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Abstract

Over the past decade numerous papers have been published with novel meth-

ods for proving the existence of and constructing fusion frames under various

restrictions on the ambient Hilbert space, set of subspace dimensions, weights,

and fusion frame operator eigenvalues. A unifying theme in many of these

methods is their use of algorithmic, iterative, and recursive constructions –

features which tend to obscure underlying patterns and inhibit deeper anal-

ysis. In this thesis we analyze various algorithms prominent in fusion frame

construction and, to the greatest extent practicable, derive closed-form expres-

sions describing the frames and fusion frames they generate. Additionally, we

thoroughly analyze the process of iterating Naimark and spatial complements

and develop explicit, closed-form expressions which illuminate underlying struc-

tural relationships and provide a relatively convenient method for classifying

and constructing arbitrary tight fusion frames.
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1 Introduction

This thesis is principally concerned with analyzing the most prominent methods for

constructing fusion frames and, to the greatest extent practicable, eliminating the

algorithmic, iterative, and recursive aspects of these approaches.

The first tool we will analyze, spectral tetris, was originally introduced in [7]

to produce unit-norm, tight frames (UNTFs) and has subsequently been extended

to produce frames with much weaker restrictions on the prescribed length of frame

vectors and frame operator eigenvalues (see [3], [5]). Apart from its simplicity and

general applicability, the spectral tetris algorithm is noteworthy because the frames

it produces are optimally sparse ([2]) and therefore require minimal computational

resources in real-world applications. The algorithm itself deterministically populates

an empty synthesis matrix with 0s, 1s, and 2× 2 submatrices to ensure the resulting

matrix contains orthogonal rows and that its row and column vectors have specified

norms. The matrices produced have column vectors which exhibit a high degree of or-

thogonality, making them ideal candidates for frame representations of fusion frames.

Once generated, these frame vectors can grouped into equal-norm, orthogonal bases

for the desired fusion frame subspaces as in [6] or further modified as in [7]. In sec-

tion 3 the spectral tetris algorithm for producing equal-norm frames with arbitrary

frame operator eigenvalues is investigated and closed-form expressions are obtained

for various aspects of the resulting frame.

When the vectors of a Spectral Tetris Frame (STF) are used to directly form

subspace bases then a very natural question to ask is what limitations exist on the di-

mensions of the resulting subspaces. In [6] it was shown that the sequence of subspace

dimensions must be majorized by the sequence of subspace dimensions for an object

termed the Reference Fusion Frame. The reference fusion frame is generated by an

algorithm which takes as its input a frame generated by any spectral tetris algorithm

and produces a sequence of subspaces whose dimensions are maximal with respect to
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majorization. In section 3 the reference fusion frame algorithm is investigated and

closed-form expressions are developed for its sequence of subspace dimensions as well

as alternative techniques for quickly identifying the vector groupings which produce

them.

The final technique, which we term ‘NS-complementation’, involves iteratively ap-

plying a pair of highly involutory operations to tight fusion frames. The operations in

question–Naimark and spatial complements–can be regarded as unitary completions

of different components of the frame representation of a fusion frame, and their appli-

cation has been extensively used to generate families of fusion frames with differing

dimensional characteristics. For example, generating a fusion frame with the spectral

tetris algorithm as in [6] generally requires that the total subspace dimension of the

resulting fusion frame be at least twice the dimension of its ambient Hilbert space.

The methodology employed in [1], however, utilizes the highly technical approach

of constructing Littlewood-Richardson tableaux and requires precisely the opposite

dimensional relationship. In either case, if the desired fusion frame does not meet

the requirements of the construction technique then its spatial complement will. The

existence of such dimensional restrictions for fusion frame construction techniques is

a relatively common phenomenon which can be generally be overcome through the

application of Naimark and spatial complements.

The degree to which these complement operations they can be considered invo-

lutions depends on their precise definitions as well as the properties of the specific

fusion frames they are applied to. The approach used herein is to adopt the usual

definitions for these complement operations with the added convention of discarding

from the resulting fusion frame any trivial subspaces or subspaces whose associated

weights are 0. Fusion frames which contain such vanishing subspaces are termed de-

generate and an extensive analysis of their properties and structure is undertaken in

section 4. Section 5 establishes that every tight fusion frame possesses a ‘minimal’
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equivalent fusion frame which is, in some sense, canonical. In section 6 a pair of aug-

mentation operations are introduced which serve as inverses to Naimark and spatial

complements where they fail to be involutory and provides a relatively convenient

method of classifying tight fusion frames.

1.1 Summary of Main Results

The most significant results from each section are abbreviated below. A tremen-

dous amount of effort has been applied in this document to develop notation which is

both clear and compact enough to express the relevant information and it is neither

prudent nor feasible at this time to present these statements in full. Of the notations

that have not yet been introduced, the floor, ceiling, and fractional part functions ap-

pear below and throughout the rest of this document as b·c, d·e, and {·}, respectively;

the ’⊕’ symbol denotes a concatenation of sequences; G is the set of all compositions

of Naimark and spatial complements; and the augmentation operations ·N(·), ·N(·|·),

·S(·), and ·S(·|·) are provided in definition 6.1.

Spectral Tetris Frame Components: (Proposition 3.1)

Closed-form expressions are derived for spectral tetris frames with equal-norm vectors

and arbitrary eigenvalues. The expressions take row numbers, r, and frame operator

eigenvalues, λr, as inputs and produce a complete description of the entries appear-

ing in the corresponding row of the spectral tetris frame. Specifically, if Nr is the

number of 1s in row r and the 2 × 2 submatrix spanning rows r and r + 1 has the

form 1√
2

[ √
Rr

√
Rr√

Cr+1 −
√
Cr+1

]
, then

� Rr = {
∑r

i=1 λi}

� Cr+1 =


0 Rr = 0

2−Rr Rr 6= 0
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� Nr = bλr − Crc

Reference Fusion Frame Sequences: (Theorem 3.2)

Closed-form expressions are derived for the reference fusion frame sequences of tight,

equal-norm, spectral tetris fusion frames. The expressions take as inputs the number

of rows, n, and columns, M, of the spectral tetris frame and produce the corresponding

reference fusion frame sequence, RFFS(n,M). Specifically,

� In general, RFFS(n,M) = gcd(n,M) · RFFS
(

n
gcd(n,M)

, M
gcd(n,M)

)
� In general, RFFS(n,M) = n⊕b

M
n c−2 ⊕ RFFS

(
n, n

{
M
n

}
+ 2n

)
� If gcd(n,M) = 1 and 0 <

{
M
n

}
< 1

2
, then

RFFS(n,M) = n⊕b
M
n c−2 ⊕

(⌊n
2

⌋
+ 1,

⌈n
2

⌉
,
⌈n

2

⌉
,
⌊n

2

⌋
, n

{
M

n

}
− 1

)

� If gcd(n,M) = 1 and 1
2
<
{
M
n

}
< 1, then

RFFS(n,M) = n⊕b
M
n c−2 ⊕

(
n

{
M

n

}
+ 1,

⌈n
2

⌉
,
⌊n

2

⌋
,
⌊n

2

⌋
,
⌈n

2

⌉
− 1

)

Necessary and Sufficient conditions for non-degeneracy: (Theorem 5.12)

Necessary and sufficient conditions for a fusion frame to be non-degenerate are devel-

oped. Specifically, an interval, (α, β), depending only on the number of subspaces is

identified along with a pair of parameters, µ and ν, which must satisfy µ, ν ∈ (α, β).

When this condition is met non-degeneracy is shown to be equivalent to the positivity

of a set of four functions whose minimizers are known.

Double Degeneracy: (Theorem 6.5)

Loosely speaking, a fusion frame is said to be degenerate if it contains a vanishing

subspace, totally degenerate if every subspace vanishes, and doubly-degenerate if it is

4



degenerate in more than one way. It is shown that every doubly-degenerate fusion

frame is totally degenerate.

NS-classification of tight fusion frames: (Theorems 6.7 and 7.2)

It is shown (Theorem 6.7) that for every tight fusion frame W which is not totally

degenerate there corresponds a unique minimal fusion frame W0 which possesses si-

multaneously the minimum values for its number of subspaces, ambient Hilbert space

dimension, and total subspace dimension among all representatives of {WG|G ∈ G}.

Further, such a W is shown (Theorem 7.2) to have a unique representation of the

form

W ≈ WG1
0 X1(x1)

G2
X2(x2) · · · GqXq(xq)Gq+1

Finally, every fusion frame W which is totally degenerate is shown (Theorem 7.2) to

have a non-unique representation of the form

W ≈ 0X0(x0|y)
G1

X1(x1) · · · GqXq(xq)Gq+1
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2 Background

2.1 Frames and Fusion Frames

The word ’frame’ was first used with its current meaning by Duffin and Schaeffer in

[10] for studying nonharmonic Fourier series. Frames have subsequently been shown

to have broad application in data processing, signal recovery, and optimal packings

[9]. For a general introduction to frame theory we recommend [8]. Formally, a frame

Φ is a collection of vectors Φ = (φi)
m
i=1 in some ambient Hilbert space Hn which

satisfy the frame condition: there exist constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
m∑
i=1

|〈x, φi〉|2 ≤ B‖x‖2

for every x ∈ Hn. The constants A and B are respectively called the lower and

upper frame bounds, a frame is said to be A-tight or simply tight if A = B, and

a frame is Parseval if A = B = 1. By a slight abuse of notation, the same symbol Φ

is often used in literature to denote the matrix

Φ = [φi]
m
i=1 =


| |
φ1 · · · φm

| |



This matrix is properly called the synthesis operator of the frame Φ. This nota-

tional convention should not cause confusion as it is always clear from context whether

one is referring to the set/sequence of vectors (φi)
m
i=1 or to the matrix/operator [φi]

m
i=1

and each of these objects uniquely determines the other. In addition to the synthesis

operator, for any frame Φ one has:

� The analysis operator Φ∗.

� The frame operator SΦ = ΦΦ∗.
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� The Gram matrix GΦ = Φ∗Φ.

In frame theory one is frequently concerned with the properties and applications of

these operators.

A fusion frame is a generalization of a frame wherein the primary objects of

interest are weighted subspaces rather than individual vectors. The concept of a

fusion frame was initially developed in [4] and subsequently refined in [11] to more

efficiently model distributed sensing networks. Formally, a fusion frame W is a

collection W = (Wi, wi)
m
i=1 of positive weights wi > 0 and subspaces Wi of some

ambient Hilbert space Hn which satisfy the fusion frame condition: there exist

constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
m∑
i=1

w2
i ‖Pix‖2 ≤ B‖x‖2

for every vector x ∈ Hn, where Pi is the orthogonal projection onto Wi. As with

frames, the constants A and B are respectively called the lower and upper fusion

frame bounds, a fusion frame is said to be A-tight or simply tight if A = B, and a

fusion frame is Parseval if A = B = 1. One may alternatively define a fusion frame

in terms of its projections, i.e. W = (Pi, wi)
m
i=1, in which case the fusion frame

operator SW is defined as SW =
∑m

i=1w
2
iPi. Note that for a tight fusion frame the

fusion frame condition becomes

A‖x‖2 =
m∑
i=1

w2
i ‖Pix‖2

which implies the following fusion frame equation:

An =
m∑
i=1

w2
i dim(Wi)
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which will be of singular importance in later analysis.

Frames and fusion frames are related in the following manner: if Φ = (φi)
m
i=1 is

any collection of non-zero vectors in Hn then Φ is a frame for Hn if and only if

(span{φi}, ‖φi‖)mi=1 is a fusion frame for Hn. Further, let W = (Wi, wi)
m
i=1 be any

collection of positive weights and subspaces and let the dimensions of the subspaces

be given by (ki)
m
i=1 = (dim(Wi))

m
i=1. Then W is a fusion frame for Hn if and only

if Φ = (bij)
ki
j=1,

m
i=1 is a frame for Hn, where, for each i, (bij)

ki
j=1 is an equal-norm,

orthogonal basis for Wi satisfying ‖bij‖ = wi for all j.

Any such frame Φ = (bij)
ki
j=1,

m
i=1 consisting of appropriately weighted basis vec-

tors of the subspaces of W is called a frame representation for W . A synthesis

operator for a fusion frame W is likewise any matrix

Φ = [bij]
ki
j=1 ,

m
i=1 =


| | | |
b11 · · · b1k1 · · · bm1 · · · bmkm

| | | |



consisting of appropriately weighted and ordered orthogonal basis vectors for the

subspaces (Wi)
m
i=1.

A frame representation for a given fusion frame is not unique since there are many

choices of orthogonal bases for each subspace. Any two frame representations of the

same fusion frame are, however, related in the following manner. For any positive

integer p let Up be the set of p × p unitary matrices. Then Φ and Φ′ are frame

representations of the same fusion frame W if and only if there exist Ui ∈ Uki such

that

Φ′ = Φ
⊕m

i=1Ui = Φ


U1

. . .

Um


8



Thus, every fusion frame uniquely determines an equivalence class of frame represen-

tations of the form given above, and vice versa. The fusion frame operator of W

is the matrix SW = ΦΦ∗, where Φ is any frame representation of W . The uniqueness

of the fusion frame operator follows from the identity

ΦΦ∗ = Φ

(
m⊕
i=1

Ui

)(
m⊕
i=1

Ui

)∗
Φ∗ = Φ′Φ′∗

and this is clearly consistent with the alternative definition given previously.

2.2 Spectral Tetris and Fusion Frame Construction

Generally speaking, the problem of constructing a fusion frame W with specified

properties is considered solved when one identifies an appropriate Hilbert space Hn,

set of subspaces (Wi)
m
i=1, and corresponding set of weights (wi)

m
i=1. In practical terms

this amounts to identifying a frame representation Φ for W , which is typically the

most desirable solution from an applied perspective. Numerous techniques exist for

constructing fusion frames which are generally applicable to a subset of fusion frames

characterized by some restriction on their parameter values. For example, the first

sufficiently general technique for constructing fusion frames was developed in [7] for

constructing complex, tight, equal-weight, equal-dimension fusion frames. This ap-

proach used the spectral tetris algorithm to produce low dimensional synthesis opera-

tors for unit-norm, tight frames which were then modulated and reassembled to form

the desired higher dimensional analysis operators. Subsequent generalizations of this

algorithm in [6] were employed with additional techniques to produce fusion frames

with significantly fewer restrictions on their allowed parameters. In particular, the

reference fusion frame algorithm directly assigns vectors generated by any spectral

tetris algorithm to subspaces in a manner which is optimal in the sense discussed

9



below.

