
PROTEIN-DNA INTERACTION PREDICTION AND

PROTEIN STRUCTURE MODELING

BY MACHINE LEARNING

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

CHEN CHEN

Dr. Jianlin Cheng, Dissertation Supervisor

JULY 2022

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

PROTEIN-DNA INTERACTION PREDICTION AND PROTEIN STRUCTURE

MODELING BY MACHINE LEARNING

presented by Chen Chen,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Jianlin Cheng

Dr. Dong Xu

Dr. James A. Birchler

Dr. Jeffrey Uhlmann

ACKNOWLEDGMENTS

First of all, I would like to give my appreciation to my advisor and committee

chair Dr. Jianlin Cheng and my committee members: Dr. Dong Xu, Dr. James

A. Birchler, and Dr. Jeffrey Uhlmann. Thank you for your support and guidance

in my Ph. D. study. Dr. Cheng not only provides valuable research directions and

advice to me though out these years, but also demonstrate what characteristics are

required for conducting scientific research. Without his kindness and considerable

mentoring, it would be impossible for me to finish the work that I have done during

my study. Also, I wish to especially express my gratitude to Dr. James A. Birchler,

who have brought great insights from his field to my work, and led many successful

collaborations between our labs.

Second, I wish to thank people who are currently working together with me in the

lab, including Tianqi Wu, Zhiye Guo, Alex Morehead, Xiao Chen, Jian Liu, Farhan

Quadir, Raj Roy, Ashwin Dhakal, Sajid Mahmud, Nabin Giri, Frimpong Boadu, and

Yanli Wang. I learned a great deal from many things where they are better than

me, and their help and support always inspired me throughout my study. Also, I

wish to thank people who have collaborated with me during the years, including

previously graduated students from our lab: Dr. Jie Hou and Dr. Meshal Alfarhood,

and researchers from Dr. Birchler’s lab: Dr. Xiaowen Shi and Dr. Hua Yang. I

have a great experience working with them. In addition, I wish to thank people who

worked in Oak Ridge National Laboratory: Dr. Ada. Sedova and Dr. Mu Gao, who

have offered extremely valuable help for us to fully utilize the computing resources

from the Summit Supercomputer.

Finally, I would like to thank my family and friends for supporting me throughout

my Ph.D. study. It would not have been possible for everything without the company

of you during the years!

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . x

ABSTRACT . xiii

CHAPTER .

1 Introduction . 1

1.1 Transcription factors binding sites prediction 2

1.2 Prediction of interactions between transcription factors and genes . . 3

1.3 Protein contact maps prediction . 4

1.4 Protein model quality assessment . 5

2 DeepGRN: prediction of transcription factor binding site across
cell-types using attention-based deep neural networks 7

2.1 Abstract . 7

2.2 Introduction . 8

2.3 Materials and Methods . 11

2.3.1 Datasets from ENCODE-DREAM challenge 11

2.3.2 Transcription factor binding data 13

2.3.3 DNA primary sequence . 14

2.3.4 DNase-Seq data . 14

2.3.5 Gene expression and annotation 15

2.3.6 PhastCons genome conservation tracks 16

2.3.7 CpG island feature profiling 16

iii

2.3.8 Deep neural network models with attention modules 17

2.4 Results . 24

2.4.1 Overall benchmarking on evaluation data 24

2.4.2 Performance comparison between two attention modules . . . 26

2.4.3 Interpretation of attention scores 31

2.4.4 Motif detection over high attention scores regions 34

2.5 Conclusions . 35

3 GNET2: an R package for constructing gene regulatory networks
from transcriptomic data . 39

3.1 Abstract . 39

3.2 Introduction . 40

3.3 Materials and Methods . 41

3.3.1 Initialization based on gradient boosting decision tree 41

3.3.2 Iterative module inference process 45

3.3.3 Module scoring functions . 48

3.3.4 Incorporate experimental setup information 49

3.3.5 Benchmark experiments setup 51

3.4 Results . 53

3.4.1 Assessment of prediction quality 53

3.4.2 Impact of sample numbers and initial group sizes 55

3.4.3 Systematic validation on the predicted functional modules . . 56

3.4.4 Representation of the functional modules predicted by GNET2 60

3.4.5 Evaluation of running efficiency for GNET2 60

3.5 Conclusions . 61

iv

4 Combination of deep neural network with attention mechanism
enhances the explainability of protein contact prediction 63

4.1 Abstract . 63

4.2 Introduction . 64

4.3 Materials and Methods . 67

4.3.1 Overview . 67

4.3.2 Datasets . 67

4.3.3 Input feature generation . 69

4.3.4 Deep network architectures 69

4.3.5 Model Training Configuration 73

4.4 Results . 74

4.4.1 Benchmark ATTContact with state-of-the-art methods 74

4.4.2 Comparison of two attention modules 76

4.4.3 Visualization of attention scores from the sequence model . . . 78

4.4.4 Regional attention scores identify key residue pairs in folding . 79

4.5 Conclusions . 82

5 3D-equivariant graph neural networks for protein model quality
assessment . 85

5.1 Abstract . 85

5.2 Introduction . 86

5.3 Materials and Methods . 89

5.3.1 Datasets . 89

5.3.2 Model filtering . 91

5.3.3 Features . 92

5.3.4 3D-equivariant model architecture 94

v

5.4 Results . 98

5.4.1 Model quality assessment on CASP14 and CAMEO datasets . 98

5.4.2 Model quality assessment on AlphaFold2 dataset 100

5.4.3 Analysis of the performance on AlphaFold2 predicted models . 102

5.4.4 Analysis of the impact of features 105

5.5 Conclusions . 108

6 Summary and concluding remarks 109

APPENDIX . 111

A Predicting transcription binding sites with DeepGRN 111

A.1 Required software . 111

A.2 Required Python library . 111

A.3 Usage . 112

B Build functional gene modules with GNET2 113

B.1 Build module networks . 113

B.2 Plot the modules and trees . 115

C ATTContact for protein contact maps prediction 117

C.1 Required software . 117

C.2 Required Python libraries . 117

C.3 Feature geraration . 118

C.4 Usage . 118

D EnQA for protein structure accuracy estimation 120

D.1 Required software . 120

D.2 Required Python libraries . 120

D.3 Usage . 121

BIBLIOGRAPHY . 123
vi

VITA . 143

vii

LIST OF TABLES

Table Page

2.1 The cell types used for training . 12

2.2 The cell types used for optional model tuning and evaluation 13

2.3 Hyperparameters selection for model training. Due to the limitation of

computing capacity 50 sets of the combination of these hyperparame-

ters are sampled without replacement for evaluating the configurations.

The single and pairwise modules always share the same configuration. 22

2.4 The performance of DeepGRN with four metrics used in the DREAM

Challenge. 24

2.5 The unified scores of DeepGRN and the top four algorithms in the

DREAM Challenge. 25

2.6 The performance of DeepGRN trained with challenge datasets only

with four metrics used in the DREAM Challenge. 27

2.7 The unified scores of DeepGRN trained with challenge datasets only

and the top four algorithms in the DREAM Challenge. 27

2.8 Individual performance of single attention module. 28

2.9 Individual performance of pairwise attention module. 30

3.1 Evaluation of network inference results. The values are the aucROC

scores of the different approaches (bold: the best results) 54

viii

3.2 Occurrences of each type of interaction between the transcription fac-

tors and predicted downstream genes. 58

3.3 Evidences from databases and text mining 59

3.4 Input data for running time benchmark. Experiment 1, 2, 3 and 4 are

the benchmark for different number of samples sizes, number genes,

number of given regulators and initial number of modules, respectively. 60

3.5 Comparison of time consumption for GNET, GNET2-Kmeans and

GNET2-GBDT. 61

4.1 Precision (%) of the top L/5, L/2 and L predicted long-range contacts

on the CASP13 dataset . 74

4.2 Comparison of the performance of the combined attention model with

top 10 CASP13 methods . 75

4.3 Comparison of the performance of different attention configurations.

Bold scores denote the highest. 76

5.1 The benchmark of QA results on the CASP14 model dataset. Bold

scores denote the highest. 99

5.2 The ranking loss of QA results on the CAMEO model dataset. Bold

scores denote the highest. 99

5.3 The benchmark of QA results on the CAMEO model dataset. Bold

scores denote the highest. 101

5.4 The ranking loss of QA results on the CAMEO model dataset. Bold

scores denote the highest. 101

5.5 The benchmark of QA results on the AlphaFold2 predicted model

dataset. Bold scores denote the highest. 102

5.6 The ranking loss of QA results on the AlphaFold2 predicted model

dataset. Bold scores denote the highest. 103

ix

LIST OF FIGURES

Figure Page

2.1 The training, hyperparameter tuning, and testing procedure used through-

out the Challenge dataset. 12

2.2 Performance of DeepGRN with different selections of input ranges. . . 15

2.3 The general framework of the two attention modules of DeepGRN. . . 18

2.4 Comparision of the deep learning models with and without attention

mechanism. 26

2.5 Performance comparison between single and pairwise attention mech-

anisms. 29

2.6 Importance score of features between single and pairwise attention

mechanisms. 30

2.7 Analysis of attention weights and saliency scores. 32

2.8 Visualization of the relationship between ChIP-seq peak and attention

weights. 33

2.9 Distribution of average normalized DNase coverage values of different

regions with the inputs of JUND. 34

2.10 Comparisons of known motifs and matching motifs learned by pairwise

attention module in CTCF and FOXA1. 36

2.11 Comparisons of known motifs and matching motifs learned by the sin-

gle attention module in CTCF and FOXA1. 37

x

3.1 Illustration of the results generated by GNET2. 46

3.2 ROC plots for 100 samples generated from SynTReN. 54

3.3 ROC plots for 18 samples generated on the Aneuploidy Arabidopsis

RNA-Seq dataset. 55

3.4 Evaluation of the impact of inital group size. 57

4.1 An overview of the proposed attention mechanism protein contact pre-

dictor framework. 68

4.2 Schematic illustration of 1D and 2D attention mechanism. 71

4.3 Prediction performance curves of the sequence attention model, re-

gional attention model, and combined model. 77

4.4 Comparison of the top-L/5 precision between sequence and regional

attention module. 78

4.5 Comparison of attention scores from regions of the highest Φ-value

peak and scores from the rest regions. 80

4.6 Performance after permutation of different locations of the input. The

Y-axis indicates the increase or decrease of top-L/5 precision scores

after permutation. 81

4.7 Visualization and interpretation contact predictions of Human common-

type acylphosphatase from the regional attention module. 83

5.1 The illustration of the local spherical coordinate system. 95

5.2 The illustration of the overall architecture of EnQA. 95

5.3 The distribution of lDDT scores of benchmark models. 103

5.4 The comparison between the predicted and true lDDT scores for Al-

phaFold models. 104

5.5 The comparison of residue-level Pearson’s Correlation Coefficient when

different features are randomly permuted for model quality assessment. 106

xi

5.6 The comparison of the importance of the geometric property features. 107

xii

ABSTRACT

Proteins are large, complex molecules that perform most essential functions within

organisms. In this work, we mainly focus on two important aspects that determine

their functional properties: the tertiary structure of the proteins and their interaction

patterns with the genome. Understanding these properties brings valuable insights on

the fundamentals of biology and result in new applications in areas such as agriculture,

precision medicine, and drug discovery.

The recent developments of bioinformatics and structural biology, machine learn-

ing, in particular deep learning has proven to be extremely powerful in inference and

interpretation of experimental observations by taking advantage of the large amount

data publicly available today. We aim to propose novel machine learning frameworks

that can both extract information from higher-level features, and provide explain-

ability for meaningful insights beyond the predictions as well. However, due to the

volatility of biology phenomena, the design of data processing and modeling need

to be extensive for features from the the proteins. Also, the different geophysical

measurements (1D, 2D and 3D) of the protein properties bring new challenges for the

selection of model architectures that can effectively leverage different forms of data

structure.

In this dissertation, four major contributions are described. First, DeepGRN, is a

method for transcription binding site prediction using 1D transformer-based network.

Second, GNET2, is a data-assisted method to infer the interactions between proteins

and genes from gene expression data using decision tree and information theory.

Third, ATTContact, is a tool for protein contact prediction based on 2D residual

neural networks with attention mechanism. Finally, EnQA, a method based on 3D

equivariant graph networks for protein model quality assessment and selection of

the most accurate model as the final protein structure prediction. All the methods

xiii

described have been released as open source software, and are freely available to the

scientific community.

xiv

Chapter 1

Introduction

Proteins are essential molecules that participate in various biological functions and

processes in different organisms. For example, transcription factors (TFs) are pro-

teins that bind to genome sequences with unique motifs in the genome to regulate

(activate or repress) transcription of target genes [1]. However, it is usually costly

and time consuming to acquire accurate functional properties of proteins from exper-

iments. For example, X-ray crystallography and nuclear magnetic resonance (NMR)

are golden standard to determine the 3D structure of proteins. Chromatin immuno-

precipitation followed by sequencing (ChIP-seq) is the most widely used technique

to profile the protein-DNA binding signatures on the genome scale. Due to the con-

straints of experimental validation methods, computational prediction are drawing

much attention as an alternative and less costly approach in these areas.

In recent years, machine learning, especially the deep learning techniques, have

proved to be highly capable to large data processing and pattern recognition, and has

brought many successful applications in areas such as computer vision [2], natural

language processing [3], search/recommendation [4], and many other fields. Machine

learning and deep learning have also been exploited in many bioinformatics problems,

such as biomedical imaging, biomedical signal processing, and literature mining [5,
1

6]. These techniques improved the state-of-the-art performance in a variety of tasks

previously dominated by traditional methods, and provide insight from data for both

academia and industry.

In this dissertation, I mainly focus on my research in the following two topics: the

interactions between proteins and genes/genome (Chapter 2 and 3), and the structural

modelling of proteins (Chapter 4 and 5).

1.1 Transcription factors binding sites prediction

Transcription factors (TFs) are proteins that can bind to specific genomic sequences

and activate or repress the rates of transcriptional activities of downstream genes.

Chromatin immunoprecipitation-sequencing (ChIP-Seq) is the most commonly used

technique to find all potential binding regions on genomic sequences for TFs. How-

ever, it requires specific reagents, such as antibodies for different TFs, thus limits

both its availability and scalability. As a result, use of computational methods to

predict the binding sites of different TFs is considered as alternative solutions and

we have seen many of these methods designed based on different machine learn-

ing algorithms [7, 8, 9, 10, 11, 12]. On the other hand, methods developed using

deep neural networks, including DeepBind [13], TFImpute [14], and DeepSEA [15],

have achieved better performances than traditional machine learning models. These

approaches often rely on techniques such as convolutional and recurrent neural net-

works. Both architectures have the capability to recognize sequential patterns from

input features. The convolutional layers are usually used for extracting information

from local patterns, while the recurrent layers are better at capturing the long range

information. Several recently developed methods, including DanQ [16], DeeperBind

[17] and FactorNet [18] are the combinations of both architectures. It is another in-

teresting research topic to interrogate the casual relationship between the input and

2

prediction results in machine learning,of which the attention mechanism has achieved

great success [19, 20]. It increases the capability of existing RNN models to learn

the long-range dependencies from the features, and enhances the interpretability of

existing deep learning architectures.

In Chapter 2, we introduce a TF binding site prediction tool (DeepGRN) that

uses attention mechanism. The experimental results demonstrate that our approach

is achieved state-of-the-art performance by comparing with other tools. Our results

also demonstrated the pattern of informative features in both DNase-Seq and DNA

sequences. The work is published in the following paper:

Chen Chen, Jie Hou, Xiaowen Shi, Hua Yang, James A Birchler, and Jianlin

Cheng. Deepgrn: prediction of transcription factor binding site across cell-types using

attention-based deep neural networks. BMC bioinformatics, 22(1):1–18, 2021 [21]

1.2 Prediction of interactions between transcrip-

tion factors and genes

In the previous section, we introduced DeepGRN, which utilizes DNase-Seq data to

predict the binding site of transcription factors on the genome. However, DNase-Seq

results are not feasible to acquire in many experiments, and usually the exact location

of binding sites is sufficient to unravel the numerous direct and indirect interactions

of transcription factors and genes. A gene regulatory network (GRN) is a set of

genes and their regulatory relationship with each other, and plays an important role

to control various biological processes and molecular functions [22]. Also, compared

with DNase-Seq, the gene expression profile from RNA-Seq experiments are much

easier to acquire and more informative in different organisms. As a result, many

computational methods have been developed to identify the GRNs from the gene

expression profile. They include the approaches modeling the GRNs using similarity

3

metrics, such as correlation or mutual information, or other confidence scores using

information theory [23, 24], Bayesian networks [25] and Gaussian Graphical Model

[26, 27].

In Chapter 3, we introduce GNET2 (The Gene Network Estimation Tool), which

is developed based on the original GNET algorithm described [27, 28]. GNET uses a

decision tree algorithm combined with Gaussian Graphical Model to construct GRN,

and has been applied to several previous studies, including regulatory of estrogens

[29] and nodulation [27]. We improved the initialization process with the gradient

boosting-based approach, and extended the modeling to different conditions by uti-

lizing the similarity in regulatory relationship, which allow the users to acquire more

accurate results from replicates of different experiment conditions. The work is pub-

lished in the following paper:

Chen Chen, Jie Hou, Xiaowen Shi, Hua Yang, James A Birchler, and Jianlin

Cheng. Gnet2: an r package for constructing gene regulatory networks from tran-

scriptomic data. Bioinformatics, 37(14):2068–2069, 2021. [30]

1.3 Protein contact maps prediction

In computational modeling of the 3D structures of proteins, the accuracy of the

residue-residue contacts plays a critical role, as many software, including AlphaFold

[31], and MULTICOM [32] use predicted contact map for computational reconstruc-

tion of 3D protein structure. The development of inter-residue coevolutionary analysis

provide essential clues for contact prediction from correlated mutation-based analy-

sis [33, 34]. Recent development of deep learning-based methods incorporated with

coevolutionary features have brought significant improvements in protein structure

prediction [35, 31, 36, 37]. The features of the deep learning models often derives

from the direct coupling analysis (DCA). DCA methods use information from multi-

4

ple sequence alignments (MSAs) to generate correlated mutation information between

residues. The information from DCA can be transformed into pairwise 2D feature

maps, and then be learned by 2D convolutional neural networks. Several early meth-

ods that first adapted this paradigm are RaptorX-Contact [38], DNCON2 [39] and

MetaPSICOV [40]. Chapter3 describes a deep learning approach for protein contact

prediction, which is equipped with two different architectures based on the attention

mechanism. Our results demonstrate that by applying attention mechanisms on the

general deep learning-based contact predictors, we are able to improve the accuracy

of existing methods. In addition, the attention weights learned by the model make it

possible to explain the relationship between position-wise information and the later

contact predictions. The work is published in the following paper:

Chen Chen, Tianqi Wu, Zhiye Guo, and Jianlin Cheng. Combination of deep

neural network with attention mechanism enhances the explainability of protein con-

tact prediction. Proteins: Structure, Function, and Bioinformatics, 89(6):697–707,

2021. [41]

1.4 Protein model quality assessment

The recent breakthroughs in the end-to-end deep learning method for protein struc-

ture prediction - AlphaFold2 [42] and RoseTTAFold [43] present notable improve-

ments in the capability of generating highly confident 3D structures using deep learn-

ing methods. However, there are still discrepancies between many predicted struc-

tures and the corresponding true structure. For example, while AlphaFold2 is able to

predict the structure of the full protein, its results often contain segments with uncer-

tainty, which can cause incorrect identifications of local structural information, such

as folds or pockets, which may even result in poor model building [44]. In addition,

it is often expected to acquire multiple candidates for one input sequence from deep

5

learning models. Thus, it is still a challenging task to estimate the accuracy of the

predicted tertiary structural models, and provide information of their similarity or

discrepancy of the unknown native structure in both local and global level. If accurate

estimation of model quality can be acquired, it would contribute to the selection of

the final predictions from all candidates, and identify regions with high uncertainty

for further refine processes. Chapter 4 describes a model quality assessment predictor

based on equivariant graph neural networks, which exploits the geometric properties

of the protein models (rotation and translation equivariance). The work is from the

following deposited paper:

Chen Chen, Xiao Chen, Alex Morehead, Tianqi Wu, and Jianlin Cheng. 3d-

equivariant graph neural networks for protein model quality assessment. bioRxiv,

2022. [45]

6

Chapter 2

DeepGRN: prediction of
transcription factor binding site
across cell-types using
attention-based deep neural
networks

2.1 Abstract

Due to the complexity of the biological systems, the prediction of the potential DNA

binding sites for transcription factors remains a difficult problem in computational

biology. Genomic DNA sequences and experimental results from parallel sequencing

provide available information about the affinity and accessibility of genome and are

commonly used features in binding sites prediction. The attention mechanism in deep

learning has shown its capability to learn long-range dependencies from sequential

data, such as sentences and voices. Until now, no study has applied this approach

in binding site inference from massively parallel sequencing data. The successful

applications of attention mechanism in similar input contexts motivate us to build

7

and test new methods that can accurately determine the binding sites of transcription

factors.

In this study, we propose a novel tool (named DeepGRN) for transcription factor

binding site prediction based on the combination of two components: single attention

module and pairwise attention modules. The performance of our methods is evalu-

ated on the ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction

Challenge datasets. The results show that DeepGRN achieves higher unified scores

in 6 of 13 targets than any of the top four methods in the DREAM challenge. We

also demonstrate that the attention weights learned by the model are correlated with

potential informative inputs, such as DNase-Seq coverage and motifs, which provide

possible explanations for the predictive improvements in DeepGRN.

DeepGRN can automatically and effectively predict transcription factor binding

sites from DNA sequences and DNase-Seq coverage. Furthermore, the visualization

techniques we developed for the attention modules help to interpret how critical

patterns from different types of input features are recognized by our model. The

source code of DeepGRN is available at https://github.com/jianlin-cheng/DeepGRN.

2.2 Introduction

Transcription factors (TFs) are proteins that bind to specific genomic sequences and

affect numerous cellular processes. They regulate the rates of transcriptional activ-

ities of downstream genes through such binding events, thus acting as activators or

repressors in the gene regulatory networks by controlling the expression level and

the protein abundance of their targeted genes [46]. Chromatin immunoprecipitation-

sequencing (ChIP-Seq) is the golden standard to determine the interactions of a TF

and all its potential binding regions on genomic sequences. However, ChIP-Seq ex-

periments usually require reagents and materials that are infeasible to acquire, such

8

as antibodies targeting specific TF of interest. Thus, predictions of potential binding

sites through computational methods are considered as alternative solutions. Also,

the prediction of binding sites of TFs would facilitate many biological studies by

providing resources as reference for experimental validation.

Many algorithms have been developed to infer the potential binding sites of dif-

ferent TFs, including hidden Markov models [7, 8], hierarchical mixture models [9],

support vector machines [10, 11], discriminative maximum conditional likelihood [12]

and random forest [47, 48]. These methods usually rely on prior knowledge about

sequence preference, such as position weight matrix [48]. However, these features may

be less reliable if they are generated from inference based methods (such as de-novo

motif discovery) when no prior knowledge is available [12].

More recently, methods based on deep neural networks (DNNs), such as DeepBind

[13], TFImpute [14], and DeepSEA [15], have shown performances superior to tradi-

tional models. Compared with the conventional methods, deep learning models have

their advantages at learning high-level features from data with huge sizes. This prop-

erty makes them ideal for the binding site prediction task since a genome-wide binding

profile of a TF can be generated from each ChIP-Seq experiment. Unlike many ex-

isting models that rely on the quality of the input data and labor-intensive feature

engineering, deep learning requires less domain knowledge or data pre-processing and

is more powerful when there is little or no prior knowledge of potential binding re-

gions. Current studies in the protein binding site prediction tasks usually involve the

combination of two deep learning architectures: convolutional neural networks (CNN)

and recurrent neural networks (RNN). The convolutional layer has the potential to

extract local features from different genomic signals and regions [49], while the recur-

rent layer is better at utilizing useful information across the entire sequences of data.

