 

rerouting of substrates away from the liver may reduce nutrient toxicity and 

contribute to improvements in NASH.    
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INTRODUCTION 

 

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease in 

the U.S. (1-4) and affects nearly 30% of the worldwide population (5-7).  NAFLD 

and the more advanced form, nonalcoholic steatohepatitis (NASH), are closely 

associated with obesity, type 2 diabetes (T2D), and insulin resistance (8-13) and 

increase the risk for cardiovascular and all-cause mortality (14).  However, the 

metabolic mechanisms that contribute to the progression and regression of this 

disease are not well established.  Specifically, the interaction of insulin 

resistance, histological regression, and lipid metabolism in a setting of NASH 

treatment remains ambiguous. 

 

With no approved pharmacological therapies for the treatment of NAFLD or 

NASH, the current guidelines recommend weight loss (5-10%) through lifestyle 

modifications including increased physical activity and reduced energy intake 

(15-19).  Many studies have investigated the impact of exercise (20-37), energy 

restriction (38-58), or combination lifestyle programs (57-88) on liver health.  The 

greatest metabolic and hepatic improvements are reported in studies with 

comprehensive lifestyle modifications that meet the current dietary and activity 

guidelines (15-19) and occur over 6-12 months (78-88).  In general, these studies 

have demonstrated improvements in biochemical (transaminases) and metabolic 

(glucose, insulin, homeostatic model of insulin resistance [HOMA-IR], oral 

glucose tolerance test [OGTT], and hyperinsulinemic-euglycemic clamp) 

parameters, reductions in intrahepatic triglyceride (IHTG) as assessed by 
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noninvasive imaging techniques (e.g., magnetic resonance spectroscopy or 

imaging [MRS, MRI], ultrasonography, transient elastography) and, less often, 

improved histology in paired biopsy analyses (56, 72, 76, 88-92).  While non-

invasive imaging methods to measure IHTG are often used in the early detection 

of liver steatosis, they can be problematic in treatment studies as they are poor 

predictors of histological parameters outside of steatosis (93).  Currently, minimal 

evidence exists on the histologic regression of NASH with treatment and even 

less is known regarding the in vivo metabolic mechanisms driving histologic 

improvements.  

 

A key event in the pathogenesis of NAFLD is the loss of adipose tissue insulin 

sensitivity (94, 95) which results in an overflow of lipid to the liver (96, 97), where 

~25% of fatty acids are removed from circulation (98-100).  With chronic 

overnutrition (77, 101-104), the excess flow of fatty acids to the liver from 

adipose (60%) and dietary (15%) sources and the de novo production of fatty 

acids from carbohydrates (26%, de novo lipogenesis, DNL) (97) begins to 

overload the oxidative, storage, and secretory capacity of the organ, resulting in 

an accumulation of ectopic, hepatic lipid (9, 105-107).  At the same time, 

elevations in circulating fatty acids impact insulin’s ability to suppress 

endogenous glucose production (EGP) (108-114) via gluconeogenesis and 

glycogenolysis (115).  Paradoxically, insulin simultaneously maintains hepatic 

stimulation of the master transcription factor, sterol regulatory element binding 

protein 1c (SREBP-1c), to enhance DNL and TG synthesis (116-118).  This 
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process creates more substrate to fuel very low-density lipoprotein (VLDL) 

assembly and secretion which ultimately contributes to greater systemic insulin 

resistance (119-121).  The transition of steatosis to NASH is characterized by 

adipose, hepatic, and skeletal muscle insulin resistance (9, 13, 105), however no 

study has characterized the interaction between histologic regression of liver 

disease with paired biopsies and changes in insulin sensitivity and lipid 

metabolism in individuals with NASH.   

 

We tested the effects of weight loss through a nine-month intensive lifestyle 

program (energy restriction and supervised high intensity interval training, HIIT), 

on changes in liver histology, insulin sensitivity (EGP and glucose disposal, Rd), 

and measures of lipid metabolism (circadian NEFA patterns, DNL, TG-rich 

lipoprotein (TRL)-TG sources, plasma ceramides).  For the first time, the present 

study provides evidence that relieving the liver of excess nutrient burden through 

routing of substrates towards the periphery, spares the liver and may promote 

the regression of advanced NASH.  The findings provide strong support for 

therapies aimed at reducing hepatic burden of nutrient overload as a means to 

prevent and treat NAFLD spectrum of liver disease.  
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METHODS 

 

Experimental design 

The study was approved by the University of Missouri (MU) Health Sciences 

Institutional Review Board (Protocol # 2008258) and registered under 

ClinicalTrials.gov # NCT03151798.  All subjects provided written informed 

consent and the study was conducted according to the principles expressed in 

the Declaration of Helsinki.  This study consisted of two phases.  In the first 

phase, we recruited adult patients who were overweight and obese and 

scheduled for a diagnostic liver biopsy due to suspected liver disease at MU liver 

health clinic.  Following informed consent, a small section of liver tissue collected 

during the biopsy procedure was graded histologically by a blinded pathologist, 

according to the Brunt criteria (122).  Patients with a NAFLD activity score (NAS) 

≥4/8 and who met the inclusion criteria (table 4.1) were recruited to participate in 

the second phase of the study – a diet and exercise lifestyle intervention.  Phase 

two subjects were randomized to a lifestyle intervention or standard of care group 

and provided informed consent prior to beginning the nine-month treatment 

phase.  All phase two subjects underwent an MRI/MRS liver scan to measure 

liver fat content, an exercise tolerance test (VO2 peak), DEXA for body 

composition, and 24h inpatient metabolic testing including lipid metabolism 

measurements and a two-step hyperinsulinemic-euglycemic clamp.  The same 

series of tests were repeated after 10.1 ± 1.1 months in addition to a follow-up 

liver biopsy.  Figure 4.1 shows the overall study design.   
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Recruitment 

Individuals undergoing a diagnostic liver biopsy for suspicion of NAFLD were 

recruited for phase one.  From phase one subjects, those with histological 

confirmation of advanced NASH (NAS ≥4/8) and who met the other inclusion 

criteria (table 4.1) were recruited for phase two.  Figure 4.2 presents the Consort 

diagram for both phases.  A total of 102 subjects were screened from phase one 

and 28 were recruited and provided informed consent for phase two.  The 

treatment and standard care arms included 20 and eight subjects, respectively, 

although four treatment subjects were lost to follow-up. 

 

Phase one - Liver biopsy and blood draw 

The liver biopsy procedure was performed at the MU Hospital in an outpatient 

setting by a trained hepatologist on the research team.  A total of six needle 

passes were made to obtain liver tissue (~50 mg) and a portion of the research 

sample was transported to pathology where the tissue was stained with 

hematoxylin and eosin (H&E), Masson’s trichrome, reticulum, and iron stains for 

NASH scoring according to the NASH Clinical Network Scoring System (122).  

The same pathologist scored each liver biopsy (A.D-A) and was blinded to 

subject and visit.  The pathologist graded the level of steatosis (0-3), lobular 

inflammation (0-3), and hepatocellular ballooning (0-2) which are components of 

the NAS (0-8).  The biopsy was also graded for level of fibrosis (0-4).  

Immediately prior to the biopsy, a fasting blood draw was collected to measure 

plasma glucose, glycosylated hemoglobin (HbA1c), total cholesterol, low density 



 

216 
 

lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and TG, 

in addition to the liver enzymes alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST).  These assays were processed by a CLIA certified 

laboratory using standardized procedures and methods (#26D0652092, Quest 

Diagnostics, St. Louis, MO). 

 

Phase two – Treatment and standard care groups 

Following confirmation of NASH and consent to participate in the program, 

subjects were randomized to active treatment or standard of care (note: the first 

four subjects were automatically placed into the treatment group).  Both groups 

completed baseline and follow-up testing which included an exercise tolerance 

test (ETT), anthropometrics, MRI/MRS, and a 24-h inpatient visit including a meal 

tolerance test (MTT), lipid kinetics measurements, and a two-step 

hyperinsulinemic-euglycemic clamp.  All subjects also returned for an interim visit 

which was completed in the fifth month of the program to reassess fitness levels, 

body composition, and blood biochemistries (figure 4.1).  Treatment – 

Participants randomized to the treatment group participated in both dietary 

counseling sessions and a supervised HIIT program, described below.  Standard 

Care – Subjects were offered a single session with the study dietitian at the start 

of the program where the dietitian provided weight loss education and 

encouraged increasing physical activity according to the physical activity 

guidelines for adults (123).  Standard care participants met with study staff again 
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for interim and follow-up visits and otherwise receive standard medical care as 

directed by their physician. 

 

Exercise tolerance test, training, and physical activity 

All subjects completed a modified Bruce ETT to measure maximal 

cardiorespiratory capacity at baseline, interim, and follow-up visits.  The data 

were used to determine maximal heart rate and changes in fitness status.  The 

tests were performed on a treadmill or cycle ergometer with simultaneous gas 

analysis (TrueOne® 2400, Parvo Medics) and a 12-lead electrocardiogram 

(ECG), as described previously (124).  Resting heart rate (Polar USA) and blood 

pressure (Welch Allyn) were recorded throughout the exercise test.  Treatment 

subjects participated in weekly supervised HIIT sessions which consisted of four, 

four-minute intervals at 90-95% heart rate max separated by three-minute active 

pauses at ~50% heart rate max.  The heart rate targets were based on the 

results of individual ETTs at baseline and adjusted at interim.  All training 

sessions were completed on a treadmill, cycle ergometer, or elliptical and 

intensity was monitored using heart rate monitors (Polar USA).  Physical activity 

was tracked throughout the program using Fitbit® activity trackers.  

 

Dietary counseling and energy intake 

Three-day dietary recalls were completed approximately two weeks before 

baseline, interim, and follow-up visits and the results were used to design three-

day prepared food packs provided to each subject before the visits to ensure 
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weight stability.  Dietary recalls were analyzed using Nutrition Data System for 

Research (NDSR) analysis software.  Subjects in the treatment group met with 

the research dietitian weekly for the first two months, biweekly for months three 

to five, and monthly for months six to nine (and beyond).  Based on current 

treatment guidelines, the dietitian provided personalized nutrition education with 

the goal of a 12% weight loss (~500 kcal/day deficit) over the 36-week 

intervention period (15-17).  Emphasis was placed on decreasing sugar intake 

(<5% of energy, %E) and consuming adequate protein (one g/kg/d) to reduce 

muscle mass loss.  Prior to the final visit, the subjects met with the dietician to 

ensure weight stability was achieved for the final metabolic testing and liver 

biopsy.   

 

Anthropometrics and liver fat by MRI/MRS 

Body composition was measured using a Hologic A, S/N 100158 dual x-ray 

absorptiometry scanner (DEXA, analysis Version 13.5.2, auto whole-body ran 

beam).  Body weight was measured on a digital scale to the nearest 0.1 kg and 

height was measured using a stadiometer to the nearest 0.1 cm.  Subjects 

underwent an MRI/MRS liver scan to measure liver fat content at baseline and 

follow-up.  Using standardized techniques, localized 1H-MRS spectra of the liver 

was acquired with subjects in the supine position using a Phillips 3T Siemens 

Trio Scanner.  IDEAL sequence analysis was used to calculate hepatic proton 

density fat fraction (125). 
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Metabolic testing 

Baseline and follow-up study visits occurred over two days in the Clinical 

Research Center (CRC) in the MU Hospital.  Upon arrival, subjects were 

admitted and immediately escorted to radiology for their MRI/MRS liver scan.  

Following the liver scan, two anterograde intravenous (IV) catheters were placed 

in contralateral antecubital regions – one for blood drawing and one for isotope 

infusions.  For female subjects, a blood pregnancy test was completed. 

Lipid metabolism:  As described previously (96, 97, 126), multiple stable isotopes 

were used to track labeled methyl-palmitate isotopomers (M0, M1, M2, M4/16, 

M30, and M31) in TRL and free fatty acids (FFA) fractions using gas 

chromatography mass spectrometry (GC/MS).  The FFA sources (dietary, 

adipose, and DNL) that contribute to hepatic TG synthesis were each labeled 

with a different isotope (palmitate and D2O) and expressed as both an absolute 

concentration (mg/dL) and proportion (%) of the total labeled pool, reflecting 

intracellular hepatic TG synthesis (96).  Despite an extended labeling period, a 

portion of the VLDL pool will remain unlabeled due to use of intrahepatic stores.  

Absolute concentration of plasma FFA sources were also calculated, as 

described previously (96).  These sources include adipose tissue, the key 

contributor to fasting FFA concentrations, and dietary fatty acids, which arise 

from chylomicrons undergoing peripheral lipolysis via lipoprotein lipase (i.e., 

spillover pathway) (96, 126, 127).  Lipoprotein isolation and enrichment analysis:  

Within 24h of the study, TRL were isolated via fixed-angle ultracentrifugation at 

40,000 rpm for 20h at 15°C in a 50.3Ti rotor (Beckman Instruments).  The TRL 
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and FFA fractions were extracted, underwent thin layer chromatography for TG 

and FFA separation, and were re-esterified into fatty acid methyl esters (FAME) 

for GC/MS analysis, as described previously (126).  FAME enrichments (d31 and 

13C4/13C16) were quantified using six-point standard curves (96, 97, 126).  

Dietary:  Subjects consumed a high fat dinner (46% energy, E from fat, 35%E 

carbohydrates, 19%E protein) containing d31-tripalmitin (dietary fat label added to 

provide a ~10% enrichment of the unlabeled palmitic acid contained in the 

dinner).  Blood was drawn throughout the evening/night as shown in figure 4.3 

and d30 and d31 enrichment was analyzed as described above and in extended 

methodology.  Adipose:  An infusion of labeled palmitic acid (13C4 or 13C 16; 10 

µg/kg/min), complexed with human albumin was used to calculate the absolute 

and relative adipose fatty acid contributions to the TRL-TG and plasma NEFA 

pools from midnight to 8AM.  DNL:  For two weeks prior to the inpatient testing, 

subjects consumed labeled water, D2O (150 mL for the first three days, 100 mL 

for the remaining 10-12 days).  Body water enrichment levels were measured 

before (unlabeled), during, and at the end of the labeling period (~day 15, 

inpatient visit) in urine or plasma by Metabolic Solutions (Nashua, NH).  

Deuterium can be incorporated into newly-made fatty acids (96, 128) which 

allows for the calculation of DNL by mass isotopomer distribution analysis (MIDA) 

(129, 130) based on the isotopomer pattern (M0, M1, M2) of the product (16:0 

FAME).   
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Hyperinsulinemic-euglycemic clamp – Following the overnight fast, a third 

retrograde catheter was placed in a hand vein which was kept in a heated hand 

box at 45°C to “arterialize” venous blood (131).  A primed, continuous infusion of 

13C6 glucose began at 6AM for fasting measurements of EGP and Rd (4.1 

mg/kg/min over one min, followed by 40 µg/kg/min).  Following a two hour basal 

period, a four-hour, two-step hyperinsulinemic-euglycemic clamp was initiated to 

measure EGP, NEFA suppression, and stimulation of peripheral glucose disposal 

(Rd).  Insulin (Humulin-R, Eli Lilly, Indianapolis, IN) was infused at seven 

mU/m2/min for the first two hours and 50 mU/m2/minute for the final two hours.  

Plasma glucose concentrations were held constant at the subject’s fasting level 

(analyzed by YSI Model 2300-D Stat Plus; Yellow Springs, OH) by a variable rate 

infusion of a 13C6-glucose labeled, 20% dextrose (wt/vol.) solution adjusted every 

five minutes using the negative feedback principle described by DeFronzo et al 

(132).  Plasma glucose enrichments were measured by GC/MS using a nine-

point standard curve – see extended methodology section for greater detail 

(133).  Fasted and insulin-stimulated measurements of resting metabolic rates 

were collected during the clamp to quantify substrate oxidation and energy 

expenditure.  Following conclusion of the clamp procedure, subjects consumed a 

full meal and walked for ~15 minutes to promote contraction-stimulated glucose 

disposal.  Once normoglycemia was confirmed, IV lines were removed, and the 

subject was discharged.  To promote a successful transition into the program, all 

subjects were provided two weeks of a prepared healthy diet and treatment 
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participants began their exercise training and dietary counseling.  The same 

series of tests were repeated at follow-up. 

 

CER concentrations 

Baseline and follow-up plasma CERs were quantified as previously described 

(134, 135).  Briefly, 100 µL of plasma was spiked with 50 µL of C18:1/17:0 (50 ng 

– non-naturally occurring CER internal standard) and then extracted according to 

the protocol of Bligh and Dyer (136).  The organic phase was removed and dried 

under nitrogen gas.  An azeotropic agent (methylene chloride) was used to 

remove any additional water and samples were stored in -80°C until analysis.  

CERs were quantified using high performance liquid chromatography tandem 

mass spectrometry (HPLC-MS/MS) electrospray ionization (ESI) in positive ion 

mode.  Standards and samples were dissolved in 100 µL of 0.1% formic acid 

solution in methanol-water (85:15) and then injected into a Waters HPLC device 

(2690 Separation Module, Milford, MA) and separated through a Vydac® 

200MS™ C8 column (2.1 x 100 mm, 5 µm, P.J.Cobert Associates, St. Louis, 

MO).  CERs were analyzed using multiple reaction monitoring (MRM) that scans 

each molecular ion with the combination of mass to charge ratio (m/z) 264 

daughter ion across all species on a Thermo Scientific TSQ (Triple-Stage 

Quadrupole) Quantiva mass spectrometer.  Chromatograms were analyzed 

using Xcalibur™ (Thermo Scientific™ 3.0.63).  Methodology details, individual 

CER species, and MRM transitions are listed in the extended methodology 

section.  
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Statistical analysis and calculations 

Calculations were performed using Microsoft Excel (2016, Redmond, WA) and 

statistical analysis using R (version 4.1.3), and R studio (Boston, MA).  Area 

under the curve (AUC) for plasma metabolites were calculated according to the 

trapezoidal rule (137).  Glucose appearance and disposal were calculated using 

standard dilution equations according to Steele’s non-steady state equation (133, 

138).  Suppression of EGP and NEFA were calculated as the difference between 

basal and step one or two over the basal value for EGP or NEFA concentrations, 

respectively.  Mean differences between treatment and standard care groups 

were compared across time by mixed model analysis of variance (ANOVA, ez 

and rstatix packages in R studio) with group (treatment or standard care) as a 

between-subjects factor and visit (baseline [BL], interim [INT], follow-up [FU]) as 

a within-subjects factor.  When 18-hour concentration data was compared, the 

same mixed model ANOVA was used with time as an additional within-subjects 

factor.  For any significant interactions, post-hoc analysis with Bonferroni 

corrections were complete with orthogonal contrast set to compare baseline with 

interim and baseline with follow-up values.  Spearman’s rho correlation was used 

to assess linear relationships between ranked (i.e., NAS, NAS components, and 

fibrosis scoring) and continuous variables while Pearson’s R was used to 

quantify linear relationships between continuous variables.  Unpaired t-tests were 

used when comparing changes in insulin sensitivity within a step (basal, step 

one, step two) between treatment and control subjects.  Data varying across time 
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were reported as mean ± standard error (SEM) while static variables (i.e., phase 

one subject characteristics) were reported as a mean ± standard deviation (SD).  

Significance was set at P < 0.05, and P < 0.10 reported as a trend.  
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RESULTS 

 

Subject characteristics 

Phase one subjects were recruited based on suspicion of NAFLD and 

accordingly, these subjects on average had elevated liver enzymes (ALT and 

AST) and histological evidence of NASH (table 4.2).  Approximately half had 

clinical diagnoses of T2D, hypertension, and more than half were hyperlipidemic.  

Phase two participants were recruited from the phase one subjects with NAS 

≥4/8, and baseline subject characteristics for the treatment and standard care 

groups are shown in table 4.3.  The groups had similar age, weight, and body 

composition.  All subjects had metabolic syndrome and elevated liver enzymes, 

liver fat, and histological diagnosis of NASH.  Standard care participants had 

higher baseline liver steatosis as determined by both MRS (P = 0.029) and 

histology (P = 0.047) than treatment subjects.  Approximately 70% of the phase 

two subjects were clinically diagnosed as having T2D, which was 

pharmacologically controlled with various glucose lowering medications (table 

4.3).  A total of 14 subjects completed the exercise and dietary intervention 

(treatment) and five subjects continued with standard care for the same length of 

time (10.1 ± 1.1 months).  All 19 subjects underwent follow-up metabolic testing 

and a second liver biopsy. 

 

Histologic resolution of NASH  

Treatment subjects had a significant reduction in NAS (figure 4.4A, P < 0.001) 

with an average decrease of 2.4 ± 0.5 points at follow-up (-43 ± 9%).  The 
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components of NAS, lobular inflammation (figure 4.4C, -32 ± 19%, P = 0.035) 

and hepatocellular ballooning (figure 4.4D, -75 ± 10%, P < 0.001), were also 

significantly reduced in the treatment group.  Steatosis, graded histologically and 

measured via MRS, decreased in both treatment (figure 4.4B, histology:  -26 ± 

11%; figure 4.4F, MRS: -39 ± 2%) and standard care (histology: 13 ± 8%; MRS: 

28 ± 7%) subjects (histology: P = 0.031 and MRS: P < 0.001 for main effect of 

visit).  Despite the average 0.4 ± 0.2 point reduction in steatosis, the standard 

care subjects demonstrated no change in the overall NAS (+0.2 ± 0.5 points) or 

the components, lobular inflammation (+0.4 ± 0.2 points) and hepatocellular 

ballooning (+0.2 ± 0.4 points) at follow-up testing.  Fibrosis was significantly 

reduced in the treatment subjects with an average reduction of 45 ± 15% (figure 

4.4E, P = 0.044).  Alternatively, standard care subjects increased average 

fibrosis scores by 0.8 ± 0.6 points, but this change was not significant (figure 

4.4E, 13 ± 13%, P = 0.242).  The almost one-point increase in fibrosis was 

surprising as previous studies tracking the natural progression of fibrosis 

demonstrated individuals with NASH progress one stage of fibrosis 

approximately every seven years (139, 140).  Representative histology slides 

from a single treatment and standard care subject are shown in figure 4.4G-H.  

The NAS was graded using the H&E stained slides and the fibrosis was graded 

using the trichrome.   

