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AI-BASED FRAMEWORK FOR AUTOMATICALLY EXTRACTING HIGH-

LOW FEATURES FROM NDS DATA TO UNDERSTAND DRIVER BEHAVIOR 

Armstrong Aboah 

Dr. Yaw Adu-Gyamfi, Dissertation Supervisor 

 

ABSTRACT 

 

Our ability to detect and characterize unsafe driving behaviors in naturalistic driving 

environments and associate them with road crashes will be a significant step toward developing 

effective crash countermeasures. Due to some limitations, researchers have not yet fully achieved 

the stated goal of characterizing unsafe driving behaviors. These limitations include, but are not 

limited to, the high cost of data collection and the manual processes required to extract information 

from NDS data. 

In light of this limitations, the primary objective of this study is to develop an artificial 

intelligence (AI) framework for automatically extracting high-low features from the NDS dataset 

to explain driver behavior using a low-cost data collection method. The author proposed three novel 

objectives for achieving the study's objective in light of the identified research gaps. Initially, the 

study develops a low-cost data acquisition system for gathering data on naturalistic driving. Second, 

the study develops a framework that automatically extracts high- to low-level features, such as 

vehicle density, turning movements, and lane changes, from the data collected by the developed 

data acquisition system. Thirdly, the study extracted information from the NDS data to gain a better 

understanding of people's car-following behavior and other driving behaviors in order to develop 

countermeasures for traffic safety through data collection and analysis. 

The first objective of this study is to develop a multifunctional smartphone application for 

collecting NDS data. Three major modules comprised the designed app: a front-end user interface 

module, a sensor module, and a backend module. The front-end, which is also the application's user 
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interface, was created to provide a streamlined view that exposed the application's key features via 

a tab bar controller. This allows us to compartmentalize the application's critical components into 

separate views. The backend module provides computational resources that can be used to 

accelerate front-end query responses. Google Firebase powered the backend of the developed 

application. The sensor modules included CoreMotion, CoreLocation, and AVKit. CoreMotion 

collects motion and environmental data from the onboard hardware of iOS devices, including 

accelerometers, gyroscopes, pedometers, magnetometers, and barometers. In contrast, 

CoreLocation determines the altitude, orientation, and geographical location of a device, as well as 

its position relative to an adjacent iBeacon device. The AVKit finally provides a high-level 

interface for video content playback.  

To achieve objective two, we formulated the problem as both a classification and time-

series segmentation problem. This is due to the fact that the majority of existing driver maneuver 

detection methods formulate the problem as a pure classification problem, assuming a discretized 

input signal with known start and end locations for each event or segment. In practice, however, 

vehicle telemetry data used for detecting driver maneuvers are continuous; thus, a fully automated 

driver maneuver detection system should incorporate solutions for both time series segmentation 

and classification. The five stages of our proposed methodology are as follows: 1) data 

preprocessing, 2) segmentation of events, 3) machine learning classification, 4) heuristics 

classification, and 5) frame-by-frame video annotation. The result of the study indicates that the 

gyroscope reading is an exceptional parameter for extracting driving events, as its accuracy was 

consistent across all four models developed. The study reveals that the Energy Maximization 

Algorithm's accuracy ranges from 56.80% (left lane change) to 85.20 % (right lane change) (lane-

keeping) All four models developed had comparable accuracies to studies that used similar models. 

The 1D-CNN model had the highest accuracy (98.99%), followed by the LSTM model (97.75%), 

the RF model (97.71%), and the SVM model (97.65%). To serve as a ground truth, continuous 

signal data was annotated. In addition, the proposed method outperformed the fixed time window 
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approach. The study analyzed the overall pipeline's accuracy by penalizing the F1 scores of the ML 

models with the EMA's duration score. The pipeline's accuracy ranged between 56.8% and 85.0% 

overall.  

The ultimate goal of this study was to extract variables from naturalistic driving videos that 

would facilitate an understanding of driver behavior in a naturalistic driving environment. To 

achieve this objective, three sub-goals were established. First, we developed a framework for 

extracting features pertinent to comprehending the behavior of natural-environment drivers. Using 

the extracted features, we then analyzed the car-following behaviors of various demographic 

groups. Thirdly, using a machine learning algorithm, we modeled the acceleration of both the ego-

vehicle and the leading vehicle. Younger drivers are more likely to be aggressive, according to the 

findings of this study. In addition, the study revealed that drivers tend to accelerate when the 

distance between them and the vehicle in front of them is substantial. Lastly, compared to younger 

drivers, elderly motorists maintain a significantly larger following distance. This study's results 

have numerous safety implications. First, the analysis of the driving behavior of different 

demographic groups will enable safety engineers to develop the most effective crash 

countermeasures by enhancing their understanding of the driving styles of different demographic 

groups and the causes of collisions. Second, the models developed to predict the acceleration of 

both the ego-vehicle and the leading vehicle will provide enough information to explain the 

behavior of the ego-driver. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Road crashes results in more than a million fatalities worldwide each year; on 

average nearly four thousand people lose their lives every day on roads (ASIRT, 2021). It 

is predicted that road fatalities will continue to rise to become the fifth leading cause of 

death in the world by 2030 (Global Status Report on Road Safety, 2021). In fact, road 

traffic crashes are a leading cause of death in the United States for people aged 1-54 

(ASIRT, 2021). Studies have shown that about 50% of fatal road accidents are due to 

unsafe driving behaviors (Global Status Report on Road Safety, 2021). Our ability to detect 

and characterize these unsafe behaviors in naturalistic driving settings and associate them 

with road accidents will be a major step toward developing effective crash 

countermeasures.  

Large-scale naturalistic driving studies are intended to shed light on the factors that 

lead up to a crash and near-crashes. A review of the data collected from these studies can 

be used to extract detailed information about driver behavior, performance, and the 

environment that can be linked to crashes and near-collisions. Several studies have been 

conducted using naturalistic driving studies (NDS) datasets. Studies such as () have drawn 

insight into anomaly activities of drivers such as eating, dancing etc. Other studies have 

investigated car-following behaviors of drivers using NDS data. The NHTSA's 100-car 

NDS study (100-Car Naturalistic Driving Study, 2006) was the first of many (Antin et al. 

2019; Barnard et al. 2018.; Charlton et al. 2019; Fridman et al. 2019; Larue et al. 2018) to 

collect video, radar, and vehicle telemetry data from a wide range of drivers while driving 

naturally. The data collection devices installed in the vehicles cost hundreds of thousands 
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of dollars. Consequently, restricting the number of vehicles that could have the device 

installed and reducing the number of participants that can be involved in the studies.  

In order to scale the data collection process to increase participants involvement, 

there is a need for alternative data-driven approaches that can collect and process high-

quality, high-resolution, and high-fidelity data streams at an affordable price in order to 

find long-term solutions to these problems. The current state of transportation data 

collection relies on expensive systems that are difficult to scale for continuous data 

streaming. This endeavor's prohibitive cost could force organizations with limited 

resources to conduct infrastructure evaluations infrequently necessitating the need for low-

cost alternatives to these high-end data collection systems that can produce comparable 

information. One of the aims of this study is to utilize technological advances in consumer-

level devices such as smartphones to scale the collection of transportation data for 

continuous performance evaluation and decision-making. 

Depending on video compression rates, the size of the data collected during NDS 

studies can range from hundreds of terabytes to several petabytes. To date, driving event 

extraction from NDS data has been accomplished through a combination of manual and 

semi-automated processes. As a result, relying on manual processing methods can be time-

consuming and costly to scale. There is, therefore, a need for algorithms that can ingest 

multi-modal NDS data and accurately annotate various driving events useful for 

understanding crash causation. As a result, this dissertation develops an end-to-end, fully 

automated pipeline for detecting and analyzing driver maneuvers from naturalistic driving 

videos and kinematic data on a frame-by-frame basis. Our goal is to extract eight critical 

driving events for developing crash countermeasures: stop and lane-keeping events, left-
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right lane changes, left-right turning movements, and left-right horizontal curve 

maneuvers. 

To gain a deeper understanding of the causes of vehicle crashes, it is necessary to 

link vehicle maneuver detection with the driver’s driving behavior such as car-following 

behavior. This is because rear-ended crashes are the most frequent type of crashes 

encountered on the highway, according to statistical data pertaining to vehicle crashes. 

These crashes have a significant negative impact on the flow of traffic and typically have 

severe consequences (Stipancic et. al., 2017). Examining the sequence of events preceding 

rear-end crashes can be divided into two distinct scenarios. The first scenario is one in 

which the following distance between vehicles is so close that, even if the driver behind 

them can apply their brakes in time, a rear-end collision is possible if the car in front of 

them suddenly brakes. In the second scenario, the driver is maintaining a relatively safe 

distance behind the car in front of them; however, when the car in front of them applies the 

brakes, the driver is either distracted or fatigued and does not notice. This circumstance is 

comparable to one in which there is no braking whatsoever. This study aims to accurately 

model car-following behaviors that result in rear-end crashes in order to gain a better 

understanding of these scenarios from a practical standpoint. 

1.2 Motivation 

The cost of collecting NDS data is prohibitively high, precluding the continuous 

collection and analysis of data related to driver behaviors. In order to provide a long-term 

solution to the high-cost of data collection, there is a need for data-driven approaches that 

can collect and process quality, high-resolution, and high-fidelity streams of data at 

reasonable cost. The current state of transportation data collection relies on expensive 
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systems that are not easily scalable for continuous data streaming. The cost-prohibitive 

nature of this effort could lead to infrequent driver behavior assessment for agencies with 

limited funding. Low-cost data collection alternatives that are able to produce information 

comparable to these high-end systems are needed. Therefore, there is a need to tap into 

advancements in consumer-level technologies such as smartphones to scale the collection 

of naturalistic driving data for continuous performance evaluation and decision making. 

The current generation of smartphones are enabled with a plethora of sensors such as 

accelerometers, gyroscopes, compass, and cameras. These sensors can be used to capture 

various dynamics of the transportation system. Many studies have used accelerometers, for 

example, to detect various driving maneuvers made by drivers in a naturalistic driving 

setting. Also, with the aid of computer vision and machine learning techniques, the 

smartphones video cameras and motion sensors can be used to understand the driving 

environment: extract vehicle trajectories, car-following behavior, understand lane-

changing behaviors, estimate vehicle density, weather conditions, etc. (Aboah and Adu-

Gyamfi 2020; Aleadelat et al. 2018; Robinson and Cook 2012; Zeng et al. 2018). The 

current study, therefore, seeks to explore the use of smartphone-based sensors for 

collecting NDS data at a cheaper cost. 

Furthermore, despite significant progress and appreciable maneuver detection 

accuracies attained especially from ML-based algorithms, there are still open challenges 

that remain unsolved. First, all previous ML-based studies have treated vehicle maneuver 

detection as a time series classification problem. A major challenge that is not addressed 

by recent approaches is time series segmentation. This is an important step that should 

precede the development of ML classifiers: it separates any raw, continuous vehicle 
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telemetry signal into a finite set of discrete events and anomalies with unique 

characteristics that can be used to train ML models for maneuver detection. The time series 

segmentation problem is straightforward if all the events contained in the continuous signal 

have a fixed duration: A simple, moving window with fixed time window could be used to 

define the start and end of each event. For NDS data however, the duration, frequency and 

amplitudes of events may vary significantly depending on the speed of the vehicle, type of 

sensor, driving behavior and type of event (lane change or turning movement). A robust 

time series segmentation algorithm is therefore needed to extract unique events that are 

needed to train and test ML algorithms for maneuver detection. Second, the robustness and 

transferability of models developed for maneuver detection have not been well tested: the 

size of data, number of drivers and events are usually not large enough to deduce the best 

performing models, or architectures needed for accurate detection of driver maneuvers. For 

example, Mandalia and Salvucci, (2005) and Yang et al. (2017) reports high accuracies for 

only 4-431 drivers driving 5-50 miles in the study. Studies have also evaluated these 

models on only one type of hardware acquisition systems: OBD or mobile phone.    

Although a number of studies have been conducted to model the car-following 

behaviors of drivers, the majority of these studies have relied on simulated data that may 

not accurately represent incidents that occur in the real world. In addition, very few 

longitudinal studies have been conducted on the car-following behavior of drivers in 

naturalistic environments. These studies, however, are limited to developing models that 

can only estimate the acceleration of the ego-vehicle, which is insufficient to explain the 

behavior of the ego-driver. This limitation exists because data to model the acceleration of 

the leading vehicle is rarely available when using naturalistic driving dataset. As such, the 
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current study attempts to address this issue by modeling both the acceleration of the ego-

vehicle and the leading vehicle through the development of an AI framework capable of 

extracting parameters from NDS videos necessary to model the behavior (acceleration) of 

the leading vehicle as well as the ego-vehicle. In addition, there have been no previous 

longitudinal studies of the car-following behavior of various demographics in a naturalistic 

environment. Such research is important because it enhances our understanding of the 

driving styles of various demographic groups and the causes of crashes. The study 

addresses this deficiency by conducting longitudinal studies of demographic groups of 

drivers. 

1.3 Research Contributions 

The main goal of the study is to develop an AI framework for automatically 

extracting high-low features from the NDS dataset in order to explain driver behavior while 

using a low-cost data collection method. The author proposed three novel objectives for 

achieving the study's goal based on the identified research gaps. First, the study builds a 

low-cost data acquisition system for acquiring naturalistic driving data. Second, the study 

designs a framework that automatically extracts high to low-level features such as vehicle 

density, turning movements, lane changes, and other relevant features from the data 

collected from the developed data acquisition system. Third, the study extracted 

information from the NDS data to gain a better understanding of people's car-following 

behavior, and other driving behaviors through data collection and analysis in order to 

develop countermeasures for traffic safety.  

The study has three broad objectives.  
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• The first objective is to build a low-cost data acquisition system for 

acquiring naturalistic driving data. The study’s aim is to develop and 

implement a mobile data collection application for collecting naturalistic 

driving data. A modular software design process was followed to allow for 

future expansion of the mobile app. The top module is a high-level user 

interface that uses different layouts, menus, buttons, and notifications to 

create a user-friendly interface for a wide range of users. A sensor module 

manages all key technologies for data collection including GPS, Camera, 

Accelerometer and Gyroscope. The back-end module handles 

communications between the different modules, data storage and requests. 

In comparison to previous smartphone data collection apps, this current app 

is not overly reliant on internet connection to transmit data. This means that 

data can be gathered and stored temporarily in the app's library before being 

uploaded to the cloud server for storage when internet connectivity is 

available. This feature enables data collection from roadways in Wi-Fi dead 

zones. Also, the use of firebase backend enables data to be streamed from 

multiple sensors simultaneously and instantly. Recorded data can therefore 

be displayed instantly via web or other apps synced with the apps’ database. 

• The second objective is to be able to automatically extract high to low-level 

features such as vehicle density, turning movements, lane changes, driver 

distraction, and other relevant features from the data collected from the 

developed data acquisition system. In this objective, the study developed an 

end-to-end pipeline for automatic, frame-by-frame labelling of NDS videos 
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into various driving events by using vehicle telemetry data. To achieve this 

goal, we formulated the problem as a time series segmentation and 

classification problem. The segmentation task was achieved by developing 

a novel segmentation algorithm that utilizes the principle of energy 

maximization to detect the start and end of any driving event. Furthermore, 

the performance of both shallow and deep machine learning models for 

characterizing different types of driver maneuvers are evaluated using a 

large database of NDS data (200 hours of video and vehicle telemetry data) 

from three different studies: SHRP2 (Antin et al., 2019), Nebraska Medical 

Center (Drincic et al., 2018.), and a mobile application (Aboah et al., 2021).  

Annotating data from multiple sources enables us to evaluate the 

transferability of the segmentation and classification algorithms developed.  

• The third objective is to gain a better understanding of people's car-

following behavior, and other driving behaviors in order to develop 

countermeasures for traffic safety. To achieve this objective, we estimated 

the depth of objects in image frames using monocular depth estimation. The 

study's objective is to combine the estimated depth with other computer 

vision models to explain the car-following behaviors of different drivers in 

a naturalistic driving. 

The rest of the dissertation is structured as follows. Chapter two presents the 

development of a low-cost data collection app. In this chapter, a smartphone data collection 

app was developed to enable data to be streamed from multiple smartphone-embedded 

sensors simultaneously and instantly. In addition, the app was designed to enable data 
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collection from roadways in Wi-Fi dead zones unlike other existing apps. The live recorded 

data by the app can then be displayed instantly via the web or other apps synced with the 

apps' database. A modular design process was followed during the app's design to allow 

future expansion of the mobile app. Chapter three presents the study and results of driver 

maneuver detection and analysis using time series segmentation and classification. This 

chapter describes the development of an end-to-end pipeline for the automatic, frame-by-

frame labeling of NDS videos into various driving events using vehicle telemetry data. To 

accomplish this objective, we formulated the problem as a time series segmentation and 

classification problem. Utilizing the principle of energy maximization, a novel 

segmentation algorithm was developed in order to accomplish the segmentation task. 

Chapter four presents the analysis of car-following behavior of ego-vehicles in a 

naturalistic driving setting. First, the study develops a framework for extracting features 

relevant to understanding driver behavior in a naturalistic environment. Additionally, the 

study analyzed the car-following behaviors of various demographic groups. To accomplish 

this objective, numerous visualization plots and statistical tests were conducted. We look 

into the factors that best explain the leading and ego-vehicle accelerations. Lastly, the study 

modeled the acceleration of both the ego-vehicle and the leading vehicle using a machine-

learning algorithm. The study utilized the XGBoost algorithm to develop various 

acceleration models. The study presents its conclusion and recommendation in chapter five. 
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CHAPTER 2: MOBILE SENSING FOR MULTIPURPOSE 

APPLICATIONS IN TRANSPORTATION 

2.1 Introduction 

Among today's transportation issues are congestion, safety, equity, aging 

infrastructure, energy, sustainability, and security among others. In order to find long-term 

solutions to these issues, there is a need for data-driven approaches that can collect and 

process quality, high-resolution, and high-fidelity streams of data at a reasonable cost. The 

current state of transportation data collection relies on expensive systems that are not easily 

scalable for continuous data streaming. The Virginia Department of Transportation 

(VDOT) for example, spends about $1.8 million per year on pavement data collection and 

evaluation using high-end machines (Sauerwein et al., 2011). The cost-prohibitive nature 

of this effort could lead to infrequent infrastructure assessments for agencies with limited 

funding. Low-cost data collection alternatives that are able to produce information 

comparable to these high-end systems are needed. The goal of this study is to tap into 

advancements in consumer-level technologies such as smartphones to scale the collection 

of transportation data for continuous performance evaluation and decision-making.  

