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TRACING CAT DOMESTICATION THROUGH POPULATION GENETICS AND 

CAPTURING GENOTYPE-BY-ENVIRONMENT INTERACTIONS IN US BEEF 

CATTLE GENOMIC PREDICTIONS 

Sara M. Nilson 

Dr. Jared Decker, Dissertation Supervisor 

ABSTRACT 

 Cat domestication initiated as a symbiotic relationship between wildcats and the 

peoples of developing agrarian societies in the Fertile Crescent. To refine the sites of cat 

domestication, over 1,000 random-bred cats of primarily Eurasian descent were 

genotyped. The overall cat population structure suggested a single worldwide population 

with significant isolation by distance of peripheral subpopulations with decreased 

heterozygosity as genetic distance from the proposed cat progenitor’s (F.s. lybica) natural 

habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, 

spreading to nearby islands, down the Levantine coast and into the Nile Valley. 

 Climate change is driving the need for incorporating genotype-by-environment 

interactions in beef cattle genomic prediction models as animals frequently re-rank across 

environments. For United States Gelbvieh and Red Angus beef cattle, genotype-by-

environmental inclusive models were compared to the current national genomic 

evaluation. Genotype-by-environment effects contributed ~3%-11% of the phenotypic 

variation to growth traits. Maternal and direct genotype-by-environment effects varied 

across growth traits. With slightly higher accuracies, the current national genomic 

evaluation models tend to outperform the genotype-by-environment models.
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University of Missouri, Columbia, MO 65211, USA 

 

Abstract 

Cat domestication initiated as a symbiotic relationship between wildcats (Felis 

silvestris subspecies) and the peoples of developing agrarian societies in the Fertile 

Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, 

bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans 

benefited from the cat’s predation on these vermin. To refine the sites of cat 

domestication, over 1,000 random-bred cats of primarily Eurasian descent were 

genotyped for single nucleotide variants and short tandem repeats. The overall cat 

population structure suggested a single worldwide population with significant isolation 

by distance of peripheral subpopulations. The cat population heterozygosity decreased as 

genetic distance from the proposed cat progenitor’s (F.s. lybica) natural habitat increased. 

Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby 

islands, down the Levantine coast and into the Nile Valley. Cat population diversity 

supports the migration patterns of humans and other symbiotic species. 
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Introduction 

The domestication and the geographical origins of the household cat (Felis 

silvestris catus; Felis catus (Kitchener et al., 2017)) has been partially reconstructed from 

archaeological discoveries, artistic works, cultural changes, and genetics of ancient and 

modern felids. The cat’s domestication process likely initiated ~12,000 years ago in the 

Fertile Crescent with initial contact between Felis silvestris lybica and farmers. Grain 

stores and refuse from developing societies attracted mice which led to a synanthropic 

trinity between humans, rodents, and felids (Vigne et al., 2004; Driscoll et al., 2007; 

Faure and Kitchener, 2009; Zeder, 2012; Ottoni et al., 2017; Cucchi et al., 2020). Feline 

remains, buried alongside human remains, were discovered at an archeological site dating 

to ~9,500 years ago, suggesting humans had formed a relationship with cats and 

transported cats  to Cyprus (Vigne et al., 2004, 2012). The earliest remains of suggested 

tamed cats in Egypt date to the fourth millennium BC (Baldwin, 1975; Málek, 1993; Van 

Neer et al., 2014) and suggest felines became integral to Egyptian culture, culminating in 

thousands of mummified cats as votive offerings (Baldwin, 1975; Faure and Kitchener, 

2009; Kurushima et al., 2012; Baca et al., 2018). Beginning in the first millennium BC, 

progeny of the Egyptian tamed cats were spread through trade and maritime routes by 

Phoenician, Carthaginian, Greek, Etruscan “cat-thief” traders and later by the Romans 

(Baldwin, 1975; Faure and Kitchener, 2009; Ottoni et al., 2017).  

The first occurrence of the mitochondrial haplotype A* of a F.s. lybica/catus 

species was reported in Bulgaria at ~6,400 years ago that is prior to the occurrence in 

Poland about 3,400 - 2,500 years ago, thereby, extending F.s. lybica/catus into a shared 

niche with F.s. silvestris from Anatolia to Eastern Europe (Krajcarz et al., 2016, 2020; 

https://paperpile.com/c/w4mhnq/TFed
https://paperpile.com/c/w4mhnq/1ssm+sCxg+3iMJ+2KSJ+oMZe+la1p
https://paperpile.com/c/w4mhnq/1ssm+sCxg+3iMJ+2KSJ+oMZe+la1p
https://paperpile.com/c/w4mhnq/sCxg+K1gX
https://paperpile.com/c/w4mhnq/OLjv+RPE1+XYQd
https://paperpile.com/c/w4mhnq/OLjv+RPE1+XYQd
https://paperpile.com/c/w4mhnq/OLjv+3iMJ+cAin+CVVl
https://paperpile.com/c/w4mhnq/OLjv+3iMJ+cAin+CVVl
https://paperpile.com/c/w4mhnq/OLjv+3iMJ+2KSJ
https://paperpile.com/c/w4mhnq/CVVl+nLjG+QhH3+2KSJ
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Ottoni et al., 2017; Baca et al., 2018). Archeological evidence suggests the domestication 

process of F.s. lybica individuals initiated in the Near East with agrarian societal 

development within the Fertile Crescent and the Levant, intensified in Egypt along with 

cultural worships, leading to human migration and trade facilitating the domesticated 

feline dispora (Vigne et al., 2004; Faure and Kitchener, 2009; Van Neer et al., 2014; 

Ottoni et al., 2017). 

 To genetically assess wildcats, feral domestic, and fancy-breed domestic cat 

relationships, a phylogenetic study was conducted with mitochondrial DNA (mtDNA) 

sequences of 2,604 base pairs from ND5 and ND6, and 36 short tandem repeats (STR) 

genotypes (Driscoll et al., 2007). A singular domestication origin in the Near East, 

arising from F.s. lybica was suggested, however, a limited sampling of wildcat 

subspecies was available. An expanded study of random-bred, domestic breeds, and 

wildcats with STR data reconfirmed the most likely origin of domestication was the 

Mediterranean Basin; however, four significant genetic distinctions were identified 

amongst 13 Eurasia cat populations (Lipinski et al., 2008) based on allele frequencies and 

Bayesian clustering, particularly for the Far eastern, Mediterranean, Western European 

and Kenyan cats. Studies of the mtDNA control region variation in random-bred cats 

have also supported four to five major cat lineages with 12 common mitotypes 

representing maternal lineage diversity (Grahn et al., 2011). A mtDNA study of mainly 

ancient and some modern felid samples from Europe, Africa, and Asia also traced 

modern felines to multiple F.s. lybica lineages within the Fertile Crescent (Ottoni et al., 

2017). While these previous studies all support the domesticated F.s. catus arose from 

F.s. lybica originating in the Near East, cats from other Eurasia regions of early 

https://paperpile.com/c/w4mhnq/CVVl+nLjG+QhH3+2KSJ
https://paperpile.com/c/w4mhnq/RPE1+sCxg+3iMJ+2KSJ
https://paperpile.com/c/w4mhnq/RPE1+sCxg+3iMJ+2KSJ
https://paperpile.com/c/w4mhnq/la1p
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/mJ3N
https://paperpile.com/c/w4mhnq/2KSJ
https://paperpile.com/c/w4mhnq/2KSJ


6 
 

agricultural development, including the Near and Middle East as well as the Indus Valley 

of Pakistan, have not been examined in the context of contributing to feline 

domestication, which may account for the significant genetic distinction between Eastern 

and Western cat populations found in additional studies (Lipinski et al., 2008). Recent 

studies of Chinese random-bred cats and the local wildcat species/subspecies (F.s. bieti) 

suggests the noted introgression of this wildcat with random-bred cats in China does not 

explain the distinctive genetics of Far Eastern and Western European random-bred cats; 

further, the agricultural center near the middle Yangtze and Yellow Rivers is likely not a 

second domestication site for cats (Yu et al., 2021).  

Although European colonization occurred only a few hundred years ago, regional 

cat populations tend to represent the initial domesticates of colonization and not unique 

or highly admixed populations, such as the cats in Australia (Spencer et al., 2015; Koch 

et al., 2016) as well as, North America and Nairobi, Kenya that are both genetically most 

similar to cats of Western Europe (Lipinski et al., 2008). Interestingly, cats of 

Madagascar suggest genetic similarity with cats from the Arabia Sea trade routes, namely 

the Kenyan islands of Lamu and Pate, Oman, Kuwait and Iran and not cats imported by 

more recent colonists from France (Sauther et al., 2020), further suggesting demographic 

stasis and the original influx of cats to a region may have the strongest influence on 

genetic signatures, rather than more recent migrants. Ancient DNA studies often suggest 

the converse; modern populations have no power to infer the dynamics of temporal 

populations movements (see reviews, (Freedman and Wayne, 2017; Frantz et al., 2020)). 

 Cat domestication is likely commensal with agricultural development, and with 

the onset of the Holocene ~10,000 years ago agriculture developed independently at 

https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/eWh3
https://paperpile.com/c/w4mhnq/0WhD+va3A
https://paperpile.com/c/w4mhnq/0WhD+va3A
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/YToP
https://paperpile.com/c/w4mhnq/E43E+gpR3
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perhaps several different global regions: the Near East likely the earliest, followed 

closely by agricultural sites in China, Southeast Asia and later in the Americas 

(Bellwood, 2005). The advent of agriculture altered human culture from nomadic hunter-

gatherers to more sedentary lifestyles, leading to the establishment of increasingly larger 

settlements. Archeological discoveries of human remains and artifacts in the Near East 

and the middle Yangtze and Yellow Rivers in China indicate the earliest emergence of 

complex civilizations (Baldwin, 1975; Bar-Yosef, 1998; Hu et al., 2014). The Indus 

Valley of modern-day Pakistan is also argued as a historical center for agricultural 

development (Bellwood, 2005).This current investigation of random-bred cats focused on 

population sampling near regions of early human agricultural developments, with 

extensive representation from the Near/Middle East, Pakistan, and near the Yellow River 

in China, with the addition of populations across Eurasia, from Southeast Asia to Great 

Britain to clarify historical cat population dynamics. 

 Random-bred cats represent an intermediate step in cat domestication, between 

wildcats and highly selected cat breeds, and since cats have and continue to perform their 

key role of vermin control without human assistances, random-bred cats may have 

escaped intense selective pressures due to breed formation, such as the strong selection 

pressure for particular phenotypes (Kurushima et al., 2013). While modern populations 

only represent the latest epoch of migration and admixture (Pickrell and Reich, 2014), 

random-bred cats likely represent clearer patterns of historical diversity than fancy-breed 

cats. The historical time period reflected by random-bred cat genetic diversity is 

unknown and likely variable. This study investigated the genetic diversity of modern cat 

populations to determine if current genetic distinctions are discrete, suggesting possible 

https://paperpile.com/c/w4mhnq/q7VK
https://paperpile.com/c/w4mhnq/kxTv+ffd3+OLjv
https://paperpile.com/c/w4mhnq/q7VK
https://paperpile.com/c/w4mhnq/Rdof
https://paperpile.com/c/w4mhnq/wqdT
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secondary genetic progenitors, or a continuum of diversity from a population center and 

due to isolation by distance. The geographical origins of cat domestication should be near 

the centers of cat genetic diversity.  

Materials and methods 

Sample collection 

Samples were collected via buccal (cheek) swabs, FTA Cards (Whatman 

International Ltd.), gonads from neuter and spay clinics, and donated EDTA whole blood 

samples. DNA isolations were conducted following the manufacturer’s protocol using the 

method appropriate for the sample, including QIAamp DNA blood mini kits, Qiagen 

DNA Easy kits (Qiagen, Valencia, CA, USA), organic extractions or methods for FTA 

card blood spots (Gandolfi et al., 2016). Samples were amplified using whole genome 

amplification (REPLI-g Mini Kit, Qiagen) when DNA quantity was insufficient. 

Cat samples (n = 564) from a previous study included random-bred cats from 17 

locations (Supplementary Table 1,2)(Lipinski et al., 2008). Cats previously labeled in the 

(Lipinski et al., 2008) study as from Singapore were actually from Taiwan. Four African 

wildcat samples (F.s. lybica) were collected as part of other studies from the Western 

Sahara, Morocco, Tunisia and Mauritania, and provided as extracted and whole genome 

amplified DNA (Randi et al., 2001; Lecis et al., 2006; Oliveira et al., 2015). The STR 

data for the cats from Madagascar (n = 27) has been previously published (Sauther et al., 

2020). Domestic cat samples from Portugal and Italy have been previously analyzed, but 

new data was generated for this study (Lecis et al., 2006; Oliveira et al., 2008a, b). 

Additional random-bred cat samples were collected from 30 new countries and additional 

population locations within several countries including Brazil, China, Egypt, Italy, 

https://paperpile.com/c/w4mhnq/KuTi
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/JEb3+q25m+MfbK
https://paperpile.com/c/w4mhnq/YToP
https://paperpile.com/c/w4mhnq/YToP
https://paperpile.com/c/w4mhnq/JEb3+IIUQ+1QRG
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Kenya, South Korea, and the USA (Supplementary Table 1, 2). For the STR analyses, 

1,857 random-bred cats and the four African wildcats were genotyped. For the SNP 

analyses, 969 random-bred cats were genotyped. In addition, the same four African 

wildcats and 10 cats collected as roadkill from Spain, wildcat hybrids, were included in 

the SNP dataset (Oliveira et al., 2008a; Oliveira et al., 2015). 

Genotyping 

Thirty-six autosomal STRs were genotyped following the PCR and analysis 

procedures in a previous study (Lipinski et al., 2008) (Supplementary Table 3). Unlinked 

non-coding autosomal SNPs (n=132) were selected to represent all autosomes from the 

1.9x coverage cat genomic sequence, which were defined by one Abyssinian cat (Pontius 

et al., 2007). The SNPs have been remapped to cat genome assembly Felis Catus 9.0 

(Buckley et al., 2020). Primers were designed with the VeraCode Assay Designer 

software (Illumina Inc., San Diego, CA, USA). The SNPs had a Ranking Score of 0.75 or 

higher (with a mean design score of 0.95) and a Gen Train Score of > 0.55 

(Supplementary Table 4). Golden Gate Assay amplification and BeadXpress reads were 

performed per the manufacturer’s protocol (Illumina Inc.) on 50-500ng of DNA or whole 

genome amplified product. BeadStudio software v. 3.1.3.0 with the Genotyping module 

v. 3.2.23 (llumina Inc.) was used to analyze the data.  In PLINK v1.9, quality control for 

minor allele frequency was set at 0.005 and genotype call rate set at 0.8 (Chang et al., 

2015). The genotyping data for the project are presented in Supplementary Files 1 and 2. 

Principal Component Analysis 

To project the genetic similarities among individuals, principal component 

analysis (PCA) was performed for the SNP data with the smartpca program from the 

https://paperpile.com/c/w4mhnq/IIUQ+MfbK
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/JKng
https://paperpile.com/c/w4mhnq/JKng
https://paperpile.com/c/w4mhnq/0MNH
https://paperpile.com/c/w4mhnq/QkJw
https://paperpile.com/c/w4mhnq/QkJw
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EIGENSOFT package (Patterson et al., 2006). To determine the potential effect of 

population size, 4 different PCAs were generated by grouping individuals by 1) sample 

location, 2) country, 3) sample location with populations randomly reduced to a 

maximum of 25 individuals, and 4) country with populations randomly reduced to a 

maximum of 40 individuals. Due to minimal visual differences, all further SNP analyses 

were conducted on the country grouped data with populations randomly reduced to a 

maximum of 40 individuals per country, for a total of 969 random-bred felines in the 

dataset. A PCA of the STR data set was conducted with the R package adegenet v2.1.1 

(Jombart, 2008). 

Population Structure 

A variational Bayesian framework, fastSTRUCTURE, estimates the admixture 

proportions of individuals when given K populations (Raj et al., 2014). The 

fastSTRUCTURE software proposes two metrics to select and identify K: the K that 

maximizes the log-marginal likelihood lower bound of the dataset (K*) and the minimum 

K that accounts for a cumulative ancestry of 99.99% (KC). fastSTRUCTURE was run 

independently for a K of 1 to 20 for the SNP data. As fastSTRUCTURE is specific to 

biallelic data, a Bayesian clustering method, STRUCTURE v2.3.4, was utilized for STR 

analyses for jointly inferring the K populations represented and probabilistically 

assigning each individual to one or more populations (Pritchard et al., 2000). Overall, 

STRUCTURE was run from a K of 1 to 35 with each independent K run 20 times. Runs 

consisted of a 50,000 burn-in period with 50,000 MCMC replications, and the results 

were averaged with CLUMPP v1.1.2 (Jakobsson and Rosenberg, 2007). Averaged results 

were calculated only for K of 1 to 5 as higher K values did not converge, most likely due 

https://paperpile.com/c/w4mhnq/Vlw5O
https://paperpile.com/c/w4mhnq/4pjP
https://paperpile.com/c/w4mhnq/t6a8
https://paperpile.com/c/w4mhnq/NRPd
https://paperpile.com/c/w4mhnq/nPdP
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to little population structure differences. The 𝚫K distribution was calculated following 

the process implemented by (Evanno et al., 2005) to determine an optimal value of K. 