 

Anthropometrics 
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The treatment group lost an average of 8 ± 2% of their body weight (figure 4.5A, 

10.0 ± 2.2 kg) and BMI was reduced by 7 ± 2% (data not shown, -3.1 ± 0.8 

kg/m2).  Fat free mass was reduced 2.4 ± 1.3 kg (figure 4.5B, -3 ± 2%) and fat 

mass 5.6 ± 1.8 kg (figure 4.5C, -9 ± 3%).  Losses in fat free mass accounted for 

20% of the total weight loss in the treatment subjects.  The standard care group 

also demonstrated reductions in total body weight (-5.9 ± 3.7 kg, -4 ± 3%) and 

BMI (data not shown, -1.6 ± 1.4 kg/m2, -3 ± 4%), however, 63% of this weight 

loss was accounted for by losses in fat free mass (figure 4.5B, -3.7 ± 2.1 kg, -5 ± 

2%) while average fat loss was 1.4 ± 2.0 kg (-2 ± 4%).  Supplementary figure 

S4.1 presents the body weight losses over time for both groups. 

 

Groups were analyzed together to determine if changes in body composition 

were related to changes in liver histology.  For all correlation analyses, treatment 

subjects are presented with a filled green circle and standard care subjects with a 

white circle.  Standard care subjects did not drive any correlations.  Weight loss 

and NAS reduction were positively related (figure 4.6A, P = 0.023) with this 

relationship being primarily driven by improvements in hepatocellular ballooning 

(figure 4.6G, P = 0.038) and lobular inflammation (figure 4.6E, P = 0.097).  

Changes in fat mass were positively related to improvements in NAS (figure 

4.6B, P = 0.007) and lobular inflammation (figure 4.6F, P = 0.005), but not 

hepatocellular ballooning (figure 4.6H, P = 0.250).  Unlike total weight loss 

(figure 4.6C, P = 0.231), changes in fat mass tended to correlate positively with 
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steatosis (figure 4.6D, P = 0.089).  Improved hepatic fibrosis was not related to 

changes in body weight or fat mass (data not shown).   

 

Biochemical data  

Both groups demonstrated improvements in fasting blood biochemistries at 

follow-up (figure 4.7).  Fasting glucose and insulin concentrations were 19 ± 7% 

(figure 4.7A, -35 ± 13 mg/dL) and 17 ± 12% (figure 4.7B, -7 ± 4 µU/mL) lower 

than baseline in the treatment subjects.  Standard care subjects also reduced 

both glucose and insulin concentrations by 31 ± 7% (-50 ± 15 mg/dL) and 4 ± 

25% (-5 ± 5 µU/mL), respectively.  Accordingly, HbA1c tended to decrease in 

both groups (figure 4.7C; treatment: -11 ± 4% and standard care: -6 ± 9%; P = 

0.058 main effect of visit).  Liver enzymes, ALT and AST, fell by 41 ± 6% (figure 

4.7D, -30 ± 8 U/L) and 96 ± 26% (figure 4.7E, -33 ± 10 U/L) in the treatment 

group and by 32 ± 24% (-41 ± 25 U/L) and 4 ± 43% (-21 ± 16 U/L) in standard 

care.  Both ALT and AST were significantly reduced at follow-up in both groups 

(P = 0.003 and P = 0.019 - main effect of visit).  Baseline NAS was positively 

related to ALT (data not shown, r = 0.624, P = 0.003) and AST (data not shown, r 

= 0.682, P < 0.001; spearman’s rho correlations).  Analysis of blood lipids 

revealed overall reductions in fasting TG, TRL-TG, and total cholesterol, although 

these changes were not significant.  Minimal changes are evident in HDL, LDL, 

and VLDL cholesterol (table 4.4).  Fasting NEFA concentrations were reduced 

by 13 ± 6% on average in treatment subjects and 13 ± 8% on average in 

standard care subjects (table 4.5, P = 0.005 – main effect of visit).   
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In addition to fasting concentrations, 18-hour glucose (figure 4.8), insulin (figure 

4.9), NEFA (figure 4.10), and TG (figure 4.11) were measured during the 

overnight visits.  When comparing groups, each metabolite showed similar 

patterns across time and, in general, concentrations were reduced at follow-up.  

For analysis, the 18-hour concentration data were separated into three time 

periods – postprandial (6PM to midnight), night (midnight to 6AM), and the clamp 

(6AM to noon).  Analysis of individual time segment AUC is presented in 

supplementary table S4.1 and figure S4.2.  

Postprandial:  In treatment subjects, glucose and insulin concentrations (figures 

4.8-4.9) increased in tandem, while NEFA dropped (figure 4.10).  Standard care 

subjects had higher (treatment 104 ± 8 mg/dL versus standard care 165 ± 32 

mg/dL) and more variable baseline glucose concentrations than the treatment 

subjects (partially due to a lower n in standard care).  Similar observations are 

noted for insulin.  Treatment subjects had greater reductions in postprandial 

insulin concentrations at follow-up, while maintaining glycemia <150 mg/dL 

(figure 4.8A versus figure 4.9A).  With regard to NEFA, standard care subjects 

had minimal postprandial decline in concentrations during both study visits 

despite the elevation in insulin, suggesting adipose tissue insulin resistance was 

maintained throughout the program (figure 4.8B versus figure 4.10B).  Finally, 

plasma TG (figure 4.11) concentrations were highly variable at baseline for 

treatment and standard care subjects and this variability decreased for both 

groups at follow-up.  No significant interactions (group x visit x time) were 



 

230 
 

observed for the postprandial period for any metabolite (P – value on figures 

4.8-4.11), however a significant main effect of visit was evident for glucose 

(supplementary table S4.1, reduced concentrations baseline to follow-up).  

Additionally, a significant main effect of time was found for glucose and TG 

(increased concentrations across time following the meal) and TG had a 

significant interaction between time and visit indicating the rise in TG 

concentrations from 6PM to midnight was significantly lower at follow-up (figure 

4.11 and table S4.1, P = 0.019). 

Night:  As subjects transition to the postabsorptive phase, reductions in glucose, 

insulin, and TG concentrations were accompanied by a steady increase in NEFA 

which continued until the clamp began.  Nighttime insulin was significantly 

reduced in treatment subjects at follow-up across time (P = 0.020).  A significant 

main effect of visit was found for glucose (P = 0.011), insulin (P = 0.012), and 

NEFA (P = 0.030) concentrations (table S4.1) while a main effect for time was 

found for nighttime glucose (P = 0.030), insulin (P < 0.0001), NEFA (P < 0.0001), 

and TG (P = 0.036).  In other words, nighttime glucose, insulin, and NEFA were 

lower at follow-up and all metabolites varied significantly across the nighttime 

hours (reduced glucose, insulin, and TG; increased NEFA). 

 

In addition to total plasma NEFA concentrations, the sources of plasma NEFA 

were quantified using a dietary and FFA label and the results are shown in 

supplementary figure S4.3.  Total plasma NEFA concentrations from midnight 

to 8AM were made up of primarily rising adipose derived NEFA in both treatment 
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and standard care groups.  No apparent changes in dietary contributions to 

NEFA concentrations after treatment were evident in either group, however the 

total number of subjects precluded adequately-powered statistical comparisons.   

 

Absolute TRL-TG concentrations are shown in supplementary figure S4.4.  

Similar to total TG concentrations (figure 4.11), variability within the treatment 

subjects dropped at follow-up as did the total TRL-TG content.  Interestingly, at 

baseline, treatment subjects seemed to have delayed clearance of lipoprotein 

particles (either chylomicron remnants or VLDL) whereas at follow-up they had 

minimal changes across time.  Alternatively, standard care subjects 

demonstrated little difference in TRL-TG concentrations throughout the program.   

Clamp:  Upon onset of the insulin infusion for the clamp procedure (8AM), 

glucose concentrations were held constant with a variable infusion of dextrose, 

insulin rose, and NEFA concentrations dropped.  Clamped glucose 

concentrations were 18% lower at follow-up in treatment subjects and 26% lower 

in standard care (P = 0.008).  At follow-up, subjects had significant reductions in 

NEFA concentrations during the basal period (6AM – 8AM, P < 0.01) and the 

steady state portion of the high-dose step 2 (11:40AM-12PM, P < 0.01).  These 

data suggest greater insulin-stimulated suppression of lipolysis, indicative of 

improved adipose tissue insulin sensitivity.   

 

Energy intake, physical activity, and fitness levels 
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Subjects completed three-day food records prior to baseline, interim, and follow-

up study visits.  Both groups demonstrated reductions in total energy intake 

(figure 4.12 A-B, P = 0.005 – main effect of visit) and carbohydrate intake (P = 

0.0001 – main effect of visit).  At follow-up, treatment subjects reduced energy 

intake by 395 ± 158 kcals/day (-12 ± 6%) and standard care by 385 ±153 

kcals/day (-16 ± 9%).  Carbohydrate intake was reduced by 297 ± 91 kcal/day (-

24 ± 7%) and 270 ± 362 (-16 ± 20%) kcal/day in treatment and standard care 

subjects, respectively.  Although absolute protein (treatment: +27 ± 30 kcal/day; 

standard care: +17 ± 43 kcal/day) and fat (treatment: -130 ± 123 kcal/day; 

standard care: -131 ± 114 kcal/day) intake did not change throughout the 

program for either group, the percentage of energy (%E) from protein increased 

marginally (treatment: +4.2 ± 1.6%E; standard care: +3.9 ± 2.7%E) which was 

accompanied by an increased in total g/kg of protein intake only in treatment 

subjects (treatment: +0.25 ± 0.09 g protein/kg body weight/day, P = 0.007; 

standard care: +0.06 ± 0.12 g protein/kg body weight/day, P = 0.307).  Changes 

in macronutrient and total energy intake did not correlate with changes in NAS or 

NAS components. 

 

Maximal cardiorespiratory capacity was measured at baseline, interim, and 

follow-up and treatment subjects demonstrated a significant increase in VO2 

peak from baseline to interim (figure 4.13A, P = 0.029).  A small decline in 

absolute cardiorespiratory fitness was observed in treatment subjects from 

interim to follow-up visits (-0.9 ± 0.07 L/min) despite increased time to exhaustion 
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(figure 4.13B,+2:23 ± 1:18 minutes:seconds).  Minimal changes to VO2 peak 

were observed in standard care subjects (BL to FU: - 0.1 ± 0.1 L/min) despite a 

slight increase in time to exhaustion from baseline (+1:03 ± 0:43 

minute:seconds).  Improvements in VO2 peak were negatively related to weight 

loss (figure 4.14A, P = 0.026), NAS (figure 4.14B, P = 0.029), and 

hepatocellular ballooning (figure 4.14C, P = 0.004), tended to correlate with 

reduced fibrosis (figure 4.14D, P = 0.054) but were not related to hepatic 

inflammation (data not shown, r = -0.290 P = 0.243) or steatosis (data not shown, 

r = -0.171, P = 0.481).  Exercise adherence was monitored throughout the 

intervention (treatment only) and on average remained above 85% although 

slight reductions were observed at follow-up (figure 4.13C, -6.9 ± 3.4%, P = 

0.087).  Importantly, 57% subjects were in the active treatment phase during 

COVID-19 shutdowns which did impact the ability to complete in-house, 

supervised sessions.  Finally, each subject received a FitBit® activity tracker to 

monitor daily activity and figure 4.13D presents average daily steps during the 

first, second, and third portion of the program.  Neither treatment or control 

subjects had significant changes in daily steps or distance walked (data not 

shown) throughout the program, but treatment subjects did have two-fold higher 

average daily physical activity (treatment:  6,083 ± 525 steps/day; standard care: 

2,903 ± 671 steps/day, P = 0.001 – main effect of group).   

 

Glucose metabolism 
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Glucose metabolism was quantified with a two-step, hyperinsulinemic euglycemic 

clamp at baseline and follow-up.  Table 4.5 presents the results from the clamp 

including absolute EGP and Rd in µmol/min, NEFA concentrations (mmol/L), and 

substrate oxidation (mg/kg/min) measurements.  When the groups were 

compared with a mixed model ANOVA (within: visit and between: group), no 

significant interactions between the groups existed.   

Basal and low-insulin:  Changes in absolute basal and step one (low insulin) 

EGP are shown in figure 4.15A and the percent change in EGP in figure 4.15B.  

Mirroring the change in fasting glucose (figure 4.7A), both groups had reductions 

in basal EGP at follow-up.  Surprisingly, compared to treatment, standard care 

subjects had greater reductions in basal (treatment: -5.8 ± 4.8%, standard care: -

10.5 ± 4.2%; P = 0.237) and step one (treatment: -7.1 ± 4.8, standard care: -14.1 

± 8.2%; P = 0.244) EGP at follow-up testing, although the variability across 

subjects was large and these differences were not significant (figure 4.15B).  

Minimal differences were observed in absolute change from basal to step one 

EGP suppression (figure 4.16B) between groups (treatment: +1.1 ± 2.3%; 

standard care: +2.8 ± 2.7%; P = 0.416).   

Basal and high-insulin:  Unexpectedly, treatment subjects had a reduction in 

basal to step two (high insulin) EGP suppression at follow-up while control 

subjects tended to suppress EGP to a greater extent (treatment: -3.0 ± 4.1%, 

standard care: +1.7 ± 3.2%), although the groups were not significantly different 

(P = 0.446).  With regard to glucose disposal (figure 4.17 and table 4.5), 

treatment subjects had similar basal but higher baseline step two Rd than 
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standard care subjects although this difference was not significant (P = 0.183).  

While both groups demonstrated similar reductions in basal Rd, the groups 

diverged in step two where treatment subjects had an average increase of 563.9 

± 277.3 µmol/min (equivalent to 3.0 ± 1.5 more grams of glucose leaving 

circulation in a 30 minute window) while standard care glucose disposal was 

reduced by 92.2 ± 95.7 µmol/min (equivalent to 0.5 ± 0.5 fewer grams of glucose 

leaving circulation in a 30 minute window).  As shown in figure 4.17B, treatment 

subjects had greater percent change in glucose disposal than standard care (P = 

0.009), demonstrating the impact of combined energy restriction and exercise in 

increasing peripheral glucose disposal. 

Improved insulin sensitivity and liver health:  Taken together, the exercise 

component of the treatment may have resulted in greater peripheral glucose 

disposal to an extent that glucose production increased to supply necessary 

energy to skeletal muscle.  Furthermore, routing glucose away from the liver may 

work to relieve the organ of excess nutrients and ultimately support histological 

improvements.  This hypothesis is supported by multiple strong correlations 

(continued into the next section).  1) Baseline EGP (relative to body weight) was 

negatively related to lobular inflammation (figure 4.18A), indicating an increase 

in glucose production per kg body weight was associated with lower hepatic 

inflammation.  A similar, but weaker correlation was observed with baseline 

relative glucose disposal (figure 4.18B), supporting a potential therapeutic effect 

on the liver through routing substrates to the periphery for oxidation.  2) When 

the changes in glucose production were compared to changes in NAS (figure 
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4.19A) and lobular inflammation (figure 4.19C), surprising negative correlations 

were revealed, providing further support for increased glucose disposal as 

beneficial for liver health improvement.  A similar negative relationship was found 

between EGP and hepatocellular ballooning but was not significant (figure. 

4.19E).  3) Figures 4.19 B, D, F present strong negative relationships between 

changes in peripheral glucose disposal and changes in NAS, lobular 

inflammation, and hepatocellular ballooning.  Changes in steatosis, either by 

histology or MRS, were not related to changes in insulin sensitivity (EGP or Rd).  

4) While mathematically related, EGP and Rd were positively related during both 

step one and step two (supplementary figure S4.6A-B).  Together, these 

results support a benefit of increased hepatic glucose production and peripheral 

disposal to spare the liver of excess carbons. 

Improved insulin sensitivity, fitness, and energy intake:  Regarding improvements 

in fitness and dietary changes, 5) increased relative glucose disposal was 

positively related to increased peak respiratory capacity (figure 4.20B) and the 

two-day average distanced walked (figure 4.20D) immediately prior to follow-up 

testing.  Increased EGP was positively correlated with activity levels (figure 

4.20C) but not with VO2 peak (figure 4.20A).  6) Changes in glucose production 

and disposal correlated negatively with the three-day average carbohydrate 

intake prior to the follow-up study visit (figure 4.21A-B), but only Rd was 

significant.  These data support a potential skeletal muscle crosstalk event in 

response to increased activity and reduced carbohydrate intake that promoted 

the unexpected observation of increased glucose production.  Although acute 
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lifestyle changes can have a marked impact on steatosis, with significant 

reductions in IHTG reported in as little as 48 hours (53), these results indicate a 

chronic benefit of diverting substrate away from the liver to reduce advanced 

characteristics of NASH.  In other words, IHTG is strongly dependent on recent 

energy balance (141) while the other components of NAS likely require longer 

interventions for significant regression. 

NEFA suppression and diurnal variations:  Finally, insulin-induced NEFA 

suppression was also quantified during the clamp (table 4.5 & figure 4.22) and 

both groups had significantly greater NEFA suppression during step two (high-

insulin) when compared to step one at baseline (P < 0.0001, same for follow-up).  

At follow-up, treatment subjects were able to attain 87 ± 2% suppression (step 

two) and standard care subjects reached an average suppression of 79 ± 6% 

(step two, figure 4.22A).  While treatment subjects had minimal absolute 

increases in NEFA suppression during step one (0.5 ± 5.6%), standard care 

subjects demonstrated reduced suppression of adipose tissue lipolysis after the 

program (-5.3 ± 13%), though the groups did not differ statistically (P = 0.164, 

figure 4.22B).  During step two, minimal differences in NEFA suppression were 

observed between the groups (P = 0.237).  Surprisingly, when AUC of 18-hour 

NEFA concentrations (figure 4.10C) were compared to changes in histology and 

insulin sensitivity, a trending negative correlation was found with NAS 

(supplementary figure S4.5A).  Upon analysis of individual NAS components, 

inflammation was identified as being significantly correlated with diurnal changes 

in NEFA concentrations (figure S4.5B).  In other words, as subjects’ liver health 
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(particularly inflammation) improved, 18-h NEFA concentrations tended to 

increase.  These results were unexpected but ultimately may support our findings 

of increased substrate disposal at the periphery in benefiting liver health.  Indeed, 

a trending positive relationship between 18-hour NEFA AUC and the change in 

step one EGP (P = 0.059) suggests these events may work synergistically to 

improve liver health (figure S4.5C). 

Substrate metabolism - glucose:  Indirect calorimetry was completed before and 

during the second step of the clamp (data shown in table 4.5).  Stimulation of 

glucose oxidation and non-oxidative glucose metabolism was calculated as the 

change from basal to clamped states.  Glucose oxidation increased during the 

clamp in both treatment and standard care subjects although the stimulation (i.e., 

the change from basal to clamped states) tended to decrease between study 

visits but was not statistically different (treatment: -21 ± 34%, P = 0.272; standard 

care: -10 ± 26%, P = 0.367, data not shown).  Non-oxidative glucose metabolism 

(i.e., glycogen synthesis within skeletal muscle (142)) was calculated as the 

difference between glucose disposal (basal and step two clamp) and glucose 

oxidation (measured via indirect calorimetry).  Treatment subjects had greater 

changes in stimulation of non-oxidative glucose disposal (+87 ± 49%, P =0.049) 

than standard care subjects (-10 ± 37%, P = 0.401).  Stated simply, these data 

suggest treatment subjects had greater stimulation of glycogen synthesis after 

the program than standard care subjects.  Increased nonoxidative glucose 

metabolism during the clamp was positively related to the change in EGP 

(supplementary figure S4.6C).  
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Lipid metabolism 

Fatty acid sources used for TG synthesis:  Using a multiple stable isotope 

protocol, the sources of fatty acids contributing to the TRL-TG pool were 

calculated and the results from seven treatment and two standard care subjects 

are shown in figure 4.23.  The proportion of total TRL-TG fatty acids accounted 

for by the labeling paradigm are shown in figure 4.23A and are made up of the 

sum of dietary (figure 4.23B), DNL (figure 4.23C), and plasma FFA (figure 

4.23D) sources.  The sum of all isotopically-labeled fatty acid sources were 

similar at both visits in treatment subjects but tended to be reduced in the two 

standard care subjects included in this analysis.  A proportionally greater quantity 

of total fatty acids were labeled at baseline in standard care when compared to 

treatment subjects (e.g., midnight timepoint: 46 ± 3% versus 69 ± 19%) although 

this may be an artifact of the small sample size (n = 2).  The fatty acids that 

remained unlabeled may have arisen from 1) intestinally-stored unlabeled dietary 

fatty acids, 2) stored hepatic lipid used for TG assembly, or 3) visceral depots.  

The proportion of fatty acids from the evening meal contributing to the total TRL-

TG pool at midnight increased in the treatment subjects (figure 4.23B, +6 ± 3%, 

P = 0.027) and was unchanged in two standard care subjects (-21 ± 13%, P = 

0.182) at follow-up testing.  Meal -derived fatty acids originate from TG carried in 

chylomicrons remnants or from chylomicron-TG recycling within the liver and 

secretion in VLDL (126, 143, 144).  Midnight lipogenesis was 5% higher in 

standard care subjects at baseline (figure 4.23C, treatment 28 ± 3% versus 
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standard care 33 ± 1%) and values across at follow-up were reduced similarly in 

both groups, although the small number of subjects within standard care 

contributed to the lack of significance across the timepoints.  Despite 12+ hours 

of fasting, neither group demonstrated circadian suppression of lipogenesis 

before or after the program, unlike other studies (96).  Finally, the fraction of 

labeled plasma fatty acids contributing to the TRL-TG pool was approximately 

50-60% lower in standard care subjects at both study visits (figure 4.23D).  

Within a group, the total proportion of TRL-TG from plasma fatty acids was 

similar at each study visit.  

