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Partial connections and contact instantons on contact manifolds.

Nathapon Udomlertsakul

Dr. Shuguang Wang, Dissertation Supervisor

ABSTRACT

We study partial connections that are defined on a vector bundle E over a contact

distribution H of a contact manifold (M2m+1, θ) by adapting the Rumin complex of

the exterior derivative in a contact case. Full connections will be investigated in a new

manner using the partial connection’s point of view (One can view it as a reduction

method). The alternative one to one correspondence between a full connection D

and a partial connection D is introduced by linking with some B ∈ EndE, i.e.

D = D(D,B). For instance, we provide the new constructions of the Tanaka Webster

connection and the Tanaka canonical connection through the suitable pair (D,B).

The contact instanton equation and Hermitian-Einstein connection over a contact

manifold are explored using the above correspondence. Consequently, we prove the

existence of a solution of the B-inhomogeneous Yang-Mills equation D
∗
F = mBθ.

This resembles the Tian instanton and Hermitian-Einstein connection over a Kahler

manifold. For the applications, results of Dragomir-Urakawa in CR manifolds are

covered into contact manifolds.
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Chapter 1

Introduction

The study of partial connections on a contact manifold (M2m+1, H, θ) took place be-

fore, in 1994, Rumin [Rum94] proposed the exact complex of an exterior derivative

over a contact distribution. This work was subsequently cited in Gromov’s publication

[Gro96]. He discusses the c-c metrics on a contact manifold and also works on differen-

tial forms over the contact distribution in one section of the study. These are the mo-

tivations for a deep drive into partial connections on contact manifolds. The definition

of a partial connection in the direction of an integrable complex distribution which is

investigated over the direction of the Reeb vector field and H̃0,1 := H0,1 ⊕ (ξ ⊗R C)

is used by Biswas and Schumacher [BS10] to work on the Sasakian manifold. This

thesis will be based on the situation where we can reduce the information from full

connections to partial connections over the contact distribution. To define a partial

connection on the non-integrable distribution, a new domain of curvature is required,

which will be discussed in the study. This study is focused on the term B ∈ EndE

in order to link partial connections and full connections together. The technique is

induced in the Udomlertsakul-Wang paper [UW22]. The instanton and Hermitian-

Einstein connections have lately gained popularity in the contact manifold; Biswas

and Schumacher [BS10] prove the existence of the Hermitian-Einstein structure of a
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stable Sasakian holomorphic vector bundle on Sasakian manifolds, Baraglia and Hek-

mati [BH14] introduce the contact instanton on K-contact 5-manifold and also study

the moduli space of contact instantons on K-contact 5-manifolds, and Wang [Wan14]

generally develops the instanton gauge theory for an arbitrary smooth manifold with

foliations. In this thesis, we introduce the B instanton and the Hermitian-Einstein

connection in term of a pair of partial connection and B, we also give the relations

among these connections.

In Chapter 2, we provide a fairly thorough analysis of the Rumin complex and

investigate the narration of the H-partial connection D with its extension D. Origi-

nally, partial connections were first established as so-called connections on a fibration

along a distribution on the base by Yuri I. M. [Yur84] . Since we are concentrating on

a partial connection D over a contact distribution H, then we must modify the cur-

vature’s domain due to that H is not integrable, i.e. [X, Y ] /∈ H for some X, Y ∈ H.

In contrast to Biswas and Schumacher [BS10], which focuses on a partial connection

over an integrable distribution, this will be different. The extended partial connection

over a higher degree will be introduced. Additionally, we research the new connection

D̃ which connects the two complexes of partial connections in the same manner as

the Rumin connection on the Rumin complex of an exterior derivative. In the later

part of the chapter, a full connection D is discussed in view of H-partial connection

and the term B ∈ EndE by starting from the simple case which is of 3 dimensions

then we progress to the higher dimension, n > 5. Hodge ∗′-operator is the name

given to the Hodge ∗-operator, which will be algebraically explored on the domain of

a contact distribution rather than a full tangent bundle.
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In Chapter 3, we give the new constructions of Tanaka’s types of connections,

including the Tanaka-Webster connections in both real differential forms and complex

differential forms, and Tanaka canonical connections. These will be built along the

way of a partial connection using the uniqueness of the extension of (D,B) to verify

the existence and uniqueness of Tanaka’s types of connections. At the end of the

chapter, there is a comment made on the complexity of B whether it is preferable to

the condition on a full connection.

In Chapter 4, the definitions of a Hermitian-Einstein connection and structure will

be reviewed for the case of Kahler manifolds, as well as the picture of Tian [Tia00],

the relationship among Ω-instantons, Hermitian-Einstein connections, and Yang-Mills

connections. The Hermitian-Einstein connections over contact manifolds that Wang

proposes in the Informal notes [Wan21] are then taken into account. Furthermore,

we demonstrate that the Tanaka canonical connection is one of the examples of the

Hermitian-Einstein connection over a contact manifold.

In the last chapter, we give the relationship among contact instantons, Hermitian-

Einstein connections, and Yang-Mills connections in a similar way to Tain [Tia00],

except we are working on a contact manifold. Firstly, we write a local picture of the

differential forms type (p, q) as a tool. Next, we study the operator ? :
∧2 TM∗ −→∧2 TM∗ that will play a crucial role in the contact instanton equation. The eigen

decomposition of the ? operator is discussed explicitly in the algebraic picture (fiber-

wise form). After we have sufficient tools, the B contact instanton equation defined

as ?(F −Bdθ) = −(F −Bdθ) and the B inhomogeneous Yang-Mill equation defined

by D
∗
F = mBθ will be explored. We end by presenting the major theorem with its
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corollaries and applications.

Theorem. Suppose D is B contact instanton. Then

D
∗
F = mBθ −mJ(DB).

Moreover, D is B-inhomogeneous Yang-Mills connection if and only if DB = 0.

Corollary. The B contact instanton is a critical point of the functional YMB such

that YMB(D) :=
∫
‖FD −mBdθ‖2.

Importantly, we generalize that the Dragomir-Urakawa’s result [DU00] from a CR

manifold to a contact manifold.
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Chapter 2

Partial connections and curvatures

We start off by giving the definition of a contact manifold. It is worth noting that

there are several definitions of a contact manifold; One by a distribution the other by

a differential form. Since it is more practical to concentrate on a single differential

form, we shall adopt the following definition for the contact manifold in this study.

Definition 2.1. LetM2m+1 be an odd dimensional smooth manifold and θ ∈ Γ(T ∗M).

Then (M, θ) is called a contact manifold if θ ∧ (dθ)m is non vanishing everywhere.

For the definition based on a distribution, which is more general, it is referred

through the distribution saying a subbundle H ⊂ TM instead of a differential form

and it allows one to have several contact forms. The brief explanation will be given as

follows. For a smooth manifold M and a subbundle H ⊂ TM , define ω ∈ Γ(∧2H∗ ⊗

H ′) by ω(X, Y ) := ω̃([X, Y ]), where ω̃ is the projection of TM to H ′(:= TM/H).

Let M be a smooth manifold and H any subbundle of TM . H is called a contact

structure if dimH ′ = 1 and ω is pointwise non-degenerate. (M,H) is called a contact

manifold if M is an odd dimensional (2m+1) manifold and H is a contact structure.

For a given contact manifold (M,H) in this sense, we suppose that p′ is trivial then

there is a differential form degree one θ such that θ ∧ (dθ)m is non-vanish everywhere
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and kerθ |x= Hx, ∀x ∈M .

Now we return to the contact manifold in the sense of a differential form. One

defines a 1 dimensional subspace, {X ∈ TxM | dθ(X,TxM) = 0}. Let ξx ∈ {X ∈

TxM | dθ(X,TxM) = 0} such that θ(ξ) = 1 at x. By this, we have the Reeb vector

field ξ ∈ Γ(TM) of the contact structure θ, i.e. θ(ξ) = 1 and dθ(ξ,X) = 0,∀X ∈

Γ(TM).

A partial connection, its extension, and its features will be the primary topics of

discussions in this chapter. We firstly establish the scenario we will be working before

moving on. Let (M, θ) be a contact manifold with dimension 2m + 1, where θ is a

contact 1-form. Denote the contact 2m dimensional distribution and the Reeb vector

field by H and ξ respectively. Since TM = H⊕ < ξ >, then we have

∧rTM = ∧rH⊕ < ξ > ∧(∧r−1H). (2.1)

By the same argument, we also have that

∧rTM∗ = ∧rH∗⊕ < θ > ∧(∧r−1H∗) (2.2)

, where ∧rH∗ ⊂ ∧rTM∗ means the element in ∧rH∗ trivially extent to ∧rTM∗, i.e.

Ω ∈ ∧rH∗ means Ω(ω) = 0 for ω ∈ ∧rTM∗ and ω /∈ ∧rH∗. This decomposition

allows us to further investigate the partial connection.

2.1 Exterior derivatives on a contact distribution

and theirs complexes

In this section, we will introduce the new complexes based on the partial derivative

in Wang’s Informal notes [Wan21] that motivated by Rumin complexes [?]. With the

preceding decomposition, the exterior derivative d :
∧r(T ∗M) −→

∧r+1(T ∗M) can

6



be in decomposed in two parts referred to as the horizontal part and the vertical part,

d′ and d′′ respectively.

dα = d′α− θ ∧ d′′α, (2.3)

where α ∈ Γ(
∧r(T ∗M)) and d′α−θ∧d′′α ∈ Γ(∧r+1TM∗) = γ(∧r+1H∗)⊕θ∧γ(∧rH∗).

Note 2.2. d′α have the same degree as of the differential form dα; however, the degree

of d′′α is less than the degree of dα by one. Moreover, θ∧dα = θ(d′α+θ∧d′′α) = θ∧d′α.

Theorem 2.3. d′ : Γ(
∧r(T ∗M)) −→ γ(∧r+1H∗), d′′ : Γ(

∧r(T ∗M)) −→ γ(∧rH∗)

are complied with the Leibnitz rule

Proof. Let α, β ∈ Γ(
∧r(T ∗M)). Consider

d′(α ∧ β) + θ ∧ d′′(α ∧ β)

= d(α ∧ β)

= dα ∧ β + (−1)degαα ∧ dβ

= d′α ∧ β − θ ∧ (d′′α ∧ β) + (−1)degαα ∧ d′β − θ ∧ ((−1)degαα ∧ d′′β)

= [d′α ∧ β + (−1)degαα ∧ d′β]− θ ∧ [d′′α ∧ β + (−1)degαα ∧ d′′β].

Then d′(α∧β) = d′α∧β+(−1)degαα∧d′β and d′′(α∧β) = d′′α∧β+(−1)degαα∧d′′β.

Hence the Leibnitz rule applies with the two operators d′, d′′.

Theorem 2.4. d′and d′′ are commutable. Moreover, (d′)2 = dθ ∧ d.

Proof. Let α ∈ Γ(
∧r(T ∗M)). Since d2 = 0, (2.3), and by the Leibnitz rule, then we

have that

0 = d2(α) = d(dα)
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= d(d′α− θ ∧ d′′α)

= d′(d′α− θ ∧ d′′α)− θ ∧ d′′((d′α− θ ∧ d′′α))

= d′2α− d′θ ∧ d′′α + θ ∧ d′d′′α− θ ∧ d′′d′α + θ ∧ d′′θ ∧ d′′α + θ ∧ θ ∧ d′′2α

= d′2α− dθ ∧ d′′α + θ ∧ (d′d′′α− ∧d′′d′α).

Since dθ ∈ Γ(
∧2H∗), then we have an orthogonal decomposition as (2.3). Hence

d′2α−dθ∧d′′α = 0 or saying d′2 = dθ∧d′′ and d′d′′α−∧d′′d′α = 0 which is equivalent

to that d′, d′′ are commute.

Remark 2.5. We can always choose the local basis {αi, βi, θ} in such a way that

dθ =
∑
αi ∧ βi. This mean that dθ vanishes on the θ-component. One can write

d′θ = dθ.

We are interested in a partial connection over the contact distribution H in order

to gain the numbers of the information. Hence the complexes will be base on
∧r(H∗).

We encounter the obstruction that it is nearly impossible to come up with the complex

for d′ on
∧r(H∗) with its property d′ ◦ d′ 6= 0(unlike d2 = 0). Therefore, one must

modify the domain of d′. Two alternative complex creations will be presented. The

first method will be restricting the space of Γ((
∧rH∗) to the space of solutions {dα ∈

Γ((
∧r+1H∗)}, equivalently iξdα = 0 and considering d as the operator. The second

method by Rumin is to quotient the space to Γ(
∧rH∗)/ < θ, dθ > while retaining

the operator; however, the complex will stop at r = m. Additionally he creates

another rumin connection to link these two complexes together. Those methods

will be clarified below. For the convenience, we denote Ωr
M := Γ((

∧r T ∗M) and

Ωr
H := Γ((

∧rH∗).
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The first method (Ω̂r
H , d). Define Ω̂r

H := {α ∈ Ωr
H | dα ∈ Ωr+1

H }. Since d′′α = 0,

it is clear that dα = d′α, where α ∈ Ω̂r
H . Under the new circumstance, we can see

that d′ ◦ d′ = d ◦ d = 0 over Ω̂r
H . Now we have the complex (Ω̂r

H , d = d′), where

Ω̂2m
H = 0. To see why Ω̂2m

H = 0, one uses the fact that d(α) ∈< θ >, ∀α ∈ Ω̂2m
H . This

complex is independent of the choice of {fθ} for any everywhere non-vanishing f ,

since we have < θ1 >=< θ2 > for any two contact forms θ1, θ2 related by θ1 = fθ2 .