The developed mobile app will serve multiple purposes, including 1) a low-cost 

data acquisition system for naturalistic driving studies: this can be achieved by utilizing 

both front and back camera sensors of the smartphone to record both the driver's activities 

and the driving environment. 2) The telemetry data recorded by the gyroscope and 

accelerometer sensors could be used for pavement assessment, 3) the video data from the 

camera sensors could also be used to collect work zone data for safety analysis, etc.  
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The current generation of smartphones is enabled with a plethora of sensors such 

as accelerometers, gyroscopes, compasses, and cameras as shown in Figure 2.1. These 

sensors can be used to capture various dynamics of the transportation system. The 

accelerometers, for example, detect vibrations caused by a moving vehicle. These 

vibrations are used as a surrogate to estimate the roughness of the road. Previous studies 

have estimated the IRI using smartphone data, and the results are comparable to those 

obtained using high-end machines with an acceptable margin of error (Aboah & Adu-

Gyamfi, 2020; Aleadelat et al., 2018; Sauerwein et al., 2011; Zeng et al., 2018). Numerous studies 

have developed various smartphone applications for collecting transportation data, but 

these applications are limited in their applications since they are not designed to serve 

multiple purposes (Aleadelat et al. 2018; Sauerwein et al. 2011; Zeng et al. 2018). 

Aleadelat et al. (2018) utilized a custom-built smartphone app to collect road surface data 

for the purpose of calculating IRI values. However, the app is not intended for any other 

function. The same can be said about Zeng et al. (2018). 

  

Figure 2.1: Smartphone imbedded sensors a) A sensor board comprising of GPS, 

accelerometer, and gyroscope b) Camera sensor 
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2.1.1 Objectives 

In light of the limitations identified in previously developed mobile applications for 

transportation data collection, the current study aims to address these concerns. The study’s 

aim is to  

1. develop and implement a mobile data collection application for collecting 

transportation data for multiple applications including road condition evaluation, 

naturalistic driving studies, etc. To achieve this a modular software design process was 

followed to allow for future expansion of the mobile app. The top module is a high-

level user interface that uses different layouts, menus, buttons, and notifications to 

create a user-friendly interface for a wide range of users. A sensor module manages all 

key technologies for data collection including GPS, Camera, Accelerometer and 

Gyroscope. The back-end module handles communications between the different 

modules, data storage and requests. In comparison to previous smartphone data 

collection apps, this current app is not overly reliant on internet connection to transmit 

data. This means that data can be gathered and stored temporarily in the app's library 

before being uploaded to the cloud server for storage when internet connectivity is 

available. This feature enables data collection from roadways in Wi-Fi dead zones. 

Also, the use of firebase backend enables data to be streamed from multiple sensors 

simultaneously and instantly. Recorded data can therefore be displayed instantly via 

web or other apps synced with the apps’ database. The study further investigates the 

accuracy of the data collected by the app by synchronizing all sensor data. 

2. Collect transportation data required for naturalistic driving studies, pavement 

evaluation, and road surface roughness evaluation. To achieve this goal, the app was 
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used to collect data including front and rear videos, telemetry data (gyroscope and 

accelerometer), and GPS data. The front and rear camera videos were used to analyze 

naturalistic driving studies, the accelerometer reading was used to develop a deep 

learning model to estimate the road surface roughness, and finally, the images from the 

front camera video were used to develop a machine learning model for pavement 

distress detection. The developed machine learning and deep learning models were 

assessed using accuracy, precision, and root-mean-percentage-squared-error. 

The rest of this Chapter is divided into the following sections. The second section 

reviews relevant literature on smartphone applications in solving transportation related 

problems. Section three contains information about the development process, including the 

design approach, key components, and modulus. The fourth section discusses the data 

collection process as it relates to the developed mobile application. Section five 

summarizes the quantitative findings from the collection of field data. Finally, Section six 

summarizes the research, results the findings, and makes recommendations for future 

research in section seven. 
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2.2 Related Studies  

The emergence of smartphone data collection has created new research 

opportunities in transportation. A number of past studies have relied on smartphone-

collected data for a variety of research works that have produced cutting-edge findings. As 

such, this section discusses studies that examine the use of smartphone data to solve 

transportation-related problems. Each study is reviewed for its purpose, data collection 

technique, and methodology. 

The technology to accurately assess pavement roughness with inexpensive sensors 

has improved greatly. A probe-based monitoring system for slippery and rough road 

surfaces was developed by MDOT in 2010 (Robinson & Cook, 2012). The vehicle data 

was collected and transmitted to a backend server running on a Droid platform. It was 

attached to the windshield in the same manner as a navigation device. Various sensors in 

the vehicle and on the phone were used to collect data, including the phone's three-axis 

accelerometer, the external road surface temperature and humidity, and the vehicle's 

Controller Area Network. During a two-year period, the system was installed in two 

vehicles driven by MDOT personnel. Over thirty thousand miles and more than 13 

gigabytes of data were captured. To represent the pavement's surface irregularities, the 

vertical accelerometer signal's variation was employed. The accelerometer's sample rate is 

100 Hz. Data collection was followed by calibration of the accelerometer readings using a 

PASER system curve fitting algorithm to the Pavement Surface Evaluation and Rating 

(PASER) scale. Future iterations of the curve fitting algorithm may incorporate data from 

the MDOT's annual PASER rating study. Also, researchers at Auburn University examined 

the use of vehicle-mounted sensors to determine the condition of road pavements (Dawkin, 
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J., et. al. 2010.). The study's primary objective was to compute the IRI through the use of 

automotive sensors. The IRI was calculated using information gathered from a variety of 

vehicle sensors, including suspension deflection meters, accelerometers, and gyroscopes. 

On a 1.7-mile (2,750-meter) long test track, the National Center for Asphalt Technology 

conducted controlled speed tests (NCAT). The total number of vibrations in a particular 

section can be determined by calculating the Root Mean Square (RMS) of a signal 

measurement (i.e., vertical acceleration, gyroscopes, or suspension deflection). 

Acceleration includes a section on RMS (Root Mean Squared) (Section 3.2). Following 

that, the aggregated vibrations were compared to the pavement segment's true IRI. The root 

mean square of vertical accelerations was found to be the most accurate representation of 

the true IRI. It followed the same general trend as the well-known IRI, with the exception 

of a few expected magnitude changes. In summary, this study established that the most 

practical method for calculating the IRI is to use a root mean square algorithm on vertical 

acceleration readings. In a pilot study, Flintsch et al. (2012) quantified road ride quality 

and roughness using probing vehicles. Once again, vertical acceleration data was used to 

estimate vehicle vibration. At the Virginia Smart Road facility in Blacksburg, Virginia, a 

smoothness profile was created using an inertial-based laser profiler, and vertical 

accelerometer measurements were taken using an instrumented car. The frequency of the 

accelerometer was chosen to be 10 hertz. Additionally, GPS coordinates were collected. 

Acceleration data was collected during four runs on the test track. The study discovered 

that acceleration runs are highly reproducible. The smoothness profile and acceleration 

measurements are highly correlated, as determined by the coherence function analysis. 
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 Papadimitriou et al. (2018) used smartphone data to detect and analyze risky 

driving behaviors. The study examined critical risk indicators such as the number of 

aggressive driving incidents and cell phone use while driving. The study gathered data on 

vehicle speed, distance traveled, accelerations, turning maneuvers, braking events, and cell 

phone use. The study's findings indicate that distraction caused by smartphone use has a 

significant effect on the number of severe events occurring per kilometer and, 

consequently, on the relative crash risk. Additionally, smartphone sensor data can be used 

to accurately detect mobile phone use while driving in more than 70% of cases. Another 

application of mobile apps is to enhance traffic control devices and to alleviate confusion 

among motorists passing through work zones. For example, a smartphone-based audio 

warning message (AWM) was proposed and tested in driving simulators to supplement 

conventional traffic controls and increase worker safety in work zones (Q. Li et al., 2016). 

The National Highway Traffic Safety Administration (NHTSA) and state transportation 

departments have implemented a variety of safety countermeasures aimed at reducing 

forward collisions in work zones. Traditional countermeasures, on the other hand, 

frequently fail to prevent crashes in work zones due to the complexity of traffic. Craig et 

al. (2017) conducted a study in Minnesota to determine the effect of in-vehicle messages 

on drivers' perceptions of work-zone events. Researchers at Texas Southern University's 

Innovative Transportation Research Institute developed a warning system application that 

alerts drivers to hazardous traffic situations through a variety of warning messages, 

including sound, visual, and voice (Dutzik et al., 2013; Rahman et al., 2016). Also, 

researchers at the University of Minnesota developed a smartphone app that uses embedded 

sensors and Bluetooth technology to provide pedestrians with routing instructions when 
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upcoming work zones are detected. When a work zone is detected, the smartphone vibrates 

to alert users, and the app then broadcasts an audible message to them (Liao, 2014). Azadi 

et al. (2020) developed and deployed a work zone application for collecting, reporting, and 

storing real-time work-zone activity information. The study indicated that the precision of 

sensors such as GPS was within appreciable accuracy of work zone geolocation.  

Although the aforementioned literature achieves great results using smartphone 

data, the data collection apps developed on these smartphones for the various data 

collection are not flexible enough to be used for other purposes; thus, there is a need for a 

smartphone app that serves multiple purposes. Also, as discussed in the literature, 

smartphone applications designed for pavement collection rely heavily on the internet and 

are difficult to use in areas without internet access. Therefore, it is necessary to develop a 

smartphone application that is not overly dependent on the internet and can be utilized in 

offline mode in regions without internet access. The present study aims to fill all these 

identified gaps. 
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2.3 Design Approach  

The current app was designed to collect data from the onboard IOS sensors and 

video from the onboard camera and then transfer the data instantly to a cloud-based, real-

time database. The current design is made up of three major modules: a frontend user 

interface module, a sensor module, and a backend module. Figure 2.2 shows the 

interactions and information flow between these modules. 

 

Figure 2.2: Frontend, and backend modules of the App 
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2.3.1 Frontend Design 

The user interface for this app was designed to provide a streamlined view that 

exposed key aspects of the application via a tab bar controller. This enables us to 

compartmentalize the application’s various critical components into distinct views. As 

illustrated in Figure 2.3, the tab bar contains a Video Tab, an Uploads Tab, a Library Tab, 

a Graph Tab, and a Settings Tab. The Video Tab enables the collection of video and sensor 

data. The Uploads Tab enables the user to keep track of the upload status of each package 

gathered in the Video Tab. The Library Tab displays all of the packages that have been 

collected and are currently stored on the device. The Graph Tab displays a live graph of 

the device’s acceleration in the z direction as measured by its sensors. The Settings Tab 

displays all of the current settings and enables them to be modified as necessary. Adjustable 

frame rate (0-30fps), frequency rate or data sampling rate (0-15Hz), and auto-save time are 

included in the setting. The frame rate determines the quality of the captured video data. 

When the value is set to a large number, the size of the video data grows significantly, 

necessitating that the collecting device has a large amount of memory to temporarily store 

the video data before uploading them to the cloud. In addition, adjusting the sampling rate 

to a high frequency ensures that the app collects enough telemetry data. Utilizing a high 

sampling rate results in large data sizes, necessitating sufficient storage space on the mobile 

device to temporarily store them. Using a smaller sampling rate, on the other hand, has a 

negative impact on data quality but is generous in terms of file size. The autosave setting 

determines how frequently the user’s data is saved. Using a longer autosave time will result 

in files that are large in size and may require a significant amount of storage space on the 

device before being uploaded to the cloud.  
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Figure 2.3: Key components of the app: (a) Video Tab, (b) Upload Tab, (c) Library 

Tab, (d) Graph Tab (e) Settings Tab 

 

2.3.2 Backend Design 

The primary function of the backend is to provide computational resources that can 

be used to accelerate front-end user query responses. The analytics performed on the front 

end of the application can be computationally expensive. To enable such sophisticated 

analytics on the front end of the app, we built a scalable, cloud-based backend using 

cutting-edge big data analytics techniques. The current study’s backend is powered by 

Google Firebase. Firebase is made up of several parts, including a Realtime Database, a 

Cloud Firestore, and Cloud Storage. The Firebase Realtime Database is a relational 

database management system that runs in the cloud. The data is stored in JSON format and 

is synchronized with each connected client in real time. Similarly, the Cloud Firestore, 

maintains data consistency across client applications and enables offline support for mobile 

and web applications. Cloud Storage enables massive scalability of file storage. It allows 

users to upload and download files directly to and from the Cloud Storage “bucket”. The 

developed application stores all sensor data in a Firebase Real-time Database and the 
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videos in Cloud Firestore. The use of both the Firebase Realtime Database and Cloud 

Firestore ensure that uploaded data are made instantly accessible to other app users. 

Additionally, they allow multiple users to simultaneously push data to the cloud storage in 

real-time. Finally, the Cloud Firestore caches data that your app is actively using, allowing 

the app to write, read, listen to, and query data even when the device is not connected to 

the internet. The structure of the backend real-time database is shown in Figure 2.4a. 

 

Figure 2.4: (a) Real-time posting of data collected, (b) Sensor Module 

2.3.3 Sensor Module  

The developed app leverages multiple modules to allow for sensor collection. These 

modules include CoreMotion, CoreLocation, and AVKit as shown in Figure 2.4b. The 

CoreMotion module collects motion and environmental data from the onboard hardware 

of iOS devices, including accelerometers and gyroscopes, as well as the pedometer, 
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magnetometer, and barometer. This framework enables the access and utilization of data 

generated by the hardware. The CoreMotion module provides access to both the 

unprocessed and raw values recorded by the hardware. The processed values do not contain 

any forms of bias that could have a negative impact on how you utilize the data. For 

instance, an accelerometer value that has been processed reflects only the acceleration 

caused by the user and not the acceleration caused by gravity. The CoreLocation 

determines the altitude, orientation, and geographical location of a device, as well as its 

position in relation to a nearby iBeacon device. The framework collects data by utilizing 

all available hardware components on the device, including barometer, GPS, Wi-Fi, 

magnetometer, and Bluetooth. The CoreLocation module has a location manager that is 

responsible for tracking large or minor changes in the user’s current location with a 

configurable degree of accuracy, monitoring distinct regions of interest and generating 

location events when the user enters or leaves those regions, detecting and locating nearby 

beacons, and finally reporting heading changes from the onboard compass. Also, the 

AVKit provides a high-level interface for video content playback. AVKit module has a 

player view controller that allows you to play media full screen, embedded inline, or in a 

floating picture-in-picture window. It also includes a view controller, which displays 

content from a player and displays a native user interface for controlling playback. It finally 

consists of a protocol that defines the methods that must be implemented in order to 

respond to player view controller events. These various modules were utilized in this 

current app to access the device motion data (accelerometers and gyroscopes), the GPS 

location, and the video data respectively. 
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2.4 Data Collection Using Developed App 

In order to test the various components of the app, we collected data on both freeways and 

local routes for a variety of applications. Figure 2.5a shows the study areas for which data 

was collected.  The first study was conducted on I-70 West, which connects Columbia, 

Missouri, and Kansas City, Missouri. The road segment considered for this test was 

approximately 45 miles in length. The second and third study were conducted in the city 

of Columbia as shown in Figures 2.5b and 2.5c.  

 

Figure 2.5a-2.5c: The study area where the app was used to collect pavement 

roughness information  
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To collect data with the app, the mobile phone must first be mounted on the car's 

windscreen (see Figure 2.6b) to record vehicle accelerations, rotations and some other 

pertinent information. The video data was sampled at a frame rate of 10 frames per second, 

whereas the accelerometer and vehicle location data were collected at a frame rate of 30 

samples per second (30 Hz). As illustrated in Figure 2.6a, the vehicle used to collect data 

was a 2007 Nissan Sentra. 

 

 

Figure 2.6a-2.6b. a) 2007 Nissan Sentra vehicle used for the data collection b) The 

mounting position of the smartphone on the windscreen 

2.4.1 An Interactive User Interface for Data Querying using Streamlit 

It is critical for the app to be able to sync the numerous pieces of information it 

collects. To accomplish this, the study used Streamlit to create an interactive user interface 

for integrating all of the various sensor data (Streamlit, 2020.). Streamlit is a Python library 

for web application development that is completely free and open-source. Streamlit is 

compatible with a number of well-known libraries and frameworks, including Keras, 
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OpenCV, Vega-Lite, Pytorch, Tensorflow, and Python. The study used this library because 

of its ease of use and rapid deployment to create an interactive dashboard that enabled 

effortless data querying by timestamp. 

The dashboard is divided into three sections: the homepage, data querying, and data 

visualization. Users can query both raw data and specific video frames by timestamp using 

the data querying page. Users can view changes in accelerometer readings while the vehicle 

is in motion on the data visualization page. 

2.4.2 Evaluating the Accuracy of the GPS Coordinate Points in the App 

The GPS coordinates must be precise in order to synchronize the video and 

accelerometer data from the app. This will allow us to map pavement distresses in real time 

at the exact locations where they occurred. Issues arise when GPS information is not 

accurate. Figure 2.7 is a dashboard showing the synchronization of the various data. The 

dashboard is divided into five sections labeled A-E. Label A displays GPS data colored 

according to the vehicle's speed. The changes in the accelerometer readings are depicted in 

Label B, while the changes in the gyroscope readings are depicted in Label C. Label D 

displays the various trip identifiers, and Label E displays the speed profile. The GPS 

coordinates are found to be slightly off, which may affect the data collection's 

synchronization. The spikes in the z-coordinate of the gyroscope data correspond to the 

various turns made during the journey. Additionally, the orientation of the spikes indicated 

whether the turn was a left or a right. The spikes in the accelerometer reading 

(accelerometer z) correspond to extremely rough sections of the roadway. 
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Figure 2.7: A dashboard showing data synchronization 
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2.5 Applications of Data Collected from The App 

The app collects a variety of data, including accelerometer and gyroscope readings, 

roadway video, and GPS location data. This section discusses some of the possible uses for 

the app's data. 