Several popular methods for binding prediction, such as DanQ [16], DeeperBind [17],

and FactorNet [18], are built on such model architecture.

9

Recently, the concept of attention mechanism has achieved great success in neu-

ral machine translation [50] and sentiment analysis [19]. It enhances the ability of

DNNs by focusing on the information that is highly valuable to successful prediction.

Combining with RNNs, it allows models to learn the high-level representations of in-

put sequences with long-range dependencies. For example, long short-term memory

(LSTM) models with attention mechanism have been proposed in relation classifi-

cation [20] and sentence compression [51]. Because of the input context similarities

between language processing (sentences) and the DNA binding site prediction (se-

quences and results from massively parallel sequencing), similar approaches can be

applied improve the performance of existing methods [52, 53, 54].

Interrogating the input–output relationships for complex models is another im-

portant task in machine learning. The weights of a deep neural network are usually

difficult to interpret directly due to their redundancy and nonlinear relationship with

the output. Saliency maps and feature importance scores are conventional approaches

for model interpretation in machine learning involving genomics data [55]. With the

application of attention mechanism, we are also interested in testing its ability to

enhance the interpretability of existing CNN-RNN architecture models.

In this paper, we develop a TF binding prediction tool (DeepGRN) that is based on

deep learning with attention mechanism. The experimental results demonstrate that

our approach is competitive among the current state-of-the-art methods. Also, our

work can be extended to explain the input–output relationships through the learning

process. We show that the utilization of informative patterns in both DNase-Seq and

DNA sequences is important for accurate prediction.

10

2.3 Materials and Methods

2.3.1 Datasets from ENCODE-DREAM challenge

The datasets used for model training and benchmarking are from the 2016 ENCODE-

DREAM in vivo Transcription Factor Binding Site Prediction Challenge with Synapse

ID: SYN6131484.

For all TF and cell-types provided in the challenge datasets, the label of the

binding status of the TFs is generated from ChIP-Seq experiments and used as ground

truth. Chromatin accessibility information (DNase-Seq data), and RNA-Seq data are

provided as input features for model training.

For model training, we follow the rules and restrictions of the DREAM challenge:

the models are trained on all chromosomes except 1, 8, and 21, and chromosome 11

is used as validation. The model with the best performance in validation data is used

for final prediction if no “leaderboard” dataset is provided by the challenge. The

leaderboard data are available for some TFs for benchmarking, and each participant

can test the performance on these TFs with up to ten submissions. Thus, if such data

are provided, we pick the top 10 best models from the first step as an optional model

selection step. The final performance of our models is reported based on the final test

data that are used to determine the rank of the submissions in the challenge, and is

described in the Table 2.1, 2.2 and Figure 2.1.

We use the similar organization of input features introduced by FactorNet: DNA

Primary sequence, Chromatin accessibility information (DNase-Seq data) are trans-

formed into sequential features and become the input of the convolution layers at

the first part of the models. Gene expression and annotations are transformed into

non-sequential features and feed into the intermediate dense layers of the model.

We also collected DNase and ChIP profiles for additional cell lines from the En-

code Project (https://www.encodeproject.org) and Roadmap Epigenomics databases
11

Figure 2.1: The training, hyperparameter tuning, and testing procedure used through-
out the Challenge dataset. The models are trained on the data split described in the
methods section. If the leaderboard data is available for a TF, then an additional
model selection is performed. The final performance evaluation in this study is per-
formed in the dataset for final ranking determination in the challenge. The models
are first trained without epigenomic/conservation scores and external datasets. After
training, additional models using epigenomic or conservation score trained using the
same configuration as the final model of each TF on all training data. Thus, for each
TF there are 6 models in total: pair, single, pair+epigenomic, single+epigenomic,
pair+conservation, single+conservation. The results are the combination of two ba-
sic models and additional models with auPRC in validation data higher than either
of the base models while the downstream analysis are based on two base models.

TF Training Cell types
CTCF A549, H1-hESC, HeLa-S3, HepG2, IMR90, K562, MCF-7, GM23338*, HL-60*
E2F1 GM12878, HeLa-S3
EGR1 GM12878, H1-hESC, HCT116, MCF-7
FOXA1 HepG2
FOXA2 HepG2
GABPA GM12878, H1-hESC, HeLa-S3, HepG2, MCF-7, HL-60*
HNF4A HepG2
JUND HCT116, HeLa-S3, HepG2, K562, MCF-7
MAX A549, GM12878, H1-hESC, HCT116, HeLa-S3, HepG2, K562, NB4*

NANOG H1-hESC, GM23338*
REST H1-hESC, HeLa-S3, HepG2, MCF-7, Panc1
TAF1 GM12878, H1-hESC, HeLa-S3, K562, GM12891*

Table 2.1: The cell types used for training

12

TF Optional Model Tuning Evaluation
CTCF GM12878 PC-3, iPSC
E2F1 K562
EGR1 K562 liver

FOXA1 MCF-7 liver
FOXA2 liver
GABPA K562 liver
HNF4A liver
JUND H1-hESC liver
MAX MCF-7 liver

NANOG iPSC
REST K562 liver
TAF1 HepG2 liver

Table 2.2: The cell types used for optional model tuning and evaluation

(http://www.roadmapepigenomics.org/data/) to improve the capability of general-

ization of our model. The performance of models trained with and without external

datasets are evaluated separately.

2.3.2 Transcription factor binding data

Transcription factor binding data from ChIP-Seq experiments is the target for our

prediction. The whole genome is divided into bins of 200 bp with a sliding step size

of 50 bp (i.e., 250-450 bp, 300-500 bp). Each bin falls into one of the three types:

bound, unbound, or ambiguous, which is determined from the ChIP-Seq results. Bins

overlapping with peaks and passing the Irreproducible Discovery Rate (IDR) check

with a threshold of 5% [56] are labeled as bound. Bins that overlap with peaks but

fail to pass the reproducibility threshold are labeled as ambiguous. All other bins are

labeled as unbound. We do not use any ambiguous bins during the training or vali-

dation process according to the common practice. Therefore, each bin in the genomic

sequence will either be a positive site (bounded) or a negative site (unbounded).

13

2.3.3 DNA primary sequence

Human genome release hg19/GRCh37 is used as the reference genome. In concor-

dance with the common practice of algorithms that perform feature extraction from

chromatin profile, such as FactorNet [18], DeepSea [15], and DanQ [16], we expand

each bin by 400 bp in both upstream and downstream, resulting in a 1000 bp in-

put region. In addition, we have evaluated the performance of different selections

of input ranges and showed that range above 600 bp is sufficient to acquire stable

prediction performance as shown in Figure 2.2. The sequence of this region is rep-

resented by a 1000 × 4 bit matrix by 1-hot encoding, with each row represented a

nucleotide. Since low mappability sequences may introduce bias in parallel sequenc-

ing experiments, sequence uniqueness (also known as ”mappability”) is closely related

to the quality of sequencing data [57]. Thus, we select Duke 35 bp uniqueness score

(https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability) as an

extra feature. Scores ranging from 0 to 1 are assigned to each position as the inverse of

occurrences of a sequence with the exceptions that the scores of unique sequences are

1 and scores of sequences occurring more than four times are 0 [58]. As a result, the

sequence uniqueness is represented by a 1000× 1 vector for each input bin. The EN-

CODE Project Consortium has provided a blacklist of genomic regions that produce

artifact signals in NGS experiments [59]. We exclude input bins overlapping with

these regions from training data and set their prediction scores to 0 automatically if

they are in target regions of prediction.

2.3.4 DNase-Seq data

Chromatin accessibility refers to the accessibility of regions on a chromosome and is

highly correlated with TF binding events [9]. DNase-Seq experiment can be used to

obtain genome-wide maps of chromatin accessibility information as chromatin accessi-

14

Figure 2.2: Performance of DeepGRN with different selections of input ranges.

ble regions are usually more sensitive to the endonuclease DNase-I than non-accessible

regions [60]. DNase-Seq results for all cell-types are provided in the Challenge datasets

in the BigWig format. Normalized 1× coverage score is generated from the BAM files

using deepTools [61] with bin size = 1 and is represented by a 1000 × 1 vector for

each input bin.

2.3.5 Gene expression and annotation

The annotation feature for each bin is encoded as a binary vector of length 6, with

each value represent if there is an overlap between the input bin and each of the

six genomic features (coding regions, intron, promoter, 5’/3’-UTR, and CpG is-

land). We also include RNA-Seq data since they can be used to characterize the

differences in gene expression levels among different cell-types. Principal Compo-

nent Analysis (PCA) is performed on the Transcripts per Million (TPM) normalized

counts from RNA-Seq data of all cell-types provided by the Challenge. The first

15

eight principal components of a cell-type are used as expression scores for all in-

puts from that cell-type, generating a vector of length 8. The processed data files

for these features are provided in the FactorNet Repository (https://github.com/uci-

cbcl/FactorNet/tree/master/resources). These non-sequential features are fused into

the first dense layer in the model.

2.3.6 PhastCons genome conservation tracks

We use the 100-way PhastCons conservation tracks [62] as a feature for additional

models. The PhastCons scores are represented as base-by-base conservation scores

generated from multiple alignments of 99 vertebrates to the human genome. Con-

served elements along the genome are recognized from phylogenetic models, and the

conservation score for each base is computed as the probability that it locates in such

conserved regions. For each input bin, the PhastCons scores are represented as a

vector of 1000 × 1 with a range from 0 to 1.

2.3.7 CpG island feature profiling

We use the CGI score derived from Mocap [63] to profile the epigenomic environment

for each input region. The CGI score can be calculated as:

CGI (NCpG, NC , NG, L) =

 1 if
NCpGL

((NC+NG)/2)2
> 0.6 and NC+NG

L
> 0.5

0 otherwise
(2.1)

For each input bin, the CGI scores are represented as a vector of 1000×1 with binary

values of 0 or 1.

16

2.3.8 Deep neural network models with attention modules

The shape of each sequential input is L × (4 + 1 + 1) for each region with length

L after combining all sequential features (DNA sequence, sequence uniqueness, and

Chromatin accessibility). Sequential inputs are generated for both the forward strand

and the reverse complement strand. The weights in all layers of the model are shared

between both inputs to form a “Siamese” architecture [18, 14, 64]. Vectors of non-

sequential features from gene expression data and genomic annotations are fused into

the model at the first dense layer. The overall architecture of our model is shown in

Figure 2.3. The model is built with two major modules: single attention and pairwise

attention. They use the same input and architecture except for their internal attention

mechanism. The final result of our model is the average of the output of two modules.

Preprocessing layers

The first part of our model is a 1D convolutional layer, which is a common practice

for feature extraction in deep learning models involving genomics data [13, 18]. We

use Bidirectional Long Short-term Memory (Bi-LSTM) nodes as recurrent units in

our model. The computation steps in an LSTM unit can be written as:

ft = σ (Wf · [ht−1, xt] + bf) (2.2)

it = σ (Wi · [ht−1, xt] + bi) (2.3)

C̃t = tanh (WC · [ht−1, xt] + bC) (2.4)

C̃t = ft ∗ Ct−1 + it ∗ C̃t (2.5)

ot = σ (Wo · [ht−1, xt] + bo) (2.6)

17

Average
Final output

…

Additional
feature

⊗

……

…

Reverse
complement output

Merge

Forward
output

Forward inputs

Reverse
complement inputs

…

Convolutional 1D

(batch_size,L,6)

(L, d)

(batch_size,L,6)

…

…

0.0
1

0.0
2

0.2

Attention
representation

Attention
weights

Attention
output

(L, 2d)

(L, d_att)

Bidirectional
LSTM

(L, 2d)

0.1

0.2

0.2
…
0.3

SoftMax

element-wise
multiplication

Single attention module

Forward inputs
…

Convolutional 1D

(batch_size,L,6)

(L, d)

(batch_size,L,6)

…

…

Query

(L, d_k)

Bidirectional
LSTM

(L, 2d)
Positional
encoding

Q

K

V

Key

Value

(L, d_k)

(L, d_v)

(L, L)

Q X t(K) (L, d_v)

…

Additional
feature

……

…

Reverse
complement output

Merge

Forward
output

Attention
output

Flatten

Pairwise attention module

Reverse
complement inputs

Figure 2.3: The general framework of the two attention modules of DeepGRN. The
diagram of the deep neural network architecture. Convolutional and bidirectional
LSTM layers use both forward and reverse complement features as inputs. In the sin-
gle attention module, attention weights are computed from hidden outputs of LSTM
and are used to generate the weighted representation through an element-wise multi-
plication. In the pairwise attention module, three components: Q(query), K(key), and
V(value) are computed from LSTM output. The multiplication of Q and transpose
of K are used to calculate the attention weights for each position of V. The multi-
plication of V and attention scores is the output of the pairwise attention module.
Outputs from attention layers are flattened and fused with non-sequential features
(genomic annotation and gene expression). The final score is computed through dense
layers with sigmoid activation and merging of both forward and reverse complement
inputs. The dimensions of each layer are shown beside each component

18

ht = ot ∗ tanh
(
C̃t

)
(2.7)

where ft, it, and ot are the forget gate, input gate, and output gate. ht−1 and ht

are the hidden state vectors at position t− 1 and t. xt is the input vector at position

t. [ht−1,xt] stands for vector concatenation operation. Ct−1, C̃t and Ct are output cell

state at position t− 1, new cell state at position t, and output cell state at position t,

respectively. Wf , Wi, WC , and Wo are learned weight matrices. bf , bi, bC , and bo are

learned bias vector parameters for each gate. σ and tanh are sigmoid function and

hyperbolic tangent function, respectively.

In Bi-LSTM layers, two copies of the inputs of LSTM are rearranged into two

directions: one for the forward direction and one for the backward direction, and they

go into the LSTM unit separately. The outputs from two directions are concatenated

at the last dimension. Thus, the last dimension of the Bi-LSTM output is two times

of the last dimension of the input.

Single attention

In the single attention module, suppose its input vector h has shape l by r, we first

computed the unnormalized attention score e = M × h where M is a weight matrix

with shape l by l, and e has shape l by r. A learned bias of shape l by r is added to

e after the multiplication. This can be summarized as a dense layer operation fatt,r

on input h. Then, we apply the Softmax function along the first dimension of e in

order to get the normalized attention score α. Finally, the weighted output Z will be

computed based on the attention weight α. At dimension r of input h, these steps

can be written as follows:

er = fatt,r (h1,r, h2,r, ..., hN,r) (2.8)

19

αi,r = exp (ei,r) /
N∑
k=1

exp (ek,r) (2.9)

αi = (
R∑

r=1

αi,r)/D (2.10)

zi,r = hi,r∗αi (2.11)

Here, er is the unnormalized attention score at dimension r. Vector αi,r repre-

sents attention weight at dimension r of position i and is normalized by Softmax

function. The attention dimension r in our model will stay unchanged during the

transformations. The dimension of the attention weights can be reduced from N × r

to N × 1 by averaging at each position. The final output zi,r is computed based on

the corresponding attention score. After the attention layers, the prediction scores

are computed from dense layers with sigmoid activation function and merged from

both forward and reverse complement inputs.

Pairwise attention

In the pairwise attention module, there are three components: Q(query), K(key)

and V(value). Their values are computed from LSTM output from three different

trainable weight matrices. The dimension of the trained weights for Q, K and V

are l by dk, l by dk and l by dv where dk and dv are set as 64 as the default setup

described in [65]. The multiplication of Q and transpose of K are used to compute

the attention weights for each position of V after Softmax conversion and dimension

normalization. The multiplication of V and attention weights are the output of the

pairwise attention module. The output of the pairwise attention module is computed

as:

Z = Softmax

(
Q×KT

√
dk

)
× V (2.12)

20

Positional encodings

Since each position in the sequential features simultaneously flows through the pair-

wise attention module, the pairwise attention module itself is not able to sense the

position and order from the sequential input. To address this, we add the positional

encodings to the input of the pairwise attention. We expect this additional encoding

will enhance the ability of the model to make use of the order of the sequence. The

positional encodings have the same dimension d as the input of the pairwise attention

module. In this work, we choose different frequencies sine and cosine functions [65]

to encode the positional information:

PE(pos,2i) = sin
(
pos/100002i/d

)
(2.13)

PE(pos,2i+1) = cos
(
pos/100002i/d

)
(2.14)

where pos is the position in the sequential input, and i is the index of the last

dimension of the model. The resulting positional encodings vector is added to its

input. Through such encoding technique, the relative position information can be

learned by the model since for any fixed offset k, PEpos+k can be represented as

PE(pos,2i)cos
(
100002k/d

)
+PE(pos,2i+1)sin

(
100002k/d

)
, which is the linear combination

of PEpos. Similarly, this also applies to dimensions of 2i + 1 as well.

The single attention module is designed to represent the importance of different

regions along with the sequential input, while the pairwise attention module seeks to

attend the importance between each pair of positions across the sequential input. We

expect this difference in architecture will help to improve the learning ability of the

model in a complementary manner.

21

Convolution layers LSTM layers

Learning rate Layers Kernel Size Dimension Dropout rate Layers Dimension Dropout rate
0.01 0 15 64 0.1 1 32 0
0.001 1 20 128 0.5 2 64 0.1
0.0005 2 30 0.5
0.0001 34

Table 2.3: Hyperparameters selection for model training. Due to the limitation of
computing capacity 50 sets of the combination of these hyperparameters are sam-
pled without replacement for evaluating the configurations. The single and pairwise
modules always share the same configuration.

Training configurations

We tested different configurations for typical hyperparameters (learning rate, network

depth, dropout rates) and the hyperparameters specific to our model (the dimension

of attention weights, merging function the two output scores) during training. The

complete description of hyperparameters and their possible options are summarized

in Table 2.3. We train one model for each TF, resulting in 12 models in total. The

single and pairwise attention modules will always use the same configuration rather

than train separately.

There are 51,676,736 bins in total on training chromosomes in the labels, result-

ing in 51676736 × n potential training samples for each TF, where n is the number

of available cell-types for training. Due to limited computing capacity, we use the

iterative training process. During training, the training data is the mixture of all

positives (labeled as “B”) with downsampled negatives (labeled as “U”) [18]. In the

traditional model training in deep learning, all input data are used to update the

model weights exactly once for each epoch. However, this is not applicable in our

task since the negative samples (regions do not bind to TFs) are much more abun-

dant than the positive samples (regions bind to TFs), and use all negative samples

for training in one epoch is not practical since the number of them is extremely huge

(as they cover most of the human genome). Thus, in each epoch during model train-

ing, we first sample negative samples with numbers proportional to the number of
22

all positive samples, and combine these negative samples with all positive samples

for training. We will re-sample the negative bins and start another round of model

training (next epoch). To make the training process more effective, we use a different

strategy to generate positive training samples for transcription factors that have a

large number of positive labels (CTCF, FOXA1, HNF4A, MAX, REST and JUND).

For these TFs, we randomly sample a 200-bp region from each ChIP-Seq peak in

the narrow peak data as positive instances for training instead of using all positive

samples in each epoch. We use the Adam [66] optimizer with binary cross-entropy as

the loss function. The default number of epochs is set to 60, but the training will be

early stopped if there are no improvements in validation auPRC for five consecutive

epochs.

Attention weights and saliency scores

Both attention weights and saliency scores are compted from trained models of cor-

responding TFs. For saliency scores, the non-sequential input features are considered

as weights that are not trainable and only the partial derivative of output values to

the sequential features are computed using the tf.gradients() function in Tensorflow.

Since both attention weights and saliency scores are high dimensional vectors and

generally consist of only noisy values in many of their channels. We only use the

channel with the highest correlation with the fold change value for both attention

scores and saliency scores for a fair comparison of their correlation. For attention

scores, since it has a shorter length than the fold change and DNase values due to

the convolution layers in the model, we downsampled those longer sequences to fit

the length of the original input sequence in order to calculate the correlation.

23

TF Name Cell-type auROC auPRC
Recall at
50% FDR

Recall at
10% FDR

CTCF PC-3 0.987 0.767 0.766 0.603
CTCF iPSC 0.998 0.902 0.945 0.744
E2F1 K562 0.989 0.404 0.388 0.100
EGR1 liver 0.993 0.405 0.318 0.021
FOXA1 liver 0.985 0.546 0.584 0.164
FOXA2 liver 0.984 0.548 0.588 0.143
GABPA liver 0.991 0.516 0.488 0.154
HNF4A liver 0.971 0.636 0.700 0.263
JUND liver 0.983 0.535 0.585 0.027
MAX liver 0.990 0.425 0.349 0.004
NANOG iPSC 0.996 0.499 0.515 0.035
REST liver 0.986 0.482 0.527 0.030
TAF1 liver 0.989 0.424 0.393 0.000

Table 2.4: The performance of DeepGRN with four metrics used in the DREAM
Challenge.

2.4 Results

2.4.1 Overall benchmarking on evaluation data

We list the performance of our model as four metrics used in the DREAM Challenge

(Table 2.4) and compare them with the unified score from the top four teams in the

final leaderboard of the ENCODE-DREAM Challenge (Table 2.5). The unified score

for each TF and cell-type is based on the rank of each metric and is computed as:∑
ln (r/ (6)) where r is the rank of the method for one specific performance measure

(auROC, auPRC, Recall at 50% FDR and Recall at 10% FDR). Thus, smaller scores

indicate better performance. The TFs, chromosomes, and cell-types for evaluation

are the same as those used for the final rankings. DeepGRN typically achieves auROC

scores above 98% for most of the TF/cell type pairs, reaching as low as 97.1% for

HNF4A/liver. The scores of auPRC have a more extensive range of values, from

40.4% for E2F1/ K562 to 90.2% for CTCF/iPSC.

For each TF and cell-type combination, our attention model has better perfor-

24

TF cell Anchor FactorNet Cheburashka Catchitt DeepGRN

CTCF PC-3 0.67 0.17 0.83 0.5 0.33
CTCF iPSC 0.83 0.33 0.67 0.5 0.17
E2F1 K562 0.5 0.83 0.67 0.17 0.33
EGR1 liver 0.17 0.83 0.67 0.33 0.5
FOXA1 liver 0.67 0.33 0.83 0.5 0.17
FOXA2 liver 0.33 0.83 0.67 0.5 0.17
GABPA liver 0.33 0.83 0.67 0.5 0.17
HNF4A liver 0.67 0.33 0.83 0.5 0.17
JUND liver 0.17 0.83 0.67 0.5 0.33
MAX liver 0.17 0.83 0.33 0.67 0.5
NANOG iPSC 0.33 0.5 0.83 0.67 0.17
REST liver 0.67 0.33 0.83 0.5 0.17
TAF1 liver 0.17 0.5 0.67 0.33 0.83

Table 2.5: The unified scores of DeepGRN and the top four algorithms in the DREAM
Challenge.

mance on 69% (9/13) of the prediction targets than Anchor [67], 85% (11/13) than

FactorNet [18], 85% (11/13) than Cheburashka [12], and 77% (10/13) than Catchitt

[68]. Among all methods benchmarked, our method has the highest ranking in 7 out of

13 targets (CTCF/iPSC, FOXA1/liver, FOXA2/liver, GABPA/liver, HNF4A/liver,

NANOG/iPSC, and REST/liver), with the best average score (0.31) across all TF/

cell-types pairs (Table 2.5).

To precisely evaluate the capability of deepGRN under the restrictions of the EN-

CODE DREAM Challenge, we also compared the performance of deepGRN trained

using datasets provided by the challenge with four available features: Genomic se-

quence features, DNase-Seq and RNA-Seq data. The results are summarized in Table

2.6 and 2.7. DeepGRN still achieves the highest ranking in 6 out of 13 targets, with

the best average unified score (0.33) across all targets. We also compared our re-

sults with models without the attention component using the four challenge features.