0 −−−→ Ω̂0
HC

∞(M)
d−−−→ Ω̂1

H
d−−−→ ...

d−−−→ Ω̂2m−1
H

d−−−→ 0

The second method By Rumin [Rum94] in 1994. Firstly, he defines S ∗ :=

{θ ∧ α + dθ ∧ β | α, β ∈ Ω∗M}. Let Ir := Ωr
M/S

∗. For the exterior derivative over

Ir, he define dH : Ir −→ Ir+1 such that dH([α]) := [dα]. This is well defined, since

dH(S ∗) = 0. By Weil [Wei58], L : Ωr
H −→ Ωr+2

H such that L(α) = dθ ∧ α, L is

injective for r 6 m− 1 and L is surjective for r > m− 1. In the result, Ωi
M =< dθ >

for i > m+ 1. Hence Ir = 0 for r > m+ 1. Hence the complex will end at r = m+ 1

0 −→ R −→ C∞(M) −→ I1(= H∗)
dH−−−−→ I2 dH−−−−→ ...

dH−−−−→ Im
d−−−→ 0

He also considers another complex (J∗, dH), where J∗ = {α ∈ Ωr
M | θ∧α = 0 = dθ∧

α}. The element in J∗ is always in the form of θ∧α, for some α ∈ Ω∗M . dH is defined

by dH(θ∧α) := d(θ∧α). For α ∈ Jr, we have that dH(θ∧α) = dθ∧α−θ∧dα = θ∧dα,

by that dθ ∧ α = 0. Again using Weil [Wei58], Jr = 0, ∀r 6 m. Then the complex

begins at r = m+ 1,

0 −→ Jm+1 dH−−−−→ Jm+2 dH−−−−→ ...
dH−−−−→ J2m d−−−→ J2m+1(= Ωn

M) −→ 0

9



Note 2.6. both dH on Ir := Ωr
M/S

∗ and dH on J∗ = {α ∈ Ωr
M | θ∧α = 0 = dθ∧α}

has the property that dH ◦ dH = 0 by the definition induced from d. Moreover,

dH([α]) := [dα] = [d′α] on Ir and dH(θ ∧ α) := d(θ ∧ α) = θ ∧ dα = θ ∧ d′α. Hence

dH can be described by d′ only.

Then he binds those two complexes together with the operator d̃ : Im −→ Jm+1

satisfying

d̃α = d(α− θ ∧ L−1d′α). (2.4)

Two arguments must be built in order to show that it is well defined; (1) d̃(θ∧α) =

0 = d̃(dθ ∧ β) and (2) d̃α ∈ Jm+1 for α ∈ Im. The first argument is immediately

apparent from calculations. Recall that θ ∧ dγ = θ ∧ d′γ.

d̃(θ ∧ α) = d(θ ∧ α− θL−1d′(θ ∧ α))

= d(θ ∧ α− θL−1(dθ ∧ α− θ ∧ d′α))

= d(θ ∧ α− θL−1(dθ ∧ α− θ ∧ dα))

= d(θ ∧ α− θ ∧ (α− θ ∧ α∗) = 0.

By the fact that d′dθ = 0, we then compute

d̃(dθ ∧ β) = d(dθ ∧ β − θL−1d′(dθ ∧ β))

= d(dθ ∧ β − θL−1(d′dθ ∧ β + dθ ∧ d′β))

= d(dθ ∧ β − θL−1(dθ ∧ d′β))

= d(dθ ∧ β − θ ∧ d′β)

= d(dθ ∧ β − θ ∧ dβ) = 0.
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Hence d̃[ω] = d̃[ω∗], where [ω] = [ω∗]. For the second argument, one applies the

property that L : Ωm−1
H −→ Ωm+1

H is isometric (L ◦ L−1 = id |Ωm+1
H

).

θ ∧ d̃α = θ ∧ d(α− θL−1d′α)

= θ ∧ (dα− dθ ∧ L−1d′α− θd(L−1d′α))

= θ ∧ (dα− L ◦ L−1d′α− θd(L−1d′α))

= θ ∧ dα− θ ∧ d′α = 0.

Also, dθ ∧ d̃α = 0 follows from dθ ∧ d̃α = d(θ ∧ d̃α). Hence d̃α ∈ Jm+1.

Remark 2.7. The big difference between d̃ and dH is that d̃ is associated with both

d′ and d′′ while dH involves with d′ only. The fact that the elements in Jm+1 vanish

on the H component suggests that d̃ operates the input in the way of modifying the

θ component in order to get rid of the H component. Hence the Rumin’s concept

will be to apply d on some unique modifying form α̃ = α+ θ ∧ β ∈ Ωm
M of α ∈ Im so

that d̃α = dα̃ ∈ Jm+1. One can solve that β = −L−1d′α.

We will provide the explicit form of β in the Rumin’s idea in the followings. Since

d̃α ∈ Jm+1, then 0 = θ ∧ d̃α = θ ∧ dα̃ = θ ∧ d(α + θ ∧ β).

0 = θ ∧ d(α + θ ∧ β)

= θ ∧ d′(α + θ ∧ β)

= θ ∧ (d′α + dθ ∧ β + θ ∧ d′β)

= θ ∧ d′α + θ ∧ L(β).

In the result, one have d′α = L(β). Since L : Ωm−1
H −→ Ωm+1

H is bijective, then

β = −L−1d′α. This is similar to how d̃ was previously defined.

11



2.2 Partial Connections along H and the exten-

sions

In this section, we will present the definitions of a partial connection, curvature of a

partial connection, and the theorems relating with the full connection. In the outset,

these definitions will be introduced together with how it differ from the case of full

connections. The main focus of the theorems will be on how a partial connection leads

to (full)extension and vice versa. Additional element will be involved in the creation

of such extensions; however, This element will added in the unique way depending on

the curvature of the extension. Then we will move to the next section which is about

the roles of this factor.

Definition 2.8. Given any contact manifold (M, θ), a vector bundle E over M , and

a contact distribution H, the H-partial connection on the vector bundle E over the

contact manifold M is the smooth mapping D : Γ(E) −→ Γ(H∗ ⊗ E) satisfying

Leibniz rule

D(fs) = dHf ⊗ s+ fDs, where dHf = d′f.

In general, the curvature F : T 2M⊗Γ(E) −→ Γ(E) is defined through a connection

D such that F (X, Y )(u) = [DX , DY ](u) − D[X,Y ]u. The general definition reveals

the problem on the curvature’s domain of a partial connection, since any contact

distribution H is far from being integrable. In order to define the curvature on a

partial connection without loss of its property, [X, Y ] must still be a section of H.

In this case, the domain will be restricted. One defines K ′ := {X ∧ Y ∈ Γ(
∧2H) :

X, Y ∈ ΓH and [X, Y ] ∈ ΓH}.

12



Definition 2.9. The curvature FD of D is defined on K ′ such that for any X∧Y ∈ K ′,

FD(X, Y ) = FD(X ∧ Y ) = [DX , DY ]−D[X,Y ]. (2.5)

Next, we will give information about the curvature in term of section. Originally,

the curvature of a full connections can be described as a section of the vector bundle

(T 2M)∗ ⊗ EndE, i.e., F ∈ Γ((T 2M)∗ ⊗ EndE). Since the curvature of a partial

connection is defined on the set K ′, this implies that the curvatures of partial con-

nections need not to be defined over the entire cotangent bundle or even H∗ contact

distribution. In order to gain more information, the complex will be introduced along

with the co-complex version of itself.

Recall the definition of Levi form µx : Hx×Hx −→ TxM/Hx such that µx(X, Y ) :=

[[X̃, Ỹ ]x], where X̃, Ỹ are the extended vector fields of tangent vectors X, Y re-

spectively. Since the Lie bracket is skew-symmetric, we can write µx :
∧2Hx −→

TxM/Hx. By the definition of K ′, one has that K ′ = ΓK, where K = kerµ. There-

fore we can view the curvature of a partial connection as a section of K∗⊗EndE, i.e.,

FD ∈ Γ(K∗ ⊗ EndE). It is trivial that the following sequence is exact 0 −→ K −→

∧2H −→ ∧2H/K −→ 0. We will take the advantage of it to explicitly reveal K∗ for

more convenient.

Proposition 2.10.

0 −→ 〈dθ〉 −→ ∧2H∗ −→ K∗ −→ 0 (2.6)

is exact.

Proof. Since 0 −→ K −→ ∧2H −→ ∧2H/K −→ 0 is an exact sequence, then the

dual sequence 0 −→ (∧2H/K)∗ −→ ∧2H∗ −→ K∗ −→ 0 is also exact. To see that

13



∧2H∗/K∗ =< dθ > is to check that 0 6= dθ ∈ ∧2H∗/K∗, since K∗ has co-dimension

1. For X ∧ Y ∈ K, we have that dθ(X ∧ Y ) = Xθ(Y )− Y θ(X)− θ[X, Y ] = 0. This

proves ∧2H∗/K∗ =< dθ >.

Since (∧2H/K)∗ =< dθ >, then we canonically have K∗ = ∧2H∗/ < dθ >.

By the definition of I2 over the high dimensional manifold (> 5), we have that

I2 = Γ(∧2H∗/ < dθ >) = ΓK∗ and FD ∈ Γ(K∗ ⊗ EndE). For our convenience, we

will slightly abuse the notation of I2 by using it as a bundle instead of a set of section.

Therefore we have

FD ∈ Γ(I2 ⊗ EndE).

The reason for the convenience is that we can generalize D on the higher degree forms

in term of Ir. In the case of dim = 3, every partial connection is flat, i.e., FD = 0

due to the fact that K ′ = ∅ (H is far away from integrable in the contact case).

In order to gain more of the curvature’s properties, we needs to generalize D to

DH over the higher forms. By the generalization, we will have the main property,

being similar to the case of full connections F = D2 which is FD = D2
H . One defines

DH : Γ(Ir ⊗ E) −→ Γ(Ir+1 ⊗ E) for 0 6 r < m such that

DH(α⊗ u) := dHα⊗ u+ (−1)rα ∧Du,

where dH is the generalized version of d in the previous section. Similarly, DH :

Γ(Jr ⊗ E) −→ Γ(Jr+1 ⊗ E) for m < r 6 n such that

DH(α⊗ u) := dHα⊗ u+ (−1)rα ∧Du.

It can be seen from the algebraic point of view that we have a basic property FD =
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D2
H : Γ(E) −→ Γ(I2 ⊗ E) for n > 3. For the case of n = 3, one needs to define D̃

and investigate more on D̃ ∧DH . Next, we will focus on defining D̃ : Γ(Im ⊗E) −→

Γ(Jm+1 ⊗ E) for not only 3 dimensional contact manifold, but also 5 dimensional

contact manifold. The ideas are that

1. Create a well defined connection D̃ over the domain Γ(Im ⊗ E).

2. Narrow down the range from Γ(∧m+1H∗ ⊗ E) to Γ(Jm+1 ⊗ E).

Method 1 This will works only on 3 dimension, one gives

D̃(α⊗ u) := d̃α⊗ u− α∧̃Du.

Note that d̃ is defined as before, where α∧̃β := θ ∧ d′f and α ∧ β = fdθ. This is

well defined since the property of 3 dimensional contact manifold allows us to have∧2H∗ =< dθ >.

Method 2 For n > 5, D̃ can be defined through the idea of the extension D of D in

the similar manner to the Rumin exterior derivative d̃. This concept depends on the

choices of full connections. One starts by D̃ : Γ(∧mH∗ ⊗ E) −→ θ ∧ Γ(∧mH∗ ⊗ E),

D̃α = D(α− θ ∧ L−1D
′
α), (2.7)

where Dα := D
′
α+θ∧D′′α such that D

′
is the extension of D

′
: Γ(E) −→ Γ(H∗⊗E)

which D
′

= D. Then we prove that D̃ satisfies the previous two ideas (1.), (2.).

The definition and the explanations of the extensions of a partial connection will be

provided before we investigate D̃ further.

Definition 2.11. D : Γ(E) −→ Γ(T ∗M ⊗ E) is called an extension of a partial

connection D, if D = D
′ − θ ∧D′′, where D

′
: Γ(E) −→ Γ(H∗ ⊗ E) satisfies D

′
= D

and D
′′

: Γ(E) −→ Γ(E).
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We may extend D
′

: Ωr
M(E) −→ Ωr+1

H (E) and D
′′

: Ωr
M(E) −→ Ωr

H(E) knowing

there is the high degree extension of D : Ωr
M(E) −→ Ωr+1

M (E). These can be done in

such a way that

D
′
(α⊗ u) := d′α⊗ u+ (−1)rα′ ∧D′u

for α⊗ u ∈ Γ(
∧r T ∗M ⊗ E),and

D
′′
(α⊗ u) := d′′α⊗ u− (−1)rα′′ ⊗Du+ α′ ∧D′′u

for α⊗ u ∈ Γ(
∧r T ∗M ⊗ E).