2.5.1 Estimating Road roughness index (IRI)  

Several approaches have been used to develop relationships between accelerometer 

readings and actual IRI values of road sections. In some studies, the accelerometer readings 

were transformed into RMS values and then regressed against known IRI values for the 

road section [Hanson et al. (2014); Zeng et al. (2018)]. Few studies used deep learning 

approach to develop a model to assess the roughness of a road surface [Attoh-Okine (1994); 

Alinizzi et al. (2017); Cha et al. (2017); Hossain et al. (2019)]. In this study, a deep learning 

approach with entity embeddings was used to predict IRI values of road sections. Entity 

embedding allows for both continuous and categorical variables to be fitted with different 

functions unlike the traditional approach where both variables were fitted with the same 

function. This increases the learning ability of the categorical variable. The categorical 

variable used in this proposed model was the speed of the vehicle. The methodological 

framework is shown in Fig. 8 below. 

 

Figure 2.8: Methodology flowchart 
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2.5.1.1 Data collection 

The accelerometer, gyroscope, and speed data collected by the app was used in the 

study to forecast IRI values for road segments. The smartphone was mounted on the 

vehicle's windscreen during data collection. The study also obtained ground truth IRI 

values from the MoDOT's ARAN viewer portal shown in Figure 2.9. The portal includes 

three tabs for pavement information: Condition, IRI, and Rut. Each tab contains records 

spanning the years 2009 to 2019. The portal includes a search box for locating roadways 

with relevant pavement information. To select a section of a roadway, the information for 

the road section's Start log (Begin log) and End log is entered in the search boxes shown 

in Figure 2.9.  

 

Figure 2.9: The MoDOT ARAN viewer portal [8] 

 

2.5.1.2 Data preprocessing 

The first step of the data preprocessing was reducing the noise in the accelerometer 

and gyroscope data using simple moving average. The accelerometer data together with 
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the gyroscope information were processed using EMD. The EMD algorithm is used for 

analyzing nonstationary and nonlinear signals. It decomposes the input signal into several 

intrinsic mode functions (IMFs) through an iterative sifting procedure as summarized in 

the flowchart in Figure 2.10. The IMFs (shown in Figure 2.11(a)) presents low-high 

resolution information within the dataset. The low-resolution information usually 

characterizes general terrain information (hills and valleys). Roughness information is 

characterized by high–medium resolution IMFs. Further analysis of the high and medium 

IMFs resulting from the EMD yields information that is relevant for characterizing the 

relationship between accelerometer readings and the IRI-based pavement condition 

information. In this study, the range of frequencies contained in each IMF were further 

analyzed via the Fourier transform. Figure 2.11(b) is a power spectral density (PSD) 

showing the strength or power for the range of frequencies contained in the different IMFs. 

Different parameters were extracted from the PSD diagram to generate the dataset used for 

model training and validation. The parameters calculated included: the total area under the 

PSD, maximum power, the frequency corresponding to the maximum power, and other 

shown in Tables 2.1 and 2.2. A snapshot of the processed data that was used for the model 

development is shown in Table 2.1. Table 2.2 provides meanings to the column names. In 

Table 2.1, each row of the data represents averaged information per 1/10th of a mile. 
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Figure 2.10. A flowchart of EMD algorithm 

 

Figure 2.11a – 2.11b. a) Plot of the highest frequency modes. b) Plot of IMFs after 

the EMD 
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Table 2. 1: Data for model development 

 

Table 2. 2: Input variables and meaning 

Variable Meaning (averaged per 1/10th of a mile) 

Speed The average speed of the vehicle  

Dominant frequency The frequency corresponding to the highest squared amplitude   

Mean frequency The average frequency for road section  

Std_frequency  The standard deviation of the frequencies of the selected road section 

Maximum power The maximum of amplitudes squared for road section 

Mean power The average power for a selected road section 

Std_Power Standard deviation of the average power for a selected road section 

Strength  The product of the dominant frequency and the maximum power 

AUC The total area under the PSD 

SUM Spatial acceleration 

Rut The Rut value of the road section from MODOT ARAN Viewer 

Condition The Condition value of the road section from MODOT ARAN 

Viewer 

IRI The IRI value of the road section from MODOT ARAN Viewer 

 

2.5.1.3 Model development 

The study utilizes a TabNet model from the Fastai libraries. Fastai is a deep learning 

framework built on top of PyTorch's libraries. The model was trained on an NVIDIA GTX 
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1080ti GPU. The number of training sample was 432. Due to the small size of the dataset, 

it was divided into ratios of 0.80:0.10:0.10, with each ratio representing the training, 

validation, and testing datasets, respectively. The root-mean-squared-percentage-error 

(RMSPE) metric was used to evaluate the performance of the developed model. The 

RMSPE was calculated by subtracting the predicted IRI value from the actual IRI value for 

each prediction and expressing the result as a percentage. Figure 2.12 shows a convergence 

plot of the training and validation loss for the selected attributes. The plot demonstrates 

that the developed model is capable of rapidly learning the underlying relationships in the 

dataset. The RMSPE was approximately 0.174 after 18 iterations. This indicates that the 

error associated with predicting with this model was approximately 17.4 percent. The 

developed model had training and validation losses of 0.015 and 0.032, respectively.  

 

Figure 2.12: A plot of training and validation losses of the proposed model 

The model was used to estimate the IRI values of the test data. The average-root-

mean-squared-error (ARMSE) of the test prediction was 5.6. This means that our 

predictions are 5.6 units off the mark when compared to the actual IRI estimates provided 

by road profilers. Furthermore, the root-mean-square-percentage-error (RMSPE) metric 
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indicates that the model's predictions were approximately 17% off target IRI values. As 

illustrated in Figure 2.13a, the road conditions' trends and amplitudes are correctly 

matched. As illustrated in Figure 2.13b, there is a linear relationship between the true and 

predicted IRI values. The r-squared value of the linear plot was 0.79. This indicates that 

the true and predicted IRI values are highly correlated.   

 

Figure 2.13a and 2.13b. Proposed Model Performance: a). A Plot of True IRI values 

and Predicted IRI values and b). Scatter Plot of True IRI values against Predicted 

IRI values 

2.5.1.4 Model application 

The developed model will assist various state departments of transportation in 

assessing the roughness of road surfaces on a regular basis. This will assist them in 

prioritizing road maintenance operations. 

2.5.2 Pavement Distress Detection 

Pavement distresses pose a potential threat to the safety of road users. As a result, 

detecting distresses in a timely manner is regarded as one of the most important steps in 

limiting further degradation of pavement surfaces. To make the best use of financial 

resources, it is necessary to assess the condition of pavement surfaces on a regular basis 

and keep up with maintenance. As a result, the study developed a pavement distress 



34 
 

detection model using video images collected by the develop app. We learned the visual 

and textual patterns associated with the various types of distress using a single-stage object 

detection algorithm, You Only Look Once (YOLOv5) algorithm. The framework for 

achieving this objective is shown in Figure 2.14. 

 

Figure 2.14: Methodology flowchart 

 

2.5.2.1 Data preprocessing 

As one drives with a smartphone mounted on the dashboard of the vehicle, the rear 

camera captures both the road surface and the vehicle's surroundings. The rear video 

footage is converted to still images. Distresses found on the images are then annotated with 

bounding boxes.  

 2.5.2.2 Model development 

The state-of-the-art object detection model YOLOv5 was used in building the 

pavement distress model. YOLOv5 is the most recent version of the YOLO series and is a 

state-of-the-art single stage object detection algorithm. The YOLOv5 network is divided 

into three distinct components: the Backbone, the Neck, and the Head. The Backbone is a 

convolutional neural network that bundles and shapes image representational features at 

varying granularities. The neck of the architecture is composed of a series of layers that 
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combine and integrate image representational features in order to advance to prediction. 

Similarly, the head makes use of neck-derived features and acquires box and class 

prediction functionality. Within YOLOv5, the CSPDarknet53 backbone contains 29 

convolutional layers 3x3, a receptive field size of 725x725, and an overall parameter count 

of 27.6 M. Additionally, the SPP block attached to YOLO's CSPDarknet53 increases the 

proportion of receptive fields without impairing its operation. Similarly, feature 

aggregation is accomplished via PANet, which makes use of multiple backbone levels. 

YOLOv5 pushes the envelope of efficiency by incorporating features such as weighted 

residual connections, cross-stage partial connections, cross mini-batch, normalization, and 

self-adversarial training. In this study, we used the PyTorch framework to train and deploy 

our YOLOv5 model. To improve the YOLOv5 model's performance in detecting vehicles, 

the following hyperparameters are adjusted: 64-batch size, 0.0005 decay rate for the 

optimizer's weights, 0.01 initial learning rate, and 0.937 momentum. 

The model was trained using 3,000 images obtained from the developed app and 

tested on 800 images. Four pavement distress types were annotated in this study. They are 

longitudinal crack (D00), transverse crack (D10), alligator crack (D20), and pothole (D40). 

The 3,000 images were distributed as follows: D00-900 samples, D10-836 samples, D20-

614 samples, and D40-650 samples. We assessed the performance of the model using 

precision (P), F1 score (F1), and recall value (R). The F-1 score is the harmonic average of 

the recall and precision values. Precision is defined as the ratio of true positives (tp) to all 

predicted positives (tp+fp). Similarly, recall is the ratio of true positives to all true positives 

(tp+fn). The model was trained for 4-hours using an NVIDIA GTX 1080ti GPU. 
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After 1000 iterations, the results summary is shown in Figure 2.15. The training 

and validation losses converged after 500 iterations as shown in Figure 2.15a and Figure 

2.15b respectively. Also, the best precision and recall values were obtained around the 

500ith iteration shown in Figure 2.15c and Figure 2.15d respectively.  

 

 

Figure 2.15: Results from model training a) Training loss, b) Validation loss, c) 

Precision and d) Recall 

As shown in Table 2.3, the precision scores for all distress types of range between 

0.65 and 0.82, while the recall values range between 0.58 and 0.61. Distress type D00 had 

the highest precision score of 0.82 and recall value of 0.61. The overall F1 score for the 

developed model was 0.68. 

Table 2. 3: Precision, Recall, F1-score values for the various distress types. 

Distress Type Precision Recall F1-score 

D00 0.82 0.61 0.70 

D10 0.73 0.59 0.65 

D20 0.65 0.60 0.62 

D40 0.67 0.58 0.62 
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Figure 2.16 shows detected pavement distresses from road images. Three 

pavement distresses were detected in this figure. They are designated as longitudinal crack 

(D00-red bounding box), alligator crack (D20-blue bounding box), and pothole (D40-green 

bounding box). The results show that the app can produce high resolution videos images 

that can be used by the current generation of machine learning algorithms for pavement 

evaluation.  

 

Figure 2.16: Pavement distresses detected from video data 

2.5.2.3 Model Application  

The developed model will be beneficial to both the state and federal Departments 

of Transportation to detect and assess the severity of the detected distress. This will aid in 

the timely repair of death trapping distress on the roadway. 

2.5.3 Naturalistic Driving Studies 
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Naturalistic driving studies (NDS) are cutting-edge research techniques that 

involve continuously recording driving data in real-world driving conditions using 

advanced instrumentation. NDSs enable the assessment of driving risks that would 

otherwise be impossible to assess using traditional crash databases or experimental 

methods (Guo, 2019). The NDS findings have a significant impact on policy making, safety 

research and development of safety countermeasures. The developed application in this 

study collects NDS data using iPhone’s dual camera system. One camera monitors the 

driver's environment outside the vehicle, while the other is used to record the driver's 

activities inside the vehicle as illustrated in Figure 2.17a and 2.17b. This setup enables us 

to visually identify traffic incidents and correlate them to specific driving behaviors (driver 

sleeping, distracted, using phone, etc.).  

 

a                                             b 

Figure 2.17: a) Back camera recording activities outside the vehicle b) Front camera 

recording activities inside the vehicle (face of driver masked).  

The objective of this task is to develop a model for automatically detecting driving 

events from naturalistic driving videos. To achieve this objective, we formulated the 

problem as a time series segmentation and classification problem. The segmentation task 
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was achieved by developing a novel segmentation algorithm that utilizes the principle of 

energy maximization to detect the start and end of any driving event from the telemetry 

data (gyroscope in the z-direction). This step was necessary to facilitate and expedite the 

annotation of driving events. All annotated driving events were standardized to a fixed 

length before feeding it to the model. Seven main classes of events were defined: lane 

changing (left and right), driver stopped, left turns, left curves, right turns, right curves, 

and lane-keeping. The model was trained with 86,000 training samples using NVIDIA 

GTX 1080ti GPU. We used a 50:50 split for model training and testing. The training data 

was fed through a multi-layered LSTM consisting of 30 hidden layers and 5 LSTM layers.  

A convergence plot of the training and validation loss is shown in Figure 2.18.  

After 4000 iterations, the model’s accuracy was approximately 94%. This implies that 94% 

of the time, the model can predict accurately the driving maneuvers of a vehicle. The 

training and validation losses of the developed model were 0.1402 and 0.2703 respectively. 

This means that the model is overfitting the training data, but it is not able to generalize 

correctly to validation data. 

 

Figure 2.18: A plot of training and validation losses of the Proposed model 
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The developed models were evaluated using accuracy and precision. Accuracy was 

computed as the ratio of the true positive (TP) predictions to the sum of true positives (TP) 

and true negative (TN) predictions expressed as a percentage. Precision, on the other hand 

was computed as the number of true positives divided by the total number of true positives 

and false positives predictions.  

From Table 2.4, precision scores range between 0.889 and 0.978 for all types of 

driving maneuvers, while recall values range between 0.898 and 0.962. Left turns achieved 

the highest precision of 0.978, while right turns achieved the highest recall of 0.962. Right 

lane changes, on the other hand, had the lowest precision score of 0.889, while left lane 

changes had the lowest recall score of 0.898. Overall, the model received an F1 score of 

0.936. The precision, recall, and f1 score of all driving maneuvers are summarized in Table 

4. 

Table 2. 4: Precision, Recall, F1-score values for the various driving events. 

Driving Maneuvers  Performance matrix  

  Precision  Recall  F1 score 

Right turn  0.945  0.921  0.932  

Left turn  0.978  0.942  0.960  

Right curve  0.969  0.962  0.965  

Left curve  0.943  0.929  0.936  

Right lane   change  0.889  0.901  0.895  

Left lane change  0.907  0.898  0.902  

Lane keeping  0.949  0.938  0.943  

Stop  0.961  0.944  0.952  
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2.6 Conclusion 

This study developed and deployed a mobile application for collecting data for 

multiple applications including road condition evaluation, naturalistic driving studies, etc. 

The app collects road surface data via in-built smartphone sensors. The data can be 

streamed directly to a cloud-based database or stored in the app's library and uploaded to 

cloud storage at a later time if Wi-Fi is unavailable. The app's settings allow users to change 

the sampling frequency and frame rate during data collection. Additionally, while driving, 

the app is able to display the accelerometer readings on the video tab interface.  

The application was developed using a modular approach. The design framework 

of this app is composed of three major modules: a frontend user interface (UI) component, 

a sensor component, and a backend component. 

The app's functionality was evaluated by collecting data on the road surface on the 

I-70 W highway connecting Columbia, Missouri and Kansas City. The collected data was 

used to build a predictive model for estimating IRI values using a deep learning 

architecture. The accuracy of the model was used as a proxy for the quality of data collected 

by the app. ARMSE, R-squared, and RMSPE were used as metrics for evaluation. The 

model predictions indicate that the predicted IRI values from the smartphone data are 

comparable to those estimated using high-end machines such as the ARAN van. When the 

predicted IRI values were compared to the ground truth IRI values, a goodness-of-fit value 

of 0.79 was obtained. This demonstrates a high degree of correlation between them. Also, 

the video information from the app was used to identify pavement distresses. The pavement 

distress model was developed using state-of-the-art object detection model YOLOv5. The 

model achieves reasonably low training loss during the training of the model. The 
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developed distress model demonstrated acceptably high predictive performance on the test 

dataset. While there were some false alarms, they were caused by dashboard cracks that 

resembled distress signals. Finally, information from the gyroscope and the accelerometer 

readings were used to determine the turning and lane-changing maneuvers of vehicles. The 

shapes of driving events were extracted from the gyroscope signal and annotated. The 

annotated data was used to train the vehicle maneuver, detection model. The model was 

developed using the LSTM architecture. The training results show that the model was able 

to learn to differentiate between the various signals associated with the various driving 

maneuvers. During training, the model's overall accuracy was 94%. When tested, the 

model's accuracy ranged from 93% to 97% for detecting various driving events. 

In a nutshell, when tested, the developed mobile application for collecting road 

surface information and estimating road surface roughness demonstrated a high degree of 

potential for producing accurate and reliable results.  

2.6.1 Limitations and Recommendations 

The developed roughness app's future updates should address the following limitations.  

• The first constraint is that the app was designed exclusively for the iOS operating 

system. Given the large number of Android users, the app's next update should include 

support for the Android operating system.  

• Additionally, when used, the app does not provide IRI values directly. Future 

updates should incorporate the developed deep learning model into the backend, allowing 

the app to directly predict the IRI value of road sections in real-time while in use. 

• Another limitation observed is that the GPS coordinates are slightly off as shown 

in Figure 2.7. Next update of the app will have an improved GPS. 
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CHAPTER 3: DRIVER MANEUVER DETECTION AND 

ANALYSIS USING TIME SERIES SEGMENTATION AND 

CLASSIFICATION 

3.1 Introduction 

Road crashes result in more than a million fatalities worldwide each year; on 

average nearly four thousand people lose their lives every day on roads (ASIRT, 2021). It 

is predicted that road fatalities will continue to rise to become the fifth leading cause of 

death in the world by 2030 (Global Status Report on Road Safety, 2021). In fact, road 

traffic crashes are a leading cause of death in the United States for people aged 1-54 

(ASIRT, 2021). Studies have shown that about 50% of fatal road accidents are due to 

unsafe driving behaviors (Global Status Report on Road Safety, 2021). Our ability to detect 

and characterize these unsafe behaviors in naturalistic driving settings and associate them 

with road accidents will be a major step toward developing effective crash 

countermeasures.  

Large-scale naturalistic driving studies are designed to provide insight into pre-

crash causal and contributing factors. A review of the data collected from these studies can 

be used to extract detailed driver behavior, performance, environment information that can 

be associated with crashes and near crashes. NHTSA’s 100-car NDS study (100-Car 

Naturalistic Driving Study, 2006) was the first of many (Antin et al. 2019; Barnard et al. 