We built these models using the same architecture as deepGRN models, except for

the attention component and trained them with the same hyperparameter selection

process. The results are shown in Figure 2.4. DeepGRN with attention mechanism
25

Figure 2.4: Comparision of the deep learning models with and without attention
mechanism.

outperforms the models without attention in 11 out of 13 targets by the auPRC

metric, with the largest difference from target REST (0.168).

2.4.2 Performance comparison between two attention mod-
ules

In addition to the comparisons with the top 4 methods in the challenge, we also

benchmarked the individual performance of the single and pairwise attention mod-

ules (Table 2.8, 2.9). In general, the results extracted from the single attention

module have similar performances. For all 13 TF and cell-type pairs, the single at-

tention module has higher auROC in 6 targets while the pairwise attention module

has higher auROC in 3 targets. The rest of the targets are tied. The final output of

the model is the ensemble of these two modules by averaging, and it outperforms any

of the individual attention modules in 10 of 13 targets (Table 2.4). The largest im-

26

TF Name Cell-type auROC auPRC
Recall at
50% FDR

Recall at
10% FDR

DeepGRN

CTCF PC-3 0.987 0.764 0.764 0.595 0.33
CTCF iPSC 0.998 0.891 0.93 0.733 0.17
E2F1 K562 0.989 0.376 0.338 0 0.33
EGR1 liver 0.993 0.404 0.307 0.019 0.5
FOXA1 liver 0.987 0.544 0.579 0.155 0.17
FOXA2 liver 0.985 0.539 0.573 0.117 0.17
GABPA liver 0.99 0.506 0.468 0.148 0.17
HNF4A liver 0.978 0.652 0.69 0.303 0.17
JUND liver 0.983 0.542 0.605 0.001 0.33
MAX liver 0.99 0.424 0.34 0.003 0.5
NANOG iPSC 0.989 0.347 0.314 0.003 0.17
REST liver 0.986 0.47 0.51 0.025 0.17
TAF1 liver 0.99 0.425 0.39 0 0.83

Table 2.6: The performance of DeepGRN trained with challenge datasets only with
four metrics used in the DREAM Challenge.

TF cell Anchor FactorNet Cheburashka Catchitt DeepGRN

CTCF PC-3 0.67 0.17 0.83 0.5 0.33
CTCF iPSC 0.83 0.33 0.67 0.5 0.17
E2F1 K562 0.33 0.83 0.67 0.17 0.5
EGR1 liver 0.17 0.83 0.67 0.33 0.5
FOXA1 liver 0.67 0.33 0.83 0.5 0.17
FOXA2 liver 0.33 0.83 0.67 0.5 0.17
GABPA liver 0.33 0.83 0.67 0.5 0.17
HNF4A liver 0.67 0.33 0.83 0.5 0.17
JUND liver 0.17 0.83 0.67 0.5 0.33
MAX liver 0.17 0.83 0.33 0.5 0.67
NANOG iPSC 0.17 0.5 0.83 0.67 0.33
REST liver 0.67 0.33 0.83 0.5 0.17
TAF1 liver 0.17 0.5 0.83 0.33 0.67

Table 2.7: The unified scores of DeepGRN trained with challenge datasets only and
the top four algorithms in the DREAM Challenge.

27

TF Name Cell type Single attention

auROC auPRC Re@0.50 FDR Re@0.10 FDR
CTCF PC-3 0.985 0.756 0.762 0.583
CTCF iPSC 0.998 0.883 0.923 0.712
E2F1 K562 0.99 0.375 0.378 0
EGR1 liver 0.992 0.396 0.309 0.026
FOXA1 liver 0.989 0.535 0.565 0.115
FOXA2 liver 0.986 0.504 0.527 0.052
GABPA liver 0.987 0.454 0.382 0.134
HNF4A liver 0.98 0.652 0.699 0.286
JUND liver 0.981 0.545 0.615 0.013
MAX liver 0.991 0.422 0.322 0.001
NANOG iPSC 0.99 0.343 0.292 0
REST liver 0.986 0.461 0.469 0.009
TAF1 liver 0.989 0.426 0.391 0

Table 2.8: Individual performance of single attention module.

provements from ensemble (as auPRC) come from FOXA2 (0.34), REST (0.09) and

FOXA1 (0.09). We also found that the performance of the two attention modules

have the same trend across all TF and cell-types in all four performance measures

(Figure 2.5), suggesting that the capability of learning from features are coherent

between the two modules.

We evaluated the importance of each feature between single and pairwise attention

mechanisms. For the prediction of each target, we set the values of each sequential fea-

ture (DNase-Seq, sequence, or uniqueness) to zero, or randomly switched the order of

the vector for a non-sequential feature (genomic elements or RNA-Seq). The decrease

of auPRC from these new predictions is used as the importance score of each feature

(Figure 2.6). We found that across all TF and cell-types, the sequential features have

the largest average importance scores: DNase-Seq (0.36), DNA sequence (0.21), and

35 bp uniqueness (0.21) while the scores for other features are much smaller. Similar

trends have also been found using individual single and pair attention modules.

28

Figure 2.5: Performance comparison between single and pairwise attention mecha-
nisms. The performance of each TF and cell-type pairs of the output of the individual
module are shown in four measures: (auROC, auPRC, recall at 50% FDR and Recall
at 10% FDR). ρ: Pearson Correlation Coefficient, σ: Spearman Correlation Coeffi-
cient

29

TF Name Cell type Pairwise attention

auROC auPRC Re@0.50 FDR Re@0.10 FDR
CTCF PC-3 0.989 0.763 0.76 0.59
CTCF iPSC 0.998 0.888 0.925 0.73
E2F1 K562 0.983 0.333 0.27 0
EGR1 liver 0.992 0.39 0.281 0.002
FOXA1 liver 0.98 0.511 0.53 0.152
FOXA2 liver 0.981 0.469 0.481 0.055
GABPA liver 0.99 0.511 0.479 0.135
HNF4A liver 0.973 0.636 0.679 0.273
JUND liver 0.982 0.502 0.557 0
MAX liver 0.988 0.414 0.326 0.003
NANOG iPSC 0.98 0.307 0.261 0.001
REST liver 0.984 0.433 0.376 0.028
TAF1 liver 0.989 0.416 0.361 0.002

Table 2.9: Individual performance of pairwise attention module.

Figure 2.6: Importance score of features between single and pairwise attention mech-
anisms. The values represented as the decrease of auPRC without using the specific
feature for prediction. The negative value represents an increase of auPRC.

30

2.4.3 Interpretation of attention scores

In the single attention module, the output is a weighted sum of the input from the

attention layer, and the attention scores are used as weights. These scores characterize

a unified mapping between the importance of input feature with its relative position

in the sequential input. To analyze the relationship between attention weights and the

position of TF binding events, we extract the attention scores from the single attention

module for both forward strand and reverse complement strand and compare them

with the corresponding normalized ChIP-Seq fold changes in the same region that

are predicted as positive (score > 0.5). Similarly, we computed the saliency scores for

the same input regions. We found that the attention scores on the two DNA strands

have a higher correlation (ρ = 0.90, σ = 0.79) than the saliency scores (ρ = 0.78, σ

= 0.51) (Figure 2.7a, b). Across all TF and cell-type pairs, we found that there is

a positive correlation between the attention weights and normalized ChIP-Seq Fold

(Figure 2.7c), and such relationship is not detected globally in saliency scores (Figure

2.7d). For all TF and cell-types in the benchmark datasets, we select at least four

different genomic regions that have a clear ChIP-Seq peak signal in each target for

demonstration. We show that the averaged attention weights put more focus on the

actual binding region for each cell-type and these focusing points shift along with the

shift of TF binding signals (Figure 2.8).

Since the accessibility of the genome plays an important role in TF binding, it

is expected to find high DNase coverage for those openly accessible areas that can

explain the binding event detected by the ChIP-Seq experiment. We run a genome-

wide analysis on regions with high DNase-Seq peaks in the single attention module

for transcription factor JUND, which is one of the most susceptible targets to DNase-

Seq. We illustrate the distribution of normalized DNase coverage values from both the

true positives that are false negatives without attention and true negatives that are

false positives without attention (Figure 2.9). The results show that the true positives
31

Figure 2.7: Analysis of attention weights and saliency scores. (a) Scatterplot of atten-
tion weights from positive strand and reverse strand. (b) Scatterplot of saliency scores
from positive strand and reverse strand. (c) Scatterplot of ChIP-Seq fold change and
mean attention weights from both strands. Z-score transformation is applied to both
axes. (d) Distribution of the correlation between attention weights/saliency scores
and ChIP-Seq fold change. The dashed line represents the mean of each group. The
p-value is calculated using the Wilcoxon signed-rank test. The attention weights and
saliency scores on the reverse complement strand are reversed before plotting. ρ:
Spearman Correlation Coefficient, σ: Pearson Correlation Coefficient. The correla-
tion between normalized ChIP-Seq Fold change and normalized saliency scores is 0.40
(Spearman) and 0.49 (Pearson)

32

Figure 2.8: For each genomic region, the figure on the left represents the attention
weights and the figure on the right represents the enrichment of fold changes in ChIP-
seq BigWig file in the same region. Since the lengths of attention weights are reduced
by the convolution and pooling layers, their lengths are less than the fold change
values. Thus, the plots are aligned on the X-axis to represent the relative position of
fold change and averaged attention weights. The attention scores are extracted from
both single and pairwise models. For single module, the dimension of attention scores
is L×dmodel channel that contains the highest attention weight is used. Similarly, for
pairwise module, the dimension of attention scores is L×L, and the row sum of these
weights are always 1. As a result, we use the row that contains the highest attention
weight.

33

Figure 2.9: Distribution of average normalized DNase coverage values of different
regions with the inputs of JUND. The predictions from both models with and without
attention from our training are evaluated by the true positive labels. Then the average
normalized DNase coverage is calculated based on bins classified differently by the
two models.

that are only recognized by attention models generally have a smaller DNase coverage

than those recognized by both models. This observation indicates that the predictive

improvements of attention models may result from focusing on more informative

DNase-Seq coverage values while ignoring irrelevant regions in negative samples.

2.4.4 Motif detection over high attention scores regions

For those positive samples without distinct DNase-Seq peaks, the patterns of genomic

sequences are critical information for successful prediction. To test the ability of at-

tention weights to recognize motifs that contribute to binding events from the genomic

sequences, we use an approach similar to DeepBind [13]. For the model trained for

each TF, we first acquire the coordinates on the relative positions of maximum col-

umn sum of the attention weights from all positive bins in test datasets and extract a

subsequence with a length of 20 bp around each coordinate. To exclude samples that

can be easily classified from patterns of DNase-Seq signal, we only select positive bins
34

that have no significant coverage peaks (ratio between the highest score and average

scores < 15). Then we run FIMO [69] to detect known motifs relevant to the TF of the

model in the JASPAR database [70]. From the extracted subsequences, we discover

motif MA0139.1 (CTCF) in the prediction for CTCF/induced pluripotent cell and

MA0148.4 (FOXA1) in the prediction for FOXA1/liver cell. Figure 7a and b show

the comparison between the sequence logo of the motif rebuilt from the subsequences

and the actual known motifs. We also plot the attention scores of the samples that

contain these subsequences (Figure 2.10c, f) and the relative location of the regions

with detected motifs in FIMO (Figure 2.10d, g). Furthermore, we show that these

maximum attention weights do not come from the DNase-Seq peaks near the motif

regions by coincidence since no similar pattern is detected from the normalized DNase

scores in the same regions (Figure 2.10e, h). We illustrate the similar trends found

in the single attention module in Figure 2.11.

2.5 Conclusions

In this study, we propose a new tool (DeepGRN) that incorporates the attention

mechanism with the CNNs-RNNs based architecture. The result shows that the per-

formances of our models are competitive with the top 4 methods in the Challenge

leaderboard. We demonstrate that the attention modules in our model help to inter-

pret how critical patterns from different types of input features are recognized. The

usage of DeepGRN are described in Appendix A.

The attention mechanism is attractive in various machine learning studies and

has achieved superior performance in image caption generation and natural language

processing tasks [65, 71]. Recurrent neural network models with attention mechanism

are particularly good at tasks with long-range dependency in input data. Inspired by

these works, we introduce the attention mechanism to DNN models for TF binding

35

Figure 2.10: Comparisons of known motifs and matching motifs learned by pairwise
attention module in CTCF and FOXA1. (a) Sequence logo built from subsequences
detected in CTCF/induced pluripotent cell prediction (left) and motif MA0139.1/
CTCF (right). (b) The attention scores of the samples selected from CTCF/induced
pluripotent cell prediction with hits of MA0139.1/ CTCF in FIMO. (c)The relative
positions of the detected motifs in the same region of (b). (d) The normalized DNase-
Seq scores in the same region of (b). (e) Sequence logo built from subsequences
detected in FOXA1/liver cell prediction (left) and motif MA0148.4/ FOXA1 (right).
(f) The attention scores of the samples selected from FOXA1/liver cell prediction
with hits of MA0148.4/ FOXA1 in FIMO. (g) The relative positions of the detected
motifs in the same region of (f). (h) The normalized DNase-Seq scores in the same
region of (f)

36

Figure 2.11: Comparisons of known motifs and matching motifs learned by pairwise
attention module in CTCF and FOXA1. (a) Sequence logo built from subsequences
detected in CTCF/induced pluripotent cell prediction (left) and motif MA0139.1/
CTCF (right). (b) The attention scores of the samples selected from CTCF/induced
pluripotent cell prediction with hits of MA0139.1/ CTCF in FIMO. (c)The relative
positions of the detected motifs in the same region of (b). (d) The normalized DNase-
Seq scores in the same region of (b). (e) Sequence logo built from subsequences
detected in FOXA1/liver cell prediction (left) and motif MA0148.4/ FOXA1 (right).
(f) The attention scores of the samples selected from FOXA1/liver cell prediction
with hits of MA0148.4/ FOXA1 in FIMO. (g) The relative positions of the detected
motifs in the same region of (f). (h) The normalized DNase-Seq scores in the same
region of (f)

37

site prediction.

The benchmark result using ENCODE-DREAM Challenge datasets shows that

the performances of our model are competitive with the current state-of-the-art meth-

ods. It is worth mentioning that the DNase-Seq scores are the most critical feature in

the attention mechanism from our experiments according to the feature importance

analysis. Many prediction tools for binding site prediction before the challenge, such

as DeepBind or TFImpute, are not able to utilize the DNase-Seq data and are not as

suitable as the four methods that we used for benchmarking in this study. However,

the methods we benchmarked in this study share the similar concepts with these

existing tools (For example, FactorNet is built with similar architecture as the TFIm-

pute with additional support for the DNase-Seq data) and may reflect the potential

of them using the same set of features.

The attention weights learned by the models provide an alternative approach to

exploring the dependencies between input and output other than saliency maps. By

comparing true ChIP-Seq fold change peaks with attention weights, we show how

attention weights shift when the fold change peaks move along the DNA sequence.

We also demonstrate that our attention model has the ability to learn from known

motifs related to specific TFs.

Due to the rules of the DREAM Challenge, we only use very limited types of

features in this work. However, if more types of features (such as sequence conser-

vation or epigenetic modifications) are available, they can possibly be transformed

into sequential formats and may further improve the prediction performance through

our attention architecture. The attention mechanism itself is also evolving rapidly.

For example, the multi-head attention introduced by Transformer [65] showed that

high-level features could be learned by attention without relying on any recurrent or

convolution layers. We expect that better prediction for the TF binding may also be

benefited from these novel deep learning architectures in both accuracy and efficacy.

38

Chapter 3

GNET2: an R package for
constructing gene regulatory
networks from transcriptomic data

3.1 Abstract

The GNET software is designed to build the gene regulatory network from transcrip-

tomics gene expression profiles. It reconstructs gene regulatory modules consisting of

transcription factors and their target genes based on a probabilistic graphical model.

The data preprocessing, model construction, and visualization function modules for

the original GNET software are developed on different programming platforms, which

makes it inconvenient for application. Also, its interface of data exchange between

different modules relies on constantly saving and loading from disk storage, resulting

in low-performance efficiency. These issues motivate us to develop a fully integrated

and automated framework with better performance and operability.

In this chapter, we present the new implementation of GNET2 as an integrated

R package. It achieves a significant improvement in computational performance over

the previous version. Also, the new implementation provides more flexibility for
39

parameter initialization and regulatory module construction while preserving the core

iterative modeling process of the original algorithm. The data exchange interface of

the package is now all handled within an R session, with little intervention required

during the analysis process. Given the growing demand for regulatory network module

inference methods from transcriptome data, GNET2 provides a convenient option for

gene regulatory network inference in large datasets. The source code of GNET2 is

available at https://github.com/jianlin-cheng/GNET2.

3.2 Introduction

Understanding the interactions between transcription factors (TFs) and their target

genes is a crucial step to reconstruct the gene regulatory networks (GRNs) system-

atically. Currently, there are several common types of representation for GRNs. In

directed sparse graphs, all transcription factors and their targets are connected by

interaction edges [72]. In module networks, different sets of genes that are regu-

lated by a shared regulation program form different regulatory modules [73]. Many

algorithms have been implemented to infer GRNs from gene expression data, in-

cluding regression-based method [74, 75] and models based on information theoretic

framework [23, 24, 76]. The Gene Network Estimation Tool (GNET) [27, 28] is a

module-based network method for GRN reconstruction and has been applied to infer

the regulatory interactions among genes involved in various biological processes, such

as regulations of estrogens [29] and nodulation [27]. With the recent development

of Next-Generation Sequencing technologies, transcriptomics gene expression data

become much feasible to acquire. The growing need for the downstream analysis of

transcriptomics data demands more efficient and accurate tools for GRN construction.

In this work, we introduce a new implementation of the GNET algorithm as

an R package. Furthermore, we add support for a gradient boosting based module

40

initialization, as a complement to the previous K-means version. We benchmark

the performance of the new implementation (GNET2) together with the previous

version of GNET on a large Aneuploidy Arabidopsis RNA-Seq datasets. We developed

the scoring and visualization of network confidence based on the coherence among

different experiment conditions, which allow users to acquire more accurate results

from customized data.

3.3 Materials and Methods

In GNET2, a gene regulatory module consists of two components: a regulatory tree

built from the gene expression profiles and a set of target genes regulated by the tree.

The regulatory tree is a binary decision tree with each internal node representing

a regulator (i.e. transcription factor). Different samples from the input data are

divided into different branches based on the expression levels of the regulators in the

tree nodes. Target genes in samples assigned to the same leaf node are expected to

share the similar regulatory pattern and are controlled by the regulators in the tree.

3.3.1 Initialization based on gradient boosting decision tree

To build the decision tree for each module, a subset of target genes is required to decide

the best split of the branches. The split with the highest increase in the maximum

likelihood estimation for the target genes is selected to be the next divide. Thus,

the initial clusters of genes need to be determined before the tree construction. The

gradient boosting decision tree(GBDT) approach initialization contains the following

steps: First, a GBDT model is constructed for every regulator using all genes other

than the regulators as predictors. Then we compute the fractional contribution of

each feature to the model based on the total gain (reduction of loss function) of

the splits of this predictor and use them as information gained from each predictor.
41

The contribution of each target gene to each regulator can be represented as a n

by p matrix where n is the number of all genes in the expression data expect the

regulators and p is the number of the regulators. Then we calculate the Euclidean

distances between each row of the contribution matrix and these distances are used to

group the target genes by K-means clustering. This approach is better at capturing

the interaction between the regulators and their targets than the original K-means

method, since the clustering is based on the similarities between the capabilities of

the expression of target genes to predict the expression of a regulator, rather than

the gene expression level itself.

We use R package XGBoost [77] to implement the GBDT-based initialization in

GNET2. During the initialization step, a GBDT model is constructed for each target

gene using the expression level of all regulatory genes as potential predictors. For a

target gene, suppose its expression level at condition i is yi, then the expression level

of all regulatory genes can be represented as a vector xi with length equal to the total

number of regulatory genes. The predict value of the GBDT model is computed as:

ŷi =
K∑
k=1

fk (xi) (3.1)

Here fk ∈ F , is one configuration from the space of all regression trees and K is

the total number of trees in the model. Suppose l (yi, ŷi) is the loss function between

true expression yi and predicted value ŷi and Ω (fk) is the regularization function to

penalize the complexity of tree fk, then the objective function for all n conditions can

be written as:

Obj =
n∑

i=1

l (yi, ŷi) +
K∑
k=1

Ω (fk) (3.2)

We define the regularization function Ω (fk) for a tree fk as:

Ω (fk) = γT +
1

2
λ

T∑
j=1

w2
j (3.3)

42

Here T is the total number of leaves for all trees in the model, wj is the value of

leaf j. γ and λ are predefined coefficients.

At the first step, a tree that gives constant (e.g., 0.5) prediction values is used as

the first tree. During each iteration, a new tree is trained and added to the model.

Since ŷi =
∑K

k=1 fk (xi) , so at step t we have:

ŷi
(0) = 0ŷi

(t) = ŷi
(t−1) + ft (xi) (3.4)

We use the square loss for the regression trees, and the objective function at step

t can be rewritten as:

Obj =
n∑

i=1

[(
ŷi

(t) − yi

)2
]

+ Ω (ft) + constant (3.5)

Here, the constant is the regularization penalty for all trees before t, which is

independent of tree ft. If we define a single term in the beginning summation part of

the objective function as a function of ŷi
(t), it will become:

Fi

(
ŷi

(t)
)

=
(
ŷi

(t) − yi

)2

(3.6)

It can be approximated as the second-order Tyler expansion near Fi

(
ŷi

(t−1)
)

Fi

(
ŷi

(t)
)

= Fi

(
ŷi

(t−1) + ft (xi)
)
∼= Fi

(
ŷi

(t−1)
)

+Fi
′
(
ŷi

(t−1)
)
ft (xi)+

Fi
′′
(
ŷi

(t−1)
)

2!
ft

2 (xi)

(3.7)

Let gi = Fi
′
(
ŷi

(t−1)
)

= 2
(
ŷi

(t−1) − yi

)
, hi = Fi

′′
(
ŷi

(t−1)
)

= 2. Since Fi

(
ŷi

(t−1)
)

is independent of tree ft and can be treated as a constant, then the objective function

at step t can be approximated as:

Obj (t) ∼=
n∑

i=1

(
gift (xi) +

1

2
hif

2
t (xi)

)
+ Ω (ft) + constant (3.8)

43

=
n∑

i=1

(
gift (xi) +

1

2
hif

2
t (xi)

)
+γT+

1

2
λ

T∑
j=1

w2
j +constant (3.9)

=
T∑

j=1

∑
i∈Ij

gi

wj +
1

2

∑
i∈Ij

hi + λ

w2
j

+γT+constant (3.10)

Here, Ij is the indicator if a gene has been assigned to leaf j. Let Gj =
∑

i∈Ij gi

, Hj =
∑

i∈Ij hi, we can find the wj that minimize the objective function by letting

the partial derivative ∂Obj
∂wj

= 0:

Obj (t) =
T∑

j=1

[
Gjwj +

1

2
(Hj + λ)w2

j

]
+ γT + constant (3.11)

w∗
j = argmax Obj (t) = − Gj

Hj + λ
(3.12)

Obj (t) = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT + constant (3.13)

When growing a tree, the algorithm performs a linear scan on the sorted expres-

sion values of each condition for every regulatory gene. The best split/feature is

determined by the split that brings the largest reduction of loss when adding that

split to the tree:

Gain =
G2

L

HL + λ
+

G2
R

HR + λ
− (GL + GR)2

HL + HR + λ
(3.14)

Here L,R represent the left and right leaf, respectively. For target gene i, the

importance score is represented as the fractional contribution of the regulatory genes

to the model based on the total gain from all splits with this regulatory gene. Thus,

the importance score for all target genes can be represented as a n by p matrix where

n is the number of target genes, and p is the number of regulator genes. These

scores are then used for determining the initial clustering of the target genes through

K-means clustering.