 

Absolute concentration of the dietary, lipogenic, plasma FFA, and unlabeled 

sources during the three fasting values (7:30-8:00AM) were averaged and are 

presented in figure 4.24A.  The proportional source contribution described above 

and presented in figure 4.23 represents intracellular lipid synthesis while 

absolute concentration of the sources (figure 4.24A) better reflects the balance 

of VLDL turnover within the plasma (96, 97).  As only two standard care subjects 

were included in this analysis, groups were not compared statistically however a 

compulsory mention is needed noting the differences in total baseline VLDL-TG 

concentrations between the groups (treatment: 88 ± 27 mg/dL versus standard 

care: 184 ± 115 mg/dL) and the increased contribution of DNL to total 

concentration within the standard care subjects.  When baseline and follow-up 

values for each source were compared within the treatment subjects, no 

differences were found.  At baseline, fractional VLDL-TG DNL was positively but 
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not significantly related to IHTG measured via MRS (data not shown, r = 0.509, P 

= 0.162) and tended to correlate with steatosis from histology (data not shown, r 

= 0.579, P = 0.101).  No significant relationships were observed between 

baseline fractional or absolute VLDL-TG DNL and NAS, the components, or 

fibrosis.  The small sample size included in this report likely contributed to small 

effect sizes.  With regard to effects of the treatment/standard care, the change in 

VLDL-TG DNL tended to correlate positively with change in NAS and was 

significantly related to reduced hepatocellular ballooning and fibrosis (figure 

4.24B-D).  The change in DNL was strongly related to glucose disposal and 

fitness level (figure 4.24E-F), inducing a reduction in lipogenesis was related to 

improved peripheral insulin sensitivity and cardiorespiratory fitness.  However, 

DNL changes did not correlate with steatosis (MRS or histology), lobular 

inflammation, or EGP (supplementary figure S4.7). 

 

Plasma ceramides 

Plasma CERs and dhCERs were quantified using HPLC-MS/MS at baseline and 

follow-up.  Overall, total CER concentrations decreased in both groups (figure 

4.25, treatment: -9.4 ± 7.5%; standard care: -12.6 ± 11.5%), although the change 

among groups was not different (P = 0.931, interaction).  When individual species 

were analyzed separately, only CER 14:0 differed significantly between the 

groups across time (group x visit interaction; P = 0.037, no significant post hoc 

findings).  Both CER 20:0 (P = 0.011) and 24:1 (P = 0.019) were significantly 

decreased at follow-up (main effect of visit).  dhCERs (figure 4.26) were 70-fold 
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lower in concentration than CER but the two species correlated strongly at 

baseline (data not shown, r = 0.688, P < 0.001) as well as the change from 

baseline to follow-up (data not shown, r = 0.803, P < 0.001).  Total CER and 

dhCER concentrations (the sum of all individual species) tended to correlate 

negatively with baseline BW (supplementary figure 4.8A-B).  Similarly, both 

CER and dhCER were negatively related to fasting plasma glucose 

concentrations, but only the association with CER was significant 

(supplementary figure 4.8C-D).  Baseline total cholesterol, CER and dhCER 

were positively related (supplementary figure 4.8E-F).  A correlation matrix was 

created for baseline concentrations of individual CER and dhCER species with 

anthropometrics, fasting blood glucose and cholesterol, and insulin sensitivity 

(supplementary table S4.2).  The relationship observed between fasting 

glucose and total CER seem to be driven by an increase in longer chain plasma 

CERs (22:0, 24:1, and 24:0).  In addition to baseline correlations, the change in 

BW and fat mass tended to correlate with changes in total CER and dhCER 

(figure 4.27 and supplementary table S4.3).  With regard to liver health, the 

change in 16:0 CER correlated with changes in steatosis as measured by both 

histology and MRI (figure 4.28).  As liver fat was reduced, plasma 16:0 CER 

increased.  
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DISCUSSION 

 

Although energy restriction and exercise are well-established therapeutic 

strategies to treat T2D and cardiovascular diseases (145) and the same 

modifications make up the current guidelines for the treatment of NASH (15-19), 

little evidence exists identifying the metabolic changes that occur to promote liver 

health improvements.  The present study represents the first in-depth 

characterization of the changes in liver histology, insulin sensitivity, and lipid 

metabolism following an intensive lifestyle program in subjects with advanced 

NASH.  Compared to standard care, subjects who underwent ~10 months of 

energy restriction and HIIT demonstrated robust improvements in total NAS, the 

components – lobular inflammation and hepatocellular ballooning, and fibrosis.  

These changes occurred only in treatment subjects despite similar reductions in 

total body weight, fasting and 18-h blood biochemistries (i.e., glucose, insulin), 

plasma aminotransferases, and energy intake in both groups.  As already 

established in previous intervention studies with paired biopsies (56, 72, 88-92), 

weight loss was related to NAS improvements in all subjects, however with deep 

metabolic phenotyping, greater insight was gained into the mechanisms driving 

chronic improvements in liver health.  In particular, the greatest improvements 

may not have been due solely to weight loss, but the combination of energy 

restriction and physical activity promoting an environment primed for peripheral 

substrate disposal-driven rerouting of hepatic metabolites. 

 

Lifestyle treatment-induced histologic improvements in NASH 
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To date, eight studies have investigated the effects of a lifestyle treatment on 

histology from paired liver biopsies in NAFLD or NASH (56, 72, 76, 88-92).  Of 

these, two were weight loss induced solely via energy restriction (56, 91) while 

the remaining six studies included unsupervised exercise recommendations (72, 

76, 88-90, 92).  The current study included both individualized dietary counseling 

with an emphasis on reducing overall energy intake, simple sugars, and 

increasing fiber in addition to supervised HIIT.  Previous publications reported 

average reductions in total NAS (average change from refs 56, 72, 76, 88-92: 

 -40%; range: -19 to -55%), steatosis (-40%; -19 to -58%), inflammation (-48%; -

32 to -65%), ballooning (-47%; -28 to -75%), and fibrosis (-24%; +5 to -64%).  In 

line with these findings, we observed similar improvements in liver histology 

(figure 4.4) following treatment.  While significantly reduced at follow-up, the 

changes across subjects spanned a wide range (0%-100% NAS reduction), 

potentially due to 1- lack of adherence to the treatment, 2- minimal total weight 

loss, or 3- weight regain throughout the program.   

 

With regard to adherence, previous groups have addressed significant concern 

with long-term intensive lifestyle treatments (88, 89).  Surprisingly, longer 

interventions in NASH resulted in less weight loss (~4.9 kg) (56, 72, 89, 92), than 

we observed (10.0 ± 2.2 kg, treatment alone) or was reported in six-month 

studies (~8.4 kg) (89, 90, 92).  While all studies demonstrated similar levels of 

NAS reductions, the results diverged with regard to fibrosis regression.  The 

longer interventions (12+ months) reported an average 10% change in fibrosis 
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(+5 to -47%, n = 4 studies) while the six-month interventions reported an average 

60% reduction in fibrosis (-55 to -64%, n = 3 studies).  Our ten-month study 

elicited a 45% reduction in fibrosis (0 to -100%) within treatment subjects.  

Overall, these findings may suggest poor adherence over a longer intervention 

may contribute to lesser fibrotic improvements.  Alternatively, total weight loss 

may be a determinant of fibrotic regression as the six-month studies had both 

greater weight loss and reduced fibrosis.  However, we did not observe a 

significant relationship between the changes in body weight and fibrosis.  It 

remains unknown whether the differences in histological changes between 

studies and among participants are due to variations in program intensity/dietary 

interventions, lack of adherence, or weight recidivism.  However, it was clear, our 

~10-month treatment was highly effective at improving total NAS, inflammation, 

ballooning, and hepatic fibrosis when compared to subjects receiving no 

structured intervention. 

 

Regardless of the type or duration of intervention, weight loss has been touted as 

an independent therapy for histologic improvement in NASH and the intervention 

studies available have investigated this proposed relationship.  While most have 

demonstrated improvements in overall NAS with weight loss (56, 72, 89-92), not 

all have (88).  The present study found a positive relationship between change in 

weight and NAS (figure 4.6A) as has been reported previously (89, 92).  

However, the subjects receiving standard care also demonstrated an average 

weight loss of 5.9 ± 1.8 kg (-4 ± 3%), with minimal changes in liver histology.  
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Indeed, the degree of weight loss was not different between treatment and 

standard care subjects (P = 0.239; interaction term) although the composition of 

the body weight loss did differ with standard care subjects losing a greater 

proportion of their lean mass than treatment subjects.  The relative quantity of 

weight loss in standard care was similar to previous reports demonstrating 

improved liver histology (72, 89).  In particular, one study demonstrated 32% of 

participants who had ≤5% weight loss had NAS improvements (89).  Despite the 

average reduction in weight, only steatosis was significantly lower in standard 

care subjects while total NAS and fibrosis remained unchanged.  In addition to 

weight loss, standard care subjects also reduced plasma glucose and insulin 

concentrations (fasting and 18-h), HbA1c, and aminotransferases (ALT and 

AST).  It is of note, the standard care subjects did not receive counseling for 

energy restriction or exercise training beyond a single education session with a 

dietician at the start of the program.  Thus, the weight loss observed was a result 

of individual efforts and may have been influenced by the diagnosis of a chronic 

liver condition.  Upon examination of the changes in energy intake (figure 4.12), 

fitness levels (figure 4.13A), and daily activity (figure 4.13D), these data suggest 

the reduction in weight observed in standard care subjects was due primarily to 

reduced energy intake (P = 0.005 main effect of visit).  In comparison, two 

previous reports have examined independent effects of dietary interventions on 

histology in NAFLD/NASH (56, 91) and one reported a smaller degree of weight 

loss (-2.9 kg) which was accompanied by an average one-point reduction in 

steatosis (56).  Despite a greater weight loss (-5.9 kg), the standard care 
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subjects from the current study only reduced steatosis by 0.4 points on average.  

In line with others (89), our results suggest weight loss of <5% via energy 

restriction may be beneficial for improvements in liver fat, but not the other 

potentially more deleterious components of NAS or fibrosis.  As weight loss was 

similar between groups, it alone likely did not account for the significant histologic 

improvements in treatment subjects.  Thus, one must question what alternative 

mechanisms may be interacting to promote an improved liver phenotype.  The 

large fat free mass loss observed in standard care but not treatment subjects 

may be one potential explanation for these findings.  Alternatively, a major 

difference between the groups was the level of daily activity and supervised HIIT 

(figure 4.13) which likely played a role in maintaining muscle mass within 

treatment subjects.  In support of this, improved peak VO2 was strongly related to 

reductions in body weight, NAS, and fibrosis.  Overall, our results support the 

addition of exercise to weight loss as critically important for the histologic 

resolution of NASH.  The results presented here expand upon the previous 

reports in implicating an alternative mechanism beyond weight loss alone in 

improving liver health in NASH.  

 

Reroute hypothesis for histologic liver improvements: Examination of 

changes in glucose metabolism 

Of the studies discussed above, only indirect measures of insulin sensitivity (e.g., 

HOMA-IR, the quantitative insulin sensitivity check index [QUICKI], or insulin 

sensitivity index [ISI] from an oral glucose tolerance test [OGTT]) were collected.  
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Thus, this is the first study to characterize the relationships between changes in 

insulin sensitivity using a hyperinsulinemic-euglycemic clamp and histology in 

NASH.  Unexpectedly, minimal reductions in EGP were observed regardless of 

group.  Our findings differed from previous combined lifestyle intervention studies 

in T2D or individuals with impaired glucose tolerance which reported significant 

reductions in EGP (avg 48% decrease) (69, 146).  Upon closer inspection of our 

data, while the overall average step one (low insulin) EGP was reduced across 

subjects, five treatment participants had elevated relative EGP at follow-up.  

These five subjects also had an average 4.0 ± 1.0 point reduction in NAS 

whereas the other nine treatment subjects with reduced EGP had a 1.4 ± 0.3 

point reduction in total NAS.  Thus, when the change in EGP was compared to 

the change in NAS, a significant negative relationship was discovered – 

indicating the subjects with the greatest improvements in liver health via histology 

were also those with increased EGP (figure 4.19A).  As no other study has 

directly compared changes in liver histology and hepatic insulin sensitivity in 

humans, these findings are the first time this relationship has been reported.  Our 

results challenge the current dogma that 1- implicates elevated EGP with 

worsening liver disease (8, 113, 147, 148) and 2- associates greater 

improvements in liver fat, measured noninvasively, with reduced EGP, with (40, 

53, 54, 57, 69, 146, 149) and without (27) weight loss.  Multiple explanations for 

our findings are possible and explained in detail below. 
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1-  Effects of NEFA on EGP:  A study in subjects with obesity (53) demonstrated 

an acute (48 hour) and chronic (~11 weeks, 7% weight loss) energy restrictive 

low carbohydrate diet resulted in robust reductions in EGP.  In the same subjects 

described above (53), plasma NEFA concentrations were elevated during the 

clamp 48 hours following the onset of carbohydrate restriction but returned to 

pre-study levels following a 7% weight loss.  Other studies completed in 

metabolically-compromised subjects, have shown conflicting results in which 

increased plasma NEFA, via infusion of intralipid during a clamp or natural 

elevations in lipoprotein-TG concentrations (non-clamped status), have 

deleterious impacts on hepatic insulin sensitivity (69, 119, 150, 151).  In our 

study, we observed reduced plasma NEFA concentrations in all subjects at 

follow-up (figure 4.18 and table 4.5) in addition to increased NEFA suppression 

(figure 4.22).  Furthermore, no relationship was observed between step one 

NEFA and EGP at baseline or follow-up nor did the changes correlate (data not 

shown) which indicate the circulating NEFA concentrations likely did not acutely 

affect EGP during the clamp.  That being said, an unexpected positive correlation 

between 18-hour AUC of NEFA concentrations and the change in EGP existed 

while the same change in AUC NEFA tended to correlate negatively with 

improvements in NAS (figure S4.5).  In other words, subjects who increased 

circadian NEFA concentrations at follow-up had increased EGP and decreased 

liver disease (NAS).  These relationships suggest the potential for elevated 18-

hour NEFA concentrations in increasing EGP but, paradoxically, improve liver 

health.  However, subsequent analysis of NEFA AUC during the clamp, showed 
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no relationship with changes in EGP or NAS.  Thus, we believe it unlikely that the 

observed increases in EGP were a result of increased adipose tissue lipolysis 

and subsequent NEFA-induced hepatic insulin resistance.   

 

2- The reroute hypothesis:  A second explanation is that EGP was increased in 

response to elevations in glucose storage – either through increased peripheral 

oxidation or non-oxidative disposal.  During the second step of the clamp, 

treatment subjects significantly increased absolute glucose disposal (P = 0.032, 

within group t-test – baseline to follow-up) primarily through increased non-

oxidative glucose metabolism (P = 0.014, within group t-test – baseline to follow-

up).  In line with some (79, 146), but not all (27, 57) previous publications, 

glucose oxidation measured via indirect calorimetry did increase under insulin-

stimulated conditions (table 4.5).  However, the change in stimulation of glucose 

oxidation (i.e., the magnitude of increased oxidation from fasting to insulinized 

states at baseline versus follow-up) was not significantly different for either 

treatment or standard care subjects.  This suggests the relative level of glucose 

oxidation did not change across time, ultimately supporting the livers’ role in 

routing substrates towards the periphery for glycogen synthesis rather than 

oxidation.  Importantly, the final supervised exercise training session occurred 

more than 48 hours prior to the clamp to avoid any potential acute effects of 

training, however upon analysis of the physical activity data using FitBit® 

trackers, a strong correlation was revealed between the distance walked the two 

days prior to the study visit and Rd (figure 4.20).  Enhanced insulin sensitivity 
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and glycogen synthase activity can persist for 48 hours post exercise (152, 153).  

Thus, we cannot rule out a potential effect of activity levels impacting both 

glucose production and disposal. 

 

Finally, the subjects who had the lowest average carbohydrate intake the three 

days prior to follow-up testing also had the greatest increases in glucose 

production and disposal.  Taken together, enhanced insulin sensitivity at skeletal 

muscle with the potential for simultaneous depletion of glycogen content from 

dietary changes (154) may have driven EGP increases in the five treatment 

subjects through a muscle-centric need to replenish glycogen stores.  Ultimately, 

an increase in glucose production to feed primed skeletal muscle may be 

mechanistically implicated in improving liver histology through reduced hepatic 

substrate burden.   

 

Remarkably, one standard care subject also increased EGP at follow-up but 

demonstrated a two-point increase in total NAS – coming from one point 

increases in lobular inflammation and hepatocellular ballooning.  This subject 

represents a case in which elevations in glucose production (+118.2 µmol/min) 

when not accompanied by a substantial rise in glucose disposal (156.3 µmol/min; 

versus the 1,173.3 µmol/min increase in the five treatment subjects) elicits 

significant worsening of liver disease (50% increase).  The subject in question 

had the highest pre-follow-up study carbohydrate intake of all subjects (336.2 

g/day) and average to low physical activity level (1.7 miles/day).  Taken together, 
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these findings suggest a reverse “J-shaped” curve may exist with changes in liver 

histology and increased in EGP responding to increased Rd (hypothetical 

relationship presented in figure 4.29A).  This subject provides further evidence 

of how exercise in addition to energy restriction, irrespective of weight loss, may 

promote histologic improvements in even the most advanced cases of NASH. 

 

It is well established that excess hepatic nutrient burden is implicated in 

promoting hepatic insulin resistance, NAFLD development, and progression to 

more advanced forms (77, 96, 97, 101-104, 144, 155).  Here we propose an 

inter-organ crosstalk model (figure 4.29B) in which the liver responds to 

unknown signals (potentially mediated by chronic release of myokines (156)) 

from skeletal muscle by increasing the production and routing of substrates away 

from the liver, thereby relieving oversaturated hepatic metabolic pathways to 

ultimately reduce oxidative stress and inflammation within the liver.  Incidentally, 

this hypothesis is the reciprocal of one proposed by Petersen et al (157), in which 

they found insulin resistant skeletal muscle promoted the diversion of ingested 

carbohydrates away from peripheral glycogen synthesis and into hepatic DNL.  

The results presented here may extend the widely accepted selective hepatic 

insulin sensitivity paradox, first identified in mice (158-160) and later described 

elegantly by Brown and Goldstein (118), into a setting of lifestyle modifications.  

The interaction between hepatic glucose and lipid metabolism remains at the 

cornerstone of this paradox, particularly in a setting of elevated IHTG, as 

observed in NASH.  
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3- Independent, unknown mechanism:  A final potential explanation for our 

findings is that the liver is improving independently of changes in EGP, although 

the two processes are occurring simultaneously.  Improved histology could be a 

result of increased peripheral insulin sensitivity alone or due to an independent, 

unknown mechanism.  We think this is highly unlikely due to 1- evidence from 

previous studies implicating hepatic and peripheral glucose metabolic 

disturbances in the development of NAFLD (9, 13, 105) and 2- our correlative 

analyses suggest these outcomes are strongly related.  Nevertheless, our 

interpretations are based on correlations alone and therefore caution is needed 

when generalizing results for larger populations.  To confirm our model, 

mechanistic basic studies and analysis of skeletal muscle tissue from humans 

with NASH is needed.   

 

Interactions between hepatic glucose and lipid metabolism in a setting of 

improved liver histology 

As described above, sensitivity of hepatic tissues to insulin is reflected in both 

glucose production and lipogenesis.  However, a bifurcation of insulin sensitivity 

is revealed in settings of metabolic perturbations like T2D and NAFLD; insulin 

fails to suppress gluconeogenesis but maintains stimulation of DNL through 

activation of key lipogenic transcription factors.  Our group was the first to report 

a unique elevation of DNL in subjects with NAFLD (96, 97) and the current data 
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demonstrate similar results.  We expand upon our previous findings in multiple 

ways.   

 

1- Effects of treatment or standard care on DNL:  Weight loss, regardless of 

group, induced significant reductions in nocturnal and fasting fractional DNL.  

Smith et al (42) showed similar results following diet-induced moderate (10%) 

weight loss in subjects with NAFLD.  We observed a 33 ± 14% reduction in 

fasting fractional DNL in seven treatment subjects while the former study (42) 

showed a 35 ± 10% reduction in six subjects.  Unlike this report, we did not 

observe significant relationships between fractional DNL and 18-h glucose or 

insulin AUCs at baseline or after the program.   

 

2- Peripheral but not hepatic insulin sensitivity correlated negatively to DNL:  

While our results were consistent for systemic insulin sensitivity, in opposition to 

Smith et al (42) we found no relationship between changes in DNL and EGP.  

We were highly surprised by this observation as our model (figure 4.29B) would 

suggest removing substrate to circulation via gluconeogenesis would reduce the 

lipogenic potential within the liver.  Indeed, a recent report demonstrated mice 

with phosphoenolpyruvate carboxykinase (PEPCK) knockout resulted in TCA 

metabolite accumulation and rapid fat accrual within the liver, which was in part 

attributed to increased DNL (161).  Within our proposed model, lower lipogenic 

flux may be a result of 1- reduced SREBP-1c activation via reductions in insulin 

concentrations, 2- lower NEFA insult secondary to improved adipose tissue 
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insulin sensitivity, 3- reduced dietary or circulating substrate.  With regard to the 

final mechanism, subjects reduced carbohydrate intake and added sugars 

throughout the study and demonstrated enhanced peripheral insulin sensitivity.  

Together, both reduced substrate coming into the system and greater disposal of 

excess circulating carbohydrates through oxidation or storage likely lowered the 

flux of carbons down glycolysis and into lipogenesis.  The strong negative 

correlations between the fractional contribution of DNL to plasma VLDL-TG 

palmitate and peripheral glucose disposal and VO2 peak support this theory 

(figure 4.24E-F). 

 

3- DNL and histology:  For the first time, relationships between changes in 

histology and DNL were characterized.  While the small sample size limited our 

effect sizes, our results are supported by previous work from our lab (96, 162) 

and others (42, 163, 164) demonstrating greater VLDL-TG DNL (or hepatic 

lipogenic gene/protein expression) occurring in subjects with the greatest liver fat 

and recent work from our lab demonstrated the same with increasing liver 

disease by histologic assessment (165).  Interestingly, we found no relationship 

between changes in steatosis (histology or MRS) and fractional DNL, in 

opposition to a previous report (42).  This may suggest changes in DNL were not 

the key factor in reducing IHTG in these subjects – for example, reductions in 

steatosis may also be induced through increased hepatic oxidation or secretion 

of lipid.  With dietary and exercise interventions, enhanced fatty acid oxidation 

has been reported directly in liver tissue (166) and indirectly via calorimetry (167, 
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168).  One mechanism behind these changes is reduction in DNL which would 

serve to reduce malonyl-CoA levels, a potent inhibitor of CPT, and relieve 

inhibition on fatty acid oxidation (169).  Secretion of hepatic lipid may also serve 

to reduce liver fat.  Improved insulin sensitivity with simultaneous reductions in 

insulin concentrations may increase secretion of lipotoxic lipids that are 

implicated in contributing to inflammation and oxidative stress (134, 170).  