To begin, consider the problem of constructing (the synthesis operator of) an

equal-norm frame Φ = (φi)
m
i=1 for Rn whose frame operator has eigenvalues λ =

(λi)
n
i=1. We make the simplifying assumption that Φ is unit-norm since unit-norm

and equal-norm frames are equivalent under a uniform scaling of frame vectors. It is

necessary and sufficient for such a frame to have the following properties:

� the entries in each column of Φ must square-sum to 1

� the entries in row r of Φ must square-sum to λr

� the row vectors of Φ must be mutually orthogonal

To construct such a matrix, spectral tetris systematically populates an empty n×m

matrix with three types of elements: 0s, 1s, and 2× 2 blocks of the form

T (x) =

[ √
x
2

√
x
2√

1− x
2
−
√

1− x
2

]

according to the following rules:

1. Perform steps 2-5 by rows, beginning with row 1 and proceeding from top to

bottom.

2. Beginning with the leftmost unused entry and proceeding from left to right,

populate the matrix with 1s until any additional 1s would bring the square-sum

of the current row (say, row r) above λr.

3. For an appropriate value of x, place the 2 × 2 block T (x) so that its top left

entry occupies the next unused entry in the current row. Here, x is chosen so

that the square-sum of the current row (row r) is precisely λr.

4. Populate the remaining unused entries in the current row with 0s.

10



5. For each non-zero entry in the current row, populate the unused entries below

it with 0s.

Example 2.1. In order to construct a unit-norm frame with eigenvalues λ = (3.3, 3.5, 3.1, 1.1)

in R4, note first that λ1 = 3.3, therefore row 1 contains three 1s.


1 1 1 · · · · · · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·



Once no additional 1s can be used, the 2× 2 block T (0.3) is used so that the square-

sum of row 1 is precisely 3.3.


1 1 1

√
.15

√
.15 · · · · · ·

· · ·
√
.85 −

√
.85 · · · · · ·

· · · · · · · · · · ·
· · · · · · · · · · ·



The remaining entries in row 1 are populated with 0s, as well as the appropriate

entries in subsequent rows.


1 1 1

√
.15

√
.15 0 0 0 0 0 0

0 0 0
√
.85 −

√
.85 · · · · · ·

0 0 0 0 0 · · · · · ·
0 0 0 0 0 · · · · · ·



The current square-sum of row 2 is 1.7 and the required value is λ2 = 3.5. Thus row

2 requires a single 1 and the block T (0.8).

11




1 1 1

√
.15

√
.15 0 0 0 0 0 0

0 0 0
√
.85 −

√
.85 1

√
.4
√
.4 0 0 0

0 0 0 0 0 0
√
.6 −

√
.6 · · ·

0 0 0 0 0 0 · · · · ·



The current square-sum of row 3 is 1.2 and the required value is λ3 = 3.1. Thus row

3 requires a single 1 and the block T (0.9).


1 1 1

√
.15

√
.15 0 0 0 0 0 0

0 0 0
√
.85 −

√
.85 1

√
.4
√
.4 0 0 0

0 0 0 0 0 0
√
.6 −

√
.6 1

√
.45

√
.45

0 0 0 0 0 0 0 0 0
√
.55 −

√
.55


The spectral tetris algorithm produces frame vectors which exhibit a high degree

of orthogonality: that is, it produces a set of vectors which can be partitioned into

subsets of mutually orthogonal vectors in many ways. If one takes the vectors in each

such subset to be basis vectors of a subspace then this collection of subspaces forms a

Spectral Tetris Fusion Frame (STFF). For a given STF, however, there are typically

many orthogonal partitions of its frame vectors and therefore many fusion frames

that can be derived. The reference fusion frame algorithm of [6] assigns vectors to

subspaces according to the following rules:

1. Perform steps 2-3 by frame vector, beginning at index 1 and proceeding in

increasing order.

2. For each frame vector (say, φi), assign that vector to the orthogonal subspace

with smallest index (say, Wj). If no such subspace exists, create a new one with

the next unused subspace index and assign φi to that subspace.

3. Set W
(new)
j = span{W (old)

j , φi}.

Example 2.2. The subspace assignments of the reference fusion frame algorithm to

12



the unit-norm frame in example 2.1 are as follows:

W1 W2 W3 W4 W5 W1 W2 W3 W1 W4 W5

1 1 1
√
.15

√
.15 0 0 0 0 0 0

0 0 0
√
.85 −

√
.85 1

√
.4
√
.4 0 0 0

0 0 0 0 0 0
√
.6 −

√
.6 1

√
.45

√
.45

0 0 0 0 0 0 0 0 0
√
.55 −

√
.55

Thus, W1 = span{φ1, φ6, φ9}, W2 = span{φ2, φ7}, W3 = span{φ3, φ8}, W4 = span{φ4, φ10},

and W5 = span{φ5, φ11}.

The assignments of the reference fusion frame algorithm was shown to be optimal

in the sense that the generated sequence of subspace dimensions majorizes all possible

sequences of STFF subspace dimensions, where

Definition 2.3 (Majorization). Let a and b be two sequences of real numbers, not

necessarily of equal length. Let a↓ and b↓ be rearrangements of a and b in weakly

decreasing order and with 0s appended to the shorter sequence so that a↓ and b↓ are

of equal length. If the length of a↓ and b↓ is ` then a is said to majorize b if and

only if
∑l

i=1 a
↓
i =

∑`
i=1 b

↓
i and the partial sums satisfy

∑j
i=1 a

↓
i ≥

∑j
i=1 b

↓
i for every

j ∈ [`]. This relationship is denoted by a � b

Majorization is an essential concept which arises in various aspects of fusion frame

analysis. In this context, however, the significance of majorization is that it is always

possible for a higher dimensional subspace to divest itself into a lower dimensional

subspace without altering the fusion frame operator. More formally,

Lemma 2.4 ([1], Lemma 2.4). Let P and Q be two orthogonal projections with

rank(P ) > rank(Q). Then there exist orthogonal projections P ′ and Q′ such that

rank(P ′) = rank(P )− 1, rank(Q′) = rank(Q) + 1, and P +Q = P ′ +Q′.

13



Thus, a given fusion frame can always be modified so as to produce a fusion frame

with any sequence of subspace dimensions majorized by its own. It is therefore al-

ways desirable to identify fusion frames whose subspace dimensions are maximal with

respect to majorization. Unfortunately, spectral tetris and the reference fusion frame

algorithm are not capable of generating all possible sequences of subspace dimensions

and alternative methods are required in these cases.

2.3 Naimark and Spatial Complements

We are now able to properly define Naimark and spatial complements. For any

fusion frame W = (Wi, wi)
m
i=1 of Hn the spatial complement of W is defined as

W ′ = (W⊥
i , wi)

m
i=1. If W is tight and any subspace of W is not all ofHn then W ′ is also

a fusion frame for Hn. Further, if W is A-tight and W ′ is a fusion frame then W ′ is

(
∑
w2
i − A)-tight. A given fusion frame uniquely determines its spatial complement

and vice versa. In terms of unitary completion, the frame representation of W ′ is

constructed by assembling the unitary completions (under appropriate scaling) of the

individual subspace blocks in the frame representation of W .

While the concept of a spatial complement lends itself naturally to fusion frames,

Naimark complements are most naturally applied to frames. A Naimark complement

of a fusion frame is a concept which is then inherited by fusion frames via their frame

representations. A constructive definition for a Naimark complement of a frame is

best stated in terms of its synthesis operator, therefore let Φ = (φi)
m
i=1 be an A-tight

frame for Hn with singular value decomposition

Φ = U
[ √

AIn 0
]
V ∗

where U ∈ Un and V ∗ ∈ Um. Then a Naimark complement of Φ is any matrix Φ′

14



of the form

Φ′ = U ′
[

0
√
AIm−n

]
V ∗

for some U ′ ∈ Um−n. If any vector φi ∈ Φ is not orthogonal to the remaining frame

vectors then Φ′ is an A-tight frame for Hm−n. Thus, a given frame will have many

Naimark complements which are related in the following manner: two A-tight frames

Φ′ and Φ′′ are Naimark complements of the same A-tight frame Φ if and only if there

exists some U ∈ Um−n such that Φ′ = UΦ′′.

To define a Naimark complement of a fusion frame, let W = (Wi, wi)
m
i=1 be an

A-tight fusion frame for Hn with subspace dimensions (ki)
m
i=1 = (|Wi|)mi=1. Then

a Naimark complement of W is any collection W ′ of subspaces and weights of

the form W ′ = (span{b′ij}
ki
j=1, ‖b′ij‖)mi=1 where (b′ij)

ki
j=1,

m
i=1 is any Naimark complement

of any frame representation (bij)
ki
j=1,

m
i=1 of W . If some subspace Wi of W is not

orthogonal to the remaining subspaces of W then W ′ is an A-tight fusion frame for

HM−n. As with frames, Naimark complements of fusion frames are related in the

following manner: two A-tight fusion frames W ′ and W ′′ are Naimark complements

of the same A-tight fusion frame W if and only if there exists a U ∈ UM−n such

that W ′ = (UW ′′
i , w

′′
i )
m
i=1. In terms of unitary completion, a Naimark complement

of a fusion frame W is any fusion frame whose frame representation is a unitary

completion (under appropriate scaling) of a frame representation of W .

Example 2.5. Denote by ei the canonical basis vectors for R3 and let W be the fusion
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frame given by:

W1 = span{e3} w1 = 1

W2 = span{e3} w2 =
√

2

W3 = span{e1, e2} w3 =
√

5

One possible frame representation for W is

Φ =


0 0 1 2

0 0 2 −1

1 −2 0 0



The row vectors of Φ are orthogonal and have norm
√

5. This implies that W is

a (5)-tight fusion frame and that the matrix Φ can be completed to form a scaled

unitary matrix. One such completion is

[
Φ

Φ′

]
=


0 0 1 2

0 0 2 −1

1 −2 0 0

2 1 0 0



and a Naimark compliment of W is therefore given by

W ′
1 = span{e′1} w′1 =

√
2

W ′
2 = span{e′1} w′2 = 1

W ′
3 = 0 w′3 = 0
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Since w′3 = 0 the Naimark compliment W ′ = (W ′
i , w

′
i)

3
i=1 fails to be a fusion frame

under our strict definition. This failure arose precisely because the frame bound

A = 5 and the squared-weight w2
3 = 5 were in agreement. For tight fusion frames this

phenomenon is equivalent to W3 ⊥ Wi for all i 6= 3.

2.4 Notation

For the sake of consistency the notation and conventions we have used thus far

are standardized below, along with some additional definitions. These will be used

throughout the rest of this paper.

� The symbol W always denotes a fusion frame, m its number of subspaces, and

n the dimension of its ambient Hilbert space.

� The subspaces of W are always given by (Wi)
m
i=1, the dimensions of these sub-

spaces are always given by k = (ki)
m
i=1 = (|Wi|)mi=1, and the total subspace

dimension is given by M =
∑m

i=1 ki.

� The weights of W are always given by w = (wi)
m
i=1, and the squared-weights by

w2 = (w2
i )
m
i=1.

� If W is tight then it is always A-tight.

� The parameters µ and ν are always given by µ = 1
n

∑m
i=1 ki, and ν = 1

A

∑m
i=1 w

2
i .

� W may be specified in the traditional manner, W = (Wi, wi)
m
i=1, or simply by

identifying its relevant parameters, e.g. “Let W be a tight fusion frame with

parameters A, n, and µ . . . ”

� When dealing with multiple fusion frames we will, whenever possible, apply

matching decorations to these symbols to identify their corresponding parame-

ters. For example, if W is a fusion frame with parameters m, k and w and W ′

17



is another fusion frame then its parameters are likewise identified by m′, k′ and

w′.

� 1m is the all 1s vector 1m = (1)mi=1 ∈ Rm or m-element sequence of 1s. 0m is

defined similarly.

� In ∈ Hn×n always denotes the identity matrix and Un ⊂ Hn×n the set of n× n

unitary matrices.

� As operations the symbols d·e, b·c, [·], and {·} respectively denote the ceiling

function, floor function, nearest integer map, and fractional part. The nearest

integer map is taken to be multivalued when its argument has fractional part

1
2

(e.g. [13
2

] = {6, 7}). When its argument is indeterminate, the symbols ‘=’

and ‘∈’ may be used interchangeably (e.g. 6 = [x] and 7 ∈ [x] are both valid

expressions).

3 Spectral Tetris and Spectral Tetris Fusion Frames

We begin this section by developing an alternative formulation for spectral tetris

which is generally applicable to the problem of constructing equal-norm frames with

arbitrary eigenvalues. This will allow us to generate non-iterative, closed-form ex-

pressions for these frames and many of their relevant properties. Once the relevant

features of spectral tetris frames have been identified we will reduce the problem of

constructing a reference fusion frame to 4 typical cases with predictable structures.

As an alternative formulation of the spectral tetris algorithm, let Nr be the ‘num-

ber’ of 1s appearing in row r of a spectral tetris frame Φ. If the square-sum of the

entries in row r (the ‘spectral weight’) cannot be made equal to λr by adding only 1s

then a 2×2 block must be used. This 2×2 block must be chosen so that the spectral

weight of its top two entries bring the spectral weight of row r to the desired value.
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The spectral weight of the top two entries of this block (the ‘remainder’) is denoted

Rr. The spectral weight of the bottom two entries of this 2× 2 block is ’carried’ into

the next row and is denoted Cr+1. Under this formulation every 2× 2 block is of the

form

T (Rr) =


√

Rr
2

√
Rr
2√

Cr+1

2
−
√

Cr+1

2



By convention, if no such 2× 2 block is used then we set Rr = Cr+1 = 0.