2016.; Charlton et al. 2019; Fridman et al. 2019; Larue et al. 2018) to simultaneously 

collect video, radar, and vehicle telemetry data from a large variety of drivers under 

naturalistic driving settings. To leverage this data for developing effective crash 
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countermeasures, there is a need to annotate different types of driving events or behaviors 

and associate them with critical incidents, near crashes or crashes. To date, the process of 

driving event extraction from NDS data has been performed by a mixture of manual and 

semi-automated processes. The size of these datasets typically ranges between hundreds of 

terabytes to several petabytes depending on video compression rates. Therefore, relying on 

manual processing methods can be labor intensive and very expensive to scale. There is a 

need to develop algorithms that can ingest multi-modal NDS data and accurately annotate 

different driving events useful for understanding crash causality. As a result, this paper 

develops an end-to-end, fully automated pipeline for frame-by-frame detection and 

analysis of driver maneuvers from naturalistic driving videos and kinematic data. Our aim 

is to extract eight driving events that are critical in developing crash countermeasures: stop 

and lane keeping events, left-right lane changes, left-right turning movements and left-right 

horizontal curve maneuvers. 

Existing algorithms developed for extracting driving maneuvers from NDS data 

can be grouped into two main categories: rule-based, pattern matching and or machine 

learning approaches. A rule-based algorithm is a collection of decision rules that facilitate 

the detection of various driving events. For instance, to distinguish between an aggressive 

turn and a normal turn, consider the following: if the vehicle’s heading is greater than 30 

degrees, the turn is considered aggressive; otherwise, the turn is considered normal 

(Saiprasert et al. 2013). Additionally, (Panichpapiboon and Leakkawn, 2020) used a rule-

based algorithm to detect lane changing events. The study indicates that the lane change 

maneuvers will occur in three phases. The first phase is lane departure, followed by the 

“into” phase during which the vehicle enters the new lane, and finally the lane keeping 
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phase during which the vehicle returns to its original position. An advantage of using this 

approach is that it does not require labeling of the dataset. The second class of algorithms 

used are pattern recognition or matching based. Algorithms are designed to extract driving 

events in vehicle telemetry data through a matching process against a ground-truth database 

of referenced driving maneuvers. The matching process is usually implemented via 

dynamic time warping (DTW), which compares the similarity of an incoming signal to that 

of a reference signal by computing a cost matrix in the form of Euclidean distance between 

pairwise points (Atia et al. 2017; Panichpapiboon and Leakkawn, 2020; Saiprasert et al. 

2017). The reference signal corresponding to the optimal or lowest cost path is selected as 

the detected driving event for the incoming or unknown signal. One of the main advantages 

of this technique is the ability to compare compressed and stretched portions of two signals 

while accounting for signal length differences.   

Most recent studies (Bakhit et al. 2017; Kumar et al. 2013; Mandalia and Salvucci 

2005; Yang et al. 2017; Zheng et al. 2014) have explored the use of both shallow and deep 

machine learning models for driving maneuver detection and have obtain accuracies 

between 70 percent and 98 percent. The machine learning algorithms could either be 

supervised as in support vector machine (SVM), artificial neural networks (ANN), and 

Long-short-term-memory (LSTM) or unsupervised as in k-means (Bejani et al. 2019; 

Bhoraskar et al. 2012; Carvalho et al. 2017; Júnior et al. 2017; Li et al. 2021; Yu et al. 

2016.). Supervised learning algorithms learn and classify events based on ground truth 

information whereas the unsupervised learning algorithms analyze and cluster unlabeled 

datasets. The advantages of using ML algorithms in solving these problems are that they 
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aid in the automation of the process of detecting driving maneuvers and produces more 

reliable models. 

3.1.1 Motivation 

Despite significant progress and appreciable maneuver detection accuracies 

attained especially from ML-based algorithms, there are still open challenges that remain 

unsolved. First, all previous ML-based studies have treated vehicle maneuver detection as 

a time series classification problem. A major challenge that is not addressed by recent 

approaches is time series segmentation. This is an important step that should precede the 

development of ML classifiers: it separates any raw, continuous vehicle telemetry signal 

into a finite set of discrete events and anomalies with unique characteristics that can be 

used to train ML models for maneuver detection. The time series segmentation problem is 

straightforward if all the events contained in the continuous signal have a fixed duration: 

A simple, moving window with fixed time window could be used to define the start and 

end of each event. For NDS data however, the duration, frequency and amplitudes of events 

may vary significantly depending on the speed of the vehicle, type of sensor, driving 

behavior and type of event (lane change or turning movement). A robust time series 

segmentation algorithm is therefore needed to extract unique events that are needed to train 

and test ML algorithms for maneuver detection. Second, the robustness and transferability 

of models developed for maneuver detection have not been well tested: the size of data, 

number of drivers and events are usually not large enough to deduce the best performing 

models, or architectures needed for accurate detection of driver maneuvers. For example, 

Mandalia and Salvucci (2005) and Yang et al. (2017) reports high accuracies for only 4-
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431 drivers driving 8-80.4 km in the study. Studies have also evaluated these models on 

only one type of hardware acquisition systems: OBD or mobile phone.    

3.1.2 Objectives 

As a result of the above limitations, the study develops an end-to-end pipeline for 

automatic, frame-by-frame labelling of NDS videos into various driving events by using 

vehicle telemetry data. To achieve this goal, we formulated the problem as a time series 

segmentation and classification problem. The segmentation task was achieved by 

developing a novel segmentation algorithm that utilizes the principle of energy 

maximization to detect the start and end of any driving event. Furthermore, the 

performance of both shallow and deep machine learning models for characterizing different 

types of drivers’ maneuvers are evaluated using a large database of NDS data (200 hours 

of video and vehicle telemetry data) from three different studies: SHRP2 (Antin et al. 

2019), Nebraska Medical Center (Drincic et al. 2020.), and a mobile application (Aboah et 

al. 2021).  Annotating data from multiple sources enables us to evaluate the transferability 

of the segmentation and classification algorithms developed.  

The rest of this Chapter is structured as follows. A review of relevant literature is 

discussed in section two. Section three presents the data collection approach and problem 

statement. The methodology used in this study is presented in section four. Section five 

presents the results and discussion of the study. The study presents its conclusion and 

recommendation in section six. 
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3.2 Literature Review 

This section first discusses the major naturalistic driving studies that have been 

conducted for the purpose of understanding driver behavior. Next, we review the different 

types of kinematic variables that has been used in related studies to detect and analyze 

driving maneuvers from vehicle on-board diagnostics (OBD) or mobile phone sensors. The 

last section of the review discusses different machine learning, computer vision and pattern 

recognition algorithms that have been developed for maneuver detection.  We explore the 

strengths, limitations, as well as the practical implementation of these algorithms.  

3.2.1 Naturalistic Driving Studies 

The 100-car NDS study is the first to collect extensive data on naturalistic driving 

of many drivers over an extended period. The primary goal of the study was to provide 

information about crashes and pre-crash events through the use of environmental and 

sensor data (100-Car Naturalistic Driving Study, 2006). About 100 passenger vehicles were 

retrofitted with a data acquisition system consisting of five cameras, a doppler radar 

antenna, a GPS, accelerometer, alcohol sensor, and an incident push button to continuously 

collect data under naturalistic driving settings. The study generated petabytes of data from 

241 primary and secondary drivers, with about 43,000 hours of video data and over 3.1 

million vehicle kilometers driven. The study captured many extreme cases of driving 

behavior including severe drowsiness, impairment, judgment error, risk taking, willingness 

to engage in secondary tasks, aggressive driving, and traffic violations.  

The Canadian Driving Research Initiative for Vehicular Safety in the Elderly 

(Candrive) conducted a similar but much larger study, with over 256 drivers, 80.5 million 

vehicle kilometers driven and 5 million hours of video—a total of approximately 2 
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petabytes of compressed data. The primary objective of the study was to identify 

prospectively older drivers who were medically unfit to drive (Charlton et al. 2019). In 

addition to recorded videos, the study monitored participants' driving patterns by recording 

location data from a GPS, vehicle's speed, the position of the gas pedal, the engine's speed, 

and the air temperature. The study found out that elderly citizen that traveled low mileage 

were less prone to vehicle crashes. The European Naturalistic Driving (UDRIVE) also 

designed a similar study to collect data on road user behavior in various European regions 

under normal and near-crash conditions (Barnard et al. 2016.). The study retrofitted 

vehicles and scooters with DAS consisting of Mobile eye smart cameras, IMU sensors, 

GPS, CAN data, and a sound level sensor. The type of DAS was slightly modified base on 

the vehicle type. For example, trucks had 8 cameras instead of 5 cameras for passenger 

cars. The study collected a total of 87,871 hours of video data. The Australian Naturalistic 

Driving Study (ANDS) aims to improve understanding of how people behave in routine 

and safety-critical driving situations (Larue et al. 2018). The data for this study were 

gathered over a four-month period. The researchers recruited 360 volunteer drivers (180 

from New South Wales and 180 from Victoria) and installed a data collection system in 

their private vehicle. The DAS is analogous to (Antin et al. 2019). The study found out that 

about 45 percent of the time, drivers were distracted behind the wheel.  Lastly but not the 

least, we discuss the MIT Advanced Vehicle Technology (MIT-AVT) which aims to set 

the bar for the next generation of NDS programs by leveraging large-scale computer vision 

analysis for human behavior (Fridman et al. 2019.). The DAS used in this study is 

comprised of an IMU, GPS, and CAN messages, as well as three high-definition cameras. 

The research is currently ongoing and will broaden in scope in the future. 122 individuals 
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have taken part, 15610 days have passed, 823401.5 kilometers have been traveled, and 7.1 

billion video frames have been collected. The preliminary result from the study indicates 

that drivers tend to look at things that non-related to driving more often whiles driving.  

Lastly, prior NDS emphasized vision-based approaches exclusively, omitting critical 

psychophysiological factors such as cognition and emotion due to technological and 

computing constraints (Tavakoli and Heydarian 2021). The primary objective of this study 

was to establish a human-centered multimodal naturalistic driving study in which driver 

behaviors and states are monitored using in-cabin and outside video streams, physiological 

signals such as driver heart rate and hand acceleration (IMU data), ambient noise, light, the 

vehicle's GPS location, and music logs with song features. This study is currently ongoing 

with no publication on the outcomes of their study. 

3.2.1 Kinematic Variables for Detecting Driving Maneuvers 

Recent car models have OBDs that are able to transmit high resolution vehicle 

kinematic information in fractions of a second. Several studies have also explored 

extracting and analyzing kinematic data from smartphone which tend to have a high 

penetration rate. Kinematic parameters such as acceleration, deceleration, orientation, yaw 

rate, and time to collision (TTC) are frequently used in research to identify driving events 

(Benmimoun et al. 2011; Hankey et al. 2016; McGehee et al. 2007; Lerner et al. 2010; 

Olson et al. 2009; Pilgerstorfer et al. 2012). The authors of Benmimoun et al. (2011), 

Hankey et al. (2016), McGehee et al. (2007), Lerner et al. (2010), Olson et al. (2009), 

Pilgerstorfer et al. (2012) used these parameters to examine vehicle maneuvers from NDS 

data. Benmimoun et al. (2011), Hankey et al. (2016), and McGehee et al. (2007) used 

accelerometer values to detect driving behaviors of young teens such as improper turns and 
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curve using a rule-based approach. Olson et al. (2009) used TTC as a surrogate to measure 

changes in safety of the driver using rule-based approach. Pilgerstorfer et al. (2012) used 

lateral and longitudinal acceleration as well as TTC to assess the triggered events of truck 

drivers. Bogard (1999) used GPS data to detect lane changes. Xuan and Coifman (2006) 

proposed a similar technique for detecting lane changes by analyzing differential global 

positioning system (DGPS) data for the vehicle's lateral position instead. Although these 

are promising and much straightforward, the GPS precision levels required are not 

attainable from the current generation of mobile sensors. Miller et al. (2005) in a study 

used yaw rate to identify lane changing maneuvers made by heavy vehicles. The 

researchers hypothesized that changing lanes would produce a yaw rate signal similar to 

that produced by a noisy sine wave. A study conducted by Ayres et al. (2004) examined 

both the vehicle’s velocity and yaw rate as potential variables by using a rule-based 

approach in detecting turns, lane changes, and curves on various types of roads. Li et al. 

(2021) developed a machine learning model to detect various driving maneuvers using 

accelerometer and gyroscope reading using a semi-supervised machine learning algorithm. 

3.2.3 Approaches for Detecting Driving Maneuvers 

The approaches used in various literature for detecting driving maneuvers can be 

group into three categories: vision-based approaches, patten or rule-based approaches and 

machine learning approaches.  

All vision-based approaches begin by detecting road markings before determining 

any driving maneuver. The color difference between lane markings and road surfaces 

defines the edge, gradient, and intensity of road features used for lane detection (Gao et al. 

2009; Xu et al. 2009). Many researchers have used edge information to find straight lines 
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that could be lane markings in a vision-based approach to identify various driving 

maneuvers (Xu et al. 2009). A B-spline is a popular mathematical model (Li et al. 2014; 

Son et al. 2015) which uses potential points derived from the lane markings to detect road 

lanes. Son et al. (2015) employs Kalman filter in tandem with a B-spline to detect lane 

markings. The B-spline is also commonly used to convert RGB data to HSI or custom color 

spaces (Rotaru et al. 2008) or color features (Mohamed et al. 2015). Among the feature-

based lane detection approaches are artificial neuron networks (Mohamed et al. 2015), 

histogram of oriented gradients (HOG) (Naiel et al. 2014), and support vector machine 

(SVM) classifier (Mandalia and Salvucci 2005). Although these studies produced excellent 

results, they do have some limitations. First, these classes of algorithms are heavily reliant 

on visible road markings for driver maneuver detection. Their performance suffers in the 

absence of lane markings, or when lane marking retroreflectivity is low. Also, vision-based 

approaches are affected by video quality and driving environment including weather 

conditions. The resolution of most NDS datasets is usually low due to high compression 

rates. Robust image enhancement techniques are needed to achieve modest performance 

for maneuver detection.  

A wide variety of machine learning approaches have been used in literature for 

detecting driving maneuvers. Li et al., (2021) proposed a semi-supervised LSTM model to 

detect driving maneuvers. In their study, three long short-term memory (LSTM) models 

were built and trained to evaluate the proposed semi-supervised learning algorithm. 

According to the experimental results, the proposed semi-supervised LSTM could learn 

from unlabeled data and deliver impressive results with only a small amount of labeled 

data. The study compared the performance of the proposed method to other machine 



58 
 

learning models. When compared, the proposed model outperformed existing machine 

learning techniques such as convolutional neural networks, XGBoost, and random forests 

on several measures, including accuracy, recall, F1-score, and area under the curve. The 

overall accuracy of the developed model was 99.7%. Bhoraskar et al., (2012) used support 

vector machine (SVM) to detect braking and road bumps using accelerometer, GPS, and 

magnetometer data collected by a smartphone and achieved an overall accuracy of 78.37%. 

Júnior et al., (2017) evaluated the performance of multiple machine learning algorithms for 

detecting driving maneuvers (e.g., aggressive braking, acceleration, left turn, right turn) by 

using the area under the curve as a performance measure. The study found out that random 

forest outperformed other algorithms including SVM and Bayesian network with an 

accuracy of 99.1%. Yu et al. (2021) employed a fully connected neural network to detect 

driving maneuvers such as weaving, swerving, and quick braking using the accelerometer 

and rotation sensors of a smartphone. The findings indicated that the neural network 

(95.36%) performed more accurately than the SVM (90.34%) at classifying driving events. 

Bejani et al. (2019) used a convolutional neural network (CNN) to rate drivers as safe or 

dangerous based on accelerometer data from their smartphone. The findings demonstrated 

that CNN was capable of accurately classifying diverse driving styles with the use of 

regularization terms. The developed model achieved an overall accuracy of 95%. Carvalho 

et al. (2017) used recurrent neural networks to explore the detection of driving movements 

(RNNs). Unlike CNN, RNN was developed to learn from time series data and has shown 

potential. The authors compared the performance of a variety of RNN architectures, 

including long short-term memory (LSTM), gated recurrent unit (GRU), and standard 

RNN. The findings suggested that LSTM (99.7%) and GRU (99.2%) achieved equivalent 
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results and outperformed traditional RNNs (93%) in recognizing different driving 

maneuvers accurately. 

Some studies have also used rule-based and pattern matching algorithms to detect 

various driving maneuvers. Saiprasert et al. (2017) proposed both a ruled-based and pattern 

matching-based algorithms to detect aggressive and normal driving maneuvers. The study 

concludes that the pattern matching algorithm outperforms the rule-based algorithm in 

detecting driving maneuvers. (Sun et al. 2021) combined a dynamic time warping (DTW) 

and bagging tree algorithm to driving events using accelerometer and gyroscope data 

collected by a smartphone. Atia et al. (2017) compared the performance of K-nearest 

neighbor and dynamic time warping (DTW) algorithm in detecting various driving 

maneuvers. The results from the study indicate that k-NN achieved the best accuracy to 

differentiate between road anomalies and driving behaviors whereas DTW achieved the 

best accuracy in driving turn behavior classification. 

Table 3.1 summarizes the literature by examining various studies, the algorithms 

that were used, and the kinematic variables that were used. 

Table 3. 1: Literature Summary  

Papers Algorithm Kinematic Variable Driving Event 

Detection 

(Miller et 

al. 2005) 

Frequency 

Thresholding 

Yaw Rate Lane changes 

(Nhtsa, 

1999) 

Rule-based 

algorithm  

road’s curvature Lane keeping 
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(Ayres et 

al., 2004) 

Algorithm Tunning Yaw rate, Speed Turns, curves, and lane 

change 

(Xuan & 

Coifman, 

2006) 

Pattern Matching Differential global 

positioning System 

(DGPS) 

Lane changes 

(P. Li et 

al., 2021) 

Semi-Supervised 

LSTM 

Accelerometer, 

Gyroscope 

Left-Right turns, Left-

Right Lane change 

(Bhoraskar 

et al. 2012) 

SVM Accelerometer, GPS, 

Magnetometer 

Break detection 

(Júnior et 

al., 2017) 

SVM, Bayesian 

Network, Random 

Forest, ANN 

Accelerometer, 

Magnetometer, GPS 

Aggressive-breaking, 

acceleration, left turn, 

right turn, left lane 

change, right lane 

change 

(Yu et al. 