Admixture 

 To identify admixture and support fastSTRUCTURE and STRUCTURE 

observations, f3 statistics were calculated among all sample location populations 

(significant results presented in Supplementary Table 5) for the SNP dataset, excluding 

small populations and those from the Americas and Australia, with the threepop 

component of the TreeMix program (Pickrell and Pritchard, 2012). 

Isolation by Distance 

 To formally test for isolation by distance at the finest geographical scale, SNP 

populations were reclassified back to their sample location labels to achieve fine-scale 

results (Supplementary Table 6, 7). Due to potential bias, sample locations with less than 

five individuals were removed from further analyses. In addition, sample locations from 

the Americas and Australia were excluded due to strong evidence supporting European 

ancestry and geographic distance being exaggerated due to human-mediated migration. 

The remaining sample location populations had f3 statistics calculated and those 

populations with significant values were removed to reduce noise generated by admixture 

possibly due to migration events (see Admixture). Removal of admixed locations was 

done to strengthen the relationship between modern samples and ancient processes by 

removing more recent admixture events. For the SNP data, 24 sample location 

populations were analyzed, not including the F.s. lybica and the wildcat hybrid 

populations. For the STR data, the same individuals from the SNP dataset were used 

resulting in 22 populations. The two populations lost due to no STR genotypes were from 

https://paperpile.com/c/w4mhnq/rpzDF
https://paperpile.com/c/w4mhnq/aY1fx
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Spain and Portugal. Isolation by distance was tested with a Mantel test between 

calculated matrices of geographical distances (geodesic in meters from latitude and 

longitude coordinates) and Cavalli-Sforza and Edwards chord genetic distances with the 

adegenet and geodist R packages (Jombart, 2008; Karney, 2013; Séré et al., 2017). 

Cavalli-Sforza and Edwards chord genetic distances were used as it was previously 

shown to be a more powerful approach for isolation by distance (Séré et al., 2017). The 

Mantel test results are calculated with a Monte-Carlo test with 999 replicates; the final 

reported correlation and p-value are the average of 1,000 independent Monte-Carlo tests. 

To further explore expansion and migration patterns, isolation by distance was calculated 

among all of the samples collected in the contiguous United States of America for both 

data types. 

Genetic Diversity 

 Observed and expected heterozygosities were calculated for the SNP and STR 

populations used in the isolation by distance analyses, and for all sample locations with 

the adegenet R package (Jombart, 2008). F-statistics were calculated for the SNP and 

STR random-bred cat data on a worldwide population level with the hierfstat R package 

(Goudet, 2005). In addition, FIS statistics were calculated for all sample locations with the 

equation: FIS = 1 - (Hobs / Hexp) (Supplementary Table 8). 

Results 

 The genotyped cat samples consisted of 1,987 random-bred cats (F.s. catus), four 

African wildcats (F.s. lybica), and 10 hybrids of domestic and European wildcats (F.s. 

silvestris)(Oliveira et al., 2015). Random-bred cats (n = 839) genotyped for both SNPs 

and STRs, 1,018 cats were genotyped for STRs only and 130 cats were genotyped for 

https://paperpile.com/c/w4mhnq/4pjP+8cOz+NAtN
https://paperpile.com/c/w4mhnq/NAtN
https://paperpile.com/c/w4mhnq/4pjP
https://paperpile.com/c/w4mhnq/3sDk
https://paperpile.com/c/w4mhnq/MfbK
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SNPs only. The four African wildcats were genotyped for both SNPs and STRs, while the 

10 putative hybrids of domestic and European wildcats were only genotyped for the 

SNPs. The random-bred cats represent over 40 countries including over 85 sampling sites 

(Supplementary Table 1, 2). The distribution of the populations and marker types is 

depicted in Supplementary Figure 1. A majority of sampling was focused on the 

European and Asian continents, particularly the Near East region. 

The principal component analyses (PCA) of the SNP and STR data sets have 

similar patterns (Figure 1). Principal component 1 (PC1) forms a cline of felines from 

Asia and the Middle East (negative values) to Europe and the Americas (positive values) 

with felines from Africa and the Near East central to the peripheral 

populations.  Principal component 2 (PC2) highlights differences between Asian cats 

from the Near East (Cyprus, Israel, Egypt, Jordan, Lebanon, Greece), the Middle East 

(Bahrain, Iran, Iraq, Kuwait, Oman, Pakistan, UAE), and African cats (Tunisia, Kenya, 

Madagascar). In both data sets, the four African wildcats (F.s. lybica), which are 

considered the progenitor sub-species for the domestic cat, are positioned mainly with the 

felines from the Near East, near the center of the PCA space. However, the wildcat 

hybrids in the SNP data set cluster peripherally from the random-bred felines, and appear 

more closely related to the felines from Western Europe, including cats from the 

Americas, which could be due to introgression among the populations.  

The San Marcos Island (Baja California Sur, Mexico) population in the STR data 

set diverges from the European and American felines, reflective of a small, isolated 

island population. Both PCA reflect genetic divergence due to geographic separation, but 

the populations form a cline rather than clear geographical clusters. Southeastern and 
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East Asian cats are located at one periphery of the distribution, as are the Near Eastern 

and Mediterranean cats in another, with the Western European cats in the third. Only 8 - 

9% of the total genetic variability could be attributed to differences among the cat 

populations (STR FST = 0.078; SNP FST = 0.088). On average, the local populations had a 

deficit of heterozygotes of 6-9% (STR FIS = 0.088; SNP FIS = 0.063) whereas the total 

worldwide random-bred population had a deficit of heterozygotes of 15-16% (STR FIT = 

0.159; SNP FIT = 0.146). 

Population structure was estimated across both data sets to gain insight into the 

admixture of the current random-bred felines. For the SNP data, a K of 1 explains 99.99% 

of the variation in the data set (KCstatistic, (Raj et al., 2014)) suggesting the worldwide 

random-bred feline populations do not form genetically distinct clusters, even though the 

cats have been geographically separated. A K of 2 maximizes the log-marginal likelihood 

lower bound (K*statistic, (Raj et al., 2014) separating felines between Western European 

ancestry, and Asian/Middle Eastern/Mediterranean ancestry (Supplementary Figure 2). 

Felines from Africa (Nairobi, Kenya, and Tunis, Tunisia) and Western Europe share 

genetic similarity between the two ancestry assignments. Cats in the Americas have a 

genetic profile typical of Western European cats. The African cats from the eastern 

islands of Kenya, Lamu and Pate, share genetic similarity with cats from the Middle East 

and the Eastern Mediterranean. These similarities are maintained through higher levels of 

sub-structure. The K of 2 ancestry pattern reflects population positionings in the PCA 

along PC1. As the K increases to 3 and 4, the Asian felines reflect PC2, and the sub-

regional distinction appears with East Asia and Southeast Asia (Figures 1, 2 and 

Supplementary Figures 3, 4). As K increases up to 5, the island population of San Marcos 

https://paperpile.com/c/w4mhnq/t6a8
https://paperpile.com/c/w4mhnq/t6a8
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appears distinct, with additional sub-regional assignments within Western Europe, 

Mediterranean, Near/Middle East, and East Asia (Supplementary Figure 4). Countries 

such as India and Sri Lanka appear to be highly admixed. The four African wildcats are 

similar to a typical Western European population and the putative hybrids of domestic 

and European wildcats are a more cohesive grouping in which Western European cats 

share ancestry. 

Similar population structuring is depicted by the STR analyses. For the STRs, the 

modal value of the 𝚫K distribution was at K = 2. The ancestral populations were split 

between Western Europe versus Middle East/Asia, which is concordant with the SNP 

data (Supplementary Figure 5). Random-bred cats from Africa (South Africa, Nairobi, 

Kenya, and Tunis, Tunisia) and the Near East were mixed almost equally between these 

two ancestry assignments. As K increases, more geographical separation is depicted: K of 

3 distinguishes Asian cats from the Mediterranean / Near / Middle Eastern cats, a K of 4 

separates the Mediterranean/Near East cats from the Middle East felids, and a K of 5 

brings out the island population from San Marcos (Figure 3 and Supplementary Figures 

6, 7). Overall, the population structure between the SNPs and STRs are concordant and 

consistent with the patterns observed in the PCA (Engelhardt and Stephens, 2010), 

supporting the inference that the worldwide random-bred subpopulations are a single 

population with genetic differentiation due to separation by geographic distance . The 

most observable difference between SNPs and STRs is the SNPs differentiate Southeast 

and Eastern Asian cats at K = 4 while STRs maintain the Asian cats as a stronger cluster 

and differentiate Mediterranean / Near Eastern cats from the cats of the Middle East 

(Supplementary Figures 3, 6).  

https://paperpile.com/c/w4mhnq/aZlv
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The allele frequencies of the cat populations were analyzed to calculate f3 statistics 

with corresponding z-scores to evaluate possible admixture (Supplementary Table 

5)(Reich et al., 2009). There are 234 of 51,888 comparisons with a z-score ≤ -2 (0.45%), 

supporting admixture within the 22 target populations. The sample population from 

Lahore, Pakistan has the lowest z-score of -4.9 and 56 significant z-scores with other 

populations that are highly indicative of admixture. Populations most frequently 

contributing to significant admixture as parent (i.e., donor) populations include: Thailand, 

Vietnam, the wildcat hybrids, and Asyut, Egypt. 

Since population structure analyses suggest a single population with possible 

differentiation due to geographic separation, isolation by distance was formally tested 

among the sample location populations in Europe, Africa, Near East, Middle East, and 

Asia for which evidence of admixture was not observed from f3 statistics (see Admixture 

and Supplementary Table 5). When the population pairwise geographic distances are 

plotted against the Cavalli-Sforza and Edwards chord genetic distances (Séré et al., 

2017), a clear trend is observed; as the geographic distance increases between 

populations the genetic distance also increases (Figure 4 and Supplementary Table 6, 7). 

The Mantel test between distance matrices resulted in a positive correlation of 0.447 with 

a p-value of 0.001 for the SNP data, and a positive correlation of 0.302 with a p-value of 

0.0076 for the STR data. When the admixed populations were included in a separate 

Mantel test for isolation by distance, the SNP data had a positive correlation of 0.369 

with a p-value of 0.001, and the STR data had a positive correlation of 0.23 with a p-

value of 0.0025. The ~10% decrease in correlations between genetic and geographic 

distance when the admixed populations were included could be due to the increased 

https://paperpile.com/c/w4mhnq/kHXn
https://paperpile.com/c/w4mhnq/NAtN
https://paperpile.com/c/w4mhnq/NAtN
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genetic noise from migrants. Conversely, isolation by distance analyses were not 

significant (SNP p-value =0.871; STR p-value = 0.405) for random-bred cats in the 

contiguous United States of America, suggesting multiple importations of felines into the 

USA and little geographical structure in the genomic data. 

Based on the significant isolation by distance, observed and expected 

heterozygosities were calculated for each sample site. When the observed heterozygosity 

is plotted against the genetic distance from the domestic progenitor, F.s. lybica, a 

negative relationship is identified; as the genetic distance from F.s. lybica increases the 

observed heterozygosity decreases (Figure 5). There is a negative correlation for the SNP 

data of -0.57 with a p-value of 0.0034 while the STR correlation is -0.33 with a p-value 

of 0.13. To explore the geographic and observed heterozygosity relationship further, the 

populations were plotted on a map to identify an epicenter of high diversity that decreases 

outwards in a radial fashion as expected from a center of domestication (Figure 6 and 

Supplementary Table 8). The centers of diversity are focused in the Mediterranean side of 

the Fertile Crescent, including the Levant and expanding into the Nile Valley and 

Mesopotamia. Cat populations with high heterozygosity are also identified in Agra, India, 

Sri Lanka, and the island population of Majorca, Spain (Supplementary Table 8). 

Discussion 

 Throughout the world, the domestic cat is a beloved and charismatic companion 

animal. Although as popular of a pet as the domestic dog, the origins of the domestic cat 

are less studied. Random-bred cats (i.e., feral, moggie, alley, house, community, street or 

barn cats) remain a behaviorally semi-domesticated species that can quickly revert to a 

wild state. While they have a low survival rate in the wild, their high reproductive 
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capacity increases population size (Nutter et al., 2004). As apex predators, this reversion 

capability has often been exploited to eradicate invasive animals from island populations, 

whereas later, the cats themselves became invasive alien species (Rendall et al., 2021; 

Plein et al., 2022).  

Here, the random-bred cats of the study represent semi-domesticated animals that lie 

somewhere between “habituation” and “commercial breeds and pets” on the commensal 

domestication trajectory (Zeder, 2012; Larson and Burger, 2013). For cats, human 

assistance is not necessarily required for mating, shelter, safety or the procurement of 

food (Driscoll et al., 2009). The cat’s semi-domesticated behavioral state is consistent 

with weaker human-influenced artificial selection pressures on the species. Although cats 

may have been domesticated at approximately the same time as many agricultural 

species, ~8,000 - 10,000 years ago, cats have scavenged refuge and curbed vermin 

populations during their symbiotic relationship with humans (Clutton-Brock, 1988). 

Therefore, for the past several thousand years, cats have not been transformed drastically 

in form or function, unlike dogs and economically important species. Only for the past 

~200 years, cat breeds, not random-bred cats, have been selected for mainly monogenic 

aesthetic traits undergoing novelty selection on a small number of loci and likely a small 

portion of the genome. Minor structural differences and no functional behavioral 

differences were present in cats when the first cat show took place in 1871 (‘The Cat-

Show’, 1871). The semi-domesticated nature of random-bred cats makes them an 

excellent resource to understand cat population origins, domestication, and dispersal. 

Single nucleotide polymorphism (SNP) and STR genotypes of an extended and 

fine-scale sampling of Eurasian cats demonstrated domestication most likely occurred in 

https://paperpile.com/c/w4mhnq/DJbw
https://paperpile.com/c/w4mhnq/UEBg+gpGi
https://paperpile.com/c/w4mhnq/UEBg+gpGi
https://paperpile.com/c/w4mhnq/12t3+oMZe
https://paperpile.com/c/w4mhnq/2wMR
https://paperpile.com/c/w4mhnq/oSYM
https://paperpile.com/c/w4mhnq/QOOe
https://paperpile.com/c/w4mhnq/QOOe
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the concentrated region of the Fertile Crescent. The focused sampling plan was to test 

alternative hypotheses of multiple domestication centers in 1) Near East, 2) China, and 3) 

Southeast Asia against the null hypothesis of a single domestication center. This focused 

sampling could also identify distinct populations indicative of admixture with wild 

relatives. However, despite this intensive sampling, only the Near East is suggested as a 

site of cat domestication indicating a pattern of dispersal outwards from regions like the 

Levant and the Nile Valley, while elsewhere in the world lacks this pattern (Vigne et al., 

2004; Driscoll et al., 2007; Lipinski et al., 2008).  

For other domesticated species, isolation by distance testing and genetic diversity 

measurements reveal a pattern of expansion from the domesticated founders 

(Ramachandran et al., 2005; Scheu et al., 2015; Malomane et al., 2020). Previous genetic 

studies examined the extremes of the geographical locations while the current research 

included bridging populations, which revealed the structure of worldwide random-bred 

populations is nearly a panmictic population with evidence of isolation by distance at the 

peripheries of their migration (Lipinski et al., 2008). As found for human populations 

(Barbujani et al., 1997), a majority of genetic diversity is explained within populations 

and distinctions can be observed only at the peripheries of migration patterns and do not 

account for the vast genetic diversity of cats. This pattern of isolation by distance, with 

highest levels of diversity near sites of domestication is observed in other species. 