Proposition 3.1. Let Φ = (φi)
m
i=1 be a spectral tetris frame for Rn and let Nr, Rr,

and Cr be as above. If bxc is the floor function then we have the following recursive

definitions for Cr, Nr, and Rr:

1. C1 = 0

2. Nr = bλr − Crc

3. Rr = λr −Nr − Cr

4. Cr+1 =


0 Rr = 0

2−Rr Rr 6= 0

Further, if {x} = x − bxc is the fractional part of x, then we have the following

closed-form expression for Rr:

Rr =

{
r∑
i=1

λi

}
Proof. There is no row 0, therefore nothing is carried forward into row 1 which implies

(1). (3) follows trivially from the requirement that λr = Cr + Nr + Rr. The same

requirement along with the fact that Rr < 1 implies (2). (4) follows from the definition
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of T (x). Finally, the closed expression for Rr follows from the observations that the

quantity Rr + Cr+1 must be an integer (either 0 or 2), Rr < 1 in general, and the

calculation

{
r∑
i=1

λi

}
=

{
r∑
i=1

Ci +Ni +Ri

}

=

{
C1 +

(
r−1∑
i=1

Ri + Ci+1

)
+Rr +

r∑
i=1

Ni

}

= {0 + integer +Rr + integer}

= Rr

The closed expression for Rr may be substituted into the recursive definitions of Cr

and Nr to obtain closed expressions for those quantities.

The remainder of this section is devoted to proving the following RFFS identifi-

cation theorem:

Theorem 3.2 (RFFS identification).

Let ⊕ denote a concatenation of sequences and define addition and scalar multi-

plication of sequences to be in agreement with addition and scalar multiplication of

equivalent vectors. Then

1. In general,

RFFS(n,M) = gcd(n,M) · RFFS

(
n

gcd(n,M)
,

M

gcd(n,M)

)

2. In general,

RFFS(n,M) = n⊕b
M
n c−2 ⊕ RFFS

(
n, n

{
M

n

}
+ 2n

)
20



3. If gcd(n,M) = 1 and 0 <
{
M
n

}
< 1

2
, then

RFFS(n,M) = n⊕b
M
n c−2 ⊕

(⌊n
2

⌋
+ 1,

⌈n
2

⌉
,
⌈n

2

⌉
,
⌊n

2

⌋
, n

{
M

n

}
− 1

)

4. If gcd(n,M) = 1 and 1
2
<
{
M
n

}
< 1, then

RFFS(n,M) = n⊕b
M
n c−2 ⊕

(
n

{
M

n

}
+ 1,

⌈n
2

⌉
,
⌊n

2

⌋
,
⌊n

2

⌋
,
⌈n

2

⌉
− 1

)

The proof of theorem 3.2 will be accomplished in several steps. To begin, we have

the following observations and terminology:

� each 1 in row r of the STF corresponds to the canonical basis vector er. Such

entries are termed singlets.

� each 2 × 2 block spanning rows r and r + 1 corresponds to a pair of column

vectors, each of which is a linear combination of er and er+1. The two entries

appearing in each column of the 2 × 2 block are collectively termed doublets

and are further classified as either odd or even according to the parity of r.

We have the critically important yet essentially obvious:

Proposition 3.3. The vectors corresponding to any collection of singlets and/or

doublets are mutually orthogonal if and only if the rows of their entries in the STF

are disjoint.

The notable case of orthogonal vectors corresponding to doublets in the same 2×2

block does not occur, as the only such block is

T (1) =

[
1√
2

1√
2

1√
2
− 1√

2

]
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and the argument must always satisfy Rr < 1. Proposition 3.3 implies that the

problem of partitioning the column vectors of a STF into subspace bases can be

accomplished by simply rearranging the entries of a STF so that the singlets and/or

doublets corresponding to a particular subspace all lie in the same column. With

this in mind, we will initially reorganize the entries of a STF into what we term a

Spectral Tetris Chart (STC) according to the following rules:

� A STC contains the same number of rows as the STF that generates it.

� Each row of a STC contains the same non-zero entries as the STF that generates

it and all 0s in the STF are omitted from the STC.

� The singlets and/or doublets present in the STF are shifted to form a STC

that consists of three sections: singlets occupying the leftmost columns, odd

doublets occupying the next two columns, and even doublets occupying the

final two columns.

When referring to a specific spectral tetris chart or spectral tetris frame, we will

typically use the designations STC(n,M) and STF(n,M). The spectral tetris charts

STC(4,9), STC(4,10), and STC(4,11) are provided below along with the STFs that

generate them. The 2× 2 blocks have been outlined for clarity.

STF(4,9) STC(4,9)



1 1
√

1
8

√
1
8

0 0 0 0 0

0 0
√

7
8
−
√

7
8

√
2
8

√
2
8

0 0 0

0 0 0 0
√

6
8
−
√

6
8

√
3
8

√
3
8

0

0 0 0 0 0 0
√

5
8
−
√

5
8

1


→

1 1
√

1
8

√
1
8√

7
8
−
√

7
8

√
2
8

√
2
8√

3
8

√
3
8

√
6
8
−
√

6
8

1
√

5
8
−
√

5
8
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STF(4,10) STC(4,10)



1 1
√

2
8

√
2
8

0 0 0 0 0 0

0 0
√

6
8
−
√

6
8

1 0 0 0 0 0

0 0 0 0 0 1 1
√

2
8

√
2
8

0

0 0 0 0 0 0 0
√

6
8
−
√

6
8

1


→

1 1
√

2
8

√
2
8

1
√

6
8
−
√

6
8

1 1
√

2
8

√
2
8

1
√

6
8
−
√

6
8

STF(4,11) STC(4,11)



1 1
√

3
8

√
3
8

0 0 0 0 0 0 0

0 0
√

5
8
−
√

5
8

1
√

2
8

√
2
8

0 0 0 0

0 0 0 0 0
√

6
8
−
√

6
8

1
√

1
8

√
1
8

0

0 0 0 0 0 0 0 0
√

7
8
−
√

7
8

1


→

1 1
√

3
8

√
3
8

1
√

5
8
−
√

5
8

√
2
8

√
2
8

1
√

1
8

√
1
8

√
6
8
−
√

6
8

1
√

7
8
−
√

7
8

The charts STC(4, 9) and STC(4, 11) are examples of 2 of the 4 typical cases

alluded to at the beginning of this section. Note that of these three charts the only

one with missing doublets, STC(4, 10), is also the only one satisfying gcd(n,M) 6= 1.

This essential observation motivates theorem 3.2(1), whose proof we now provide.

Proof of 3.2(1). Let n′ = n
gcd(n,M)

, M ′ = M
gcd(n,M)

, and r be any multiple of n′. Then

we have

Rr =
{
rM
n

}
=
{
r · M ′

n′

}
= {integer ·M ′} = {integer · integer} = 0

Since Rr = 0 we must also have Cr+1 = 0 = C1 by proposition 3.1(1) and 3.1(4).

Further, since STF(n,M) is tight we must have λ1 = λr+1. It follows that N1 = Nr+1
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and R1 = Rr+1 by proposition 3.1(2) and 3.1(3). By induction on the row number we

have Ci = Ci+r, Ni = Ni+r, and Ri = Ri+r for any integer i such that 0 ≤ i < n− r.

As the quantities Ci, Ni, and Ri are periodic in i we may set s = gcd(n,M) and write

STF(n,M) in block form as

STF(n,M) =


STF

(
n
s
, M
s

)
0

. . .

0 STF
(
n
s
, M
s

)


= STF

(
n
s
, M
s

)⊕s

and STC(n,M) as

STC(n,M) =

STC
(
n
s
, M
s

)
...

STC
(
n
s
, M
s

)


s times

Evidently, all singlets and doublets in STC(n,M) are confined to some copy of

STC(n
s
, M
s

) in the above representation. By proposition 3.3 and the definition of

majorization, the maximal sequence of subspace dimensions that can be constructed

from STC(n,M) is the sum of maximal sequences that can be formed from each copy

of STC(n
s
, M
s

). By definition of the reference fusion frame sequence, we have

RFFS(n,M) = RFFS
(
n
s
, M
s

)
+ · · ·+ RFFS

(
n
s
, M
s

)
= s · RFFS

(
n
s
, M
s

)
Recalling that s = gcd(n,M), the theorem is proved.
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Observe also that the charts STC(4, 9) and STC(4, 11) satisfy N1 = 2, Nn = 1,

and 2n < M < 3n. This, too, is no coincidence:

Proposition 3.4. If gcd(n,M) = 1 and 2n < M < 3n then

1. N1 = 2

2. Nr ∈ {0, 1} for 1 < r < n

3. Nn = 1

Proof.

1. By proposition 3.1(2) we have N1 = bλ1 − C1c =
⌊
M
n

⌋
. Trivially, 2n < M < 3n

implies
⌊
M
n

⌋
= 2.

2. If gcd(n,M) = 1 then proposition 3.1 implies both Rr 6= 0 unless r = n and

Cr 6= 0 unless r = 1. Recalling that
⌊
M
n

⌋
= 2, we have the following calculation

for Nr whenever 1 < r < n:

Nr = λr −Rr − Cr

= λr −Rr − (2−Rr−1)

= M
n
− 2 +Rr−1 −Rr

=
{
M
n

}
+Rr−1 −Rr

The quantities
{
M
n

}
, Rr, and Rr−1 are all bounded below by 0 and above by 1.

As Nr is an integer it can only be either 0 or 1.

3. Repeating the calculation in (2) for r = n and noting that Rn = 0 we have

Nn =
{
M
n

}
+Rn−1
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Since
{
M
n

}
and Rn−1 are both bounded below by 0 and above by 1, the integer

Nn must be 1.

Thus, a given STC with gcd(n,M) = 1 and 2n < M < 3n will always have six

columns: one column with singlets in rows 1, n, and possibly others; one column with

a singlet appearing only in row 1; two columns of bn
2
c odd doublets; and two columns

of bn−1
2
c even doublets.

The final step in determining a Reference Fusion Frame consists of shifting the

singlets of a STC so that number of singlets and/or doublets present in each column

form a sequence which is maximal with respect to majorization. The following ex-

ample illustrates this process for 4 frames which are examples of the typical cases

alluded to at the beginning of this section.

Example 3.5. The shifted charts for STC(4, 9), STC(4, 11), STC(5, 11), and STC(5, 13)

which produce maximal sequences are provided below, along with their subspace as-

signments and corresponding RFFSs.

STC(4, 9)

1 1
√

1
8

√
1
8√

7
8
−
√

7
8

√
2
8

√
2
8√

3
8

√
3
8

√
6
8
−
√

6
8

1
√

5
8
−
√

5
8

→

W3 W4 W1 W2√
1
8

√
1
8

1 1√
7
8
−
√

7
8

√
2
8

√
2
8√

3
8

√
3
8

√
6
8
−
√

6
8√

5
8
−
√

5
8

1

RFFS(4, 9)

→ (3, 2, 2, 2)
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STC(4, 11)

1 1
√

3
8

√
3
8

1
√

5
8
−
√

5
8

√
2
8

√
2
8

1
√

1
8

√
1
8

√
6
8
−
√

6
8

1
√

7
8
−
√

7
8

→

W1 W3 W4 W2 W5

1
√

3
8

√
3
8

1

1
√

5
8
−
√

5
8

√
2
8

√
2
8

1
√

1
8

√
1
8

√
6
8
−
√

6
8

1
√

7
8
−
√

7
8

RFFS(4, 11)

→ (4, 2, 2, 2, 1)

STC(5, 11)

1 1
√

1
10

√
1
10√

9
10
−
√

9
10

√
2
10

√
2
10√

3
10

√
3
10

√
8
10
−
√

8
10√

7
10
−
√

7
10

√
4
10

√
4
10

1
√

6
10
−
√

6
10

→

W3 W4 W1 W2√
1
10

√
1
10

1 1√
9
10
−
√

9
10

√
2
10

√
2
10√

3
10

√
3
10

√
8
10
−
√

8
10√

7
10
−
√

7
10

√
4
10

√
4
10

1
√

6
10
−
√

6
10

RFFS(5, 11)

→ (3, 3, 3, 2)

STC(5, 13)

1 1
√

3
10

√
3
10

1
√

7
10
−
√

7
10

√
1
10

√
1
10√

4
10

√
4
10

√
9
10
−
√

9
10

1
√

6
10
−
√

6
10

√
2
10

√
2
10

1
√

8
10
−
√

8
10

→

W1 W3 W4 W2 W5

1
√

3
10

√
3
10

1

1
√

7
10
−
√

7
10

√
1
10

√
1
10√

4
10

√
4
10

√
9
10
−
√

9
10

1
√

6
10
−
√

6
10

√
2
10

√
2
10

1
√

3
10
−
√

3
10

RFFS(5, 13)

→ (4, 3, 2, 2, 2)
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That the Reference Fusion Frame Algorithm produces fusion frames with these

vector assignments we leave as an exercise for the reader. Note that all possible

doublets are present in the above charts since in each case we have gcd(n,M) = 1.

This limits the useful manipulations we can perform to

� shifting one or two singlets from row 1 to the columns of even doublets

� shifting the singlet in row n to the columns of even (resp. odd) doublets if n is

even (resp. odd)

and this will hold in all cases with gcd(n,M) = 1 and 2n < M < 3n. Theorem

3.2(1) addresses the case where gcd(n,M) 6= 1 and spectral tetris generally requires

M ≥ 2n. For the remaining case of M ≥ 3n we have

Lemma 3.6. Suppose n and M are positive integers with M ≥ 3n. Then

RFFS(n,M + n) = (n)⊕ RFFS(n,M).

Proof. Let Φ = STF(n,M) and Φ′ = STF(n,M + n). Since Φ and Φ′ are tight their

associated eigenvalues are λr = M
n

and λ′r = M+n
n

= λr + 1. By proposition 3.1 we

have N ′r = Nr + 1, R′r = Rr, and C ′r = Cr. Thus, STC(n,M) and STC(n,M + n)

differ only in that STC(n,M + n) has an additional full column of 1s. This column

of 1s is associated with a full-rank subspace of Rn, therefore RFFS(n,M + n) must

be of the form (n)⊕ RFFS(n,M).