2021) 

FCNN Accelerometer, Rotation 

Sensors 

U-turn, swerving, 

weaving, right turn, left 

turn 

(Bejani et 

al. 2019) 

CNN Accelerometer Normal drive, 

dangerous drive 

(Carvalho 

et al. 2017) 

RNN, LSTM, GRU Accelerometer Lane keeping, left turn, 

right turn, right lane 

change, left lane 

change 
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3.3 Data Collection 

Multiple streams of datasets were collected for this study. This include the 

Blackbox sensor data (Drincic et al. 2020), smartphone collected data (Aboah et al. 2021) 

and the VTTI NDS dataset (Antin et al. 2019). The Blackbox sensors developed by Digital 

Artefacts LLC were used to collect the data used in this study. The sensors were installed 

in individual personal vehicles to continuously record activities that occurred inside and 

outside of the vehicle. Multiple sensors, including GPS, accelerometer, wireless OBD, 

infrared, and high-resolution cameras, are embedded in the sensor instrumentation. As 

shown in Figure 3.1b, the windshield-mounted sensor package, which is mounted behind 

the rear-view mirror. Two cameras in the system continuously capture 1) a forward view 

of the vehicle and 2) a view of the driver and the interior of the vehicle. The driver's 

behavior is continuously recorded from the time the vehicle is turned on to the time it is 

turned off. The study included 77 participants who were observed over a three-month 

period. A total of 289681.9 kilometers of data was collected across the entire United States. 

This dataset contains far more detailed information on driver behavior across a wide range 

of geographic environments than laboratory-based or retrospective studies can. The study 

used a developed smartphone app to collect data on both freeways and local routes. The 

smartphone app interface is shown in Figure 3.1c. To collect data with the app, the mobile 

phone must first be mounted on the car's windscreen to record vehicle accelerations, 

rotations and some other relevant information. The video data was sampled at a frame rate 

of 10 frames per second, whereas the accelerometer and vehicle location data were 

collected at a frame rate of 30 samples per second (30 Hz).  
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Figure 3. 1.: a) The Positioning of the Blackbox sensors in the vehicle b) Example of 

the Blackbox sensor inside a vehicle c) Smartphone Data Collection App Interface 

3.3.1 Data Annotation 

To be build the benchmark dataset, the gyroscope readings were manually 

annotated concurrently with the driving video by noting the timestamps associated with 

each event in the driving video. That is, a human annotator watches the video and records 

the start and end timestamps of each event, after which the annotator assigns a class number 

to the corresponding timestamp in the signal dataset. Additionally, the study visualized 

both the annotated signal and the driving video concurrently to ensure that the annotations 

corresponded to the actual timestamp of the event. When it is determined that annotations 

do not correspond to actual events, they are corrected and re-visualized. This process is 

repeated until all annotations correspond to actual events occurring during the driving 

video. This method was used to obtain all ground truth labeling for the three NDS datasets 

that were used in this study. 

3.3.2 Data Cleaning and Preprocessing 

To reduce the amount of noise in the gyroscope data, a simple moving average 

technique was employed to smooth the signal. As illustrated by the following (Chen, 

Dongyao, et al.; Karatas, Cagdas, et al.; Kang, Lei, and Suman Banerjee; You, Chuang-

Wen, et al.) studies, preprocessed gyroscope signal results in gyroscope drift. The drift is 
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responsible for shifting the actual time at which an event occurred and becomes very 

critical when dealing with real-time alert systems. Therefore, the study examined the 

occurrence of these gyroscope drifts and determined that, due to the high sampling rate of 

our data, the drifts were small and, as a result, did not affect our proposed algorithm's 

performance for extracting driving events. From Figure 3.2 below, it can be seen that the 

gyroscope drift after preprocessing is very small and will have no effect on the study’s goal 

of extracting the various shapes that represent specific driving events using our proposed 

algorithm.  

 

Figure 3.2: A comparison of raw gyroscope data to processed gyroscope data 

 

3.3.3 Training and Validation Dataset for Developing the Classification Models 

The study used the Nebraska NDS dataset to develop all four models. All four 

models were trained on an NVIDIA GTX 1080ti GPU with 16,233 training samples. For 

all developed models, we used a 70:30 split for model training and validation. The training 

samples are distributed as follows; right turns- 4,362 samples, left turns- 3,968 samples, 

right curves- 2,051 samples, left curves- 1,947 samples, right lane change- 1,895 samples 

and left lane change- 2,010 samples. 
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3.4 Methodology 

3.4.1 Problem Formulation and Overview 

Most existing methods for driver maneuver detection formulates the problem 

purely as a classification problem, assuming a discretized input signal with known start 

and end locations for each event or segment. However, in practice, vehicle telemetry data 

used for detecting driver maneuvers are continuous, therefore, a fully automated driver 

maneuver detection system should implement solutions for both time series segmentation 

and classification. The method proposed in this paper maps a continuous sequence into a 

dense segmentation followed by event classification using machine learning and a heuristic 

algorithm.  

Specifically, let 𝑥 ∈ ℝ𝜏𝑆×𝐶 represent a vehicle telemetry dataset with C sensors or 

channels, sampling at a rate S for a period of 𝜏 minutes. Let 𝐯 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} be a 

video sequence of frames that corresponds to each sample in 𝑥.  The goal is to map 𝑥 into 

finite set of segments, ⌊𝜏 ∙ 𝑒⌋ where 𝑒 is the segmentation frequency. Compared to other 

segmentation approaches (Perslev et al., 2019.) where 𝑒 is fixed, in the current method, the 

parameter is variable and adaptively selected based on input signal features. Each segment 

is passed through a model 𝑓(𝜏 ∙ 𝑒; 𝜃): ℝ𝑇×𝑖×𝐶 → ℝ𝑇×𝐾 with parameters 𝜃 that maps each 

segment ⌊𝜏 ∙ 𝑒⌋ to one of 𝐾 class labels including: stop and lane keeping events, lane 

changes, left-right turning movements and horizontal curve maneuvers. Finally, frame-by-

frame annotation of video sequence is achieved by mapping classified segments to the 

image domain.   

The general methodology adopted for automatic detection of driver maneuvers 

consists of 5 distinct steps as shown in Figure 3.4. First, multi-modal data is pre-processed 
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and standardized, followed by segmentation of kinematic data into main driving events, 

anomalies and lane keeping events. Anomalies and lane keeping events are passed through 

a heuristic’s algorithm which further classifies these events into anomalies, stop and lane-

keeping events. Only driving events are passed through a machine learning classifier. By 

training only main driving events, the ML classifiers were able to learn the unique 

characteristics of lane changing and turning movement events without confusing them with 

other features such as lane-keeping, lane-incursions events and anomalies caused by road 

roughness or erratic driving behaviors. The outputs of the classifiers and heuristics are 

finally used for frame by frame driving event annotation of raw video feeds. Each step of 

the methodology is further discussed in the sections below. 

 

Figure 3. 3: Flowchart of Methodology 

 

3.4.2. Input Data Normalization 

Although previous studies used kinematic variables such as yaw rate, accelerometer 

readings to detect limited driving maneuvers, the current study determined that gyroscope 

reading (which measures the orientation and angular velocity of the vehicle), and the 

vehicle's speed data are the two key input variables that can be used to characterize all 

driving maneuvers consistently across different hardware measurement systems. The 

gyroscope readings (z-axis) were smoothed using a simple moving average and 
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subsequently feature-scaled with the mean normalization equation defined in Equation 1. 

The raw speed data will be used to develop heuristics for detecting lane keeping and 

stopped events whereas the standardized gyroscope readings are pushed through a time 

series segmentation algorithm for driving maneuver event detection.  

�̂� =  
𝑥𝑖−�̅�

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                            Equation 1 

Where 𝑥𝑖 is the gyroscope reading at timestamp 𝑖 , �̅� is the mean of all data, 𝑥𝑚𝑎𝑥 

is the maximum data value and 𝑥𝑚𝑖𝑛 is the minimum data value.  

3.4.3 Time Series Segmentation  

The segmentation step involves the extraction of driving events using the energy 

maximization algorithm (EMA).  The fundamental assumption driving EMA is that the 

sum of the energy from the start of an event will continuously increase until the end of the 

event is reached. At each time step, 𝑡 , we dilate a moving window at different rates of 𝑤. 

For each dilation rate, 𝑤𝑖, the energy of 𝑋 [𝑡 −
𝑤𝑖

2
: 𝑡 +

𝑤𝑖

2
], is computed using Equation 2. 

In Equation 2, the computed energies are scaled by a factor of  
𝑆

𝑁
. This factor takes into 

account the duration of the event (S) and the number of data points (N) in the signal so that 

events that are not fully captured but has a greater energy could be penalized.  

𝑒𝑛 =
𝑆

𝑁
∑ 𝑋[𝑛]2𝑛+1

𝑛=0                                                             Equation 2 

We then determine if an event is present based on the calculated energies. The 

dilation rate, 𝑤, increases by a factor of 0.25s and continues to dilate until the computed 

energy is a maxima, i.e., 𝐸𝑡−𝑛 ≤  𝐸𝑡 ≥  𝐸𝑡+𝑛.  If more than one maximum is detected, we 

use non-maximum suppression to remove overlapping signals. The whole process is 



67 
 

repeated for each time step until the final time step for the input signal. The output from 

the segmentation step is either an event or non-event as shown in Figure 3.5.  

 

 

Figure 3. 4: Segmentation of Signal into Events and Non-events  

 

Figure 3.6. shows an example of a time step 𝑡  and a plot of energies computed at 

different dilation rate, 𝑤. The step in performing the segmentation is summarized in Table 

3.2 below. Events detected through the energy-maximization process are events are passed 

through the ML models for classification into lane changes and turning movements. Non-

events are passed through a heuristics algorithm for classifying lane-keeping and stop 

events. 
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Figure 3. 5: An illustration of the dilating time window 

 

Table 3. 2: Pseudo code for Performing Event Segmentation 

Steps Energy Maximization Algorithm (EMA) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Require: 𝑥, ℎ𝑂: gyroscope and sampling frequency 

Require: 𝑤, 𝑑: window length and dilation threshold 

Require: 𝑑𝑠: dilation step 

        𝑡 ← 0 (Initialize timestep) 

        𝑖 ← 0(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝) 

         𝑒𝑚𝑎𝑥 ← [ ] − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑚𝑎𝑥𝑖𝑚𝑎𝑠 

        𝑥 ← 𝑓 (𝑥, 𝑤𝑠 =
ℎ𝑜

3⁄ ) (low pass filter input ) 

        Loop  

        While 𝑖 < 𝑑 do 

              𝑡 ← 𝑡 + 1; 𝑒 ← [ ] − initialize energy vector 

              𝑒𝑖 ←
𝑆

𝑁
∑ 𝑋[𝑛]2𝑛+1

𝑛=0  (Compute energy for each dilating window) 
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              if 𝑒𝑖−𝑛 ≤  𝑒𝑖 ≥  𝑒𝑖+𝑛.  Then 

                  𝑒𝑚𝑎𝑥[𝑡] = 𝑒𝑖 

              𝑖 ← 𝑖 + 𝑑𝑠 – (increment dilation, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 0.25𝑠𝑒𝑐.) 

        end while 

  �̂�𝒎𝒂𝒙, 𝒊𝒎𝒂𝒙 ← 𝛁𝑔(𝑒𝑚𝑎𝑥, 𝑖) − compute gradient and apply non −

maximum suppression 

 Output: �̂�𝒎𝒂𝒙, 𝒊𝒎𝒂𝒙 ← events and corresponding indices 

 

3.4.4 Classification 

Supervised ML algorithms were used to classify the events extracted from the EMA 

into six maneuvers: left-right lane changes, left-right turning movements and left-right 

horizontal curves movements. Four main classifiers were evaluated including: LSTM, 

SVM, 1D-CNN, Random Forest. The model architectures, and structure of the input data 

used for training each machine learning algorithm are explained in detail below. 

3.4.4.1. Input Data Structure 

The extracted events from the segmentation step are restructured before being 

passed to the classification algorithms. For the deep learning algorithms, the raw samples 

from the energy maximization algorithm are passed through them for classification, 

whereas for the machine learning algorithms, the raw data is first passed through a principal 

component analysis (PCA) to reduce dimensionality before being passed through them. 
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The number of input features and output features are 50 and 1 respectively for all trained 

models. A summary of the training parameters used to build the various models are 

presented in Table 3.3 below. 

Table 3. 3: Training Parameters 

Parameters LSTM SVM 1D-CNN 

Number of features 1 1 1 

RNN Layers 3 X X 

Hidden Layers 20 X 250 

Learning rate 0.001 X 0.001 

Loss function Cross entropy loss X Cross entropy loss 

Optimizer Adam X Adam 

Activation function X X ReLU and Sigmoid 

Epoch 600 X 40 

Kernel X Linear X 

Gamma X Auto X 

Kernel size X X 3 

Filters X X 250 

 

3.4.4.2 Long-short-term-memory (LSTM) model 

LSTM is a supervised deep learning architecture which is used for both 

classification and regression. LSTM is a special type of recurrent neural network (RNN) 

that is capable of learning long-term dependencies (P. Li et al., 2021). It has a single cell 

state that runs the length of the chain. The cell state can be modified by either adding or 
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removing information. The LSTM architecture comprises of three gates that protect and 

control information that pass through the cell state. These gates are the forget gate, the 

input gate, and the output gate.  

The forget gate deletes information from the cell state that is not required to pass 

through to the input gate. This is accomplished by the equation below. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)                                                Equation 3 

At the input gate, new information is stored, and values are updated in the cell state. 

This results in the creation of a vector of new candidate values, �̃�𝑡. The mathematical 

representation of what happens in the input gate is shown in the equations below. 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)                                       Equation 4 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐) 

The cell state is updated by adding the previously deleted information, 𝑓𝑡 ∗ 𝐶𝑡−1 to 

the newly added information 𝑖𝑡 ∗ �̃�𝑡 . The updated cell state can be expressed 

mathematically as  

  𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡                                         Equation 5 

Finally, the output gate outputs the relevant portions of the cell state. 

𝑜𝑡 = 𝜎(𝑊0 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏0)                                    Equation 6 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) 

3.4.4.3 Support Vector Machine (SVM) 

Support Vector Machines (SVMs) are a type of supervised machine learning 

technique that can be used to solve both regression and classification problems. SVMs are 

designed to strike a balance between fitting the training data and reducing model 

complexity (Cortes et al., 1995). This method of defining a loss function is known as 
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structural risk minimization (SRM), and it typically yields a better model generalization 

than the empirical risk minimization approach of defining a loss function. SVMs were 

originally developed to solve two-group classification problems; therefore, applying it to 

multi-label classification problems results in the input data being highly dimensional.  As 

a result of the high dimensionality of the input data, computational issues such as handling 

large vectors and overfitting occur. These issues are resolved by the addition of a kernel 

function. A kernel function returns the dot product of the original data points' feature space 

mappings. SVMs employ a variety of kernel functions, including linear, polynomial, and 

Gaussian RBF. The algorithm for performing multiclass classification using support vector 

machines involves transforming the input vector into a higher-dimensional feature space. 

In the feature space, a linear decision surface called a hyperplane is constructed (Cortes et 

al., 1995). The hyperplane represents the greatest separation between any two classes. In 

addition, two parallel hyperplanes are constructed on either side of the hyperplane to 

segregate the data. A separating hyperplane is one that minimizes the distance between two 

parallel hyperplanes as shown in Equation 7. 

max 
𝑣

1

2
(min

𝑥𝑖∈𝐶1

𝑣𝑇(𝑥𝑖 − 𝑥0) −  min
𝑥𝑗∈𝐶2

(−𝑣)𝑇(𝑥𝑗 − 𝑥0))                    Equation 7 

𝑠. 𝑡 ||𝑣||2 = 1. 

Where 𝑣 is the unit vector, 𝐶1 𝑎𝑛𝑑 𝐶2 are contants, and  𝑥𝑖 ∈  ℝ𝑘. The idea is that 

the larger the margin or distance between these parallel hyperplanes, the smaller the 

generalization error of the classifier. 

3.4.4.4 1D-CNN 

A one-dimensional convolutional neural network (1D-CNN) is a deep learning 

architecture that can either be supervised or unsupervised and can be used for both 
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regression and classification problems. The A 1D-CNN applies a kernel along a one-

dimension input data. The input data is usually a signal data with two dimensions.  The 

first dimension is the time-steps whereas the second dimension is the signal values. Figure 

3.7 shows the flowchart of the 1D-CNN. Mathematically, a one-dimensional convolutional 

neural network is composed of an input vector 𝑥 ∈  𝑅𝑝 and a filter 𝑤 ∈  𝑅𝑘 where 𝑘 ≤ 𝑝. 

The 1D-CNN takes 𝑤𝑇𝑥[𝑖: 𝑖 + 𝑘] for each surrounding set of k elements of 𝑥𝑥[𝑖: 𝑖 + 𝑘] 

and gives one node of the convolutional layer. 

 

 

Figure 3. 6.: 1D-CNN Architecture 

 

3.4.4.5. Random Forest 

A random forest is a supervised machine learning algorithm that leverages 

ensemble learning to solve complex problems involving regression or classification. 

Random forests are a collection of tree predictors in which the values of a random vector 

are sampled independently and uniformly across the forest to determine the values of each 

tree (Breiman 2001).  As the number of trees in a forest increase, the generalization error 
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converges to a limit (Breiman 2001). The generalization error of a forest of tree classifiers 

is proportional to the strength of the trees in the forest and their correlation. By randomly 

splitting each node on a tree, we obtain error rates that are comparable to Adaboost's 

(Freund et al., 1996), but more robust to noise in this case (Breiman 2001). Internal 

estimates of error, strength, and correlation are used to demonstrate the effect of increasing 

the number of features used in the splitting process. Internal estimates are also used to 

determine the significance of variables. Each class in the dataset is determined by letting 

all the trees in the forest vote for a class. The most voted class becomes the classification 

of the data points. 

For each internal nodes of the tree, it takes a subset of features at random and 

utilizes that information to compute the centers of various classes present in the data at the 

current node. For example, given two classes, 0 and 1, the centers of the classes will be 

denoted as Left-Center and Right-Center respectively.   