Chickens, like cats, dispersed from a domestication center by human-mediated migration 

and the majority of genetic diversity variation is explained by genetic distance to the wild 

populations (Malomane et al., 2020). Village dogs, like random-bred cats, are considered 

to be free-breeding with minimal admixture due to isolation and have escaped human-

https://paperpile.com/c/w4mhnq/sCxg+la1p+cAQ0
https://paperpile.com/c/w4mhnq/sCxg+la1p+cAQ0
https://paperpile.com/c/w4mhnq/ZneK+WnVr+hoF6
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/JeKQ
https://paperpile.com/c/w4mhnq/hoF6
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mediated inbreeding (Shannon et al., 2015). Although the location of dog domestication 

is disputed (Bergström et al., 2020), genetic signatures have been used to infer a Central 

Asia domestication of dogs. Patterns of short-range linkage disequilibrium decay were 

found to be lowest in village dog populations from Central Asia with rates rising as 

geographical distance increased (Shannon et al., 2015). After filtering admixed 

populations to remove the most recent epoch of admixture and improve the fit between 

modern samples and ancient ancestry patterns, the random-bred cat results suggest a 

similar pattern: genetic diversity is higher in populations located where the progenitor 

species began to interact with humans resulting in a shorter genetic distance and 

heterozygosity decreasing as geographic distance increases out from this origin. Studies 

using ancient DNA of domesticated cats may reveal a more complicated process 

(MacHugh et al., 2017), but the pattern revealed in random-bred cats is striking and 

agrees with archeological evidence. Unlike many domestication studies that must use 

modern breeds for comparisons, these random-bred cats have likely had less selection 

and lower founder effects and lower genetic loss by drift since cats are under fewer 

constraints by humans. 

The cat diaspora is relatively more recent than for humans or canines. As 

European maritime exploration to conquer and settle new lands increased, felines were 

brought on ships for trade and to safeguard food and wares from rodents (Faure and 

Kitchener, 2009). Migration of cats rose with imperialism exploration and colonization, 

which increased the numbers of ships traveling to the Americas. The data suggests cats in 

distant areas from the Near East, including Australia, the Americas, and colonial regions 

such as Tunisia and mainland Kenya, are close derivatives of Western European cats, 

https://paperpile.com/c/w4mhnq/MOqI
https://paperpile.com/c/w4mhnq/Kuu8
https://paperpile.com/c/w4mhnq/MOqI
https://paperpile.com/c/w4mhnq/gCBR
https://paperpile.com/c/w4mhnq/3iMJ
https://paperpile.com/c/w4mhnq/3iMJ


21 
 

reflecting western European colonization. The admixed genetics from Western Europe 

and the Near East cats were subsequently spread to Portuguese colonies in the Americas 

(Ruiz-Garcia et al., 2005). Although wild felids migrated to the Americas across ancient 

land bridges and small felids of domestic cat size have been present in South America for 

millions of years (Johnson et al., 2006; Li et al., 2016), domestic cats only populated the 

Americas with the arrival of Europeans in the 1500’s. This work reinforces domestic 

felines from the Americas are closely related to those from Europe suggesting insufficient 

time for drift or selection to cause genetic distinction (Lipinski et al., 2008). 

Cats migrated to Europe and to the east of the Fertile Crescent along with 

agricultural development and trade (Ottoni et al., 2017; Baca et al., 2018). Pakistan 

felines tend to have more European influence than other countries in the Middle East, 

possibly due to the influence and control of the British East India Company in Southern 

Asia, which is supported by several significant f3 statistics with a contributing population 

from Europe. Kuwait felines have a higher percentage of Near Eastern ancestry resulting 

from the location of the country being a center of land and sea trade routes, and a major 

oil producer resulting in the influx of foreign workers from nearby countries (Shah and 

Al-Qudsi, 1989). India and Sri Lanka both have ancestry admixture from many 

populations and higher observed heterozygosity attesting to the large amounts of 

movement of traders due to land and maritime Silk Road routes. Being able to trace these 

human and cat migration patterns through genetics speaks to the diversity and depth of 

this sample population reinforcing our ability to narrow the origin of domestication. 

 European wildcats (F.s. silvestris) have many studies focused on the concern of 

introgression with free-roaming or partially-free-roaming random-bred cats (Beaumont et 

https://paperpile.com/c/w4mhnq/cbpG
https://paperpile.com/c/w4mhnq/5yId+iHlG
https://paperpile.com/c/w4mhnq/cAQ0
https://paperpile.com/c/w4mhnq/CVVl+2KSJ
https://paperpile.com/c/w4mhnq/qv8Z
https://paperpile.com/c/w4mhnq/qv8Z
https://paperpile.com/c/w4mhnq/Vgdy+91um+EFWB+MfbK+g7hZ+0WhD
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al., 2001; Witzenberger and Hochkirch, 2014; Oliveira et al., 2015; Koch et al., 2016; 

Mattucci et al., 2019; Quilodrán et al., 2020). A sample of 130 European wildcat samples 

were initially collected as unknown wildcats, and some of these samples were later 

suggested as hybrids with domestic cat introgression, (Oliveira et al., 2015). Hence, the 

clustering of the 10 wildcat hybrid felines on the periphery of the Western European cats 

is expected. The 10 wildcat hybrids included in this study have little to no random-bred 

ancestry in our fastSTRUCTURE analysis and produce no significant f3 statistics, due to 

the lack of a F. s. silvestris reference population. However, the genotypes from these 

hybrids suggest that European wildcat influence is pervasive throughout populations in 

Europe but also can be tracked through genetics of populations in the New World like 

those in the Americas. Recently, an investigation of cats from China, including a 

sampling of the Chinese wildcat (F.s. bieti), suggested some gene flow between this wild 

species and domestic cats, but not sufficiently to explain the genetic difference between 

Far Eastern and Western domestic cats. Although a few Asian wildcats (F.s. ornata) were 

included in the Chinese study, the four cats were sampled from one site and specimens 

from wildcats from the Near East and the Indus Valley were not available (Yu et al., 

2021). Thus, further studies are needed to evaluate the complexity of domestication and 

the influence of admixture with wild populations on modern domestics (Larson and 

Burger, 2013).   

 Although cats and agricultural species serve very different purposes to humans, 

the geographic patterns of admixture in cats are a near perfect reflection of admixture and 

migration in cattle populations, such as along the Silk Road and in the Americas (Decker 

et al., 2014). Along with archeological and genetic data, even the cat’s prey, house mice, 

https://paperpile.com/c/w4mhnq/Vgdy+91um+EFWB+MfbK+g7hZ+0WhD
https://paperpile.com/c/w4mhnq/Vgdy+91um+EFWB+MfbK+g7hZ+0WhD
https://paperpile.com/c/w4mhnq/MfbK
https://paperpile.com/c/w4mhnq/eWh3
https://paperpile.com/c/w4mhnq/eWh3
https://paperpile.com/c/w4mhnq/12t3
https://paperpile.com/c/w4mhnq/12t3
https://paperpile.com/c/w4mhnq/qvC3
https://paperpile.com/c/w4mhnq/qvC3
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have also represented bio-proxies for human migration patterns (Rajabi-Maham et al., 

2008; Jones et al., 2013; Cucchi et al., 2020; Li et al., 2020). 

 Overall, worldwide random-bred feline populations exhibit low levels of genetic 

differentiation even when geographically separated; however, populations on the 

peripheries of migration can be genetically differentiated. Populations were significantly 

isolated by distance; between populations the genetic distance increased as the 

geographic distance increased. Observed heterozygosity was higher in populations 

located near the Mediterranean Basin of the Fertile Crescent where archeological 

evidence points towards the first human-cat interactions. Additionally, these populations 

have a shorter genetic distance to the progenitor species F.s. lybica. The origin of 

domestication for F.s. catus is suggested as the coastal regions of the Mediterranean 

Basin of the Fertile Crescent where cats have high observed heterozygosity and a short 

genetic distance to the progenitor subspecies. As highly agrarian societies developed, 

domesticated cats then spread down into the Nile Valley where cultural integration of 

felines into society slightly decreased heterozygosity and increased the genetic distance 

from the initial founders. Mummified Egyptian cats have control region mtDNA 

mitotypes specific to the mitotype G of contemporary Egyptian cats and a mitotype D 

highly common in Near and Middle Eastern populations, but one mummified cat also had 

a common mitotype C that has worldwide distribution (Kurushima et al., 2012), perhaps 

supported by the Egyptian domestication origin suggested by ancient DNA studies 

(Ottoni et al., 2017). The slightly lower diversity could be an influence of ancient cultural 

selections. Further studies on ancient, regional wildcat populations would further 

decipher cat origins. Cats likely spread through-out Eurasia as agricultural development 

https://paperpile.com/c/w4mhnq/7NAh+elsx+K4CZ+1ssm
https://paperpile.com/c/w4mhnq/7NAh+elsx+K4CZ+1ssm
https://paperpile.com/c/w4mhnq/cAin
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spread, causing isolation by distance. Once larger sea bearing vessels facilitated the trade 

of goods and stores, cat migrations reached more distant ports, including the Americas 

and Australia in the 1500’s. Modern transport of pets has and will continue to increase 

admixture around the world, however, cat populations in the Americas, Australia, and 

Madagascar seem to represent the cats of human colonists, where indigenous cats, 

including wildcats do not exist. Even the cats of mainland Kenya and the eastern coastal 

Kenyan islands have genetic signatures similar to Western Europe and the Arabian Sea, 

respectively. While these results are supported by large sample sizes, denser genotypes of 

these populations would allow for additional methodologies including linkage 

disequilibrium analyses, which could lead to even further clarification of the center of cat 

domestication. 

 This study infers the relationships, dispersal, admixture, and genetic distances 

among worldwide random-bred cats from patterns of genetic polymorphism, which were 

unlinked and randomly identified and assumed to be neutral. Population bottlenecks and 

effective population sizes cannot be evaluated in the current study. Additional studies 

including data from various wildcat species/subspecies, particularly F.s. ornata from the 

Iraq, Iran, the Indus Valley regions, and Northwestern India could further explain the 

genetic variation seen in cat populations. Genetic and archeological studies form pre-

farming cats would be an important addition in further clarifying the cat domestication 

process. The patterns of genetic diversity and differentiation observed in worldwide 

random-bred cats parallel those of other species, especially humans once they become 

farmers, suggesting human history is written in the DNA of domesticated species. 
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Figures 

 

Figure 1. Principal component analyses (PCA) of genetic variation in random-bred 

and wildcat felines. a PCA plot of SNP data (N = 983). b PCA plot of STR data (N = 

1,861). A single point represents an individual, the shape represents a geographic region, 

the color represents a geographic sub-region. The two wildcat populations are denoted by 

squares of different colors. Middle Eastern, South Asia, and Western European cats form 

the peripheral subpopulations of random-bred cats. The wildcat hybrids and the island 

population of San Marcos, Baja California, are additional peripheral populations for a 

and b, respectively. 
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Figure 2. Random-bred cat population SNP fastSTRUCTURE plot of K = 3. 

Population contributions are represented by different colors, individual vertical bars 

represent an individual, and populations are separated by black lines. 
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Figure 3. Random-bred cat population STR STRUCTURE plot of K = 3. Population 

contributions are represented by different colors, individual vertical bars represent an 

individual, and populations are separated by black lines. 
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Figure 4. Comparison of geographic distance and genetic distance of random-bred 

cat populations. a Plot of SNP data with 24 sample locations with a regression line 

indicating a correlation of 0.447 with a p-value of 0.001. b Plot of STR data with 22 

sample locations with a regression line indicating a correlation of 0.302 with a p-value of 

0.0076. Each point represents an individual pairwise comparison of sample location 

populations. 
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Figure 5. Comparison of genetic distance from F.s. lybica and observed 

heterozygosity. A Plot of SNP data with a regression line indicating a correlation of -

0.57 with a p-value of 0.0034. B Plot of STR data with a regression line indicating a 

correlation of -0.33 with a p-value of 0.13. Each point represents a sample location 

population, shape represents a geographical region, and color represents a geographical 

sub-region. 
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Figure 6. Observed heterozygosity by sample location of SNP data for random-bred 

cat populations of Eurasia. Each point represents a sample location population with the 

color showing the calculated observed heterozygosity. The triangle shape indicates an 

admixed population with a significant f3 statistic, and the circle shape represents non-

admixed populations. Populations of yellow and light orange shades are focused in the 

Near East and Mediterranean Basin. 
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Supplementary Figures 

Supplementary Figure 1. Location and data type of sample populations. Each color corresponds to if 

an individual has both SNP and STR genotypes, only SNP genotypes, or only STR genotypes. The size of 

the pie is proportional to the number of individuals sampled in that location. 
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Supplementary Figure 2. SNP fastSTRUCTURE plot of K = 2. Population contributions are represented 

by different colors, individual vertical bars represent an individual, and populations are separated by black 

lines. 
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Supplementary Figure 3. SNP fastSTRUCTURE plot of K = 4. Population contributions are represented 

by different colors, individual vertical bars represent an individual, and populations are separated by black 

lines. 
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Supplementary Figure 4. SNP fastSTRUCTURE plot of K = 5. Population contributions are represented 

by different colors, individual vertical bars represent an individual, and populations are separated by black 

lines. 
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Supplementary Figure 5. STR STRUCTURE plot of K = 2. Population contributions are represented by 

different colors, individual vertical bars represent an individual, and populations are separated by black 

lines. 
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Supplementary Figure 6. STR STRUCTURE plot of K = 4. Population contributions are represented by 

different colors, individual vertical bars represent an individual, and populations are separated by black 

lines. 
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Supplementary Tables 

Available upon request by Dr. Jared Decker at deckerje@missouri.edu 
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Abstract 

Background 

Climate change and the growing human population is driving the need for sustainable 

agriculture. In the beef industry, we need selection for environmental resiliency to 

increase production by improving resource efficiency and maintaining animal welfare. 

Exposed to the elements during their entire life, beef cattle must be identified and 

selected for enhanced yield in the context of their production environment. Cattle 

frequently re-rank for their genetic potential across environments due to genotype 𝗑 
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environment interactions which can lead to unintended decreases in production. 

Incorporation of interactions in genomic prediction models on a national level has yet to 

be considered even though the potential positive impacts have been acknowledged. 

Results 

A model including a genotype 𝗑 environment interaction out performed a bivariate 

genotype 𝗑 environment model and the currently utilized national evaluation model in 

terms of accuracy. This model provided clarity by separating the phenotypic variance of 

an individual into additive genetic and genotype 𝗑 environment components. The 

genotype 𝗑 environment model estimated that ~3%-12% of the variance in the production 

traits of birth weight, weaning weight, and yearling weight was due to the environment. 

By accounting for the genotype 𝗑 environment interaction, additive genetic prediction 

accuracies tended to rise over the accuracy of prediction achieved by using the currently 

utilized national model. Additionally, a selection informative genotype 𝗑 environment 

deviation was estimated conveying the expected difference of the observed phenotype 

due to the environment. Minimal reranking of animals was observed between the national 

model and the genotype 𝗑 environment model. 

Conclusions 

The beef industry should capitalize on the increased accuracy of additive genetic genomic 

predictions for production traits by accounting for genotype 𝗑 environment interactions. 

Breeders and producers will be able to identify and select animals who are best 

genetically suited to production in their environment, and with the added assistance of the 

estimated genotype 𝗑 environment deviation conduct genetic improvement at a faster rate. 
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There is potential for enhancing prediction accuracy through defining and refinement of 

genetic interactions not only with the environment but also with management practices. 

By adapting genomic prediction advances with the inclusions of genotype 𝗑 environment 

interactions, the industry will reach sustainable intensification goals improving food 

security for future generations. 

 

Background 

The growing human population and climate change have brought the importance of food 

security to the forefront of awareness creating a push for sustainable intensification, 

especially in animal production(1–5). Sustainable intensification with regards to livestock 

production means the improvement of production to minimize the yield gap, improve 

resource efficiency, and enhanced animal welfare(3,5,6). Beef cattle create efficiency by 

occupying land unsuitable for agricultural crops and by transforming low-quality food 

stuffs to high-quality protein. As cattle are one of the last agricultural species living their 

entire lives outside, they are exposed to a vast spectrum of environmental pressures and 

variation under which they are expected to perform. Cattle may be losing their adaptation 

to specific environments through the widespread use of artificial insemination and the 

shipping of semen globally(7). Consequently, the development of tools to identify and 

select cattle that are suited for improved production in a specific environment has become 

increasingly important to the beef industry(7). By taking into account the combined 

additive genetic potential and environment-specific genetic deviation of individuals 

through inclusion of genotype 𝗑 environment interactions (G𝗑E) in prediction models, 

https://paperpile.com/c/fXYTh7/RnXe+3IiB+zVMy+c4yH+SvPD
https://paperpile.com/c/fXYTh7/Eivu+zVMy+SvPD
https://paperpile.com/c/fXYTh7/cF6y
https://paperpile.com/c/fXYTh7/cF6y
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producers could make more informed selection decisions given their location and climate 

allowing for an enhancement in the sustainability of production.  