44

3.3.2 Iterative module inference process

After assigning the genes to different modules, an iterative gene regulatory tree infer-

ence and target gene re-assignment process are performed to construct the regulatory

tree and update the target genes for each regulatory module. Figure 3.1a and b

illustrates one regulatory module obtained by GNET2.

Acquiring potential upstream regulators

GNET2 requires a list of regulatory genes to infer the regulatory pattern from gene

expression profile. In our analysis on the Aneuploidy Arabidopsis RNA-Seq dataset,

the regulatory genes are obtained from the transcription factors (TFs) curated in the

PlantTFDB database [78]. For most common organisms, the currently identified tran-

scription factors can be acquired in publicly available databases. For example, the An-

imalTFDB [79] contains 80,060 TFs genes from 97 animal genomes. The PlantTFDB

4.0 contains 320,370 TFs from 165 species. If no available information about TF genes

for the input gene expression dataset, the regulatory genes can be inferred from soft-

ware that identifies transcription factors. For example, the binding analysis for regula-

tion of transcription (BART) (https://faculty.virginia.edu/zanglab/bart/index.htm)

can identify TFs whose genomic binding profile correlates with a query cis-regulatory

profile derived from ChIP-seq datasets available in the public domain [80].

Gene regulatory tree inference

The expression level of each regulator gene is assigned into three categories (low,

neutral, and high). Whenever a new split is going to be added into the regulatory

tree, we tested the two possible splits (low+neutral vs. high, or low vs. neutral+high)

for all remaining regulator genes. The Maximum Likelihood Estimation to estimate

parameters of a Gaussian distribution for each possible split is computed for both left

45

Figure 3.1: Illustration of the results generated by GNET2. (a) One of the regula-
tory modules generated from the Arabidopsis dataset. The top color bars indicate
how samples are separated according to the expression levels of the regulators. The
heatmap indicates the expression pattern for the target genes in the module. The
bottom color bar indicates the groups of samples that are in the same leaf node of the
regulatory tree. (b) Plot of the regulatory tree shown in (a). The unit of numbers in
the figure is log2 RPKM

46

and right child nodes and the parent node, which can be computed as:

Lm (IL, IR) =
N∑

n=1

(l (gn, IL) + l (gn, IR) − l (gn, IL+R)) (3.15)

Here N is the number of genes that belong to module m. IL, IR are the indicators

for conditions that belong to the left and right of the split. l (gn, I) is the sum of

Gaussian log-likelihood for gene n of conditions in I, and can be computed as:

l (gn, I) =
∑
i∈I

(−(gn,i − µn,I)
2

2πσ2
n,I

− ln
√

2πσn,I) (3.16)

Here µn,I and σn,I are the mean and standard deviation for expression the level

of gn in all conditions in I. The regulator gene that has the highest likelihood gain

will be chosen for the cutoff for the next split. The tree will keep splitting until the

numbers of conditions in all leaf nodes are smaller than 3, or the predefined maximum

depth of the regulatory tree is reached.

Target genes re-assignment

After a gene regulatory tree is built for every target gene group, a gene re-assignment

procedure is performed to assign all target genes into different groups based on the up-

dated regulatory tree of the group. The Gaussian log-likelihood is used to determine

the best group for each target gene.

ScoreT (g) =
L∑
l=1

∑
i∈I

−(gi − µL)2

2πσ2
L

− ln
√

2πσL (3.17)

Where L is the number of leaf nodes for regulatory tree T, I is the indicator for

conditions that belong to leaf n. gi is the gene expression level under condition i. µL

and σL are the mean and standard deviation for the gene expression levels belong

to leaf node l, respectively. Each gene is then assigned to the regulatory tree that

47

gives the highest likelihood score. The process of gene regulatory tree inference and

target genes re-assignment above is performed iteratively until the assignment of

genes remains unchanged for two consecutive iterations, or the maximum number of

iterations has been reached.

Missing values imputation

When missing values are present in the input data, we recommend the users to ap-

ply missing value imputation techniques before running GNET2. Common common

missing value imputation algorithms, such as k-nearest neighbors (KNN) [81] and

quantile regression imputation of left-censored data (QRILC) [82] can easily handle

data with larges sizes.

3.3.3 Module scoring functions

Module and interaction score evaluation

The quality of regulatory module is evaluated from the weighted average of within-

group correlations:

Qi =
1

N

M∑
m=1

nmpm (3.18)

Where Qi is the quality score for module i, N is the total number of conditions, M

is the total number of leaf nodes for module i, nm is the number of conditions that

belong to leaf node m, and pm is the average Pearson correlation coefficient between

every pair of conditions that belong to leaf node m. For the score of interactions

between regulatory gene i and target gene j, we define an empirical score as:

Pi,j = Qi − 2 ∗ max(0, ln (1 − pi,j
2)) (3.19)

48

Where pi,jis the Spearman correlation coefficient between the expression values of i

and j.

3.3.4 Incorporate experimental setup information

When additional information about samples is available (such as different experiment

conditions), GNET2 can utilize the information from user-defined sample labels to

measure the coherence between known sample information and the regulatory pat-

tern in prediction. Suppose a gene expression dataset contains measurements from

multiple conditions, and the user is interested in discovering the change of regulatory

pattern caused by different experimental treatments. Since samples that are clustered

in the same leaf node of the regulatory tree are predicted to share the same regulatory

patterns, those modules that have a clustering of samples that shares a similar struc-

ture of the sample conditions are considered to be more relevant to the experimental

conditions. For example, modules with most biological replicates under the same leaf

node indicate high relevance between the changes in the expression level of regulators

and experimental conditions. Thus, we introduced the following two scoring functions

for in GNET2 to characterize the similarity between the clusters based on sample in-

formation and the clusters from each functional module. For both scoring functions,

higher scores indicate better coherence between known sample information and the

regulatory pattern in each module GNET2 predicted.

Categorical labels

For categorical labels, suppose there are n samples in the input, and they can be

grouped as X = X1, X2, . . . , Xr with each cluster Xi represents samples of the same

condition (e.g. replicates). If the regulatory tree for module m split the samples

into clusters Y = Y1, Y2, . . . , Yr with each cluster Yi represents samples in the same

49

leaf node. The similarity between sample information and regulatory patterns can be

characterized by the Adjusted Rand index (Rand, 1971).

Ordinal labels

For ordinal labels such as the dosage of drug intervention or different time points,

it is important to measure the pairwise distance between different labels as well as

the replicates proposed by the user. For example, suppose there are n samples in the

input, and they can be grouped as X = X1, X2, . . . , Xr where each label represents

a time point after some treatment. We expect the neighboring conditions of Xi (e.g.

Xi−1 and Xi+1) should have a higher similarity to Xi than other samples. In ad-

dition, we assume that replicates should always have the shortest distance between

each other, regardless of the type of experimental conditions. To acquire the sim-

ilarity between clusters and ordinal labels, we design a similarity score inspired by

the Stochastic Neighbor Embedding (SNE), which can be computed by the following

steps:

1. Rank the ordinal labels in sequential order, use the ranks as the numeric label

for each sample. The index of leaf nodes (from left to right) is used to represent the

clusters of under the same leaves in the regulatory tree of each module. The order of

labels is trivial since we are only interested in the relative pairwise distance between

samples.

2. Compute the Euclidean distance between samples using the ranks of the ordinal

labels, and the Euclidian distance between samples using the index of leaf nodes.

3. Convert the two distances with Gaussian Probability density. Suppose xij is

the distance between sample i and j, the normalized distance is computed as:

dij =
exp (−||xij||2/2σ2

i)∑
k ̸=i exp (−||xik||2/2σ2

i)
(3.20)

50

4. The Kullback–Leibler (K-L) divergence between the normalized distance com-

puted from ranks of the ordinal labels of the samples (pij) and the normalized dis-

tance computed from the index of leaf nodes of the samples (qij): KL(P ||Q) =∑
i ̸=j pijlog

pij
qij

. The final similarity score is defined as the negative z score normalized

K-L divergence.

3.3.5 Benchmark experiments setup

Synthetic transcriptional networks dataset

We benchmark the algorithms using synthetic transcriptional networks proposed by

the SynTReN (Synthetic Transcriptional Regulatory Networks) algorithm [83]. In

brief, network topologies are generated by selecting subnetworks from previously de-

scribed E. coli [84] and S. cerevisiae [85] regulatory networks with cluster addition

approach. Gene expression profile is then inferenced based on the interaction kinetics

are modeled by Michaelis-Menten and Hill kinetics. We use SynTReN to generate

networks consist of 100 genes and corresponding gene expression datasets with 100

experiments for both E. coli and S. cerevisiae with default parameters. The list of

genes that are external inputs to the network in SynTReN can be treated as regulatory

genes and the performance of the predictions are evaluated based on the interactions

between these regulatory genes and all other genes in the network.

Aneuploidy Arabidopsis RNA-Seq dataset

We benchmarked the performance of GNET2 in terms of speed and quality in the

Aneuploidy Arabidopsis RNA-Seq dataset (GSE79676) [86]. The details for sequenc-

ing, mapping and RPKM calculations are described in the “RNA-Seq Library Con-

struction” section of the paper (https://www.pnas.org/content/115/48/E11321). For

benchmarking purposes, we select genes with the top 20% highest variances, resulting

51

in a total of 6712 genes for regulatory module construction. We use a list of 342 tran-

scription factors that both exist in the filtered expression data and the list obtained

from PlantTFDB 4.0 [78] as input regulators.

Network inference algorithm in comparison

We select four popular network inference algorithm that are available as R package

in Bioconductor for performance comparison:

The Maximum Relevance/Minimum Redundancy network (MRNET) algorithm

[76] is a network inference strategy based on feature selection using the maximum

relevance/minimum redundancy approach. For gene i and its potential target j, this

algorithm aims to maximize the difference between the mutual information between

the two genes (maximum relevance) and the average mutual information with all

interactions previously introduced to gene i (minimum redundancy).

The Context Likelihood of Relatedness (CLR) algorithm [23] computes a modified

mutual information I(Xi;Xj) for each pair of genes and derives a score related to the

empirical distribution of the MI values. Both the sample mean and standard deviation

of the empirical distribution of the mutual information between all pair of genes.

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)

software [24] takes Data Processing Inequality into consideration during the network

pruning procedure. After the pairwise interaction score is retrieved from the mutual

information, the edge with lowest score of each triplet is interpreted as an indirect

interaction if its difference with the second largest interaction in the triplet is larger

than a threshold.

The GENIE3 (GEne Network Inference with Ensemble of trees) software [87], un-

like the three relevance network-based approach described above, perform variable

selection with ensembles of regression trees. In each of the regression tasks, the ex-

pression pattern of the target gene is predicted from the expression patterns of all the

52

other potential regulatory genes. The importance of each feature (regulatory gene)

is taken as an indication of a putative regulatory relation and is then aggregated

to generate a ranking of interactions for network reconstruction. The initial func-

tional group clustering with gradient boosting in GNET2 is inspired from this feature

selection strategy in GENIE3.

We use ROC (Receiver Operating Characteristic) curves to characterize the per-

formance of different algorithms. The ROC curve is the TPR (true positive rate) vs.

FPR (Number of false positives/Number of all positives) for a binary classifier system

along a series of thresholds. Points above the diagonal line represent predictions with

high TPR and low FPR, which indicate accurate classification results. Thus, the area

under the ROC curve (aucROC) can be used to access the overall quality of different

methods without setting a fixed cutoff. Better inference algorithms will have higher

the aucROC in general. A total random guess will have aucROC of 0.5 while the

perfect prediction will result in aucROC of 1.

3.4 Results

3.4.1 Assessment of prediction quality

The accuracy for the prediction of the synthetic transcriptional networks with differ-

ent software are listed in Table 3.1 as aucROC. The benchmark results indicate that

the performance of GNET2 with GBDT-based initialization is consistently better

than the K-means-based initialization. Also, the inference with GBDT-based initial-

ization is comparable to other widely used methods as it ranks the third place on the

E. coli dataset and the first place on the S. cerevisiae dataset. The plots of the ROC

curves in the two synthetic transcriptional regulatory networks are shown in Figure

3.2.

53

Network ARACNe MRNET CLR GENIE3 GNET2-K GNET2-G

E. coli 0.8089 0.8407 0.9145 0. 9593 0. 7664 0. 8817
S. cerevisiae 0.8138 0.6759 0.7529 0. 8285 0. 8545 0. 8739
Arabidopsis 0.5664 0.5976 0.595 0.5874 0. 6187 0. 6721

Table 3.1: Evaluation of network inference results. The values are the aucROC scores
of the different approaches (bold: the best results)

Figure 3.2: ROC plots for 100 samples generated from SynTReN. (a) Performance
with gene expression simulated on the E. coli regulatory network. (b) Performance
with gene expression simulated on the S. cerevisiae regulatory network.

54

Figure 3.3: ROC plots for 18 samples generated on the Aneuploidy Arabidopsis RNA-
Seq dataset.

For Aneuploidy Arabidopsis RNA-Seq dataset, we use the first 10 genes that ex-

ist in both of the filtered gene expression data and the TF list as regulator genes.

Then we retrieve all interactions between the regulator genes and all other genes in

the expression data from the STRING database [88] with the cutoff of the combined

score set to 400. This result in a network consists of 448 interactions and is used

as ground truth for evaluation, which are the genes kept in the input data for eval-

uation. The results for transcriptional networks derived from experimental data are

shown in Table 3.1. GNET2 with GBDT-based initialization achieves the highest

aucROC among all benchmarked methods. However, the performances of all predic-

tions are decreased probably due to the lack of complete information for the entire

gene regulatory network. The plot of the ROC curves and shown in Figure 3.3.

3.4.2 Impact of sample numbers and initial group sizes

To evaluate how well does the tool perform for different number of samples, we per-

formed benchmark on simulated E. coli and S. cerevisiae data with different numbers

55

of samples (20,40,60,80,100). We found that 40 samples will be sufficient to achieve

the optimal performance with aucROC (Figure 3.4a). While the performance in the

experiment with fewer samples is decreased, GNET2 can still output predictions with

reasonable predictions. However, when there are too few samples provided (<10), the

construction of regulatory trees may fail because of lacking meaningful branch splits.

To benchmark the impact of setting different numbers of clusters during group

initialization, we run GNET2 on simulated expression data synthesized from E. coli

networks with different sizes. (node number =100 or 500). Our strategy is to choose

initial group number according to predefined average groups sizes (10,20,30,40,50).

For example, by choosing average size of 50, the initial group number is 2 for networks

with 100 nodes and 10 for networks with 500 nodes. We found that an average size of

leq35 works well on the small network, while the performance of GNET2 is relatively

insensitive to the average size in large networks. (Figure 3.4b) It is worth mentioning

that for both K-means and GBDT-based initialization in GNET2, the initial group

size is set exactly as the initial group parameter. Instead, it performs clustering

with sizes from 2 to the initial group parameter and the cluster number with highest

correlation of expression for genes in the same group is used. This can explain the

stable performance when using small initial group size (equivalent to set large cluster

numbers). However, setting too large cluster numbers may heavily impact the running

time for initialization. In practice we use average group size of 25 for synthesized data

and 40 for Aneuploidy Arabidopsis data.

3.4.3 Systematic validation on the predicted functional mod-
ules

We used the same evaluation strategy in the original GNET benchmarking [27] to

systematic interpret the functional modules predicted by GNET2. We focused on

assessing the validity of 52 gene regulatory modules whose correlation coefficients were

56

Figure 3.4: Evaluation of the impact of inital group size. a) evaluation with different
sample sizes in E. coli and S. cerevisiae dataset. b) evaluation with different sample
sizes in the E. coli with different number of total genes (n=100 and 500).

greater than 0.3 from evidence of interaction potential between TFs and predicted

downstream genes by STRING database, and literature confirmation of the regulatory

function of TFs and the genes in corresponding experimental conditions.

We first examined the validity of the predicted function modules was furthered

confirmed by the potential interactions among the predicted TFs and the target

genes within the same module from evidence curated in the STRING database. In

Table 3.2 and 3.3 we listed the 28 gene regulatory modules that had at least one

matching supporting evidence in the STRING database using R package STRINGdb

[89]. The types of interactions we selected are co-occurrence, homology, co-expression,

experiments, database, and text mining. In the last column we also listed the PubMed

ID for the publications in which any regulators and target genes in the module are

co-mentioned as literature support.

57

Index Co-occurrence Homology Co-expression Experiments

1 0 0 8 0
2 0 1 5 0
3 0 0 3 0
4 0 3 9 0
5 0 0 4 0
6 4 2 63 2
7 0 3 31 0
8 1 1 106 0
9 0 0 8 0
10 0 1 7 0
11 0 11 49 0
12 0 0 5 0
13 1 0 4 0
14 0 0 34 0
15 2 2 217 0
16 0 1 17 0
17 0 2 366 0
18 0 0 13 0
19 2 0 75 0
20 0 0 7 0
21 1 3 57 0
22 0 0 2 0
23 1 3 94 0
24 0 0 45 0
25 0 0 1 0
26 0 0 19 0
27 0 0 6 0
28 0 0 14 0

Table 3.2: Occurrences of each type of interaction between the transcription factors
and predicted downstream genes.

58

Index Database Textmining Literature support

1 0 0
2 0 4 PMID:22639632
3 0 1 PMID:20463887;PMID:16679424
4 0 2 PMID:21642548;PMID:19529824
5 0 1
6 0 10
7 0 0
8 0 3 PMID:24966866;PMID:21487097;PMID:18805951
9 0 2 PMID:24999812; PMID:24228871
10 0 4 PMID:24688486;PMID:22238427;PMID:16121258
11 1 15 PMID:23390424;PMID:20307264;PMID:19843695
12 0 0

13 1 2
PMID:22346763;PMID:21733976;PMID:19654206;
PMID:16513813;PMID:11500563

14 1 5 PMID:21258004
15 1 22 PMID:21258004

16 0 5
PMID:24148294;PMID:24795732;PMID:24563199;
PMID:23185464;PMID:21733976;PMID:19247443;
PMID:12068110

17 0 21 PMID:22252389

18 0 3
PMID:23390424;PMID:22544736;

PMID:21733976;PMID:19239350

19 2 6
PMID:24106755;PMID:21464308;PMID:18502975;
PMID:17420173;PMID:15310842

20 1 2
PMID:24148786;PMID:21897874;
PMID:18989364;PMID:15561727

21 0 9 PMID:23185391;PMID:21803941

22 0 1
PMID:19247443;PMID:18684336;PMID:21733976;
PMID:20876338;PMID:19482972;PMID:16778081

23 0 18

PMID:23390424;PMID:23300166;

PMID:22212120;PMID:21841124;

PMID:21586684;PMID:21150289;

PMID:20663954;PMID:19948955
24 0 8

25 0 0
PMID:22927830;PMID:20307264;PMID:19717544;
PMID:16126837;PMID:15901827;PMID:15561727

26 0 1
27 0 3
28 0 0

Table 3.3: Evidences from databases and text mining

59

Experiment Samples Total genes Regulators Initial modules

1 20,40,60,80,100 200 20 10
2 20 200,400,600,800,1000 10% of total genes 10
3 20 1000 100 10,20,30,40,50
4 20 200 10,20,30,40,50 10

Table 3.4: Input data for running time benchmark. Experiment 1, 2, 3 and 4 are
the benchmark for different number of samples sizes, number genes, number of given
regulators and initial number of modules, respectively.

3.4.4 Representation of the functional modules predicted by
GNET2

3.4.5 Evaluation of running efficiency for GNET2

Since the module inference step is the most time-consuming step in GNET2, we

evaluate the running time during module inference with different number of samples

sizes, number of genes, initial number of modules, and number of given regulators with

GNET, GNET2-Kmeans, GNET2-GBDT. All tests are performed on a platform with

Intel Core 6700K (4.0 GHz) and Windows 10 build 19041. The results are measured

as the average running time across 5 separate runs. The experiment design of input

data for running time benchmark is shown in Table 3.4.

We compared the time consumption (averaged by five separate runs) between

GNET, GNET2-Kmeans, and GNET2-GBDT. The results are summarized in Table

3.5. in most cases, the running time requirements increase linearly with the size of the

input. However, this trend is not stringently scaled, and this can be explained by the

data-dependent termination time for the two main steps during module inference:

initial group clustering and regulatory tree reconstruction. Both initialization ap-

proaches in GNET2 (K-means and GBDT) do not have a deterministic running time

for a fixed size of input data since they may converge before the maximum number of

iterations has been reached. The same happens to the regulatory tree reconstruction,

as it will early stop when no changes happen during the assignment of target genes

60

Experiment
Running time (mins)

GNET GNET2-G GNET2-K

Samples

20 111.39 8.16 9.00
40 201.39 16.04 15.55
60 278.66 21.38 17.32
80 335.67 28.29 22.87
100 304.15 33.10 28.30

Number of total genes

200 68.32 8.46 7.87
400 172.2 25.16 11.73
600 413.72 39.14 34.06
800 624.01 53.88 41.85
1000 674.16 63.55 48.12

Number of regulators

10 88.63 10.35 7.05
20 137.27 10.88 10.26
30 136.61 20.28 10.84
40 256.48 23.54 20.55
50 285.20 26.35 22.61

Number of initial modules

10 75.38 1.34 4.53
20 19.84 1.84 1.44
30 35.69 3.72 3.49
40 43.01 2.44 3.07
50 38.11 4.10 2.83

Table 3.5: Comparison of time consumption for GNET, GNET2-Kmeans and
GNET2-GBDT.

to different modules.

3.5 Conclusions

In this chapter, we introduce the GNET2 as a powerful tool for inference and vi-

sualization of the relationships between regulatory genes and their targets. The re-

implementation of GNET2 as an R package makes it much easier for users to deploy

and use. Furtermore, GNET2 reconstructs more accurate regulatory networks with

the new GBDT-based initialization than GNET. The usage of GNET2 are described

in Appendix B.

However, it is worth mentioning that decision tree for a target gene may not be
61

fully reconstructed if they have complicated regulatory patterns that interfere with

different regulators, which may require more than one regulatory tree to characterize.

While we expect the regulatory tree can capture those interactions with the most con-

trol over the expression of target genes, it is difficult to identify all regulatory paths,

especially for those genes with entirely different sets of regulators under different con-

ditions. Our recommendations for such situations is to run the module inference with

different subsets of the data under different conditions, as well as run all samples

together. The best modules can then be determined by the scoring functions based

on the average correlation among the target genes under the same leaf.

62

Chapter 4

Combination of deep neural
network with attention mechanism
enhances the explainability of
protein contact prediction

4.1 Abstract

Deep learning has emerged as a revolutionary technology for protein residue-residue

contact prediction since the 2012 CASP10 competition. Considerable advancements

in the predictive power of the deep learning-based contact predictions have been

achieved since then. However, little effort has been put into interpreting the black-

box deep learning methods. Algorithms that can interpret the relationship between

predicted contact maps and the internal mechanism of the deep learning architectures

are needed to explore the essential components of contact inference and improve their

explainability. In this study, we present an attention-based convolutional neural net-

work for protein contact prediction, which consists of two attention mechanism-based

modules: sequence attention and regional attention. Our benchmark results on the

63

CASP13 free-modeling targets demonstrate that the two attention modules added on

top of existing typical deep learning models exhibit a complementary effect that con-

tributes to prediction improvements. More importantly, the inclusion of the attention

mechanism provides interpretable patterns that contain useful insights into the key

fold-determining residues in proteins. We expect the attention-based model can pro-

vide a reliable and practically interpretable technique that helps break the current bot-

tlenecks in explaining deep neural networks for contact prediction. The source code of

ATTContact is available at https://github.com/jianlin-cheng/InterpretContactMap.