Beyond steatosis alone, the changes in DNL were positively related to 

hepatocellular ballooning and fibrosis suggesting chronic relief of lipogenic flux 

may be beneficial for improving hepatic intracellular fat infiltration and 

subsequent cellular ballooning as well as tissue scarring. 

 

4- Plasma CER in a setting of improved liver disease:  Lipotoxic lipid species are 

implicated in the development and progression of NAFLD and NASH (171-179).  

In line with previous reports examining the effects of dietary (177, 180-182) and 

exercise (135, 183) interventions on plasma CER, we observed reduced 

concentrations across all subjects.  However, to our surprise, baseline 

concentrations were negatively related to weight and fasting glucose 

concentrations while the change in CER demonstrated similar negative 

relationships with weight and fat mass loss.  Even in the context of reduced CER 

concentrations, a greater amount within the plasma was indicative of reduced 

weight.  Ceramide 16:0, one species that has garnered attention for its lipotoxic 

properties (184-187), was negatively related to changes in IHTG as measured 

both by liver biopsy and MRI.  These relationships suggest the greater the 
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plasma CER 16:0 after treatment the greater the reduction in liver fat, 

demonstrating that even in a background of reduced total plasma CER 

concentrations, exporting CER from the liver, particularly lipotoxic species, may 

confer histologic benefits within the liver.  If short term studies were to examine 

acute weight loss or dietary challenges, one may hypothesize an increased 

hepatic secretion rate of CER on VLDL particles and acute increases in plasma 

CER concentrations, similar to the acute effects of weight loss on adipose tissue 

lipolysis (188).  However, we have measured CER within the whole plasma 

fraction rather than TRL particles, thus, we cannot exclude the possibility of 

differing results in plasma lipoprotein pools due to other sources of plasma CER.  

For example, cell culture studies demonstrate primary adipocytes secrete CER 

and the secretion is induced with proinflammatory marker, tumor necrosis factor 

alpha (TNFα) (189) which is elevated in NAFLD and NASH (190).  Thus, it is 

likely that a portion of the plasma CER are coming from extrahepatic sources.  

However, strong data from humans (191) and animals (191, 192) support the 

liver as the primary source of plasma CER (60-80%).  If that assumption is held 

true for the current participants, our data would suggest hepatic secretion of CER 

16:0 may aid in reducing liver fat.  A limitation to this hypothesis is the unknown 

concentration of hepatic CER before and after treatment, thus future studies 

should quantify changes in hepatic CER content to better identify mechanisms of 

CER in liver disease regression.  In addition to CER quantification, dhCERs, a 

precursor sphingolipid to CER (figure 1.6), were measured in the plasma.  

Similar relationships were found as reported above for CER with the exception of 



 

258 
 

changes in liver steatosis.  Unlike previous reports (135, 183, 193), baseline CER 

or dhCER (total or any acyl-chain length) did not correlate with peripheral insulin 

sensitivity. 

 

Strengths, limitations, and future directions 

Multiple strengths to the present study deserve mention.  1- For the first time, 

both repeated liver biopsies for histologic grading of disease with deep metabolic 

phenotyping using a multi-tracer isotope protocol to probe hepatic, adipose, and 

peripheral substrate metabolism were completed in subjects with advanced 

NASH.  This remains the only study to comprehensively address the 

relationships between histology, EGP, Rd, and lipid metabolism within advanced 

NASH patients in a setting of intensive lifestyle treatment.  2- While previous 

studies have performed similar combined interventions, very few included both 

regular dietary counseling (i.e., weekly-monthly sessions with a registered 

research dietician) and supervised exercise training.  Our protocol likely 

increased the impact of our treatment on metabolic changes and demonstrated 

the potential for intensive lifestyle modifications to radically improve and 

eradicate NASH.  3- The long-term nature of our program promoted a wide range 

of individual responses which allowed for greater probing of the mechanisms 

responsible for improved histology and insulin sensitivity.   

 

This study also had limitations; 1- While most variables were similar at baseline 

across both treatment and standard care subjects, the latter group had higher 
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steatosis at baseline.  While similar relative reductions were observed in both 

groups, the difference in starting liver fat, as measured histologically and by 

MRI/MRS imaging, may have impacted the results we observed.  However, total 

NAS score was not statistically different between groups at baseline which 

suggests the other components, lobular inflammation and hepatocellular 

ballooning were slightly lower in the standard care subjects, even though they 

were not statistically different from treatment subjects (figure 4.4 – note P-values 

for main effect of group).  It is impossible for us to identify how this may have 

impacted the changes we observed in both groups.  2- To begin the study, the 

first five subjects were automatically placed into the treatment group.  As such, 

these non-randomized subjects may have impacted our results in manners 

unknown to the authors.  However, when the changes in histology observed in 

these subjects versus the remaining treatment group were compared, no 

differences were observed.  3- The small sample size may have contributed to 

increased risk of type two errors.  Metabolic studies in humans are both costly 

and time intensive which limit the total number of potential subjects.  Recruitment 

was also limited by both the COVID-19 shutdown of the MU liver clinic elective 

liver biopsies and the small number of subjects eligible for the study based on 

disease severity, geographical location, and willingness to participate in a long-

term study with high subject burden.  Nevertheless, we had excellent subject 

retention with only two subject discontinuations (one declined to continue and the 

other was removed by study personal for lack of adherence, figure 4.2).  4- The 

original goal of the lifestyle treatment was a 12% body weight loss to induce the 
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greatest impact on liver health.  Most of the treatment subjects did not achieve 

this level of weight loss (3/14 subjects, 21%).  Despite this, we still observed 

significant improvements in liver health, suggesting weight loss alone may not be 

the key factor in improving histology and insulin sensitivity in NASH.  

Nonetheless, we cannot be certain the results would be different, had all subjects 

reached a weight loss of at least 12%.  5- Finally, while not a limitation, it is 

important to note that weight loss was evident in standard care subjects.  While 

none achieved the 12% weight loss goal of the treatment, it is likely the standard 

care subjects were motivated to independently initiate lifestyle changes because 

they were involved in a liver health study and were recently diagnosed with an 

advanced, chronic liver condition.  

 

To address novel findings reported above, future studies should include direct 

analysis of skeletal muscle glycogen content and synthesis along with gene and 

protein expression of key glycolytic and oxidative intermediates.  If completed 

within a similar study design, measurement of local skeletal muscle changes may 

provide insight to the observed increases in glucose production (i.e., did depleted 

glycogen content signal an increase in hepatic glucose production and how?).  

Alternatively, observational studies are needed to profile circulating factors (i.e., 

exerkines, microRNA, extracellular vesicles) implicated in liver-muscle cross talk 

and follow-up mechanistic studies should then investigate the systems 

responsible for modulating hepatic glucose production.  Indeed, larger studies 

are needed to understand differences in responders and non-responders to 
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lifestyle treatments in the regression of NASH and how elevated glucose 

production may be related to reduced histologic severity of liver disease in some 

but not all individuals (e.g., the reverse J shaped curve in figure 4.29A).  

Relatedly, pharmacologics aimed at rerouting substrates away from the liver may 

be a promising therapeutic target.  When tested with and without exercise, a 

better understanding of whether increased hepatic substrate secretion in the 

absence of increased disposal (i.e., exercise) would indeed elicit hepatic and 

systemic benefits.  Caution should be taken as these drug targets may also 

increase T2D risk (increased plasma glucose) and insulin resistance. 

 

Conclusion 

Despite being the cornerstone of NASH treatment, few studies have 

characterized the mechanisms involved in histologic liver improvements with 

lifestyle modifications.  Here, we demonstrated significant histologic 

improvements following energy restriction and exercise with particular 

importance placed upon the physical activity component of the program.  While 

our results were similar to previous publications for treatment subjects, weight 

loss alone was not sufficient to induce histologic improvements in standard care 

subjects despite similar reductions in blood biochemistries and plasma liver 

enzymes.  Finally, strong correlations suggest increased glucose production and 

disposal secondary to improvements in fitness and carbohydrate restriction are 

implicated in the observed improvements in liver histology.  The results from this 

study support the addition of specific exercise prescriptions to the treatment and 

prevention of NAFLD and NASH.  
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EXTENDED METHODOLOGY 

 

Modified Bruce – Exercise tolerance test  

The ETT protocol is shown in extended methodology table EM4.1. 

 

HIIT protocol 

Subjects completed exercise sessions three times per week according to the 

heart rate targets shown in extended methodology figure EM4.1 (50% HR max 

warm up three minutes followed by four repeated bouts of 90-95% HR max – four 

minutes then 50% HR max -three minutes).  All exercise sessions were 

completed on a motorized treadmill, cycle ergometer, or elliptical.  Polar heart 

rate monitors were used to confirm targets were achieved.   

 

Palmitate – Extraction and GC/MS 

Plasma samples were processed to isolate TRL using ultracentrifugation at 

40,000 rpm at 15°C in a 50.3Ti rotor (Beckman Instruments, Palo Alto, CA) for 

20h (126).  The TRL fraction (two ml from the upper layer) and bottom four 

milliliters (FFA) was collected by tube slicing.  Total lipids were extracted using 

the Folch method (194).  The TRL-TG were separated via thin-layer 

chromatography and fatty acid methyl esters (FAME) were measured using a 

6890N gas chromatography coupled to a 5975 mass spectrophotometry detector 

(Agilent Technologies, Palo Alto, CA) using a DB-225 column (20 m length, inner 

diameter 0.18 mm, and 0.20 μm film, Part# 121-2223, Agilent J&W GC Columns, 

ChromTech, Inc., Apple Valley, MN) and helium as a carrier gas.  The electron 

impact was used to selectively monitor ions with mass/charge (m/z) ratios of M0, 
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M1, M2, M4/16, M30, and M31.  Targeted m/z ratios were 270, 271, and 272 for 

16:0 labeled with deuterated water, 274 or 286 for 16:0 labeled with a 13C4 or 

13C16 labeled fatty acid (adipose), and 300 and 301 for 16:0 labeled with dietary 

d31 labeled tripalmitin (all isotopes purchased from Cambridge Isotope 

Laboratories, Andover, MA).  Comparable ion peak areas between standards 

(Supelco 37 Component FAME Mix, FAME37, EC# 200-838-9, Sigma, St. Louis, 

MO) and biological samples for the M0 (270 m/z) ion were achieved by dilution or 

concentration of the sample or adjustment of the volume injected.  The percent 

DNL for 16:0 were calculated by mass isotopomer distribution analysis (129, 

130).  Details of GC/MS methods are shown in extended methodology table 

EM4.2. 

 

Glucose – Extraction and GC/MS 

Plasma samples (100µL) were deproteinized with ice-cold ethanol, centrifuged 

and the supernatant was dried under nitrogen gas.  Acetic anhydride: pyridine 

(1:1 vol/vol, 100µL) was added and the samples incubated at 80°C for 30 

minutes.  The air vapor was recaptured, and the samples transferred to GC vials 

with 400 µL of ethyl acetate (final volume 500 µL).  Samples were injected (one 

µL) into a 6890N gas chromatography coupled to a 5975 mass 

spectrophotometry detector (Agilent Technologies, Palo Alto, CA) using a 

19091M column (30m length, inner diameter 0.250m, and 0.25μm film, Part# 

19091M-433, Agilent J&W GC Columns, ChromTech, Inc., Apple Valley, MN) 

and helium as a carrier gas.  The oven was heated to 110°C for one minute and 

then ramped 15°C per minute until 240°C and held for five minutes with a final 
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run time of 14.667 minutes.  Samples were transferred to the MS at 240°C.  

Selected ions (m/z: 242-247) were monitored using ChemStation.  A nine-point 

standard curve was used to calculate percent enrichment.  Details of GC/MS 

methods are shown in extended methodology table EM4.3. 

 

Ceramide – Extraction and LC/MS 

Plasma (100 µL) samples and internal standard (CER 18:1/17:0, 50ng) were 

extracted with chloroform and methanol according to Bligh and Dyer (136).  The 

bottom (organic) layer was removed and dried and the remaining water layer re-

extracted, and the organic layers collapsed then dried under nitrogen gas.  An 

azeotropic agent (methylene chloride) was used to remove any remaining water.  

Samples were dissolved in 100 µL of 0.1% formic acid solution in methanol-water 

(85:15) and then injected (5µL) into a Waters HPLC device (2690 Separation 

Module, Milford, MA) and separated through an Vydac® 200MS™ C8 column 

(2.1 x 100 mm, 5 µm, P.J.Cobert Associates, St. Louis, MO).  A Thermo 

Scientific TSQ (Triple-Stage Quadrupole) Quantiva mass spectrometer was used 

for ceramide identification and the extended methodology figure EM4.2 

demonstrates the collision induced ionization of CER 18:1/16:0 (CER containing 

a palmitate on the fatty acyl chain) using this method.  Details of GC/MS methods 

are shown in extended methodology table EM4.4 and the transitions and 

retention times for each CER and dhCER analyzed are shown in extended 

methodology table EM4.5.  
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Power calculation 

A power analysis (extended methodology table EM4.6) demonstrated 5-18 

subjects would be required to detect differences in Rd, EGP, DNL, and plasma 

CER 16:0.  With a current sample size of 19 subjects completed, we have 90% 

power to detect differences in these outcomes at follow-up.   
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Extended Methodology Tables and Figures 

Table EM4.1.  Modified Bruce ETT protocol 

 

 

 

 

 

 

 
Table EM4.2.  Detail of GC/MS methodology (palmitate) 

 
 
Table EM4.3.  Detail of GC/MS methodology (glucose) 

 
 
Table EM4.4.  Detail of LC/MS methodology (ceramide) 

Mobile phases C) Water + 0.2% formic acid 
D) Acetonitrile/2-propanol (50/50)+ 0.2% formic 

acid 

Flow 0.3 mL/min 

Gradient 0-3 minutes: 65% B 
1-4 minutes: 65%B to 100%B 
4-16 minutes: 100%B 
16-16.1 minutes: 100%B to 65%B 
16.1-22 minutes: 65%B 

Stage MPH % grade Minutes 

1 1.7 0% 3 

2 1.7 10% 3 

3 2.5 12% 3 

4 3.4 14% 3 

5 4.2 16% 3 

6 5.0 18% 3 

7 5.5 20% 3 

Injection volume 1-2 µL 

Injector temperature (°C) 230°C 

Transfer line 
temperature (°C) 

230°C 

Oven 0-1 minutes: 70°C 
2-9.67 minutes:  110°C to 240°C (15°C/min) 
9.67-4.67 minutes: 240°C 

Injection volume 1 µL 

Injector temperature (°C) 240°C 

Transfer line 
temperature (°C) 

240°C 

Oven 0-3.75 minutes: 70°C to 220°C (40°C/min) 
3.75-8.75 minutes:  220°C 
8.75-10.75 minutes: 220°C to 230°C (5°C/min) 
10.75-14.75 minutes: 230°C 
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Table EM4.5.  Transitions and retention time for all CER and dhCER species 

analyzed 

Ceramide Transition  
(m/z) 

Retention time 
(minutes) 

18:1/17:0 552.6 → 264 4.42 

18:1/14:0 510.5 → 264 4.10 

18:1/16:0 538.5 → 264 4.32 

18:1/18:1 564.4 → 264 4.35 

18:1/18:0 566.4 → 264 4.50 

18:1/20:0 594.4 → 264 4.69 

18:1/22:0 622.6 → 264 4.84 

18:1/24:1 648.6 → 264 4.81 

18:1/24:0 650.6 → 264 4.98 

   

Dihydroceramide Transition  
(m/z) 

Retention time 
(minutes) 

18:0/16:0 540.6 → 266 4.40 

18:0/18:0 568.4 → 266 4.57 

18:0/24:1 650.6 → 266 4.88 

18:0/24:0 652.6 → 266 4.98 

 

Table EM4.6.  Power calculation based on previous studies 

Repeated  
measures 

Pre- Post- Pooled 
SD 

Power Alpha n 

Increased in Rd
1 4.5 5.7 1.1 90% 0.05 18 

Increased in Rd
2 45.1 52.7 5.0 90% 0.05 9 

Reduction in EGP2 3.4 2.3 0.5 90% 0.05 5 
Reduction in EGP3 190 155 20.0 90% 0.05 7 
Reduction in DNL4 20.1% 7.2% 9.0% 90% 0.05 14 
Reduction in CER 
16:05 

2.6 1.8 0.5 90% 0.05 10 

1 Data from ref. (29), Ex treatment; clamp units: mmol/kg FFM/min/ (pmol/L) 
2 Data from ref. (36), EX treatment; clamp units are µmol/kg/min 
3 Data from ref. (57), CR in T2D (9% weight loss); clamp units: mg/min 
4 Data from ref. (96); CR in NAFLD (10% weight loss); units: % VLDL-TG 
palmitate 
5 Data from ref. (171); Plasma CER - EX treatment in T2D (5% weight loss); 
units: nmol/mL 
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Figure EM4.1.  Heart rate target for HIIT sessions 

 

 

 

 

 

 

Figure EM4.2.  Collision induced ionization of CER 18:1/16:0 

  

 

 
 

Parent Molecule 
(C34O3NH67) 
Ceramide 18:1/16:0 
m/z = 538 

Daughter Ion (C18NH34) 
m/z = 264 

Fragmented Ion (C16O3H33) 
m/z = 273 
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Table 4.1.  Criteria for inclusion and exclusion in Phase II 
 

Criteria for Inclusion 
1.  Men and women (pre- and post-menopausal) 

2.  Overweight/obese with BMI ≥ 25.9 or  50.0 kg/m2 
3.  Characteristics of the metabolic syndrome, pre-diabetes 

(fasting glucose 100-125 mg/dL or 2h glucose 140-200 
mg/dL) or type 2 diabetes 

4.  22-65 years of age 

5.  Sedentary,  60 minutes per week of structured physical 
activity 

6.  Alcohol intake < 20 g/d 
 

Criteria for Exclusion 
1.  Acute disease or advanced cardiac or renal disease, 

anticoagulation therapy, or any severe co-morbid condition 
limiting life expectancy < 1 year 

2.  Other causes of hepatitis including hepatitis B & C, 
autoimmune hepatitis, hemochromatosis, celiac disease, 
Wilson’s disease, alpha-1-antitrypsin deficiency, 
medication-induced hepatitis, any clinical or biochemical 
evidence of decompensated liver disease 

3.  Use of medications that interfere with lipid, protein, or 
carbohydrate metabolism (steroids, niacin, etc) 

4.  Pregnant or trying to become pregnant 
5.  Alcohol intake > 20 g/d 
6.  Inability to exercise on a bike or treadmill 
7.  Contraindications of MRS/MRI 
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Table 4.2.  Phase one subject characteristics 
 

Characteristic 
Mean ± SD 

(n = 981) 

Sex (m/f) 31/67 

Age (y)   47 ± 11 

Body weight (kg) 112 ± 24 

BMI (kg/m2) 39.4 ± 7.8 

AST (U/L)2   44 ± 29 

ALT (U/L)   58 ± 37 

Cholesterol (mg/dL) 171 ± 41 

LDL (mg/dL)3   98 ± 33 

HDL (mg/dL)   43 ± 14 

Triglycerides (mg/dL)   185 ± 133 

Glucose (mg/dL)   97 ± 50 

HbA1c (%)      6.8 ± 1.7% 

Type 2 diabetes 48 (49%) 

Hyperlipidemia 67 (68%) 

Hypertension 49 (50%) 

Former smoker 19 (19%) 

NAS (0-8)4   4.9 ± 1.5 

Steatosis (0-3)   2.2 ± 0.6 

Lobular Inflammation (0-3)   1.5 ± 0.7 

Hepatocellular ballooning (0-2)   1.2 ± 0.7 

Fibrosis (0-4)   1.2 ± 1.4 
  

 

Data expressed as a mean ± SD or n (%). 
1 Unless otherwise noted. 
2 n = 97, one sample not analyzed d/t hemolysis 

3 Calculated; n = 91, 7 samples had too high [TG] to accurately calculate 

4 NAS, NAS components, and fibrosis are presented with a decimal (despite 
whole number scores) to demonstrate subtle differences between groups; n = 
97 – two subjects did not have tissues available. 
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Table 4.3.  Baseline phase two subject characteristics 
 

 Treatment 
(n = 18) 

Standard Care 
(n = 8) 

P-value 

Sex (m/f)        7/11        2/6  

Age (y)     47 ± 10    47 ± 10 0.937 

Body weight (kg)1   116 ± 23  108 ± 24 0.383 

BMI (kg/m2)  40.2 ± 7.7 37.3 ± 7.2 0.379 

Body fat (%)    45 ± 9%    45 ± 8% 0.914 

AST (U/L)    51 ± 39    47 ± 32 0.768 

ALT (U/L)    57 ± 34    69 ± 51 0.463 

Cholesterol (mg/dL)  161 ± 34  185 ± 37 0.118 

LDL (mg/dL)2    89 ± 28  103 ± 25 0.298 

HDL (mg/dL)    40 ± 9    37 ± 13 0.437 

Triglycerides (mg/dL)  214 ±140  343 ± 265 0.114 

NEFA (mmol/L) 0.69 ± 0.16 0.78 ± 0.17  0.199 

Glucose (mg/dL)  152 ± 58  139 ± 41 0.582 

Insulin (uIU/mL)    17 ± 13    20 ± 10 0.466 

HbA1c (%)   7.3 ± 1.5%   7.0 ± 1.6% 0.632 

Type 2 diabetes3     12 (67%)      6 (75%) 0.343 
Metformin      11 (61%)      7 (88%) 0.193 

Insulin        3 (17%)      1 (14%) 0.445 

Sulfonyurea       3 (17%)      0 (0%) 0.134 

Statin     10 (56%)      3 (38%) 0.208 

DPP4 inhibitor       1 (6%)      1 (14%) 0.245 

GLP-1 agonist       3 (17%)      3 (38%) 0.279 

SGLT-2 inhibitor       6 (50%)      1 (13%) 0.343 

Liver fat by MRS (%)  15.7 ± 7.6%  24.4 ± 10.8% 0.029 

NAS (0-8)4    5.4 ± 1.1    5.4 ± 1.1 0.886 

Steatosis (0-3)    2.2 ± 0.5    2.6 ± 0.5 0.047 

Lobular Inflammation (0-3)    1.7 ± 0.6    1.5 ± 0.5 0.503 

Hepatocellular ballooning (0-2)    1.6 ± 0.5    1.3 ± 0.7 0.149 

Fibrosis (0-4)    1.9 ± 1.4    1.5 ± 1.7 0.488 
    

 

Data expressed as a mean ± SD or n (%); unpaired, two-tailed students t-tests. 
1 From baseline (phase one) biopsy. 
2 Calculated (excluding one treatment and two control subjects due to too high 

[TG] to accurately calculate). 
3 Concomitant medications at baseline. 
4 NAS, NAS components, and fibrosis are presented with a decimal (despite 

whole number scores) to demonstrate subtle differences between groups. 
  