G𝗑E refers to when an individual’s genotypic value for a trait varies according to the 

environment in which the trait is expressed, resulting in a change in the observed 

phenotype. This phenomenon is frequently described as phenotypic plasticity or 

environment sensitivity. Phenotypic response to the environment has been explored in 

cattle for health, production traits, and adaptation to environmental stressors which all 

have implications for improving sustainability and welfare (e.g., tick resistance, body 

weight, and production in tropical climates)(8–12). Frequently utilized methods in cattle 

examine the G𝗑E response by estimating the genetic value of an individual across an 

environmental gradient pinpointing the optimal environmental conditions under which 

the individual’s genetic potential is maximized(11–17). Unfortunately, these methods are 

usually limited to a single environmental variable which is considered responsible for the 

most environmentally sensitive component of phenotypic variation, while in reality, the 

environment is a complex system of interactions. Additionally, these methods often lack 

clarity when the genetic value of an individual is reported an average effect across 

environments and the G𝗑E deviation from additive genetic merit is ignored. While many 

studies in cattle have concluded that G𝗑E effects should be included in predictions and 

used in making selection decisions, no beef cattle breed association in the United States 

has adopted the application of G𝗑E deviations from the average in their predictions to 

date(18–20).  

By analyzing data for the Gelbvieh beef cattle breed which is widely geographically 

distributed across the United States, this study applied a G𝗑E model that was not 

https://paperpile.com/c/fXYTh7/nHJI+M13r+c6Ow+XTV3+16Kh
https://paperpile.com/c/fXYTh7/jBnI+1Yhy+RO8k+iswQ+XTV3+16Kh+tLlZ
https://paperpile.com/c/fXYTh7/bb2r+K7Pc+pwNw
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restricted to a single environmental variable. To clarify the relationship between the 

genotype and the environment, the G𝗑E model estimates and partitions the variance 

contributions to the phenotype separately into the additive genetic merit and the G𝗑E 

interaction. Additionally, we compared the accuracy of predictions from the G𝗑E model 

to those produced using the current national evaluation model and a bivariate G𝗑E model. 

We show that the inclusion of the G𝗑E interaction in genomic predictions can profoundly 

impact the prediction of additive genetic merit for production traits. Consequently the use 

of G𝗑E models will allow more informed selection decisions within the beef industry 

enhancing food security for future generations.  

 

Methods 

Data 

Phenotypic and genotype data were provided by the American Gelbvieh Association for 

individuals born between 1972 and 2016. The analyzed phenotypes included birth weight 

(BW), 205-day adjusted weaning weight (WW), and 365-day adjusted yearling weight 

(YW). Records with a BW of 0lbs, WW greater than 1100lbs, YW greater than 1700lbs, 

and when the recorded WW was greater than the YW were all set to missing. All 

analyses were restricted to the 12,561 individuals with genotypes in the post-filter dataset 

regardless of the presence of missing phenotypes. 
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Genotypes and Imputation 

Genotyped loci varied according to the utilized assays which had differing single 

nucleotide polymorphism (SNP) densities and included the GeneSeek GGP-LDv3, 

GeneSeek GGP-LDv4, GeneSeek GGP-90KT, GeneSeek GGP-HDv3, GeneSeek GGP-

F250, Illumina BovineSNP50, and Illumina BovineHD. Genotypes were imputed to the 

union set of ~830k autosomal SNPs using the pipeline described by Rowan et al. (2021). 

Briefly, the process included: genotype quality control performed in PLINK (v1.9), 

referenced-based phasing with Eagle (v2.4), and imputation with Minimac3 (v2.0.1)(22–

25). SNP coordinates were from the ARS-UCD1.2 bovine reference genome(26). After 

filtering for minor allele frequency greater than 0.01 in PLINK (v1.9), there were 

715,397 SNPs available for analysis(22,23). 

Ecoregion Definition 

To account for the multivariable complexity of the environment, we utilized the nine 

discrete ecoregions described by Rowan et al. (2021). These were defined using k-means 

clustering of the 30-year normals for environmental variables: mean temperature, 

precipitation (mm/year), and elevation (m above sea level)(7). Individuals were assigned 

to ecoregions using breeder supplied farm zip codes. Animals located in zip codes with 

multiple ecoregion assignments had their assigned ecoregion set to missing. Ecoregions 

were categorized as Desert (DT), Southeast (SE), High Plains (HP), Rainforest, Arid 

Prairie, Foothills, Forested Mountains (FM), Fescue Belt (FB), and the Upper Midwest 

and Northeast (UMN)(7). Ecoregions with less than 100 individuals with phenotypes 

https://paperpile.com/c/fXYTh7/D3Kz
https://paperpile.com/c/fXYTh7/D3Kz
https://paperpile.com/c/fXYTh7/D3Kz
https://paperpile.com/c/fXYTh7/D3Kz
https://paperpile.com/c/fXYTh7/D3Kz
https://paperpile.com/c/fXYTh7/DLr2+xfZQ+W9pa+Msh9
https://paperpile.com/c/fXYTh7/DLr2+xfZQ+W9pa+Msh9
https://paperpile.com/c/fXYTh7/V9I1
https://paperpile.com/c/fXYTh7/xfZQ+DLr2
https://paperpile.com/c/fXYTh7/cF6y
https://paperpile.com/c/fXYTh7/cF6y
https://paperpile.com/c/fXYTh7/cF6y
https://paperpile.com/c/fXYTh7/cF6y
https://paperpile.com/c/fXYTh7/cF6y
https://paperpile.com/c/fXYTh7/cF6y


55 
 

were not analyzed to minimize estimation sampling variance,  which excluded: 

Rainforest, Arid Prairie, and the Foothills. 

Pre-Correcting of Phenotypes 

Phenotypes were pre-corrected for contemporary group (CG) and sex. Contemporary 

groups were defined as birth year, birth season (Spring or Fall), breeder zip code, and 

additional CG information provided by the American Gelbvieh Association (AGA). 

Breeder zip code was utilized as a proxy for herd identification due to the unavailability 

of a provided herd identifier. All three phenotypes were adjusted using two separate 

analyses with sex as a fixed effect and CG as a fixed or random effect due to 80.1% of 

the CGs having less than 5 individuals for BW, 80.6% for WW, and 81.7% for YW. 

When CG assignment was missing or a CG had less than 5 individuals, a ‘breed average’ 

CG level was assigned when CG was fit as a fixed effect. This ‘breed average’ level was 

constrained to zero during CG effect estimation and when used in phenotype adjustment. 

When CG was fit as a random effect and CG information was missing, the CG level was 

defined as missing. Sex was defined as male, female, or unknown with the unknown level 

being constrained to zero during phenotype adjustement. For BW and WW, an additional 

random maternal effect was included in both adjustment models and was defined as the 

dam identification number. Fixed effects were estimated with the ‘--reml-est-fix’ option 

while random effects were predicted using best linear unbiased prediction with the ‘--

reml-pred-rand’ option in GCTA with a single-trait animal model while controlling for 

population structure by including a genomic relationship matrix (GRM) created with the 

‘--make-grm-alg 1’ option(27). Random effects were included in the models by first 

creating an incidence matrix of the effects levels and then multiplying it by its transpose 

https://paperpile.com/c/fXYTh7/WHxC
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to obtain a  relationship matrix for the effect for the 12,561 genotyped individuals. 

Adjusted phenotypes with CG estimated either as fixed or random effects were utilized in 

all downstream analyses of BW, WW, and YW. 

Variance Component Estimation 

Variance components were estimated for three types of models including: the national, a 

univariate G🇽E, and a G🇽E bivariate. Variance components for the national models were 

estimated for each set of adjusted BW, WW, and YW phenotypes by restricted maximum 

likelihood in GCTA with the following univariate linear mixed model: 

𝑦∗ =  𝜇 +  𝑍𝐴𝑎𝐴  +  𝑒 

where 𝒚∗is a vector of adjusted phenotypes, 𝝁 is the overall mean, 𝑍𝐴is the incidence 

matrix relating the adjusted phenotypes to the random additive genetic effects, 𝒂𝑨 ~ N(0, 

G𝜎a
2) is a vector of random additive genetic effects, and 𝒆 ~ N(0, I𝜎e

2) is a vector of 

random residuals. G is the GRM and I is an identity matrix. Variance components for the 

bivariate models were estimated using data for the three largest ecoregions  for the 

adjusted BWs using GCTA with the following model: 

𝑌∗ = 𝑋𝑏 +  𝑍𝐴𝑎𝐴  +  𝑒 

where 𝒀∗is the n x 2 matrix of adjusted phenotypes for two ecoregions, 𝑋 is the incidence 

matrix relating overall means to ecoregion phenotypes, 𝑏 is the vector containing the 

overall means, 𝑍𝐴is an incidence matrix relating the adjusted phenotypes to the random 

additive genetic effects,   𝒂𝑨 ~ N(0, [
𝑮𝜎𝑎,𝑡1

2 𝑟𝐺

𝑟𝐺 𝑮𝜎𝑎,𝑡2
𝟐 ]) are the random additive genetic 
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effects, and 𝒆 ~ N(0, [
𝑮𝜎𝑒,𝑡1

2 0

0 𝑮𝜎𝑒,𝑡2
𝟐 ]) are the random residuals. Variance components 

for the G🇽E model were estimated for each set of adjusted BW, WW, and YW 

phenotypes using the following model: 

𝑦∗ =  𝜇 + 𝑋𝐸𝑏𝐸  + 𝑍𝐴𝑎𝐴  + 𝑍𝐺🇽𝐸𝑎𝐺🇽𝐸  +  𝑒 

where 𝒚∗is the vector of adjusted phenotypes, 𝝁 is the overall mean, bE is a vector of 

ecoregion environment effects, 𝑋𝐸 is the incidence matrix relating the adjusted 

phenotypes to the ecoregion environment effects, 𝑍𝐴 is the incidence matrix relating the 

adjusted phenotypes to the random additive genetic effects, 𝒂𝑨 ~ N(0, G𝜎a
2) are the 

random additive genetic effects, 𝑍𝐺🇽𝐸 is an incidence matrix relating the adjusted 

phenotypes to the random G🇽E effects , 𝒂𝑮🇽𝑬 ~ N(0, GG🇽E𝜎G🇽E
2) is a vector of random 

G🇽E effects, and 𝒆 ~ N(0, I𝜎e
2) is the vector of random residuals. GG🇽E is G[i,j] when 

individuals i and j are from the same ecoregion and otherwise zero(28). Estimated 

variance components for all three models applied to both sets of adjusted phenotypes 

were utilized for downstream analyses. 

Estimating Breeding Values and Validation Set Determination 

Breeding values were estimated (EBV) for individuals with all models: the national 

model, the G🇽E model, and three bivariate models when CG were fit as either a fixed or 

random effect using blupf90 from the BLUPF90 suite of programs(29). All three adjusted 

BW, WW, and YW phenotypes were analyzed with the national and G🇽E model resulting 

in six analyses for each model for the two sets of adjusted phenotypes. However, the 

three bivariate models were used only to analyze the adjusted BWs resulting in six 

https://paperpile.com/c/fXYTh7/k3lf
https://paperpile.com/c/fXYTh7/QjJg


58 
 

analyses. All models were analyzed as genomic best linear unbiased predictions (only 

included genomic relationships, not pedigree relationships). To ensure that G was 

nonsingular, G was blended with A as 0.99G + 0.01A where A was the pedigree 

relationship matrix for these animals which was set to an I matrix since no pedigree 

information was used.  

The LR Method was used to evaluate prediction performance(30,31). The EBVs 

estimated under the three types of models used the whole phenotypic dataset and a partial 

dataset where the youngest 10% of individuals identified by their birth date had their 

phenotypes set to missing to create a validation set that could be used to evaluate model 

bias and determine prediction accuracy. The youngest 10% of animals represent the 

animals which are selection candidates in the next generation. The validation set of 

individuals were ecoregion distributed in which the youngest 10% of individuals within 

each ecoregion had their phenotype set to missing (Figure 1). The ecoregion distributed 

validation set was proposed to test the robustness of the predicted EBVs as cattle are not 

evenly spatially distributed across environments, and a more densely populated ecoregion 

could dominate the validation set which may not be genetically representative of the next 

generation of selection candidates industry wide. The bivariate models analyzed adjusted 

phenotypes within pairs of ecoregions, their validation set included the youngest 10% of 

individuals within each analyzed ecoregion which overlapped with individuals in the 

ecoregion distributed validation set. 

Measures of Prediction Accuracy 

Prediction accuracies were estimated by:  

https://paperpile.com/c/fXYTh7/9nfh+kUIH
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𝑎𝑐�̂�𝐿𝑅 = √
𝑐𝑜𝑣(�̂�𝑤, �̂�𝑝)

(1 − 𝐹)�̂�𝑢
2

 

where �̂�𝑤is the vector of EBVs of the validation set of individuals for the whole dataset, 

�̂�𝑝is the vector of predicted EBVs of the validation set of individuals for the partial 

dataset, 𝐹 is the average inbreeding coefficient of the validation individuals, and �̂�𝑢
2

is the 

estimated additive genetic variance of the trait(30,31). The inbreeding coefficient was 

calculated in PLINK using the ‘--ibc’ command(22,23). When estimating accuracy for 

the G🇽E models the formulae were unchanged for the additive genetic component 

(EBVA), but differed when calculated for the G🇽E deviation (DG🇽E) and the total 

combined EBV (EBVTotal= EBVA + DG🇽E). For the accuracy calculations for the DG🇽E: 

�̂�𝑢
2

is replaced with �̂�𝐺🇽𝐸
2

which is the estimated variance component for the DG🇽E. For the 

accuracy calculations for EBVTotal: �̂�𝑢
2

 is replaced with �̂�𝑇𝑜𝑡𝑎𝑙
2  =  �̂�𝑢

2  +  �̂�𝐺🇽𝐸
2 . 

Comparing Estimated Breeding Values Across Models 

To compare EBVs across models, the validation sets’ EBVs were plotted against each 

other in R (v3.4.3) and the slope of the line of best fit was estimated using the lm() 

function from the stats package (v3.4.3) to ascertain if the slope deviated from unity 

indicating prediction bias(32). Pearson and Spearman correlations were calculated among 

the validation individuals’ EBVs between models in R (v3.4.3) with the cor() function 

from the stats package (v3.4.3) to estimate the strength of the linear relationship and the 

reranking of individuals(32).  

 

https://paperpile.com/c/fXYTh7/9nfh+kUIH
https://paperpile.com/c/fXYTh7/DLr2+xfZQ
https://paperpile.com/c/fXYTh7/dJl8
https://paperpile.com/c/fXYTh7/dJl8
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Results 

Variance Component Estimation 

After quality control there were 12,561 genotyped individuals; Table 1 shows the 

distribution of individuals across phenotypes and ecoregions. The estimated variance 

contribution of CG to the phenotype when fitted as a random effect was 24.8%, 36.02%, 

and 42.06% for BW, WW, and YW, respectively. Birth and weaning weight were 

additionally adjusted for a random maternal effect which was estimated to account for: 

15.1% and 10.1% of the BW phenotypic variance, and 4.86% and 3.08% of the WW 

phenotypic variance when CG was fit as a fixed or random effect, respectively. After 

adjusting for sex and management differences captured by the CG, the additive genetic 

variance components were estimated for the two sets of adjusted phenotypes.  

First, variance components were estimated with a model similar to the currently utilized 

national genetic evaluation model which does not take into account a G🇽E effect. When 

CG were fit as a fixed effect, the heritabilities were estimated as 37%, 24.6%, and 

37.49% for BW, WW, and YW, respectively. When CG was fitted as a random effect, the 

heritabilities were estimated as 39%, 28.93%, and 43.81% for BW, WW, and YW, 

respectively. These results suggest that for a national model management practices, 

environmental differences, or other genetic types besides additive may have a larger 

impact on the observed variance of WW as compared to the estimations for BW and YW.  

Additive genetic variance components were then estimated with bivariate models for BW 

only for the three largest ecoregions: High Plains and Fescue Belt, High Plains and Upper 

Midwest & Northeast, and Fescue Belt and Upper Midwest & Northeast (Table 2). The 
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estimated genetic correlations for these models when CG was fitted as a fixed effect are: 

0.95 for HP and FB, 0.98 for HP and UMN, and 0.83 for FB and UMN. When CG were 

fit as a random effect the estimated genetic correlations are: 1.0 for HP and FB, 0.98 for 

HP and UMN, and 0.94 for FB and UMN. 

Finally, the additive genetic and DG🇽E variance components were estimated for the G🇽E 

model when CG were fit as either a fixed or random effect (Table 3). The variance 

estimate for the DG🇽E effect ranges from 5%-12% across life stage weights when the CG 

were fit as a fixed effect, and when CG were fit as a random effect the DG🇽E effect 

variance estimates range from 3%-6% (Table 3). 