As a corollary we have:

Proof of 3.2(2).
⌊
M
n

⌋
− 2 applications of lemma 3.6 imply

RFFS(n,M) = n
⊕
⌊
M
n

⌋
−2
⊕ RFFS

(
n,M − n

(⌊
M
n

⌋
− 2
))
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Theorem 3.2(2) then follows from the observation that

M − n
⌊
M
n

⌋
= n

(
M
n
−
⌊
M
n

⌋)
= n

{
M
n

}

In light of theorem 3.2(1) and 3.2(2), we may reduce the problem of calculating

RFFS(n,M) to the special case where gcd(n,M) = 1 and 2n < M < 3n. In this

case RFFS(n,M) can be determined based solely on the size of M
n

(equivalently, the

size of
{
M
n

}
) and evidently the parity of n. The parity of n determines whether

the final singlet can be paired with odd or even doublets, while the size of {M
n
}

determines how and which singlets are shifted. In general, odd doublets can always

form a pair of subspaces each of dimension bn
2
c and even doublets can form a pair

of subspaces of dimension bn−1
2
c. When the number of singlets appearing in the

first column of the STC is below these thresholds, majorization demands as many

as possible be reassigned to columns of doublets to further grow their already larger

subspaces. When the number of singlets in the first column is below these thresholds,

majorization demands that none be shifted since this collection already forms the

largest possible subspace. In all cases the lone singlet in the second column is shifted

to a column of even doublets. We conclude this section with the proof of the remaining

portions of theorem 3.2:

Proof of theorem 3.2(3) and 3.2(4). Consider the chart STC(n,M) with gcd(n,m) =

1 and 2n < M < 3n. The total spectral weight of any 2 × 2 block is always 2 and

there are always n − 1 such blocks since gcd(n,M) = 1. It follows that there are

M − 2(n− 1)− 1 = M − 2n+ 1 singlets in the first column. If subspace assignment

is carried out in the order singlets and doublets currently appear then the sequence
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of subspace dimensions is given by

(
M − 2n+ 1, 1,

⌊n
2

⌋
,
⌊n

2

⌋
,

⌊
n− 1

2

⌋
,

⌊
n− 1

2

⌋)

After shifting the lone singlet in column 2 to the first column of even doublets, we

have (
M − 2n+ 1,

⌊n
2

⌋
,
⌊n

2

⌋
,

⌊
n+ 1

2

⌋
,

⌊
n− 1

2

⌋)
If M − 2n + 1 = n{M

n
} + 1 is sufficiently large then no further rearrangements are

necessary, and this sequence is equivalent to that given in 3.2(4) after reordering. If

M − 2n+ 1 = n{M
n
}+ 1 is not sufficiently large, then the additional singlet in row 1

is shifted to the second column of even doublets:

(
M − 2n,

⌊n
2

⌋
,
⌊n

2

⌋
,

⌊
n+ 1

2

⌋
,

⌊
n+ 1

2

⌋)

and the singlet in row n is shifted to the first column of odd doublets if n is odd:

(
M − 2n− 1,

⌊
n+ 2

2

⌋
,
⌊n

2

⌋
,

⌊
n+ 1

2

⌋
,

⌊
n+ 1

2

⌋)

or to the first column of even doublets if n is even:

(
M − 2n− 1,

⌊n
2

⌋
,
⌊n

2

⌋
,

⌊
n+ 3

2

⌋
,

⌊
n+ 1

2

⌋)

After reordering and accounting for differences in parity, these sequences are both

equivalent to that given in 3.2(3).
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4 Degeneracy

We begin this section by recalling that the definition of a fusion frame for Hn forbids

the inclusion of 0 among its weights but does not forbid the inclusion of the trivial

subspace Wi = 0. This is problematic from the standpoint of uniqueness since a

trivial subspace may have any associated weight without affecting the properties of

the fusion frame. Additionally, difficulties arise immediately when considering the

frame representation and Naimark complement of such a fusion frame. Modifying

the definition of a fusion frame to forbid the inclusion of such trivial subspaces is

equally problematic, as the spatial complement of a full-rank subspace Wi = Hn is

0. Similarly, if a fusion frame contains a subspace which is orthogonal to all other

subspaces then its Naimark complement contains the 0 subspace. One would thus

encounter no shortage of scenarios where the Naimark or spatial complement of a

fusion frame fails to be a fusion frame.

To circumvent these technical issues we will make use of special notation. Here

and throughout the rest of this paper the symbols ·N and ·S will be used to denote

objects arising from Naimark and spatial complementation, respectively. For example,

if W = (Wi, wi)i∈I is an A-tight fusion frame for Hn and W ′ is one of its Naimark

complements, then in general we may write W ′ = (WN
i , w

N
i )i∈IN is an AN -tight fusion

frame for HnN . As there are many Naimark complements for a given fusion frame,

we must emphasize that the symbols WN
i , w

N
i , k

N
i , etc. always refer to the subspaces,

weights, subspace dimensions, etc. of the same fixed Naimark complement of W . The

exception to this general usage rule occurs when applying ·N and ·S to the parameter

m and the fusion frame itself, for which we have:

Definition 4.1. Let W = (Wi, wi)i∈I be a tight fusion frame for Hn with |I| = m.

Then

1. WN := (WN
i , w

N
i )i∈IN and mN := |IN |, where IN =

{
i ∈ I |wNi 6= 0

}
.
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2. W S := (W S
i , w

S
i )i∈IS and mS := |IS|, where IS =

{
i ∈ I | kSi 6= 0

}
.

Therefore when applying Naimark and spatial complements to obtain new fusion

frames it is our convention to automatically discard any subspaces which vanish.

‘Vanishing’ in this context is taken to mean the subspace dimension is zero under

a spatial complement (kSi = 0) or its associated weight is zero under a Naimark

complement (wNi = 0), as the alternative quantities (kNi and wSi ) are assumed to

always be preserved.

Example 4.2. Let W be a tight fusion frame with parameters n = 5, m = 6, k =

(5, 4, 3, 3, 1, 1) and let W ′ be its spatial complement as defined in section 2. Since

k1 = 5 = n, it must be that W1 = Hn and therefore W ′
1 = 0. This implies that

W ′ has parameters n′ = 5, m′ = 6, and k′ = (0, 1, 2, 2, 4, 4). W S, however, has

parameters nS = 5, mS = 5, and kS = (1, 2, 2, 4, 4). Further, W SS has parameters

nSS = 5, mSS = 5, and kSS = (4, 3, 3, 1, 1). Thus, W and W SS have a different

number of subspaces and so are not equivalent in any sense. Finally, W S
1 = 0 by

definition, however W S
1 is not included among the subspaces of W S. Objects such as

W SS
1 , wSN1 , kSNS1 , etc. are therefore not defined.

The following proposition compactly codifies several elementary properties of tight

fusion frames and illustrates the usefulness of this notation:

Proposition 4.3. Let W = (Wi, wi)
m
i=1 be a tight fusion frame for Hn. Then

1. The following are equivalent:

(a) W S
i = 0.

(b) Wi = Hn.

2. The following are equivalent:

(a) WN
i = 0.
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(b) Wi ⊥ Wj for all j 6= i.

3. The following are equivalent:

(a) For all i ∈ [m], W S
i = 0.

(b) For all i ∈ [m], Wi = Hn.

(c) W S is not a fusion frame.

4. The following are equivalent:

(a) For all i ∈ [m], WN
i = 0.

(b)
⊕

i∈[m] Wi = Hn.

(c) WN is not a fusion frame.

5. If m ≥ 2 then the following are mutually exclusive:

(a) There exists an i ∈ [m] such that W S
i = 0.

(b) There exists an i ∈ [m] such that WN
i = 0.

Proposition 4.3 also codifies the structural relationship of vanishing subspaces

to the remaining elements of the fusion frame, both of which may be considered

trivial. If W S
i = 0 and W SS is defined then W can be constructed by appending

a copy of Hn to W SS. Similarly, if WN
i = 0 and WNN is defined then W can

be constructed by embedding WNN in Hn and adjoining its orthogonal compliment.

Any fusion frame which eventually exhibits either of these extreme orientations under

complement operations is said to be degenerate. Formally,

Definition 4.4. Let G be the set of words on {N,S} and W = (Wi, wi)
m
i=1 be a tight

fusion frame for Hn. Then W is said to be degenerate if there exist a G ∈ G and

i ∈ [m] such that WG
i = 0.

33



One would like to define G as a group of two involutions; however, as example 4.2

demonstrates, the action of ·N and ·S is only guaranteed to be involutory when applied

to non-degenerate fusion frames. For the sake of notational convenience we will

nonetheless retain the formalism of exponents applied to such groups, i.e. (NS)−1 =

S−1N−1 = SN , (SN)2 = SNSN , etc., and employ ∅ as the identity element, i.e.

W ∅ = W .

The vanishing of subspaces under ·N and ·S will play a central role in our analysis

of tight fusion frames. Additionally, definition 4.1 implies that a tight fusion frame

with m subspaces satisfies mN , mS ≤ m, suggesting a partial order. We therefore

define:

Definition 4.5. Let W and W ′ be arbitrary tight fusion frames. Then

1. We write W ≈ W ′ if and only if there exists a unitary U such that if W =

(Wi, wi)
m
i=1 then W ′ = (UWi, wi)

m
i=1. In this case, W and W ′ are said to be

unitarily equivalent.

2. We write W & W ′ if and only if there exists a G ∈ G such that WG ≈ W ′.

3. We write W ∼ W ′ if and only if W & W ′ and W ′ & W . In this case, W and

W ′ are said to be NS-equivalent.

4. The NS-equivalence class of a tight fusion frame W is given by [W ]NS ={
WG|W ∼ WG

}
. For any parameter x of W the NS-equivalence class of x

is given by [x]NS =
{
xG|W ∼ WG

}
.

5. The symbols ., >, and < are similarly defined according to the usual rules for

partial ordering.

6. We write W & 0 if and only if there exists a G ∈ G such that WG is not a

fusion frame (i.e. all subspaces of W vanish). In this case W is said to be

totally degenerate.
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The majority of the remainder of this section is devoted to systematically developing

a model which can readily identify vanishing subspaces of a given fusion frame.

Let W be a tight fusion frame with parameters n,m,A, k, and w. Recall w2 :=

(w2
i )
m
i=1 and assume that W is non-degenerate. Then the parameters n,A, k, and w2

transform according to

n
·S←− n

·N−→
∑
ki − n

n1m − k
·S←− k

·N−→ k∑
w2
i − A

·S←− A
·N−→ A

w2 ·S←− w2 ·N−→ A1m − w2

Since these transformations are linear we will model them as such. With this in mind,

recall that a real vector v is said to be positive (denoted v > 0) if its components

are positive and non-negative (denoted v ≥ 0) if its components are non-negative.

Define, then, the positive vectors

κ = (n, k1, . . . , km)T

ω = (A,w2
1, . . . , w

2
m)T

By construction, 0 < κ ∈ Nm+1 ⊂ Rm+1 and 0 < ω ∈ Rm+1. Writing out the

transformations of κ and ω in block-matrix form yields the following equations, in

which we utilize the matrices N and S:

N :=

[
−1 1T

m

0m Im

]
and S :=

[
1 0T

m

1m −Im

]
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κN =

[
n

k

]N
=

[ ∑
i ki − n
k

]
=

[
−1 1T

m

0m Im

][
n

k

]
= Nκ

κS =

[
n

k

]S
=

[
n

n1m − k

]
=

[
1 0T

m

1m −Im

][
n

k

]
= Sκ

ωN =

[
A

w2

]N
=

[
A

A1m − w2

]
=

[
1 0T

m

1m −Im

][
A

w2

]
= Sω

ωS =

[
A

w2

]S
=

[ ∑
iw

2
i − A
w2

]
=

[
−1 1T

m

0m Im

][
A

w2

]
= Nω

(note the juxtaposition of N and S between κ and ω)

By construction N and S describe the transformation of parameters of non-

degenerate fusion frames and can only serve as accurate models of ·N and ·S when

their domains and ranges are restricted to positive vectors. We can, however, con-

clude a great deal by analyzing what happens when the range restriction is violated.

Additionally, analyzing violations of this range restriction will greatly simplify further

analysis. Observe, then, the following:

Observation 4.6. Let κ and ω be arbitrary positive vectors, i.e. κ, ω > 0 but are not

necessarily parameter vectors of a tight fusion frame. Then

1. If Nκ 6> 0 then one of the following holds:

(a) n >
∑
ki. In this case κ is not a parameter vector for a tight fusion frame.

(b) n =
∑
ki. If κ is a parameter vector for a tight fusion frame W in Hn,

then
⊕

Wi = Hn and W & 0.

(c) ki ≤ 0 for some ki. This is impossible since κ > 0 by assumption.

2. If Nω 6> 0 then one of the following holds:
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(a) A >
∑
w2
i . In this case ω is not a parameter vector for a tight fusion

frame.

(b) A =
∑
w2
i . In general we have A =

∑
ki
n
w2
i , so if ω is a parameter vector

for a tight fusion frame W in Hn then Wi = Hn for all i and W & 0.

(c) w2
i ≤ 0 for some wi. This is impossible since ω > 0 by assumption.

3. If Sκ 6> 0 then one of the following holds:

(a) n ≤ 0. This is impossible since κ > 0 by assumption.

(b) ki > n for some ki. In this case κ is not a parameter vector for a tight

fusion frame.

(c) ki = n for some ki. If κ is a parameter vector for a tight fusion frame W

in Hn, then W S
i = 0. Further,

i. If ki = kj for all j ∈ [m] then W & 0.

ii. If ki 6= kj for some j ∈ [m] then W > W ′ for some W ′.

4. If Sω 6> 0 then one of the following holds:

(a) A ≤ 0. This is impossible since ω > 0 by assumption.

(b) w2
i > A for some wi. In this case ω is not a parameter vector for a tight

fusion frame.

(c) w2
i = A for some wi. In general we have A‖x‖2 =

∑
w2
i ‖Pix‖2, so if ω is

a parameter vector for a tight fusion frame W in Hn then Wi ⊥ Wj∀j 6= i

and WN
i = 0. Further,

i. If wi = wj for all j ∈ [m] then W & 0.

ii. If wi 6= wj for some j ∈ [m] then W > W ′ for some W ′.

The majority of the preceding observations can be further consolidated as follows:
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Observation 4.7. Let 0 < x ∈ Rm+1 be arbitrary. Then

1. If Nx or Sx 6≥ 0 then x is not a parameter vector (either κ-type or ω-type) of

a tight fusion frame.