4.2 Introduction

Prediction of residue-residue contacts in proteins plays a vital role in the compu-

tational reconstruction of protein tertiary structure. Recently, advancements in the

mathematical and statistical techniques for inter-residue coevolutionary analysis pro-

vide essential insights for correlated mutation-based contact prediction, which is now

becoming a critical component to generate input features for machine learning contact

prediction algorithms. For instance, in the recent 13th Community-Wide Experiment

on the Critical Assessment of Techniques for Protein Structure Prediction (CASP13)

contact prediction challenge, significant improvements have been achieved due to the

integration of both inter-residue coevolutionary analysis and novel deep learning ar-

chitectures [35, 31, 36, 37].

A variety of deep learning-based models have been proposed to improve the accu-

racy of protein contact prediction since deep learning was applied to the problem in

2012 CASP10 experiment [90]. Many of these methods leverage the contact signals de-

rived from the direct coupling analysis (DCA). Most DCA algorithms [91, 92, 34, 33]

generate correlated mutation information between residues from multiple sequence

alignments (MSAs), which is utilized by the deep convolutional neural networks in

64

the format of 2D input feature maps. For example, RaptorX-Contact [38], DNCON2

[39], and MetaPSICOV [93] are a few early methods that apply the deep neural net-

work architectures with one or more DCA approaches for contact prediction. The

connection between the two techniques underscores the importance of explaining the

contribution of patterns in coevolutionary-based features to the deep learning-based

predictors.

Despite the great success of deep learning-based models in a variety of tasks, this

approach is often treated as black-box function approximators that generate classifi-

cation results from input features. Since the number of parameters in a network is

somewhat proportional to its depth, it is infeasible to extract human-understandable

justifications from the inner mechanisms of deep learning without proper strategies.

Saliency maps and feature importance scores are widely used approaches for model

interpretation in machine learning. However, due to the unique characteristic of con-

tact prediction, these methods involve additional analysis procedures that require

far more computational resources than other typical applications. For example, the

saliency map for a protein with length L requires L×L times of deconvolution opera-

tions in a trained convolutional neural network since the output dimension of contact

prediction is always the same as its input. While this number can be reduced by

choosing only positive labels for analysis, the whole saliency map is still much harder

to determine since the many DCA features fed to the network have higher dimensions

than the traditional image data. For example, RaptorX-Contact [38], one of the state-

of-the-art contact predictors, takes 2D input with a size of L× L× 153. The recent

contact/distance predictor DeepDist [94] takes input with size up to L × L × 484.

The very large input size for contact prediction makes it difficult to use these model

interpretation techniques.

Recently, the attention mechanism has been applied in natural language process-

ing (NLP) [65, 71], image recognition [95], and bioinformatics [96, 21]. The attention

65

mechanism assigns different importance scores to individual positions in its input

or intermediate layer so that the model can focus on the most relevant information

anywhere within the input. In 2D image analysis, the attention weights for any indi-

vidual positions on an image allow the visualization of critical regions that contribute

to the final predictions. In addition, these weights are generated during the inference

step, without requiring additional computation procedures after the prediction of a

contact map. Hence, the attention mechanism is a suitable technique to facilitate the

interpretation of protein contact prediction models.

In this article, we propose an attention-equipped deep learning method for pro-

tein contact prediction (ATTContact), which adopts two different architectures of

the attention targeted for interpreting 2D and 1D input features, respectively. The

regional attention utilizes the n× n region around each position of its input 2D map

while the sequence attention utilizes the whole range of its 1D input. The regional

attention module is implemented with a specially designed 3D convolutional layer so

that training and prediction on large datasets can be performed with high efficiency.

The sequence attention is similar to the multi-headed attention mechanism applied in

the NLP tasks. We show that by applying attention mechanisms on the general deep

learning predictors, we can acquire models that are able to explain how position-wise

information anywhere in input or hidden features are transferred to later contact

predictions, and this can be done without significant extra computational cost and

decrease of the prediction accuracy.

66

4.3 Materials and Methods

4.3.1 Overview

The overall workflow of this study is shown in Figure 4.1. We use the combined

predictions from two neural network modules of different attention mechanisms (se-

quence attention and regional attention) to predict the contact map for a protein

target. Both modules take two types of features as inputs: the pseudolikelihood

maximization matrix (PLM) [34] generated from multiple sequence alignment as a

coevolution-based 2D feature and the position-specific scoring matrix (PSSM) which

provides the representation of the sequence profile for the input protein sequence.

The outputs of the two modules are both L × L contact maps with scores ranging

from 0 to 1, where L represents the length of the target protein. The final prediction

is produced by the ensemble of two attention modules. We implemented our model

with Keras (https://keras.io). For the evaluation of the predicted contacted contact

map, we primarily focus on long-range contacts (sequence separation between two

residues: n ≥ 24).

4.3.2 Datasets

We select targets from the training protein list used in DMPfold [97] and extract

their true structures from the Protein Data Bank (PDB) to create a training dataset.

After removing the redundant proteins that may have >25% sequence identity with

any protein in the validation dataset and test dataset, 6463 targets are left in the

training dataset. The validation set contains 144 proteins used to validate DNCON2

[39]. The blind test dataset is built from 31 CASP13 free modeling (FM) domains.

The CASP13 test dataset contains new proteins that have no sequence similarity with

both the training and test datasets at all.

67

Figure 4.1: An overview of the proposed attention mechanism protein contact pre-
dictor framework. The architecture of the deep neural network employed with two
attention modules: In the sequence attention module, the 1D input (PSSM) first goes
through the 1D convolution network and bidirectional long- and short-term memory
network (LSTM). Then the attention mechanism is applied to the LSTM output. The
2D input (PLM) is first processed with the 2D convolutional neural network and the
Maxout layer. The 1D input is then tiled to 2D format so that it can be combined
with the 2D input. The concatenated inputs then go through a residual network with
four residual blocks consist of 3, 4, 6, 3 repetitions of 2D convolution layers, respec-
tively. In regional attention networks, the 1D inputs are first tiled to 2D format and
concatenated with the 2D input. The combined inputs are then processed similarly
with the sequence attention module, except for the additional 2D attention layer be-
fore the last convolution layer. The average of the outputs from the two modules is
used as the final predicted contact map.

68

4.3.3 Input feature generation

For each protein sequence, we use two features as inputs for the deep learning model:

PLM and PSSM. The PLM is generated from MSAs produced by DeepMSA [98]. The

sequence databases used in the DeepMSA homologous sequences search include Uni-

clust30 (2017-10), Uniref90 (2018-04) [99], and Metaclust50 (2018-01) [100], our in-

house customized database which combines Uniref100 (2018-04) and metagenomics se-

quence databases (2018-04), and NR90 database (2016). All of the sequence databases

used for feature generation were constructed before the CASP13 experiment (eg, be-

fore the CASP13 test dataset was created). DeepMSA combines iteratively homolo-

gous sequence search of HHblits [101] and Jackhmmer [102] on the sequence databases

to compute MSAs for feature generation. It performs trimming on the sequence hits

from Jackhmmer with a sequence clustering strategy, which reduces the search time

of the HHblits database construction for the next round of search. The final input

of the model consists of two major conponents: 1D features (PSSM) of dimension

L× 20 and 2D features (PLM) of dimension L× L× 441.

4.3.4 Deep network architectures

Our model consists of two primary components, the regional attention module, and

the sequence attention module (Figure 4.1). The two modules include the attention

layers, normalization layers, convolution layers and residual blocks. The outputs of

these two modules are combined to generate the final prediction. Below are the

detailed descriptions of each module with an emphasis on the attention layers.

Sequence attention module

In the sequence attention module , the 1D PSSM feature first goes through an instance

normalization layer [103] and a 1D convolution operation, which is followed by a

69

Bi-Directional long- and short-term memory network (LSTM) in which the LSTM

operations are applied on both forward and reverse directions of the inputs. The

output vectors on both directions are concatenated. The outputs are then fed into a

multi-headed scaled dot product attention layer (Figure 4.2a). Three vectors required

for the attention mechanism: Q(Query), K(Key), and V(Value) are generated from

different linear transformations of the input of the attention layer. The attention

output Z is computed as:

Z = Softmax

(
Q×KT

√
datt

)
× V (4.1)

The 2D feature PLM first goes into the instance normalization and a ReLU ac-

tivation [104]. It is then processed by a convolutional layer with 128 kernels of size

1 × 1 and a Maxout layer [105] to reduce the input dimension from 128 to 64. The

2D inputs are concatenated with the tiled attention output and go into the residual

network component. The final output of the sequence attention module is generated

from a 2D convolution layer with a filter of size 1×1 and Sigmoid activation, resulting

in output of size L× L.

Regional attention module

The regional attention module (Figure 4.2b) takes inputs from the PLM matrix and

the tiled 2D PSSM feature. The two features are concatenated at the beginning of

the module and are processed in the same way as the 2D PLM input of the sequence

attention module. The residual network component with the same configuration as

in the sequence attention module is also applied. The last residual block is followed

by a convolutional layer with 32 filters, and the results are used as the input of the

attention 2D layer.

The input shape of the attention 2D layer is L × L × 32. It is converted by a

70

Figure 4.2: Schematic illustration of 1D and 2D attention mechanism. a, The scheme
for 1D attention mechanism. The input is first transformed into a vector of size
(Nheads, L, datt) for the efficient multi-headed attention implementation. For each
head, the vector of size (L, datt) is multiplied to three different trainable matrices of
size (datt, datt) to generate Query(Q), Key(K), and Value(V). Different heads have
their own transformation matrices for Q, K and V. Q and K first go through a
batch dot product operation, resulting in a new vector QKT with size (Nheads, L, L).
QKT is then scaled and normalized with Softmax function on the last axis, which
becomes the attention score Watt. The product of Watt × V for each head becomes
the 1D attention output. b, The scheme for 2D attention mechanism. The 2D input
is first transformed with a 3D convolution and becomes a stretched vector of size
(L,L, 32, n2). It is then computed with the similar attention operation as the 1D
attention scheme on the last axis.

71

3D convolution layer (Region Stretching layer) with specially designed filters so that

the output has shape L × L × 32 × n2, where n is the dimension of the attention

region for each position in the 2D input. The purpose of this layer is to make the last

dimension of its output represent the flattened n by n region around each element of

the original input (in our model n is set to 5). Thus, each position in the L×L output

are determined by the weighted sum of the n by n square window around itself. The

Region Stretching layer has n2 filters with shape n×n. For the i-th filter of the layer,

the weight of the i-th element (flatten in row-major order) in the n×n area is always

set to 1 with all other positions set to 0. We repeat these filters 32 times so that the

stretching operation is applied to all dimensions of the input. The weights of these

filters will not be changed during training. This operation can leverage the highly

optimized convolution implementation in Keras and is much more efficient than the

explicit implementation. The corresponding Q, K, and V vectors for the attention

mechanism are computed from the transformed output of 3D convolution. The scaling

and Softmax normalization are applied to the last dimension for the products of Q

and K so that different attention weights can be assigned to the n×n surrounding

area for each position on the L× L map. As a result, the output of each position on

the feature map will be a weighted sum of their surrounding regions. After the 2D

attention layer, the output of the regional attention module is generated from a 2D

convolutional layer with a filter of size 1 × 1 and the Sigmoid activation.

Residual network architecture

Both attention modules have the same residual network component consisting of

four residual blocks differing in the number of internal layers (Figure 4.1). Each

residual block is composed of several consecutive instance normalization layers and

convolutional layers with 64 kernels of size 3 × 3. The number of layers showed

in each block represents the number of 2D convolution layers in the corresponding

72

component. The final values of the last convolutional layer are added to the output of

a shortcut block, which is a convolutional layer with 64 kernels of size 1×1. A squeeze-

and-excitation (SE) block [106] is added at the end of each residual block. The SE

operation weights each of its channels differently by a trainable 2-layer dense network

when creating the output feature maps, so that channel-wise feature responses can

be adaptively recalibrated.

4.3.5 Model Training Configuration

The training of the deep network is performed with the customized Keras data gen-

erators to reduce the memory requirement. The batch size is set to 1 due to the large

size of feature data produced from long protein sequences. A normal initializer [107]

is used to initialize the weights of the layers in the network. Adam optimizer [66] is

used for training, with the initial learning rate set to 0.001. For epochs (complete

passes through the entire training data) ≥ 30, the optimizer is switched to stochastic

gradient descent, with learning rate and momentum set to 0.01 and 0.9, respectivly.

The learning rate determines the scale for model parameters update at each iteration

and the momentum30 is used to compute the next update of the weights as a linear

combination of the current gradient and the update of corresponding weights in the

previous iteration. At the end of each epoch, the current weights are saved, and the

precision of top L/2 long-range contact predictions (predicted contacts with sequence

separation ≥ 24) on the validation dataset is evaluated. The training process is ter-

minated at epoch 60, and the epoch with the best performance on the validation

dataset is chosen for the final blind test.

73

Type Metric
Sequence
attention

Regional
attention

Combined
model

Baseline
model

Top-L/5 58.26 61.08 60.94 59
Short-range Top-L/2 41.51 41.95 42.69 42.73

Top-L 27.95 28.38 28.83 28.17

Top-L/5 63.1 65.46 66.45 64.29
Medium-range Top-L/2 45.87 48 48.45 48.01

Top-L 32.51 33.65 34.19 33.05

Top-L/5 64.46 67.32 70.73 66.31
Long-range Top-L/2 52.13 54.15 55.88 49.42

Top-L 39.82 40.96 42.64 36.4

Table 4.1: Precision (%) of the top L/5, L/2 and L predicted long-range contacts on
the CASP13 dataset

4.4 Results

4.4.1 Benchmark ATTContact with state-of-the-art methods

We evaluate our models on 31 CASP13 FM targets based on the average of the per-

target performance on them. According to the definition from CASP13, a pair of

residues are considered to be in contact if the distance between their Cβ atoms in the

native structure is less than 8.0 Å. By convention, long-range contacts are defined

as contact pairs in which the sequence separations between the two residues of the

contacts are larger than or equal to 24 residues. The sequence separation for medium-

range is between 12 and 23 and short-range between 6 and 11 residues. Following

a common standard in the field,1 we evaluate the precision of top L/n (n = 1, 2,

5) predicted long-range contacts. In addition to evaluating the overall performance

of the combined model, we benchmarked the predictions from the two independent

attention modules. The evaluation results are shown in Table 4.1.

The combined model outperforms each individual attention model and model

without attention mechanism for top L/5, top L/2, and top L predicted contacts

in medium and long-range. For instance, the top L/5 long-range precision of the

74

Method Name Top-L/5 Top-L/2 Top-L

RaptorX-Contact 71.70 59.02 45.58
ATTContact(ours) 70.73 55.88 42.64
TripletRes 65.97 55.34 42.65
ResTriplet 65.36 54.81 41.84
DMP 62.76 48.90 37.69
TripletRes AT 60.77 52.02 40.13
RRMD 60.29 49.60 38.50
ZHOU-Contact 59.66 49.42 38.16
RRMD-plus 58.63 47.86 36.98
ResTriplet AT 58.22 49.18 38.48
Zhang Contact 58.07 49.58 39.21

Table 4.2: Comparison of the performance of the combined attention model with top
10 CASP13 methods

combined model is 70.73%, higher than both the sequence attention module (64.46%)

and the regional attention module (67.32%) as well as the baseline model that without

either of the attention mechanisms. According to the pair t test, the combined model

performance is significantly better than the sequence model in all ranges (P < 0.05),

while no significant difference is observed when compared with the baseline or regional

attention model. We also compare the performance of our method with the top 10

methods in CASP13 on the FM targets (Table 4.2) and show that it achieves the

overall performance comparable to the top-ranked CASP13 methods. Specifically, the

accuracy of top L/5 or top L/2 predictions of our method (“Combined Attention”)

is ranked second out of the 11 methods.

We also find that the predictive improvements in combining the two attention

modules are from the predictions with high confidence scores. Figure 4.3a and b

illustrates the receiver operating curve (ROC) and Precision-Recall curves (PR curve)

of the three models on targets for evaluation. The area under the curve (AUC) for

ROC curve and PR curve of all three models has similar trends. Figure 4.3c and d

shows the ROC and PR curves of the union of residue pairs from top-L/5 scores in

any of the three models. For AUC of both curves, the combined results have a higher

75

ID Model type heads Region Top-L/5 Top-L/2 Top/L

1 Sequence 1 - 0.6195 0.4604 0.3455
2 Sequence 2 - 0.5961 0.4540 0.3445
3 Sequence 4 - 0.6356 0.4740 0.3556
4 Regional 1 5 0.6589 0.4798 0.3523
5 Regional 2 5 0.6646 0.4780 0.3548
6 Regional 4 5 0.6708 0.4925 0.3675
7 Regional 4 3 0.6607 0.4830 0.3581

Table 4.3: Comparison of the performance of different attention configurations. Bold
scores denote the highest.

score (0.7888 for ROC curve and 0.8031 for PR curve) than the sequence attention

model (0.7614 for ROC curve and 0.7935 for PR curve) and the regional attention

model (0.7769 for ROC curve and 0.7907 for PR curve). The improved performance

of combining the two attention models indicates that the ensemble of two different

attention architectures enhances the final prediction.

For both models, we have also benchmarked the impact of different combinations

of attention configuration (number of attention heads and size of attention regions)

with the maximum scale of the architectures allowed by our GPU memory capacity

(Nvidia GeForce 1080Ti 11G). The results are showed in Table 4.3.

4.4.2 Comparison of two attention modules

We compare the performance of the two attention modules for each target in Figure

4.4a and b. The results show that the precision scores of the two attention modules

have a strong correlation (Pearson Correlation Coefficient = 0.78) among all targets.

As expected, most of the targets with high prediction precision in the combined

model are those with high precision scores in both attention modules. Interestingly,

there are cases in which the combined predictions acquire an improved performance

when the two attention modules perform very differently. For example, the top-L/5

precision score of T1008 D1 reaches 93.33% in the combined model, higher than the

76

Figure 4.3: Prediction performance curves of the sequence attention model, regional
attention model, and combined model. (a) Receiver operating curve (ROC) curve
for all long-range contact predictions. (b) Precision-Recall curve for all long-range
contact predictions. (c) ROC curve for all residue pairs that appear in the union
of residue pairs from top-L/5 scores in any of the three models. (d) Precision-Recall
curve for all residue pairs that appear in the top-L/5 scores in any of the three models.

77

Figure 4.4: Comparison of the top-L/5 precision between sequence and regional at-
tention module. The targets are arranged in the descending order of the top-L/5
precision in the combined model. (a) Precision scores from the sequence attention
module. (b) Precision scores from the regional attention module. T1008 and T970
are two examples in which the two modules perform very differently.

sequence module (46.67%) and the regional module (80.00%). Similarly, the top-L/5

precision score of T0957s2 reaches 64.52% in the combined model, which is equal to

the sequence module and higher the regional module (45.16%). These results further

confirm that the difference in the architecture of two attention mechanisms provides

a complementary effect that can contribute to performance improvement.

4.4.3 Visualization of attention scores from the sequence model

Our sequence attention model is similar to the neural translation model proposed

in the Transformer [65], in which the attention weights are visualized through case

studies of the importance of each word in the source language for a sentence to

each word in the target language. While it may be infeasible to directly understand

the importance of each residue in a protein in the folding process through human

observations, we included several proteins (2PTL,1IDY and 1SHG) [108, 109, 110, 111]

that have been studied through experimentaly determined Φ-values. The Φ-values
78

are the ratio of the change in stability of the transition-state ensemble (TSE) to that

of the native state during folding due to the mutation of each residue, and represent

important information about residue interactions present within the TSE [112].

Next, we demonstrate how position-wise information in sequence attention model

is transferred to later-stage contact predictions in our attention mechanisms for 1D

features. Since the sequence attention score is a L×L matrix, in which element (i,j)

represents the importance of the j-th residue to the i-th residue, and the sum of each

row is normalized to 1. Thus, the column sum of the attention weights can represent

the overall importance of each residue according to the 1D input. We first checked

the column sums of attention scores of these three proteins and compared the density

of scores from regions of the highest Φ-value peak and scores from the rest regions.

The results are shown in Figure 4.5. We show that the scores of Φ-value peak are

significantly higher than other regions (P-value < 0.01, Wilcoxon test).

4.4.4 Regional attention scores identify key residue pairs in
folding

We first consider the importance of the area with the high attention scores in contact

prediction. To demonstrate this, we permute the input features around the positions

that have high or low attention scores and use this permuted feature for prediction.

Here we choose locations that have the highest and lowest k attention scores as centers

for permutated regions, where k is the number of true positives of each target. Our

results show that the number of true positive predictions will decrease most drastically

(Figure 4.6), indicating that they contain important information related to protein

fold. Also, the level of decrease remains similar when the region of permutated data

grows from 1 × 1 to 5 × 5 in areas with high attention scores. In contrast, the level

of decrease in areas with low attention score is much smaller and increases with the

expansion of the permuted area. These results indicate the existence of potential

79

Figure 4.5: Comparison of attention scores from regions of the highest Φ-value peak
and scores from the rest regions. The attention scores are averaged across all attention
heads.

80

Figure 4.6: Performance after permutation of different locations of the input. The Y-
axis indicates the increase or decrease of top-L/5 precision scores after permutation.
(a) Impact of permutated regions with size 1 × 1. (b) Impact of permutated regions
with size 3 × 3. (c) Impact of permutated regions with size 5 × 5. TP High, true
positive predictions with high scores; TP Low, true positive predictions with low
scores; TN High, true negative predictions with high scores; TP Low, true negative
predictions with low scores.

protein folding-related key information in small areas with high attention scores.

To further explore the interpretability of our method, we analyze the model on

a protein whose folding mechanism has been well studied: Human common-type

acylphosphatase (AcP). The structure and sequence information of AcP is obtained

from PDB (https://www.rcsb.org/structure/2W4C), which has been identified with

three key residues (Y11, P54, and F94) that can form a critical contact network and

result in the folding of a polypeptide chain to its unique native-state structure [113].

The 3D structure model and three key residues are shown in Figure 4.7a.

We use the regional attention module to predict the contact map of the protein.

The precisions of the top-L/5, L/2, and L prediction are 100%, 95.74%, and 75.79%,

respectively. We then extract the 2D attention score matrix from the model and

combine the normalized row sums and column sums to reformat its dimension to

L×1. The attention score mapped to the protein 3D structure spot two key residues:

81

Y11 and F94, where large regions of high attention weights are located (Figure 4.7b).

Furthermore, we apply the same strategy with the experimentally determined Φ-

values on the 3D structure of AcP (Figure 4.7c). The comparison (Figure 4.7d

and e) shows that the 4.7-values and normalized attention scores have similar trends

along the peptide sequence (Pearson correlation coefficient = 0.4) with three peaks

for Y11, P54, and F94 appeared in neighboring regions of the curves determined by

both the experimental method and the attention method. Also, we find that the

true contract map does not provide the same level of information about the three

key residues (Figure 4.7f). These results indicate that the attention scores can be

applied to identify the critical components of the input feature. However, we also

find that the co-evolutionary input scores calculated by PSICOV can also be used

to identify some Φ-value peaks of AcP. Therefore, the 2D regional attention weights

can be either a new way to identify folding-related new residues or summarization

of the input. This situation is different from the 1D sequence attention, where the

1D attention weights can definitely identify Φ-value peaks (folding-related residues)

that cannot be recognized from 1D inputs at all. Therefore, attention mechanisms

can improve the explainability of contact prediction models, but the effects are not

guaranteed and may depend on their architecture and inputs.

4.5 Conclusions

Attention mechanisms have two valuable properties that are useful for protein struc-

ture prediction. First, attention mechanisms can identify important input or hidden

features that are important for structure prediction, and therefore they have the po-

tentials to explain how predictions are made and even increase our understanding of

how proteins may be folded. However, the knowledge gained from the attention mech-

anisms depends on how they are designed and the input information used with them.