Accuracy of Estimated Breeding Values 

The accuracy of the predicted EBVs generated by each model were estimated with the 

LR method ( 𝑎𝑐�̂�𝐿𝑅) which compares the EBV from a partial dataset to EBV from the 

whole dataset. The validation set of individuals were ecoregion distributed to test the 

robustness of the EBVs and the DG🇽E due to an uneven distribution of the youngest 

animals across environments (Figure 1). For BW, the national model had a 𝑎𝑐�̂�𝐿𝑅~ 74% 

across the two-ways of adjusting for CG suggesting minimal differences between the 

adjustment methods (Table 4). For WW and YW, the national model had a slightly higher 

accuracy for when the CG were fit as random. Overall the national models' accuracies 

tended to be higher when CG were fit as random which could be due to the recovery of 

additional information by the inclusion of more CG levels. 
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For the bivariate model High Plains (validation n = 333) and Fescue Belt (validation n = 

394), 𝑎𝑐�̂�𝐿𝑅 tended to increase slightly when CG were fit as random (Table 5). The 

second bivariate model of High Plains (n = 333) and Upper Midwest & Northeast (n = 

100) had similar accuracies for CG adjustments, but the most noticeable difference in 

accuracy is when EBVs are predicted across ecoregions (Table 5). When trained in the 

larger ecoregion, High Plains, and validated in the smaller ecoregion, Upper Midwest & 

Northeast, High Plains animals EBVs prediction accuracy is 68%. When trained in the 

smaller ecoregion, Upper Midwest & Northeast, and validated in the larger ecoregion, 

High Plains, the Upper Midwest & Northeast individuals EBVs accuracy drops to ~41%-

42%. This drop in accuracy appears to be a function of difference in sample size (HP, n = 

3328; UMN, n = 999) since these two regions have a high estimated genetic correlation, 

0.98, which would indicate a more similar environment, potentially similar G🇽E effects, 

and less reranking of individuals. Lastly, when Fescue Belt (n = 394) and Upper Midwest 

& Northeast (n = 100) were modeled the 𝑎𝑐�̂�𝐿𝑅were higher when the CG were fit as 

random. A similar decrease in accuracy was observed for predicting across ecoregions; 

trained in the larger ecoregion Fescue Belt, and validated in the smaller Upper Midwest 

& Northeast, animals from the Fescue Belt EBVs had higher accuracy (68% CG fixed, 

73% CG random) while training in the smaller ecoregion Upper Midwest & Northeast 

and validating in the larger ecoregion Fescue Belt, the Upper Midwest & Northeast EBVs 

were less accurate (43% CG fixed and random). Collectively, the the three BW bivariate 

models follow the trend of a slightly higher 𝑎𝑐�̂�𝐿𝑅 when CG were fit as random, and a 

noticeable impact on accuracy when predicting across ecoregions due to differences in 

sample size. 
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The G🇽E models had accuracies calculated for the EBVA which are directly comparable 

to the EBVs calculated by the other models, but accuracies were also calculated for the 

estimated DG🇽E and EBVTotal to examine the full impact of including a G🇽E effect in 

genomic prediction. For weaning weight and yearling weight, the accuracies for the 

EBVA and EBVTotalwere higher when the CG were fit as a random effect (Table 6). The 

𝑎𝑐�̂�𝐿𝑅of the DG🇽E remained fairly consistent across the three phenotypes ranging from 

11.7%-28% and usually was higher when CG were fit as a random effect. Ranking the 

types of models in terms of accuracies, the bivariate G🇽E model consistently has lower 

accuracy than the other two models. Compared to the national model, the G🇽E model had 

comparable accuracies for the predicting EBVA of BW, slightly lower (~2%) for WW,  

and higher for YW (~10%). 

Comparing Estimated Breeding Values Across Models 

To compare and contrast the models beyond accuray, we estimated Pearson correlations, 

Spearman correlations, and the slopes of lines of best fit among the predicted EBVs from 

the partial datasets. Comparison statistics were not evaluated for the bivariate models due 

to decreased accuracy when compared to the other two models, the strong influence of 

sample size, and the need for multiple pairwise models to be analyzed to account for all 

environmental comparisons. Even though both the bivariate and G🇽E models are taking 

into account environmental effects, the univariate G🇽E model excelled in comparison due 

to the structure of jointly analyzing all individuals, phenotypes, and environments 

simultaneously. The national EBVs were compared to the G🇽E EBVA and EBVTotal for 
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BW, WW, and YW when CG were fit as a random and fixed effect. When comparing the 

EBVA from the G🇽E to the national EBVs, Pearson and Spearman correlations are 

consistently high for BW and WW with decreases for YW when the CG was fit as a 

random effect (Figure 2; see Additional File 1, Table S1). Correlations tend to be closer 

to 1 when the CG were fit as a fixed effect for BW and YW, and a random effect for 

WW. Slopes are closer to 1 for WW and YW when CG were fit as random while BW 

were closer when CG were fit as a fixed effect (Figure 2; see Additional File 1, Table 

S1). When comparing the G🇽E models’ EBVTotal to the national EBVs the slopes follow 

the same trend as the EBVA comparison (Figure 3; see Additional File 1, Table S1). 

Altogether when comparing the G🇽E and national model, the G🇽E models’ EBVA were 

more similar to the national EBVs than the EBVTotal as indicated by higher correlations 

and less reranking of individuals which would be due to the inclusion of the DG🇽E (see 

Additional File 1, Table S1). Birth weight differences between the national and G🇽E 

models were small in terms of correlations, but when CG were fit as a fixed effect the 

slopes indicated closer unity. On the other hand, WW tended to have higher correlations 

and slopes trending closer to 1 when CG were fit as a random. Yearling weight had 

higher correlations when the CG were fit as a fixed effect, but the slopes were closer to 1 

when the CG were fit as a random effect. The G🇽E model had higher accuracy of 

prediction for the EBVA only for YW when CG were fit as a random effect and was 

comparable in accuracy for BW when CG were fit as a fixed effect. Both models tended 

to have greater EBVA prediction accuracy when CG were fit as a random effect than a 

fixed effect (see Additional File 1, Table S1). Due to the decrease in accuracy when the 
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DG🇽E was included in the EBVTotal and the reduction of correlations when compared back 

to the national EBVs, the EBVA and EBVTotal should be considered separately for making 

selection decisions since they are informative on different types of information, solely the 

additive genetic potential and the potential with deviation due to G🇽E, respectively.  

 

Discussion 

The US beef industry relies on the continuous improvement of genetics, management 

practices, and favorable environmental conditions to increase yield as cattle are one of the 

last livestock species that lives and produces outside exposed to the elements. Variation 

in the phenotype is explained by the combined effects of genetics and the environment, 

yet, to date, no national beef cattle evaluation in the United States considers the effect of 

G🇽E, but rather simply focuses on predicting the average additive genetic merit of 

animals across all environments. Here, we illustrate that by including the G🇽E effect in 

genomic prediction models, future genomic predictions could improve the identification 

and selection of animals best suited to their environment thus in turn increasing 

sustainability of the beef industry. 

While accounting for the environment in genomic prediction models may seem 

straightforward, there are many different analytical methods that can be used for 

including the interaction between genetics and environment. (33) described a method 

addressing selection with G🇽E for when only two environments were considered in which 

a measured phenotype could be considered to be two different characters, the two 

https://paperpile.com/c/fXYTh7/m0kD
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environments are considered as treatments, and the G🇽E effect is formulated in terms of 

the genetic correlation between the characters. Even though they were defined using 

several environmental variables, our ecoregions were discrete allowing us to fit bivariate 

models for each phenotype in each ecoregion. For the numerically largest of the 

ecoregions that we analyzed, genetic correlations were higher between ecoregions when 

the CG were fit as a random effect and lower when the CG was fit as a fixed effect which 

could be due to greater prediction error variance or bias(34). Even with high genetic 

correlations which would be indicative of more similar environments reducing the 

potential for the reranking of individuals, we observed low to moderate accuracies for 

EBV prediction within and across ecoregions. These across environment accuracies were 

influenced by differences in sample size between the ecoregions with numerically smaller 

ecoregions predicting EBVs for numerically larger ecoregions with reduced accuracy. 

However, ecoregions with larger sample sizes could predict ecoregion-specific breeding 

values for animals from other ecoregions with moderate accuracy. Additionally, we 

demonstrated that the bivariate models had lower prediction accuracy compared to the 

currently utilized univariate national model that does not account for G🇽E interactions. 

Even though the bivariate models model these interactions and allow for EBV prediction 

across environments, we do not recommend them for implementation in industry as beef 

cattle are not uniformly distributed across environments causing low accuracy for 

predictions and the limitation to two environments requires multiple pairwise models to 

be analyzed. Furthermore, these models frequently suffered from poor convergence. 

Unlike plants where genotypes can be replicated across environments, the data structure 

https://paperpile.com/c/fXYTh7/pytX
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of animal genotypes only having observations in one environment made these models 

difficult for cattle populations. 

Exploring other G🇽E model types, random regression and reaction norm models have 

been analyzed in beef and dairy cattle to evaluate the impact of a continuous 

environmental gradient on several traits such as weight, gain, stayability, and 

reproductive traits(11,12,15–17,35,36). The appeal of these models is the ability to model 

higher order interactions with the environmental variable allowing changes in the 

performance or plasticity of a genotype as the environment shifts along the 

gradient(35,37). Even though these methods have the ability to predict EBVs along the 

extent of an environmental gradient, there are shortcomings associated with the approach. 

The first is that the environmental gradient is often limited to a single environmental 

factor that must be chosen to represent the most important of the environmental effects, 

when in reality the environment is a complex system of interacting factors that contribute 

to phenotypic variation. Some of the methods that are currently utilized to overcome this 

limitation include the use of a climate index, estimating year effects, and estimating CG 

effects for the environmental gradient(11,12,15–17,35). The second problem arises when 

estimates of CG effects, usually from a related or indicator trait, are utilized to represent 

the environmental gradient. Contemporary groups are usually defined using management, 

year, and farm or herd information which all tie an animal to a specific location and 

climate at a specific point in time which captures the environment an animal 

experiences(11,16). The issue arises when CG for the trait of interest are included in the 

model; while the CG are technically defined for different traits, cattle are usually 

stationary within an environment and handled as a cohort so the environmental and 

https://paperpile.com/c/fXYTh7/emJz+tLlZ+iswQ+XTV3+16Kh+RO8k+ng8a
https://paperpile.com/c/fXYTh7/LOpw+emJz
https://paperpile.com/c/fXYTh7/emJz+tLlZ+iswQ+XTV3+16Kh+RO8k
https://paperpile.com/c/fXYTh7/iswQ+XTV3
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management effects that an animal experiences can overlap across measured traits which 

are then potentially being accounted for twice during genetic value estimation(12,15). 

The third limitation of these types of models is that while genetic values for individuals 

are obtained for the entire environmental gradient which can measure plastic response 

and pinpoint favorable environmental conditions that would maximize the phenotypic 

potential, the specific impact of G🇽E on the phenotypic variance is not estimated 

separately from the other genetic variance components. Since we wanted to quantify the 

proportion of phenotypic variance due to the G🇽E effect alone for consideration in 

selection decisions and include multivariable environmental conditions to better represent 

the experienced environment, random regression and reaction norm models were not 

evaluated in this study. 

The univariate G🇽E model utilized in this study allowed the ability to take into account 

long-term multivariable environmental information through our definition of ecoregions 

while directly estimating the variance explained from the SNPs and the environmental 

measures by calculating shared genetic relationships among individuals within shared 

environments(27,28). Leveraging data for a common beef cattle breed, Gelbvieh, that is 

utilized in production throughout the United States, the influence of G🇽E was estimated 

to account for 3%-12% of the variation in body weight across life stages measured as 

BW, WW, and YW (Table 3). This variation can have a significant impact on the beef 

industry when an animal could have a large negative or positive G🇽E effect depending on 

the environment in which they live; this interaction should be considered when deciding 

breeding decisions for future generations. Moreover, we found that when the G🇽E effect 

https://paperpile.com/c/fXYTh7/16Kh+RO8k
https://paperpile.com/c/fXYTh7/k3lf+WHxC


69 
 

was included, the accuracy for predicting the additive genetic component increased by 

~10% for YW when the CG were fit as a random effect, comparable accuracies for BW  

when CG were fit as a fixed effect, and  ~2% decreases for WW regardless of how CG 

were fit (Table 4, 6). While expanding the potential for G🇽E predictions, a drawback of 

this method is that the estimated G🇽E component, DG🇽E, is specific to the environmental 

conditions in which the animal was raised and there is not a predicted DG🇽E for other 

environments. We propose that this DG🇽E could be used separately from the EBVA as an 

additional selection criteria for culling animals with a strongly negative G🇽E for their 

current environment. These results indicate that the beef industry should be taking 

advantage of G🇽E in their prediction models for production traits; by including G🇽E, 

accuracy of predicting the additive genetic component has the potential to increase and 

the quantified impact of the environment will guide breeders and producers in identifying 

and selecting animals that will have improved productivity in their environments. 

An internal factor to consider is how to include CG in the G🇽E models as our results 

reveal a sensitivity in prediction accuracy due to CG being included as either a fixed or 

random effect. Traditionally, in cattle evaluations CG are treated as a fixed effect since 

management practices are considered to be nonrandom systematic effects(34,38,39). 

While the differences among levels of a fixed effect can be estimated, many individuals 

will be needed within a level to handle the degree of freedom requirements which can be 

challenging as most CG levels in the beef industry are small partially due to choice 

reporting of favored animals and that ~90% of beef farms in the US have less than 100 

cows(34,40,41). When CG were included as a random effect there is an increase in the 

https://paperpile.com/c/fXYTh7/pytX+rPiX+S2jT
https://paperpile.com/c/fXYTh7/pytX+21m0+PCqF
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potential to introduce or reduce bias depending on the definition of contemporary group 

and nonrandom associations, but there is limited impact of small CG sizes(34,38,39). 

This study fit CG both ways to determine the impact on accuracy as for our data ~80% of 

the levels of CG had less than 5 individuals. For the G🇽E model, accuracies tended to be 

higher for the EBVA and DG🇽E when the CG was fit as a random effect (Table 3, 

6)(34,38). While adjusting for CG effects attempts to control for systematic effects due to 

cohorts, farm/herd, and management practices, CG does tie an individual to a specific 

climate and location. As a proxy for herd identification, we included breeder zip codes in 

the CG formation which specifically ties those animals to a physical location and 

environment, not just management practices. A possible reason why there was decrease 

in the estimated variance and accuracy of EVBA and DG🇽E for when CG were fit as a 

fixed effect could be due to the more aggressive removal of variation which would have 

been attributed to the DG🇽E. Additionally, on average, when CG were fit as a fixed effect 

~80% of the CG levels per ecoregion were not included due to membership being less 

than 5 animals which is a sizable loss of variation tied to those ecoregions and the 

corresponding DG🇽E. These differences result in a tradeoff between estimation and 

accuracy and lead us to believe that our G🇽E effect variance estimates are more 

representative of a lower (CG random) and upper (CG fixed) bound for the true amount 

of variation influence on the phenotype due to the environment. The methodology for 

including a G🇽E effect in relation to controlling for systematic management effects with 

CG will need to be explored more in depth as the method of choice may be dependent on 

the amount and types of data available for study. 

https://paperpile.com/c/fXYTh7/pytX+rPiX+S2jT
https://paperpile.com/c/fXYTh7/pytX+rPiX
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As CG definitions can conflate environment and management effects, a method that 

could be explored in the future of beef cattle genomic prediction under a G🇽E model will 

be to further separate the contributing components to a phenotype into a genotype 𝗑 

environment 𝗑 management (G🇽E🇽M) effect. Management practices are flexible and 

quicker in response to short term or infrequent negative environmental effects; while 

genetic selection can shift a population towards a more favorable response in an 

environment, this is generation length dependent which may not keep pace with a highly 

variable climate. (42) identified three points of consideration for future inclusion and 

application of G🇽E🇽M which are: there must be positive repeatable G🇽M contributions 

that can be tied to specific practices, mechanisms for detection and selection of the G🇽M 

benefits need to be included in the species improvement process, and finally, farmers 

must include these positive G🇽M practices in their production systems. Simulations for 

canola yield have shown that through changing plant density, sowing date, or irrigation 

that these management practices can narrow the yield gap across different regions in 

China in response to the differences in seasonal rainfall(43). Maize in Ethiopia saw the 

potential to increase yield by 48% due to a change in plant density for a specific genotype 

when taking genotype 𝗑 management effects into account(44). Accounting for and 

including G🇽E🇽M has been recognized in plant breeding and production for more than 

half a century, but currently less than 1% of US farmers utilize prediction methods for 

management practice decisions even though they have the potential to maximize 

phenotypes that would otherwise not be observed(45,46). Utilizing G🇽E🇽M in predictions 

has been recognized by researchers in the plant industry and implementation of G🇽E🇽M 

https://paperpile.com/c/fXYTh7/O530
https://paperpile.com/c/fXYTh7/fN8I
https://paperpile.com/c/fXYTh7/cOVG
https://paperpile.com/c/fXYTh7/1ell+EZs4
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in beef cattle could have resounding beneficial effects, yet the adoption could be slow 

due to socio-economic barriers of limited exposure and education, perception of the 

technology and benefits, or associated costs(47). Additionally, the industry would need to 

cooperate as a whole to define, identify, and record different types of management 

practices that could be accounted for in G🇽E🇽M. The limitations are a daunting hurdle to 

overcome, but the potential for improving sustainable intensification in the beef cattle 

industry through G🇽E and G🇽E🇽M is evident.  