2. If 0 ≤ Nx 6> 0 or 0 ≤ Sx 6> 0 then x is a parameter vector (either κ-type or

ω-type) of a tight fusion frame W only if W is degenerate.

Evidently we may draw the same conclusions regarding existence and degeneracy

whether analyzing the action of N or S on either κ or ω. We now turn our attention

to the matrix

G := NS =

[
m− 1 −1T

m

1m −Im

]

with the immediate goal of understanding how parameters transform under iterations

of G and G−1. Since the conclusions we may draw by applying G to κ and ω are

identical with respect to degeneracy, we will largely limit further analysis to κ-type

parameter vectors.

Lemma 4.8. The characteristic polynomial and eigenspaces of G are given by

pG(x) = (x+ 1)m−1(x− θ−1)(x− θ)

Eθ = span
(
β
1m

)
, Eθ−1 = span ( α

1m ), E−1 = (0)⊕ 1⊥m

where α =
m−
√
m(m−4)

2
, β =

m+
√
m(m−4)

2
, and θ =

m−
√
m(m−4)

m+
√
m(m−4)

.

Further, Gpκ is given by

Gpκ =
nδ

m

(
β − µ
β

θp

[
β

1m

]
+
µ− α
α

θ−p

[
α

1m

])
+ (−1)pPE−1κ (1)

where δ =
√

m
m−4

and µ = 1
n

∑
i ki.
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Note that for m ≤ 3 the eigenvalues of G are not real and for m = 4 they are

identical. For these reasons it will be our general assumption going forward that

m ≥ 5. The proof of lemma 4.8 as well as a complete description of fusion frames

with m ≤ 4 subspaces are provided in the appendices.

We now wish to extract the transformed values of n, M , and ki using equation (1).

We also note at this time that iterations of G and G−1 do not satisfactorily describe

the full range of parameter transformations since they are models for ·NS and ·SN .

Consequently, no integer power of G can model transformations such as ·N , ·S, ·NSN ,

etc. We therefore define:

Definition 4.9. Let p ∈ Z. Then

n(p) := 〈Gpκ, e1〉 n(p+1/2) := 〈SGpκ, e1〉 (2)

M (p) := 〈Gpκ,1m+1 − e1〉 M (p+1/2) := 〈SGpκ,1m+1 − e1〉 (3)

k
(p)
i := 〈Gpκ, ei+1〉 k

(p+1/2)
i := 〈SGpκ, ei+1〉 (4)

The half-integer notation is useful for completeness but is never actually necessary

for performing calculations. Indeed, since S fixes n and N fixes k, we have the

following identities for p ∈ 1/2Z:

n(p) = n(bpc) (5)

M (p) = M (dpe) (6)

k
(p)
i = k

(dpe)
i (7)
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Returning now to our calculations, applying 〈 · , e1〉 to both sides of (1) yields

n(p) =
nδ

m

(
β − µ
β

θpβ +
µ− α
α

θ−pα

)
+ (−1)p · 0

=
nδ

m

(
(β − µ)θp + (µ− α)θ−p

)
=
n(β − µ)

β − α
θp +

n(µ− α)

β − α
θ−p (8)

Applying 〈 · ,1m+1 − e1〉 to both sides of (1) yields

M (p) =
nδ

m

(
β − µ
β

θpm+
µ− α
α

θ−pm

)
+ (−1)p · 0

=
nδ

m

(
α(β − µ)θp + β(µ− α)θ−p

)
=
nα(β − µ)

β − α
θp +

nβ(µ− α)

β − α
θ−p (9)

Applying 〈 · , ei+1〉 to both sides of (1) yields:

k
(p)
i =

nδ

m

(
β − µ
β

θp +
µ− α
α

θ−p
)

+ (−1)p(ki − M
m

)

=
n(β − µ)

β(β − α)
θp +

n(µ− α)

α(β − α)
θ−p + (−1)p

(
ki − n

m
µ
)

(10)

=
M (p)

m
+ (−1)p

(
ki − n

m
µ
)

(11)

In the interest of completeness, recall ν = 1
A

∑
iw

2
i . Then the analogues of (8) and

(10) for A and w2
i are given by

A(p) =
A(β − ν)

β − α
θp +

A(ν − α)

β − α
θ−p (12)(

w2
i

)(p)
=
(
w

(p)
i

)2

=
A(β − ν)

β(β − α)
θp +

A(ν − α)

α(β − α)
θ−p + (−1)p

(
w2
i − A

m
ν
)

(13)

Equations (8)-(10) along with (14)-(16) from the appendix are generalizations of those

found in [7], Theorem 16.
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We must now take care to emphasize the distinction between, for example, n(p) as

given in definition 4.9, n(p) as given in equation (8), and expressions such as n(SN)p .

The expression n(SN)p is defined only for integer values of p and properly means

“the dimension of the ambient Hilbert space of a fusion frame after p iterations of

spatial-then-Naimark complementation if vanishing subspaces are discarded.” n(p) is

defined for integer and half-integer values of p in definition 4.9 and denotes how the

dimension of the ambient Hilbert space would transform after p iterations of spatial-

then-Naimark complementation if no subspaces were to vanish. For integer values of

p one has n(p) = n(SN)p whenever W ∼ W (SN)p . Similarly, one has n(p+1/2) = n(SN)pS

whenever W ∼ W (SN)pS. If we regard the right hand side of (8) as a function f(p) then

f has a natural extension to p ∈ R, however this function and n(p) are in agreement

only for integer values of p.

Having obtained expressions for n(p), M (p), and k
(p)
i our next goal is to identify

when these quantities are 0 and when they achieve minimal values. With this in mind,

note the right hand sides of (8)-(10) are functions of p of the form aθp+bθ−p+(−1)pD.

It is prudent at this point to analyze the closely related function f(x) = aθcx+d +

bθ−cx−d +D.

Lemma 4.10. Let f(x) = aθcx+d + bθ−cx−d + D and [x] be the nearest integer map,

which we take to be multi-valued in the event x has fractional-part 1
2
. If θ > 0 then

1. f(x) = 0⇔ x = 1
c

logθ

(
−D
2a
±
√(

D
2a

)2 − b
a

)
− d

c

2. Further, if a, b > 0 then

(a) argmin
x∈R

f(x) = 1
2c

logθ
(
b
a

)
− d

c

(b) argmin
p∈Z

f(p) =
[

1
2c

logθ
(
b
a

)
− d

c

]
Proof. (1) and (2a) are elementary applications of calculus and the quadratic formula.
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For (2b), let x0 = 1
2c

logθ
(
b
a

)
− d

c
, p0 = argminp∈Z f(p), and ε = p0 − x0. Then

f(p0) = f(x0 + ε)

= aθcx0+dθcε + bθ−cx0−dθ−cε +D

= a
√

b
a
θcε + b

√
a
b
θ−cε +D

=
√
ab(θcε + θ−cε) +D (∗)

Now, f is strictly convex since a, b > 0, therefore p0 is limited in value to either bx0c,

dx0e, or both if x0 has fractional-part 1
2
. This implies that there are two possible

values for ε and (∗) is minimized by choosing the one smallest in absolute value.

Therefore p0 = [x0].

As an immediate application of lemma 4.10 we have

Observation 4.11. Let W be a degenerate fusion frame and consider the problem of

identifying its vanishing subspaces. To fix the idea, suppose W ∼ WG > WGS or

W ∼ WG > WGN for some G ∈ G. Clearly this implies that either ki 6= 0 = kGSi

or wi 6= 0 = wGNi for some i ∈ [m]. Now, let kmin = mini{ki}, kmax = maxi{ki},

wmin = mini{wi}, and wmax = maxi{wi}. By inspection of (10) and (13) we have

argmin
ki

{
k

(p)
i

}
=


kmin p is even

kmax p is odd

argmin
wi

{
w

(p)
i

}
=


wmin p is even

wmax p is odd

When attempting to identify vanishing subspaces it is therefore sufficient to limit our
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analysis to the parameters kmin, kmax, wmin, and wmax. Further, let

f+
k (s) =

n(β − µ)

β(β − α)
θ2s−1 +

n(µ− α)

α(β − α)
θ−2s+1 − kmax + n

m
µ

f−k (s) =
n(β − µ)

β(β − α)
θ2s +

n(µ− α)

α(β − α)
θ−2s + kmin − n

m
µ

f+
w (s)2 =

A(β − ν)

β(β − α)
θ2s−1 +

A(ν − α)

α(β − α)
θ−2s+1 − w2

max + A
m
ν

f−w (s)2 =
A(β − ν)

β(β − α)
θ2s +

A(ν − α)

α(β − α)
θ−2s + w2

min − A
m
ν

By inspection we have f+
k (s) = k

(2s−1)
max , f−k (s) = k

(2s)
min , f+

w (s) = w
(2s−1)
max , and f−w (s) =

w
(2s)
min for s ∈ Z. It is therefore sufficient to limit our analysis to the functions f+

k ,

f−k , f+
w , and f−w . Finally, these functions are all of the form aθcx+d + bθ−cx−d + D,

therefore the results of lemma 4.10 apply.

We conclude this section with necessary and sufficient conditions for non-degeneracy.

Theorem 4.12. Let W be a tight fusion frame with parameters µ and ν, let [·] be the

nearest integer map, and define f+
k , f−k , f+

w , and f−w as in observation 4.11. Then a

necessary condition for W to be non-degenerate is

µ, ν ∈ (α, β)

Further, if µ, ν ∈ (α, β) then the quantities

x0 = 1
4

logθ

(
µ−α
β−µ

)
y0 = 1

4
logθ

(
ν−α
β−ν

)

are well defined, and W is non-degenerate if and only if

f+
k

(
[x0 + 1

2
]
)
, f−k ([x0]) , f+

w

(
[y0 + 1

2
]
)
, f−w ([y0]) > 0
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Proof. Assume W is non-degenerate and let n(p) = aθp + bθ−p. Proceding by contra-

diction, suppose µ 6∈ [α, β]. Then either a or b is negative. It follows that there exists

a p ∈ Z such that n(p) < 0. This implies that W is degenerate by observation 4.6,

contradicting our assumption of non-degeneracy. We must therefore have µ ∈ [α, β].

A similar argument implies ν ∈ [α, β].

Suppose now that µ ∈ {α, β}. Then either α or β is rational which requires

m = 4. By general assumption m ≥ 5 so it cannot be that µ ∈ {α, β}. It follows that

µ ∈ (α, β).

Finally, suppose ν ∈ {α, β} and let (w2
i )

(p) = aθp + bθ−p + (−1)pDi. Since ν ∈

{α, β} we must have either a = 0 or b = 0 by equation (13). If a = 0 or b = 0 then

limp→L aθ
p + bθ−p = 0 for either L = −∞ or L = +∞. It follows that, unless Di = 0

for every i, there exists a p ∈ Z and i ∈ [m] such that (w2
i )

(p) < 0. This implies

W is degenerate by observation 4.7, contradicting our assumption of non-degeneracy.

Alternatively, if Di = 0 for every i then W is equal-weight, therefore w = w01m for

some w0 > 0. This gives ν = 1
A

∑
iw

2
i =

mw2
0

A
∈ {α, β}. By the fusion frame equation

we have

nA =
m∑
i=1

kiw
2
i = w2

0

m∑
i=1

ki = w2
0M

and therefore ν = nm
M
∈ {α, β}. This again requires that either α or β is rational. We

conclude that W is non-degenerate only if ν ∈ (α, β).

If µ, ν ∈ (α, β) then the functions f+
k , f−k , f+

w , and f−w all have well defined minima

over Z which are achieved at the integers specified in lemma 4.10(2b). By observation

4.11, these minima are all positive if and only if W is non-degenerate.

5 Minimality

Given a tight fusion frame W there are evidently an infinity of transformations af-

forded by Naimark and spatial complementation. Broadly speaking, the difficulty of
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constructing a tight fusion frame with a given set of parameters is most heavily de-

pendent on the number of subspaces, m; the dimension of the ambient Hilbert space,

n; and the total subspace dimension, M . When attempting to directly construct a

fusion frame it is therefore often desirable to consider NS-equivalent fusion frames

with smaller values for these parameters. Once found, the simplified fusion frame can

be used to reconstruct the desired fusion frame in a deterministic way. This approach

begs the question of which NS-equivalent fusion frame to analyze, as there are poten-

tially a significant number with more desirable values of m,n, or M . As the figure

below partially suggests and as will be shown, in all cases the question is either moot

or has a unique answer.

Theorem 5.1. Let W be a tight fusion frame with parameters n, M , µ and suppose

µ ∈ (α, β). Then there exists a unique q ∈ 1/2Z such that q ∈ argminp∈1/2Z
{
n(p)
}

and

q ∈ argminp∈1/2Z
{
M (p)

}
. Further, q = 0 if and only if 2 ≤ µ ≤ m

2
.

Proof. Observe that n(p) has the form f(p) = aθp + bθ−p as in lemma 4.10 with c = 1

and d = D = 0. Since µ ∈ (α, β) by assumption we have a, b > 0 and can apply

lemma 4.10(2b). Setting x0 = 1
2

logθ

(
µ−α
β−µ

)
and p0 = argminp∈1/2Z

{
n(p)
}

we have

p0 =

[
1

2
logθ

(
b

a

)]
=

[
1

2
logθ

(
µ− α
β − µ

)]
= [x0]

Next, observe M (p) also has the form aθp + bθ−p as in lemma 4.10. Setting r0 =

argminr∈1/2Z
{
M (r)

}
we have

r0 =

[
1

2
logθ

(
b

a

)]
=

[
1

2
logθ

(
β(µ− α)

α(β − µ)

)]
=

[
1

2
logθ

(
µ− α
β − µ

)
+

1

2

]
=
[
x0 + 1

2

]
We now identify the unique q ∈ 1/2Z which simultaneously minimizes n(q) and M (q).

There are three cases to consider:

1. Suppose x0 is an integer. Then p0 = x0 and r0 = x0 + 1
2
± 1

2
. In this case, the
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Figure 1: Relationship between Hilbert space dimension (n) and total subspace dimension
(M) for a tight fusion frame with n(p) and M (p) (equations (8) and (9)) extended to p ∈ R.
All fusion frames require µ ∈ [1,m], non-degeneracy requires µ ∈ (α, β), and minimality is
equivalent to µ ∈ [2, m2 ].