 

273 
 

Table 4.4.  Blood lipids 
 

Concentration 
Treatment 
(n = 14) 

Standard Care 
(n = 5) 

P-value 
 

(mg/dL)  Baseline Interim Follow-up Baseline Interim Follow-up Interaction 

TG    219 ± 25 166 ± 32 169 ± 27 343 ± 94 239 ± 31 224 ± 51 0.809 
TRL-TG   157 ± 49   84 ± 15   91 ± 16 177 ± 54 160 ± 30 145 ± 33 0.615 
Total cholesterol   168 ± 9 172 ± 9 156 ± 9 185 ± 15 179 ± 32 162 ± 18 0.813 
HDL cholesterol     40 ± 3   42 ± 2   39 ± 2   33 ± 2   35 ± 3   34 ± 1 0.809 
LDL cholesterol 1     95 ± 8 103 ± 8   90 ± 7 115 ± 5 107 ± 25   98 ± 13 0.723 
VLDL cholesterol 1     31 ± 3   25 ± 2   28 ± 3   30 ± 8   37 ± 7   31 ± 6 0.466 
        

 

Data expressed as a mean ± SEM. 
P-value from interaction term of mixed model ANOVA (group x time). 
1 Calculated: Excluding one subject from treatment and two subjects from standard care due to too high [TG] to 

accurately calculate.  

2
7

3
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Table 4.5.  Hepatic and peripheral insulin sensitivity and insulin-stimulated 
substrate metabolism 

 

 Treatment 
(n = 14) 

Standard Care 
(n = 5) 

P-
value1 

 Baseline  Follow-up Baseline  Follow-up  

EGP (µmol/min)      

Fasting# 1,339 ± 92 1,222 ± 49 1,352 ± 130 1,205 ± 113 0.817 

Clamp - low insulin2,*    757 ± 57    675 ± 24    785 ± 72    663 ± 62 0.634 

% suppression      43 ± 2%      44 ± 1%      42 ± 3%      44 ± 4% 0.681 

Clamp - high insulin3    503 ± 58    499 ± 40    527 ± 44    454 ± 52 0.480 

% suppression      62 ± 4%      59 ± 3%      61 ± 3%      62 ± 2% 0.521 

      

Rd (µmol/min)      

Fasting# 1,364 ± 93 1,246 ± 50 1,378 ± 134 1,228 ± 116 0.811 

Clamp - low insulin# 1,423 ± 119 1,180 ± 78 1,368 ± 178 1,042 ± 435 0.712 

Clamp - high insulin§ 2,323 ± 179 2,887 ± 271 1,692 ± 158 1,600 ± 147 0.186 

      

NEFA (mmol/L)      

Fasting*   0.73 ± 0.04   0.64 ± 0.06   0.79 ± 0.09   0.67 ± 0.07 0.628 

Clamp - low insulin§   0.43 ± 0.03   0.37 ± 0.04   0.50 ± 0.03   0.51 ± 0.10 0.391 

% suppression      40 ± 4%      40 ± 4%      34 ± 6%      27 ± 8% 0.495 

Clamp - high insulin   0.17 ± 0.04   0.07 ± 0.01   0.20 ± 0.05   0.14 ± 0.03 0.506 

% suppression*      76 ± 4%      87 ± 2%      72 ± 8%      79 ± 6% 0.576 

      

Substrate Oxidation      

Fasting RQ4   0.78 ± 0.01   0.77 ± 0.01   0.78 ± 0.02   0.74 ± 0.03 0.194 

Clamp RQ*   0.80 ± 0.01   0.79 ± 0.01   0.81 ± 0.02   0.75 ± 0.02 0.313 

Fasting GluOx5   0.71 ± 0.09   0.68 ± 0.12   0.83 ± 0.25   0.55 ± 0.09 0.233 

Clamp GluOx6   0.91 ± 0.13   0.79 ± 0.09   1.04 ± 0.18   0.59 ± 0.13 0.529 

Fasting Glu NonOx7*   1.33 ± 0.11   1.51 ± 0.14   1.37 ± 0.17   1.70 ± 0.14 0.377 

Clamp Glu NonOx§,҂   2.61 ± 0.30   3.97 ± 0.56   1.69 ± 0.16   2.18 ± 0.16 0.405 

Fasting FatOx 8, ҂   0.86 ± 0.05   0.94 ± 0.08   0.97 ± 0.03   1.21 ± 0.16 0.284 

Clamp FatOx*   0.75 ± 0.07   0.82 ± 0.08   0.79 ± 0.10   1.08 ± 0.17 0.207 
      

 

Data expressed as a mean ± SEM or n (%); 
Treatment: n  = 14, standard care:  n = 5, unless otherwise noted below.  
1 Mixed model ANOVA (P-value from interaction term group x time). 

* P <0.05 - Main effect of visit 
# P <0.1 - Main effect of visit 
§ P <0.05 - Main effect of group 
҂ P <0.1 - Main effect of group 

2 Step one: Seven mU/m2/minute. 
3 Step two: 50 mU/m2/minute. 
4 Respiratory Quotient (CO2/O2); Missing data from one standard care subject. 
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5 Glucose oxidation (mg/kg/min); Missing data from one treatment and two 
standard care subjects. 

6 Missing data from one standard care subject. 
7 Nonoxidative glucose metabolism (mg/kg/min; glucose disposal – glucose 

oxidation); Missing data for one treatment subject. 
8 Lipid oxidation (mg/kg/min); Missing data from one standard care subject. 
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Figure 4.1.  Overall study design 
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Figure 4.2.  Participant recruitment 
 

 
 

Note: The follow-up and analysis sections are the anticipated samples sizes once 
all subjects complete follow-up testing.  For the present analysis, a total of 14 
treatment and five standard care subjects have completed follow-up testing and 
are included in all subsequent analyses. 
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Figure 4.3.  Metabolic testing day study design (repeated at baseline and follow-up in all subjects) 
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Figure 4.4.  Changes in liver histology  
 

 
 

Data are presented as mean ± SEM; A-F: Treatment: n = 14, Standard care: n = 
5; H: Treatment: n = 12, Standard care: n = 5. 
Mixed model ANOVA with post-hoc pairwise comparisons for significant 
interactions with Bonferroni adjustment. 
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A:  Changes in NAS. 
B-D:  Changes in the NAS components – (B) steatosis, (C) lobular inflammation, 

(D) hepatocellular ballooning. 
E:  Changes in fibrosis. 
F:  Changes in liver fat by MRS. 
G-H:  Representative liver H&E and trichrome staining for (G) treatment and (H) 

standard care groups. 
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Figure 4.5.  Changes in anthropometrics  
 

 
 

Data are presented as mean ± SEM;  Treatment: n = 14, Standard care: n = 5. 
Mixed model ANOVA (group x time) with post-hoc pairwise comparisons for 
significant interactions with Bonferroni adjustment. 
A:  Changes in total body weight. 
B-C:  Changes in body composition - (B) fat free mass and (C) fat mass.  
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Figure 4.6.  Relationships between changes in liver histology, weight, and fat 
mass  

 

 
 

Spearman’s correlation was used to assess linear relationships between ranked 
and continuous variables.  Treatment subjects are shown in green circles and 
standard care in open circles.  Treatment: n = 14, Standard care: n = 5. 
A-B:  Relationships between changes in NAS and (A) total body weight and (B) 

fat mass.  
C-D:  Relationships between changes in steatosis and (C) total body weight and 

(D) fat mass. 
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E-F:  Relationships between changes in lobular inflammation and (E) total body 
weight and (F) fat mass. 

G-H:  Relationships between changes in hepatocellular ballooning and (G) total 
body weight and (H) fat mass.  
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Figure 4.7.  Changes in fasting blood biochemistries 
 

 
 

Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5. 
Mixed model ANOVA with post-hoc pairwise comparisons for significant main 
effect of visit with Bonferroni adjustment. 
* P < 0.05 BL vs INT and FU (main effect of visit) 
A-C:  Changes in fasting (A) glucose, (B) insulin, and (C) HbA1c. 
D-E:  Changes in plasma liver enzymes - (D) ALT and (E) AST. 
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Figure 4.8.  18-hour dynamics of plasma glucose 
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Data are presented as mean ± SEM;  Treatment: n = 14, Standard care: n = 5 – 
individual data points missed were filled by averaging the values before and 
after.  The 18-hour overnight study was divided in three time periods for analysis: 
6PM to midnight (postprandial), midnight to 6AM (nighttime), and 6AM to noon 
(clamp).   
A-B:  Glucose concentrations in treatment (A, green) and standard care (B, 

black) groups at baseline (open circles) and follow-up (closed circles).  P-
values represent the interaction term (group x visit x time, mixed model 
ANOVA) and supplementary table S4.1A demonstrates individual 
comparisons. 

C:  Total area under the curve (AUC, see related supplementary figure S4.2A 
for individual time segments).  Mixed model ANOVA with post-hoc pairwise 
comparisons for significant main effect of visit with Bonferroni adjustment.  
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Figure 4.9.  18-hour dynamics of plasma insulin 
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Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5 – 
individual data points missed were filled by averaging the values before and 
after.  The 18-hour overnight study was divided in three time periods for analysis: 
6PM to midnight (postprandial), midnight to 6AM (nighttime), and 6AM to noon 
(clamp).   
A-B:  Insulin concentrations in treatment (A, green) and standard care (B, black) 

groups at baseline (open circles) and follow-up (closed circles).  P-values 
represent the interaction term (group x visit x time, mixed model ANOVA) 
and supplementary table S4.1B demonstrates individual comparisons. 

C:  Total area under the curve (AUC, see related supplementary figure S4.2B 
for individual time segments).  Mixed model ANOVA with post-hoc pairwise 
comparisons for significant main effect of visit with Bonferroni adjustment.    
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Figure 4.10.  18-hour dynamics of plasma NEFA 
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Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5 – 
individual data points missed were filled by averaging the values before and 
after.  The 18-hour overnight study was divided in three time periods for analysis: 
6PM to midnight (postprandial), midnight to 6AM (nighttime), and 6AM to noon 
(clamp).   
A-B:  NEFA concentrations in treatment (A, green) and standard care (B, black) 

groups at baseline (open circles) and follow-up (closed circles).  P-values 
represent the interaction term (group x visit x time, mixed model ANOVA) 
and supplementary table S4.1C demonstrates individual comparisons. 

C:  Total area under the curve (AUC, see related supplementary figure S4.2C 
for individual time segments).  Mixed model ANOVA with post-hoc pairwise 
comparisons for significant main effect of visit with Bonferroni adjustment.   
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Figure 4.11.  18-hour dynamics of plasma TG 
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Data are presented as mean ± SEM;  Treatment: n = 14, Standard care: n = 5 – 
individual data points missed were filled by averaging the values before and 
after.  The 18-hour overnight study was divided in three time periods for analysis: 
6PM to midnight (postprandial), midnight to 6AM (nighttime), and 6AM to noon 
(clamp).   
A-B:  TG concentrations in treatment (A, green) and standard care (B, black) 

groups at baseline (open circles) and follow-up (closed circles).  P-values 
represent the interaction term (group x visit x time, mixed model ANOVA) 
and supplementary table S4.1D demonstrates individual comparisons. 

C:  Total area under the curve (AUC, see related supplementary figure S4.2D 
for individual time segments).  Mixed model ANOVA with post-hoc pairwise 
comparisons for significant main effect of visit with Bonferroni adjustment.  * 
P < 0.05 BL vs INT and FU (main effect of visit). 
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Figure 4.12.  Changes in energy intake and macronutrients 
 

 
 

 
Group Visit Group x Visit 

Total Kcal 0.403 0.005* 0.174 

CHO 0.995 0.0001** 0.552 

PRO 0.183 0.704 0.348 

FAT 0.299 0.313 0.266 
 

Data are presented as mean ± SEM.  Treatment: n = 13, Standard care: n = 5;  
BL, baseline; INT, interim; FU, follow-up. 
A:  Changes in total energy intake and the proportion of carbohydrates (CHO), 

protein (PRO), and fat (FAT).   
B:  Results from the mixed model ANOVA with post-hoc pairwise comparisons 

for significant main effect of visit with Bonferroni adjustment. 
     * P < 0.05 BL vs INT and FU (main effect of visit) 
     ** P < 0.01 BL vs INT and FU (main effect of visit)  
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Figure 4.13.  Fitness and physical activity 
 

 
 

 
Data are presented as mean ± SEM; Treatment: n = 12, Standard care: n = 5. 
A, B, D: Mixed model ANOVA with post-hoc pairwise comparisons for significant 

interactions with Bonferroni adjustment.   
C: One-way repeated measures ANOVA; (n = 14). 
A:  Changes in maximal respiratory capacity. 
B:  Changes in time to exhaustion during the maximal exercise test. 
C:  Exercise adherence throughout the program for treatment subjects. 
D:  Changes in average daily steps.  
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Figure 4.14.  Changes in VO2 peak with changes in body weight and NAS 
 

 
 

Spearman’s correlation was used to assess linear relationships between ranked 
and continuous variables.  Treatment subjects are shown in green circles and 
standard care in open circles.  One outlying treatment subject was excluded from 
the correlation analysis but included in the figures (orange circle).  Treatment: n = 
13, Standard care: n = 5. 
A-D:  Relationships between changes in VO2 peak and (A) body weight, (B) 

NAS, (C) hepatocellular ballooning, and (D) fibrosis.  
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Figure 4.15.  Absolute glucose production and percent change 
 

 
 

Data are presented as mean ± SEM;  Treatment: n = 14, Standard care: n = 5. 
A:  Absolute basal (no insulin, open bars) and step one (low insulin, hatched 

bars) glucose production (µmol/min) at baseline (light bars) and follow-up 
(dark bars) in treatment (green) and standard care (grey) subjects.  Statistical 
analysis is presented in table 4.5. 

B:  Percent change from baseline to follow-up in basal and step one (low insulin, 
hatched bars) glucose production for treatment (green) and standard care 
subjects (grey).  One tailed, unpaired t-test between treatment and standard 
care subjects within a step (basal or step one).  
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Figure 4.16.  EGP suppression and absolute change in EGP suppression from 
basal to step one and basal to step two 

 

 
 

Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5. 
A:  Percent EGP suppression from basal to step one (open bars) and basal to 

step two (hatched bars) at baseline (light bars) and follow-up (dark bars) for 
treatment (green) and control (grey).  Statistical analysis is presented in table 
4.5. 

B:  Absolute change in glucose production from baseline to follow-up in basal to 
step one (open) and basal to step two (hatched) for treatment (green) and 
standard care subjects (grey).  One-tailed, unpaired t-test between treatment 
and standard care subjects within a step (step one or step two).  
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Figure 4.17.  Absolute glucose disposal and percent change 

 

 

Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5. 
A:  Absolute basal (no insulin, open bars) and step two (high insulin, hatched 

bars) glucose disposal (µmol/min) at baseline (light bars) and follow-up (dark 
bars) in treatment (green) and standard care (grey) subjects.  Statistical 
analysis is presented in table 4.5. 

B:  Percent change from baseline to follow-up in basal and step two (high insulin, 
hatched bars) glucose disposal for treatment (green) and standard care 
subjects (grey).  One-tailed, unpaired t-test between treatment and standard 
care subjects within a step (basal or step two).  
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Figure 4.18.  Baseline relationships between EGP and Rd with NAS component, 
lobular inflammation 

 

 
 

Spearman’s correlation was used to assess linear relationships between ranked 
and continuous variables.  Treatment subjects are shown in green circles and 
standard care in white.  All subjects who completed baseline studies are included 
in these correlations (n = 26). 
A:  Baseline EGP (µmol/kg/min, step one – low insulin) and lobular inflammation 

(graded histologically). 
B:  Baseline Rd (µmol/kg/min, step two – high insulin) and lobular inflammation 

(graded histologically). 
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Figure 4.19.  Change in EGP and Rd with change in NAS and the components, 
lobular inflammation, and hepatocellular ballooning 

 

 
 

Spearman’s correlation was used to assess linear relationships between ranked 
and continuous variables.  Treatment subjects are shown in green circles and 
standard care in white.  Treatment: n = 14, Standard care: n = 5. 
A, C, E:  Absolute change in EGP (µmol/kg/min, step one – low insulin) and (A) 

NAS, (C) lobular inflammation, and (E) hepatocellular ballooning. 
B, D, F:  Absolute change in Rd (µmol/kg/min, step two – high insulin) and (B) 

NAS, (D) lobular inflammation, and (F) hepatocellular ballooning.  
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Figure 4.20.  Change in EGP and Rd with change in VO2 peak and activity 

 

 
 

Pearson’s correlation was used to assess linear relationships between 
continuous variables.  Treatment subjects are shown in green circles and 
standard care in white. 
A:  Absolute change in EGP (µmol/kg/min, step one – low insulin) and peak VO2.  

Treatment: n = 14, Standard care: n = 5. 
B:  Absolute change in Rd (µmol/kg/min, step two – high insulin) and peak VO2.  

Treatment: n = 14, Standard care: n = 5. 
C:  Absolute change in EGP (µmol/kg/min, step one – low insulin) and average 

distance walked (miles) the two days before follow-up testing.  Treatment: n = 
11, Standard care: n = 4 – subjects excluded d/t improper Fitbit usage  

D:  Absolute change in Rd (µmol/kg/min, step two – high insulin) and average 
distance walked (miles) the two days before follow-up testing.  Treatment: n = 
11, Standard care: n = 4 – subjects excluded d/t improper Fitbit usage. 
  



 

303 
 

Figure 4.21.  Change in EGP and Rd with follow-up carbohydrate consumption 

 

 
 

Pearson’s correlation was used to assess linear relationships between 
continuous variables.  Treatment subjects are shown in green circles and 
standard care in white.  Treatment: n = 14, Standard care: n = 5. 
A:  Absolute change in EGP (µmol/kg/min, step one – low insulin) and average 

daily carbohydrate consumption three days before the follow-up testing.  
B:  Absolute change in Rd (µmol/kg/min, step two – high insulin) and average 

daily carbohydrate consumption three days before the follow-up testing.   
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Figure 4.22.  NEFA suppression during step one and step two of the clamp and 
change from baseline to follow-up 

 

 
 

Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5. 
A:  Percent EGP suppression from basal to step one (open bars) and basal to 

step two (hatched bars) at baseline (light bars) and follow-up (dark bars) for 
treatment (green) and control (grey).  Statistical analysis is presented in table 
4.5. 

B:  Absolute change in glucose production from baseline to follow-up in basal to 
step one (open) and basal to step two (hatched) for treatment (green) and 
standard care subjects (grey).  Unpaired t-test between treatment and 
standard care subjects within a step (step one or step two).  
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Figure 4.23.  Proportion of fatty acid sources becoming labeled in TRL-TG over 
time  

 

 
 

Data are presented as mean ± SEM; Treatment: n = 7 (green), Standard care: n 
= 2 (black).  * asterisks and # pound signs denote significant differences between 
groups at individual time points (P < 0.05 or P < 0.10, respectively).  Open 
circles: baseline; filled circles: follow-up.  
A:  Proportion of total fatty acids accounted for in the TRL particles. 
B-D:  Proportion of fatty acids in TRL particles arising from (B) evening meal, (C) 

DNL, and (D) plasma FFA pool.  
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Figure 4.24.  Absolute fatty acid sources used for VLDL-TG synthesis and 
correlations with fasting fractional DNL 

 

 
 

A:  Data are presented as mean ± SEM; Treatment: n = 7, Standard care: n = 2.  
Due to the small sample size for standard care subjects, paired t-tests were 
completed to compare treatment across time – no significant differences were 
found for the various sources contributing to VLDL-TG. 

B-F:  Relationships between absolute changes in fractional VLDL-TG from DNL 
and (B) NAS, (C) hepatocellular ballooning, (D) fibrosis, (E) glucose 
disposal (Rd), (F) VO2 peak.  Spearman’s correlation; Treatment: n = 7, 
Standard care: n = 2.  
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Figure 4.25.  Plasma ceramide (CER) concentrations 
 

 

Ceramide Group Visit Group x Visit 

14:0 0.595 0.024 0.037 

16:0 0.726 0.627 0.675 

18:1 0.046 0.703 0.421 

18:0 0.107 0.185 0.759 

20:0 0.296 0.011 0.819 

22:0 0.884 0.669 0.598 

24:1 0.921 0.019 0.7123 

24:0 0.421 0.701 0.643 

Total 0.692 0.149 0.931 
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Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5. 
A-B:  Plasma ceramide concentrations for treatment (A) and standard care (B) 

groups.  Note the secondary axis on the right for 22:0, 24:1, and 24:0 
ceramides.  All ceramides presented here have an 18:1 backbone as 
formed by de novo ceramide synthesis.  

C:  Total ceramide concentrations in plasma (sum of all species presented in A-
B). 

D:  Results from the mixed model ANOVA with post-hoc pairwise comparisons 
for significant main effect of visit with Bonferroni adjustment. 
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Figure 4.26.  Plasma dihydroceramide (dhCER) concentrations 
 

 

dhCER Group Visit Group x Visit 

16:0 0.304 0.150 0.862 

18:0 0.077 0.507 0.860 

24:1 0.162 0.060 0.891 

24:0 0.942 0.210 0.968 

Total 0.657 0.484 0.664 
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Data are presented as mean ± SEM; Treatment: n = 14, Standard care: n = 5. 
A-B:  Plasma dihydroceramide concentrations for treatment (A) and standard 

care (B) groups.  Note the secondary axis on the right for 24:0 dhCER. All 
dihydroceramides presented here have an 18:0 backbone as formed by de 
novo ceramide synthesis. 