 

Conclusions 

While bivariate G🇽E models allow for EBV prediction across environments, their 

accuracy is highly influenced by sample size often performing worse than the current 

national model that does not account for G🇽E effects. Therefore, bivariate G🇽E models 

are not recommended for implementation in the US beef cattle industry. We used a 

method to include a compound G🇽E effect in genomic prediction that was comparable in 

accuracy for predicting the direct genetic component of BW, and increased the accuracy 

of predicting the additive genetic component of YW. Accuracy of the EBVA for YW rose 

11% in the G🇽E model over the standard national model currently implemented by 

industry which does not consider G🇽E effects. We quantified the amount of variance that 

the G🇽E effect contributes, ranging from ~3%-12%, to the total phenotypic variation 

across production life stages. Accounting for CG as a random effect improved prediction 

accuracy for WW and YW due to management practices being tied to a specific location 

https://paperpile.com/c/fXYTh7/ikW4
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and climate. Prediction accuracies for G🇽E inclusive models could be further improved 

by expanding the number of environmental variables, refining the definition of CG, and 

separating the effects of environment and management. In short, for the Gelbvieh breed 

of beef cattle in the US, our results support the inclusion of G🇽E effects in genomic 

prediction for accurate EBVA predictions for especially for YW and the new 

supplemental selection information in the form of a DG🇽E for the current environment for 

improving sustainable production.  
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Figures 

Figure 1 Ecoregion distribution of individuals in the validations set 

 

The distribution of individuals across ecoregions in the ecoregion distributed validation 

set for birth weight (n = 958), weaning weight (n = 989), and yearling weight (n = 768). 

Ecoregions are designated as the following: DT is Desert, SE is Southeast, HP is High 

plains, FM is Forested Mountains, FB is Fescue Belt, and UMN is Upper Midwest & 

Northeast. 
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Figure 2 National EBVs and G🇽E EBVA for the ecoregion distributed validation set 

 

The national estimated breeding values (EBV) and the genotype 𝗑 environment (G🇽E) 

additive estimated breeding values (EBVA) for the ecoregion distributed validation set of 

individuals when a, the contemporary group is fit as a  fixed effect and b, when the 

contemporary group is fit as a random effect with lines of best fit in blue. Each dot 

represents an individual and the color corresponds to the ecoregion the animal originates 

from. Ecoregions are designated as the following: DT is Desert, SE is Southeast, HP is 

High plains, FM is Forested Mountains, FB is Fescue Belt, and UMN is Upper Midwest 

& Northeast. 
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Figure 3 National EBVs and G🇽E EBVTotal for the ecoregion distributed validation 

set 

 

The national estimated breeding values (EBV) and the genotype 𝗑 environment (G🇽E) 

total estimated breeding values (EBVTotal) for the ecoregion distributed validation set of 

individuals when a, the contemporary group is fit as a fixed effect and b, when the 

contemporary group is fit as a random effect with lines of best fit in blue. Each dot 

represents an individual and the color corresponds to the ecoregion the animal originates 

from. Ecoregions are designated as the following: DT is Desert, SE is Southeast, HP is 

High plains, FM is Forested Mountains, FB is Fescue Belt, and UMN is Upper Midwest 

& Northeast. 
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Tables 

Table 1 Distribution of individuals with genotypes and phenotypes across ecoregions 

Phenotype DT SE HP FM FB UMN No Eco No Pheno Total 

BW 362 311 3328 641 3937 999 809 2174 12561 

WW 376 356 3420 649 4081 996 806 1877 12561 

YW 154 259 2720 474 3316 756 613 4269 12561 

There were 12561 individuals with genotypes with up to the three phenotypes, birth weight (BW), weaning 

weight (WW), and yearling weight (YW), and six ecoregions. Ecoregions are designated as the following: 

DT is Desert, SE is Southeast, HP is High Plains, FM is Forested Mountains, FB is Fescue Belt, and UMN 

is Upper Midwest & Northeast. Individuals included in the No Eco (No Ecoregion) column have reported 

phenotypes but no ecoregion designation, while those in No Pheno (No Phenotype) have no phenotype or 

ecoregion identified. 
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Table 2 Additive genetic variance estimates for the bivariate models for birth weight 

Bivariate model Fixed Random 

High Plains and Fescue Belt   

   High Plains 38% 37% 

   Fescue Belt 35% 36% 

High Plains and Upper Midwest &Northeast   

   High Plains 40% 41% 

   Upper Midwest and Northeast 47% 46% 

Fescue Belt and Upper Midwest &Northeast   

   Fescue Belt 36% 38% 

   Upper Midwest &Northeast 48% 44% 

Additive genetic variance estimates expressed as a percentage of phenotypic variance contributed for birth 

weight when contemporary group was fit as a fixed or random effect. Ecoregions are designated as 

following: HP is High Plains, FB is Fescue Belt, and UMN is Upper Midwest & Northeast.  
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Table 3 Variance component estimates for the G🇽E models and three phenotypes 

Phenotype Fixed Random 

Birth Weight   

   Additive 35% 38% 

   G🇽E 5% 3% 

Weaning Weight   

   Additive 18.85% 24.77% 

   G🇽E 8.87% 6.16% 

Yearling Weight   

   Additive 30.28% 39.84% 

   G🇽E 11.96% 5.16% 

Additive genetic and genotype 𝗑 environment (G🇽E) variance component estimates expressed as a 

percentage of phenotypic variance for: birth weight (BW), weaning weight (WW), and yearling weight 

(YW) when the contemporary group was fit as a fixed or random effect. 
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Table 4 Accuracies for the national models 

Phenotype Fixed Random 

Birth Weight 73.88% 73.97% 

Weaning Weight 65.11% 68.36% 

Yearling Weight 58.26% 62.87% 

Accuracies estimated for the national evaluation models for birth weight (BW), weaning weight (WW), and 

yearling weight (YW) when contemporary group was fit as a fixed or random effect. 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

Table 5 Accuracies for the three bivariate models for birth weight 

Bivariate 
Animals 

Ecoregion 

Ecoregion of 

Prediction 
Fixed Random 

HP & FB HP HP 65.34% 64.52% 

 HP FB 53.16% 53.90% 

 FB HP 57.39% 59.30% 

 FB FB 59.49% 60.90% 

HP & UMN HP HP 6436% 62.46% 

 HP UMN 68.12% 68.18% 

 UMN HP 41.67% 40.58% 

 UMN UMN 63.48% 64.48% 

FB & UMN FB FB 59.04% 60.12% 

 FB UMN 67.64% 72.56% 

 UMN FB 46.78% 46.96% 

 UMN UMN 62.65% 64.76% 

The accuracies calculated for when the contemporary group was fit as a fixed or random effect for the three 

bivariate models for birth weight for the ecoregion distributed validation set for: High Plains (HP) & 

Fescue Belt (FB), HP & Upper Midwest & Northeast (UMN), and FB & UMN. Animal’s Ecoregion is 

defined as the ecoregion which has the adjusted phenotype that the individual resides in while Ecoregion of 

Prediction is the ecoregion the EBV is predicted for. 
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Table 6 Accuracies for the G🇽E models 

Phenotype Fixed Random 

Birth Weight   

   EBVA 73.31% 66.27% 

   DG🇽E 16.89% 11.728% 

   EBVTotal 69.66% 64.41% 

Weaning Weight   

   EBVA 63.11% 66.42% 

   DG🇽E 20.45% 19.15% 

   EBVTotal 57.00% 62.55% 

Yearling Weight   

   EBVA 55.65% 73.51% 

   DG🇽E 22.68% 28.64% 

   EBVTotal 51.99% 74.78% 

Accuracies for the genotype 𝗑 environment models (G🇽E) when contemporary group was fit as a fixed or 

random effect for birth weight, weaning weight, and yearling weight. Accuracies were calculated for the 

additive (EBVA), G🇽E deviation (DG🇽E), and the total genetic merit (EBVTotal).  
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Additional files 

Additional file 1 Table S1 

Format: pdf 

Title: Comparison statistics between G🇽E and national models’ EBVs with the ecoregion 

distributed validation set 

Description: The calculated statistics, slope of the line of best fit, Pearson correlation, and 

Spearman correlation, for comparing the genotype 𝗑 environment (G🇽E) additive 

estimated breeding values (EBVA) and total estimated breeding values (EBVTotal) to the 

national EBVs with the ecoregion distributed validation set when the contemporary group 

is fit as a fixed or random effect for birth weight, weaning weight, and yearling weight.  

Available upon request by Dr. Jared Decker at deckerje@missouri.edu 
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Abstract 

Background 

Climate changes pressure the US beef cattle production to increase sustainability as 

environmental effects are beginning to shift. Frequently, cattle re-rank in genetic 

potential across environments due to genotype-by-environment interactions and will do 

so more drastically as unsteady climate changes become the new normal. As the 

environment a dam creates for her progeny is affected by her own environment, maternal 

genotype-by-environmental effects need to be considered in addition to direct genotype-

by-environment effects on the growth and production of cattle. By estimating the 
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variance these effects contribute to the birth weight of an animal and incorporating them 

into genomic prediction and selection practices, breeders and producers will be able to 

achieve sustainability goals even as the environment varies. 

Results 

Maternal and direct genotype-by-environment variance components were estimated for 

birth weight using a genotype-by-environment model. With the full single nucleotide 

polymorphism set, genotype-by-environment models were close in predictive accuracy to 

the currently implemented national genomic evaluation model for the additive and 

maternal genetic effects. When the genotype-by-environment model was combined with 

a selection and environment associated enriched single nucleotide polymorphism sets, the 

estimated direct genotype-by-environment effect contribution to birth weight increases 

from ~3% to ~42%. Similarly, the estimated maternal genotype-by-environment effect 

estimate increased from 0.14% to 1.95% as compared to the full SNP set. With the 

focused single nucleotide polymorphism set being utilized for the genotype-by-

environment model, the national model has higher prediction accuracy for the additive 

genetic effect while the genotype-by-environment model tends to have higher accuracy 

for predicting the maternal genetic effect. 

Conclusions 

Genotype-by-environment models can partition the phenotypic variance into maternal 

and direct genotype-by-environment effects for birth weight. While the estimated 

contribution of these effects can be large, the tradeoff of a lower prediction accuracy, 3%-

10% difference, for the additive genetic effect needs to be considered. On the other hand, 

the prediction accuracy for the maternal genetic effect was slightly increased, 1%-3%, 
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with a genotype-by-environment model as compared to the current national genomic 

evaluation model. Genotype-by-environment models are currently not suggested for 

implementation in the US beef cattle industry due to decreased prediction accuracy and 

as environmental effects could potentially be countered through improved management 

practices. 

 

Background 

Genotype-by-environment (G🇽E) interactions have been widely acknowledged as a 

source of variation affecting the phenotypes of cattle which have the potential to improve 

upon current genomic prediction and selection. Models accounting for G🇽E have been 

analyzed mainly for growth traits, reproductive traits, and milk production traits (1–6). 

G🇽E can be modeled across many environments with multiple methods often resulting in 

varying effect estimates, accuracies, and recommendations. One methodological 

difference is the definition of environment; some define environment as a function of 

contemporary groups (6–9), herd-year averages (10), climate factors (5,11–13), or a 

mixture of environment and management classifications (2–4) to list a few. Due to these 

differences in definition, modeling, and predictive accuracy fluctuations, no G🇽E models 

have been officially adopted by any national cattle genomic evaluations to date.  

Even though G🇽E interactions have been included in genomic prediction models before, 

they have not previously been partitioned out into maternal and direct G🇽E effects for 

prediction even though the influences of fetal genetics and uterine environment is widely 

acknowledged (14–18). Maternal and direct G🇽E effects are thought to fluctuate in the 

https://paperpile.com/c/TP4smd/XT7K+ImB7+81aO+8Llz+S2fo+Xhkc
https://paperpile.com/c/TP4smd/AkXe+Xhkc+ayi8+EsKz
https://paperpile.com/c/TP4smd/yPxc
https://paperpile.com/c/TP4smd/r9co+iu1i+mhil+S2fo
https://paperpile.com/c/TP4smd/ImB7+81aO+8Llz
https://paperpile.com/c/TP4smd/Qdz5+HNUv+RlWN+jxWS+R08M
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amount they contribute to the phenotype across life stages. For example, maternal G🇽E 

effects would potentially have a larger contribution earlier in life affecting birth and 

weaning weights while direct G🇽E effects would have a larger effect later in life affecting 

yearling weights. By separately estimating maternal and direct G🇽E effects, management 

practices could be adjusted to provide additional support, e.g. nutritional supplementation 

during and post pregnancy affecting pre and postnatal growth. A few studies have 

examined the effects of heat stress relating to a dam’s reproductive traits and milk yield 

which in turn have an effect on their calves, but these studies are usually limited to 

phenotypes measured on the dams instead of on both dam and progeny (14,19–22). 

Incorporating additional information in the selection of genomic information for 

predictions holds promise by reducing noise in estimations and enriching for pertinent 

information related to the desired trait of interest. Biological knowledge through gene 

ontology, association studies, quantitative trait loci, and other types of omic data have 

been explored in the goal of SNP or genomic region inclusion for genomic prediction in 

cattle (23–27). These methods have been applied to many traits including but not limited 

to milk yield traits, reproductive traits, disease risk, and profit indexes (23–27). For some 

of the studies, a focused SNP set was able to improve prediction accuracy, reliabilities, 

and able to explain more of the variation in the traits of interest (23–26). To our 

knowledge this enrichment method through preselected genomic data has not been 

applied to the estimation and prediction of G🇽E effects in cattle.  

Here we explore G🇽E models that partition G🇽E effects into direct and maternal 

components to estimate the separate contributions to the variance of birth weight (BW). 

By applying these models to the Red Angus breed in the US, G🇽E effects will be captured 

https://paperpile.com/c/TP4smd/Dkqe+fEC8+BkkT+Qdz5+woY6
https://paperpile.com/c/TP4smd/Jl5R+o6qB+I5wn+W733+00jn
https://paperpile.com/c/TP4smd/Jl5R+o6qB+I5wn+W733+00jn
https://paperpile.com/c/TP4smd/I5wn+W733+o6qB+Jl5R
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across many different types of environments as the breed is widely distributed. 

Additionally we will test the effect of enriched SNP subsets on the additive and G🇽E 

effect estimation and prediction accuracy. By employing two different SNP subsets, a 

selection focused and an environment focused, we hope to increase the orthogonality of 

our variance component estimates. 

 

Methods 

Data 

Phenotype and genotype data were provided by the Red Angus Association of America. 

The phenotype analyzed was birth weight which had been pre-adjusted for age of dam. 

Contemporary groups were formed to breed organization specification with groups 

numbering less than five animals removed. Post filtering, the dataset consisted of 19,739 

individuals with phenotypes and genotypes and 3,284 additional dam and sire genotypes. 

As previously described by Rowan et al. (2021), nine discrete ecoregions were utilized to 

capture the complex environments across the United States. Animals were assigned to an 

ecoregion based on breeder zip code; those with multiple ecoregion assignments had their 

ecoregion set to missing. 