On Γ(E), we have that D′ = DH = D. On the other hand, it is invalid for the

domain Ωr
M(E) for 1 < r < m by that DH is defined on Γ(Ir ⊗ E) for r 6= m.

DH : Γ(Ir ⊗ E) −→ Γ(Ir+1 ⊗ E) can be recovered by projecting D′ : Ωr
M(E) −→

Ωr+1
H (E) to Γ(Ir+1⊗E). By the fact that D′(dθ ∧α) = dθ ∧D′α, we have D′ = DH :

Γ(Ir ⊗ E) −→ Γ(Ir+1 ⊗ E) to be well defined.

Proposition 2.12. The curvature of the extension D, called F , can be decomposed

as F = FH + θ∧ F̃ , where FH ∈ Γ(
∧2H2⊗EndE) has the form FH = D

′2−dθ∧D′′2

and F̃ ∈ Γ(H∗ ⊗ EndE) satisfying F̃ = [D
′
, D
′′
].

Proof. By the unique decomposition 2.2, we have F = FH+θ∧F̃ . Both FH and F̃ can

be computed explicitly by using the facts that D = D′ + θ ∧D′′ and F (u) = D
2
(u).

(FH + θ ∧ F̃ )(u) = F (u) = D
2
(u)

= (D
′
+ θ ∧D′′)2(u)

= (D
′2

+ dθ ∧D′′ + θ ∧D′D′′ + θ ∧D′′D′)(u)

= (D
′2

+ dθ ∧D′′ + θ ∧ ([D
′
, D
′′
]))(u).
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By the uniqueness of the decomposition, we have that FH = D
′2 − dθ ∧ D′′2 and

F̃ = [D
′
, D
′′
].

This tools allow us to analyze D̃ : Γ(∧mH∗ ⊗ E) −→ θ ∧ Γ(∧mH∗ ⊗ E). Wang

[Wan21] proves the sufficient condition of the following sequence to be a sequential

complex.

Γ(E)
DH−−−−→ ...

DH−−−−→ Γ(Im ⊗ E)
D̃−−−→ Γ(Jm+1 ⊗ E)

DH−−−−→ ...
DH−−−−→ Ωn

M(E).

Lemma 2.13. [Wan21] D̃ : Γ(∧mH∗ ⊗ E) −→ θ ∧ Γ(∧mH∗ ⊗ E) defined as above

satisfies the followings:

(i) D̃(dθ ∧ α) = θ ∧ FH(α), for α ∈ Γ(∧m−2H∗ ⊗ E).

(ii) θ ∧ D̃α = 0, for α ∈ Γ(∧mH∗ ⊗ E).

(iii) dθ ∧ D̃α = θ ∧ FH(α), for α ∈ Γ(∧mH∗ ⊗ E).

Theorem 2.14. [Wan21] D̃ : Γ(∧mH∗ ⊗E) −→ θ ∧ Γ(∧mH∗ ⊗E) defined as (2.18)

can be descended (follow the two ideas above) to D̃ : Γ(Im⊗E) −→ Γ(Jm+1⊗E) for

n = 3, and it required FH = 0 for n > 5. In particular, the sequential complex is well

defined for n = 3 and if FH = 0, for n > 5.

Now we can conclude that if F = FH + θ ∧ F̃ , then FD = P ◦ FH , where

P : Γ(
∧2H∗⊗E) −→ Γ(I2⊗E) is the projection/quotient mapping to

∧2H∗/ < dθ >

for any extension D of a partial connection D. The observation is that a partial con-

nection D alone can not identify FH ; however, there is an extra information together

with a partial connection D that can build the unique FH . The investigation of this

will be shown later. Moreover, F̃ is dependent on FH alone. One can find the unique
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full extension D of D from D and FH in such a way that F = FH + θ∧ F̃ . The detail

will be provided as followings.

Proposition 2.15. For a given partial connection D and any lifting F ′ ∈ Ω2
H(EndE)

of FD ∈ Γ(I2 ⊗ EndE), i.e., F ′ = FD under the quotient
∧2H∗ −→ I2, there is a

unique full connection D extending D such that FH = F ′. In particular, (D,FH)

determines F̃ uniquely.

Proof. The proof will be based on the local picture. Given any basis of E, one then

have that D
′

= D = d′ + A and D
′′

= d′′ − X where A ∈ Γ(H∗ ⊗ EndE) and

X ∈ Γ(EndE). This means locally D = d+ A+ θ ∧X and

F = d(A+ θ ∧X) + (A+ θ ∧X) ∧ (A+ θ ∧X)

= dA+ dθ ∧X − θ ∧ dX + A2 + θ ∧ [X,A]

= (d′A+ A2 + dθ ∧X) + θ ∧ (d′′A− dX + [X,A]).

Hence the lifting F ′ of FD determines X in the first term. By the above picture of F ,

F̃ is uniquely determined by A,X which A comes from D and X comes from D,FH .

Then there is a full connection extending D such that FH = F ′.

Note 2.16. FH = d′A+ A2 + dθ ∧X does not guarantee that FD = d′A+ A2, since

this might consist the term in < dθ >.

Corollary 2.17. For dim > 5,

(i) F = 0 if and only if FH = 0 for any full connection D.

(ii) there is a one-to-one natural correspondence between flat partial connections

and flat full connections.
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Proof. For (i), the necessary condition is obvious. Hence we will simply focus on the

converse part. This can be done by using the Bianchi identity over a full connection,

D(F ) = 0. Suppose FH = 0,

0 = D(F )

= D(0 + θ ∧ F̃ )

= dθ ∧ F̃ − θ ∧D(F̃ ).

Since dim > 5, then dθ ∧ F̃ ∈ Γ(
∧3H∗ ⊗ EndE) will not always be zero. Then

F̃ = 0 from the first term and the fact that dθ ∧ F̃ ∈ Γ(
∧3H∗ ⊗ EndE). It implies

that F = 0 if FH = 0. For (ii), one can apply from proposition 2.15 together with

(i). For a flat partial connection D, there is the only way to lift FD = 0 to FH = 0.

Then F = 0 by (i). For a flat full connection, it can be extracted to a unique partial

connection D such that FD = 0 by the fact that FH = 0.

Proposition 2.18. For D̃ : Γ(Im ⊗ E) −→ Γ(Jm+1) such that D̃α = D(α − θ ∧

L−1D
′
α) is equivalently to

D̃α = θ ∧ (D
′
L−1D

′
α−D′′α)

Proof.

D̃α = D(α− θ ∧ L−1D
′
α)

= Dα− dθ ∧ L−1D
′
α + θ ∧DL−1D

′
α

= Dα− (L ◦ L−1)(D
′
α) + θ ∧D′L−1D

′
α

= −θ ∧D′′α + θ ∧D′L−1D
′
α

= θ ∧ (D
′
L−1D

′
α−D′′α).
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Since (D,FH) defines a unique extension D and FH consists the information of D,

then it is possible to find another independence set of ingredients instead of (D,FH)

to determine D. The idea is choosing a metric on
∧2H∗ that FH can be uniquely

decomposed to FD + Bdθ, for some B ∈ EndE. With D and B, one can recover

FH from FH = FD + Bdθ. Then we have the pair (D,B) instead of (D,FH). Next,

we will investigate the propositions about the relations between D and B when one

wants to extend to some unique full connection. Before we move to this part, the case

of 3 dimension will be introduced in order to express the idea of the simple scenario.

In the case of dim = 3, we have FH = dθ ⊗B since FD = 0.

Proposition 2.19. Let D be a partial connection on a contact manifold M with

dimension 3. Write FH = dθ ⊗B for a unique B ∈ EndE. In the sequence

Γ(E)
DH−−−−→ Γ(I1 ⊗ E)

D̃−−−→ Γ(J2 ⊗ E)
DH−−−−→ Ω3

M(E).

or

Γ(E)
DH−−−−→ Γ(H∗ ⊗ E)

D̃−−−→ Γ(θ ∧H∗ ⊗ E)
DH−−−−→ Γ(

3∧
T ∗M ⊗ E),

The following are true.

(i) (D̃ ◦DH)(u) = θ ∧ (F̃ (u) +D(Bu))), for u ∈ Γ(E).

(ii) (DH ◦ D̃)(u′) = θ ∧ (F̃ (u′)−B(D
′
u′)), for u′ ∈ Γ(H∗ ⊗ E).

Proof. The propositions (2.18), (2.12), and the fact that D
′
= DH = D on Γ(E) allow

straightforward computation.

(D̃ ◦DH)(u) = D̃(D
′
u)
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= θ ∧ (D
′
L−1D

′
D
′
u−D′′D′u)

= θ ∧ (D
′
L−1(FH + dθ ∧D′′)(u)−D′′D′u)

= θ ∧ (D
′
L−1(Bdθ + dθ ∧D′′)(u)−D′′D′u)

= θ ∧ (D
′
(B +D

′′
)(u)−D′′D′u)

= θ ∧ (D
′
(Bu) + [D

′
, D
′′
](u))

= θ ∧ (D(Bu) + F̃ (u)),

(DH ◦ D̃)(u′) = DH(θ ∧ (DL−1D
′
u′ −D′′u′))

= dHθ ∧ (DL−1D
′
u′ −D′′u′)− θ ∧DH(D

′
L−1D

′
u′ −D′′u′)

= −θ ∧DH(D
′
L−1D

′
u′ −D′′u′)

= −θ ∧D′(D′L−1D
′
u′ −D′′u′)

= −θ ∧ (Bdθ + dθ ∧D′′)(L−1D
′
u′)−D′D′′u′)

= −θ ∧ ((B +D
′′
)(L ◦ L−1)(D

′
u′)−D′D′′u′)

= −θ ∧ (B(D
′
u′) +D

′′
(D
′
u)−D′D′′u′)

= −θ ∧ (B(D
′
u′)− [D

′
, D
′′
]u′)

= θ ∧ (F̃ (u′)−B(D
′
u′)).

Remark 2.20. In the higher dimensional case, the metric gH on H is needed in such

a way that gH induces the metric gH on
∧2H∗ and that K∗ and dθ are orthogonal,

i.e.,
∧2H∗ = K∗⊕ < dθ > or saying < dθ >⊥= K∗. In 3 dimensional case, there is

no need to pick such a metric on H because K∗ = 0 or
∧2H∗ =< dθ >. One can

write FH = FD +B ⊗ dθ if such metric is given.
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2.3 Descriptions of a full connection D in term of

a partial connection D and a B ∈ EndE

In 3 dimensional case, one can find B explicitly from the full connection by considering

the term FH = dθ⊗B. Moreover, it is independent of the partial connection, e.g., B

does not change if D changes and it is conversely true. In this section, the term of

B will be introduced. The case of flat connection will be represented along with the

condition on a partial connection and B ∈ EndE. Later in the section, the impact

of decomposing a full connection into D,B will be exhibited in some special cases.

Proposition 2.21. For a given metric gH on H over a contact manifold M with

dim > 5, a partial connection D, and B ∈ EndE, (D,B) can determine a unique

full connection D such that D is an extension of D and FH of D is FD +B ⊗ dθ.

Proof. The proof is directly from the orthonormal decomposition of
∧2H∗ by the

metric gH .

Note that the case of 3 dimensional contact manifold needs no metric on
∧2H∗ in

order to satisfy proposition (2.21).

Proposition 2.22. For a given metric gH on H over a contact manifold M with

dim > 5, a partial connection D, and B ∈ EndE, we set the induced full connection

D = D(D,B) from the previous proposition (2.21). Then

(i) D is flat if and only if D is flat and B = 0.

(ii) If D is flat, then F̃ = −DB

Proof. For (i), we know that having D is flat and B = 0 is equivalently having

FH = 0. By corollary 2.17, one can get the result of (i). For (ii), one applies Bianchi
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identity.

0 = DF = dθ ∧DB + dθ ∧ F̃ − θ ∧DF̃

= dθ ∧ (DB + F̃ )− θ ∧ (dθ ⊗D′′B +DF̃ ).

Since dimension is greater than 5, then we have DB + F̃ = 0, or F̃ = −DB.

Proposition 2.23. For a high dimensional contact manifold M with chosen metric

gH on H and a 3 dimensional contact manifold with no requirement of gH , If D is

flat then DF̃ = dθ ⊗D′′B

Proof. By the previous proof of the proposition (2.22), we have

0 = θ ∧ (dθ ⊗D′′B +DF̃ )

= θ ∧ (dθ ⊗D′′B +D
′
F̃ + θ ∧D′′F̃ )

= θ ∧ (dθ ⊗D′′B +DF̃ ).

Since dθ ⊗D′′B +DF̃ ∈
∧2H∗, then 0 = dθ ⊗D′′B +DF̃ or dθ ⊗D′′B = DF̃ .

Corollary 2.24. Let a partial connection D be flat over a contact manifold (M, gH)

with dim > 5. F̃ = 0 if and only if B is a flat section with respect to D. In addition,

F̃ = 0 for the extension induced by any linear mapping B ∈ EndE, i.e., B = λI

where I is identity and λ is a constant by a local point of views.