82

Figure 4.7: Visualization and interpretation contact predictions of Human common-
type acylphosphatase from the regional attention module. (a) The 3D model of
acylphosphatase (AcP) with the three highlighted critical residues in protein folding.
The transparent spheres around the residues indicate their corresponding scopes in
the contact networks. (b) The heatmap of regional attention scores shown on the 3D
structure of AcP. (c) The heatmap of Φ-values shown on the 3D structure of AcP.
(d)-(f), The Φ-values, attention scores and the count of true contacts for each reside
plotted along the protein sequence. ρ: Pearson Correlation Coefficient.

83

Second, attention mechanisms can pick up useful signals relevant to protein structure

prediction anywhere in the input, which is much more flexible than other deep neural

network architectures such as sequential information propagation in recurrent neural

networks and spatial information propagation in convolutional neural networks. As

protein folding depends on residue-residue interactions that may occur anywhere in a

protein, the attention mechanisms can be a natural tool to recognize the interaction

patterns relevant to protein structure prediction or folding more effectively.

Interrogating the input-output relationships for complex deep neural networks is

an important task in machine learning. It is usually infeasible to interpret the weights

of a deep neural network directly due to their redundancy and complex nonlinear re-

lationships encoded in the intermediate layers. In this study, we show how to use

attention mechanisms to improve the interpretability of deep learning contact predic-

tion models without compromising prediction accuracy. More interestingly, patterns

relevant to key fold-determining residues can be extracted with the attention scores.

These results suggest that the integration of attention mechanisms with existing deep

learning contact predictors can provide a reliable and interpretable tool that can po-

tentially bring more insights into the understanding of contact prediction and protein

folding. The usage of ATTContact are described in Appendix C.

84

Chapter 5

3D-equivariant graph neural
networks for protein model quality
assessment

5.1 Abstract

Quality assessment of predicted protein tertiary structure models plays an important

role in ranking and using them. With the recent development of deep learning end-

to-end protein structure prediction techniques of generating highly confident tertiary

structures for most proteins, it is important to explore corresponding quality assess-

ment strategies to evaluate and select the structural models predicted by them since

these models have better quality and different properties than the models predicted

by traditional tertiary structure prediction methods.

In this chapter, we describe EnQA, a novel graph-based 3D-equivariant neural

network method that is equivariant to rotation and translation of 3D objects to

estimate the accuracy of protein structural models by leveraging the structural fea-

tures acquired from the state-of-the-art tertiary structure prediction method - Al-

phaFold2. We train and test the method on both traditional model datasets (e.g.,
85

the datasets of the Critical Assessment of Techniques for Protein Structure Predic-

tion (CASP)) and a new dataset of high-quality structural models predicted only

by AlphaFold2 for the proteins whose experimental structures were released recently.

Our approach achieves state-of-the-art performance on protein structural models pre-

dicted by both traditional protein structure prediction methods and the latest end-

to-end deep learning method - AlphaFold2. It performs even better than the model

quality assessment scores provided by AlphaFold2 itself. The results illustrate the

3D-equivariant graph neural network is a promising approach to the evaluation of

protein structural models. AlphaFold2 features are important for improving protein

model quality assessment and are complimentary with the geometric property fea-

tures extracted from structural models. The source code of EnQA is available at

https://github.com/BioinfoMachineLearning/EnQA.

5.2 Introduction

Predicting the structures of proteins from their sequences is crucial for understanding

their roles in various biological processes. Various computational methods have been

developed to predict protein structure from sequence information [114, 43, 36, 42, 31,

115, 116]. However, some predicted structures are still far from the true structure,

especially for some proteins lacking critical information such as homologous struc-

tural templates or residue-residue co-evolution information in their multiple sequence

alignments. Besides, many computational methods produce multiple outputs for one

input sequence. Thus, it is important to estimate the accuracy of the predicted

tertiary structural models, i.e., their similarity or discrepancy with the native but un-

known structure. Such estimation can help select the best models from the predicted

candidates and identify erroneous regions in the models for further refinement.

Many methods for model quality assessment (QA) have been developed. For ex-

86

ample, PCONS [117] and ModFOLDclustQ [118] uses the comparison between 3D

models to evaluate their quality. VoroMQA [119] computes confidence scores based

on the statistical potential of the frequencies of observed atom contacts. SBROD [120]

uses a smooth orientation-dependent scoring function with a ridge regression model.

Deep learning-based QA methods have been reported. DeepQA [121] uses a deep

belief network and different agreement metrics. ProQ4 [122] uses the partial entropy

of the sequence characteristics with a Siamese network configuration. GraphQA [123]

tackles the QA protein with graph convolutional networks based on geometric invari-

ance modeling. Ornate [124] and DeepAccNet [125] are based on voxelized spatial

information of the predicted models and 2D/3D convolution networks. DeepAccNet

is one of the best-performing methods in the QA category of the CASP14 competition

[126].

The pioneering development of the end-to-end deep learning method for protein

structure prediction - AlphaFold2 [42] that generated highly confident 3D structures

for most protein targets in CASP14 as well as the recent release of a similar approach

- RoseTTAFold [43] presents notable improvements in structure prediction and brings

new challenges for the model quality assessment task because traditional QA methods

developed for evaluating structural models predicted by traditional methods likely do

not work well for the models predicted by the new methods such as AlphaFold2.

Since the software of the end-to-end approach, such as AlphaFold2 has been publicly

released and is becoming the primary tool for tertiary structure prediction, it is impor-

tant to develop corresponding quality assessment methods to evaluate their models.

Furthermore, since AlphaFold2 generates structural models with a self-reported per-

residue local distance difference test (lDDT) [127] quality score, new QA methods

should outperform (1) the consensus evaluation of a predicted model by comparing

it with the reference models predicted by AlphaFold2 and (2) the self-reported per-

residue lDDT score for models provided by AlphaFold2. And it would be interesting

87

to investigate if and how various information extracted from AlphaFold2 predictions

can be used to enhance the quality assessment of 3D tertiary structural models. Fi-

nally, it is important to leverage the latest deep learning techniques of analyzing 3D

objects.

The concept of rotation and translation equivariance in neural networks is useful

for the analysis of rotation/translation-invariant properties of 2D and 3D objects in

multiple domains, including 2D images [128, 129], quantum interactions [130], and 3D

point clouds [131, 132, 133]. For equivariant networks, applying rotation and transla-

tion to the input results in a corresponding equivalent transformation to the output

of the network. Invariance is a special case of equivariance, in which the same out-

put is generated from the networks when such transformations are applied. Because

the quality of a protein structural model is invariant to rotation and translation, it

is desirable to use equivariant networks to predict model quality. As the locations

of residues in a protein model can be represented as point clouds in 3D space, it

is natural to represent a protein model as a graph, which can be equivariant to its

rotation and translation. For example, the refinement step in RoseTTAFold [43] uses

an equivariant SE(3)-Transformer architecture to update the 3D coordinates. GN-

NRefine uses a graph convolution network with invariant features for protein model

refinement.

In this work, we present EnQA, a 3D equivariant graph network architecture for

protein model QA. We evaluate the performance of our method on three different

test datasets: the CASP14 stage2 models, the models of the Continuous Automated

Model EvaluatiOn (CAMEO), and a collection of AlphaFold2 predictions for recently

released protein structures in the Protein Data Bank (PDB). EnQA achieves state-

of-the-art performance on all three datasets. It is able to distinguish the high-quality

structural models from other models and performs better than the self-reported lDDT

score from AlphaFold2. To the best of our knowledge, our method is the first 3D-

88

equivariant network approach to the problem of model quality assessment. It can

effectively evaluate the quality of the models predicted by the current high-quality

protein structure prediction methods such as AlphaFold2 that previous QA methods

cannot.

5.3 Materials and Methods

In this section, we first describe the training and test datasets and data processing

procedure. Then we define the input features to represent protein tertiary structures.

Finally, we introduce the EnQA architecture and the implementation details.

5.3.1 Datasets

CASP model quality assessment dataset

We use structural models from server predictions for CASP 8-14 protein targets (Stage

two models if available) (Kwon, et al., 2021; Moult, et al., 1995) as one dataset, which

can be downloaded from https://predictioncenter.org/download area/. Models are

first filtered by removing those with missing or inconsistent residues with respect to

the corresponding experimental structure. The models from CASP 8-12 are used

for training. The models from CASP13 are used to validate the neural network and

select its hyperparameters. The models from CASP14 are used as the benchmark/test

dataset. As a result, there are 109,318 models of 477 CASP8-12 targets used for

training, 12,118 models of 82 CASP13 targets used for validation, and 9,501 models

of 64 CASP14 targets for the final benchmark/test, respectively. The models in the

CASP dataset were generated by traditional protein structure prediction methods

during the CASP experiments between 2008 and 2020. The average quality of the

models is much lower than the models predicted by the state-of-the-art method –

89

AlphaFold2.

AlphaFold2 model quality assessment dataset

To create a QA dataset containing protein structural models predicted by the lat-

est end-to-end prediction method - AlphaFold2, we first collect protein structures

in the AlphaFold Protein Structure Database [134] with corresponding experimen-

tal structures in Protein Data Bank (https://www.rcsb.org/) [135] released after the

cutoff date (04/30/2018) of the structures on which AlphaFold2 was trained. In to-

tal, there are 4676 protein targets collected after filtering out identical ones. We

divide these targets into training and test/benchmark sets with a 9:1 ratio. The

AlphaFold2 models of the targets selected for training are combined with the train-

ing dataset from CASP 8-12 as the final training data. The targets for the final

AlphaFold2 benchmark/test dataset are selected by two criteria: (1) released after

the start date of CASP14 (05/14/2020) and (2) having sequence identity ¡30% with

any sequence in the training data, which is filtered by MMseqs2 [136]. In total,

178 test targets are selected for the AlphaFold2 benchmark/test data after filtering.

For each of these targets above, we generate 5 AlphaFold2 models using the model

preset of ”casp14” restricting templates only to structures available before CASP14

(i.e., max template date = ”2020-05-14”) to make sure the AlphaFold2 models of the

targets are generated with only the information available before their experimental

structures were released. The AlphaFold2 models generate for the training targets

are added into the training data. The AlphaFold2 models for the 178 test target form

the final AlphaFold2 test/benchmark dataset.

CAMEO model quality assessment dataset

To create an additional benchmark dataset, we use the recent models from Contin-

uous Automated Model EvaluatiOn [137]. We downloaded the protein structural
90

models registered between 9/04/2021 to 11/27/2021, which include predictions from

the latest predictors from different groups, such as RoseTTAFold. Models are filtered

by removing the ones with inconsistent sequences with the corresponding reference

structure. In total, 38 targets with 945 structural models are selected for benchmark-

ing.

5.3.2 Model filtering

CASP14 benchmark dataset protocol

We first select CASP14 target list from the QA results (68 in total), then remove

targets that are not evaluated in global QA benchmark as is described in the official

assessment: https://onlinelibrary.wiley.com/doi/full/10.1002/prot.26192

The removed targets are: T1048, T1072s1, T1062, T1070, T1080, T1077 (66

remaining).

Then we remove two targets without publicly available native structure The re-

moved targets are: T1085 and T1086 (64 remainings).

”T1098 MESHI SERVER TS4” is excluded due to incomplete prediction com-

pared to the reference structure (486/538 residues).

AlphaFold2 predictions dataset

We use 5 models from our AlphaFold predictions and the models from AlphaFold

database for training, for testing we use 5 models from our AlphaFold predictions. The

configuration we used for running AlphaFold2 is setting the parameters to ”casp14”,

”full db” and max template date is set to ”2020-05-14”.

For selecting targets for training and benchmark, we first sample 10% (468) of

the count of all targets from those targets released after 05/14/2020. The rest are

combined with the training datasets created using targets in CASP 8-12. Then we

91

use MMseqs2 to filter out any targets that have sequence identity ¡30% with any

sequence in the training data. Finally, the remaining 178 targets are used for further

analysis in the benchmark.

Targets from CAMEO dataset

We first filter the models by removing those predictions with inconsistent sequences

with the corresponding reference structure. Targets are excluded for further analysis

if less than three models are left after filtering.

5.3.3 Features

We use a graph to represent a protein structural model, which contains node features

and edge features. The 1D node feature has a shape (L, d), and the 2D edge feature

has a shape (L, L, d) in which L is the number of residues in the model and d is the

number of dimensions. The node feature describes the information of each residue,

which the edge feature describes the information for each pair of residues. We briefly

describe each type of features below.

Node features

We use the 20-number one-hot representation to encode 20 amino-acid types of each

residue. Following the spherical convolutions on molecular graphs [138], we use three

types of features to characterize the geometric property for each residue: the solvent-

accessible surface area, the size of Voronoi cell [139], and the shortest topological

distance to nearby solvent-accessible residue (also known as ”buriedness”). In addi-

tion, we leverage the information from AlphaFold2 predictions made for the protein

sequence of each model to generate the quality features for the model. AlphaFold2

predictions used for feature generation are made with the template database curated

92

before the release date of the experimental structure of any target in the CASP14,

CAMEO and AlphaFold2 test datasets. The lDDT score of each residue in a struc-

tural model to be evaluated with respect to an AlphaFold2 prediction for the same

target (called a reference model) is used as a feature for the residue. The AlphaFold2

self-reported lDDT score for each residue in the reference model is also used as a

feature measuring the confidence of the reference model. Here five AlphaFold2 refer-

ence models are used for generating features for the structural models of each target,

10 lDDT features are generated for each residue in each structural model. The final

shape of the node features for each residue is (L, 33).

Edge distance features

We first extract the logits from the distogram representation of the Al-phafold2 pre-

dictions for a protein target, which represents the probability of the beta carbon (Cβ)

distance between two residues falling into pre-defined 64 distance bins, which has a

shape (L, L, 64). From the 64-bin distogram, we then compute the probability of the

distance error between two residues in a structural model falling into the 9 distance

bins defined by lDDT as follows.

dierror = (diupper + dilower)/2 − dmodel (5.1)

Pn =
64∑
i=1

P i
distoIdierror ∈binn

(5.2)

Here dierror is the distance error (difference) between the AlphaFold2 predicted

distance and an input model for the i-th distance bin of AlphaFold2 and diupper and

dilower are the upper and lower bound of the i-th bin of the distogram, respectively.

dmodel is the distance between any two residues in the input model. P n is the prob-

ability of the distance error between two residues falling into the n-th distance bin

defined by lDDT [127]. P i
disto is the softmax-normalized probability of the i-th dis-

93

tance bin from AlphaFold2 distogram. I is an indicator function that equals 1 if dierror

falls into the range of the n-th bin defined by lDDT and 0 otherwise. Since we use

5 AlphaFold2 distogram predictions for each target and 9 distance bins according to

the definition of lDDT, this results in the pairwise edge features with a shape (L, L,

45) for each pair of residues in a structural model. We also create additional binary

contact maps by summing up all probabilities in AlphaFold2 distograms that fall into

the bins with middle point leq 15 Å. The final binary contact map is the average from

all five AlphaFold2 predictions to produce an additional edge feature with a shape

(L, L, 1).

Spherical graph embedding edge features

We generate rotation-invariant graph embeddings following the Spherical Graph Con-

volutions Network [138] to use spatial information as spatial edge features. We first

build the local coordinate frame for each residue in a structural model. We define

the normalized Cα–N vector as the x-axis, the unit vector on the C–Cα–N plane and

orthogonal to the Cα–N vector as the y-axis. The direction of the y-axis is deter-

mined by the one that has a positive dot product with the Cα–C vector. Naturally,

the z-axis is the cross-product of x and y. We compute the spherical angles θ and ϕ of

the vector between the Cα of each residue and that of any other residues with respect

to this local spherical coordinate system. Figure 5.1 illustrates the local spherical

coordinate system used in this work. The spherical angles θ and ϕ are transformed

into real spherical harmonics with the formula desribed in [138].

5.3.4 3D-equivariant model architecture

The overall architecture of our method is depicted in Figure 5.2. The processed 1D

features (node features) are first processed with 1D convolutions to generate hidden

94

Figure 5.1: The illustration of the local spherical coordinate system. Different colors
indicate atoms from different residues. Here θ, ϕ and r are spherical angles and the
radial distance for the vector between the alpha carbons (Cα) of two residues (blue
and red).

Figure 5.2: The illustration of the overall architecture of EnQA. The 1D/2D features
from the input model are first converted into hidden node and edge features for the
3D-equivarant graph module. The spatial coordinates of Cα atoms of the residues
are also used as an extra feature. The node and edge network modules update the
graph features iteratively. In the end, the final per-residue lDDT score and distance
errors of residue pairs are predicted from the updated node/edge features and spatial
coordinates by the 3D-equivariant network.

95

node features. Then 2D features (both distance and graph embedding edge features)

and the 2D tiling of the 1D hidden features are processed with a residual architecture

with 5 blocks and 32 channels similar to the DeepAccNet [125]. The goal is to predict

an initial distance error as a classification task with 9 bins. The distance error is

converted into an initial quality estimation using the following formula:

s =
L∑
i=1

pni(p0.5 Å + p1 Å + p2 Å + p4 Å)/4 (5.3)

Here pni is the probability of the beta carbon distance between n-th and i-th

residue in the binary contact map. p0.5 Å, p1 Å, p2 Å, p4 Å are the sum of the prob-

abilities of the multi-class error prediction from the residual layers below different

distance cutoffs. This score is combined with the other 1D node features as the node

features for the following 3D-equivariant graph network. The spatial coordinates of

Ca atom of each residue from the input model are used as one additional feature,

which is processed by the graph network in the 3D-equivariant way. The input graph

for the 3D-equivariant graph network is constructed by connecting any residue pairs

with distance ≤ 15 Å with an edge. The edge features for the graph network are the

concatenation of the multi-class error prediction and a separate output of the residual

layers for the pairs of the residues.

We design a variant of the E(n) Equivariant Graph Neural Networks (EGNN)

[132] to process the node and edge features from the input graph and predict the final

model quality score. Given a graph G = (V, E) with nodes vi ∈ V and edges

eij ∈ E. Our 3D-equvariant network has a node-level module and an edge-level

module. In the node-level module, the hidden node features hi and alpha carbon

(Cα) coordinates xi associated with each of the residues are considered. The equation

of the EGNN layers is the following:

mij = ϕe(h
l
i, h

l
j, ||xl

i − xl
j||2, aij) (5.4)

96

xl+1
i = xl

i +
1

N

∑
j∈N(i)

(xl
i − xl

j)ϕx(mij) (5.5)

mi =
∑

j∈N(i)

mij (5.6)

hl+1
i = ϕh(hl

i,mi) (5.7)

Here hl
i andhl

j are the node features at layer l, aij is the edge feature, xl
i and xl

j is

the alpha carbon coordinates. φe, φx and φh are multi-layer perceptron operations.

mij and mi are the intermediate messages for edges and nodes, respectively.

For the edge-level EGNN module, inspired by the Geometric Transformer [140],

we use edges in the original graph as nodes, and define the new node features as the

original edge features. Unlike the edges in the node-level module, we use the k-nearest

neighbors approach to define the edges in the edge-level module with k set to 3 to

accommodate the memory limit for edge-level graphs. The coordinates of the edges

are the midpoint of two ends and are always determined by node coordinates rather

than updates from the edge-level module. Finally, we use the distances between

the midpoints as the new edge attributes. The whole architecture can be trained

end-to-end from the input features to the final lDDT score prediction. In addition

to the EGNN based graph layer, we also implemented a variant of the network by

replacing the EGNN layers with a graph convolution network with kernels regular-

ized by spherical harmonics function as described in the SE(3)-Transformer [131] for

comparison. We use 6 Nvidia Tesla V100 32G GPUs on the Summit supercomputer

and Horovod/Pytorch to train the method. The batch size is set to 1 for each GPU,

resulting in an effective batch size of 6. We use the stochastic gradient descent (SGD)

optimizer with learning rate 1e-6, momentum 0.9 and weight decay 5e-5. We use the

categorical cross-entropy as the loss function for initial distance error and the MSE

loss for predicted lDDT scores as well as the final distance errors. The weight of the
97

loss for predicted lDDT set to 5, while the weight of the other two errors is set to 1.

We set the number of training epochs to 60 with the early stopping when there is no

improvements in validation loss for five consecutive epochs.

5.4 Results

5.4.1 Model quality assessment on CASP14 and CAMEO
datasets

To compare the performance of EnQA with other state-of-the-art QA methods, we

first evaluate it on the CASP14 stage 2 models (Table 5.1, 5.2). We compare it with

DeepAccNet [125], VoroMQA [119] and ProQ4 [122], which are all publicly available.

We also use five AlphaFold models predicted for each CASP14 target as reference to

evaluate the CASP14 stage 2 models. The average lDDT score between a CASP14

model and the five AlphaFold2 models is used as the predicted quality score of the

model. This method is called AF2Consensus. The evaluation metrics used include

residue and model-level mean squared error (MSE), mean absolute error (MAE) and

Pearson Correlation Coefficient between the predicted lDDT scores and ground truth

lDDT scores of the models. The per-residue metrics are first computed for each model

and are then averaged across all models. Finally, the ranking losses in terms of lDDT

and GDT-TS scores are used to evaluate the model ranking capability of the QA

methods. The average of the predicted per-residue lDDT scores for each model is

calculated as the predicted global quality score of the model. The predicted global

quality scores for all the models for a target are used to rank them. The difference

between the true GDT-TS (or true average lDDT score) of the best model and that

of the top 1 ranked model of the target is the loss.

Our method trained on the combination of CASP 8-12 models and AlphaFold2

98

Method Per-residue Per-model

MSE MAE Cor MSE MAE Cor

AF2Consensus 0.0057 0.0439 0.8596 0.0018 0.0244 0.9612
DeepAccNet 0.0254 0.1249 0.5725 0.0137 0.0945 0.7459
VoroMQA 0.0686 0.2115 0.3929 0.0466 0.184 0.462

ProQ4 0.0296 0.1331 0.4493 0.0113 0.0806 0.7292
EnQA-Full 0.0049 0.0451 0.8676 0.0015 0.0227 0.9648

EnQA-Reduced 0.0477 0.1859 0.647 0.0376 0.179 0.8296
EnQA-SE(3) 0.007 0.0607 0.7903 0.0015 0.0228 0.9611

Table 5.1: The benchmark of QA results on the CASP14 model dataset. Bold scores
denote the highest.

Method Ranking loss

lDDT GDT-TS

AF2Consensus 0.0092 0.0328
DeepAccNet 0.0444 0.0933
VoroMQA 0.0614 0.1175

ProQ4 0.057 0.1021
EnQA-Full 0.0088 0.0331

EnQA-Reduced 0.0408 0.082
EnQA-SE(3) 0.0116 0.0323

Table 5.2: The ranking loss of QA results on the CAMEO model dataset. Bold scores
denote the highest.

99

models (EnQA-Full) outperforms all the other methods on both residue and model-

level metrics , except its per-residue MAE and ranking loss of GDT-TS is slightly

worse than the consensus of AlphaFold2 (AF2Consensus). EnQA-Full is perform-

ing better than AF2Consensus in terms of most metrics, demonstrating our 3D-

equivariant QA method can add value on top of AlpahFold2 predictions in model

quality assessment. EnQA-Full and AF2Consensus perform substantially better than

the existing methods DeepAccNet, VoroMQA and ProQ4, indicating the importance

of incorporating AlphaFold2 features into QA and the value of the 3D-equivariant

architecture for QA. The variant of EnQA that uses the SE(3)-Transformer (EnQA-

SE(3)) performs slightly worse than EnQA-Full, indicating the 3D-equivariant net-

work (a variant of EGNN) in ENQA-Full may be slightly more effective. The model

trained solely on AlphaFold2 models (EnQA-Reduced) yields the worse performance

on the CASP14 test dataset than EnQA trained on both CASP8-12 and AphaFold2

models, which is expected since its training dataset contains only the models from

AlphaFold2, which is not a good representative of the CASP14 server models gen-

erated by the traditional protein structure prediction methods. The quality of the

former is generally much better than the latter.