Genotypes and Imputation 

Genotyped loci varied according to the utilized assays including the GeneSeek GGP-

LDv3, GeneSeek GGP-LDv4, GeneSeek GGP-90KT, GeneSeek GGP-HDv3, GeneSeek 

GGP-F250, Illumina BovineSNP50, and Illumina BovineHD. Genotypes were imputed to 

a union set of ~850k autosomal SNPs with coordinates from the ARS-UCD1.2 bovine 

reference genome (28) following the method described by Rowan et al. (2019). The 

https://paperpile.com/c/TP4smd/iu1i
https://paperpile.com/c/TP4smd/w0EV
https://paperpile.com/c/TP4smd/lLJa
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process includes: genotype quality control performed in PLINK (v1.9) , referenced-based 

phasing with Eagle (v2.4), and imputation with Minimac3 (v2.0.1)(30–33). After filtering 

for minor allele frequency greater than 0.01 in PLINK (v1.9), there were 649,114 SNPs 

available for analysis. Additional SNP subsets were identified by rank of significance in 

previous Generation Proxy Selection Mapping (GPSM) and environmental Genome-

Wide Association Studies (envGWAS) analyzes in the Red Angus and Simmental breeds 

as their genetic evaluations are jointly analyzed in industry (12,34). Briefly, GPSM 

identifies SNPs under polygenic selection while envGWAS captures SNPs associated 

with local adaptation. The top 20,000 and 40,000 SNPs were selected from each analysis 

corresponding to 4NeL estimates for when Ne ≈ 150 or Ne ≈ 350 and L = 30 (35,36). Top 

GPSM associated SNPs were used to construct additive genomic relationship matrices 

and top envGWAS SNPs were used to construct the G🇽E relationship matrices. Overall, 

three SNP sets were analyzed: the full ~650k, 40k, and 20k. 

Variance Component Estimation 

Birth weight variance components were estimated with a national model with the full 

SNP set and a G🇽E model with the three SNP sets. Variance components for the national 

model were estimated by average-information restricted maximum likelihood in 

airemlf90 with the following univariate linear mixed model: 

𝑦 =  𝑋𝐶𝑏𝐶  +  𝑍𝐴𝑢𝐴  +  𝑍𝑀𝑢𝑀  +  𝑒 

where 𝑦 is a vector of phenotypes; 𝑏𝐶 is a vector of contemporary group effects; 𝑢𝐴 is a 

vector of random additive genetic effects and 𝑢𝑀 is a vector of random maternal genetic 

effects where 𝑣𝑎𝑟 [
𝑢𝐴

𝑢𝑀
] =  [

𝑯𝜎𝐴
2 𝑯𝑐𝑜𝑣𝐴,𝑀

𝑯𝑐𝑜𝑣𝑀,𝐴 𝑯𝜎𝑀
2 ] ; 𝒆 ~ N(0, I𝜎e

2) is a vector of random 

https://paperpile.com/c/TP4smd/0FiA+QyJQ+zmpK+W7rM
https://paperpile.com/c/TP4smd/iu1i+qiuk
https://paperpile.com/c/TP4smd/3oki+mPLU
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residuals; 𝑋𝐶,  𝑍𝐴 and 𝑍𝑀 are incidence matrices relating 𝑦 to 𝑏𝐶 ,  𝑢𝐴 , and 𝑢𝑀 , 

respectively. I is an identity matrix. H is the blended relationship matrix of the VanRaden 

genomic relationship matrix G and the subset of the numerator relationship matrix A22 

(37–39). Variance components for the G🇽E model were estimated by average-information 

restricted maximum likelihood in airemlf90 with the following univariate linear mixed 

model: 

𝑦 =  𝑋𝐶𝑏𝐶  + 𝑋𝐸𝑏𝐸   + 𝑍𝐴𝑢𝐴  +  𝑍𝑀𝑢𝑀  + 𝑍𝐷𝐺🇽𝐸𝑢𝐷𝐺🇽𝐸  +  𝑍𝑀𝐺🇽𝐸𝑢𝑀𝐺🇽𝐸  +  𝑒 

where 𝑦 is a vector of phenotypes; 𝑏𝐶 is a vector of contemporary group effects; bE is a 

vector of ecoregion environment effects; 𝑢𝐴 is a vector of random additive genetic effects 

and 𝑢𝑀 is a vector of random maternal genetic effects where 𝑣𝑎𝑟 [
𝑢𝐴

𝑢𝑀
] =

 [
𝑯𝜎𝐴

2 𝑯𝑐𝑜𝑣𝐴,𝑀

𝑯𝑐𝑜𝑣𝑀,𝐴 𝑯𝜎𝑀
2 ] ;  

; 𝑢𝐷𝐺🇽𝐸 ~ N(0,HG🇽E𝜎DG🇽E
2) is a vector of random direct G🇽E effects; 𝑢𝑀𝐺🇽𝐸  ~ 

N(0,HG🇽E𝜎MG🇽E
2) is a vector of random maternal G🇽E effects; 𝒆 ~ N(0, I𝜎e

2) is a vector of 

random residuals; 𝑋𝐶 , 𝑋𝐸 , 𝑍𝐴 , 𝑍𝑀 , 𝑍𝐷𝐺🇽𝐸  , and 𝑍𝑀𝐺🇽𝐸  are incidence matrices relating 𝑦 

to 𝑏𝐶 , 𝑏𝐸 ,  𝑢𝐴 , 𝑢𝑀  , 𝑢𝐷𝐺🇽𝐸 , 𝑢𝑀𝐺🇽𝐸  , respectively. I is an identity matrix. H is the 

blended relationship matrix of the VanRaden genomic relationship matrix G and the 

subset of the numerator relationship matrix A22 (37–39). HG🇽E is H[i,j] when individuals 

are from the same ecoregion and otherwise is 0 (40). The estimated variance components 

from these models were utilized in downstream predictions for calculating individuals 

estimated breeding values (EBVs). 

https://paperpile.com/c/TP4smd/aoYx+42IH+mFGQ
https://paperpile.com/c/TP4smd/aoYx+42IH+mFGQ
https://paperpile.com/c/TP4smd/V7m8
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Validation and Accuracy 

To validate the genomic prediction models the youngest year of individuals was 

identified, 2019, and grouped by their contemporary group level. Contemporary groups 

spanning the calendar year were removed. The remaining contemporary groups (n of 

animals = 3699, 18.7% of N) were randomly assigned to one of three validation sets, with 

the resulting number of individuals per validation set: n1 = 1,213 (6%), n2 = 1,109 (5.6%), 

and n3 = 1,377 (7%).  

After calculating EBVs with the entire dataset (whole), the three validation sets of 

individuals had their phenotypes set to missing iteratively (partial) in order to calculate 

accuracy of the EBVs. Prediction accuracy was estimated with the following: 

𝑎𝑐�̂�𝐿𝑅 = √
𝑐𝑜𝑣(�̂�𝑤, �̂�𝑝)

(1 − �̅�)�̂�𝑢
2

 

where 𝑢�̂� is the vector of EBVs of the validation set of individuals for the whole dataset, 

𝑢�̂� is the vector of predicted EBVs of the validation set of individuals for the partial 

dataset, �̅� is the average inbreeding coefficient of the validation individuals, and 𝜎𝑢
2̂ is the 

corresponding estimated variance of the effect for the trait (41,42). The inbreeding 

coefficients were calculated in PLINK(v1.9) with the ‘--ibc’ command after the full set of 

SNPs (649,114) were pruned for linkage disequilibrium with ‘--indep-pairwise’, a 

window size of 2,000kb, a set size of 1,000 SNPs, and a r2 = 0.8 resulting in 200,599 

SNPs utilized in estimation (30,31). Estimated breeding values were compared across the 

partial and full datasets by plotting the validation sets’ EBVs against each other in 

R(v3.4.3) with the slope of the line of best fit being estimated with the stats package 

‘lm()’ function to estimate over or under dispersion (43). 

https://paperpile.com/c/TP4smd/r97R+K5Ip
https://paperpile.com/c/TP4smd/0FiA+QyJQ
https://paperpile.com/c/TP4smd/Soom
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Model Comparison 

Estimated breeding values were compared across the models by plotting the validation 

sets’ EBVs against each other in R(v3.4.3) with the slope of the line of best fit being 

estimated with the stats package ‘lm()’ function to visualize differences between the 

models (43). Pearson and Spearman correlations were calculated among the validations’ 

EBVs to measure the linear correlation and reranking of individuals among models. 

 

Results 

Variance Component Estimation 

Variance components were estimated for birth weight for the national model and G🇽E 

model with the full SNP set, and for the G🇽E model with the 40k and 20k SNP set (Table 

1).There are marginal differences in estimated variances for the shared components 

between the national and G🇽E model when the full SNP set is utilized. As the SNP sets 

are enriched for SNPs with evidence of directional selection or local adaptation for the 

G🇽E model, the direct and maternal additive genetic variance estimates decrease while 

the direct and maternal G🇽E variances estimates increase considerably. Similarly, the 

narrow-sense heritabilities of the direct and maternal genetic effects are close between the 

national and G🇽E models when the full SNP set is utilized, but when the SNPs are 

reduced to the targeted sets to those associated with directional selection the estimates 

decrease (Table 2). The PVE for the maternal genotype-by-environment effect slightly 

increases as the SNPs are reduced to those associated with environmental selection, while 

the PVE for the direct genotype-by-environment effect greatly increases when the SNPs 

https://paperpile.com/c/TP4smd/Soom


99 
 

are reduced. In addition, the G🇽E models estimated ecoregions fixed effect 

solutions  vary little across the SNP sets while consistent in direction (Table 3).  

Model Accuracies 

The accuracies of each models predicted EBVs were calculated as 𝑎𝑐�̂�𝐿𝑅 which examines 

the relationship between the validation individuals’ EBVs from when the whole dataset 

was utilized and when their phenotypes were set to missing (partial) (41,42). The 

accuracy of the additive genetic EBVs decreased from the national to the G🇽E models 

and as the SNP set was reduced in size (Table 4). There was not a statistically significant 

difference from the national or G🇽E models with the full SNP data (t = 2.29, p-value = 

0.09). The national model was more accurate than the 40k model (t = 3.95, p-value = 

0.02) and the 20k model (t = 4.73, p-value = 0.01). Accuracies of the maternal genetic 

EBVs were very similar between the national and the full SNP G🇽E model, but the G🇽E 

model accurcies increased as the SNP set decreased in size (Table 4). The accuracies for 

the 20k SNP G🇽E model were significantly larger than the accuracies for the national 

model (t =  -3.67, p-value = 0.02). 

Estimated Breeding Value Comparisons 

Within the models, whole and partial EBVs for the validation sets were plotted against 

each other to visualize dispersion in addition to calculating pearson and spearman 

correlations. For the national model, the maternal genetic effect has slightly lower 

correlations with a bit more reranking of individuals as compared to the direct genetic 

effect (Table 5; Figure 1). Slopes follow a similar trend with the direct genetic effects’ 

slope being closer to 1 at 0.996 and the maternal genetic effect’s average slope is slightly 

https://paperpile.com/c/TP4smd/K5Ip+r97R
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decreased, though not significantly different from 1 (t = -1.24, p-value = 0.34), 

representing a slightly more dispersed partial EBV. The G🇽E model with the full set of 

SNPs maternal genetic EBVs are highly correlated with minimal reranking of individuals, 

but the direct genetic EBVs have lower correlations in comparison (Table 6; Figure 2). 

Despite these lower correlations, the average slopes for both additive genetic effects are 

very close to 1, 1.003 for direct and 0.996 for maternal. When the SNP set is dropped to 

40k and 20k for the G🇽E model, the correlations follow the same trend as the full SNP set 

with maternal genetic effects having higher correlations than the direct genetic effects 

with the average slopes both being close to 1(Tabel 7, 8; Figure 3,4). 

To compare and contrast the national model and the G🇽E models, predicted partial EBVs 

for the validation sets were plotted against each other to estimate the slopes of the lines of 

best fit, and Pearson and Spearman correlations were calculated. When the national 

model is compared to each of the G🇽E models, the predicted EBVA are moderate to highly 

correlated with some reranking with both correlation statistics decreasing as the SNP set 

is reduced in size for the G🇽E models (Table 9; Figure 5a; Figure 6a; Figure 7a). 

However, the slopes on average are estimated close to or are 1 indicating minimal 

prediction bias between the predicted EBVA (Tabel 9; Figure 5a; Figure 6a; Figure 7a). 

The EBVM comparisons follow the same trends as the EBVA; the correlation statistics 

decrease as the SNP set decreases for the G🇽E model (Table 10; Figure 5b; Figure 6b; 

Figure 7b). Additionally, the slopes follow this decreasing trend as the SNP set decreases 

for the G🇽E model which indicates a higher EBVM estimate for the G🇽E models than the 

national model (Table 10; Figure 5b; Figure 6b; Figure 7b). 
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Discussion 

The results presented here demonstrate the ability of a G🇽E model to partition 

environmental interactions into maternal and direct components while being comparable 

in prediction accuracy for the direct and maternal genetic effects to a model which does 

not account for G🇽E. A selection and environmental associated targeted SNP set did not 

improve the prediction accuracy of the direct genetic effect, but did slightly raise the 

accuracy of the maternal genetic effect.  These results highlight several areas of 

discussion: direct and  maternal G🇽E effects, and SNP selection. 

While G🇽E interactions and quantitative trait loci (QTL) have been previously identified 

for birth weight in cattle (11–13,15,16,21,44), more work needs to be done as there is not 

always a clear separation between direct G🇽E effects of the fetus’ genetics responding to 

the environment and the maternal G🇽E effects (13,14,16,45–47). First with the G🇽E 

models presented here, the estimated effect on birth weight from direct G🇽E effects was 

3% with the full SNP set and ~42% with an environmental associated enriched SNP set 

(Table 2). Total G🇽E effect estimates on birth weight in cattle have previously been 

estimated at 10% (13) and 3%-5% (Nilson et al. 2022), and as G🇽E effects have not 

previously been quantified separately as direct and maternal to the authors’ knowledge, 

these direct G🇽E estimates are surprisingly high. These suggest for BW at least, the fetal 

genetics interacting with the environment plays a larger role in phenotypic variance than 

previously estimated. With the increased estimate of variance due to direct G🇽E, from 

~3%-42% as the SNP sets are reduced in size, the heritability and prediction accuracy of 

https://paperpile.com/c/TP4smd/iu1i+RlWN+HNUv+mhil+Gs62+r9co+BkkT
https://paperpile.com/c/TP4smd/mhil+Qdz5+OnzY+LQia+2dN6+RlWN
https://paperpile.com/c/TP4smd/mhil
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the direct genetic EBV decreases (Tables 2,  4). These coincide with an increase in the 

standard errors for the direct G🇽E variance estimates and an increase in the range of 

estimated direct G🇽E effects for animals. The direct G🇽E variance estimates potentially 

could have been inflated due to the repeated use of the same environmental variables; 

they were utilized in envGWAS to detect SNPs interacting with the environment, to 

create the ecoregions, and then the ecoregions were utilized for the environment in our 

models (12). In relation to the ecoregions, animals in the High Plains (HP) had the largest 

average BWs and animals in the Arid Prairie (AP) had the lightest average BWs (Table 

3). There was a range in the effects of other regions, but most of these ecoregion’s 

confidence intervals overlapped zero. This suggests that temperature, amount of rain, and 

thus amount of forage likely has the largest impact on cow and calf performance. 

Maternal effects in cattle have been proved to have large impacts on the life of their 

progeny due to their additive genetics contribution and environment. When the calf is 

developing in utero, the environment a dam creates for her offspring is in part a function 

of her own environment, this results in maternal G🇽E effects affecting her 

progeny.Genotype-by-environment variance contribution to birth weight estimates are 

rarely reported in cattle, one being estimated at 10% (13); this is due to many studies 

identifying if G🇽E interactions exist through genetic correlations (11,16,21,44,47). The 

G🇽E model presented here estimated the variance component of maternal G🇽E (0.14%-

1.95%) effects on birth weight (Table 2). Maternal G🇽E effects have been observed due 

to differences in nutrition (15–17), heat stress (17,19,20,48), and reproductive 

traits  (10,14,49). Even though the maternal and direct G🇽E estimates presented here are 

https://paperpile.com/c/TP4smd/iu1i
https://paperpile.com/c/TP4smd/mhil
https://paperpile.com/c/TP4smd/BkkT+RlWN+2dN6+Gs62+r9co
https://paperpile.com/c/TP4smd/RlWN+HNUv+jxWS
https://paperpile.com/c/TP4smd/jxWS+fEC8+PV09+Dkqe
https://paperpile.com/c/TP4smd/GBmV+Qdz5+yPxc
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in contrast with thoughts that the uterine environment may play a larger role than fetal 

genetics on birth weight (14), they are supported by others who suggest that fetal 

genotype determines the max potential for growth which is then limited by the maternal 

environment (17,49). These separate estimates give insight into the G🇽E effects on birth 

weight as the maternal G🇽E contribution is low which could indicate a rather plastic 

uterine environment in response to external environmental pressures while the main 

phenotypic differences are due to how the fetus’ genetics are responding to the external 

environment or direct G🇽E effects. Maternal G🇽E effects may have been estimated to 

have a smaller impact on birth weight here, but they hold great value in genomic 

prediction and selection as an optimal maternal environment will allow for a calf to 

maximize upon its’ additive genetic potential regardless of external environmental 

pressures. Additionally, this maternal G🇽E effect may have a large impact on a trait with 

stronger maternal influence like weaning weight. 