Proof. The proof are straightforward from (2.22) and that DB = 0 as a flat section

with respect to D. Since DB = 0 for any B a constant section, then F̃ = 0.

One of the reasons for considering (D,B) is that B ∈ EndE is an independent

variable with any partial connection D which is a huge different than the case of
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extension D induced by D and FH . One can write D(D,B) for easy recall of the

introduced full connection D by two independent variables. This works for all contact

manifolds with dimension greater or equal to 3; however, it still requires the metric

on H in the manifold with dim > 5 in order to orthogonally decompose < dθ > ⊕ <

dθ >⊥. One takes advantage of considering (D,B) by finding an explicit relation

between a flat partial connection and its flat extension. Moreover, the curvatures

F (D,B1) and F (D,B2) can be delicately compared by focusing on B part.

Proposition 2.25. Let D be a partial connection such that its local is D = d′ + A

and D(D,B) = d+ A+ θ ⊗X. Then

(i) X = B − P (d′A+ A ∧ A), where P projects to the coefficient of dθ,

(ii) F̃ = d′′A− d′X + [X,A].

Proof. By considering the curvature F ,

FH − θ ∧ F̃ = F

= (d+ A+ θ ⊗X)(d+ A+ θ ⊗X)

= dA+ A ∧ A+ d(θ ⊗X) + θ ∧ [A,X]

= (d′A+ A ∧ A+ dθ ⊗X)− θ(−dX + d′′A− [X,A]).

Since FH = FD + Bdθ, then B = X + P (d′A+ A ∧ A). Also, we get from the above

that F̃ = d′′A− d′X + [X,A].

Proposition 2.26. For a partial connection D,

F̃(D,B1) = F̃(D,B2) +D(B2 −B1).
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Proof. This can be done directly using the proposition (2.25). We denote D(D,B1) =

d+A+ θ⊗X1 and D(D,B2) = d+A+ θ⊗X2. By (i) in the proposition (2.25), we

can conclude that

X2 −X1 = B2 −B1. (2.8)

Using the equation (2.8) with the proposition (ii) in (2.25), it yields

F̃(D,B1) = (d′′A− d′X1 + [X1, A])

= (d′′A− d′X2 + [X2, A]) + d′(X2 −X1)− [B2 −B1, A]

= F̃(D,B2) + d′(B2 −B1)− [B2 −B1, A]

= F̃(D,B2) +D(B2 −B1).

This proves the proposition.

2.4 Hodge star operator ∗′ on a
∧rH∗

In this section, we will introduce a Hodge star operator ∗′ on a contact distribution H

over a metric g. The L2 adjoint of a full connection D will be investigated in term of

∗′. These will be done through the lens of the fiberwise method. On a manifold with

the almost contact metric structure (M2m+1, θ, J, g),where g(X, JY ) = dθ(X, Y ). The

metric g is a compatible metric over H, i.e., g(X, Y ) = g(JX, JY ) for X, Y ∈ H. This

compatibility implies that g(X, JX) = 0. Hence one can choose the local orthonormal

basis {α∗1, β∗1 , ..., α∗m, β∗m} of H∗ in such a way that β∗i = Jα∗i . In contact manifold,

there is a well-known local coordinate (x1, y1, ..., xm, ym, z) satisfying dz = Σdxi∧dyi.

We will take the advantage of both properties into the algebraic points of view. For

the convenience, we will abuse the notation by writing α, β instead of α∗, β∗.
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Proposition 2.27. Let (M2m+1, θ) be a contact manifold with the associated met-

ric g such that g(X, JY ) = dθ(X, Y ), then there is an fiberwise orthonormal basis

{α1, β1, ..., αm, βm, θ} of TxM such that

(i) βi = Jαi,

(ii) dθ = Σα∗i ∧ β∗i .

Proof. Since g is a compatible metric over H, then we can choose the fiberwise or-

thonormal basis {α1, β1, ..., αm, βm} of H such that βi = Jαi. By the construction of

g, we have that dθ(u, v) = −g(−Ju, v). Hence dθ = Σα∗i ⊗ β∗i − β∗i ⊗ α∗i = Σα∗i ∧ β∗i .

This is the case of fiberwise space, not over the local picture. For the local case

or local basis section, it turns out that the proposition (2.27) is not obvious. All of

the computations will be computed algebraically in tangent vector spaces. Now, let’s

recall the definition of hodge star operator on a vector space V .

Definition 2.28. For a given vector space V with the orthonormal (order) basis

{e1, ..., en} and the inner product <,>, the Hodege ∗-operator is a linear mapping

∗ :
∧r V −→

∧n−r V for any r = 1, ..., n such that α∧∗β :=< α, β > vol, where <,>

is the induced on
∧r V and vol = e1 ∧ e2 ∧ ... ∧ en.

Remark 2.29. ∗2 = (−1)r(n−r).

Proposition 2.30. Let (M2m+1, θ, J, g) be a contact manifold and the Hodge−∗′ op-

erator on Γ(
∧rH∗). Then

(i) ∗′dθ = dθm−1

(m−1)!
,
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(ii) ∗′1 = dθm

m!
.

Proof. The proof will be done over the algebraic picture in order to use the proposition

(2.27). Since dθ = Σm
i=1α

∗
i ∧ β∗i , then dθr = r!Σγi1 ∧ ... ∧ γir , where γi = α∗i ∧ β∗i .

Hence we have that dθm = m!vol. This means vol = dθm

m!
, since vol = γ1 ∧ ... ∧ γm.

This proves (ii). In order to see (i), one can derive from the fact that g(dθ, dθ) = m.

This leads us to dθ ∧ ∗′dθ = g(dθ, dθ)vol = mdθm

m!
. This implies ∗′dθ = dθm−1

(m−1)!
.

Note 2.31. J in the almost contact metric structure can be extended to J over TM

by J2 = −I + θ ⊗ ξ, where θ(ξ) = 1. Moreover g can also be extended to TM

by g(X, ξ) = θ(X) for X ∈ Γ(TM). Here one have the oriented orthonormal basis

{α1, β1, ..., αm, βm, θ} of T ∗M .

For the convenience, we abuse the notation of α∗i , β
∗
i by writing αi, βi instead.

Now we also have the Hodge ∗-operator on T ∗M . The next proposition will show the

relationship between ∗ and ∗′.

Proposition 2.32. Let ∗ be the Hodge star operator over
∧r T ∗M and ∗′ the Hodge

star operator on
∧rH∗. The followings are true.

(i) ∗ :
∧rH∗ −→ θ ∧ (

∧2m−rH∗) is given by ∗α = (−1)rθ ∧ ∗′α.

(ii) ∗ : θ ∧ (
∧r−1H∗) −→

∧2m−r+1=n−rH∗ is given by ∗(θ ∧ α) = ∗′α.

In particular, ∗dθ = θ∧dθm−1

(m−1)!
.

Proof. First, we observe that vol = γ1 ∧ ... ∧ γm ∧ θ for T ∗M . By the definition of

hodge star operator, we have that

α ∧ ∗α = g∧r T ∗M(α, α)volT ∗M , for α ∈
r∧
T ∗M (2.9)
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α ∧ ∗′α = g∧r H∗(α, α)volH∗ , for α ∈
r∧
H∗, (2.10)

where volT ∗M = volH∗ ∧ θ. For (i), one can wedge θ on the right of the equation 2.10

then apply 2.9 along the way,

α ∧ (∗′α) ∧ θ = g∧r H∗(α, α)volH∗ ∧ θ

= g∧r T ∗M(α, α)volT ∗M

= α ∧ ∗α

Hence ∗α = (−1)rθ ∧ ∗′α. Note that g∧r H∗(α, α) = g∧r T ∗M is due to α ∈
∧r T ∗M .

Similar to the proof of (i), one can prove (ii) by starting from the equation 2.9 then

apply 2.10 along the way,

(θ ∧ α) ∧ ∗(θ ∧ α) = g∧r T ∗M(θ ∧ α, θ ∧ α)volT ∗M

= g∧r H∗(α, α)volH∗ ∧ θ

= α ∧ (∗′α) ∧ θ

= θ ∧ α ∧ ∗′α

Hence ∗(θ ∧ α) = ∗′α. Since the degree of α ∧ ∗′α is even, we can move θ from the

right to the left in the last line. To compute ∗dθ, we apply the result (i). Since

dθ ∈
∧2H∗, then ∗dθ = (−1)2θ ∧ ∗′dθ = θ∧dθm−1

(m−1)!
.

One of the advantages of the Hodge ∗-operator is that it can be applied to the

adjoint operator of a vector space, or even a vector bundle. The goal of the story is to

determine the adjoint operator of the full connection over
∧r T ∗M in term of Hodge

∗′-operator and its partial connection.
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Proposition 2.33. For a given contact metric manifold (M2m+1, θ, J, g), let L :∧rH∗ −→
∧r+2H∗ be a linear operator defined by L(α) = dθ∧α. Then the pointwise

adjoint operator L∗ :
∧r+2H∗ −→

∧rH∗ is determined by

L∗ = ∗′L∗′

Proof. Let α ∈
∧rH∗ and β ∈

∧kH∗. Then

g(Lα, v)volH∗ = Lα ∧ ∗′β

= dθ ∧ α ∧ ∗′β

= (−1)2α ∧ dθ ∧ ∗′β

= α ∧ ∗′(∗′L ∗′ β)

= g(α, (−1)(2m−r)r(∗′L∗′)β)volH∗ .

Hence L∗ = (−1)r ∗′ L∗′.

We will denote L∗ by Λ for the convenience.

Lemma 2.34. For a given contact metric manifold (M2m+1, θ, J, g), the adjoint of

L, Λ :
∧2H∗ −→

∧0H∗(= C∞(M)) satisfies

kerΛ =< dθ >⊥ .

Proof. We know that g(Lα, β) = g(α,Λβ) pointwisely for α ∈
∧0H∗, β ∈

∧2H∗

and also L(·) = dθ ∧ (·). Then we have that β ∈< dθ >⊥ if and only if g(α,Λβ) =

(Lα, β) = 0. This implies kerΛ =< dθ >⊥ .

Proposition 2.35. For a given contact metric manifold (M2m+1, θ, J, g) and a metric

gH on H as the set up in the remark (2.20), we have that Λα = gH(α, dθ) for α ∈∧2H∗.
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Proof. Decompose α = gH(α, dθ)dθ + β, where β ∈< dθ >⊥. By the lemma 2.34,

Λ(α) = ΛgH(α, dθ)dθ + β)

= Λ(gH(α, dθ)dθ)

= (−1)2 ∗′ L ∗′ (gH(α, dθ)dθ)

= gH(α, dθ) ∗′ L ∗′ dθ

= gH(α, dθ) ∗′ dθ ∧ dθm−1

(m− 1)!

= gH(α, dθ) ∗′ dθm

(m− 1)!

= gH(α, dθ).

With the property of Λ, we can easily identify B from the full connection D :

Γ(E) −→ Γ(T ∗M ⊗E). This can be achieved by taking Λ operator over the FH part

of the curvature F of D.

Corollary 2.36. Given a contact manifold M and D(D,B) the full connection in-

duced by D,B as previously described. Then

Λ(FH) = B.

In the following context, we will use Λ as the operator on the domain
∧2H∗.

Hence one may extend naturally to Λ :
∧2 T ∗M −→

∧0H∗ and still preserve the

same property by Λ(
∧2 T ∗M�∧2H∗) := 0. We will often use this notation in the

next chapter.

Next, we consider the case of L2 adjoint of the connection D : Γ(
∧r T ∗M⊗E) −→

Γ(
∧r r + 1T ∗M ⊗ E) over a contact manifold (M, θ, J, g). One defines the L2 inner
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product <,> on Γ(
∧r T ∗M ⊗ E) by

< α⊗ s1, β ⊗ s2 >:=

∫
M

g(αx ⊗ s1(x), βx ⊗ s2(x))vol,

where g is the metric on
∧r T ∗M ⊗ E and α ⊗ s1, β ⊗ s2 ∈ Γ(

∧r T ∗M ⊗ E). The

metric g here is defined by g(αx ⊗ s1(x), βx ⊗ s2(x)) := g(αx, βx) < s1(x), s2(x) >,

where < s1(x), s2(x) > is the inner product on E. The Hodge star operator is

originally defined over differential forms; however, one can extended to the domain

Γ(
∧r T ∗M ⊗ E) by

∗(α⊗ s) := (∗α)⊗ s,

for αx ∈
∧r T ∗xM, sx ∈ Ex. Moreover this also works for ∗′ over Γ(

∧rH∗ ⊗ E).

With this extension, It is easily to verify that D∗ = (−1)r ∗ D∗ for a connection

D : Ωr−1
M (E) −→ Ωr

M(E)

Proposition 2.37. Let D
∗

be the L2 adjoint connection of a connection D, D
∗

=

(−1)r ∗D∗ : Ωr
M(E) −→ Ωr−1

M (E). Also D∗ = −∗′D∗′ for a partial connection. Then

(i) the restriction of D
∗

to Ωr
H(E) is that D

∗
α = D∗α + θ ∧ Λα,

(ii) the restriction of D
∗

to θ ∧ Ωr−1
H (E) is that D

∗
(θ ∧ α) = (−1)kD

′′∗
α− θ ∧D∗α,

where D
′′∗

= − ∗′ D′′∗.