C:  Total dhCER concentrations in plasma (sum of the individual species 
presented in A-B).   

D:  Results from the mixed model ANOVA. 
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Figure 4.27.  Relationships between change in total ceramides and 
dihydroceramides with anthropometrics 

 

 
 

Pearson’s correlation was used to assess linear relationships between 
continuous variables.  Treatment subjects (n = 14) are shown in green circles 
and standard care (n = 5) in white. 
A, C:  Relationships between weight and fat mass loss and total plasma 

ceramide. 
B, D:  Relationships between weight and fat mass loss and total plasma 

dihydroceramide.  
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Figure 4.28.  Ceramide 18:1/16:0 and liver fat  
 

 
 

Spearman’s correlation was used to assess linear relationships between ranked 
and continuous variables.  Pearson’s correlation was used to assess linear 
relationships between continuous variables.  Treatment subjects are shown in 
green circles and standard care in white. 
A:  Relationship between steatosis by liver histology and plasma 16:0 ceramide.  

Treatment: n = 14, Standard care: n = 5. 
B:  Relationship between steatosis by MRI and plasma 16:0 ceramide.  

Treatment: n = 12, Standard care: n = 5.  
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Figure 4.29.  Reverse J shaped curve of EGP and NAS and hypothesized model 
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A:  Reverse ‘J’ -shaped curve hypothesized for the relationship between changes 
in EGP and NAS. 

B:  Green arrows represent findings and blue lined arrows represent 
hypothesized effects of combined diet and exercise program to improve liver 
histology.  
Relief of overburdened liver to improve histology via: 

1 – Increased disposal of glucose at SM with increased physical activity and 
VO2 peak. 

2 – Increased glucose production and rerouting substrates away from the 
liver. 

3 – Reduced plasma insulin and glucose with simultaneous improvements 
in skeletal muscle insulin sensitivity. 

4 – Reductions in insulin and glucose leading to reduced transcriptional 
activation and substrates driving DNL. 

5 – Improved adipose insulin sensitivity during insulin stimulated conditions. 
6 – Increased plasma CER (and hypothesized hepatic release) reduces 

CER-toxicity within the liver.  
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Supplementary Table S4.1.  Results of mixed model ANOVA for 18-h 

metabolite concentration data separated into three 

time periods (postprandial, night, and clamp) 
 

A: Glucose Postprandial Night Clamp 

Group 0.064 0.259 0.804 
Visit 0.028 0.011 0.008 
Time <0.0001 0.030 <0.001 
Group x visit 0.075 0.235 0.469 
Group x time 0.404 0.620 0.002 
Time x visit 0.080 0.148 0.370 
Group x time x visit 0.285 0.473 0.194 

B: Insulin Postprandial Night Clamp 

Group 0.193 0.085 0.392 
Visit 0.158 0.012 0.105 
Time 0.100 <0.0001 <0.001 
Group x visit 0.498 0.641 0.800 
Group x time 0.219 0.174 0.350 
Time x visit 0.464 0.200 0.228 
Group x time x visit 0.217 0.020 0.852 

C: NEFA Postprandial Night Clamp 

Group 0.209 0.120 0.187 
Visit 0.768 0.030 0.014 
Time 0.100 <0.00001 <0.00001 
Group x visit 0.620 0.193 0.740 
Group x time 0.465 0.888 0.644 
Time x visit 0.150 0.897 0.061 
Group x time x visit 0.708 0.725 0.870 

D: TG Postprandial Night Clamp 

Group 0.737 0.870 0.606 
Visit 0.339 0.235 0.286 
Time 0.001 0.036 0.097 
Group x visit 0.598 0.671 0.522 
Group x time 0.440 0.837 0.321 
Time x visit 0.019 0.210 0.494 
Group x time x visit 0.671 0.685 0.391 

 

Data accompany figures 4.8-4.11; Treatment: n = 14; Standard care: n =5. 
Mixed model ANOVA (within: time and visit; between: group) with post-hoc 

pairwise comparisons for significant interactions with Bonferroni adjustment. 

Bolded P values indicate both significant and trending findings. 
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Supplementary Table S4.2.  Baseline correlation analysis of ceramide and dihydroceramides with weight, fasting 

glucose, total cholesterol, LDL cholesterol, EGP, and Rd 

 

CER Weight 
(kg) 

Glucose 
(mg/dL) 

TC  
(mg/dL) 

LDL 
(mg/dL) 

EGP 
(µmol/min) 

Rd 

(µmol/min) 

 r P r P r P r P r P r P 
Total -0.322 0.117 -0.480 0.015 0.489 0.013 0.265 0.234 -0.359 0.078 -0.004 0.986 

14:0 0.109 0.604 -0.152 0.468 0.314 0.127 0.235 0.292 -0.077 0.716 -0.210 0.314 

16:0 -0.152 0.469 -0.301 0.144 0.422 0.035 0.128 0.572 -0.251 0.225 -0.077 0.714 

18:1 -0.492 0.012 -0.105 0.619 0.264 0.203 0.106 0.638 -0.509 0.009 -0.169 0.421 

18:0 -0.201 0.334 -0.195 0.349 0.618 0.001 0.472 0.027 -0.188 0.367 -0.143 0.496 

20:0 -0.320 0.119 -0.346 0.090 0.647 <0.001 0.514 0.014 -0.348 0.088 -0.169 0.418 

22:0 -0.338 0.098 -0.477 0.016 0.443 0.026 0.204 0.362 -0.340 0.096 0.056 0.790 

24:1 -0.292 0.157 -0.410 0.042 0.503 0.010 0.311 0.159 -0.360 0.077 -0.036 0.865 

24:0 -0.304 0.139 -0.488 0.013 0.377 0.063 0.145 0.520 -0.292 0.157 0.041 0.844 

dhCER Weight 
(kg) 

Glucose 
(mg/dL) 

TC  
(mg/dL) 

LDL 
(mg/dL) 

EGP 
(µmol/min) 

Rd 

(µmol/min) 

 r P r P r P r P r P r P 
Total -0.375 0.065 -0.320 0.119 0.394 0.052 0.447 0.037 -0.285 0.168 0.042 0.842 

16:0 -0.431 0.031 -0.242 0.243 0.276 0.181 0.373 0.087 -0.296 0.151 -0.060 0.776 

18:0 -0.190 0.363 -0.005 0.980 0.411 0.041 0.655 <0.001 -0.094 0.654 -0.242 0.244 

24:1 -0.143 0.495 -0.365 0.073 0.464 0.019 0.428 0.047 -0.187 0.372 0.133 0.526 

24:0 -0.383 0.059 -0.308 0.134 0.360 0.077 0.411 0.058 -0.285 0.168 0.044 0.836 
 

Data accompany supplementary figure 4.8; Treatment: n = 17; Standard care: n = 8. 
Pearson’s correlation was used to assess linear relationships between continuous variables.  Significant (P < 
0.05) relationships are highlighted by a dark grey cell and trending significant (P < 0.10) relationships are 
highlighted by a light grey cell.

3
1
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Supplementary Table S4.3.  Change correlation analysis of ceramide and dihydroceramides with weight, BMI, fat 

mass, AST, and ALT 

 

∆ 
CER 

Weight BMI Fat mass AST ALT 

 r P r P r P r P r P 
Total -0.400 0.089 -0.423 0.071 -0.475 0.040 0.053 0.832 0.015 0.953 

14:0 0.328 0.170 0.301 0.211 0.042 0.865 0.064 0.796 -0.209 0.396 

16:0 -0.201 0.410 -0.336 0.160 -0.413 0.079 0.422 0.072 -0.141 0.570 

18:1 -0.286 0.235 -0.446 0.056 -0.308 0.200 0.219 0.373 -0.237 0.334 

18:0 -0.299 0.214 -0.407 0.084 -0.562 0.012 -0.101 0.684 0.009 0.970 

20:0 -0.451 0.053 -0.533 0.019 -0.502 0.028 0.352 0.142 -0.042 0.868 

22:0 -0.460 0.047 -0.424 0.070 -0.459 0.048 -0.004 0.987 0.059 0.814 

24:1 -0.320 0.181 -0.313 0.192 -0.467 0.044 0.165 0.505 0.117 0.640 

24:0 -0.418 0.075 -0.465 0.045 -0.421 0.073 -0.054 0.828 -0.077 0.757 

∆ 
dhCER 

Weight BMI Fat mass AST ALT 

 r P r P r P r P r P 
Total -0.456 0.050 -0.489 0.034 -0.441 0.059 0.224 0.362 0.136 0.584 

16:0 -0.570 0.011 -0.644 0.003 -0.446 0.055 0.038 0.878 -0.134 0.590 

18:0 -0.251 0.299 -0.295 0.220 -0.303 0.208 0.479 0.037 0.291 0.230 

24:1 -0.219 0.367 -0.158 0.518 -0.348 0.144 0.044 0.860 0.250 0.306 

24:0 -0.459 0.048 -0.495 0.031 -0.435 0.063 0.219 0.373 0.120 0.629 
 

Data accompany figure 4.27; Treatment: n = 14; Standard care: n = 5. 
Pearson’s correlation was used to assess linear relationships between continuous variables.  Significant (P < 
0.05) relationships are highlighted by a dark grey cell and trending significant (P < 0.10) relationships are 
highlighted by a light grey cell.
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Supplementary Table S4.4.  Change correlation analysis of ceramide and dihydroceramides with NAS, NAS 
components, fibrosis, and total liver fat by MRI 

 

∆ 
CER 

NAS Steatosis Lob. 
Inflam. 

Ballooning Fibrosis Liver fat 
(MRI) 

 r P r P r P r P r P r P 
Total -0.192 0.431 -0.295 0.220 -0.188 0.441 0.071 0.774 0.191 0.432 -0.172 0.509 

14:0 -0.043 0.860 -0.173 0.479 -0.028 0.909 0.099 0.686 -0.155 0.525 -0.022 0.934 

16:0 -0.069 0.778 -0.469 0.043 -0.065 0.790 0.356 0.134 0.354 0.138 -0.433 0.083 

18:1 0.149 0.543 -0.218 0.370 0.154 0.528 0.402 0.088 0.410 0.081 -0.520 0.032 

18:0 -0.077 0.754 -0.328 0.170 -0.127 0.604 0.257 0.288 0.306 0.203 -0.369 0.145 

20:0 0.168 0.492 -0.209 0.391 0.101 0.679 0.375 0.114 0.299 0.214 -0.466 0.059 

22:0 0.165 0.499 -0.086 0.727 0.050 0.838 0.266 0.271 -0.005 0.982 -0.258 0.318 

24:1 -0.159 0.516 -0.356 0.135 -0.179 0.464 0.137 0.577 0.206 0.397 -0.076 0.772 

24:0 -0.297 0.218 -0.266 0.270 -0.286 0.236 -0.059 0.810 0.151 0.537 -0.226 0.384 

∆ 
dhCER 

NAS Steatosis Lob. 
Inflam. 

Ballooning Fibrosis Liver fat 
(MRI) 

 r P r P r P r P r P r P 
Total 0.059 0.811 -0.220 0.364 0.048 0.844 0.314 0.190 0.430 0.066 -0.276 0.284 

16:0 -0.050 0.838 -0.147 0.548 -0.097 0.694 0.148 0.545 0.341 0.153 -0.383 0.129 

18:0 -0.033 0.894 -0.155 0.526 -0.107 0.663 0.250 0.302 0.301 0.210 -0.060 0.819 

24:1 -0.194 0.427 -0.174 0.475 -0.210 0.388 -0.031 0.901 0.119 0.628 -0.133 0.610 

24:0 0.063 0.799 -0.221 0.364 0.048 0.844 0.321 0.180 0.436 0.062 -0.281 0.275 
 

Data accompany figure 4.28; Treatment: n = 14; Standard care: n = 5. 
Spearman’s correlation was used to assess linear relationships between continuous and ranked variables.  

Significant (P < 0.05) relationships are highlighted by a dark grey cell and trending significant (P < 0.10) 

relationships are highlighted by a light grey cell.
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Supplementary Figure S4.1.  Body weight changes over time 
 

 
 

Data accompany figure 4.5.  Data are presented as mean ± SEM; Treatment: n 
= 14; Standard care: n =5.  
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Supplementary Figure S4.2.  Time period AUC for plasma (A) Glucose, (B) 
Insulin, (C) NEFA, and (D) TG. 
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Data accompany figures 4.8-4.11.  Data are presented as mean ± SEM; 
Treatment: n = 14; Standard care: n =5. 
Mixed model ANOVA with post-hoc pairwise comparisons for significant 
interactions with Bonferroni adjustment.
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Supplementary Figure S4.3.  Plasma NEFA sources from midnight to 8AM 
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Data accompany figure 4.10.  Data are presented as mean ± SEM;  Treatment: n = 7, Standard care: n =2.  Total 
plasma NEFA is shown in circles (, open=baseline, closed=follow-up), NEFA from adipose is represented by a 
square (), and dietary NEFA from spillover is shown in triangles () with treatment subjects shown in green and 
standard care in black. 
A:  Total plasma, adipose, and dietary NEFA concentrations in treatment (green) subjects at baseline (open 

symbols) and follow-up (closed symbols).   
B:  Total plasma, adipose, and dietary NEFA concentrations in control (black) subjects at baseline (open symbols) 

and follow-up (closed symbols).
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Supplementary Figure S4.4.  Absolute TRL-TG concentrations across time 
 

 
 

Data accompany figures 4.11, 4.24, and 4.25.  Data are presented as mean ± 
SEM; Treatment: n = 14, Standard care: n = 5.  
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Supplementary Figure S4.5.  Relationships between change in 18-hour NEFA 
AUC and NAS, lobular inflammation, and EGP 

 

 
 

Spearman’s correlation was used to assess linear relationships between ranked 
and continuous variables and Pearson’s correlation was used for comparisons 
between two continuous variables.  Treatment subjects are shown in green 
circles and standard care in white.  Treatment: n = 14, Standard care: n = 5. 
A-C:  Relationships between 18-hour NEFA AUC and change in (A) NAS, (B) 

inflammation, and (C) EGP. 
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Supplementary Figure S4.6.  Relationships between change in EGP and Rd 
during different steps of the clamp and EGP with 
non-oxidative glucose disposal 

 

 
 

Pearson’s correlation was used for comparisons between two continuous 
variables.  Treatment subjects are shown in green circles and standard care in 
white.  Treatment: n = 14, Standard care: n = 5. 
A:  Relationship between step one glucose production and disposal. 
B:  Relationship between step two glucose production and disposal. 
C:  Relationship between step one EGP and non-oxidative glucose disposal.  
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Supplementary Figure S4.7.  Relationships between change in fasting fractional 
DNL and steatosis, lobular inflammation, and 
glucose production 

 

 
 

Data accompany figure 4.24. 
A-C:  Relationships between fractional VLDL-TG from DNL and (A) steatosis, (B) 

lobular inflammation, and (C) EGP.  Spearman’s correlation; Treatment: n 
= 7, Standard care: n = 2.  
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Supplementary Figure S4.8.  Baseline relationships between total ceramides 
and dihydroceramides with weight, fasting 
glucose, and total cholesterol 

 

 
 

Pearson’s correlation was used to assess linear relationships between 
continuous variables.  Treatment subjects are shown in green circles and 
standard care in white.  Treatment: n = 17, Standard care: n = 8. 
A, C, E:  Baseline total ceramides and (A) body weight, (C) fasting glucose, and 

(E) total cholesterol.  
B, D, F:  Baseline total dihydroceramides and (B) body weight, (D) fasting 

glucose, and (F) total cholesterol.  
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CHAPTER V – Noninvasive fatty acid oxidation in NASH: The utility of labeled 

breath tests to monitor changes in liver health? 
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ABSTRACT 

Reduced hepatic mitochondrial activity is thought to be a major component of the 

pathogenesis of nonalcoholic steatohepatitis (NASH).  Methods to predict liver 

mitochondrial activity in vivo are lacking and this project’s goal was to use a 

noninvasive breath test to quantify complete mitochondrial fat oxidation and 

determine how test results changed when liver disease state was altered over 

time.  Subjects (9 men, 16 women, 47 ± 8 years, 112 ± 23kg; mean ± SD) 

underwent a diagnostic liver biopsy and liver tissue histologically-scored by a 

pathologist using the NAFLD activity score (NAS, 0-8).  To assess hepatic 

mitochondrial activity, a stably-labeled medium chain fatty acid (23.4 mg 13C4-

octanoate) was consumed orally and breath samples collected over 135 min.  

Total CO2 production rates were measured by respiratory gas analysis, breath 

13CO2 by isotope ratio mass spectrometry, and endogenous glucose production 

(EGP) using a hyperinsulinemic, euglycemic clamp.  At baseline testing, subjects 

oxidized 23.4 ± 3.9% (range: 14.9-31.5%) of the octanoate dose and octanoate 

oxidation (OctOx) was significantly correlated with fasting plasma glucose levels 

(r = -0.474, P = 0.017) and EGP (r = -0.441, P = 0.028).  Nineteen of the subjects 

returned 10.1 ± 1.1 months later for follow-up metabolic tests and repeat liver 

biopsies.  The change in OctOx in units of relative percent dose oxidized per 

body weight (%/kg BW) was negatively related to reductions in EGP (r = -0.481, 

P = 0.037) and tended to correlate with reduced fasting glucose (r = -0.398, P = 

0.091).  At follow-up, subjects had significant reductions in total NAS and 

steatosis and the change in liver steatosis tended to correlate with increased 
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OctOx (%/kg BW, r = -0.409, P = 0.083).  The use of a 13C-octanoate breath test 

should be further tested in patients with NASH as a predictor of changes in liver 

health over time and may be used to investigate physiological processes that 

improve liver lipid burden.  
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INTRODUCTION 

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in 

the world (1) and is characterized by an excess of liver fat, tissue injury, and 

insulin resistance (2-4).  The diagnosis of NAFLD and the more advanced form, 

nonalcoholic steatohepatitis (NASH) requires a liver biopsy to histologically grade 

the extent of steatosis, inflammation, and hepatocellular ballooning (5).  While 

multiple factors likely contribute to the pathogenesis of NASH, mitochondrial 

dysfunction is currently being investigated as a key factor in contributing to the 

progression of the disease (6-8).  Data from cell culture (9, 10), animal models 

(11-18), and humans (6, 19-23) have demonstrated impaired hepatic fatty acid 

oxidation (FAO), increased reactive oxygen species (ROS) production, reduced 

respiration, and morphological mitochondrial changes in a setting of NAFLD and 

NASH.  However, noninvasive methods to measure mitochondrial function are 

limited, and of those that exist, the results are inconsistent.  Without obtaining 

additional liver tissue during a liver biopsy, the characterization of mitochondrial 

function is challenging.  Further, due to the invasive nature of the liver biopsy, 

frequent monitoring of disease progression is difficult.  Verified noninvasive 

methods to measure and track changes in hepatic mitochondrial function are 

needed. 

 

Our group (7) and others (24) have profiled hepatic lipid metabolism using stable 

isotope tracers including deuterated water (D2O) and labeled glucose, palmitate, 

and acetate (25).  Carbon-labeled breath tests using substrates that are fully 
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oxidized to CO2 (e.g., 13C-methionine, 13C- ketoisocaproate, 13C-octanoate) have 

been used to measure hepatic mitochondrial activity (26-28).  Labeled octanoate, 

a medium-chain fatty acid, has been used in rodents (29), and humans (27, 30-

33) for this purpose.  When consumed, the octanoic acid is absorbed into 

enterocytes and transported to the liver via the portal vein (34).  Once in the liver, 

octanoate bypasses the carnitine transport system (35), diffusing directly into the 

mitochondria where acetyl coenzyme A (CoA) is produced during β-oxidation 

(36-39) and flows through the tricarboxylic acid (TCA) cycle producing CO2 which 

is then expelled in the breath (supplementary figure S5.1).  Conflicting results 

have been reported in studies testing this labeled fatty acid breath test in 

subjects with NAFLD or NASH (27, 31-33).  For example, patients with NASH 

had elevated 13CO2 recovery when compared to healthy controls matched for 

age, gender, and BMI (27), while two similar studies found no difference in 

octanoate oxidation (OctOx) between NASH and healthy subjects (31, 33).  Yet 

another study found reduced OctOx in NASH compared to NAFLD (33).  No 

investigations have compared OctOx in biopsy-proven NASH patients with 

measures of liver glucose metabolism, nor have the effects of a lifestyle 

intervention in NASH patients on OctOx been evaluated. 

 

The purpose of the current study was to determine how hepatic mitochondrial 

activity, measured via 13C-OctOx breath test, was related to indicators of liver 

health in individuals with biopsy-proven NASH.  Additionally, in a subset of 

subjects, repeat OctOx breath tests were used to understand how oxidation 
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changed in patients whose liver disease either improved, stayed the same, or 

worsened over ten months.  We hypothesized that participants with greater liver 

fat would have lower OctOx, indicating reduced mitochondrial activity, and that 

changes in liver health (either positive or negative) would be reflected in changes 

in hepatic OctOx over time.  
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METHODS 

Protocol 

The study was approved by the University of Missouri (MU) Health Sciences 

Institutional Review Board (Protocol # 2008258) and registered under 

ClinicalTrials.gov # NCT03151798.  All subjects provided written informed 

consent and the study was conducted according to the principles expressed in 

the Declaration of Helsinki.  Subjects (n = 25) with advanced NASH were 

recruited following a diagnostic liver biopsy for histologic grading of liver disease.  

Liver biopsy tissues were reviewed by a single pathologist and graded for NAFLD 

activity score (NAS) via the Brunt criteria (5), which is made up of three 

components; steatosis, lobular inflammation, and hepatocellular ballooning.  

Subject characteristics are shown in table 5.1.  Sedentary (<60 minutes/week of 

structured physical activity) male and female subjects between 22-65 years of 

age who consumed less than two standard alcoholic drinks per day (<20 g/d) and 

had characteristics of metabolic syndrome (40) were screened for inclusion.  