(n(p),M(p)), p ∈ R

increasing p

absolute bounds

non-degeneracy bounds

minimality bounds

µ
=

m 2

µ
=
2

µ
=
m

µ
=
β

µ
=
α

µ
=

1

only value of q which simultaneously minimizes n(q) and M (q) is q = x0.

2. Suppose x0 is a half-integer. Then p0 = x0 ± 1
2

and r0 = x0 + 1
2
. In this case,

the only value of q which simultaneously minimizes n(q) and M (q) is q = x0 + 1
2
.

3. Suppose x0 6∈ 1/2Z. Then both p0 and r0 are single-valued and we must have

either r0 = p0 or r0 = p0 + 1. In either case, setting q = r0+p0
2
∈ 1/2Z and
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applying identities (5) and (6) yields

n(q) = n(bqc) = n(p0) = min
p∈Z

{
n(p)
}

M (q) = M (dqe) = M (r0) = min
p∈Z

{
M (p)

}

It remains to show that q = 0⇔ 2 ≤ µ ≤ m
2

, which we now demonstrate.

q = 0⇔ 0 ∈ [x0] and 0 ∈
[
x0 + 1

2

]
⇔ −1

2
≤ x0 ≤ 0

⇔ −1
2
≤ 1

2
logθ

(
µ−α
β−µ

)
≤ 0

⇔ α
β
≤ µ−α

β−µ ≤ 1

⇔ αβ − αµ ≤ βµ− αβ and µ− α ≤ β − µ

⇔ 2m ≤ (α + β)µ and 2µ ≤ α + β

⇔ 2 ≤ µ and µ ≤ m
2

Corollary 5.2. Let W be a tight fusion frame with parameters n, M , and m ≥ 5. If

2 ≤ µ ≤ m
2

then n = min[n]NS and M = min[M ]NS.

Proof. Since m ≥ 5 the constants α, β are well defined and satisfy α < 2 < m
2
< β.

By theorem 5.1 we have

n ≥ min[n]NS ≥ min
p∈Z

{
n(p)
}

= n(0) = n

M ≥ min[M ]NS ≥ min
p∈Z

{
M (p)

}
= M (0) = M
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Corollary 5.3. Let W be a non-degenerate tight fusion frame with parameters n

and M . Then there exists, up to unitary equivalence, a unique W ′ ∈ [W ]NS with

parameters n′ and M ′ such that n′ = min[n]NS and M ′ = min[M ]NS. Further, W ≈

W ′ if and only if 2 ≤ µ ≤ m
2

.

Proof. Since W is non-degenerate by assumption, for any parameter x of W we have

[x]NS = {x(p)}p∈Z. Further, as W is non-degenerate we have µ ∈ (α, β) by theorem

4.12 and can therefore apply the results of theorem 5.1. By theorem 5.1 and identities

(5) and (6) there exists a unique q ∈ 1/2Z satisfying

n(q) = n(bqc) = min
p∈Z
{n(p)} = min[n]NS

M (q) = M (dqe) = min
p∈Z
{M (p)} = min[M ]NS

Finally, the minimal fusion frame W ′ is given by

W ′ ≈


W (SN)q q is an integer

W (SN)bqcS q is a half-integer

so by theorem 5.1 we have W ≈ W ′ ⇔ q = 0⇔ 2 ≤ µ ≤ m
2

.

Theorem 5.1 and its corollaries accomplish several things. First, they assert the

existence of a minimal element of the NS-equivalence class of non-degenerate fusion

frames (corollary 5.3) and certain degenerate fusion frames (corollary 5.2). Second,

they provide an elementary criterion for identifying this minimal element, 2 ≤ µ ≤ m
2

.

Finally, they demonstrate in their proofs how to readily obtain such a minimal element

from any other member of the NS-equivalence class using lemma 4.10.

Our next goal will be to establish a certain uniqueness in the ways in which a fusion

frame can be degenerate, effectively extending proposition 4.3(5). This uniqueness

will allow us to extend the partial order & on fusion frames to a total order on the
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majority of NS-equivalence classes. Combined with corollary 5.3, this will provide a

powerful tool for classifying and constructing fusion frames. Before proceeding along

these lines we require the following lemma which identifies several objects invariant

under Naimark and spatial complementation.

Lemma 5.4 (NS-invariants). Let W = (Wi, wi)
m
i=1 be a tight fusion frame with pa-

rameters k and w. Then

1. For all i, j ∈ [m] and all G ∈ G such that W ∼ WG we have

{∣∣Wi ∩W⊥
j

∣∣ , ∣∣W⊥
i ∩Wj

∣∣} =
{∣∣WG

i ∩WG⊥
j

∣∣ , ∣∣WG⊥
i ∩WG

j

∣∣}

2. For all i, j ∈ [m] and all p ∈ 1/2Z we have

|ki − kj| =
∣∣k(p)
i − k

(p)
j

∣∣
|w2

i − w2
j | =

∣∣w2(p)
i − w2(p)

j

∣∣

Proof (1). We show only that the lemma holds for G = S and G = N . The full

lemma then follows by induction.

Trivially we have W S
i ∩ W S⊥

j = W⊥
i ∩ W⊥⊥

j = W⊥
i ∩Wj, so by symmetry the

lemma holds for G = S.

For the case G = N we must take care to avoid ambiguity. Fix an equal-

norm, orthogonal basis B of Wi ∩ W⊥
j such that ‖b‖ = wi for all b ∈ B. Let

Φ be a frame representation for W such that B ⊂ Φ. Then bN is well-defined

and bN ∈ WN
i for all b ∈ B. Additionally, b ⊥ Wj implies bN ⊥ WN

j , there-

fore |Wi ∩W⊥
j | ≤ |WN

i ∩WN⊥
j |. Repeating this process for a basis B′ of WN

i ∩WN⊥
j

yields |WN
i ∩WN⊥

j | ≤ |WNN
i ∩WNN⊥

j |. By assumption we have W ∼ WN and there-
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fore WNN ≈ W . It follows that

∣∣Wi ∩W⊥
j

∣∣ ≤ ∣∣WN
i ∩WN⊥

j

∣∣ ≤ ∣∣WNN
i ∩WNN⊥

j

∣∣ =
∣∣Wi ∩W⊥

j

∣∣
Therefore |Wi ∩W⊥

j | = |WN
i ∩WN⊥

j | and the lemma holds for G = N .

Proof (2). Fix any p ∈ 1/2Z and let q = dpe. Then identity (7) and equation (11) give

∣∣∣k(p)
i − k

(p)
j

∣∣∣ =
∣∣∣k(q)
i − k

(q)
j

∣∣∣
=

∣∣∣∣M (q)

m
+ (−1)q(ki − n

m
µ)−

(
M (q)

m
+ (−1)q(kj − n

m
µ)

)∣∣∣∣
=
∣∣(−1)q(ki − n

m
µ)− (−1)q(kj − n

m
µ)
∣∣

=
∣∣ki − n

m
µ− kj + n

m
µ
∣∣

= |ki − kj|

The analogues of (7) and (11) provide a similar result for w2
i .

A fusion frame W is said to be doubly-degenerate if there exist X1, X2 ∈ {N,S}

and G1, G2 ∈ G such that

WG1X1 < WG1 ∼ W ∼ WG2 > WG2X2

As NS-equivalence is transitive and ∅ ∈ G, double-degeneracy is equivalent to

WX1 < W ∼ WG > WGX2 .

Theorem 5.5 (Double Degeneracy). Let W be a doubly-degenerate fusion frame

with WX1 < W ∼ WG > WGX2 for some X1, X2 ∈ {N,S} and G ∈ G. Further, let

J1 = {i|WX1
i = 0} and J2 = {j|WGX2

j = 0}. Then

1. X1 = X2
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2. J1 = J2

3. W & 0

Informally, “every doubly-degenerate fusion frame is totally degenerate.”

Proof (1). Let W be doubly-degenerate as above, suppose i ∈ J1, j ∈ J2, and denote

by L and R the invariant sets in lemma 5.4(1):

L := {|Wi ∩W⊥
j |, |W⊥

i ∩Wj|} = {|WG
i ∩WG⊥

j |, |WG⊥
i ∩Wj|} =: R.

Application of proposition 4.3(1) and 4.3(2) yields

X1 = S ⇒ L = {|W⊥
j |, 0}

X2 = S ⇒ R = {0, |WG⊥
i |}

X1 = N ⇒ L = {|Wi|, |Wj|}

X2 = N ⇒ R = {|WG
i |, |WG

j |}.

Therefore the only permissible combinations are X1 = X2 = N and X1 = X2 = S.

Proof (2). In light of (1), if W is doubly-degenerate then there exist i, j ∈ [m], p ∈ Z

such that one of the following hold:

kSi = 0 = k
(SN)p

j , p ≤ −1

wNi = 0 = w
(SN)p

j , p ≥ 1

These equations imply kj = kmin (resp. wj = wmin) for p even, and kj = kmax (resp.

wj = wmax) for p odd. It follows that J1 = J2 is equivalent to p being odd.

There are evidently 4 cases to consider based on the sign and parity of p. The
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results and intermediate steps of a case-by-case analysis are provided in the table

below, which utilizes the quantities x0, y0 from theorem 4.12:

x0 := 1
4

logθ

(
µ−α
β−µ

)
y0 := 1

4
logθ

(
ν−α
β−ν

)

A sketch of the analysis is also provided, however computational details are left to

the reader.

Table 1: Summary of analysis for theorem 5.5

X p zeros minimizers over Z bounds on p

S odd ≤ −1 f+
k (p+1

2
) f+

k (1) [x0 + 3
4
] ≤ p+1

2
1 ≤ [x0 + 3

4
] 0 ≤ x0 + 1

4
≤ p+1

2

S even ≤ −2 f−k (p
2
) f+

k (1) [x0 + 1
4
] ≤ p

2
1 ≤ [x0 + 3

4
] 0 ≤ x0 + 1

4
≤ p+1

2

N odd ≥ 1 f+
w (0) f+

w (p+1
2

) [y0 + 3
4
] ≤ 0 p+1

2
≤ [y0 + 3

4
] p−1

2
≤ y0 + 1

4
≤ 0

N even ≥ 2 f+
w (0) f−w (p

2
) [y0 + 3

4
] ≤ 0 p

2
≤ [y0 + 1

4
] p−1

2
≤ y0 + 1

4
≤ 0

Note first that this table is complete based on the possible values of X (column 1)

and parities of p (column 2). The permissible values of p (column 2) follow from the

given parity and the first sentence of this proof. The vanishing functions (f+
k , f

−
k , f

+
w ,

or f−w ) and their zeros (column 3) likewise follow from the opening sentence and their

definitions in observation 4.11. As the functions f+
k , f

−
k (resp. f+

w , f
−
w ) are monotonic

whenever µ 6∈ (α, β) (resp. ν 6∈ (α, β)), we may conclude that µ ∈ (α, β) (resp.

ν ∈ (α, β)) since they have multiple roots. This implies that these functions are

strictly convex and therefore their minima over Z can be constrained relative to the

location of their zeros (column 4). The resulting inequalities can then be solved to

provide additional bounds on p (column 5).

By inspection of the final column, if X = S then p ≥ −1. As p ≤ −1 by

assumption, it follows that p = −1 and W satisfies W S < W ∼ WN > WNS.

Similarly, if X = N then p ≤ 1. As p ≥ 1 by assumption, it follows that p = 1 and
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WN < W ∼ W S > W SN .

Proof (3). In light of (2), if W is doubly degenerate then either f+
k (0) = f+

k (1) or

f+
w (0) = f+

w (1) based on the value of X. We consider each case individually. Diagrams

of the doubly-degenerate fusion frames described below are provided in Appendix B,

which the reader is encouraged to consult at this time.

If X = S then (2) implies that f+
k (0) = f+

k (1). Solving this equation yields µ = 2.

We may therefore conclude that W has one subspace (say, W1) of dimension n and

the total dimension of the remaining subspaces is also n. In other words

k1 = n =
m∑
i=2

ki

Now, consider the tight fusion frame W SS = (Wi, wi)
m
i=2. The total subspace dimen-

sion of this fusion frame and the dimension of its ambient Hilbert space are both n,

therefore these subspaces must be mutually orthogonal. It follows that they all vanish

under a Naimark complement and so W SSN = 0.

If X = N then (2) implies that f+
w (0) = f+

w (1). Solving this equation yields ν = 2.

We may therefore conclude that W has one subspace (say, W1) with squared-weight

A and the total squared-weights of the remaining subspaces is also A. In other words

w2
1 = A =

m∑
i=2

w2
i

Now, consider the tight fusion frame WNN . The total squared-weights of this fusion

frame and its frame bound are both equal to A, therefore each subspace has full rank.

It follows that all subspaces vanish under a spatial complement and so WNNS = 0.

Theorem 5.5 asserts that if a tight fusion frame W is degenerate (but not totally
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degenerate) then it can only be degenerate in one way. This carries with it several

essentially obvious yet critical consequences:

Corollary 5.6. Let W 6& 0 be a tight fusion frame. Then

1. {WG}G∈G can be decomposed into at most m NS-equivalence classes given by

{
WG

}
G∈G =

q⊔
i=0

[
WG0···Gi

]
NS

where q ≤ m− 1 and G0 = ∅.

2. The ordering on the set of NS-equivalence classes
{[
WG

]
NS

}
G∈G induced by &

is a total order, i.e.

[W ]NS =
[
WG0

]
NS
>
[
WG0G1

]
NS
> · · · >

[
WG0···Gq

]
NS

and all members of the ‘minimal’ equivalence class
[
WG0···Gq

]
NS

are necessarily

non-degenerate.

We note that the use of the word ‘minimal’ in reference to
[
WG0···Gq

]
NS

is appro-

priate for at least two reasons. Most obviously,
[
WG0···Gq

]
NS

is minimal in the sense

of the ordering induced by &. This follows in part from the second reason, that the

number of subspaces common to the members of each equivalence class also exhibit

the same ordering under ≥:

m = mG0 > mG0G1 > · · · > mG0···Gq

There is another sense in which [WG0···Gq ]NS can be considered minimal, as the fol-

lowing lemma suggests:

Lemma 5.7. Let W 6& 0 be a degenerate fusion frame with W > WX for some X ∈

{N,S}. Then there exists a G ∈ G such that nXG ≤ min[n]NS and MXG ≤ min[M ]NS.
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Proof. We examine 5 cases based on the possible values of X ∈ {N,S} and µ ∈ [1,m].