Proof. For (i), (ii), these can be computed directly using the proposition (2.32). Let

α ∈ Γ(Ωr
H(E)).

D
∗
α = (−1)r ∗D ∗ α

= (−1)r ∗D((−1)rθ ∧ ∗′α)

= ∗(dθ ∧ ∗′α + θ ∧D(∗′α))
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= (−1)r ∗′ dθ ∧ ∗′α + ∗′D ∗′ α

= Λα +D∗α.

Hence (i) is proved. Now consider θ ∧ α, where α ∈ Γ(Ωr−1
H (E)).

D
∗
(θ ∧ α) = (−1)r ∗D ∗ (θ ∧ α)

= (−1)r ∗D ∗′ α

= (−1)r ∗ (D′ ∗′ α− θ ∧D′′ ∗′ α)

= θ ∧ ∗′D ∗′ α− (−1)r ∗′ D′′ ∗′ α

= −θ ∧D∗α + (−1)rD′′∗α.

Hence (ii) is proven.
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Chapter 3

Applications to Tanaka-Webster
connections and Tanaka canonical
connections

In this Chapter, we study the alternative construction of Tanaka-Webster connection

and Tanaka canonical connection on the strongly pseudoconvex CR manifold using

the technique of decomposition over contact distribution H which is introduced in

the previous chapter, i.e., T ∗M = H∗⊕ < θ >. Recall that the full connection

D : Γ(E) −→ Γ(TM ⊗ E) is uniquely determined by H−partial connection D :

TM −→ H∗ ⊗ TM and the independent term B ∈ EndE. In the original definitions

[Tan75], Tanaka-webster connection and Tanaka canonical connection are defined as a

full connection with conditions. The main difference is that we will start by creating

the canonical partial connection and then find the suitable B ∈ EndE in such a

way that the axioms of Tanaka’s versions are all satisfied. We will recall many of

the following definitions: CR manifold, strongly pseudoconvex CR manifold, Tanaka-

Webster connection in the Tanaka version, and Tanaka canonical connection in the

Tanaka version. For the convenience, we write TCM = TM⊗C and TCM = T ∗M⊗C.

Definition 3.1. Greenfield [Gre68] For a given M a n-dimensional smooth manifold
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and H a l-dimensional complex subbundle of TCM , (M,H) is called a CR manifold

of real dimension n and CR-dimension l if Hx ∩ Hx = 0 for all x ∈ M and H is

involutive, i.e., [X, Y ] ∈ H, ∀X, Y ∈ H.

Note 3.2. There will be the unique 2l dimensional subbundle H ⊂ TM such that

HC = H⊕H and the unique almost complex structure I on H, i.e., I : H −→ H and

I2 = −id, for any CR manifold (M,H). Moreover, H = {X − iIX | X ∈ H}. In the

case of Tanaka, the CR manifold will be an orientable connected CR manifold with

a real dimension 2m + 1 and a CR-dimension m. We will refer to this when the CR

manifold is mentioned from now on. Define Ex := {f ∈ T ∗xM | f(Hx) = 0}. Since Hx

is 2m dimensional vector space , then E is a line bundle over M . E is a trivial bundle

by the fact that M is orientable connected. Hence There is a nowhere-vanishing

θ ∈ Γ(T ∗M) such that H ∈ ker(θ).

Definition 3.3. (M,H, θ) is called a strongly pseudoconvex CR manifold if the Levi

form,

Lθ(X, Y ) := −dθ(X, IY ), X, Y ∈ H

is positive definite, i.e., Lθ(X,X) > 0 for 0 6= X ∈ Hx, ∀x ∈M .

Now, if (M,H, θ) is a strongly pseudoconvex CR manifold, then dθx contains

Σiaie
∗
i ∧ (Jei)

∗, where {ei, Jei}mi=1 is an orthonormal basis of Hx and aii 6= 0. Hence

the existence of natural volume θ∧(dθ)m is guaranteed. One can obtain that strongly

pseudoconvex CR manifold (M,H, θ) is a contact manifold with a contact form θ.

We will denote ξ as a Reeb vector field of the strongly pseudoconvex CR manifold

(M,H, θ). Define J as the extension of I : H −→ H such that J2 = −id+ θ⊗ ξ and g

a canonical Riemannian metric over M defined by gθ(X, Y ) = Lθ(X, Y ), gθ(ξ,X) = 0,
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and gθ(ξ, ξ) = 1, for X, Y ∈ H. One can write gθ(X, Y ) = −dθ(X, Y )+θ(X)θ(Y ), for

X, Y ∈ TM . With all arguments, a strongly pseudoconvex CR manifold (M,H, θ)

carries a contact metric structure (θ, ξ, J, g). Therefore, we may write (M,H, θ, J, g)

or (M,H, ξ, J, g) for any strongly pseudoconvex CR manifold M .

3.1 Tanaka-Webster connections (Real differential

forms)

This section provides the original real version of the Tanaka-Webster connection and

the alternative construction trough a partial connection and B ∈ EndE.

Definition 3.4. Tanaka-Webster connection, induced in Tanaka book [Tan75] is an

unique covariant derivative∇ on the strongly pseudoconvex CR manifold (M,H, ξ, J, g)

satisfying the followings:

(i) ∇XY ∈ Γ(H) for Y ∈ Γ(H), X ∈ Γ(TM),

(ii) ∇ξ = 0,∇J = 0,∇ω = 0, where ω = −dθ (then ∇θ = ∇g)

(iii) Torsion satisfies T (X, Y ) = −ω(X, Y )ξ, and T (ξ, JY ) = −JT (ξ, Y ), for all

X, Y ∈ Hx, x ∈M .

The Tanaka-webster connection described above is induced as a full connection on

TM −→M ,∇ : Γ(TM) −→ Γ(T ∗M⊗TM). The ideas of the alternative construction

are that the we will create a partial connection that is compatible with a metric g, and

then use the property (iii) in order to pick a perfect B ∈ EndTM . In the conclusion,

D(D,B) will be a unique Tanaka-Webster connection. Many definitions and some

remarks will be introduced along the way of the construction so that we can see the

relationships among the definitions.
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Before we move to the definition of the CR manifold being holomorphic, we in-

troduce some notations such as H0,1, H1,0, H0,1, and H1,0. Since I is an almost

complex structure on H, then its complicification can be decomposed to the direct

sum, H⊗C = H0,1⊕H1,0, where H1,0 and H0,1 are the eigenbundle of i and −i over I

respectively. Also H∗⊗C = H0,1⊕H1,0 dually. Note that I : H ⊗C −→ H ⊗C such

that I(X⊗α) = IX⊗α. The conjugation is also defined on H⊗C by X ⊗ α = X⊗α,

for X ∈ Γ(H).

Definition 3.5. Let E be a complex vector bundle over a compact strongly pseu-

doconvex CR manifold (M,H, θ, ξ). the complex vector bundle E is holomorphic, if

there is a Cauchy-Riemann operator ∂ on E, ∂ : Γ(E)→ Γ(H0,1 ⊗ E), such that

1 ∂X(f · u) = ∂X(f) · u+ f · ∂X(u), X ∈ ΓH0,1, u ∈ Γ(E),

2 ∂X(∂Y u)− ∂Y (∂Xu)− ∂[X,Y ]u = 0, X, Y ∈ ΓH0,1, u ∈ Γ(E).

(This is an integrability condition of ∂)

Theorem 3.6. Let M be a strongly pseudoconvex CR manifold. Define ∂ : H1,0 −→

(H0,1 ⊗H1,0) such that

Y 7→ ∂XY := [X,Y ]H1,0 ,

where (· · · )H1,0 refers to a projecting to H1,0. Then ∂ is a connection.

Proof. we write [ , ] as [ , ]H1,0 for convenience. In order to show that this is a

connection, we will prove the Leibnitz’s rule, i.e., ∂X(f ·Y ) = df(X)Y ·Y + f ·∂X(Y )

and ∂fXY = f∂XY . For ∂fXY = f∂XY , we see that

∂fXY = [fX, Y ]H1,0
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= (fX(Y )− Y (fX)) |H1,0

= (fX(Y )− Y (f) ·X + fY (X)) |H1,0

= f [X,Y ]H1,0 .

Since Y (f) ·X ∈ H0,1, then it is zero under the projection of H1,0. For the Libnitz’s

rule, it can be examined by the following computation.

∂X(f · Y ) = [X, f · Y ]H1,0

= (X(f · Y )− fY (X))H1,0

= ((Xf)Y + fX(Y )− fY (X))H1,0

= (df(X)Y + f [X,Y ])H1,0

= (df(X)Y )H1,0 + f · ∂X(Y )

= (∂Xf)Y + f · ∂X(Y ).

Note 3.7. Let (M,H, ξ, J, g) be a strongly pseudoconvex CR manifold. There is the

induced the Hermitian metric g on TM ⊗ C defined by

gx(X1 ⊗ α1, X2 ⊗ α2) :=< α1, α2 > gx(X1, X2)·,

where < ·, · > is a usual Hermitian metric on a complex space. One can define the

compatibility of a connection D with a metric g by saying Dg = 0 or equivalently

Xg(Y, Y ) = g(DXY, Y ) + g(Y,DXY ).

Theorem 3.8. Let (M,H, ξ, J, g) be a strongly pseudoconvex CR manifold. There is

a unique connection D : Γ(H1,0) −→ Γ(HC⊗H1,0) such that Dg = 0 and D |H0,1= ∂,

where ∂ is defined in (3.6).
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Proof. We begin the construction by defining D : H1,0 −→ H0,1 ⊗ H1,0 in such a

way that DXY = ∂, for X ∈ Γ(H0,1), where ∂ is defined as above. Then DXY will

be canonically induced for X ∈ Γ(H1,0) in order to have the compatibility with the

Hermitian matrix, e.g. DXY can be achieved by considering Xg(Y, Y ) = g(DXY, Y )+

g(Y,DXY ). Since HC = H1,0⊕H0,1, then one can constructs the canonical connection

D : Γ(H1,0) −→ Γ(HC ⊗H1,0), where Dh = 0 and D |H0,1= ∂.

Since H1,0 is C linearly isomorphic to (H, I), which can be viewed as a real subbun-

dle H, then the connection D in (3.8) is allowed to be the connection under the real

vector bundle H −→M , i.e., D : Γ(H) −→ Γ(HC⊗H). Also, we have the connection

D : Γ(H) −→ Γ(H∗⊗H) by restricting to the real part of differential form. Moreover,

setting Dξ = 0 will create the connection D : Γ(TM) −→ Γ(H∗ ⊗ TM). The next

theorem will be the last step of the construction of the Tanaka-Webster connection.

This will be based on the technique of a partial connection using the proposition

(2.21). First, we need some tools in the Tanaka-Webster connection, which we obtain

in the following lemma.

Lemma 3.9. Let ∇ : Γ(TM) −→ Γ(T ∗M ⊗TM) be the Tanaka-Webster connection.

Then it satisfies

∇ξX =
1

2
(J([ξ, JX]) + [ξ,X])

, for X ∈ Γ(TM).

Proof. Since ∇ξ = 0 = ∇J =, then and T (ξ, JX) = −JT (ξ,X), then

T (ξ, JX) = ∇ξJX −∇JXξ − [ξ, JX]

= ∇ξJX − [ξ, JX]
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= (∇ξJ)X + J(∇ξX)− [ξ, JX]

= J(∇ξX)− [ξ, JX] (3.1)

and

−JT (ξ,X) = −J(∇ξX −∇Xξ − [ξ,X])

= −J(∇ξX + [ξ,X])

= −J(∇ξX)− J [ξ,X]. (3.2)

By the property of the Tanaka-Webster connection, T (ξ, JX) = −JT (ξ,X) we have

that J(∇ξX) = 1
2
(−J [ξ,X] + [ξ, JX]). Hence ∇ξX = 1

2
([ξ,X] + J [ξ, JX])

Theorem 3.10. Let (M,H, ξ, J, g) be a n(> 3) dimensional strongly pseudoconvex

CR manifold. Then the Tanaka-Webster connection ∇ is induced by the unique canon-

ical partial connection D that is compatible with g and Dξ = 0 and a unique B ∈

End(TM), where B = ΛQ+ n
2
JLξ(J) ∈ End(H) and Q := [DX , DY ]−DDXY−DYX ∈

EndH for X, Y ∈ Γ(H∗). Note that L is a Lie derivative. (∇ = D(D,B))

Proof. One needs to verify that the restriction of the Tanaka-Webster connection ∇

to H∗ is the partial connection D referred in (3.8) and find B from the axioms of

Tanaka-Webster connection: T (ξ, IY ) = −JT (ξ, Y ),and T (X, Y ) = −ω(X, Y )ξ for

all X, Y ∈ H. Then one can use the proposition (2.21) to confirm that D(D,B) is

the unique connection satisfying this conditions. Hence ∇ = D(D,B) is the Tanaka-

Webster connection by the uniqueness. One needs no metric on
∧2H∗ in order to

have proposition (2.21) for 3 dimensions; however, one will have an induced metric

on
∧2H2 such that

∧2H∗ =< dθ > ⊕ < dθ >⊥ from choosing a metric g for 5

dimension. Let ∇ : Γ(TM) −→ Γ(T ∗M⊗TM) be the Tanaka-Webster connection(by
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the original definition). By the theorem (3.8), the Tanaka-Webster connection ∇ is

restricted to the unique partial connection D that is compatible with g and Dξ = 0.