𝑙𝑒𝑓𝑡𝑐𝑒𝑛𝑡𝑒𝑟[𝑘] =  
1

𝑛 
∑ 𝑥𝑖𝑘𝐼(𝑦 = 0)𝑛

𝑖=1                                   Equation 8 

𝑟𝑖𝑔ℎ𝑡𝑐𝑒𝑛𝑡𝑒𝑟[𝑘] =  
1

𝑛 
∑ 𝑥𝑖𝑘𝐼(𝑦 = 1)𝑛

𝑖=1                                  Equation 9 

Where 𝐼(𝑦 = 0) and 𝐼(𝑦 = 1) are the dictator functions. Each record in the 

dataset is assigned to the appropriate class at the present node by computing the 

Manhattan distance between the center and the record as illustrated in Equation 10. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑒𝑛𝑡𝑒𝑟, 𝑟𝑒𝑐𝑜𝑟𝑑) =  ∑ |𝑐𝑒𝑡𝑒𝑟[𝑖] − 𝑟𝑒𝑐𝑜𝑟𝑑[𝑖]|𝑖∈𝑠𝑢𝑏             Equation 10 

Where 𝑠𝑢𝑏 is the subset attributes randomly selected from the dataset. Each tree, 

therefore, grows without pruning. 
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3.4.4.6. Heuristics 

The characteristic patterns of vehicle telemetry data especially during stop and lane 

keeping events vary widely even for the same driver. As a result, it generates high false 

positive rates when fed through machine learning models. In the current study we 

developed a heuristic algorithm based on the vehicle speed and an adaptive thresholding 

technique to classifying lane-keeping and stop events. A stopped event occurs when the 

speed of the vehicle is zero. To detect lane-keeping events, we draw from a probability 

distribution curve. The assumption here is that lane-keeping is the most dominant event in 

every trip. Therefore, all gyroscope readings about 𝑘 standard deviations from the mean 

should belong to this class. A value of 𝑘 = 2 was used in this study. The equation below 

summarizes the heuristic algorithm.  

𝑒𝑙 = {
𝑠𝑡𝑜𝑝              𝑖𝑓 𝑠𝑝𝑒𝑒𝑑 ≅ 0

𝑙𝑎𝑛𝑒 − 𝑘𝑒𝑒𝑝𝑖𝑛𝑔     𝜇 + 𝑘𝜎 ≤ 𝑥 ≤ 𝜇 + 𝑘𝜎            
        Equation 11 

3.4.5. Video Annotation 

The goal of this methodology is to automate the frame-by-frame annotation of 

driving events of NDS dataset. The machine learning classification outputs the start and 

end time of the event which is the same as the heuristics. The classification outputs and 

indices from the machine learning models and heuristics are combined and transferred into 

the time domain for frame-by-frame video annotation. 
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3.5 Results 

3.5.1 Performance Measures 

The efficiency and accuracy of the Energy Maximization Algorithm and the various 

machine learning models were evaluated using various performance measures. We 

assessed the performance of the machine learning models using precision (P), F1 score 

(F1), and recall value (R). The F-1 score is the harmonic average of the recall and precision 

values. Precision is defined as the ratio of true positives (tp) to all predicted positives 

(tp+fp), as shown in Equation 12. Similarly, recall is the ratio of true positives to all true 

positives (tp+fn) is defined in Equation 13. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
                                            Equation 12 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
                                               Equation 13 

𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                     Equation 14 

On the other hand, we evaluated the accuracy of the EMA using a duration score 

(DS) metrics computed as 

𝑒𝑙 = {
1                 𝑖𝑓 |𝐴𝑖 − 𝑃𝑖| > 1

| 𝐴𝑖 − 𝑃𝑖|         𝑒𝑙𝑠𝑒   |𝐴𝑖 − 𝑃𝑖| < 1            
 

𝐷𝑆 = 1 −
1

𝑛
∑ 𝑒𝑙

𝑛
𝑖=1                                   Equation 15 

Where 𝐴𝑖 is the 𝑖𝑡ℎ actual event duration, 𝑃𝑖 is the 𝑖𝑡ℎ extracted event duration by 

the EMA, and 𝑛 is the number of total events. Finally, the overall accuracy of the pipeline 

was calculated using Equation 16. The F1 scores are multiplied by the duration score in 

this performance metric. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐹1 𝑠𝑐𝑜𝑟𝑒 ∗ 𝐷𝑆                       Equation 16 
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3.5.2 Segmentation Outputs 

The segmentation step outputs either an event (turns, lane changes, and curves) or 

a non-event (lane keeping and stop) as show in Figure 3.4. The EMA in the segmentation 

step extract very distinctive shapes from the signal as shown in Figure 3.8. From Figure 

3.8., it can be observed that the full extent of signals corresponding to turns, lane changes, 

curve negotiation, are extracted at different length of time. Also, all the various driving 

events have varying amplitudes as shown in the Figure 3.8. Events that occur in both 

directions (right and left) have similar shape and amplitude but occur at different phases. 

Example is the right turn and left turn. The algorithm’s ability to extract the full shape of 

the signal before taken into the model alleviate the limitation encountered with the fixed 

time window approach leading to a lot of false positives. Additionally, lane changes are 

clearly differentiated from lane keeping due to their distinctive shapes. The extracted 

events are classified using machine learning models, while the non-events are classified 

using heuristics. 

 

Figure 3. 7.: Extracted Events Shape by the EMA 
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3.5.2.1 Evaluating the Accuracy of The Energy Maximization Algorithm 

The actual durations of events were compared to the EMA-derived durations. 

According to Figure 3.9., the distribution of event durations for actual and extracted events 

was similar for right turns, right curves, and left curves. Additionally, some extracted left 

turns had durations that were significantly longer than the actual left turn durations. This 

can be explained by the fact that some left curve or right curve negotiations are immediately 

followed by a left turn in which the EMA records a portion of those events as left turns, 

resulting in the increased duration of some left turns. In general, it is observed that the 

durations of events extracted via EMA are significantly longer than the durations of events 

manually extracted. 

 

Figure 3. 8.: Comparative Analysis of Lognormal Distribution of Event Duration a) 

right-turns b) left-turn c) right-curves d) left-curve e) right-lane-change f) left-lane-

change 

Additionally, the extracted time distributions were compared to time distributions extracted 

for a variety of events in previous research. According to a study by Toledo et al. (1999), 



79 
 

lane change durations range between 3 and approximately 7 seconds, which is consistent 

with the results shown in Figure 3.10e and Figure 3.10f. Additionally, the majority of 

right and left turns occur within the range of 4-6 seconds. For right curves, the majority of 

durations fell within the range of 4-6 seconds, but a sizable portion fell within the range of 

7-10 seconds. These variations are explained by the varying lengths of right curves 

observed at various locations. Certain right curves are longer than others, requiring vehicles 

to negotiate for a longer period of time. For left curves, the same is true. Additionally, the 

majority of lane changes occurred within the range of 3-5 seconds, which is consistent with 

the findings of (Toledo et al. 1999). 

 

Figure 3. 9.: Lognormal Distribution of Event Duration a) right-turns b) left-turn c) 

right-curves d) left-curve e) right-lane-change f) left-lane-change 

Finally, using Equation 15, the accuracy of the EMA was calculated, and the 

results are summarized in Table 3.4. According to Table 3.4, right and left turns, as well 

as right and left changes, had significantly high accuracies. On the other hand, the 

accuracies of the left and right curves were relatively low. The low accuracies can be 
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attributed to a variety of factors, including the algorithm treating two consecutive events 

as one, as it is typically observed when a left curve follows a right curve or vice versa. 

 

Table 3. 4: Accuracy of the EMA based on Durations of Extracted Events 

Driving Maneuvers Accuracy of EMA 

Right turn 0.820 

Left turn 0.843 

Right curve 0.654 

Left curve 0.690 

Right lane change 0.618 

Left lane change 0.593 

Lane keeping 0.856 

Stop 0.848 

 

3.5.3 Classification Results 

3.5.3.1 Model Comparison 

In this study, four machine learning models were developed. Our analysis revealed 

that all four models had accuracies comparable to those reported in studies that trained 

similar models using a variety of kinematic variables (Bakhit et al. 2017; Kumar et al. 

2013; Mandalia and Salvucci 2005; Zheng et al. 2014). It can be deduced that the gyroscope 

reading is sufficiently sensitive to detect all driving events, as seen when other kinematic 

variables are combined to perform the same task (Bhoraskar et al. 2012). Additionally, 

when comparing the number of iterations required to train the deep learning models, the 
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1D-CNN model converges after 20 epochs, whereas the LSTM model converges after 300 

epochs. The 1D-CNN model, therefore, trains faster than the LSTM model. When the 

accuracies of all four models were compared, the overall accuracy of the 1D-CNN model 

was 98.99 percent, followed by the LSTM model at 97.75 percent, then RF model at 97.71 

percent, and the SVM model at 97.65 percent that are comparable to accuracies obtained 

by (Bakhit et al. 2017; Kumar et al. 2013; Mandalia and Salvucci 2005; Zheng et al. 2014). 

The consistency of the accuracies obtained for all four models indicates that the EMA is 

effective at capturing all driving events. Furthermore, we evaluated the performance of all 

models using the F1 score, precision, and recall values for each driving maneuver as shown 

in Table 3.5. Lane change maneuvers (both left and right) had low F1 scores across all 

models. This is because of the false negatives caused by missed lane change events, which 

are particularly prevalent on highways with relatively high speeds. Additionally, right turn 

maneuvers had the highest average F1 scores across all models, ranging from 0.991 to 

0.998. Similar scores were observed for left turns and right-left curve negotiations. Lane 

keeping on the other hand, had a high rate of false positives due to missed lane changes, 

particularly on highways and also stops. In summary, all models performed similarly well 

at predicting all types of driving maneuvers, with fewer false positives and negatives. Table 

3.5 summarizes the models' predictions for specific driving events. 

Table 3. 5: Precision, Recall and F1 Values Obtained From LSTM, SVM, 1D-CNN, 

and RF 

Driving 

Maneuvers 

LSTM SVM 1D-CNN RF 

 P R F1 P R F1 P R F1 P R F1 

Right turn 0.994 0.996 0.995 0.989 0.991 0.990 0.997 0.996 0.996 0.998 0.996 0.997 

Left turn 0.988 0.985 0.986 0.988 0.987 0.987 0.996 0.993 0.994 0.997 0.995 0.996 
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Right curve 0.989 0.990 0.989 0.989 0.984 0.986 0.986 0.991 0.988 0.998 0.993 0.995 

Left curve 0.981 0.982 0.981 0.983 0.982 0.982 0.992 0.994 0.992 0.995 0.991 0.993 

Right lane 

change 

0.993 0.933 0.962 0.994 0.933 0.962 0.995 0.965 0.980 0.989 0.985 0.987 

Left lane change 0.990 0.926 0.957 0.991 0.935 0.962 0.989 0.991 0.990 0.998 0.991 0.994 

Lane keeping 0.951 0.976 0.963 0.951 0.976 0.963 0.996 0.994 0.995 0.994 0.993 0.993 

Stop 0.975 0.975 0.975 0.974 0.976 0.975 0.989 0.994 0.991 0.995 0.996 0.995 

 

The study further examined the overall accuracy of the developed pipeline using 

Equation 16, and the results are summarized in Table 3.6. In this performance metric, the 

F1 scores were penalized by the duration scores. Overall accuracy per driving event ranges 

between 0.645 and 0.852, as shown in Table 3.6. Right and left curves both exhibits 

relatively low overall accuracy, owing to their low duration score values. 

Table 3. 6: Overall Accuracy of Pipeline 

Driving 

Maneuvers 

LSTM SVM 1D-CNN RF 

Right turn 0.816 0.812 0.817 0.818 

Left turn 0.831 0.832 0.838 0.840 

Right curve 0.647 0.645 0.646 0.651 

Left curve 0.677 0.678 0.684 0.685 

Right lane change 0.595 0.595 0.606 0.609 

Left lane change 0.568 0.570 0.587 0.589 

Lane Keeping 0.824 0.824 0.852 0.850 

Stop 0.827 0.827 0.840 0.844 
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3.5.3.1 Comparative Analysis: Proposed Methodology vs Fixed Time Window Approach 

To further investigate the effectiveness of the EMA in extracting driving events and 

its relevance in the proposed methodology, the study compared the detection outcome of 

an EMA-extracted event to the detection outcome of a fixed time moving window approach 

on a continuous signal, which has been used in several studies (Houenou et al., 2013; 

Morris et al., 2011; Ohn-Bar et al., 2014). We considered two different fixed time window 

methods: the three-second moving time window approach and the five-second moving time 

window approach. The results indicate that the energy maximization algorithm produced 

consistent results across all three models, whereas the fixed time window approach did not. 

Also, as shown in Table 3.7, the 5-second fixed moving time window performed better 

than the 3-second moving time window, which is consistent with results in studies 

(Houenou et al., 2013; Morris et al., 2011; Ohn-Bar et al., 2014). On a continuous signal, 

the proposed methodology outperforms fixed moving time window approaches for 

detecting driving events.  

Table 3. 7: Overall Test Accuracy 

Model EMA moving window (3 

seconds) 

moving window (5 seconds) 

LSTM 97.75% 75.91% 86.52% 

SVM 97.65% 63.22% 75.87% 

1D-CNN 98.99% 78.65% 88.13% 

RF 97.71% 73.98% 85.89% 
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3.5.4 Test of Model’s Transferability  

To test the transferability of the models developed, specifically the 1D-CNN, the 

study evaluated the developed model on events extracted from three different data sources, 

namely the SHRP2 NDS dataset (Antin et al., 2019), the Nebraska Medical Center NDS 

dataset, and data collected via a smartphone (Aboah et al., 2021). The study analyzed about 

150 video hours of SHRP 2 dataset, 200 hours of Nebraska Medical Center NDS dataset 

and 100 hours of smartphone collected dataset. Table 3.8 summarizes the outcomes of the 

predictions for all three datasets. The F1 scores were high and consistent across all three 

datasets. The results implies that the developed model and algorithm are easily transferable 

to predict driving event from signal data from different sensor types. 

Table 3. 8: Comparison of Precision, Recall and F1 Values Obtained All Three 

Datasets 

Driving Maneuvers SHRP2 dataset Smartphone collected 

dataset 

Nebraska Medical Center 

NDS dataset 

 P R F1 P R F1 P R F1 

Right turn 0.990 0.992 0.991 0.945 0.921 0.932 0.997 0.996 0.996 

Left turn 0.991 0.981 0.986 0.978 0.942 0.960 0.996 0.993 0.994 

Right curve 0.992 0.993 0.992 0.969 0.962 0.965 0.986 0.991 0.988 

Left curve 0.989 0.992 0.990 0.943 0.929 0.936 0.992 0.994 0.992 

Right lane   change 0.986 0.956 0.971 0.889 0.901 0.895 0.995 0.965 0.980 

Left lane change 0.982 0.966 0.973 0.907 0.898 0.902 0.989 0.991 0.990 

Lane keeping 0.991 0.987 0.989 0.949 0.938 0.943 0.996 0.994 0.995 

Stop 0.982 0.985 0.983 0.961 0.944 0.952 0.989 0.994 0.991 

 

Additionally, all four models were combined to create a decision tree-like structure. 

Where each branch of the tree is a representation of a different model. Extracted events 
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from the segmentation step are classified by passing them through each branch. Following 

that, the branches vote on the most frequent class. The Table 3.9 below summarizes the 

analysis's findings. As seen in the Table 3.9, there is a slight improvement in both precision 

and recall values for all classes on average compared to relying on a single model 

prediction as illustrated in Table 3.8 for all three datasets. 

Table 3. 9: Combined Model Performance All Three Datasets 

Driving Maneuvers SHRP2 dataset Smartphone collected 

dataset 

Nebraska Medical 

Center NDS dataset 

 P R F1 P R F1 P R F1 

Right turn 0.997 0.996 0.993 0.961 0.921 0.940 0.998 0.997 0.998 

Left turn 0.996 0.993 0.994 0.992 0.942 0.966 0.998 0.996 0.997 

Right curve 0.997 0.995 0.997 0.989 0.962 0.975 0.992 0.994 0.993 

Left curve 0.995 0.993 0.994 0.980 0.929 0.953 0.995 0.995 0.995 

Right lane change 0.991 0.989 0.990 0.902 0.901 0.902 0.996 0.985 0.990 

Left lane change 0.988 0.981 0.984 0.951 0.903 0.926 0.992 0.993 0.993 

Lane keeping 0.993 0.991 0.992 0.959 0.948 0.953 0.997 0.996 0.997 

Stop 0.991 0.998 0.994 0.978 0.972 0.975 0.995 0.996 0.996 

 

3.5.5 End-to-End Pipeline for Annotating NDS Videos 

Finally, the study developed an end-to-end pipeline that takes the NDS video, gyroscope 

reading, and vehicle speed as inputs and outputs an annotated video of driving events, as 

illustrated in [https://youtu.be/JAuCfRGnLBI]. To annotate each video frame, the 

indices of the time series (segmented and classified) are aligned with the video stream, 

taking into account differences in sampling rates. We interpolate and upsample the 
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vehicle telemetry data if its sampling frequency is higher than the videos frame rate and 

vise-versa.  

3.5.6 Application of Research Findings 

The primary application of this research is to develop crash countermeasures by 

better understanding drivers’ behaviors in naturalistic settings, specifically, the drivers’ 

environment. The results from this study, when conducted on large-scale, will provide 

insight and the extraction of some critical information such as drivers' lane-changing 

behaviors (which have recently been the cause of the majority of vehicle crashes on the 

highway) and turning maneuvers, as well as aggressive driving behaviors, for the purpose 

of improving traffic safety. The framework for this study is both fast and scalable. As such 

the framework developed in this study is going to facilitate the annotations of large-scale 

of NDS videos into various driving events. The extraction of these events will allow for 

more rapid analysis of conflict zone crashes, especially at intersections (i.e., the extraction 

of right and left turning events).  
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3.6 Conclusion 

To effectively use NDS data to deduce crash causation, algorithms must be 

developed that can ingest multi-modal NDS data and annotate various driving events 

pertinent to deducing crash causation. Recent studies have examined the use of shallow 

and deep machine learning models for driving maneuver detection, obtaining accuracies 

ranging from 70% to 98%. A significant limitation that these ML approaches do not address 

is the time series segmentation problem. The current study addressed this limitation by 1) 

developing an energy maximization algorithm (EMA) that is capable of extracting distinct 

shapes of driving events from telemetry data. Also, the effectiveness of the EMA was 

further investigated through the development of four machine learning models.  

Multiple sources of data were used in this study including Blackbox sensor data, 

smartphone data and VTTI dataset. The study accomplished its objectives through the 

development of a five-stage methodology: 1) preprocessing of data, 2) event segmentation, 

3) machine learning classification, 4) heuristics classification, and 5) frame-by-frame 

annotation of video. To begin, the input data is standardized and smoothed. The resulting 

output is segmented and then classified using both machine learning (main driving events) 

and heuristics (stops and lane-keeping). The study separated the detection of stops and 

lane-keeping from the rest of the driving events because the two can be easily identified 

using simple thresholding and to reduce false negatives when using only ML to classify all 

driving events. 