Lastly, the number of SNPs utilized for the G🇽E models were reduced to a total of 40k or 

20k previously identified significantly associated SNPs with selection to estimate the 

additive direct and maternal genetic effects or SNPs significantly associated with the 

environment to estimate the direct and maternal G🇽E effects (12). Our intention was to 

reduce noise caused by the large amount of estimation for SNPs potentially not 

associated with the trait and enrich the amount of relevant information pertinent to the 

traits analyzed (50–52), while not double counting birth weight phenotype data. 

Incorporation of biological information into genomic prediction is not new whether this 

be through gene ontology, annotation, identified SNPs that explain a percentage of the 

phenotypic variance of a trait, marker weighting, etc. (23,24,50–56). These methods hold 

https://paperpile.com/c/TP4smd/Qdz5
https://paperpile.com/c/TP4smd/jxWS+GBmV
https://paperpile.com/c/TP4smd/iu1i
https://paperpile.com/c/TP4smd/Y1NU+uGJi+3d9B
https://paperpile.com/c/TP4smd/Y1NU+uGJi+3d9B+CScp+EZsb+o6qB+Jl5R+VC7j+XexM
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promise as targeted SNP sets have been evaluated to hold comparable or improved 

predictive ability to their denser counterparts (23,24,26,57), but accuracy is not always 

increased which could be due to the exclusion of regulatory elements, polygenic effects, 

and genetic architecture (25,52–54). Our selection enriched SNP set for the G🇽E model 

decreased predictive accuracy of the additive direct genetic effect by 5% for the 40k, and 

9% for the 20k as compared to the full SNP set, but increased the accuracy of the 

maternal genetic effect by 1% and 3% for the 40k and 20k sets respectively (Table 4). 

The increase in the maternal genetic effect accuracy may be capturing the high quality of 

maternal characteristics that the Red Angus breed is known for and speaks to the findings 

of Rowan et al. (2021) where selection on fertility related traits were enriched in the Red 

Angus breed. When compared to the full SNP set, the environmental associated enriched 

SNP sets increased the estimated PVE by the direct G🇽E effect from ~3% to 42% and the 

maternal G🇽E effect from 0.14% to 1.95% (Table 2). While these G🇽E variation findings 

are exciting, a major limitation of this study is how the G🇽E effects were fit in our model. 

By setting discrete contrasts among the defined ecoregions which can encompass shared 

or similar environmental features, we are not capturing the shared G🇽E effects across 

ecoregions which may exist due to widespread gene flow through the adoption of 

artificial insemination (12,58). When fitting multiple genetic effects, orthogonal estimates 

of variances is a concern (59). Using different SNPs to calculate the additive relationship 

matrix and the G🇽E relationship matrix may have increased the orthogonality of the 

variance components and led to vastly different direct G🇽E variance estimates between 

the 40k and 20k SNP sets and the full SNP data. Additionally by changing the method of 

https://paperpile.com/c/TP4smd/o6qB+Jl5R+SNRF+W733
https://paperpile.com/c/TP4smd/EZsb+CScp+3d9B+I5wn
https://paperpile.com/c/TP4smd/iu1i
https://paperpile.com/c/TP4smd/iu1i+h4Yl
https://paperpile.com/c/TP4smd/6r13
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parameterization of the G🇽E effects, the definition of environment, and how they are fit 

in a model, these variance component estimates may change in magnitude and not reflect 

the true genetic architecture underlying BW (52,60). In short for the results presented 

here utilizing two targeted SNP sets for a G🇽E model, a selection enriched set for the 

direct and maternal genetic effects and an environmental associated enriched set for the 

direct and maternal G🇽E effects, decreased the accuracy of direct genetic prediction and 

slightly increased the accuracy of maternal genetic prediction. While not conveying a 

clear predictive advantage overall, a focused SNP set needs further investigation in the 

application towards estimating and predicting effects in a G🇽E framework. 

 

Conclusions 

At this point in time no US beef cattle genomic evaluations account for G🇽E effects, 

instead they simply estimate additive genetic effects across all environments. Here we 

evaluated a G🇽E model that partitioned G🇽E effects into maternal and direct as these were 

hypothesized to contribute in different magnitudes across life stages and could have 

implications for selection and management practices. Additionally by enriching our SNP 

sets for selection and environmental association, we narrowed our genotypes to the top 

40k or 20k significant SNPs previously identified by GPSM and envGWAS analyses 

(12). For BW, the evaluated national model accurately predicted the direct genetic effect 

3%-10% higher than the G🇽E models, and was comparable in accuracy for the maternal 

genetic effect (Table 4). Additionally, there was minimal reranking of individuals 

between the national and G🇽E model when the full SNP set was utilized with spearman 

https://paperpile.com/c/TP4smd/3d9B+N6m6
https://paperpile.com/c/TP4smd/iu1i
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correlations averaging 0.945 for the direct genetic EBV and 0.94 for the maternal genetic 

EBV (Tables 9, 10). While the direct G🇽E effect estimates were surprisingly high, ~41%, 

when an enriched SNP set was utilized, the trade off in predictive accuracy was not 

appealing to achieve a G🇽E variance component estimation. Overall, there is no clear 

advantage the G🇽E model or the focused SNP set has in comparison to the currently 

utilized national evaluation model for BW. Therefore at this time G🇽E models and 

reduced SNP sets are not recommended for implementation and further research will be 

needed to improve upon them in terms of definition, parameterization, before being 

considered for prediction. 
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Figures 

Figure 1 National whole and partial estimated direct and maternal genetic breeding 

values 

 

The national models’ whole (y-axis) estimated breeding values for the a direct genetic 

effect and b the maternal genetic effect are plotted against the national partials’ (x-axis) 

estimated breeding values for the three validation sets. 
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Figure 2 G🇽E Full SNP whole and partial estimated direct and maternal genetic 

breeding values 

 

The genotype-by-environment full SNP models’ whole (y-axis) estimated breeding 

values for the a direct genetic effect and b the maternal genetic effect are plotted against 

the national partials’ (x-axis) estimated breeding values for the three validation sets. 
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Figure 3 G🇽E 40k SNP whole and partial estimated direct and maternal genetic 

breeding values 

 

The genotype-by-environment 40k SNP models’ whole (y-axis) estimated breeding 

values for the a direct genetic effect and b the maternal genetic effect are plotted against 

the national partials’ (x-axis) estimated breeding values for the three validation sets. 
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Figure 4 G🇽E 20k SNP whole and partial estimated direct and maternal genetic 

breeding values 

 

The genotype-by-environment 20k SNP models’ whole (y-axis) estimated breeding 

values for the a direct genetic effect and b the maternal genetic effect are plotted against 

the national partials’ (x-axis) estimated breeding values for the three validation sets. 
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Figure 5 National and genotype-by-environment full SNP set models’ estimated 

direct and maternal genetic breeding values 

 

The national models’ (y-axis) estimated breeding values for the a direct genetic effect 

and b the maternal genetic effect are plotted against the full single nucleotide snp set 

genotype-by-environment models’ (x-axis) corresponding estimated breeding values for 

the three validation sets. 
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Figure 6 National and genotype-by-environment 40k SNP set models’ estimated 

direct and maternal genetic breeding values 

 

The national models’ (y-axis) estimated breeding values for the a direct genetic effect 

and b the maternal genetic effect are plotted against the 40k single nucleotide snp set 

genotype-by-environment models’ (x-axis) corresponding estimated breeding values for 

the three validation sets. 
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Figure 7 National and genotype-by-environment 20k SNP set models’ estimated 

direct and maternal genetic breeding values 

 

The national models’ (y-axis) estimated breeding values for the a direct genetic effect 

and b the maternal genetic effect are plotted against the 20k single nucleotide snp set 

genotype-by-environment models’ (x-axis) corresponding estimated breeding values for 

the three validation sets. 
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Tables 

Table 1 Estimated variance components for birth weight 

Model SNP 𝜎𝑨
�̂� 𝜎𝑴

�̂�  cov(A,M) rGA,M 𝜎𝑫𝑮🇽𝑬
�̂�  𝜎𝑴𝑮🇽𝑬

�̂�  𝜎𝒆
�̂� 

National Full 29.33 10.96 -4.71 -0.26 - - 39.27 

G🇽E Full 29.35 10.92 -4.73 -0.26 2.59 0.12 39.04 

G🇽E 40k 26.58 9.14 -3.60 -0.23 59.28 1.39 43.18 

G🇽E 20k 25.04 8.75 -4.05 -0.27 59.02 2.78 46.85 

The estimated variance components for birth weight across the national and genotype-by-environment 

(G🇽E) models with the full SNP set and targeted SNP sets of 40,000 and 20,000. The estimated components 

are the direct genetic variance (𝜎𝑨
�̂� ), maternal genetic variance (𝜎𝑴

�̂�  ), the covariance between the direct and 

maternal genetic (cov(A,M)), the genetic correlation between the direct and maternal genetic (rGA,M), the 

direct G🇽E variance (𝜎𝑫𝑮🇽𝑬
�̂�  ), the maternal G🇽E variance (𝜎𝑴𝑮🇽𝑬

�̂�  ) and the residual variance (𝜎𝒆
�̂� ). Missing 

values are represented by a dash due to those effects not being included in the model. 

 

Table 2 Narrow-sense heritabilities and percent variance explained for random 

effects 

Model SNP 𝒉�̂�
of A 𝒉�̂�

 of M 

PVE of  

DG🇽E 

PVE of  

MG🇽E 

National Full 0.368 0.138 - - 

G🇽E Full 0.358 0.133 0.032 0.0014 

G🇽E 40k 0.190 0.065 0.425 0.0099 

G🇽E 20k 0.176 0.061 0.414 0.0195 

The estimated narrow-sense heritabilities (ℎ2̂) for direct (A) and maternal genetic effects (M), and the 

percent variances explained (PVE) for the direct genotype-by-environment effect (DG🇽E) and the maternal 

genotype-by-environment effect (MG🇽E) for the national model, the genotype-by-environment full SNP 

model, the genotype-by-environment 40k SNP model, and the genotype-by-environment 20k SNP model. 

Missing values are represented by a dash due to those effects not being included in the model. 
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Table 3 Ecoregion fixed effect solutions for genotype-by-environment models 

SNP DT SE HP AP FH  FM  FB  UMN  

Full 0.197 

(1.427) 

-0.783 

(1.011) 

1.344 

(0.473) 

-2.194 

(1.104) 

0.000 

(0.000) 

0.828 

(0.518) 

-1.237 

(0.676) 

-0.621 

(0.849) 

40k 0.448 

(1.460) 

-0.689 

(1.037) 

1.543 

(0.485) 

-2.580 

(1.131) 

0.000 

(0.000) 

0.783 

(0.531) 

-1.040 

(0.691) 

-0.813 

(0.870) 

20k 0.358 

(1.488) 

-0.955 

(1.056) 

1.703 

(0.493) 

-2.534 

(1.151) 

0.000 

(0.000) 

0.932 

(0.541) 

-0.997 

(0.702) 

-0.764 

(0.885) 

Estimated fixed effect solutions in the genotype-by-environment models for ecoregions: Desert (DT, n = 

725), Southeast (SE, n = 959), High Plains (HP, n = 6437), Arid Prairie (AP, n = 1011), Foothills (FH, n = 

19), Forested Mountains (FM, n = 3229), Fescue Belt (FB, n = 2889), and the Upper Midwest and 

Northeast (UMN, n = 1927). Standard error of the solution is below the estimate within parentheses. 

 

Table 4 Average accuracies of the additive genetic estimated breeding values 

Estimated 

Breeding Value 
National, Full G🇽E, Full G🇽E, 40k G🇽E, 20k 

Direct 0.80 (0.012) 0.77 (0.009) 0.72 (0.015) 0.70 (0.019) 

Maternal 0.46 (0.006) 0.46 (0.009) 0.47 (0.007) 0.49 (0.006) 

Average accuracies of the additive direct and maternal genetic estimated breeding values for the national 

model, the genotype-by-environment full SNP model, the genotype-by-environment 40k SNP model, and 

the genotype-by-environment 20k SNP model across the three validation sets. Standard errors are reported 

within parentheses.  
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Table 5 Average comparison statistics among National whole and partial additive 

genetic estimated breeding values 

Estimated Breeding Value Pearson Spearman Slope 

Direct 0.980 (0.001) 0.978 (0.001) 0.996 (0.001) 

Maternal 0.973 (0.002) 0.969 (0.003) 0.985 (0.012) 

The average Pearson correlations, Spearman correlations, and slopes of the line of best fit among the 

national models’ whole and partial estimated breeding values for the direct and maternal genetic effects 

across the three validation sets. Standard errors are reported within parentheses.  

 

Table 6 Average comparison statistics among G🇽E Full SNP whole and partial 

additive genetic estimated breeding values 

Estimated Breeding Value Pearson Spearman Slope 

Direct 0.944 (0.005) 0.939 (0.006) 1.003 (0.009) 

Maternal 0.966 (0.004) 0.960 (0.006) 0.996 (0.006) 

The average Pearson correlations, Spearman correlations, and slopes of the line of best fit among the 

genotype-by-environment, full SNP set, models’ whole and partial estimated breeding values for the direct 

and maternal genetic effects across the three validation sets. Standard errors are reported within 

parentheses.  

 

Table 7 Average comparison statistics among G🇽E 40k SNP whole and partial 

additive genetic estimated breeding values 

Estimated Breeding Value Pearson Spearman Slope 

Direct 0.950 (0.006) 0.945 (0.007) 0.997 (0.011) 

Maternal 0.967 (0.003) 0.964 (0.003) 0.993 (0.002) 

The average Pearson correlations, Spearman correlations, and slopes of the line of best fit among the 

genotype-by-environment, 40k SNP set, models’ whole and partial estimated breeding values for the direct 

and maternal genetic effects across the three validation sets. Standard errors are reported within 

parentheses.  

 



126 
 

Table 8 Average comparison statistics among G🇽E 20k SNP whole and partial 

additive genetic estimated breeding values 

Estimated Breeding Value Pearson Spearman Slope 

Direct 0.957 (0.006) 0.952 (0.005) 0.997 (0.009) 

Maternal 0.970 (0.001) 0.967 (0.002) 0.992 (0.004) 

The average Pearson correlations, Spearman correlations, and slopes of the line of best fit among the 

genotype-by-environment, 20k SNP set, models’ whole and partial estimated breeding values for the direct 

and maternal genetic effects across the three validation sets. Standard errors are reported within 

parentheses.  

 

Table 9 Average comparison statistics among direct genetic estimated breeding 

values when compared to the national model 

Model SNP Pearson Spearman Slopes 

G🇽E Full 0.948 (0.002) 0.945 (0.004) 0.991 (0.005) 

G🇽E 40k 0.865 (0.005) 0.856 (0.008) 1.004 (0.008) 

G🇽E 20k 0.808 (0.007) 0.798 (0.008) 1.004 (0.007) 

The average Pearson correlations, Spearman correlations, and slopes for the lines of best fit among partial 

direct genetic estimated breeding values when the genotype-by-environment models are compared to the 

national model across the three validation sets. Standard errors are reported within parentheses.  
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Table 10 Average comparison statistics among maternal genetic estimated breeding 

values when compared to the national model 

Model SNP Pearson Spearman Slopes 

G🇽E Full 0.947 (0.002) 0.940 (0.001) 0.968 ( 0.013) 

G🇽E 40k 0.790 (0.002) 0.774 (0.005) 0.862 (0.013) 

G🇽E 20k 0.701 (0.006) 0.685 (0.012) 0.738 (0.003) 

The average Pearson correlations, Spearman correlations, and slopes for the lines of best fit among partial 

maternal genetic estimated breeding values when the genotype-by-environment models are compared to the 

national model across the three validation sets. Standard errors are reported within parentheses.  
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beef cattle. She showed these cattle as a part of her school’s Future Farmers of America 
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Tarleton State University as a pre-veterinary student. Two years later, she transferred to 

Oklahoma State University to finish her Bachelor’s degree in May 2014. Wanting to 

pursue research with a newfound interest in genetics, she got accepted in a Mater’s 

program at the University of Nebraska-Lincoln to study host genomics and virus 

interactions. After completing her thesis, she wanted to improve her skill set to 

encompass data generation and analysis, so she applied to a doctoral program at the 

University of Missouri. While in Missouri, she researched population genomics with the 

domestic cat which helped further develop her passion for conservation. Additionally, she 

researched local adaptation in beef cattle applied to genomic predictions with the hopes 

of matching cattle to their environments. All throughout her education she gained an 

interest in science communication and outreach, especially through photography. During 

her spare time, she tries to go hiking with her dog and take photos of nature. Currently 

she hopes to move more into conservation genomics to help preserve endangered species 

for future generations while incorporating her love of photography. 