Individuals with acute disease, advanced cardiac or renal disease, 

anticoagulation therapy, severe comorbid conditions limiting life expectancy <1 

year, hepatitis-causing illnesses (hepatitis B and/or C viruses, autoimmune 

hepatitis, hemochromatosis, celiac disease, Wilson’s disease, alpha-1-antitrypsin 

deficiency, medication-induced hepatitis, or any other clinical or biochemical 

evidence of decompensated liver disease), steroid or drug use known to cause 

NAFLD, or pregnant women were excluded. 
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Within 3.1 ± 1.9 months of the baseline liver biopsy, a fatty acid breath test was 

performed in which ∆1,2,3,4 13C; octanoic acid (figure 5.1A; isotopic purity: 99%, 

Cambridge Isotope Laboratories, Andover, MA) was delivered orally in orange 

juice.  Prior to the test, each subject completed a three-day food record and food 

preference surveys which were used to prepare a controlled three-day pre-study 

diet.  The prepared diets were similar in composition and energy content to each 

subjects’ habitual food preferences to support maintenance of body weight, as 

acute changes in energy intake and body weight may influence liver metabolism 

(41).  The breath test was performed on the fourth day, following a 12h fast.  

Approximately two weeks after the breath test, subjects were admitted to the 

Clinical Research Center (CRC) at the MU Hospital and underwent a stable-

isotope labeled, hyperinsulinemic euglycemic clamp to determine endogenous 

glucose production (EGP) as previously described (42).  EGP was measured in 

the fasting state and under seven mU/m2/minute insulin (43). 

 

The present analysis also includes data from nineteen subjects who returned 

after 10.1 ± 1.1 months for follow-up tests.  These subjects had received either 

standard of care (n = 5) or participated in a supervised lifestyle intervention (n = 

14).  Subjects receiving standard care met with a registered dietitian once at the 

beginning of the study to discuss lifestyle changes that could improve their liver 

health.  Any additional instruction was provided by their physician independently 

of the study.  The subjects in the lifestyle program regularly met with the study 

dietitian for nutritional counseling (2-4x/month) and an exercise physiologist for 
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supervised high intensity interval training (HIIT, 3x/week).  At the end of the 

program, each subject completed a follow-up OctOx breath test, 

hyperinsulinemic euglycemic clamp, and underwent a second liver biopsy. 

 

Octanoate oxidation breath test 

The protocol for the OctOx test performed at baseline and follow-up is shown in 

figure 5.1B.  At approximately 0700 (-20 minutes), subjects were admitted to the 

CRC and fasting CO2 production rate was measured using a metabolic cart 

(Parvomedics, Salt Lake City, UT) and an unlabeled breath sample was collected 

into an Exetainer® evacuated breath vial (Labco, Ceredigion, UK) using a 

disposable plastic straw.  Each subject then consumed 23.4 mg of 13C4-

octanoate (25 µL, figure 5.1A) mixed thoroughly into orange juice (Minute 

Maid®; Sugar Land, TX).  The volume of juice was equivalent to 10% of each 

subject’s daily energy requirement (44) and provided an average bolus of 54.4 ± 

2.1 grams of sugar at baseline and 55.1 ± 2.2 grams at follow-up.  The juice was 

consumed within 10 minutes, and an additional 2-4 ounces of water was used to 

rinse the drinking glass.  Fed-state CO2 production rates were measured four 

times over 135 minutes, each time for 15 minutes.  Breath samples were 

collected intermittently throughout the test at 15, 30, 45, 65, 85, 105, and 135 

minutes (denoted by a four point star in figure 5.1B).  Following the test, subjects 

ate ad libitum and were discharged from the CRC.  Within two weeks of the 

breath test, subjects returned to undergo a hyperinsulinemic euglycemic clamp to 

quantitate EGP.  Two anterograde intravenous lines were placed – for isotope 
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administration in the antecubital region and for blood draws in the hand along 

with the use of a heated hand box (45).  A primed-continuous infusion of [U-13C6]-

glucose (22 µmol/kg over one minute, followed by 0.2 µmol/kg/min) was 

administered to quantitate fasting EGP.  Following this, insulin was infused at 

seven mU/m2/minute and plasma glucose concentrations (analyzed by YSI 

Model 2300-D Stat Plus; Yellow Springs, OH) held constant at the subject’s 

fasting level by a variable rate infusion of a 13C6-glucose labeled 20% dextrose 

(wt/vol.) solution adjusted every five minutes using the negative feedback 

principle described by DeFronzo et al (43).  Plasma glucose enrichments were 

measured by gas chromatography/mass spectrometry (46). 

 

Octanoate calculations & statistical analysis 

The amount of 13CO2 in the breath samples was measured by Metabolic 

Solutions (Nashua, NH) with a Sercon ABCA2 isotope ratio mass spectrometer 

(IR-MS, Sercon, Ltd., Crewe, United Kingdom).  The percent atom excess in 

delta per million (parts per thousand) 13C relative to the international standard 

Vienna Pee Dee Belemnite (VPDB) was used to calculate OctOx (47).  OctOx 

(equation 5.1) was calculated as the product of steady state CO2 production 

rates and the percent 13CO2 atom excess in breath.  The production rate was 

corrected using an estimate of the body’s bicarbonate pool (48) and divided by 

 
 
 
                                                                                               Equation 5.1 
 
 

Bicarbonate factor  0.81

4

VCO2 *Atom excess

*148.18  
g

mol
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the number of labels within the isotope (4).  The molecular weight of the labeled 

octanoate is 148.18 g/mol. 

 

The homeostatic model assessment for insulin resistance (HOMA-IR) was 

calculated by the product of fasting insulin (µIU/mL) and glucose (mg/dL) divided 

by the constant 405 (49).  EGP was calculated according to the equations of 

Steele (50).  Calculations were performed using Microsoft Excel 2013 and 

correlation analyses (Pearson for parametric, Spearman for nonparametric – 

continuous versus ranked variables) using StatView®, 5.0.1 software (2008).  

Paired, one-tailed t-tests were used to when compare baseline to follow-up 

characteristics.  An alpha level of ≤ 0.05 was considered significant while ≤ 0.10 

was considered trending.  Data are presented as mean ± SD for static variables 

(i.e., body weight, age) and as mean ± SEM for values measured over time.  
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RESULTS 

As shown in table 5.1, 9 males and 16 females with an average age of 47 ± 8 y 

and body weight (BW) of 112 ± 23 kg (mean + SD) were included.  All subjects 

were recruited based on a biopsy-confirmed diagnosis of NASH (NAS ≥ 4/8) 

which is the composite of scores for steatosis (0-3), inflammation (0-3), and 

hepatocellular ballooning (0-2).  Additionally, subjects demonstrated multiple 

characteristics of advanced liver disease including fibrosis (measured 

histologically), elevated serum aspartate transaminase (AST), alanine 

transaminase (ALT) concentrations, and HOMA-IR (51).  72% of the subjects had 

type 2 diabetes (T2D, medication used is shown in supplementary table S5.1).  

Wide variability in OctOx was observed across subjects throughout the 135-

minute breath test (figure 5.2A).  Average peak oxidation occurred between 30-

60 minutes following ingestion, although individual analysis demonstrated a wide 

range of peak OctOx (23-104 minutes).  Total octanoate oxidized was 23.4 ± 

3.9% of the 23.4 mg dose (table 5.1, range: 14.9-31.5%).  When divided into 

baseline BW, 0.22 ± 0.06 %/kg BW was oxidized (range: 0.13-0.33 %/kg).  Upon 

analysis of characteristics that may be related to fractional oxidation we found no 

association with BW, exercise capacity, liver enzymes, NAS, or fibrosis.  

However, OctOx was associated with multiple indicators of glucose metabolism.  

The higher the OctOx (percent dose), the lower the fasting plasma glucose 

concentration (figure 5.2B), glycosylated hemoglobin (HbA1c, figure 5.2C), and 

fasting EGP (figure 5.2D). 
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Based on the study’s goal to determine if changes in OctOx were associated with 

changes in liver health, data from all subjects are presented together.  

Importantly, fitness levels improved in the subjects undergoing HIIT (+0.31 L/min, 

P = 0.022) while standard care subjects demonstrated no change in VO2 peak (-

0.09 L/min, P = 0.154).  Mean changes in NAS, steatosis, fibrosis, and OctOx (% 

dose) are presented in table 5.1 and figure 5.3 (individual changes with 

treatment subjects represented by yellow line and control by grey lines).  

Supplementary figure S5.2 presents the same data separated by subject.  On 

average, subjects lost 7 ± 1% of their BW, serum AST and ALT were reduced 31 

± 13% and 38 ± 7% respectively, and HOMA-IR decreased by 31 ± 10% at 

follow-up.  Fasting EGP (relative to fat free mass, FFM) trended downward (-1.3 

µmol/FFM/min, P = 0.063) and insulin stimulated EGP was significantly reduced 

(-1.0 µmol/FFM/min, P = 0.017).  The NAS and steatosis were significantly 

reduced (P < 0.01) while fibrosis did not change significantly (P = 0.192, figure 

5.3).  Some subjects demonstrated robust reductions in NAS, steatosis, or 

fibrosis, while others had minimal change or even increased (supplementary 

figure S5.2A-C).   

 

In terms of the breath test, no significant differences were found in the mean total 

percent dose of OctOx from baseline to follow-up (table 5.1) and figure 5.3D and 

supplementary figure 5.2D show the average and individual changes observed 

across visits.  Figure 5.4 demonstrates that the percent change in relative OctOx 

tended to correlate with changes in fasting glucose and was significantly related 
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to the percent change in relative fasting EGP.  No relationships were found 

between changes in OctOx and total NAS, although a trending negative 

relationship was observed between the change in relative percent octanoate 

dose oxidized (%/kg) and the change in steatosis (figure 5.5A).  In other words, 

as steatosis was reduced, OctOx increased.  Neither lobular inflammation and 

hepatocellular ballooning (the other components of the NAS) nor fibrosis were 

related to changes in OctOx.  Finally, a plasma marker of liver injury, ALT, was 

also negatively related to absolute change in OctOx quantity (milligrams, figure 

5.5B).  
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DISCUSSION 

The present study used an in-vivo, isotope-labeled breath test in subjects with 

biopsy-proven NASH to determine the relationship between medium chain fatty 

acid (octanoate) oxidation and measures of liver health.  A subset of the subjects 

underwent a second breath test and liver biopsy after approximately ten months 

to show, for the first time, a significant relationship between the change in OctOx 

and fasting EGP and a trending relationship with steatosis, a component of the 

histologic NAS assessment.  Those subjects who had the greatest reduction in 

hepatic glucose production and liver steatosis, exhibited the greatest increases in 

OctOx.  These findings were supported by trending relationships between 

changes in OctOx and ALT, a plasma marker of liver injury, and fasting glucose 

concentrations.  Overall increased oxidation of octanoate may be a noninvasive 

indicator of improved liver health and could be further tested as a predictor of 

glucose production and liver fat in subjects with NASH. 

 

Liver health and mitochondrial function: insight from previous breath tests 

Although liver biopsies grade disease severity in only a small, superficial 

segment of the liver, no noninvasive test to date, whether serum-based or 

imaging, has been able to characterize disease severity as precisely as the liver 

biopsy (52).  Breath tests measuring hepatic function began nearly 50 years ago 

when Hepner and Vesell quantified hepatic drug metabolism in patients with 

portal cirrhosis using radiolabeled aminopyrine (53).  Since then, numerous 

breath tests have been developed to measure liver function (26-28, 30, 54, 55), 
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as comprehensively reviewed by Di Ciaula et al (56).  For a medium-chain fatty 

acid like octanoate, numerous independent studies suggest that when it is given 

orally, its oxidation is specific to the liver (34, 38, 57).  Octanoate fatty acid is 

absorbed into the portal vein (34) and clears first pass to the liver.  It does not 

require the presence of the carnitine transport system to enter the mitochondria, 

making it highly oxidizable (58).  Indeed, the carbon from 13C-labeled octanoate 

appears in human breath CO2 within 15 minutes and peaks, on average, within 

60 minutes (figure 5.2A).   

 

We found no association between NAS and OctOx at baseline although multiple 

characteristics of glucose metabolism were related (figure 5.2B-D).  These 

relationships suggest that individuals with greater metabolic dysfunction may 

exhibit lower OctOx when compared to a healthy counterpart.  In line with this 

hypothesis, Braun et al (33) showed that subjects with more advanced NASH 

exhibited lower OctOx compared to those with lesser liver disease (i.e., 

steatosis).  Similarly, using a 13C-methionine breath test, Banash et al (26) found 

reduced oxidation, indicative of mitochondrial dysfunction, with greater liver 

disease, while a 13C- ketoisocaproate test used by Portincasa et al (28) 

demonstrated reduced mitochondrial decarboxylation, a reflection of 

mitochondrial activity of the cytochrome P450 system, in advanced NASH 

compared to healthy subjects or those with steatosis alone.  Although not all 

studies have agreed with these findings.  Schneider et al (31) found no 

differences in OctOx between patients with NASH vs healthy controls and Miele 
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et al (27) found greater OctOx in subjects with NASH compared to healthy 

controls.  Although the current study did not include a healthy group for 

comparisons, one goal was to measure changes in OctOx and disease severity 

following ten months of standard care or treatment (diet and exercise). 

 

Improvements in NASH and hepatic FAO 

Previous studies examining the effects of lifestyle treatment on humans with 

NASH have shown significant reductions in disease severity; one study 

demonstrated a 55% reduction in NAS and a 58% reduction in steatosis following 

a 12-month lifestyle intervention (59, 60).  We also observed reductions in NAS (-

30%) and steatosis (-23%) at follow-up across all subjects.  Taken together, 

increased weight loss and physical activity may have increased mitochondrial 

oxidative capacity and reduced cellular inflammation thereby improving the ability 

of the mitochondria to burn fatty acids.  The current study represents the first-

time repeated breath tests in conjunction with repeat liver biopsies were 

completed in subjects with NASH.  As the amount of liver steatosis was reduced, 

the relative amount of the octanoate dose oxidized tended to increase (figure 

5.5A).  An important caveat of comparing our results to previous studies, is that 

physical activity has been shown to increase the expression of carnitine palmitoyl 

transferase (CPT), a key enzymatic step in long-chain FAO (61) while exercise 

cessation decreased CPT expression through malonyl-CoA inhibition (62).  As 

described above, octanoic acid does not require CPT for entry into the 

mitochondria and therefore, even in subjects with elevated malonyl-CoA and 
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CPT inhibition (i.e., individuals with high de novo lipogenesis) this method can be 

utilized to assess the β-oxidation machinery of the mitochondria and the 

oxidation of the acetyl-CoA in the TCA cycle.  Furthermore, it suggests the 

improvements in hepatic FAO following weight-loss may be partially independent 

of CPT.  Finally, as only a subset of the subjects underwent exercise training and 

they did not drive any of the relationships presented, we do not expect physical 

activity to be a key driver in increased OctOx.  Indeed, improved fitness and 

OctOx were not related.  In sum, this breath test provides greater insight into the 

post-CPT FAO and TCA cycling and may serve as a marker for changes in liver 

health with weight loss. 

 

Hepatic mitochondrial activity and glucose production 

A key event in the pathogenesis of NAFLD is increased substrate burden (63-67) 

which overwhelms the liver’s capacity to oxidize, store, and secrete metabolites 

ultimately leading to the accrual of liver fat (22, 68-70) and decline in 

mitochondrial function (6, 23).  Indeed, elegant work has demonstrated a loss of 

hepatic mitochondrial activity in advanced NASH (6) and a complementary report 

found significant structural defects in hepatic mitochondria from NASH patients 

(22).  Simultaneously, in states of excess nutrient burden-induced insulin 

sensitivity (71, 72), the livers ability to suppress gluconeogenesis is blunted, 

resulting in excess EGP, which is the primary driver of elevated plasma glucose 

concentrations in the fasting state (4).  An increased ability of the liver to oxidized 

fatty acids may play a mechanistic role in liver health improvements, potentially in 
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response to reduced nutrient burden and subsequent improvements in glucose 

metabolism. 

 

In the present study, lower levels OctOx were related to multiple indicators of 

hepatic insulin resistance – i.e., those participants with the lowest OctOx were 

those with the greatest fasting plasma glucose concentrations, the highest 

HbA1c, and fasting EGP (figure 5.2).  Our follow-up studies in a subset of the 

participants demonstrate that increased OctOx after ten months of either 

standard care or a diet and exercise lifestyle intervention was related to 

reductions in fasting EGP and glucose concentrations (figure 5.4).  As 

established above, reduced energy intake leading to weight loss and subsequent 

reductions in nutrient flux to the liver may allow metabolic pathways, including 

FAO, to improve oxidative capacity and reduce liver fat.  This hypothesized 

model is graphically presented in figure 5.6.  Importantly, the breath test used 

here is not able to distinguish changes in hepatic mitochondrial function beyond 

complete FAO but may in turn serve as a marker of enhanced or reduced 

metabolic flux through β-oxidation and TCA pathways. 

 

Individual differences 

Results from baseline testing revealed a wide range of OctOx values between 

subjects highlighting the importance of examining individual responses.  Multiple 

factors may impact individual response including 1- subject sex, 2- gastric 

emptying, or 3- physical activity levels.  Regarding subject sex, a previous 
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investigation in individuals with NASH who underwent the same OctOx breath 

test reported higher 13CO2 recovery in women than men (31).  One potential 

mechanism for increased oxidation in women is hormonal regulation of hepatic 

fatty acid metabolism (73, 74).  However, we found no differences in FAO or 

disease severity based on sex in our subjects.  It is important to note this study 

was not designed to identify sex differences, thus these comparisons were 

underpowered.  Second, delayed gastric emptying may also have contributed to 

variability between subjects (75, 76), although in the present study, the use of a 

liquid vehicle (orange juice) reduced any delay associated with solid food meals.  

Upon analysis of time to peak oxidation (53 ± 5 minutes), we found no correlation 

with percent octanoate oxidation, suggesting gastric emptying likely did not 

influence oxidation in the current subjects.  Future studies proposing orally 

administered compounds to assess metabolism should consider gastric emptying 

effects.  Finally, acute effects of physical activity during the days preceding data 

collection may have impacted both hepatic FAO (77-79) and insulin sensitivity 

(79-81).  Both acute and chronic exercise may directly (via regulation of gene or 

protein expression) or indirectly (through decreased malonyl-CoA inhibition) 

increase hepatic FAO.  Minimal evidence is available in humans demonstrating 

the former, and the latter would likely not impact the results of our study as 

octanoate enters the mitochondria independent of CPT.  Acute bouts of physical 

activity have been shown to reduce fasting EGP, however our subjects did not 

exercise within the two days prior to the clamp procedure to minimize the impacts 
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of acute activity on hepatic insulin sensitivity.  Regardless, variability observed in 

both FAO and insulin sensitivity may have been acutely impacted by exercise. 

 

Limitations 

This study had a number of limitations to consider.  The primary limitation relates 

to the nature of metabolic studies in which multiple measurements are collected 

over time (e.g., biopsies, OctOx, and euglycemic clamp), which limits the sample 

size.  Nonetheless, the relationships observed were strengthened by the wide 

range of OctOx and other variables.  Second, all subjects had advanced NASH 

(NAS ranging from 4-7).  To determine whether OctOx level is lowered 

consistently at every incremental increase in NAS score (from 0-8), future studies 

should include individuals with lower levels of liver disease, and even patients 

who are healthy, if liver tissue is available for histology.  Nonetheless, the present 

data support a connection between liver health and OctOx due to the repeated-

measures study design.  Lastly, instead of separately measuring the extent of 

CO2 trapping in the bicarbonate pool for each subject, we used an established 

correction factor to estimate this outcome (48).  The present subjects’ body 

weights and ages were similar to the original cohort used to establish the 

correction factor and we chose to use this factor to reduce subject burden. 

 

Conclusions 

In summary, the use of a noninvasive, medium-chain fatty acid oxidation breath 

test demonstrated that the oxidation of octanoate may be a predictor of changes 
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in liver health in subjects with NASH but requires further validation.  This method 

may be a useful research tool in NASH studies of large samples sizes.  

Octanoate breath tests may be a simple method for capturing progression or 

changes in liver fat content and hepatic mitochondrial function without the need 

for multiple biopsies.  
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Table 5.1.  Subject characteristics 
 

Characteristic 
All subjects* 

(n = 25) 

Baseline# 

(n = 19) 

Follow-Up# 

(n = 19) 
P-value 

Sex (m/f) 9/16 7/12   

Age (y) 47 ± 8   45 ± 10   46 ± 10  

Body Weight (kg) 112 ± 23 119 ± 22 111 ± 20 <0.001 

NAS (0-8) 1   5.5 ± 1.1   5.5 ± 1.2   3.9 ± 2.1 0.001 

Steatosis (0-3) 1      2.3 ± 0.6   2.4 ± 0.6   1.8 ± 1.0 0.004 

Fibrosis Score (0-4) 1   1.9 ± 1.5   2.1 ± 1.4   1.8 ± 1.7 0.192 

AST (U/L)   51.1 ± 36.6   58.2 ± 39.3   28.4 ± 13.1 0.001 

ALT (U/L)    56.5 ± 30.0   58.5 ± 32.1   32.0 ± 13.3 <0.001 

HOMA-IR   6.3 ± 5.3   6.7 ± 5.9   3.8 ± 1.7 0.006 

Fasting EGP 
(µmol/FFM/min) 

22.2 ± 3.5 22.3 ± 3.5 21.0 ± 2.8 0.063 

EGP (µmol/FFM/min) 2 23.3 ± 6.7 23.3 ± 6.8 19.6 ± 6.1 0.017 

OctOx (% dose) 23.4 ± 3.9 23.8 ± 3.7 24.0 ± 4.6 0.401 
 

All values are mean ± SD.  P – values from paired, one-tailed t-tests. 
* All subjects are included in these averages.  
# Only subjects (treatment: n = 14, standard care: n = 5) who completed a follow-

up breath test and liver biopsies are included in these averages for comparison. 
1 A decimal is included (despite whole number scores) to demonstrate subtle 
differences between baseline and follow-up. 