The result from the study indicates that the gyroscope reading is a very good 

parameter to be use in extracting driving events since it showed consistent accuracy across 

all four developed models. The study shows that the accuracy of the Energy Maximization 
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Algorithm ranges from 56.80% (left lane change) to 85.20% (lane-keeping) All four 

models developed had comparable accuracies to studies that used similar models (Bakhit 

et al. 2017; Kumar et al. 2013; Mandalia and Salvucci 2005; Zheng et al. 2014). The 1D-

CNN model had the highest accuracy of 98.99%, followed by the LSTM model at 97.75%, 

the RF model at 97.71%, and the SVM model at 97.65%. To serve as a ground truth, 

continuous signal data was annotated. Also, the proposed methodology outperformed the 

fixed time window approach when compared. The study further analyzed the accuracy of 

the overall pipeline by penalizing the F1 scores of the ML models with the duration score 

of the EMA. The overall accuracy of the pipeline was in the range of 56.8% to 85.2%. To 

test the model's transferability, the developed models were used to detect driving events 

from multiple streams of datasets. The F1 scores were high and consistent across all three 

datasets used. The predicted results were compared to the ground truth annotations. Using 

the LSTM model, the test was 91% accurate. 

The study did not take advantage of large database of video data acquired; Future 

work should consider integrating the video data, with other predictive models such as eye 

detection model, and object detection models to better understand the driver’s behavior. 

3.6.1 Limitations to Study 

One of the challenges encountered in this study was dealing with outliers due to 

anomalous behaviors of drivers. The data outliers are due to false spikes in the gyroscope 

readings caused by the driver's activity in the vehicle. For instance, a spike in the gyroscope 

reading can be observed when the driver is dancing or drinking while keeping a lane or at 

a stop. While these spikes are not considered events, the EMA will extract them as events 
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and pass them through the classification algorithm. These outliers contribute to the 

increased detection of false positives.  
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CHAPTER 4: AI-BASED FRAMEWORK FOR 

UNDERSTANDING CAR-FOLLOWING BEHAVIORS OF 

DRIVERS IN A NATURALISTIC DRIVING 

ENVIRONMENT 

4.1 Introduction  

4.1.1 Background 

The rear-end crash is the most common type of accident encountered on the 

highway, according to statistical data for related accidents. These crashes have a significant 

negative impact on the flow of traffic and typically result in serious repercussions (Zheng 

and Sarvi, 2016). An examination of the sequence of events that lead up to rear-end crashes 

can be broken down into two distinct scenarios. The first scenario is one in which the 

following distance between vehicles is so close that if the car in front of them suddenly 

brakes, it is possible for the driver behind them to be involved in a rear-end crash, even if 

they are able to apply their brakes in time. In the second scenario, the driver is maintaining 

a car-following distance that is relatively safe; however, when the car ahead of them applies 

the brakes, the driver is either distracted or fatigued, and as a result, the driver does not 

notice that the car ahead of them is applying the brakes. This circumstance is very similar 

to the one in which there is absolutely no braking at all. To gain a better understanding of 

these scenarios from a practical standpoint, it is necessary to accurately model car-

following behaviors that lead to rear-end crashes and that is what this study seeks to 

achieve. 
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The aforementioned scenarios of rear-end crashes each have a significantly high 

incidence rate. As a result, some automobile companies have begun encouraging the 

installation of a warning system for rear-end crashes. Alarm systems for rear-end crashes 

are able to monitor the motion of the car in front of them by using radars or visual sensors, 

and they can sound an alarm if they detect an impending risk. Some drivers may develop a 

hostile attitude toward other drivers during car following if the alarms are set off too 

frequently (Hoogendoorn et al., 2010). This is because different drivers have different 

driving styles. In order to reduce the likelihood of the driver becoming distracted by the 

alarm, these systems typically set the timer for the alarm to go off when the vehicle is 

already in a relatively hazardous state. However, the timing of the warnings has a 

significant impact on how well the warning system works. There is a potential for an 

increase in the number of accidents if the warning time is delayed (Tang and Yip, 2010). 

This discussed challenge can easily be resolved if acceleration of the leading vehicle can 

be correctly estimated relative to the acceleration of the ego-vehicle. The current study 

thereby seeks to develop models that are capable of predicting the acceleration of the 

leading vehicle as well as the ego-vehicle. 

4.1.2 Motivation 

Although a number of studies have been conducted to model the car-following 

behaviors of drivers, the majority of these studies have relied on simulated data that may 

not accurately represent incidents that occur in the real world. In addition, very few 

longitudinal studies have been conducted on the car-following behavior of drivers in 

naturalistic environments. These studies, however, are limited to developing models that 

can only estimate the acceleration of the ego-vehicle, which is insufficient to explain the 
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behavior of the ego-driver. This limitation exists because data to model the acceleration of 

the leading vehicle is rarely available when using naturalistic driving dataset. As such, the 

current study attempts to address this issue by modeling both the acceleration of the ego-

vehicle and the leading vehicle through the development of an AI framework capable of 

extracting parameters from NDS videos necessary to model the behavior (acceleration) of 

the leading vehicle as well as the ego-vehicle. In addition, there have been no previous 

longitudinal studies of the car-following behavior of various demographics in a naturalistic 

environment. Such research is important because it enhances our understanding of the 

driving styles of various demographic groups and the causes of crashes. The study 

addresses this deficiency by conducting longitudinal studies of different demographic 

groups of drivers. 

4.1.3 Objectives 

In light of the gaps identified in previous studies, the study seeks to primarily 

develop an AI framework to extract parameters from naturalistic videos that provides better 

insight to drivers’ behavior in a naturalistic environment. To achieve this goal, we 

formulated three objectives described below. 

1. First, the study develops a framework for extracting features pertinent to comprehending 

the behavior of drivers in natural environments. To achieve this objective, we investigated 

monocular depth estimation techniques for determining the distance between the leading 

vehicle and the ego-vehicle. Moreover, we determine the relative velocities of the leading 

vehicle and the ego-vehicle using optical flow. The study further relied on the relative 

velocity, car-following distance and the acceleration of the ego-vehicle to estimate the 

acceleration of the leading vehicle. 
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2. Second, we analyzed the car-following behaviors of various demographic groups. To 

accomplish this objective, numerous visualization plots and statistical tests were 

conducted. The study employed the sample mean t-statistics to determine whether different 

demographic groups exhibit distinct driving behavior. 

3. Third, we modeled the acceleration of both the ego-vehicle and the leading vehicle using a 

machine learning algorithm. We utilized the XGBoost algorithm to develop the various 

acceleration models. The explanatory variables used in the models were car-following 

distance, relative velocity, and ego-vehicle acceleration (only used to model the 

acceleration of the leading vehicle). We investigate further the variables that best explain 

the leading and ego-vehicle accelerations. 

4.2 Literature Review 

Understanding driver car-following behaviors is a critical step in developing crash 

countermeasures to reduce rear-end collisions. Over the last two decades, there has been 

an enormous amount of research into understanding and modelling driver car-following 

behavior. As a result, this section provides reviews of car-following studies as well as other 

relevant literature pertaining to the current research work. First, we review various studies 

on car-following behavior conducted in the past two decades. Second, we go over the 

various monocular depth estimation approaches that have been used in previous studies. 

4.2.1 Modelling Car-following Behaviors 

On the topic of car following safety, a great number of studies have been conducted, 

each of which has approached the topic from a slightly different direction. Kometani, 

(1959) came up with the idea for a car-following model that was based on the safety 

distance. This distance is the shortest one that must be traveled in order to avoid a crash in 
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the event that the vehicle in front of you begins to use its emergency brakes. Car-following 

was broken up into two phases according to Treitere et al., (1974) who began their research 

with the General Motors model as their foundation. This process involves both quickening 

and slowing down of speed at various points. Car-following, according to Aron, (1988), 

can be broken down further into 3 distinct stages: deceleration, acceleration, and 

maintaining. Helly, (1959) recommended making use of a linear model that takes into 

account the distance traveled in addition to the acceleration and the relative speed. Peter, 

(1998) made a suggestion for a model for the desired spacing based on the findings of the 

research that concerned the spacing distance that was desired. Numerous studies 

concentrated their attention on the car-following model with regard to the speed of the 

vehicles and the distance between them. Following the experiment, Jiang et. al. (2015) 

carried out a motorcade in order to investigate the relationship between the speed of a car 

and the distance it kept behind another car in a number of different types of traffic. When 

following a vehicle, it is extremely important, as stated by Tang et al., to take into 

consideration both the forward and the backward safe distances. The findings of the study 

indicate that models which took into account both types of safe distances performed 

appreciably better than those which did not (Tang et. al., 2017). Gipps, (1981) laid the 

groundwork for subsequent research on car following by providing a theoretical framework 

in which he proposed a driver model that could be simulated, and which followed a car. 

After that, he carried out a correlation analysis by making use of parameters derived from 

the actual flow of traffic (Gipps, 1981). Because of this, future research on car following 

will have a theoretical foundation to build upon. Zhou et al. developed a more reliable 

model for car following by taking into account the motion characteristics of the vehicle in 
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front of them (Zhou et. al., 2014). According to the findings of Tang et al. (2014), Yang et 

al. (2017), and Tordeux et al. (2010), the headway is an important parameter that plays a 

role in the evaluation of the driver's level of risk. In addition to the rate of driving, another 

factor to take into account is the time headway (THW). 

4.2.2 Monocular Depth Estimation 

Over the recent years, there have been many deep learning networks and their 

variants that perform monocular depth estimation (Eigen et al. (2014); Zheng et al. (2018); 

Yin et al. (2019); Ranftl et al. (2020); Wang et al. (2020)). These networks provide superior 

performance with various architectural transformation, data augmentation strategies and 

innovative cost functions. Many of these neural networks however do not focus on 

providing high resolution/quality of dense depth map (Silberman et al. (2012); Wadhwa et 

al. (2018); Wang et al. (2018)). Some of them which produce high quality depth map do 

require complex architectures. These complex networks use numerous deep layers, residual 

modules, guiding modules, sequential modules, attention-based modules etc. (Laina et al. 

(2016); Xu et al. (2017); Xu et al. (2018); Fu et al. (2018); Swami et al. (2020)) to achieve 

the complex task of monocular depth estimation. Laina et al., (2016) uses a deep layer CNN 

confining residual learning to improve output depth map resolution. Xu et al., (2017) 

proposes a novel sequential framework that fuses multi-scale convolutional neural network 

with continuous conditional random field module for accurate depth maps. Hao et al., 

(2018) model use dilated convolutions and attention mechanism for extracting multi-scale 

feature from input image while maintaining dense feature maps and fuse multi-scale 

features respectively to produce high quality depth map. Xu et al., (2018) uses multi-scale 

convolutional neural network along with conditional random field and structural attention 
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module. Fu et al., (2018) proposes a deep ordinal regression network that discretizes depth 

and remodel learning of the depth estimation network as an ordinal regression problem. 

Swami et al., (2020) is an improved version to the Fu et al., (2018) which use fully 

differentiable ordinal and pixel-wise regression network along with depth refinement 

module for improved depth estimation. Recently, there has also been a lot of research to 

achieve high quality monocular depth estimation using Transformer architecture (Xie et al. 

(2020); Ranftl et al. (2021)) due to its success achieved in the other computer vision related 

tasks like image classification, image segmentation etc. Also, the same was observed with 

deep encoder-decoder (Ummenhofer et al. (2017); Zhou et al. (2018)) type of structures. 

However, these approaches are computationally expensive which impedes its embedding 

in the edge technology. Therefore, we aim to analyze simple architectures with less 

computation and comparable state-of-the-art performance for the task of monocular depth 

estimation (Ibraheem et al. (2018); Doyeon et al. (2022); Miangoleh et al. (2021)). 

 

4.3 Data  

The data collection for this study was carried out with the assistance of Blackbox sensors, 

which were created by Digital Artifacts LLC. The sensors were put into individual, privately 

owned vehicles with the purpose of continuously recording activities that took place both inside 

and outside of the vehicle. The sensor instrumentation incorporates a number of sensors, 

including high-resolution cameras, infrared sensors, high-precision GPS, and wireless onboard 

diagnostics (OBD). The sensor package that is mounted on the windshield can be seen in Figure 

4.1. This package is mounted behind the rear-view mirror. The system is equipped with two 

cameras, one of which captures 1) a view of the roadway in front of the vehicle at all times, and 
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2) a view of the driver as well as the interior of the vehicle. From the moment the ignition key is 

turned to the moment it is turned off, the behavior of the driver is being continuously recorded. 

The research involved 77 people who took part and was conducted over the course of three 

months. Data were gathered on a total distance of 289681.9 kilometers across the entirety of the 

United States. This dataset contains much more detailed information on driver behavior across a 

wide range of geographic environments than laboratory-based or retrospective studies are able 

to provide. 

In this study, we only utilized data information from four individuals. They were made 

up of two elderly drivers and two young drivers.  

 

Figure 4. 1: The Positioning of the Blackbox sensors in the vehicle 

 

4.4 Methodology 

The general methodological framework shown in Figure 4.2 can be group into two 

main stages. First, we extract the car following distance using distance obtained from the 

monocular depth estimation and tracking of the leading vehicle (LV). Second, we estimate 

the acceleration of the LV by combining the estimated car-following distance, relative 

velocity and the acceleration of the ego-vehicle.  
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Figure 4. 2: Methodological Framework 

4.4.1 Extraction of car-following distances 

The process involved in the extraction of car-following distances can be divided into 

three major steps. First, training an object detection model to detect vehicles and traffic signs. 

Second, using a trained monocular depth estimation model to estimate the scene depth of the 

video images. Finally, combine the first two steps with a heuristic algorithm for tracking leading 

vehicles to estimate the car-following distance. 

4.4.1.1 Object detection 

The state-of-the-art single stage object detection algorithm used for the developing the 

detection model is YOLOv5. The YOLOv5 network consists of three main pieces viz. Backbone, 

Neck and Head. The Backbone consists of a convolutional neural network that bundles and forms 

image representational features at contrasting granularities. The architecture’s neck consists of a 

series of layers which blends and integrates image representational features to proceed further 

with prediction.  Similarly, the head utilizes features from the neck and gets hold of box and class 

prediction functionality. CSPDarknet53 backbone within YOLOv5 contains 29 convolutional 

layers 3 × 3, receptive field size of 725 × 725 and altogether 27.6 M parameters. Besides, the 

SPP block attached over YOLO’s CSPDarknet53 expands the proportion of receptive fields 

without influencing its operating speed. Likewise, the feature aggregation is performed through 
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PANet by exploiting different levels of backbone. YOLOv5 pushes state-of-the-art by using 

features such as the weighted-residual-connections, cross-stage partial-connections, cross mini-

batch, normalization and self-adversarial training, making it exceptionally efficient. In the current 

study, we trained and deployed our YOLOv5 model on the PyTorch framework. To further 

accomplish the task of vehicle detection, the YOLOv5 model is fine-tuned by adjusting to the 

following hyperparameters: batch-size 64, the optimizer weight decay value of 0.0005, setting 

the initial learning rate of 0.01 and keeping the momentum at 0.937. 

4.4.1.2 Monocular depth estimation 

The study utilized different monocular depth estimation models developed by 

[1,2,3] to estimate the car's following distance. Each model is explained in detail in the 

sections below 

a) High quality monocular depth estimation via transfer learning: A simple 

encoder-decoder UNet type of machine learning model was used for the task of high-

quality depth estimation. Fig. 3. shows the encoder-decoder neural network model [1]. The 

encoder used in the model is the truncated encoder structure of high-performing 

DenseNet169 architecture. For this encoder, the DenseNet169 model is truncated with the 

top layers leaving the bottom deep layers. The DenseNet169 is pretrained on the ImageNet 

dataset for the object classification task. This process of leveraging a high-performance 

neural network trained on different tasks for initializing the model with the more complex 

tasks is called transfer learning.  
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Figure 4. 3: Pipeline of the Proposed Method 

The encoder consists of the 3x3 convolution layers and downsampling layers which 

decrease the feature size and increase the number of feature maps along the process to get 

the final bottleneck features of the image. The encoder also consists of the dense and 

transition block which is one of the advantages of the DenseNet169 networks. The dense 

block performs convolution and pooling operation where each processing node gets the 

input from all the previous node outputs. The dense block, therefore, encourages feature 

propagation and reuse, which can be useful for understanding. The dense block reduces the 

feature size and increases the number of feature maps which can increase the trainable 

parameters. Therefore, to take care of this, the transition block reduces the number of 

feature maps of the dense block output. Once, we get the bottleneck features from the 

encoder. These features are given as input to the decoder. 

The decoder consists of the up-sampling layers, which use bilinear sampling, and 

convolution layers. The convolution layers get the feature input from the previous layer of 

the decoder output and from the same scale encoder convolution layer output. At each layer 

the decoder performs up-sampling and convolution which decreases the number of feature 

maps to half and increases the feature map size. The model also consists of skip connections 

which concatenate the encoder features to the decoder. The skip connections help to regain 

the details that can be lost during down sampling. It also helps to avoid vanishing and 
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exploding gradient issue as the gradient can travel directly from decoder to the 

corresponding scale encoder using skip connection during backpropagation. Finally, the 

decoder predicts the depth map at the output. 