The results are summarized in the table below.

Table 2: Summary of analysis for lemma 5.7

X µ p y(p) min[n]NS min[M ]NS XG

S ∈ [1, 2) - - - - -

S ∈ [2,m] ≤ 0 dec. n(0) = n M (0) = M SS

N ∈ [1, m
2

) ≥ 0 dec. n(0) = n M (0) = M NN

N ∈ [m
2
,m− 2] ≥ 0 inc. n(1/2) = nS M (1/2) = MS NNS

N ∈ (m− 2,m] - - - - -

For each case we identify the values of p satisfying y(p) ∈ [y]NS and the corresponding

behavior of y(p) for y ∈ {n,M} (column 3). These may be determined from figure 1

and the given values of X and µ since, for any such parameter y, theorem 5.5 implies

that [y]NS is given by

X = S ⇒ [y]NS = {y, yN , yNS, . . . } = {y(p)}p≤0

X = N ⇒ [y]NS = {y, yS, ySN , . . . } = {y(p)}p≥0

The minimums min[y]NS (column 4) may be determined by applying the requirement

2 ≤ µ ≤ m
2

from theorem 5.1 to the appropriate transformation of µ. It remains to

demonstrate the impossibility of rows 1 and 5 as well as certify the indicated values

of XG (column 5) satisfy yXG ≤ min[y]NS.

Suppose X = S. Then W has s vanishing subspaces, each of dimension n, for

some integer s ≥ 1. As W 6& 0 by assumption it follows that W SS is a tight fusion

55



frame which satisfies

MSS = M − ns < M = min[M ]NS

nSS = n = min[n]NS

certifying row 2. Further, as 1 ≤ µG ≤ mG for every G ∈ G we must have

1 ≤ µSS =
MSS

nSS
=
M − ns

n
= µ− s ≤ µ− 1

. Rearranging yields 2 ≤ µ, certifying row 1.

Suppose instead that X = N . Then W has s vanishing subspaces whose total

subspace dimension is t for some integers 1 ≤ s ≤ t. As W 6& 0 by assumption it

follows that WNN is a tight fusion frame which satisfies

MNN = M − t < M = min[M ]NS

nNN = n− t < n = min[n]NS

certifying row 3.

Suppose further that WNN has r full-rank subspaces of dimension nNN = n − t

for some integer r ≥ 0. As W 6& 0 by assumption it follows that WNNS is a tight
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fusion frame which satisfies

MNNS = (mNN − r)nNN −MNN

= (m− s− r)(n− t)− (M − t)

= (nm−M)− (ns− t)− nr − t(m− s− r)

< MS − 0− 0− 0 = MS = min[M ]NS

nNNS = nNN = n− t < n = nS = min[n]NS

certifying row 4. Finally, as W satisfies nG ≤MG for all G ∈ G we must have

0 ≤MNNS − nNNS

= (mNN − r)nNN −MNN − nNN

= (m− s− r)(n− t)− (M − t)− (n− t)

= n(m− s− r − 1)− t(m− s− r − 2)−M

≤ n(m− 2)−M

Rearranging yields µ ≤ m− 2, certifying row 5.

Theorem 5.5 implies that, for every tight fusion frame W which is degenerate but

not totally degenerate, there exists a unique NS-equivalence class [W ′]NS ⊂ {WG}G∈G

of non-degenerate fusion frames with a minimal number of subspaces, m′. Corollary

5.3 establishes that, for any NS-equivalence class of non-degenerate fusion frames

[W ′]NS, there exists a unique element W ′′ ∈ [W ′]NS which possesses simultaneously the

minimum dimension for its ambient Hilbert space, n′′, and minimum total subspace

dimension, M ′′, among all representatives of [W ′]NS. We conclude this section with

a theorem establishing that M ′′ and n′′ are, in fact, minimums over the larger set of

fusion frames {WG}G∈G ⊃ [W ′]NS.
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Theorem 5.8. Let W be a tight fusion frame with parameters m, n, and M . If

W 6& 0 then there exists a unique W0 . W with parameters m0, n0, and M0 such that

m0 = min
G∈G

{
mG
}

n0 = min
G∈G

{
nG
}

M0 = min
G∈G

{
MG

}
.

Further, there exists a unique G ∈ G of minimal length such that W0 ≈ WG.

Proof. If W is non-degenerate then this theorem follows directly from corollary 5.3.

Suppose, then, that W is degenerate. By corollary 5.6 there exists an NS-equivalence

class of non-degenerate fusion frames [W ′]NS such that [W ]NS > [W ′]NS and m′ =

min
G∈G

{
mG
}

. Further, there exists a positive integer q, a sequence (Xi)
q
i=1 in {N,S},

and a sequence (Gi)
q
i=1 in G such that

W ∼ WG1 > WG1X1 ∼ WG1X1G2 > · · · > WG1X1···GqXq ∈ [W ′]NS.

The integer q and sequence (Xi)
q
i=1 are unique by theorem 5.5. Further, each Gi is

unique when chosen to be of minimal length since W ∼ WX implies W ≈ WXX for

X ∈ {N,S}. By corollary 5.3 there exists a Gq+1 ∈ G such that

nG1X1···GqXqGq+1 = min
[
nG1X1···GqXq

]
NS

MG1X1···GqXqGq+1 = min
[
MG1X1···GqXq

]
NS
.

Gq+1 is also unique when chosen to be of minimal length, therefore so is G =
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G1X1 · · ·GqXqGq+1. Repeated application of lemma 5.7 gives

nG1X1···GqXqGq+1 = min
[
nG1X1···GqXq

]
NS
≤ · · · ≤ min

[
nG1X1

]
NS
≤ min[n]NS

MG1X1···GqXqGq+1 = min
[
MG1X1···GqXq

]
NS
≤ · · · ≤ min

[
MG1X1

]
NS
≤ min[M ]NS.

By corollary 5.6 the sets {nG}G∈G and {MG}G∈G are partitioned by these equiv-

alence classes, therefore n0 = nG1X1···GqXqGq+1 , M0 = MG1X1···GqXqGq+1 , and W0 ≈

WG1X1···GqXqGq+1 .

6 Construction and Classification

By construction the action of ·N and ·S on non-degenerate fusion frames is a group of

two involutions. This is not true for degenerate fusion frames, however, since in gen-

eral we do not have WNN ≈ W and W SS ≈ W . For example, let I =
{
i|W S

i = 0
}

and

assume 0 < |I| < m. To recover W one must adjoin |I| subspaces with appropriate

weights and dimension n to W SS. The weights (or squared-weights) of these subspaces

must be specified, however the subspace dimensions are determined solely based on

the dimension of the ambient Hilbert space, nSS = n. The new frame bound can be

derived from the new weights according to the fusion frame equation An =
∑

i kiw
2
i .

If W is totally degenerate and |I| = m then W SS is undefined, however W can triv-

ially be specified by a set of weights and Hilbert space dimension, n. Similarly, if

J = {j|WN
j = 0} and 0 < |J | < m then to recover W one must adjoin |J | orthogonal

subspaces with appropriate dimensions and weight
√
A to WNN . The dimensions of

these subspaces must be specified, however the weights are determined solely based

on the frame bound, ANN = A. The dimension of the ambient Hilbert space is like-

wise derived from the new subspace dimensions according to An =
∑

i kiw
2
i . If W is

totally degenerate and |J | = m then WNN is undefined, however W can trivially be

specified by a sequence of subspace dimensions and a frame bound, A. In either case,
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recovering W requires only specifying a particular sequence of subspace dimensions

or weights and an additional value for the Hilbert space dimension or frame bound

in the event of total degeneracy. We therefore define

Definition 6.1 (NS-augmentation). Let W = (Wi, wi)
m
i=1 be an A-tight fusion frame

for Hn with k = (|Wi|)mi=1.

1. A Naimark augment of W is any fusion frame of the form

WN(a) := (Wi, wi)
m
i=1 ∪ (Ha1 ,

√
A) ∪ · · · ∪ (Has ,

√
A)

where a = (ai)
s
i=1 is any sequence of positive integers and the ambient Hilbert

space for WN(a) has the decomposition Hn⊕Ha1 ⊕ · · · ⊕Has. Alternatively, the

squared-weights may be explicitly stated with the notation WN(a) = WN(a|A).

2. A spatial augment of W is any fusion frame of the form

WS(a) := (Wi, wi)
m
i=1 ∪ (Hn,

√
a1) ∪ · · · ∪ (Hn,

√
as)

where a = (ai)
s
i=1 is any sequence of positive real numbers and the ambient

Hilbert space for WS(a) is Hn. Alternatively, the subspace dimensions may be

explicitly stated with the notation WS(a) = WS(a|n).

The extended notations ·N(·|·) and ·S(·|·) may also be applied to 0 with the same inter-

pretation as (1) and (2) above.

Combining these definitions with the results of the previous section, we have

Theorem 6.2 (Tight Fusion Frame Classification). For every tight fusion frame

W 6& 0 there exists a unique positive integer q, a unique sequence (Gi)
q+1
i=1 of minimal

length elements of G, a unique sequence (Xi)
q
i=1 in {N,S}, and a sequence (xi)

q
i=1 of
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sequences (xij)
si
j=1 of positive numbers such that

W ≈ WG1
0 X1(x1)

G2
X2(x2) · · · GqXq(xq)Gq+1

and the parameters m0, n0, and M0 of W0 are simultaneously minimized among all

members of {WG|G ∈ G}.

For every tight fusion frame W & 0 there exists a positive integer q, a sequence

(Gi)
q+1
i=1 in G, a sequence (Xi)

q
i=0 in {N,S}, a sequence (xi)

q
i=0 of sequences (xij)

si
j=1

of positive numbers, and a positive number y such that

W ≈ 0X0(x0|y)
G1

X1(x1) · · · GqXq(xq)Gq+1

To demonstrate the broad applicability of the operations given in definition 6.1,

we have produced below a complete table of maximal, equal-weight fusion frames in

dimensions 3 through 8. This is similar to what was done in [1], but with a complete

description in terms of definition 6.1. Of the 58 possible sequences of subspace di-

mensions, only 7 are not totally degenerate.
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Table 3: NS classification of tight, equal-norm fusion frames for 3 ≤ n ≤ 8

n = 3

M max elements NS classification

3 (3) 0S(11|3)

4 (1,1,1,1) 0S(1/414|1)
N

5 (2,1,1,1) 0S(1/513|1)
N
S(2/511)

N

6 (3,3) 0S(1/212|3)

n = 4

4 (4) 0S(11|4)

5 (1,1,1,1,1) 0S(1/515|1)
N

6 (2,2,2) 0S(1/313|2)
N

7 (3,1,1,1,1) 0S(1/714|1)
N
S(3/711)

N

(2,2,2,1) 0S(1/713|1)
N
S(2/711)

NSN

8 (4,4) 0S(1/212|4)

n = 5

5 (5) 0S(11|5)

6 (1,1,1,1,1,1) 0S(1/616|1)
N

7 (2,2,1,1,1) 0S(1/713|1)
N
S(2/712)

N

8 (3,2,1,1,1) 0S(1/813|1)
N
S(1/411)

N
S(3/811)

N

(2,2,2,2) 0S(1/814|1)
NSN

9 (4,1,1,1,1,1) 0S(1/915|1)
N
S(4/911)

N

(3,2,2,2) 0S(1/913|1)
N
S(2/911)

NSNSN

10 (5,5) 0S(1/212|5)

n = 6

6 (6) 0S(11|6)

7 (1,1,1,1,1,1,1) 0S(1/717|1)
N

8 (2,2,2,2) 0S(1/414|2)
N

9 (3,3,3) 0S(1/313|3)
N

10 (4,2,2,2) 0S(1/513|2)
N
S(2/511)

N

11 (5,1,1,1,1,1,1) 0S(1/1116|1)
N
S(5/1111)

N

(4,2,2,2,1) W0
N

(3,3,3,2) 0S(1/1113|1)
N
S(2/1111)

N(SN)3

12 (6,6) 0S(1/212|6)

n = 7

M max elements NS classification

7 (7) 0S(11|7)

8 (1,1,1,1,1,1,1,1) 0S(1/818|1)
N

9 (2,2,2,1,1,1) 0S(1/913|1)
N
S(2/913)

N

10 (3,3,1,1,1,1) 0S(1/1014|1)
N
S(3/1012)

N

(3,2,2,2,1) 0S(1/1013|1)
N
S(1/511)

NS
S(3/1011)

N

11 (4,3,1,1,1,1) 0S(1/714|4/7)
N
S(3/711)

N
S(4/711)

N

(4,2,2,2,1) 0S(1/1113|1)
N
S(2/1111)

NSN
S(4/1111)

N

12 (5,2,2,1,1,1) 0S(1/1213|1)
N
S(1/612)

N
S(5/1211)

N

(4,3,3,1,1) W0
N

(3,3,3,3) 0S(1/1214|1)
NSNSN

13 (6,1,1,1,1,1,1,1) 0S(1/1317|1)
N
S(6/1311)

N

(5,2,2,2,2) W0
N

(4,3,3,3) 0S(1/1313|1)
N
S(2/1311)

N(SN)4

14 (7,7) 0S(1/212|7)

n = 8

8 (8) 0S(11|8)

9 (1,1,1,1,1,1,1,1,1) 0S(1/919|1)
N

10 (2,2,2,2,2) 0S(1/515|2)
N

11 (3,2,2,2,2) 0S(1/1114|1)
NS

S(3/1111)
N

(3,3,2,1,1,1) 0S(1/1113|1)
N
S(2/1111)

N
S(3/1112)

N

12 (4,4,4) 0S(1/313|4)
N

13 (5,3,2,1,1,1) 0S(1/1313|1)
N
S(2/1311)

N · · ·
· · · S(3/1311)

N
S(5/1311)

N

(5,2,2,2,2) 0S(1/1314|1)
NSN

S(5/1311)
N

(4,4,2,2,1) W0
NS

14 (6,2,2,2,2) 0S(1/714|2)
N
S(3/711)

N

(5,3,3,2,1) W0
N

(4,4,4,2) 0S(1/713|2)
N
S(2/711)

NSN

15 (7,1,1,1,1,1,1,1,1) 0S(7/1518|1)
N
S(7/1511)

N

(6,2,2,2,2,1) W0
N

(5,3,3,2,2) W0
N

(4,4,4,3) 0S(1/1513|1)
N
S(2/1511)

N(SN)5

16 (8,8) 0S(1/212|8)
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A Fusion frames with m ≤ 4 subspaces

The main body of this paper addresses fusion frames with m ≥ 5 subspaces. The

remaining cases with m ≤ 4 subspaces are presented below in the form of ‘NS-trees,’

wherein we demonstrate how the parameters of such fusion frames transform under

complement operations. For a given fusion frame the parameters n, A, k, and w2 are

listed as elements of a block matrix

[
n A

k w2

]
=


n A

k1 w2
1

...
...

km w2
m



and arrows are used to indicate degeneracy and NS-equivalence. For example, if W

and W S are tight fusion frames with respective parameter matrices X and XS, then

X
·S←→ XS indicates W ∼ W S and X

·S−→ XS indicates W > W S. The ‘−’ symbol

denotes that the corresponding subspace has vanished and ‘0’ that all subspaces

have vanished. Ellipses indicate that no subspaces will ever vanish under continued

complement operations, and if a given NS-tree becomes equivalent to a previously

listed one because of vanishing subspaces then the corresponding tree is given. That

these are the only possible parameter configurations can be deduced by reasoning

similar to that used in the final steps of the proof of theorem 5.5, which we leave to

the reader.