To find B ∈ End(TM) such that ∇ = D(D,B), we apply the lemma (3.9) in the

computation of ΛF , where F is the curvature of ∇. Also, we will use the Tanaka’s

technique [Ura94] that F (X, Y )Z = Q(X, Y )Z + ∇T (X,Y )Z, where Q(X, Y )Z :=

DXDYZ −DYDXZ −DDXYZ +DDYXZ and Λ∇dθ∧ξ = n∇ξ. Let X, Y,X ∈ Γ(H).

B(Z) = (ΛF )(Z)

= Λ(Q+∇T (·,·))Z

= Λ(Q+∇−ω(·,·)ξ)Z

= Λ(Q+∇dθ∧ξ)Z

= ΛQ(Z) + n∇ξZ

= ΛQ(Z) +
n

2
(J([ξ, JZ]) + [ξ, Z])

= ΛQ(Z) +
n

2
JLξ(J)(Z).

By the proposition (2.21), we have that ∇ = D(D,B) is the Tanaka-Webster connec-

tion.

3.2 Tanaka-Webster connections (Complex differ-

ential forms)

In this section, we work on the Tanaka-Webster connection∇ : Γ(TCM) −→ Γ(TCM⊗

TCM) which is induced in the Urakawa’s paper [Ura94].

Recall that if (M,H, ξ, J, g) is a strongly pseudoconvex CR manifold M , we have

the real Levi form L and the real bilinear form ω. Then one can naturally extends L
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to a complex bilinear forms on TCM by

L(X1 ⊗ α1, X2 ⊗ α2) := α1α2L(X1, X2)

, for X1, X2 ∈ TxM,x ∈ M . Similar to L, one can extend ω to a complex bilin-

ear form. Moreover, the almost complex structure J can also be extended to the

complexification by

J(X ⊗ α) := J(X)⊗ α. (3.3)

Definition 3.11. Tanaka-Webster connection ∇ : Γ(TM) −→ Γ(TCM⊗TM) on the

strongly pseudoconvex CR manifold (M,H, ξ, J, g) induced in the Urakawa’s paper is

the unique affine connection satisfying the followings:

(i) ∇XY ∈ Γ(H) for Y ∈ Γ(H), X ∈ Γ(TCM)

(ii) ∇ξ = 0,∇J = 0,∇ω = 0, where ω = −dθ (then ∇θ = ∇g)

(iii) Torsion satisfies T (X, Y ) = −ω(X, Y )ξ, and T (ξ, JY ) = −JT (ξ, Y ), for all

X, Y ∈ Hx, x ∈M .

The Riemannian metric g over H can be extended naturally to HC by

g(X1 ⊗ α1, X2 ⊗ α2) := α1α2g(X1, X2). (3.4)

For the oriented orthonormal basis of (HC), one can choose the basis {ei}2m
1 in such

a way that g(ei, ej) = δij. This basically means that one can naturally consider

{α1⊗1, β1⊗1, ..., αm⊗1, βm⊗1} as the orthonormal basis of HC, for any orthonormal

basis {α1, β1, ..., αm, βm} of H∗. Then he extends the Tanaka-Webster connection to

∇ : Γ(TCM) −→ Γ(TCM ⊗ TCM), where the first condition of Tanaka-Webster
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connection will be changed to ∇X(Γ(H1,0)) ⊂ Γ(H1,0) and ∇X(Γ(H0,1)) ⊂ Γ(H0,1),

for any X ∈ TCM .

Definition 3.12. Tanaka-Webster connection (Complex bilinear map)∇ : Γ(TCM) −→

Γ(TCM ⊗ TCM) on the strongly pseudoconvex CR manifold (M,H, ξ, J, g) induced

in Urakawa paper is the unique affine connection satisfying the followings:

(i) ∇X(Γ(H1,0)) ⊂ Γ(H1,0), ∇X(Γ(H0,1)) ⊂ Γ(H0,1), for any X ∈ Γ(TCM)

(ii) ∇ξ = 0,∇J = 0,∇ω = 0, where ω = −dθ (then ∇θ = ∇g)

(iii) Torsion satisfies T (X, Y ) = −ω(X, Y )ξ, and T (ξ, JY ) = −JT (ξ, Y ), for all

X, Y ∈ (HC)x, x ∈M .

To see the result like the proposition (3.10), we can follow the guideline of its

construction.

Theorem 3.13. Let (M,H, ξ, J, g) be a strongly pseudoconvex CR manifold. There

is a unique connection D : Γ(HC) −→ Γ(HC ⊗HC) satisfying the following:

(i) Dg = 0

(ii) ∇X(Γ(H1,0)) ⊂ Γ(H1,0), for any X ∈ Γ(TCM)

(iii) ∇X(Γ(H0,1)) ⊂ Γ(H0,1), for any X ∈ Γ(TCM)

Proof. By proposition (3.8), There is a unique connection D : Γ(H1,0) −→ Γ(HC ⊗

H1,0) such that Dg = 0 and D(Γ(H1,0)) ⊂ Γ(H1,0). Instead of using the isomorphism

between H0,1 and (H, J) to get the real distribution, this time we will extend to the

whole HC. This can be done by extending D to a map D : Γ(HC) −→ Γ(HC ⊗HC)
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by

D(X) = D(X)),

for X ∈ Γ(H0,1) or X ∈ Γ(H1,0). This is well-defined since H1,0 = H0,1. Hence we have

a unique connection D : Γ(HC) −→ Γ(HC ⊗ HC) satisfying; Dg = 0, D(Γ(H1,0)) ⊂

Γ(H1,0), and ∇X(Γ(H0,1)) ⊂ Γ(H0,1).

With this theorem (3.13), it allows us to have the environment on the Tanaka-

Webster connection (Complex bilinear map) in a similar way to the real Tanaka-

Webster connection case with the theorem (3.8). Hence we will have that

Theorem 3.14. Let (M,H, ξ, J, g) be a strongly pseudoconvex CR manifold with

dimension > 3. Then the Tanaka-Webster connection (Complex bilinear map) ∇

is induced by the unique canonical partial connection D in (3.13), and B = ΛQ +

n
2
iJLξ(J) ∈ End(H), where Q := [DX , DY ]−DDXY−DYX ∈ EndH for X, Y ∈ Γ(HC)

and L a Lie derivative. (∇ = D(D,B))

Proof. The proof is similar to the proof in theorem (3.10), except that we have

Λ∇dθ∧ξ = in∇ξ not Λ∇dθ∧ξ = n∇ξ.

3.3 Tanaka canonical connections

Definition 3.15. Let (E, h) −→M be a holomorphic vector bundle over a a strongly

pseudoconvex CR manifold (M,H, ξ, J, g), where h is a Hermitian metric on E. There

exists a unique Hermitian connection D : Γ(E) −→ Γ(T ∗M ⊗ E) such that ΛF = 0,

where F is the curvature of D.

Theorem 3.16. Let ∇ be the Tanaka canonical connection on a holomorphic vector

bundle E over a compact strongly pseudoconvex CR manifold M2n+1. Then ∇ =
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D(D, 0), where the partial connection D is induced in the same way as in the real

Tanaka-Webster case.

Proof. The main part is that B = 0 by the definition of Tanaka canonical connec-

tion. The creation of the partial connection is produced in a similar way to the

Tanaka-Webster connection case, e.g., the partial connection is automatically the

Cauchy-Riemann operator (the partial connection of the Tanaka-Webster connection

is induced by an almost Cauchy-Riemann operator without the integrability).

As we can see, the benefit of proposition (2.21) is that it may reduce some of the

conditions for being the arbitrary special canonical full connection D by categorizing

the information into two independent ingredients;

(i) the reduced information in a partial connection D : Γ(E) −→ Γ(H∗ ⊗ TM) of

D,

(ii) the reduced information in B ∈ End(E).

Then one might be able to find some redundant condition in a partial connection or

in B term. In Tanaka-Webster connection’s situation, we can see that we do not use

the condition Dω = 0 to create such a partial connection due to the uniqueness of

compatibility with metric g. On the other hand, the proposition (2.21) may produce

the very complicated B that is hard to use or apply into others theorems. For example,

the term B in Tanaka-Webster is very complicated since the term Q is still a mystery

(whether it is already in the easiest form).
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Chapter 4

Contact Hermitian-Einstein
connections

In this chapter, the contact Hermitian-Einstein connection will be introduced by

starting from the Hermitian-Einstein or Hermitian Yang-Mills connection defined

on the Kahler manifold, and then the proposed Himitian Einstein for the almost

contact manifold. People often use two different definitions of the Hermitian-Einstein

connection on a Kahler manifold:

(i) the Hermitian-Einstein connection defined over the holomorphic vector bundle,

(ii) the Hermitian-Einstein connection defined over the complex vector bundle.

The one over the holomorphic bundle will be a unique connection, since it is one to

one corresponding to a Cauchy operator. The second one over the complex vector

bundle might allow more than one Hermitian-Einstein connection. We will give the

information though the distinct sources; Tian [Tia00] and Kobayashi [Kob87].
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4.1 Hermitian-Einstein connections over a Kahler

manifold

Here we will start with the version in the Kobayashi’s work based on the following

schemes:

(i) (M, g) is the Hermitian manifold,

(ii) (E, h) is the holomorphic Hermitian vector bundle of rank r over M .

Recall that there is the canonical Hermitian connection D such that Dh = 0 and

D′′ = d′′. Since M is the Hermitian manifold, then there is a fundamental form Φ

by the fact that there is a 1 − 1 correspondence between the Hermitian forms and

the fundamental forms(If it is closed, then it will be the Kahler form). With the

fundamental form, we have the operator L : Ωm−1
M −→ Ωm+1

M such that L(u) = Φ∧ u.

In particular, L : Ωp,q
M −→ Ωp+1,q+1

M . Let Λ : Ωp,q
M −→ Ωp−1,q−1

M be the adjoint of L.

Definition 4.1. The mean curvature K of π : E −→ M , as set up above, is defined

by

K = iΛF

, where F is the curvature of the canonical Hermitian connection D.

Definition 4.2. (E, h) is an Einstein hermitian vector bundle over (M, g) if

K = cid, (4.1)

for a constant c.

We can see that the Einstein condition is dependent only on a holomorphic vector

bundle. On the other hand, the way to define Einstein’s condition over a complex
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vector bundle is based on the choice of a holomorphic structure, which is not unique.

Now we will take a look at the Tian version and some of the applications of the

Hermitian-Einstein connection.

In the Tian’s paper, the version will be based on the following schemes:

(i) (M,ω) is a Kahler manifold,

(ii) E is a complex vector bundle of rank r over M .

Definition 4.3. The connection D of E is called a Hermitian-Yang-Mills connection

if

(i) D is the unitary connection,

(ii) F 1,1
D · ω = λId,

(iii) F 0,2
D = 0,

where λ = m(C1(E)·[ω]n−1)
r[ω]m

.

Note 4.4. (i) represents the Hermitian connection property, (ii) represents the equa-

tion (4.1), and (iii) means the existence of a holomorphic structure.

In the Tian’s paper, he introduces the relationship between Hermitian-Yang-Mills

connections and Yang-Mills connections through the following propositions.

Proposition 4.5. For a given complex vector bundle E over a Kahler manifold

(M,ω), if C1(E) is a type of (1, 1), then D is a Hermitian-Yang-Mills connection

if and only if D satisfies the equation

Ω ∧ (FD −
1

r
tr(FD)Id) = − ∗ (FD −

1

r
tr(FD)Id), (4.2)

where Ω = ωm−2

(m−2)!
.
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Proposition 4.6. If D is the unitary connection on π : E −→ (M,ω) such that

tr(FD) is a harmonic 2 form and satisfies the equation (4.2), then D is a Yang-Mills

connection.

With these two propositions, we can adjust the relations to the contact case in a

similar manner. In the contact case, it is required the distinct versions of the equation

(4.2) and the special definition of Hermitian connection since there is the extra term

so called contact form. Hence, in the next section, we will introduce the idea and

propose the Hermitian connection’s definition for a contact manifold and end Chapter.

The new equation functioning in a same way with the equation (4.2) on the contact

case will be introduced as the contact instanton equation in the next Chapter along

with the relationship of Hermitian connections and Yang-Mills connections.

4.2 Hermitian-Einstein connections over a contact

manifold

In Wang’s Informal notes [?], he proposed the definition of the Hermitian-Einstein

connection as follows:

Definition 4.7. Let E be a Hermitian vector bundle over a contact manifold M . A

connection D(D,B) is called a Hermitian-Einstein connection if

(i) D(D,B) is a Hermitian connection,

(ii) F̃ = 0,

(iii) DB = 0.

One of the ideas is from the Urakawa’s paper, which emphasizes the roles of Tanaka
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connections in the same manner with the Hermitian-Einstein connection of a holo-

morphic bundle over a compact Kahler manifold under the condition that iξF = 0,

where F is the curvature of the Hermitian connection. In this context, we translate

iξF = 0 into F̃ = 0. The first condition has the similar intuitive; however, the third

axiom, DB = 0, turns out to be more general than the Tanaka caconical connection,

i.e. ΛF = 0 or B = 0.