We then evaluate all methods on the CAMEO dataset (Table 5.3, 5.4). Similar to

the results from the CASP14 benchmark dataset, EnQA-Full shows the best perfor-

mances in all metrics, except the ranking loss, which falls behind AF2Consensus by

a small margin.

5.4.2 Model quality assessment on AlphaFold2 dataset

To further assess the performance of our method on generally high-quality models,

we perform the evaluation on our AlphaFold2 test dataset (Table 5.5, 5.6). We

also include the self-reported lDDT scores of the models from AlphaFold2 as the

baseline method for comparison (AF2-plddt). In this test, EnQA-Reduced, which
100

Method Per-residue Per-model

MSE MAE Cor MSE MAE Cor

AF2Consensus 0.0084 0.0535 0.8529 0.0036 0.0353 0.9191
DeepAccNet 0.0245 0.1215 0.6636 0.0146 0.1006 0.7250
VoroMQA 0.1297 0.3175 0.4561 0.1094 0.3125 0.5512

ProQ4 0.0684 0.2163 0.4498 0.0508 0.1961 0.5374
EnQA-Full 0.0061 0.0508 0.8602 0.0017 0.0272 0.9517

EnQA-Reduced 0.0265 0.1267 0.7250 0.0182 0.1159 0.8322
EnQA-SE(3) 0.0085 0.0681 0.7764 0.0021 0.0340 0.9335

Table 5.3: The benchmark of QA results on the CAMEO model dataset. Bold scores
denote the highest.

Method Ranking loss

lDDT GDT-TS

AF2Consensus 0.0054 0.0105
DeepAccNet 0.0144 0.0193
VoroMQA 0.0470 0.0537

ProQ4 0.0656 0.0673
EnQA-Full 0.0068 0.0132

EnQA-Reduced 0.0177 0.0342
EnQA-SE(3) 0.0115 0.0190

Table 5.4: The ranking loss of QA results on the CAMEO model dataset. Bold scores
denote the highest.

101

Method Per-residue Per-model

MSE MAE Cor MSE MAE Cor

AF2-plddt 0.0232 0.1119 0.6651 0.0148 0.1011 0.7113
AF2Consensus 0.0417 0.1579 0.5549 0.0314 0.1562 0.6125
DeepAccNet 0.0394 0.1518 0.4907 0.0269 0.1426 0.5255
VoroMQA 0.1887 0.3899 0.3892 0.1644 0.3856 0.2386

ProQ4 0.0983 0.2690 0.4111 0.0791 0.2565 0.2857
EnQA-Full 0.0132 0.0803 0.6994 0.0058 0.0533 0.7439

EnQA-Reduced 0.0118 0.0768 0.7090 0.0043 0.0455 0.7814
EnQA-SE(3) 0.0127 0.0840 0.6556 0.0045 0.0511 0.7540

Table 5.5: The benchmark of QA results on the AlphaFold2 predicted model dataset.
Bold scores denote the highest.

trained solely on AlphaFold2 models, outperforms all other methods on all residue-

and model-level metrics, indicating the importance of ensuring the consistency be-

tween the training models and test models. Its better performance than AF2-plddt

shows that our method performs better in evaluating AlphaFold2 models than Al-

phaFold2’s own quality scores. Furthermore, EnQA-full also outperforms all other

methods except EnQA-Reduced in all metrics, including AF2-plddt, indicating com-

bining AlphaFold2 models with traditional protein structural models for training the

deep learning method can work well on both new AlphaFold2 test models and non-

AlphaFold test models. All our three methods perform substantially better than the

previous QA methods (DeepAccNet, VoroMQA, and ProQ4) on this dataset, clearly

demonstrating the need of developing new QA methods for evaluating AlphaFold2

models.

5.4.3 Analysis of the performance on AlphaFold2 predicted
models

We examine the distribution of model quality of the models in the all benchmark

dataset (Figure 5.3c). The average true lDDT score for all models is 0.8034, with

79.82% above 0.7, which has much higher average quality than models used for bench-
102

Method Ranking loss

lDDT GDT-TS

AF2-plddt 0.0052 0.0139
AF2Consensus 0.0098 0.0235
DeepAccNet 0.0086 0.0226
VoroMQA 0.0090 0.0233

ProQ4 0.0103 0.0246
EnQA-Full 0.0049 0.0123

EnQA-Reduced 0.0046 0.0109
EnQA-SE(3) 0.0073 0.0178

Table 5.6: The ranking loss of QA results on the AlphaFold2 predicted model dataset.
Bold scores denote the highest.

Figure 5.3: The distribution of lDDT scores of benchmark models. (a) CASP14
dataset. (b) CAMEO dataset. (c) AlphaFold2 predicted models. X axis denotes the
targets ordered by the mean lDDT of their models in increasing order. The red dots
indicate the position of the median.

mark from the CASP (0.5907) and CAMEO (0.6932) dataset (Figure 5.3a and b).

We further investigate the characteristics of the predictions of EnQA-Full and the

self-reported lDDT score from AlphaFold2 predictions on the AlphaFold2 test models

(Figure 5.4). The predicted scores of EnQA-Full have higher correlation with the

true lDDT scores than AlphaFold2 self-reported quality scores. At both residue and

global-level, the AlphaFold2 reported score tends to overestimate the quality of the

models more than EnQA-Full, which explain one improvement made by EnQA-Full.

103

Figure 5.4: The comparison between the predicted and true lDDT scores for Al-
phaFold models. The residue-level correlation is computed for all residue at once,
which is different from the average of the residue-level correlation in each model. r:
Pearson Correlation Coefficient. ρ: Spearman Correlation Coefficient.

104

5.4.4 Analysis of the impact of features

We examine the impact of different input features on the prediction performance of

EnQA. We calculate the residue-level Pearson’s Correlation Coefficient between pre-

dicted lDDT score and true lDDT score when each type of feature is replaced with

random number on different benchmark datasets (Figure 5.5). We use EnQA-Full

as the baseline model and report the prediction performance when each feature is

randomly permuted in its value range during prediction. A larger change of Pear-

son Correlation Coefficient indicates a higher impact. The lDDT score feature of

a model with respect to AlphaFold reference models is the most important feature

on AlphaFold2 predicted models (Figure 5.5c) as its permutation causes the largest

drop of the Pearson’s Correlation Coefficient. The geometric property features for

each node, distograms and the confidence score of AlphaFold also have a noticeable

impact on the predictive capability. The similar trend can also be observed on both

CASP14 and CAMEO dataset (Figure 5.5a, b).

Furthermore, we show that the geometric property feature is critical for those mod-

els on which EnQA-full makes large improvements over AF2Consesus. We pick the

top 10% models for which it has the largest improvements in residue-level correlation

over AF2Consensus and bottom 10% models for which it has the least improvement.

In Figure 5.6, the importance of the geometric property feature (i.e., the change

of the correlation) in top 10% models is significantly higher than the bottom 10%

models (p value ¡ 0.01 according to Mann-Whitney test), suggesting the orthogonal,

synergistic effect of the geometric property feature and the features extracted from

AlphaFold2 predictions.

105

Figure 5.5: The comparison of residue-level Pearson’s Correlation Coefficient when
different features are randomly permuted for model quality assessment. The red dots
indicate the position of the median. (a) CASP14 dataset. (b) CAMEO dataset. (c)
AlphaFold2 dataset.

106

Figure 5.6: The comparison of the importance of the geometric property features.
The importance is measured as the decrease in residue-level correlation for models
that have most (models-top) and least (models-bottom) improvements in EnQA-Full
over AF2Consensus. The change in the correlation in the former is higher than in
the latter (p < 0.01, Mann-Whitney test).

107

5.5 Conclusions

In this paper, we introduce EnQA, a novel 3D-equivariant network method for protein

quality assessment. Our approach utilizes both the geometric structural features of

an input model and the features extracted from AlphaFold2 predictions. The network

is developed as an equivariant framework with the node and edge features passing

through the node and edge-level graph networks. Performed computational experi-

ments on diverse structural model datasets prove EnQA achieves the state-of-the-art

performance of protein quality assessment. More precisely, on both CASP14 and

recent CAMEO protein structures, EnQA outperforms all other methods on most

evaluation metrics, including using AlphaFold2 predictions as reference to evaluate

models. Furthermore, our method performs better than the self-reported lDDT score

of AlphaFold2 in evaluating high-quality AlphaFold2 models. On all the test datasets,

EnQA performs substantially better than the previous QA methods, demonstrating

the value of using 3D-equivarnant architecture and AlphaFold2-based features. Also,

we show that the input features extracted from structural models have a complemen-

tary effect with the information extracted from AlphaFold2 predictions, especially for

those models on which EnQA performs better.

To the best of our knowledge, the method is the first 3D-equivariant network

approach to leveraging information from AlphaFold2 predictions to improve model

quality assessment. It may be further expanded for protein model refinement by

adding additional graph layers to update the coordinates of the nodes (residues) and

other protein structure analysis tasks. The usage of EnQA are described in Appendix

D.

108

Chapter 6

Summary and concluding remarks

In this dissertation, four contributions to the functional and structural modelling of

proteins are described. Chapter 2 describes DeepGRN, which is a method to predict

the binding sites of transcription factors. Chapter 3 describes GNET2, which uses

decision tree algorithm and Gaussian Graphical Model to predict the interactions

between transcription factors and genes in the gene regulatory network. Chapter3

describes ATTContact, which uses deep learning approach with two different archi-

tectures based on the attention mechanism to predict the contact maps of proteins.

Chapter 4 describes a novel equivariant graph neural network named EnQA, which

takes advantage of the rotations and translations equivariance properties of the pro-

tein structures to predict the model quality.

Previous protein/gene interactions modelling methods are usually based on DNA

or proteins sequence or gene expression profile, and does not take protein structure

information into consideration as the limited availability of protein structures. How-

ever, with the release of AlphaFold2 and AlphaFold database, the number of high

accuracy of predicted structures is rapidly growing. In the future, it will also be

interesting to explore the possibility to use predicted 3D structural models of the

proteins for more functional modeling tasks. Last but not least, this paradigm will
109

also be beneficial to future studies in protein engineering, drug discovery, and many

other areas where the properties of proteins are relevant.

110

Appendix A

Predicting transcription binding
sites with DeepGRN

The source code and detailed instructions of generating input data in correct format

can be found at: https://github.com/jianlin-cheng/DeepGRN.

A.1 Required software

Python 3.6.6

bedtools 2.26.0

A.2 Required Python library

pandas 0.24.2

numpy 1.16.2

tensorflow 1.11.0

pyfaidx 0.5.5.2

pyfasta 0.5.2

111

pybedtools 0.8.0

pyBigWig 0.3.14

Keras 2.2.4

h5py 2.9.0

deepTools 3.2.1

Optional(for training with GPUs):

cuda 10

tensorflow-gpu 1.11.0

A.3 Usage

After cloning the DeepGRN repository, users can run predict.py with the following

parameters for prediction:

Arguments of predict.py:

--data_dir Path to the input data

--model_file Path to model file

--cell_name Cell ID

--predict_region_file The bed file contains region to predict

--output_predict_path Prediction output path

--bigwig_file_unique35 Optional. 35bp uniqueness file

--rnaseq_data_file Optional. RNA-Seq PCA results

--gencode_file Optional. Genomic annotation file

--batch_size Optional. Batch size (default: 512)

--blacklist_file Optional. The bed file contains regions will be

assigned as non binding.

112

Appendix B

Build functional gene modules
with GNET2

B.1 Build module networks

To install this package, start R (version ”4.2”) and enter:

if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("GNET2")

We generate random expression data and a list of regulator gene names. The

input is typically a p by n matrix of expression data of p genes and n samples, for

example log2 RPKM from RNA-Seq.

set.seed(2)

init_group_num = 8

init_method = ’boosting’

exp_data <- matrix(rnorm(300*12),300,12)

reg_names <- paste0(’TF’,1:20)
113

rownames(exp_data) <- c(reg_names,paste0(’gene’,

1:(nrow(exp_data)-length(reg_names))))

colnames(exp_data) <- paste0(’condition_’,1:ncol(exp_data))

For the list of potential regulator genes, they are usually available from databases.

For example, the PlantTFDB (http://planttfdb.gao-lab.org/download.php) curated

lists of transcription factors in 156 species, and this information can be imported by

the follow steps:

url<-"http://planttfdb.gao-lab.org/download/TF_list/Ath_TF_list.txt.gz"

dest_file <- ’./Ath_TF_list.txt.gz’

download.file(url, destfile)

reg_names <- read.table(gzfile(destfile),sep="\t",header = T,as.is = T)

reg_names = reg_names$Gene_ID

The module construction process make take a while, depending on the size of data

and maximum iterations allowed.

gnet_result <- gnet(exp_data,reg_names,init_method,init_group_num,

heuristic = TRUE)

#> Determining initial group number...

#> Building module networks...

#> Iteration 1

#> Iteration 2

#> Iteration 3

#> Iteration 4

#> Iteration 5

#> Converged.

#> Generating final network modules...

#> Done.
114

B.2 Plot the modules and trees

Plot the regulators module and heatmap of the expression inferred downstream genes

for each sample. It can be interpreted as two parts: the bars at the top show how

samples are split by the regression tree and the heatmap at the bottom shows how

downstream genes are regulated by each subgroup determined by the regulators.

plot_gene_group(gnet_result,group_idx = 1,plot_leaf_labels = T)

It is also possible to compare the clustering of GNET2 with experimental condi-

tions by providing the labels of conditions

exp_labels = rep(paste0(’Exp_’,1:4),each = 3)

plot_gene_group(gnet_result,group_idx = 1,group_labels = exp_labels)

The similarity between the clusters from each module of GNET2 and experimental

conditions can be quantified by Adjuster Rand Index (for categorical labels) or the

inverse of K-L Divergence (for ordinal labels, e.g. dosage,time points). For both cases,

significant P-values suggest high similarity between the grouping of the modules and

the label information provided by the user.

exp_labels_factor = as.numeric(factor(exp_labels))

Similarity to categorical experimental conditions of each module

print(similarity_score(gnet_result,exp_labels_factor))

#> $score

#> [1] 0.06201550 -0.10852713 0.02531646 0.11814346 0.40310078

#> [6] -0.06751055 -0.16033755

#>

#> $p_value

#> [1] 0.276 0.793 0.328 0.138 0.001 0.636 0.920

115

Similarity to ordinal experimental conditions of each module

print(similarity_score(gnet_result,exp_labels_factor),ranked=TRUE)

#> $score

#> [1] 0.06201550 -0.10852713 0.02531646 0.11814346 0.40310078

#> [6] -0.06751055 -0.16033755

#>

#> $p_value

#> [1] 0.264 0.783 0.319 0.144 0.003 0.644 0.904

Plot the tree of the first group

plot_tree(gnet_result,group_idx = 1)

116

Appendix C

ATTContact for protein contact
maps prediction

The source code and detailed instructions of generating input data in correct format

can be found at: https://github.com/jianlin-cheng/InterpretContactMap.

C.1 Required software

PSI-BLAST 2.2.26 (For generating PSSM sequence profile)

CCMpred (For generating pseudo-likelihood maximization)

Python 3.6

C.2 Required Python libraries

numpy 1.18.1

pandas 1.1.2

tensorflow-gpu/tensorflow 1.15.2

keras 2.1.6

117

C.3 Feature geraration

Two types of features are required: PSSM sequence profile, which can be gener-

ated from PSI-BLAST, and PLM (pseudo-likelihood maximization), which can be

generated from CCMpred from multiple sequence alignments (MSAs) produced by

DeepMSA. The details of how to acquire both features are described in the Deep-

Dist (https://www.biorxiv.org/content/10.1101/2020.03.17.995910v1), which is also

developed by the BDM lab.

The sequence databases used in the DeepMSA homologous sequences search in-

clude Uniclust30 (2017-10), Uniref90 (2018-04) and Metaclust50 (2018-01), our in-

house customized database which combines Uniref100 (2018-04) and metagenomics

sequence databases (2018-04), and NR90 database (2016). Sample features can be

found under the example folder, and users can build both features from their own

customized sequence databases.

C.4 Usage

After cloning the repository, users can run predict.py with the following parameters

for prediction:

-h, --help show this help message and exit

-m, --model_type Type of model, can be one of "sequence", "regional",

or "combine"

-l, --plm_data Path to PLM data. Should be a numpy array flatten

from (441,L,L), where L is the length of the input

sequence. It should be saved as .npy format.

-s, --pssm_data Path to PSSM data. Should be a text file start

with " # PSSM" as the first line, and the

118

following contents should each contains L values.

-o, --out_file Path to output contact map. An L by L numeric matrix

saved as TSV format.

-w, --weights Should attention weights be extracted.

119

Appendix D

EnQA for protein structure
accuracy estimation

The source code and detailed instructions of generating input data in correct format

can be found at: https://github.com/BioinfoMachineLearning/EnQA.

D.1 Required software

Python 3.6

D.2 Required Python libraries

biopandas 0.2.9

biopython 1.79

numpy 1.21.3

pandas 1.3.4

scipy 1.7.1

torch 1.10.0

120

equivariant_attention (Optional, used by models based on

SE(3)-Transformer only)

pdb-tools (Optional, used by models with multiple chains only)

You may also need to set execution permission for utils/lddt and files under util-

s/SGCN/bin. Note: Currently, the dependencies support AMD/Intel based system

with Ubuntu 21.10 (Impish Indri). Other Linux-based system may be also supported

but not guaranteed.

D.3 Usage

After cloning the repository, users can run EnQA.py with the following parameters

for prediction:

--input Path to input pdb file.

--output Path to output folder.

--method Prediction method, can be "ensemble",

"EGNN_Full", "se3_Full", "EGNN_esto9"

or "EGNN_covariance".

Ensemble can be done listing multiple

models separated by comma.

--alphafold_prediction Path to alphafold prediction results.

--alphafold_feature_cache Optional. Can cache AlphaFold features

for models of the same sequence.

--af2_pdb Optional. PDBs from AlphaFold

predcition for index correction with

input pdb when input PDB only

contains partial sequence of the

121

AlphaFold results.

--cpu Optional. Force to use CPU.

122

Bibliography

[1] David S Latchman. Transcription factors: an overview. The international

journal of biochemistry & cell biology, 29(12):1305–1312, 1997.

[2] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-

chios Protopapadakis. Deep learning for computer vision: A brief review. Com-

putational intelligence and neuroscience, 2018, 2018.

[3] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent

trends in deep learning based natural language processing. ieee Computational

intelligenCe magazine, 13(3):55–75, 2018.

[4] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recom-

mender system: A survey and new perspectives. ACM Computing Surveys

(CSUR), 52(1):1–38, 2019.

[5] Pedro Larranaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano,

Inaki Inza, José A Lozano, Rubén Armananzas, Guzmán Santafé, Aritz Pérez,

et al. Machine learning in bioinformatics. Briefings in bioinformatics, 7(1):86–

112, 2006.

[6] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinfor-

matics. Briefings in bioinformatics, 18(5):851–869, 2017.

123

[7] Pankaj Mehta, David J Schwab, and Anirvan M Sengupta. Statistical mechan-

ics of transcription-factor binding site discovery using hidden markov models.

Journal of statistical physics, 142(6):1187–1205, 2011.

[8] Anthony Mathelier and Wyeth W Wasserman. The next generation of transcrip-

tion factor binding site prediction. PLoS computational biology, 9(9):e1003214,

2013.

[9] Roger Pique-Regi, Jacob F Degner, Athma A Pai, Daniel J Gaffney, Yoav

Gilad, and Jonathan K Pritchard. Accurate inference of transcription factor

binding from dna sequence and chromatin accessibility data. Genome research,

21(3):447–455, 2011.

[10] Tianyin Zhou, Ning Shen, Lin Yang, Namiko Abe, John Horton, Richard S

Mann, Harmen J Bussemaker, Raluca Gordân, and Remo Rohs. Quantitative

modeling of transcription factor binding specificities using dna shape. Proceed-

ings of the National Academy of Sciences, 112(15):4654–4659, 2015.

[11] Marko Djordjevic, Anirvan M Sengupta, and Boris I Shraiman. A biophysi-

cal approach to transcription factor binding site discovery. Genome research,

13(11):2381–2390, 2003.

[12] Jens Keilwagen, Stefan Posch, and Jan Grau. Accurate prediction of cell type-

specific transcription factor binding. Genome biology, 20(1):1–17, 2019.

[13] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey.

Predicting the sequence specificities of dna-and rna-binding proteins by deep

learning. Nature biotechnology, 33(8):831–838, 2015.

[14] Qian Qin and Jianxing Feng. Imputation for transcription factor binding pre-

dictions based on deep learning. PLoS computational biology, 13(2):e1005403,

2017.
124

[15] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants

with deep learning–based sequence model. Nature methods, 12(10):931–934,

2015.

[16] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent

deep neural network for quantifying the function of dna sequences. Nucleic

acids research, 44(11):e107–e107, 2016.

[17] Hamid Reza Hassanzadeh and May D Wang. Deeperbind: Enhancing prediction

of sequence specificities of dna binding proteins. In 2016 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM), pages 178–183. IEEE,

2016.

[18] Daniel Quang and Xiaohui Xie. Factornet: a deep learning framework for pre-

dicting cell type specific transcription factor binding from nucleotide-resolution

sequential data. Methods, 166:40–47, 2019.

[19] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attention-based lstm

for aspect-level sentiment classification. In Proceedings of the 2016 conference

on empirical methods in natural language processing, pages 606–615, 2016.

[20] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and

Bo Xu. Attention-based bidirectional long short-term memory networks for re-

lation classification. In Proceedings of the 54th annual meeting of the association

for computational linguistics (volume 2: Short papers), pages 207–212, 2016.

[21] Chen Chen, Jie Hou, Xiaowen Shi, Hua Yang, James A Birchler, and Jianlin

Cheng. Deepgrn: prediction of transcription factor binding site across cell-types

using attention-based deep neural networks. BMC bioinformatics, 22(1):1–18,

2021.

125

[22] Christopher T Harbison, D Benjamin Gordon, Tong Ihn Lee, Nicola J Rinaldi,

Kenzie D Macisaac, Timothy W Danford, Nancy M Hannett, Jean-Bosco Tagne,

David B Reynolds, Jane Yoo, et al. Transcriptional regulatory code of a eu-

karyotic genome. Nature, 431(7004):99–104, 2004.

[23] Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey

Wierzbowski, Guillaume Cottarel, Simon Kasif, James J Collins, and Timothy S

Gardner. Large-scale mapping and validation of escherichia coli transcriptional

regulation from a compendium of expression profiles. PLoS biology, 5(1):e8,

2007.

[24] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo

Stolovitzky, Riccardo Dalla Favera, and Andrea Califano. Aracne: an algo-

rithm for the reconstruction of gene regulatory networks in a mammalian cel-

lular context. In BMC bioinformatics, volume 7, pages 1–15. BioMed Central,

2006.

[25] Alexander Statnikov and Constantin F Aliferis. Analysis and computational

dissection of molecular signature multiplicity. PLoS computational biology,

6(5):e1000790, 2010.

[26] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covari-

ance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[27] Mingzhu Zhu, Xin Deng, Trupti Joshi, Dong Xu, Gary Stacey, and Jianlin

Cheng. Reconstructing differentially co-expressed gene modules and regulatory

networks of soybean cells. BMC genomics, 13(1):1–13, 2012.

[28] Mingzhu Zhu, Jeremy L Dahmen, Gary Stacey, and Jianlin Cheng. Predicting

gene regulatory networks of soybean nodulation from rna-seq transcriptome

data. BMC bioinformatics, 14(1):1–13, 2013.
126

[29] Ping Gong, Zeynep Madak-Erdogan, Jilong Li, Jianlin Cheng, C Michael Green-

lief, William Helferich, John A Katzenellenbogen, and Benita S Katzenellenbo-

gen. Transcriptomic analysis identifies gene networks regulated by estrogen

receptor α (erα) and erβ that control distinct effects of different botanical es-

trogens. Nuclear receptor signaling, 12(1):nrs–12001, 2014.