For m = 1 there is only one NS-tree, T1, which is given below for arbitrary values

of n and A. Such fusion frames are the reason proposition 4.3(5) requires m ≥ 2 and

are the only fusion frames satisfying WN < W ∼ WG > WGS; i.e. they are the only

fusion frames which violate X1 = X2 in theorem 5.5.
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T1:

0
·S←−

[
n A

n A

]
·N−→ 0

For m = 2 there are two possible NS-trees, corresponding to the cases n = k1 +k2

(T2-1) and n = k1 = k2 (T2-2).

T2-1:

0
·N←−


n A

k2 A

k1 A

 ·S←→


n A

k1 A

k2 A

 ·N−→ 0

T2-2:

0
·S←−


n A

n w2
1

n w2
2

 ·N←→


n A

n w2
2

n w2
1

 ·S−→ 0

For m = 3 there are three possible NS-trees, corresponding to the cases n =

k1 + k2 + k3 (T3-1), n = k1 = k2 + k3 (T3-2), and n = k1 = k2 = k3 (T3-3).

T3-1:

0
·N←−


n A

k1 A

k2 A

k3 A

 ·S←→


n 2A

n− k1 A

n− k2 A

n− k3 A

 ·N←→


n 2A

n− k1 A

n− k2 A

n− k3 A

 ·S←→


n A

k1 A

k2 A

k3 A

 ·N−→ 0
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T3-2:

T2-1 3


n A− w2

1

− −
k3 A− w2

1

k2 A− w2
1

 ·S←−


n A

n w2
1

k2 A− w2
1

k3 A− w2
1

 ·N←→


n A

n A− w2
1

k2 w2
1

k3 w2
1

 ·S−→


n w2

1

− −
k3 w2

1

k2 w2
1

 ∈ T2-1

T3-3:

0
·S←−


n A

n w2
1

n w2
2

n w2
3

 ·N←→


2n A

n A− w2
1

n A− w2
2

n A− w2
3

 ·S←→


2n A

n A− w2
1

n A− w2
2

n A− w2
3

 ·N←→


n A

n w2
1

n w2
2

n w2
3

 ·S−→ 0

If m = 4 then the matrix

G =

[
3 −1T

4

14 −I4

]

is defective with the following properties:

characteristic polynomial pG(x) = (x+ 1)3(x− 1)2

eigenspace E−1 = (0)⊕ 1⊥4

eigenvector v1 = (2, 1, 1, 1, 1)T

generalized eigenvector v2 = (1, 0, 0, 0, 0)T

generalized eigenspace Egen = span{v1, v2}

The corresponding parameter transformations may be computed via the Jordan de-
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composition of G and are given by

n(p) = n+ n(2− µ)p (14)

M (p) = M + 2n(2− µ)p (15)

k
(p)
i = 1

4
M + 1

2
n(2− µ)p+ (−1)p(ki − 1

4
M) (16)

A(p) = Aν + 2A(2− ν)p (17)

(w2
i )

(p) = 1
4
Aν + 1

2
A(2− ν)p+ (−1)p(w2

i − 1
4
Aν) (18)

The degeneracy conditions are calculated using (16) and (18) and are given by

p even ⇒


k

(p)
i = 0⇔ p = 2ki

n(µ−2)

(w2
i )

(p) = 0⇔ p =
2w2

i

A(ν−2)

(19)

p odd ⇒


k

(p)
i = 0⇔ p = 2ki−nµ

n(µ−2)

(w2
i )

(p) = 0⇔ p =
2w2

i−Aν
A(ν−2)

(20)

In general we have bounds 1 ≤ µ, ν ≤ m so by inspection of (14) and (17) there

exists a p ∈ Z such that n(p) < 0 and/or A(p) < 0 unless µ = ν = 2. It follows that

any tight fusion frame W with m = 4 subspaces is degenerate unless µ = ν = 2.

Since all fusion frames with m ≤ 3 subspaces are totally degenerate, W is also totally

degenerate unless µ = ν = 2. If µ = ν = 2 then the NS-tree for W is a closed loop:
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n A

k1 w2
1

k2 w2
2

k3 w2
3

k4 w2
4


·S←→



n A

n− k1 w2
1

n− k2 w2
2

n− k3 w2
3

n− k4 w2
4


xy·N xy·N

n A

k1 A− w2
1

k2 A− w2
2

k3 A− w2
3

k4 A− w2
4


·S←→



n A

n− k1 A− w2
1

n− k2 A− w2
2

n− k3 A− w2
3

n− k4 A− w2
4


B Doubly-degenerate fusion frames

The NS-trees for the doubly-degenerate fusion frames described in the proof of the-

orem 5.5 are given below. An explanation of the symbols used was provided in

Appendix A.
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If
W

S
<
W
∼
W

G
>
W

G
S

th
en

n
=
k

1
=
∑ i≥

2
k
i

an
d

th
e

N
S
-t

re
e

fo
r
W

is
of

th
e

fo
rm

··
·
·N ←
→

        

n
(m
−

2)
(A
−
w

2 1
)

−
−

n
−
k

2
A
−
w

2 1
. . .

. . .

n
−
k
m

A
−
w

2 1

        ·S ←
−

        n
A

n
w

2 1

k
2

A
−
w

2 1
. . .

. . .

k
m

A
−
w

2 1

        ·N ←
→

        n
A

n
A
−
w

2 1

k
2

w
2 1

. . .
. . .

k
m

w
2 1

        ·S −→

        

n
(m
−

2)
w

2 1

−
−

n
−
k

2
w

2 1
. . .

. . .

n
−
k
m

w
2 1

        ·N ←
→
··
·

x  y·S
x  y·S

0
·N ←
−

        n
A
−
w

2 1

−
−

k
2

A
−
w

2 1
. . .

. . .

k
m

A
−
w

2 1

        

        n
w

2 1

−
−

k
2

w
2 1

. . .
. . .

k
m

w
2 1

        ·N −→
0
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If
W

N
<
W
∼
W

G
>
W

G
N

th
en

A
=
w

2 1
=
∑ i≥

2
w

2 i
an

d
th

e
N

S
-t

re
e

fo
r
W

is
of

th
e

fo
rm

··
·
·S ←
→

        (m
−

2)
(n
−
k

1
)

A

−
−

n
−
k

1
A
−
w

2 2
. . .

. . .

n
−
k

1
A
−
w

2 m

        ·N ←
−

        

n
A

k
1

A

n
−
k

1
w

2 2
. . .

. . .

n
−
k

1
w

2 m

        ·S ←
→

        

n
A

n
−
k

1
A

k
1

w
2 2

. . .
. . .

k
1

w
2 m

        ·N −→

        (m
−

2)
k

1
A

−
−

k
1

A
−
w

2 2
. . .

. . .

k
1

A
−
w

2 m

        ·S ←
→
··
·

x  y·N
x  y·N

0
·S ←
−

        n
−
k

1
A

−
−

n
−
k

1
w

2 2
. . .

. . .

n
−
k

1
w

2 m

        

        k
1

w
2 1

−
−

k
1

w
2 2

. . .
. . .

k
1
w

2 m

        ·S −→
0
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C Proof of lemma 4.8

Proof. To determine the characteristic polynomial and eigenspaces of the matrix G,

we compute

det(λIm+1 − G) = det



λ−m+ 1 1 1 · · · 1

−1 λ+ 1

−1 λ+ 1
...

. . .

−1 λ+ 1


= (λ−m+ 1)(λ+ 1)m +

m+1∑
j=2

(−1)j−1(1) det(M1j)

where we have written separately the first term in the determinant expansion and

used M1j as the minor of λIm+1 − G obtained by omitting row 1 and column j. For

j ≥ 2 the determinant of M1j contains a single nonzero term given by

det(M1j) = (−1)j(−1)(λ+ 1)m−1

This yields

det(λIm+1 − G) = (λ−m+ 1)(λ+ 1)m +
m+1∑
j=2

(−1)j−1(1)(−1)j(−1)(λ+ 1)m−1

= (λ−m+ 1)(λ+ 1)m +m(λ+ 1)m−1

= (λ+ 1)m−1((λ−m+ 1)(λ+ 1) +m)

= (λ+ 1)m−1(λ2 + (2−m)λ+ 1)

= (λ+ 1)m−1

(
λ− m+

√
m(m−4)

m−
√
m(m−4)

)(
λ− m−

√
m(m−4)

m+
√
m(m−4)

)

In order to compute Gpκ, we define the constants
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α =
m−
√
m(m−4)

2
, β =

m+
√
m(m−4)

2
, γ = 2√

m−4
, δ =

√
m
m−4

, and θ =
m−
√
m(m−4)

m+
√
m(m−4)

and vectors

a =
1√
mα

[
α

1m

]
, b =

1√
mβ

[
β

1m

]
, and c = γb− δa

Note that ‖a‖ = ‖b‖ = ‖c‖ = 1, E−1 ⊥ span{a, b}, c ∈ span{a, b}, and c ⊥ b. Taken

together, these facts allow us to decompose an arbitrary vector x ∈ Rm+1 as

x = Pbx+ Pcx+ PE−1x

We now have the following calculation for Gpx:

Gpx = Gp(Pbx+ Pcx+ PE−1x)

= 〈x, b〉Gpb+ 〈x, c〉Gpc+ GpPE−1x

= 〈x, b〉Gpb+ 〈x, γb− δa〉(γGpb− δGpa) + GpPE−1x

= (〈x, b〉+ 〈x, γ2b− δγa〉)Gpb+ 〈x, δ2a− δγb〉Gpa+ GpPE−1x

= 〈x, (1 + γ2)b− δγa〉Gpb+ 〈x, δ2a− δγb〉Gpa+ GpPE−1x

= 〈x, δ2b− δγa〉θpb+ 〈x, δ2a− δγb〉θ−pa+ (−1)pPE−1x

= δ〈x, δb− γa〉θpb+ δ〈x, δa− γb〉θ−pa+ (−1)pPE−1x

Rearranging and setting x = κ we have
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1

δ
(Gp − (−1)pPE−1)κ = 〈κ, δb− γa〉θpb+ 〈κ, δa− γb〉θ−pa

=

〈[
n

k

]
,

δ√
mβ

[
β

1m

]
− γ√

mα

[
α

1m

]〉
θp√
mβ

[
β

1m

]
+

+

〈[
n

k

]
,

δ√
mα

[
α

1m

]
− γ√

mβ

[
β

1m

]〉
θ−p√
mα

[
α

1m

]

=

〈[
n

k

]
,
δ

mβ

[
β

1m

]
− γ

m
√
m

[
α

1m

]〉
θp

[
β

1m

]
+

+

〈[
n

k

]
,
δ

mα

[
α

1m

]
− γ

m
√
m

[
β

1m

]〉
θ−p

[
α

1m

]

=
δ

m

〈[
n

k

]
,

1

β

[
β

1m

]
− 2

m

[
α

1m

]〉
θp

[
β

1m

]
+

+
δ

m

〈[
n

k

]
,

1

α

[
α

1m

]
− 2

m

[
β

1m

]〉
θ−p

[
α

1m

]

=
δ

m

(
nβ +M

β
− 2nα + 2M

m

)
θp

[
β

1m

]
+

+
δ

m

(
nα +M

α
− 2nβ + 2M

m

)
θ−p

[
α

1m

]

=
δ

m

(
nmβ +mM − 2nm− 2βM

mβ

)
θp

[
β

1m

]
+

+
δ

m

(
nmα +mM − 2nm− 2Mα

mα

)
θ−p

[
α

1m

]

=
δn

m2β
(mβ +mµ− 2m− 2βµ)θp

[
β

1m

]
+

+
δn

m2α
(mα +mµ− 2m− 2αµ)θ−p

[
α

1m

]
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=
δn

m2β
(m(β − 2) + µ(m− 2β))θp

[
β

1m

]
+

+
δn

m2α
(µ(m− 2α) +m(α− 2))θ−p

[
α

1m

]

=
δn

m2β
(β(β − α)− µ(β − α))θp

[
β

1m

]
+

+
δn

m2α
(µ(β − α)− α(β − α))θ−1

[
α

1m

]

=
δn(β − α)

m2β
(β − µ)θp

[
β

1m

]
+
δn(β − α)

m2α
(µ− α)θp

[
α

1m

]

=
δn(β − α)

m2

(
β − µ
β

θp

[
β

1m

]
+
µ− α
α

θ−p

[
α

1m

])

=
n

m

(
β − µ
β

θp

[
β

1m

]
+
µ− α
α

θ−p

[
α

1m

])

Rearranging, we have

Gpκ =
nδ

m

(
β − µ
β

θp

[
β

1m

]
+
µ− α
α

θ−p

[
α

1m

])
+ (−1)pPE−1κ

as desired.
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