Example 4.8. The Tanaka canonical connection is the Hermitian-Einstein connec-

tion under the condition that the curvature F is of (1, 1) type.

Proof. We know that F̃ = 0 if and only if F is of (1, 1) type. For DB = 0, it is

directly from the fact that ΛF = 0 = B.
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Chapter 5

Contact instantons and Yang-Mills
connections

This chapter will introduce the definition of a B contact instanton and also introduce

the tools in the Wang’s Informal notes in order to express the relationship of B

contact instantons and some inhomogeneous Yang-Mills connections. Moreover, the

inhomogeneous Yang-Mills functional will be considered. Firstly, we will start with

the definition and properties of the ? operator over the domain
∧2H∗, which is the

main ingredient of the B contact instanton equation. The B contact instanton that

will be shown in this thesis is similar to the case of the Ω−anti-self-dual instanton

(on Kahler manifold) in Tian [Tia00], where analogy of Ω for the contact instanton

on a contact manifold is different.

Before proceeding further, consider the local picture of (p, q) differential forms

on
∧rH∗ with respect to (M, θ, J, g) in order to gain tools when some complicated

computations are required.

5.1 Local differential forms of type (p,q)

This section will be very useful for one to explicitly compute the differential forms

in a very convenient point of views. Let (M2m+1, θ, J, g) be a manifold with an

50



almost contact structure. Considering the complexification HC, one can decompose

the bundle in to the two eigen(bundle)spaces from the almost complex structure

J : HC −→ HC. We note that J over HC is naturally induced from J over H by (3.3)

and still J2 = id. Since HC is a complex bundle, then one can easily solve that the

eigenvalues of J over HC are i and −i. We write HC =
∧1,0⊕

∧0,1, where
∧1,0 and∧0,1 are the eigenbundle of i,−i respectively.

In the proposition (2.27), we have the oriented orthogonal basis {α1, β2, ..., αm, βm}

of the real vector space (H∗x, g), where βk = J(αk), for k = 1, ...,m. With (3.4), the

basis can also be represented as the oriented orthogonal basis of the complex bundle

(HC, g). One may abuse the notation by replacing αk = αk ⊗ 1 and βk = βk ⊗ 1 for

more convenient. All of the followings will be based on the fiber-wise point of views.

Proposition 5.1. Given (M, θ, J, g) with the oriented orthogonal basis {α1, β2, ..., αm, βm}

in the proposition (2.27). Then HC =
∧1,0⊕

∧0,1, where
∧1,0 and

∧0,1 are the

eigenspace of i,−i respectively. Fiber-wise, we have that;

(i)
∧1,0 =< αk − iβk >k=1,...,m,

(ii)
∧0,1 =< αk + iβk >k=1,...,m.

Proof. We can compute it directly that αk − iβk is the eigenvector of i by

J(αk − iβk) = Jαk − iJβk

= βk + iαk

= i(αk − iβk).

Also, αk + iβk is the eigenvector of −i.

J(αk + iβk) = Jαk + iJβk
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= βk − iαk

= −i(αk + iβk).

Since {αk−iβk, αk+iβk} are orthogonal to each others, then we can assume that there

are only two eigenvectors andHC =
∧0,1⊕

∧1,0,where
∧1,0 is the eigenspace generated

by < αk − iβk >k=1,...,m and
∧0,1 is the eigenspace generated by < αk + iβk >k=1,...,m.

Note that Hx can be decomposed in to the direct summation of all eigenspaces

with respect to J by the fact that J is an isometric linear operator.

Proposition 5.2. Given (M, θ, J, g) with the oriented orthogonal basis {α1, β2, ..., αm, βm}

of the (H∗, g), where βk = J(αk), Then
∧CH∗ =

∧2,0⊕
∧0,2⊕

∧1,1. we have that;

(i)
∧1,1 =< αk ∧ αl + βk ∧ βl, αk ∧ βl + αl ∧ βk >k6l ⊗C,

(ii)
∧2,0⊕

∧0,2 =< αk ∧ αl − βk ∧ βl, αk ∧ βl − αl ∧ βk >k6l ⊗C.

Proof. We will use the proposition (5.1) to compute it explicitly. For (i),

1,1∧
=

1,0∧
∧

0,1∧
⊕

0,1∧
∧

1,0∧
=< (αk − iβk) ∧ (αl + iβl) > ⊕ < (αk + iβk) ∧ (αl − iβl) >

=< αk ∧ αl + iαk ∧ βl − iβk ∧ αl + βk ∧ βl >

⊕ < αk ∧ αl − iαk ∧ βl + iβk ∧ αl + βk ∧ βl >

=< (αk ∧ αl + βk ∧ βl) + i(αk ∧ βl + αl ∧ βk) >

⊕ < (αk ∧ αl + βk ∧ βl)− i(αk ∧ βl + αl ∧ βk) >

=< αk ∧ αl + βk ∧ βl, αk ∧ βl + αl ∧ βk > ⊗C.
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For (ii),

2,0∧
⊕

0,2∧
=< (αk − iβk) ∧ (αl − iβl) > ⊕ < (αk + iβk) ∧ (αl + iβl) >

=< (αk ∧ αl − βk ∧ βl)− i(αk ∧ βl − αl ∧ βk) >

⊕ < (αk ∧ αl − βk ∧ βl) + i(αk ∧ βl − αl ∧ βk) >

= (< αk ∧ αl − βk ∧ βl > ⊕ < αk ∧ βl − αl ∧ βk >)⊗ C.

One can observe that
∧1,1 can be generated by 3 types of elements,

∧1,1 =<

αk ∧ αl + βk ∧ βl, αk ∧ βl + αl ∧ βk, αk ∧ βk >k<l ⊗C.

5.2 The ? operator on a contact distribution

Definition 5.3. Given a contact manifold (M2m+1, θ, g, J), where m > 2. Define

Θ ∈
∧2m−3 TM∗ in such a way that Θ = θ ∧ dθm−2/(m − 2)!. The ? operator is a

mapping in
∧2 TM∗. ? :

∧2 TM∗ −→
∧2 TM∗ is such that ?α := ∗(Θ ∧ α).

Since α = αH+θ∧α ∈
∧2H∗⊕θ∧H∗, then ?α = ?αH = ∗(θ∧dθm−2/(m−2)!∧α).

By Lemma4.1 in Wang’s note, the image must be in
∧2H∗. Hence we can rewrite

that ? :
∧2 TM∗ −→

∧2H∗ and vanish on the vertical term. For the convenience, we

begin computing ?dθ before going to the general case γ ∈
∧2H∗.

?dθ = ∗((θ ∧ dθm−2/(m− 2)!) ∧ dθ)

= ∗(θ ∧ (dθ)m−1/(m− 2)!)

= (m− 1)dθ = ∗′(dθ)m−1/(m− 2)!

= (m− 1)dθ.
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We consider the orthonormal oriented basis {α1, β1, ..., αm, βm, θ} in such a way

that dθ = Σkαk ∧ βk. For an arbitrary γ ∈
∧2H∗, which is represented by γ =

Σk<l(aklαk ∧ αl + bklβk ∧ βl) + Σk,lcklαk ∧ βl, we have that

?γ = ∗(Θ ∧ γ)

= ∗(θ ∧ dθm−2/(m− 2)! ∧ γ)

= ∗′(dθm−2/(m− 2)! ∧ γ)

= ∗′ [(Σk<l(α1 ∧ β1 ∧ ... ∧ α̂k ∧ βk ∧ ... ∧ α̂l ∧ βl ∧ ... ∧ αn ∧ βn)

∧ (Σk<l(aklαk ∧ αl + bklβk ∧ βl) + Σk,lcklαk ∧ βl)]

= −[Σk<l(bklαk ∧ αl + aklβk ∧ βl)]− [Σk 6=lcklαl ∧ βk] + [Σl 6=kcjjαk ∧ βk].
(5.1)

For m = 2, the ? operator behaves in the same way ∗′ does. We know from the

above procedure that ?γ = ∗′(dθm−2/(m− 2)! ∧ γ). Hence ?γ = ∗′γ when m = 2.

We observe the decomposition
∧2H∗ = S1 ⊕ S2 ⊕ S3, where S1, S2, and S3 are

defined to be the spaces generated by {αk ∧ αl, βk ∧ βl}, {αk ∧ βl}k 6=l, and {αk ∧ βk}

respectively. By this decomposition, it allows us to see the behavior of the ? operator

in the similar way as the isometric involution. Let J be an isometry on
∧2H∗ such

that

J(γ) = J(Σk<l(aklαk ∧ αl + bklβk ∧ βl) + Σk,lcklαk ∧ βl)

:= Σk<l(aklJ(αk) ∧ J(αl) + bklJ(βk) ∧ J(βl)) + Σk,lcklJ(αk) ∧ J(βl)

= Σk<l(aklβk ∧ βl + bklαk ∧ αl)− Σk,lcklβk ∧ αl.

After applying J again, one can easily acquire that J is an involution, i.e. J2 is

identity. Now, the information is collected and we have ? = −J over S1 and S2.
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Then it implies that the ? operator is an isometric involution on S1 ⊕ S2. This leads

us to the following proposition.

Proposition 5.4. Let (M, θ, J, g) be a contact manifold with n = 2m+ 1 dimension,

where m > 2. Define S1, S2 and S3 as the above, the following are true.

(i) For m = 2, ? is an isometric involution on
∧2H∗ = S1 ⊕ S2 ⊕ S3.

(ii) For m > 2, ? is an isometric involution on < dθ >⊥= S1 ⊕ S2 ⊕ S−3 , where

S−3 := {γ = Σkckαk ∧ βk | c := Σkck = 0}.

Proof. We already know that the ? operator is an isometric involution on S1⊕S2 from

the above information. Hence we will investigate only on S3. Given γ = Σkckαk ∧

βk ∈ S3, One computes ?2(γ) = Σk((m − 2)c + ck)αk ∧ βk. If m = 2, then (i) is

automatically true. For (ii), case of m > 2, ? is an isometric involution on S−3 :=

{γ = Σkckαk ∧ βk | c = 0}, which is Equivalently to S−3 = {γ ∈ S3 |< γ, dθ >= 0}.

This mean S−3 =< dθ >⊥ ∩S3 can be obtained by the definition of S−3 , i.e. c = 0.

We have only considered on the case of m > 2, since m = 1 is the trivial case

where
∧2H∗ =< dθ >. Since ? is an isometric involution on

∧2H∗ for m = 2 and on

< dθ >⊥ for m >,then we can study the properties of the eigenspaces of eigenvalues

±1 of ? on those subbundle.

Proposition 5.5. Let
∧+ and

∧− be ±1 eigenspaces of eigenvalues {±1} of the ?

operator on
∧2H∗.

For m = 2,

2∧
H∗ =

+∧
⊕
−∧
, where dθ ∈

+∧
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For m > 2, the ? operator has {1,−1,m− 1} as eigenvalues.

2∧
H∗ =

+∧
⊕
−∧
⊕ < dθ >

, with ?dθ = (m− 1)dθ,

Proof. One can get (i) directly from the previous proposition. For m = 2, ? is an

involution on the entire
∧2H∗. Hence

∧2H∗ =
∧+⊕

∧−. From our computation,

?dθ = (m − 1)dθ, we have that ?dθ = (m − 1)dθ = dθ, or equivalently dθ ∈
∧+ for

m = 2. For m > 2, dθ is the eigenvector of the eigenvalue m − 1 6= 1, and we have

the decomposition
∧2H∗ =

∧+⊕
∧−⊕ < dθ >.

Proposition 5.6. Let L be the mapping L : C∞(M) −→ Ω2
H such that L(α) = dθ∧α,

and Λ : Ω2
H −→ C∞(M) be a pointwise adjoint of L. Then

(i)
∧− ⊂ (imL)⊥ = ker(Λ). In particular,

∧− = (
∧1,1)R ∩ ker(Λ),

(ii) For m > 2,
∧+ = (

∧2,0⊕
∧0,2)R,

For m = 2,
∧+ = (

∧2,0⊕
∧0,2)R⊕ < dθ >,

(iii) dθ ∈ (
∧1,1)R.

Proof. For (i), one observes that Im(L) =< dθ > by the definition. By 5.5,
∧− ⊂<

dθ >⊥ for m > 2. Also, by the fact that Im(L)⊥ = ker(Λ). Then
∧− ∈ Im(L)⊥ =

ker(Λ). To see what
∧− looks like, one can compute from the equation (5.1) and find

the suitable coefficients of γ ∈
∧−. Since ?γ = −γ, then we have that

−(Σk<l(aklαk ∧ αl + bklβk ∧ βl) + Σk,lcklαk ∧ βl)

= −γ
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= ?γ

= −[Σk<l(bklαk ∧ αl + aklβk ∧ βl)]− [Σk 6=lcklαl ∧ βk] + [Σl 6=kcllαk ∧ βk].

By comparing the coefficients, one has that akl = bkl, ckl = clk, and −ckk = Σl 6=kcll.