[30] Chen Chen, Jie Hou, Xiaowen Shi, Hua Yang, James A Birchler, and Jianlin

Cheng. Gnet2: an r package for constructing gene regulatory networks from

transcriptomic data. Bioinformatics, 37(14):2068–2069, 2021.

[31] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent

Sifre, Tim Green, Chongli Qin, Augustin Ž́ıdek, Alexander WR Nelson, Alex

Bridgland, et al. Improved protein structure prediction using potentials from

deep learning. Nature, 577(7792):706–710, 2020.

[32] Jilong Li, Debswapna Bhattacharya, Renzhi Cao, Badri Adhikari, Xin Deng,

Jesse Eickholt, and Jianlin Cheng. The multicom protein tertiary structure

prediction system. In Protein Structure Prediction, pages 29–41. Springer, 2014.

[33] David T Jones, Daniel WA Buchan, Domenico Cozzetto, and Massimiliano Pon-

til. Psicov: precise structural contact prediction using sparse inverse covariance

estimation on large multiple sequence alignments. Bioinformatics, 28(2):184–

190, 2012.

[34] Stefan Seemayer, Markus Gruber, and Johannes Söding. Ccmpred—fast and

precise prediction of protein residue–residue contacts from correlated mutations.

Bioinformatics, 30(21):3128–3130, 2014.

[35] Rojan Shrestha, Eduardo Fajardo, Nelson Gil, Krzysztof Fidelis, Andriy

Kryshtafovych, Bohdan Monastyrskyy, and Andras Fiser. Assessing the ac-

127

curacy of contact predictions in casp13. Proteins: Structure, Function, and

Bioinformatics, 87(12):1058–1068, 2019.

[36] Jie Hou, Tianqi Wu, Renzhi Cao, and Jianlin Cheng. Protein tertiary structure

modeling driven by deep learning and contact distance prediction in casp13.

Proteins: Structure, Function, and Bioinformatics, 87(12):1165–1178, 2019.

[37] Wei Zheng, Yang Li, Chengxin Zhang, Robin Pearce, SM Mortuza, and Yang

Zhang. Deep-learning contact-map guided protein structure prediction in

casp13. Proteins: Structure, Function, and Bioinformatics, 87(12):1149–1164,

2019.

[38] Sheng Wang, Siqi Sun, and Jinbo Xu. Analysis of deep learning methods for

blind protein contact prediction in casp12. Proteins: Structure, Function, and

Bioinformatics, 86:67–77, 2018.

[39] Badri Adhikari, Jie Hou, and Jianlin Cheng. Dncon2: improved protein contact

prediction using two-level deep convolutional neural networks. Bioinformatics,

34(9):1466–1472, 2018.

[40] David T Jones, Tanya Singh, Tomasz Kosciolek, and Stuart Tetchner. Metap-

sicov: combining coevolution methods for accurate prediction of contacts and

long range hydrogen bonding in proteins. Bioinformatics, 31(7):999–1006, 2015.

[41] Chen Chen, Tianqi Wu, Zhiye Guo, and Jianlin Cheng. Combination of deep

neural network with attention mechanism enhances the explainability of pro-

tein contact prediction. Proteins: Structure, Function, and Bioinformatics,

89(6):697–707, 2021.

[42] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek,

128

Anna Potapenko, et al. Highly accurate protein structure prediction with al-

phafold. Nature, 596(7873):583–589, 2021.

[43] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey

Ovchinnikov, Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin

Schaeffer, et al. Accurate prediction of protein structures and interactions using

a three-track neural network. Science, 373(6557):871–876, 2021.

[44] Mehmet Akdel, Douglas EV Pires, Eduard Porta Pardo, Jürgen Jänes, Arthur O

Zalevsky, Bálint Mészáros, Patrick Bryant, Lydia L Good, Roman A Laskowski,

Gabriele Pozzati, et al. A structural biology community assessment of alphafold

2 applications. BioRxiv, 2021.

[45] Chen Chen, Xiao Chen, Alex Morehead, Tianqi Wu, and Jianlin Cheng.

3d-equivariant graph neural networks for protein model quality assessment.

bioRxiv, 2022.

[46] Oliver Hobert. Gene regulation by transcription factors and micrornas. Science,

319(5871):1785–1786, 2008.

[47] Yuanyuan Xiao and Mark R Segal. Identification of yeast transcriptional regu-

lation networks using multivariate random forests. PLoS computational biology,

5(6):e1000414, 2009.

[48] Bart Hooghe, Stefan Broos, Frans Van Roy, and Pieter De Bleser. A flexible in-

tegrative approach based on random forest improves prediction of transcription

factor binding sites. Nucleic acids research, 40(14):e106–e106, 2012.

[49] Manal Kalkatawi, Arturo Magana-Mora, Boris Jankovic, and Vladimir B Bajic.

Deepgsr: an optimized deep-learning structure for the recognition of genomic

signals and regions. Bioinformatics, 35(7):1125–1132, 2019.

129

[50] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[51] Nhi-Thao Tran, Viet-Thang Luong, Ngan Luu-Thuy Nguyen, and Minh-Quoc

Nghiem. Effective attention-based neural architectures for sentence compres-

sion with bidirectional long short-term memory. In Proceedings of the Seventh

Symposium on Information and Communication Technology, pages 123–130,

2016.

[52] Ritambhara Singh, Jack Lanchantin, Arshdeep Sekhon, and Yanjun Qi. Attend

and predict: Understanding gene regulation by selective attention on chromatin.

Advances in neural information processing systems, 30, 2017.

[53] Zhen Shen, Wenzheng Bao, and De-Shuang Huang. Recurrent neural network

for predicting transcription factor binding sites. Scientific reports, 8(1):1–10,

2018.

[54] Sungjoon Park, Yookyung Koh, Hwisang Jeon, Hyunjae Kim, Yoonsun Yeo, and

Jaewoo Kang. Enhancing the interpretability of transcription factor binding site

prediction using attention mechanism. Scientific reports, 10(1):1–10, 2020.

[55] Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learn-

ing: new computational modelling techniques for genomics. Nature Reviews

Genetics, 20(7):389–403, 2019.

[56] Qunhua Li, James B Brown, Haiyan Huang, and Peter J Bickel. Measuring

reproducibility of high-throughput experiments. The annals of applied statistics,

5(3):1752–1779, 2011.

[57] Samuel J Sholtis and James P Noonan. Gene regulation and the origins of

human biological uniqueness. Trends in genetics, 26(3):110–118, 2010.
130

[58] Thomas Derrien, Jordi Estellé, Santiago Marco Sola, David G Knowles,

Emanuele Raineri, Roderic Guigó, and Paolo Ribeca. Fast computation and

applications of genome mappability. PloS one, 7(1):e30377, 2012.

[59] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements

in the human genome. Nature, 489(7414):57, 2012.

[60] Pedro Madrigal and Pawe l Krajewski. Current bioinformatic approaches to

identify dnase i hypersensitive sites and genomic footprints from dnase-seq data,

2012.

[61] Fidel Ramı́rez, Friederike Dündar, Sarah Diehl, Björn A Grüning, and Thomas

Manke. deeptools: a flexible platform for exploring deep-sequencing data. Nu-

cleic acids research, 42(W1):W187–W191, 2014.

[62] Katherine S Pollard, Melissa J Hubisz, Kate R Rosenbloom, and Adam Siepel.

Detection of nonneutral substitution rates on mammalian phylogenies. Genome

research, 20(1):110–121, 2010.

[63] Xi Chen, Bowen Yu, Nicholas Carriero, Claudio Silva, and Richard Bonneau.

Mocap: large-scale inference of transcription factor binding sites from chromatin

accessibility. Nucleic acids research, 45(8):4315–4329, 2017.

[64] Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for

learning sentence similarity. In Proceedings of the AAAI conference on artificial

intelligence, volume 30, 2016.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

131

[66] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[67] Hongyang Li, Daniel Quang, and Yuanfang Guan. Anchor: trans-cell type

prediction of transcription factor binding sites. Genome research, 29(2):281–

292, 2019.

[68] A Lando, IE Vorontsov, V Boeva, GV Sapunov, IA Eliseeva, VJ Makeev, and

IV Kulakovskiy. Preselection of training cell types improves prediction of tran-

scription factor binding sites. 2016, 2016.

[69] Timothy L Bailey, Charles Elkan, et al. Fitting a mixture model by expectation

maximization to discover motifs in bipolymers. 1994.

[70] Aziz Khan, Oriol Fornes, Arnaud Stigliani, Marius Gheorghe, Jaime A Castro-

Mondragon, Robin Van Der Lee, Adrien Bessy, Jeanne Cheneby, Shubhada R

Kulkarni, Ge Tan, et al. Jaspar 2018: update of the open-access database

of transcription factor binding profiles and its web framework. Nucleic acids

research, 46(D1):D260–D266, 2018.

[71] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard

Hovy. Hierarchical attention networks for document classification. In Proceed-

ings of the 2016 conference of the North American chapter of the association

for computational linguistics: human language technologies, pages 1480–1489,

2016.

[72] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory

networks. Nature reviews Molecular cell biology, 9(10):770–780, 2008.

[73] Eran Segal, Michael Shapira, Aviv Regev, Dana Pe’er, David Botstein, Daphne

Koller, and Nir Friedman. Module networks: identifying regulatory modules and

132

their condition-specific regulators from gene expression data. Nature genetics,

34(2):166–176, 2003.

[74] Alex Greenfield, Christoph Hafemeister, and Richard Bonneau. Robust data-

driven incorporation of prior knowledge into the inference of dynamic regulatory

networks. Bioinformatics, 29(8):1060–1067, 2013.

[75] Simon Rogers and Mark Girolami. A bayesian regression approach to the

inference of regulatory networks from gene expression data. Bioinformatics,

21(14):3131–3137, 2005.

[76] Patrick E Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi.

Information-theoretic inference of large transcriptional regulatory networks.

EURASIP journal on bioinformatics and systems biology, 2007:1–9, 2007.

[77] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794, 2016.

[78] Jinpu Jin, Feng Tian, De-Chang Yang, Yu-Qi Meng, Lei Kong, Jingchu Luo,

and Ge Gao. Planttfdb 4.0: toward a central hub for transcription factors and

regulatory interactions in plants. Nucleic acids research, page gkw982, 2016.

[79] Hui Hu, Ya-Ru Miao, Long-Hao Jia, Qing-Yang Yu, Qiong Zhang, and An-Yuan

Guo. Animaltfdb 3.0: a comprehensive resource for annotation and prediction

of animal transcription factors. Nucleic acids research, 47(D1):D33–D38, 2019.

[80] Zhenjia Wang, Mete Civelek, Clint L Miller, Nathan C Sheffield, Michael J

Guertin, and Chongzhi Zang. Bart: a transcription factor prediction tool with

query gene sets or epigenomic profiles. Bioinformatics, 34(16):2867–2869, 2018.

133

[81] Pietro Di Lena, Claudia Sala, Andrea Prodi, and Christine Nardini. Miss-

ing value estimation methods for dna methylation data. Bioinformatics,

35(19):3786–3793, 2019.

[82] Cosmin Lazar, Laurent Gatto, Myriam Ferro, Christophe Bruley, and Thomas

Burger. Accounting for the multiple natures of missing values in label-free

quantitative proteomics data sets to compare imputation strategies. Journal of

proteome research, 15(4):1116–1125, 2016.

[83] Tim Van den Bulcke, Koenraad Van Leemput, Bart Naudts, Piet van Remortel,

Hongwu Ma, Alain Verschoren, Bart De Moor, and Kathleen Marchal. Syntren:

a generator of synthetic gene expression data for design and analysis of structure

learning algorithms. BMC bioinformatics, 7(1):1–12, 2006.

[84] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs

in the transcriptional regulation network of escherichia coli. Nature genetics,

31(1):64–68, 2002.

[85] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and François Képès. Topologi-

cal and causal structure of the yeast transcriptional regulatory network. Nature

genetics, 31(1):60–63, 2002.

[86] Jie Hou, Xiaowen Shi, Chen Chen, Md Soliman Islam, Adam F Johnson, Tat-

suo Kanno, Bruno Huettel, Ming-Ren Yen, Fei-Man Hsu, Tieming Ji, et al.

Global impacts of chromosomal imbalance on gene expression in arabidopsis and

other taxa. Proceedings of the National Academy of Sciences, 115(48):E11321–

E11330, 2018.

[87] Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts.

Inferring regulatory networks from expression data using tree-based methods.

PloS one, 5(9):e12776, 2010.
134

[88] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan

Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H

Morris, Peer Bork, et al. String v11: protein–protein association networks with

increased coverage, supporting functional discovery in genome-wide experimen-

tal datasets. Nucleic acids research, 47(D1):D607–D613, 2019.

[89] Andrea Franceschini et al. Stringdb package vignette. Nucleic Acids Res, 2013.

[90] Jesse Eickholt and Jianlin Cheng. Predicting protein residue–residue contacts

using deep networks and boosting. Bioinformatics, 28(23):3066–3072, 2012.

[91] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S

Marks, Chris Sander, Riccardo Zecchina, José N Onuchic, Terence Hwa, and

Martin Weigt. Direct-coupling analysis of residue coevolution captures native

contacts across many protein families. Proceedings of the National Academy of

Sciences, 108(49):E1293–E1301, 2011.

[92] Magnus Ekeberg, Cecilia Lövkvist, Yueheng Lan, Martin Weigt, and Erik Au-

rell. Improved contact prediction in proteins: using pseudolikelihoods to infer

potts models. Physical Review E, 87(1):012707, 2013.

[93] Dan Agranoff, Delmiro Fernandez-Reyes, Marios C Papadopoulos, Sergio A

Rojas, Mark Herbster, Alison Loosemore, Edward Tarelli, Jo Sheldon, Achim

Schwenk, Richard Pollok, et al. Identification of diagnostic markers for tuber-

culosis by proteomic fingerprinting of serum. The Lancet, 368(9540):1012–1021,

2006.

[94] Tianqi Wu, Zhiye Guo, Jie Hou, and Jianlin Cheng. Deepdist: real-value inter-

residue distance prediction with deep residual convolutional network. BMC

bioinformatics, 22(1):1–17, 2021.

135

[95] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In International conference on

machine learning, pages 2048–2057. PMLR, 2015.

[96] Yan Hu, Ziqiang Wang, Hailin Hu, Fangping Wan, Lin Chen, Yuanpeng Xiong,

Xiaoxia Wang, Dan Zhao, Weiren Huang, and Jianyang Zeng. Acme: pan-

specific peptide–mhc class i binding prediction through attention-based deep

neural networks. Bioinformatics, 35(23):4946–4954, 2019.

[97] Joe G Greener, Shaun M Kandathil, and David T Jones. Deep learning extends

de novo protein modelling coverage of genomes using iteratively predicted struc-

tural constraints. Nature communications, 10(1):1–13, 2019.

[98] Chengxin Zhang, Wei Zheng, SM Mortuza, Yang Li, and Yang Zhang. Deepmsa:

constructing deep multiple sequence alignment to improve contact prediction

and fold-recognition for distant-homology proteins. Bioinformatics, 36(7):2105–

2112, 2020.

[99] Milot Mirdita, Lars Von Den Driesch, Clovis Galiez, Maria J Martin, Jo-

hannes Söding, and Martin Steinegger. Uniclust databases of clustered and

deeply annotated protein sequences and alignments. Nucleic acids research,

45(D1):D170–D176, 2017.

[100] Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets

in linear time. Nature communications, 9(1):1–8, 2018.

[101] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding.

Hhblits: lightning-fast iterative protein sequence searching by hmm-hmm align-

ment. Nature methods, 9(2):173–175, 2012.

136

[102] Jaina Mistry, Robert D Finn, Sean R Eddy, Alex Bateman, and Marco Punta.

Challenges in homology search: Hmmer3 and convergent evolution of coiled-coil

regions. Nucleic acids research, 41(12):e121–e121, 2013.

[103] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance nor-

malization: The missing ingredient for fast stylization. arXiv preprint

arXiv:1607.08022, 2016.

[104] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Icml, 2010.

[105] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and

Yoshua Bengio. Maxout networks. In International conference on machine

learning, pages 1319–1327. PMLR, 2013.

[106] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

7132–7141, 2018.

[107] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

[108] David E Kim, Cindy Fisher, and David Baker. A breakdown of symmetry in the

folding transition state of protein l. Journal of molecular biology, 298(5):971–

984, 2000.

[109] Stefano Gianni, Nicholas R Guydosh, Faaizah Khan, Teresa D Caldas, Ugo

Mayor, George WN White, Mari L DeMarco, Valerie Daggett, and Alan R

Fersht. Unifying features in protein-folding mechanisms. Proceedings of the

National Academy of Sciences, 100(23):13286–13291, 2003.
137

[110] Jose C Mart́ınez and Luis Serrano. The folding transition state between sh3

domains is conformationally restricted and evolutionarily conserved. Nature

structural biology, 6(11):1010–1016, 1999.

[111] Hiroshi Wako and Haruo Abe. Characterization of protein folding by a ϕ-value

calculation with a statistical-mechanical model. Biophysics and physicobiology,

13:263–279, 2016.

[112] Kresten Lindorff-Larsen, Emanuele Paci, Luis Serrano, Christopher M Dobson,

and Michele Vendruscolo. Calculation of mutational free energy changes in

transition states for protein folding. Biophysical journal, 85(2):1207–1214, 2003.

[113] Michele Vendruscolo, Emanuele Paci, Christopher M Dobson, and Martin

Karplus. Three key residues form a critical contact network in a protein folding

transition state. Nature, 409(6820):641–645, 2001.

[114] Konstantin Arnold, Lorenza Bordoli, Jürgen Kopp, and Torsten Schwede. The

swiss-model workspace: a web-based environment for protein structure homol-

ogy modelling. Bioinformatics, 22(2):195–201, 2006.

[115] Jinbo Xu. Distance-based protein folding powered by deep learning. Proceedings

of the National Academy of Sciences, 116(34):16856–16865, 2019.

[116] Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey

Ovchinnikov, and David Baker. Improved protein structure prediction using

predicted interresidue orientations. Proceedings of the National Academy of

Sciences, 117(3):1496–1503, 2020.

[117] Björn Wallner and Arne Elofsson. Prediction of global and local model quality in

casp7 using pcons and proq. Proteins: Structure, Function, and Bioinformatics,

69(S8):184–193, 2007.

138

[118] Liam J McGuffin and Daniel B Roche. Rapid model quality assessment for

protein structure predictions using the comparison of multiple models without

structural alignments. Bioinformatics, 26(2):182–188, 2010.

[119] Kliment Olechnovič and Česlovas Venclovas. Voromqa: Assessment of protein

structure quality using interatomic contact areas. Proteins: Structure, Func-

tion, and Bioinformatics, 85(6):1131–1145, 2017.

[120] Mikhail Karasikov, Guillaume Pagès, and Sergei Grudinin. Smooth orientation-

dependent scoring function for coarse-grained protein quality assessment. Bioin-

formatics, 35(16):2801–2808, 2019.

[121] Renzhi Cao, Debswapna Bhattacharya, Jie Hou, and Jianlin Cheng. Deepqa:

improving the estimation of single protein model quality with deep belief net-

works. BMC bioinformatics, 17(1):1–9, 2016.

[122] David Menéndez Hurtado, Karolis Uziela, and Arne Elofsson. Deep transfer

learning in the assessment of the quality of protein models. arXiv preprint

arXiv:1804.06281, 2018.

[123] Federico Baldassarre, David Menéndez Hurtado, Arne Elofsson, and Hossein

Azizpour. Graphqa: protein model quality assessment using graph convolu-

tional networks. Bioinformatics, 37(3):360–366, 2021.

[124] Guillaume Pagès, Benoit Charmettant, and Sergei Grudinin. Protein model

quality assessment using 3d oriented convolutional neural networks. Bioinfor-

matics, 35(18):3313–3319, 2019.

[125] Naozumi Hiranuma, Hahnbeom Park, Minkyung Baek, Ivan Anishchenko, Jus-

tas Dauparas, and David Baker. Improved protein structure refinement guided

by deep learning based accuracy estimation. Nature communications, 12(1):1–

11, 2021.
139

[126] Sohee Kwon, Jonghun Won, Andriy Kryshtafovych, and Chaok Seok. Assess-

ment of protein model structure accuracy estimation in casp14: Old and new

challenges. Proteins: Structure, Function, and Bioinformatics, 89(12):1940–

1948, 2021.

[127] Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede.

lddt: a local superposition-free score for comparing protein structures and mod-

els using distance difference tests. Bioinformatics, 29(21):2722–2728, 2013.

[128] Taco Cohen and Max Welling. Group equivariant convolutional networks. In

International conference on machine learning, pages 2990–2999. PMLR, 2016.

[129] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J

Brostow. Harmonic networks: Deep translation and rotation equivariance. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5028–5037, 2017.

[130] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Ste-

fan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A

continuous-filter convolutional neural network for modeling quantum interac-

tions. Advances in neural information processing systems, 30, 2017.

[131] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-

transformers: 3d roto-translation equivariant attention networks. Advances in

Neural Information Processing Systems, 33:1970–1981, 2020.

[132] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant

graph neural networks. In International conference on machine learning, pages

9323–9332. PMLR, 2021.

[133] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li,

Kai Kohlhoff, and Patrick Riley. Tensor field networks: Rotation-and
140

translation-equivariant neural networks for 3d point clouds. arXiv preprint

arXiv:1802.08219, 2018.

[134] Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal

Zielinski, Augustin Ž́ıdek, Alex Bridgland, Andrew Cowie, Clemens Meyer,

Agata Laydon, et al. Highly accurate protein structure prediction for the human

proteome. Nature, 596(7873):590–596, 2021.

[135] David S Goodsell, Christine Zardecki, Luigi Di Costanzo, Jose M Duarte,

Brian P Hudson, Irina Persikova, Joan Segura, Chenghua Shao, Maria Voigt,

John D Westbrook, et al. Rcsb protein data bank: Enabling biomedical research

and drug discovery. Protein Science, 29(1):52–65, 2020.

[136] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein

sequence searching for the analysis of massive data sets. Nature biotechnology,

35(11):1026–1028, 2017.

[137] Xavier Robin, Juergen Haas, Rafal Gumienny, Anna Smolinski, Gerardo

Tauriello, and Torsten Schwede. Continuous automated model evaluation

(cameo)—perspectives on the future of fully automated evaluation of struc-

ture prediction methods. Proteins: Structure, Function, and Bioinformatics,

89(12):1977–1986, 2021.

[138] Ilia Igashov, Nikita Pavlichenko, and Sergei Grudinin. Spherical convolutions

on molecular graphs for protein model quality assessment. Machine Learning:

Science and Technology, 2(4):045005, 2021.

[139] Kliment Olechnovič and Česlovas Venclovas. Voronota: a fast and reliable tool

for computing the vertices of the voronoi diagram of atomic balls. Journal of

computational chemistry, 35(8):672–681, 2014.

141

[140] Alex Morehead, Chen Chen, and Jianlin Cheng. Geometric transformers for

protein interface contact prediction. arXiv preprint arXiv:2110.02423, 2021.

142

VITA

Chen Chen received his Bachelor’s degree from Nanjing University at 2011, and

Masters degree from Northeastern University at 2016. He started his Ph.D studies

in the Department of Computer Science at University of Missouri-Columbia at fall of

2017. He is interested in developing and applying machine learning and deep learn-

ing techniques to address the various bioinformatics problems. He worked on gene

regulatory network prediction as the first topic in Ph.D study, he is also interested in

other research topics, such as protein structural modeling and exploit the geometric

properties of the proteins in deep learning models.

143