2 Insulin-stimulated (seven mU/m2/minute).  
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Figure 5.1.  Molecular structure of labeled octanoate and study design of 
noninvasive breath test 

 

 

 

A: Blue    indicate 13C. 
B:  Subjects completed a 12-hour overnight fast prior to the breath test. 
      VCO2, carbon dioxide production.  

* 
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Figure 5.2.  Time course of percent octanoate dose oxidized (OctOx) per minute 
and baseline correlations with markers of glucose metabolism 

 

 
 

A:  Mean percent (%) dose oxidized per minute ± SEM is shown in black; 
individual subjects are shown in grey. 

B-D: Pearson’s correlations between baseline percent dose OctOx and (B) 
fasting glucose, (C) HbA1c, and (D) fasting EGP relative to fat free mass, 
FFM.  n = 25; Treatment (n = 18) shown in yellow and standard care (n = 7) 
shown in white circles.  
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Figure 5.3.  Average and individual changes in NAS, steatosis, fibrosis, and 
percent (%) octanoate dose oxidized (OctOx) 

 

 
 

Data are presented as mean ± SEM; Treatment: n = 14, yellow lines; Standard 
care: n = 5, grey lines.  Paired, one-tailed t-test for baseline to follow-up 
comparisons in all subjects.  Note: Many individual subject lines overlap and 
individual data is presented in supplementary figure S5.2. 
A:  Changes in total NAS. 
B:  Changes in the NAS component, steatosis. 
C:  Changes in fibrosis. 
D:  Changes in percent dose OctOx.  
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Figure 5.4.  Correlations between changes in octanoate oxidized (OctOx) and 
fasting glucose and fasting EGP 

 

 
 

Treatment (yellow): n = 14, Standard care (white): n = 5. 
A:  Pearson’s correlation between percent (%) changes (∆) in fasting glucose 

and percent dose OctOx per kg BW. 
B:  Pearson’s correlation between percent changes in fasting EGP (relative to fat 

free mass, FFM) and percent dose OctOx per kg BW.  
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Figure 5.5.  Correlations between changes in octanoate oxidized (OctOx) and 
markers of liver health – steatosis and ALT 

 

 
 

Treatment (yellow): n = 14, Standard care (white): n = 5. 
A:  Spearman’s nonparametric correlation between absolute changes (∆) in 

steatosis and percent (%) dose OctOx per kg BW  
B:  Pearson’s correlation between absolute changes in ALT and total milligrams 

of OctOx. 
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Figure 5.6.  Model of improved liver health with changes in FAO 
 

 
 

Green arrows represent findings, and the blue lines represent hypothesized 
effects of increased FAO to improve liver histology. 
 
Relief of overburdened liver to improve histology via: 
1, 2, 3 – Increased FAO was negatively related to markers of glucose 

metabolism (plasma glucose concentrations, HbA1c, and fasting EGP) 
at baseline.  Reductions in energy burden at follow-up testing may have 
partially driven the negative associations between FAO, plasma glucose, 
and fasting EGP. 

4, 5 – Elevated FAO was associated with greater reductions in liver steatosis and 
the plasma marker of liver injury, ALT.  
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Supplementary Table S5.1.  Baseline diabetic status and subject medications 
 

Diabetes status n (%) 

Type 2 Diabetes  18 (72%) 
  

Drug type * n (%) 

Metformin 17 (68%) 

Insulin 4 (17%) 

Sulfonyurea 3 (13%) 

Statins 12 (48%) 

DPP4 inhibitor 2 (8%) 

GLP-1 agonists  6 (24%) 

SGLT-2 inhibitors  2 (8%) 
 

*Active medications at baseline for all subjects n = 25 (including controls; n = 7).  
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Supplementary Figure S5.1.  Schematic demonstrating delivery of oral 13C4 
octanoate to the liver through portal transport and 
oxidation 
 

 
 

Mechanism of oral delivery of octanoate to hepatic tissues.  
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Supplementary Figure S5.2.  Individual changes in NAS, steatosis, fibrosis, and 
total octanoate oxidized (OctOx) 

 

 
 

Data are related to figure 5.3. 
A-D:  Individual subject data from baseline to follow-up for (A) NAS (0-8), (B) 
Steatosis (0-3), (C) Fibrosis (0-4), and (D) OctOx (% dose). 
Notes: 1- Small bars just above the x-axis indicate a score of zero for NAS 
(subjects 02, 11), steatosis (11), and fibrosis (01, 03, 05, 07 ,12, 13, 14, 18, 19); 
2- The participants who received standard of care are subject numbers 15-19.  
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Award and Regional Writing Award 
2022  James L McGregor Scholarship, Department of Nutrition and 

Exercise Physiology, University of Missouri-Columbia, MO 
($250) 

2022  M. Harold Laughlin Scholarship, University of Missouri-
Columbia, MO ($500) 

2022  Keystone Symposia: Inter Organ Crosstalk in Non-Alcoholic 
Steatohepatitis (NASH), Department Travel Award, 
Laboratory of Dr. Elizabeth Parks, School of Medicine, 
University of Missouri-Columbia, MO ($2,200) 

2021 Gamma Alpha Gamma Dissertation Year Fellowship, 
Graduate School, University of Missouri-Columbia, MO 
($9,014) 

2021 Edward J. O’Brien Scholarship, Department of Nutrition and 
Exercise Physiology, University of Missouri-Columbia, MO 
($500) 

2021 Research Development Award, Graduate Professional 
Council, University of Missouri-Columbia, MO ($600) 

2021 Conference Presentation Travel Award – American Diabetes 
Association, Graduate Professional Council, University of 
Missouri-Columbia, MO ($150) 

2021 Professional Development Travel Award – Keystone 
Symposia: Lipidomics in Health and Disease, Graduate 
Professional Council, University of Missouri-Columbia, MO 
($159) 

2020  Campbell Harrison Scholarship, College of Human and 
Environmental Sciences, University of Missouri-Columbia, 
MO ($500) 

2019 American Diabetes Association, Departmental Travel Award, 
Laboratory of Dr. Elizabeth Parks, School of Medicine, 
University of Missouri-Columbia, MO ($1,000) 

2019  Travel Award – American Diabetes Association, Graduate 
Professional Council, University of Missouri-Columbia, MO 
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($600) 
2018 Experimental Biology, Department Travel Award, Laboratory 

of Dr. Elizabeth Parks, School of Medicine, University of 
Missouri-Columbia, MO ($1,300) 

2018 KinMet – Kinetics in Metabolism, Departmental Travel 
Award, Laboratory of Dr. Elizabeth Parks, School of 
Medicine, University of Missouri-Columbia, MO ($502)  

2018 Isotope Tracer Course, Departmental Travel Award, 
Laboratory of Dr. Elizabeth Parks, School of Medicine, 
University of Missouri-Columbia, MO ($2,000) 

2018 Metabolomic Basics – Dr. Takhar Kasumov, Departmental 
Travel Award, Laboratory of Dr. Elizabeth Parks, School of 
Medicine, University of Missouri-Columbia, MO ($1,200) 

2017 Adeline M. Hoffman Fellowship, College of Human 
Environmental Sciences, University of Missouri-Columbia, 
MO ($3,500/year, two years)  

2016   Spring- Dean’s List 
2016   Magna Cum Laude, Hope College, Holland, MI 
2015   Spring & Fall- Dean’s List 
2014   Spring & Fall- Dean’s List 
2013   Fall- Dean’s List 
2012   Fall- Dean’s List 
2012 Distinguished Scholar Award, Hope College, Holland, MI 

($5,000/year, Four years) 
 

 

PUBLICATIONS  
 
Peer-Reviewed Publications 
1. JM Mucinski, JE Vena, MA Ramos-Roman, ME Lassman, M Szuszkiewicz-

Garcia, DG McLaren, SS Shankar, EJ Parks. High throughput LC-MS method 
to investigate postprandial lipemia: Considerations for future precision 
nutrition research. American Journal of Physiology: Endocrinology and 
Metabolism, 2021; 320(4): E702-E715.  PMID: 33522396. 

 
2. MM Syed-Abdul, M Jacome-Sosa, Q Hu, AH Gaballah, NC Winn, NT Lee, JM 

Mucinski, CM Manrique-Acevedo, G Lastra, JM Anderson, AM Juboori, BD 
Bartholow, EJ Parks.  Tailgate study: Differing metabolic effects of a bout of 
excessive eating and drinking. Alcohol, 2021; 90: 45-55.  PMID: 33232792.  

 
3. MP Moore, R Cunningham, R Dashek, JM Mucinski, RS Rector. A fad too 

far? Dietary strategies for the prevention and treatment of NAFLD. Obesity 
(Silver Spring), 2020; 28(10): 1843-1852.  PMID: 32893456. 

 
4. JM Mucinski, CM Manrique-Acevedo, T Kasumov, TJ Garrett, AH Gaballah, 

EJ Parks. Relationship between VLDL-ceramides, -diacylglycerols, and -
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triacylglycerols in insulin resistant men. Lipids, 2020; 55(4): 387-393. PMID: 
32415687 

 
5. MP Moore* and JM Mucinski*.  Impact of nicotinamide riboside 

supplementation on skeletal muscle mitochondria and whole‐body glucose 
homeostasis: Challenging the current hypothesis. The Journal of Physiology, 
2020; 598: 3327-3328.  PMID: 32463114   
*Co-first authors 

 
 
Manuscripts in preparation 
1. JM Mucinski, EJ Parks, T Kasumov.  Stable isotopes and LC-MS quantify 

ceramide kinetics in vivo.  Analytical Biochemistry, (pre-submission). 
 
2. AM Perry, JM Mucinski, A Diaz-Arias, JA Ibdah, RS Rector, EJ Parks.  

Noninvasive hepatic fatty acid oxidation in biopsy-proven nonalcoholic 
steatohepatitis.  Frontiers in Physiology – Lipids and fatty acids, (pre-
submission). 

 
3. JM Mucinski, AF Salvador, MP Moore, GM Meers, S Johnson, G Lastra, JA 

Ibdah, RS Rector, EJ Parks.  Histological improvements from increased 
peripheral substrate disposal:  Muscle glucose uptake spares the liver.  
Frontiers in Physiology – Lipids and fatty acids, (pre-submission). 

 
 
Selected abstracts  
1. JM Mucinski, MP Moore, JA Ibdah, RS Rector, EJ Parks. Paradoxical 

increases in glucose appearance and 24h FFA with NASH treatment. 
Keystone Symposia: Inter Organ Crosstalk in Non-Alcoholic Steatohepatitis 
(NASH), Keystone, CO (2022, February). 
 

2. CEP Fenton, TM Fordham, JM Anderson, MP Moore, JM Mucinski, JA 
Ibdah, RS Rector, EJ Parks. Using Fitbit data to predict cardiometabolic 
health outcomes. Health Sciences Research Day, University of Missouri, 
Columbia, MO (2021, November).  

 
3. JM Mucinski, NS Nallapeta, MP Moore, JA Ibdah, RS Rector, EJ Parks. 

Lifestyle treatment-induced improvements in nonalcoholic steatohepatitis 
(NASH). Submission #2021-A-5162-Diabetes; American Diabetes Association 
81st Virtual Scientific Sessions (2021, June). 

* Accepted as an oral presentation – Monday June 28th 3:45pm (given virtually) 

 
4. AM Perry, JM Mucinski, A Diaz-Arias, JA Ibdah, RS Rector, EJ Parks. Fatty 

acid oxidation in nonalcoholic steatohepatitis (NASH). University of Missouri 
Undergraduate Research and Creative Achievement Forum, University of 
Missouri, Columbia, MO; Virtual (2021, April). 
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5. AM Perry, JM Mucinski, A Diaz-Arias, JA Ibdah, RS Rector, EJ Parks. 
Hepatic short chain fatty acid oxidation in nonalcoholic fatty liver disease. 
ABRCMS – Virtual (2020, November). 

 
6. JM Mucinski, N Sharma, MP Moore, JA Ibdah, RS Rector, EJ Parks. Role of 

glucose flux to elevate hepatic lipogenesis in biopsy-proven NASH. 
Submission #2020-A-4368-Diabetes; American Diabetes Association 80th 
Scientific Sessions (2020, June). 

* Accepted as an oral presentation – Monday June 15th 2:15pm (given virtually) 

 
7. AM Perry, JM Mucinski, MM Syed-Abdul, JM Snawder, A Gaballah, RS 

Rector, JA Ibdah, EJ Parks. Hepatic short chain fatty acid (SCFA) oxidation in 
nonalcoholic fatty liver disease. Health Sciences Research Day, University of 
Missouri, Columbia, MO (2019, November). 

* Awarded first place in Category 1 – Clinical 

 
8. AM Perry, JM Mucinski, MM Syed-Abdul, JM Snawder, A Gaballah, RS 

Rector, JA Ibdah, EJ Parks. Hepatic short chain fatty acid (SCFA) oxidation in 
nonalcoholic fatty liver disease. Abstract # C-338; ABRCMS, Anaheim, CA 
(2019, November). 

* Awarded an Outstanding Poster Presentation Award – ABRCMS Scientific Discipline 
Category:  Physiology & Pharmacology 

 
9. JM Mucinski, AM Perry, JA Kanaley, NC Winn, EJ Parks. Effects of exercise 

on hepatic short chain fatty acid oxidaiton (SCFAO).  Poster #60; Southwest 
American College of Sports Medicine Chapter Meeting, Newport Beach, CA 
(2019, October). 
 

10. JM Mucinski, MM Syed-Abdul, TJ Garrett & EJ Parks. Very low-density 
lipoprotein ceramides and hepatic lipid accumulation.  Diabetes, 2019; 68. 
doi:10.2337/db19-1900-P %J Diabetes.  Poster #1900-P; American Diabetes 
Association 79th Scientific Sessions, San Francisco, CA (2019, June).  

 
11. RD Arreola, MM Syed-Abdul, N Le, A Gaballah, JM Mucinski, EJ Parks.  

Fibroblast growth factor-21 and human metabolism. Undergraduate Research 
& Creative Achievements Forum, University of Missouri, Columbia, MO 
(2019, April). 

 
12. JM Mucinski, MM Syed-Abdul, TJ Garrett & EJ Parks. Inverse relationship 

between very low-density lipoprotein (VLDL) ceramides, diacylglycerols, and 
triacylglycerols in human hepatic lipid accumulation.  FASEB, 2019; 33(S1): 
lb567-lb567, doi:10.1096/fasebj.2019.33.1_supplement.lb567. Poster 
#LB567; Experimental Biology, Orlando, FL (2019, April).  

 
13. Z Powell, JM Snawder, JM Mucinski, N Le, RD Arreola, MM Syed-Abdul, J 

Otto, AM Perry, EJ Parks. Analysis of physical activity on the days 
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immediately after exercise. Life Sciences Research Day, University of 
Missouri, Columbia, MO (2019, March). 

 
14. RD Arreola, MM Syed-Abdul, N Le, CM Manrique-Acevedo, A Gaballah, JM 

Mucinski, W McCulloch, EJ Parks.  Fibroblast growth factor-21 and its 
relationship to human liver fat synthesis:  Impact of a new therapeutic agent. 
Poster #T-P-3383; The Obesity Society, Nashville, TN (2018, November). 

 
15. JM Mucinski, T Hatfield, M Sall,K Winkler. The effects of leg press speed on 

post-activation potentiation of vertical jump performance. Celebration of 
Undergraduate Research, Hope College, Holland, MI (2016, April). 

 
 
LECTURES AND PRESENTATIONS 
“Paradoxical increases in glucose appearance and 24h FFA with NASH 
treatment,” Keystone Symposia: Inter Organ Crosstalk in Non-Alcoholic 
Steatohepatitis (NASH), Keystone, CO (02/08/2022)   
 
“Lipidomics:  Ceramides in health and disease,” presented to the course entitled, 
“Nutritional Biochemistry of Lipids” directed by Elizabeth Parks, PhD (11/16 & 
18/2021) 
 
“Lifestyle treatment-induced improvements in nonalcoholic steatohepatitis 
(NASH),” Nutrition and Exercise Physiology Seminar Series, University of 
Missouri, Columbia, MO (09/30/2021) 
 
“Lifestyle treatment-induced improvements in nonalcoholic steatohepatitis 
(NASH),” 81st Scientific Sessions of the American Diabetes Association, Virtual 
conference (06/28/2021). 
 
“Translational Research: Two examples from my graduate training,” presented to 
the course entitled, “Molecular Exercise Biology” directed by Frank Booth, PhD 
(12/01/2020) 
 
“Role of glucose flux to elevate hepatic lipogenesis in biopsy-proven NASH,” 80th 
Scientific Sessions of the American Diabetes Association, Virtual conference 
(06/15/2020).  
 
“High throughput LC-MS method to investigate postprandial lipemia: 
Considerations for future precision nutrition research,” KinMet, Chicago, IL 
(05/04/2020) 
 
“Hepatic short chain fatty acid (SCFA) oxidation in nonalcoholic fatty liver 
disease,” Southwest American College of Sports Medicine Chapter Meeting, 
Newport Beach, CA (10/26/2019) 
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“Very low-density lipoprotein ceramides and hepatic lipid accumulation,” 79th 
Scientific Sessions of the American Diabetes Association, San Francisco, CA 
(06/09/2019) 
 
“Inverse relationship between very low-density lipoprotein (VLDL) ceramides, 
diacylglycerols, and triacylglycerols in human hepatic lipid accumulation,” 
Experimental Biology, Orlando, FL (04/9/2019) 
 
“The effects of leg press speed on post-activation potentiation of vertical jump 
performance,” Celebration of Undergraduate Research, Hope College, Holland, 
MI (04/2016) 
 
 
ACADEMIC SERVICE 
2018 - present Current – Mentor, undergraduate students, Parks Laboratory  
2017 - present Current – Graduate Student Association Member, Nutrition 

and Exercise Physiology 
2019-20 President, Graduate Student Association, Nutrition and 

Exercise Physiology 
2019-20 Finance Chair, Graduate Student Association, Nutrition and 

Exercise Physiology 

• Applied for travel funding on behalf of the organization 

• Received ~$4,000 for graduate student travel over 
two years 

2018-19 Vice President, Graduate Student Association, Nutrition and 
Exercise Physiology 

2018-19 Graduate Professional Council Representative, Nutrition and 
Exercise Physiology 

2018-19  Finance Committee Member, Graduate Professional Council  

• Reviewed travel funding applications and graded 
based on quality and merit 

2018-19 Student Allocation Organization Committee Member, 
Graduate Professional Council  

• Reviewed university funding applications for student 
organizations and graded based on quality and merit 

2018 Sports Nutrition Graduate Teaching Assistant, Nutrition and 
Exercise Physiology, University of Missouri, Columbia, MO 

2016 Mentor, Foundations for Fitness, Kinesiology Department, 
Hope College, Holland, MI  

2016 Health Dynamics Teaching Assistant, Kinesiology 
Department, Hope College, Holland, MI 

 
 
PROFESSIONAL MEMBERSHIPS 
2019 – present American College of Sports Medicine – Southwest Chapter 
2017 – present American Society of Nutrition 
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2017 – present American Physiological Society 
 
 
ADVANCED TECHNICAL TRAININGS 
2/11/2021 Mouse Handling Workshop 

 Directed by:  Animal Care Quality Assurance, IACUC 
of MU 

 Veterinary Medicine, University of Missouri, Columbia, 
MO 

 
01/2020–05/2020 Responsible Conduct of Research Through 

Enactment, Empowerment, and Engagement 
Directed by: Mark Milanick, PhD 
University of Missouri, Columbia, MO 

 
08/2019–12/2019 Hierarchical/Multilevel Linear Modeling 

Directed by: Francis Huang, PhD 
University of Missouri, Columbia, MO 

 
06/2019 Quantitative Foundations: Statistical Computing and 

Graphics with R 
Directed by: Matthew Easter, PhD 
University of Missouri, Columbia, MO 

 
12/2018 Metabolomics: Basics 

Laboratory of Takhar Kasumov 
Northeastern Ohio Medical University, Rootstown, OH 

 
10/28 – 11/2/2018 11th annual Isotope tracers in Metabolic Research: 

Principles and Practice of Kinetic Analysis 
 Sponsored by: NIH/MMPC 
 Vanderbilt University, Nashville, TN 

 
 
CERTIFICATIONS  
2017 – present Miscellaneous Training: Citizenship@Mizzou (diversity 

training), Graduate Assistant Teaching Training 
2017 – present Laboratory Research: blood borne pathogens, chemical 

management, laboratory safety 
2017 – present Clinical Research: HIPAA (research subject/patient privacy), 

good clinical practice, human subjects’ protection, working 
with the IACUC, working with mice in the research setting, 
biosecurity 

2016 – present  First Aid, CPR, AED- Adult and Child 
 
 

GRANTS SUBMITTED  
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08/2018  Synergy between triacylglycerol and ceramide synthesis in 
NASH 

NIH F31 (NIDDK) – Ruth L. Kirschstein Predoctoral 
Individual NRSA 
Not discussed – $150,000 

 

12/2020  Resubmission: Impact score: 39 – $150,000  
 
08/2019  Mechanisms of ceramide contributions to CVD risk 

NIH F31 (NHLBI) – Ruth L. Kirschstein Predoctoral 
Individual NRSA 
Impact score: 58 | Percentile: 52 – $150,000 

 

04/2020  Resubmission: Not discussed – $150,000 
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VITA 

Justine Marie Mucinski was born in Grand Rapids, Michigan.  She attended Hope 

College in Holland, MI where she earned her bachelor’s degree in exercise 

science with a minor in biology.  Justine then worked for Hope Network, a 

nonprofit dedicated to helping individuals with disabilities live independently.  

During this time, she developed exercise prescriptions for individuals with brain 

and spinal cord injuries and explored options for her graduate training.  With her 

passion for learning about metabolism in varying metabolic states, Justine was 

drawn to labs that studied metabolic processes.  Her search led her to the 

department of Nutrition and Exercise Physiology at the University of Missouri 

where she ultimately joined the laboratory of Dr. Elizabeth Parks and was co-

mentored by Dr. R. Scott Rector.  Justine completed her doctorate degree in 

2022 and will pursue postdoctoral training in skeletal muscle and mitochondrial 

metabolism in Dr. James DeLany’s Lab at the AdventHealth Translational 

Research Institute in Orlando, FL. 
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