This implies that

−∧
=< αk ∧ αl + βk ∧ βl, αk ∧ βl + αl ∧ βk > ⊕S−3 . (5.2)

Now, we consider the case of
∧+.

Σk<l(aklαk ∧ αl + bklβk ∧ βl) + Σk,lcklαk ∧ βl

= γ

= ?γ

= −[Σk<l(bklαk ∧ αl + aklβk ∧ βl)]− [Σk 6=lcklαl ∧ βk] + [Σl 6=kcllαk ∧ βk].

Then we have that akl = −bkl, ckl = −clk, and ckk = Σl 6=kcll. We observe that

ckk = 0,∀k if m > 2 and c11 = c22 for m = 2. This implies

+∧
=< αk ∧ αl − βk ∧ βl, αk ∧ βl − αl ∧ βk > (5.3)

for m > 2 with the extra term < dθ > for m = 2. Next we will show that
∧− =

(
∧1,1)R ∩ ker(Λ). By the propositions (5.2), (2.34), and (5.4), we have that

∧− =

(
∧1,1)R∩ker(Λ). For (ii), we already know that (

∧2,0⊕
∧0,2)R =< αk∧αl−βk∧βl, αk∧

βl − αl ∧ βk > from the proposition (5.2). This is same as
∧− by considering (5.3).

Hence one have that
∧+ = (

∧2,0⊕
∧0,2)R, for m > 2 and

∧+ = (
∧2,0⊕

∧0,2)R⊕ <

dθ > for m = 2. For (iii), It is directly from
∧1,1
R =< αk ∧αl + βk ∧ βl, αk ∧ βl +αl ∧

βk >k<l ⊕S3.
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5.3 Relationships between B-inhomogeneous Yang-

Mills connections and contact instantons with

the application on Tanaka canonical connec-

tions in Urakawa’s paper

In Tian’s paper [Tia00](2000), The star operator is used to define a contact instan-

ton in the same way to Ω−anti-self-dual instanton(on Kahler manifold) is. Let we

introduce a Yang-Mills connection and a contact instanton. Also, we provide the

relationship between Yang-Mills connections and contact instantons later on. For a

Riemannian manifold M , we define the Yang-Mills functional, or the energy func-

tional YM(D) = ‖FD‖2 =
∫
M
|FD|2V olM . The Yang-Mill equation d∗DFD = 0 is the

Euler-Lagrange equation of the Yang-Mills functional. The critical point of the Yang-

Mills functional, equivalently the solution of Yang-Mill equation is called a Yang-Mills

connection.

The Kahler case was introduced introduced already in Chapter of Hermitian-

Einstein connections. To investigate the contact case, we can see the similar parts

between anti-self-dual instantons on a Kahler manifold and B contact instantons o

an contact manifold.

For the contact case, the analogous of fundamental form is Θ = θ∧dθm−2/(m−2)!.

Definition 5.7. For a given vector bundle E −→ M with B ∈ End(E), the full

connection D is called a B-contact instanton if its curvature F satisfies

?(F −Bdθ) = −(F −Bdθ).

Equivalently,

?F = −F +mBdθ
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by dθ = (m− 1)dθ.

Note that F = FH + θ ∧ F̃ = F⊥ + ΛFHdθ + θ ∧ F̃ . By proposition 5.5, it allows

us to decompose F⊥ again into F+
⊥ + F−⊥ ∈

∧+⊕
∧−. This means F = FH + θ ∧ F̃ ,

where FH = F+
⊥ + F−⊥ + ΛFHdθ.

Lemma 5.8. FH ∈
∧1,1 if and only if F+

⊥ = 0.

Proof. We can see that FH = F+
⊥ + F−⊥ + ΛFHdθ. Suppose FH ∈

∧1,1. Then

F+
⊥+F−⊥+ΛFHdθ ∈

∧1,1. We know that F−⊥ ∈
∧− ⊂ ∧1,1 and ΛFHdθ ∈

∧1,1 from 5.6.

Hence we must have F+
⊥ ∈

∧1,1. By 5.6 again, we have F+
⊥ ∈

∧+ ⊂
∧2,0⊕

∧0,2. Then

F+
⊥ = 0. Suppose F+

⊥ = 0. Then FH = F−⊥ + ΛFHdθ. By 5.6, F−⊥ + ΛFHdθ ∈
∧1,1.

Hence FH ∈
∧1,1.

Proposition 5.9. D is a B contact instanton if and only if F̃ = 0,ΛFH = B, and

FH ∈
∧1,1.

Proof. Since the image of ? is in ∧2H∗, then F̃ = 0. To check ΛFH = B, we will

investigate the B contact instanton equation, ?(F − Bdθ) = −(F − Bdθ). By this,

we can conclude that F − Bdθ ∈
∧−. Hence F − Bdθ ∈ ker(Λ) = (ImL)⊥ by 5.9.

This implies that ΛFH = B. We want to show that FH ∈
∧1,1, this is equivalence to

that the restriction of F⊥ to
∧+ is 0. By F̃ = 0, we can consider

?(F −Bdθ) = −(F −Bdθ)

?(F⊥) = −F⊥.

This means F⊥ ∈
∧−. Hence F+

⊥ = 0. For the converse part, we observe that

?(F − Bdθ) = −(F − Bdθ) is equivalently to say F − Bdθ is an eigenvector of -1,
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F −Bdθ ∈
∧−. We will show the converse part by proving that F −Bdθ ∈

∧−⊗C.

We know that if F̃ = 0 and ΛFH = B, then F − Bdθ = FH + θ ∧ F̃ − Bdθ =

(F⊥ + ΛFHdθ + θ ∧ F̃ ) − Bdθ = F⊥ ∈ ker(Λ). Suppose FH ∈
∧1,1, then F⊥ ∈

∧1,1.

Hence F −Bdθ ∈
∧1,1 ∩ker(Λ) =

∧− by the proposition (5.6).

The above definition of a B contact instanton is viewed in term of full connection,

and the proof of the previous proposition avoids working on only the term of H-partial

connection. It turns out that the proposition 5.9 suggests that B contact instanton D

must be extended by some H-partial connection D in such a way that D = D(D,B.

Hence we can define it on D(D,B) for any H-partial connection D as the alternative

definition of the original version. To work on the alternative definition of B contact

instanton, one defines the ? self dual and ? anti self dual connection. Note that

FD = F+
D + F−D ∈

∧+⊕
∧− for any H-partial connection D by the proposition (2.3).

Definition 5.10. The H-partial connection D is call a ? self dual if ?(F−D ) = 0, and

is called a ? anti self dual if ?(F+
D ) = 0.

Theorem 5.11. D(D,B) is B a contact instanton if and only if D is a ? anti self

dual and F̃ = 0.

Proof. The proof is directly from that F+
⊥ = F+

D , ?(F+
D ) = 0, and together with

lemma (5.8).

The above theorem delights us the advantage of decomposing a full connection into

H-partial connection and some B ∈ EndE. In this case, we can find the sufficient and

necessary condition of the H-partial connection being a B contact instanton D(D,B).
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Basically we reduce the condition from a full connection to a contact distribution’s

point of views.

Definition 5.12. A full connection D is called a B-inhomogeneous Yang-Mills con-

nection if D
∗
F = mBθ.

It is a homogeneous Yang-Mills connection if B = 0.

Lemma 5.13. dθm−1 ∧ F⊥ = 0.

Proof.

dθm−1 ∧ F⊥ = (m− 1)! ∗′ (dθ) ∧ F⊥

= (m− 1)! < dθ, F⊥ > volH

= 0.

Theorem 5.14. Suppose that D is B contact instanton. Then

D
∗
F = mBθ −mJ(DB).

Moreover, D is a B-inhomogeneous Yang-Mills connection if and only if DB = 0.

Proof. By the B−instanton definition, we have that −F + mBdθ = − ∗ (Θ ∧ F ) =

−∗ (Θ∧FH). By taking the full connection and Hodge star operator ∗ on both sides,

D ∗F = −dθ∧FH + Θ∧DF + (mDB ∧ θ∧ dθm−1 +mBdθm)/(m− 1)!. With Bianchi

identity DF = 0 and the next lemma, D ∗ F = −Bdθm/(m − 2)! + mDB ∧ θ ∧

dθm−1/(m− 1)! +mBdθm/(m− 1)! = Bdθm/(m− 1)! +mDB ∧ θ ∧ dθm−1/(m− 1)!.

Hence

D
∗
F = (−1)2 ∗D ∗ F
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= ∗(Bdθm/(m− 1)! +mDB ∧ θ ∧ dθm−1/(m− 1)!)

=
m!Bθ

(m− 1)!
−m ∗ (θ ∧DB ∧ dθm−1/(m− 1))!

= mBθ − m

(m− 1)!
∗′ (DB ∧ dθm−1)

= mBθ − m

(m− 1)!
∗′ (DB ∧ (m− 1)!(Σk(α1 ∧ β1 ∧ ... ∧ α̂k ∧ βk ∧ ... ∧ αm ∧ βm)).

Since DB ∈ Γ(H∗ ⊗ End(E)), then each element must be in {αk, βk}. After taking

the ∗′ operator, the result will be the conjugate of itself, that is J(DB). Hence

D
∗
F = mBθ −mJ(DB). It is clear that if DB = 0, then D is a B-inhomogeneous

Yang-Mills connection by previous definition.

Corollary 5.15. (Full connection picture) For a given contact manifold M and a

vector bundle E, we suppose that D is a full connection such that FH ∈
∧1,1
R and

F̃ = 0. Then D is a Yang-Mills connection if and only if ΛF = 0.

Proof. This is directly from proposition 5.14, when we apply B = 0.

Corollary 5.16. (H-partial connection picture) For a given contact manifold M and

a vector bundle E, we suppose D is H-partial connection and ? anti self dual and

F̃D(D,B) = 0. Then D(D,B) is a Yang-Mills connection if and only if B = 0.

The theorem 5.14 generalizes Urakawa’s theorem [Ura94] in the situation that

B = 0 through the corollary 5.15. In Urakawa paper, the theorem based on CR

manifold which is the special case of a contact manifold states that the sufficient and

necessary condition for being Yang Mills connection under the assumption F ∈ Λ1,1H∗

is that the Hermitian connection must be the Tanaka’s canonical connection. The

full stating theorem of Urakawa and how the theorem 5.14 covers Urakawa theorem

by corollary 5.15 are provided below.
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Theorem 5.17. Urakawa [Ura94] For a given 2m+ 1 dimensional compact strongly

pseudoconvex CR manifold (M, ξ) and a holomorphic vector bundle (E, h) over M ,

suppose D is the Hermitian connection such that F ∈
∧1,1. Then D is a Yang-Mills

connection if and only if D is a Tanaka canonical connection.

The condition F ∈ Λ1,1H∗ in Urakawa’s theorem implies that F̃ = 0 and FH ∈∧1,1. By 5.15, the necessary and sufficient condition of D being Yang-Mills connection

is that ΛF = 0. By the definition of the Tanaka canonical connection, Hermitian

connection is the Tanaka canonical connection if and only if it satisfies that ΛF = 0.

Hence Urakawa’s theorem is the special case of the theorem 5.14 for B = 0. Moreover,

our proof applies the decomposition technique D(D,B) which is unrelated to the

Tanaka canonical connection and that makes a huge different.

At last, we shall give the functional related to a B-inhomogeneous Yang-Mills

connection. Since a B-inhomogeneous Yang-Mills connection is defined in different

ways compared to the homogeneous Yang-Mills connection, we expect the functional

must be in the form which includes the B term inside the integral. We consider a B

Yang-Mills functional, YMB, over a full connection as YMB(D) :=
∫
‖FD −mBdθ‖2

Corollary 5.18. The B contact instanton is a critical point of the functional YMB.

Proof. The idea of the proof is that we deform a B contact instanton and see how

the integral reacts when it comes closed to the B contact instanton itself. Suppose

ϕ ∈ Γ(T ∗M ⊗ E). Define δt := YMB(D + tϕ). We can simplify by

δt =

∫
‖FD+tϕ −mBdθ‖2

=

∫
‖F −mBdθ‖2 + 2t < F −mBdθ,Dϕ > +t2(...)
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In order to get the critical point of the functional, we calculate 0 = dδt
dt
|t=0. Hence

we have that 0 =< F − mBdθ,Dϕ >. Since ϕ ∈ Γ(T ∗M ⊗ E) is arbitrary, then

0 =< D
∗
(F−mBdθ), ϕ >, ∀ϕ ∈ Γ(T ∗M⊗E). This implies that D

∗
(F ) = D

∗
(mBdθ).

Next, we compute D
∗
(mBdθ). By the proposition (2.37), we have that

D
∗
(mBdθ) = D∗(mBdθ) + θ ∧ Λ(mBdθ)

= mBθ +D∗(mBdθ)

= mBθ − ∗′D ∗′ (mBdθ)

= mBθ − ∗′D(
mBdθm−1

(m− 1)!
)

= mBθ − ∗′m(DB)(
dθm−1

(m− 1)!
)− ∗′mBd(

dθm−1

(m− 1)!
)

= mBθ −mJ(DB).

Since D
∗
(F ) = mBθ −mJ(DB) is a necessary condition of being a B-instanton,

then we conclude that a B-instanton is the critical point of functional YMB.
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