𝐿(𝑦, �̂�) = 𝜆𝐿𝑑𝑒𝑝𝑡ℎ(𝑦, �̂�) + 𝐿𝑔𝑟𝑎𝑑(𝑦, �̂�) + 𝐿𝑆𝑆𝐼𝑀(𝑦, �̂�)    (1) 

     𝐿𝑑𝑒𝑝𝑡ℎ(𝑦, �̂�) =
1

𝑛
∑ |𝑦𝑝 − �̂�𝑝|𝑛

p         (2) 

𝐿𝑔𝑟𝑎𝑑(𝑦, �̂�) =
1

𝑛
∑|𝑔𝑥(𝑦𝑝, �̂�𝑝)| + |𝑔𝑦(𝑦𝑝, �̂�𝑝)|

𝑛

𝑝

       (3) 

𝐿𝑆𝑆𝐼𝑀(𝑦, �̂�) = 1 −
𝑆𝑆𝐼𝑀(𝑦, �̂�)

2
      (4) 

The loss function used for the training has a significant effect on the overall 

performance of the model. For this model, three terms in the loss function are used as 

shown in equation (1). The first term Ldepth shown in equation (2) defines the general depth 

reconstruction error that tries to minimize the difference between the ground truth and the 

predicted depth map. This is the common loss term used by the depth estimation models, 

where n is the total number of pixels in depth map, is the ground truth pixel depth value, is 

the predicted pixel depth value, and λ weight is taken equal to 0.1. The second loss term 

Lgrad shown in equation (3) penalizes the model if there are distortions of high-frequency 

details like boundaries of the objects in the scene. This is done by calculating depth map 

gradient g() in x and y directions. The loss term then will ensure that the depth map gradient 

of the ground truth and prediction are as close as possible. The third loss term LSSIM shown 

in equation (4) uses SSIM function to calculate the similarity between the ground truth and 

the predicted depth map. 1-SSIM means the dissimilarity value which ensures that the 

dissimilarity between the ground truth and the predicted depth map is as low as possible. 
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b) Global-Local Path Networks for Monocular Depth Estimation with Vertical 

CutDepth: The study used an encoder-decoder model shown in Figure 4.4. The model 

uses a transformer encoder and decoder with skip connections called selective feature 

fusion (SFF) module to capture the global image context and local connectivity 

respectively. The proposed model is a global-local path network that extracts significant 

features on diverse scales and effectively delivers them throughout the network.  

 

Figure 4. 4: Pipeline of the Proposed Method 

The hierarchical transformer is used as the encoder to capture global relationships. 

First, the input image is embedded as a sequence of patches with a 3 × 3 convolution 

operation. These embedded patches are then used as an input to the transformer block, 

which consists of multiple sets of self-attention and the MLP-Conv-MLP layer with a 

residual skip. Finally, the transformer output undergoes patch merging with overlapped 

convolution. The model uses four transformer blocks to get multi-scale features.    

The decoder with an effective fusion module is then used to capture local features 

to produce a fine depth map while preserving structural details. For this the bottle neck 

features channel dimensions from the encoder are first reduced using 1 x 1 convolution. 

Then the decoder uses consecutive bilinear up-sampling to enlarge the feature size and SFF 
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module. Finally, the output is passed through two convolution layers and a sigmoid 

function to predict the depth map. 

To exploit the local structures having fine details, the network combines the 

encoded and decoded features using skip connections with the input-dependent feature 

fusion module SSF. The SFF module helps the network to selectively focus on the salient 

regions by estimating the attention map for both encoder and decoder features. For this first 

the channel dimensions of the decoded features FD and encoded features FE are matched 

with the convolution layer and provided as input to the SFF module. The SFF then 

concatenates these features along the channel dimension and pass it through two 3 × 3 

Conv-batch_normalization-ReLU layers. Finally, the convolution and sigmoid layers 

produce a two-channel attention maps which are then multiplied to each local and global 

feature to focus on the significant locations. These multiplied features are then added 

elementwise to construct a hybrid feature. 

𝐿 =  1
𝑛⁄  ∑ 𝑑𝑖

2

𝑖

−     1 2𝑛2⁄  ∑ 𝑑𝑖
2

𝑖

 (5) 

𝑑𝑖 = log 𝑦𝑖 − log 𝑦𝑖
∗      (6) 

The loss function for the model uses scale-invariant log scale loss as shown in 

equation (5) and (6) where and indicates the ith pixel value in the ground truth and predicted 

depth map. 

C) Boosting monocular depth estimation models to high-resolution via 

content-adaptive multi-resolution merging: The architecture of the model is such that a 

double-depth-estimation network is analyzed that combines the two depth estimations of 

the same image at different resolutions adaptive to the image content to generate a result 

with high-frequency details while maintaining the structural consistency. It is observed that 
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the low-resolution input to the network produces structural consistent depth maps as they 

learn the overall global content in the image while the high-resolution input captures the 

high frequency details but loses the overall structure of the scene generating low-frequency 

artifacts in the depth estimate. The proposed model therefore embeds the high-frequency 

depth details of the high-resolution patches into the structural consistent depth of the small 

resolution input that provides a fixed range of depths for the full image.  

First the high-resolution inputs are created by selecting the patches from the input 

image of resolutions adaptive to the local depth cue density to be feed to the network. For 

creating image adaptive patch resolution containing contextual cues image edge map is 

computed, using gradients and thresholding, as edge maps are correlated to the contextual 

hues. The edge map is then used to determine the maximum resolution where every pixel 

in the patch has contextual information. Finally, the patches are selected by initiating their 

size equal to the receptive field. Their size is then increased if the edge density is higher 

than the image density until their density becomes equal while the patches with less edge 

density are discarded.     

The created high-resolution patches and the low-resolution image are now provided 

as input to the network to produce depth estimates.  Then the depth estimate of the patches 

are combined onto a low-resolution structurally consistent base depth estimate to achieve 

a highly detailed high-resolution depth estimation. For this the model uses a standard 

Pix2Pix network architecture with a 10-layer U-Net. The 10-layer U-Net aims to increase 

the training and inference resolution, as this merging network will be used for a wide range 

of input resolution. The network is finally trained to transfer the fine-grained depth details 

from the high-resolution input patches to the low-resolution input depth estimate.  
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4.4.1.3 Determining the leading vehicle 

We relied on a set of heuristic algorithms to determine the leading vehicle among 

all vehicles identified in an image. To begin, we determined that the image's center was 

roughly the vanishing point of the road lane. Multiple iterations revealed that multiplying 

the image's base by a factor of 0.2 and 0.8 yields a triangulation that corresponds to the 

lane of the ego-vehicle. We compute the gradient for each base coordinate point and the 

center point (vanishing) of the line. Then, we determine if the predicted vehicle bounding 

boxes' base coordinates lie within the triangle. If both base points fall within the triangle, 

then that vehicle is the identified as the leading vehicle.  

4.4.2 Estimating the Acceleration of the Leading Vehicle 

In order to estimate the acceleration of the leading vehicle, we first estimated the 

relative velocities between the leading vehicle and ego-vehicle using optical flow. We then 

adopted Newton’s second equation of motion which relates distance, velocity and 

acceleration as shown in Equation 1. We modified the Equation 7 to reflect what is seen in 

Equation 8. Where the change in distance is the car following distance between the ego-

vehicle and the leading vehicle. Whereas the relative velocity between the ego-vehicle and 

the LV was used as the change in velocity in that equation. Finally, the change in 

acceleration was model as the difference between the acceleration of the ego-vehicle minus 

the acceleration of the LV. From Equation 8, we are able to estimate the acceleration of the 

leading vehicle. 

𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2  (7) 

Δ𝑠 = Δ𝑢𝑡 +
1

2
Δ𝑎𝑡2   (8) 
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4.5 Results 

4.5.1 Comparative analysis of monocular depth estimation methods  

In this study, three monocular depth estimation models were evaluated and 

compared as shown in Figure 4.5. The depth estimation of each model was compared to 

the true depth as determined by a lidar scan. We calculate the root mean squared error depth 

between the ground truth and each model's estimated depth. The model with the least root 

mean squared error was selected as the optimal model for the study.  

 

  

 

Figure 4. 5: Comparing depth estimation of the three monocular depth estimation 

models 

 

Figure 4.6 compares the estimated distances to the actual distances for each model. 

Model 1 performs better at predicting the depth of objects when they are closer, but utterly 

fails when they are farther away. The same could be said for Model 2, with the exception 

that it performs marginally better than Model 1 when predicting depth of distant objects, 

as illustrated in Figure 4.6. Model 3 has the greatest correlation between predicted and 
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actual distances when compared to Models 1 and 2. The study further analysis these models 

by comparing the root mean square error. 

 

Figure 4. 6: Comparative analysis of the prediction accuracy of  

 
 

Table 4.1 compares the root mean squared error of the three models. Model 3 had 

the least squared error of 1.79. Followed by model 2 of root mean squared error of 4.58 and 

lastly model 1 of root mean squared error of 6.23. Based on the results from Table 1. The 

study settles on model 3 for the rest of its analysis.  

Table 4. 1:  Root mean squared error of three monocular depth estimation   

model  Model 1  Model 2  Model 3  

Root-mean-squared-error   6.23  4.58  1.79 

  

4.5.2 Estimation of car following distance 

The estimation of the car-following distance was a multi-step approach as described 

in the methodology. First, we estimated the scene depth using monocular depth estimation 

(Model 3). Figure 4.7 below shows the input image and output image after the input image was 

passed through the monocular depth estimation model to estimate the scene depth. 
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Figure 4. 7: Input image (row 1) and output image (row 2) after the input image was 

passed through the monocular depth estimation model to estimate the depth map 

Second, we detected relevant objects in the images by using a single-stage object 

detection model YOLOv5. The results of the detection stage are shown in Figure 4.8 

below. The objects identified in this stage were cars, trucks, traffic signs and traffic signals. 

 

Figure 4. 8: Object detection using YOLOv5 

Finally, we combined the first and second results with a heuristics algorithm to 

determine if a detected car or truck is in front of the ego-vehicle or not. The results of that 

are shown in Figure 4.9 below.  
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Figure 4. 9: A framework for detecting leading vehicles, safe car-following distance and 

driver maneuvers. 

4.5.3 Comparison of Car Following Distances of Different Driving Groups 

As shown in the probability density plot in Figure 4.10, we compared the car following 

distance of the four participants studied in this project. On average, the car following distance 

can range from greater than zero to less than ten meters, with the majority of numbers falling 

somewhere in the middle. Additionally, it was discovered that the elderly drivers (man and 

woman) maintained greater car following distances than the two younger drivers. Even though 

the data used for this analysis does not represent a substantial proportion of each driving group, 

we can still conclude from the results that older drivers are more safety-conscious than younger 

drivers. The authors are also cognizant of the fact that this conclusion may or may not hold true 

if large samples of each driving group are analyzed further.  
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Figure 4. 10: A PDF of car-following distances of different individuals 

To further investigate the observations made from Figure 4.10, statistical t-tests were 

performed on pairs of driving groups to determine if there were significant differences in the 

mean car following distance between the various driving groups. This test is necessary in order 

to determine if different demographic groups exhibit the same car-following behavior. We 

assume an equal variance in our analysis if the ratio of variances between any two driving groups 

is 4:1. The fundamental assumption (null hypothesis) for test is that the mean car following 

distance of different driving groups are the same. A significant level (𝛼) 0.05 is used to infer if 

there is enough evidence to reject the null hypothesis. Mathematically we formulated the test as, 

Let,  

𝜇𝑖 = 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑐𝑎𝑟 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑔𝑟𝑜𝑢𝑝 𝑖 

𝛼 = 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑙𝑒𝑣𝑒𝑙 

then, 

Null Hypothesis: Η0 →  𝜇1 =  𝜇2 

Alternate Hypothesis: Η𝑎 →  𝜇1 ≠  𝜇2 
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If the computed p-value < 𝛼, then we have enough evidence to reject the null hypothesis, 

else we do not reject the null hypothesis. 

With the exception of the comparison between the two young drivers, which yielded a 

p-value of 0.84, all other comparisons yielded a p-value of 0.00, as shown in Table 4.2. Given 

that the p-value for comparing the two young drivers was 0.84, we can conclude that there was 

insufficient evidence to reject the null hypothesis; thus, the two young drivers' mean car 

following distance is identical. Also, the results indicate that the elderly female driver and the 

elderly male driver have different car following behaviors. In addition, by comparing the car 

following distances of young and elderly drivers, we discovered that the two groups were also 

different. 

Table 4. 2: Statiscal T-test Anslysis of different individuals 

comparison P-value Decision 

Elderly woman vs Elderly man 0.00 Reject the null hypothesis 

Elderly woman vs Young man 1 0.00 Reject the null hypothesis 

Elderly woman vs Young man 2 0.00 Reject the null hypothesis 

Elderly man vs Young man 1 0.00 Reject the null hypothesis 

Elderly man vs Young man 2 0.00 Reject the null hypothesis 

Young man 1 vs Young man 2 0.84 Do not reject the null hypothesis 

Young vs Elderly 0.00 Reject the null hypothesis 
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4.5.4 Comparing the Acceleration-Deceleration Behavior of Young Drivers and 

Elderly Drivers 

As indicated by our earlier analysis, there is a significant disparity between the car-

following distances of young and elderly drivers. In this section we further investigate the 

aggressiveness of each driving group. Figure 4.11 below presents the relative velocity–

acceleration mapping obtained from the two driving groups (young drivers and elderly drivers). 

The two driving groups have similar data length (young drivers, 1800sec; elderly 

drivers,2000sec). The deceleration of young drivers (Figure 4.11a) is greater than that of elderly 

drivers (Figure 4.11b) when their vehicle approaches the leading vehicle. This hard deceleration 

could be used to infer aggressive driving of young drivers. When the distance between vehicles 

is opening, the acceleration of young drivers is greater than that of elderly drivers. Thus, the 

acceleration-deceleration rate of young drivers indicates a tendency opposite that of elderly 

drivers. 

 
a                                                                                       b 

Figure 4. 11: Acceleration against relative velocity of two driving groups a) Young 

drivers b) Elderly drivers 
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4.5.5 Modeling the Acceleration of the Ego-Vehicle 

Modeling the acceleration of the ego-vehicle enables us to comprehend how the ego 

vehicle accelerates and decelerates depending on its distance from the leading vehicle. In Figure 

4.12, we show a general relationship between acceleration of car-following distance of the ego-

vehicle. Generally, deceleration occurs when the ego-vehicle is close to the leading vehicle 

whereas acceleration occurs when the distance between the ego-vehicle and the leading vehicle 

is greater. 

 

Figure 4. 12: A general relationship between acceleration of car-following distance of the 

ego-vehicle 

To develop the acceleration model for the ego-vehicle, an Extreme Gradient 

Boosting (XGBoost) algorithm was used. XGBoost is a variant of gradient boosting 

machines that predicts errors using Gradient Boosting Trees (gbtree). It begins with a 

simple predictor that predicts an arbitrary number (typically 0.5) irrespective of the input. 

Typically, the model begins with a high error rate and gradually learns to reduce it. Training 

an error prediction model in XGBoost does not involve optimizing the predictor on 
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(feature, error) pairs. The data used to train the model was divided into training (5834 data 

points) and test (2,500 data points) samples in a ratio of 0.7:0.3.  

From the results of the model building, relative velocity clearly stands out as the 

most important predictor of the ego-vehicle acceleration compared to the car following 

distance as shown in the Figure 4.13.  

 

Figure 4. 13: A plot of feature importance from the developed model 

Subsequently, the developed model was used to predict the acceleration of the ego-

vehicle, as shown in Figure 4.14. The model was able to detect the general trend of the 

acceleration of the ego-vehicle as well as the peaks in the trend. The performance of the model 

was evaluated using the root mean square error (RMSE). The RMSE of the model was 0.0245. 

A model with RMSE close to zero is commonly regarded as a good model, and since our 

developed model is in the hundredth decimal, it can be considered to be performing well. 
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Figure 4. 14: A plot of actual acceleration versus predicted acceleration of the ego-vehicle  

4.5.6 Modeling the Acceleration of the Leading Vehicle 

The acceleration of the leading vehicle was modeled similar to the acceleration of 

the ego-vehicle using XGBoost. The difference here is that the acceleration of the ego-

vehicle was an input variable to this model in addition to car-following distance and 

relative velocity. Similar to the model developed above, the data used to train the model was 

divided into training (5834 data points) and test (2,500 data points) samples in a ratio of 

0.7:0.3. The results of the model showing the feature importance are shown in the Figure 

4.15. The car-following distance and relative velocity were found to be the most important 

features to predict the acceleration of the leading vehicle. The acceleration of ego-vehicle 

was found not be influential in predicting the acceleration of the leading vehicle. 



123 
 

 

Figure 4. 15: A plot of feature importance from the developed model 

As shown in Figure 4.16, the developed model was used to predict the 

acceleration of the leading vehicle. The model's generalization ability has been 

demonstrated. The model was able to detect the general trend of the leading vehicle’s 

acceleration as well as the peaks in the trend. The performance of the model was evaluated 

using the root mean square error (RMSE). The RMSE of the model was 0.0105. A model with 

RMSE close to zero is commonly regarded as a good model, and since our developed model is 

in the hundredth decimal, it can be considered to be performing well. 

 

Figure 4. 16: A plot of actual acceleration versus predicted acceleration of the leading-

vehicle  
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4.6 Conclusion  

 

Rear-end crashes are the most common type of accidents encountered on the 

highway. These crashes have a significant negative impact on the flow of traffic and 

typically result in serious repercussions. To gain a better understanding of these scenarios 

from a practical standpoint, it is necessary to accurately model car-following behaviors that 

lead to rear-ends crashes. Numerous studies have been conducted to model the car-

following behaviors of drivers; however, the majority of these studies have relied on 

simulated data that may not accurately represent real-world incidents. Also, most studies 

are limited to modeling the acceleration of the ego-vehicle which is insufficient to explain 

the behavior of the ego-vehicle. 

As a result, the current study attempts to address these issues by developing a 

framework for extracting features pertinent to comprehending the behavior of drivers in 

naturalistic environment. Moreover, the study modeled the acceleration of both the ego-

vehicle and the leading vehicle through the development of an AI framework capable of 

extracting the parameters from NDS videos required to model the behavior (acceleration) 

of both vehicles. Additionally, the study performed longitudinal studies of the car-

following behavior of different demographics in a naturalistic environment. 

The result from the analysis shows that young individuals are more likely to be 

aggressive drivers compared to elderly drivers. Also, in modelling the acceleration of the 

ego-vehicle, relative velocity between the ego-vehicle and the leading vehicle was found 

to be more important than the distance between the two vehicles (car-following distance). 

This means that the accelerations of drivers in ego vehicles are affected more by the relative 
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velocity between them and the leading vehicle. The opposite occurred when modelling the 

acceleration of the leading vehicle. 

 

4.7 Limitations and recommendation 

The current study has the following limitations. 

1. The heuristic method utilized by the study to track the leading vehicle is not always 

effective at intersections or when the driver is negotiating a curve. Future research should 

track the leading vehicle using an automated algorithm. 

2. Developing our own model with the lidar data would have improved the accuracy of the 

predicted car-following distances. Despite the fact that the monocular depth estimation 

model gave us a comparable result. Future research should develop its own model for 

predicting car-following distance utilizing Lidar data.  
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CHAPTER 5: CONCLUSION  

Our ability to detect and characterize unsafe driving behaviors in naturalistic 

driving settings and associate them with road crashes will be a major step toward 

developing effective crash countermeasures. Researchers to date have not fully achieved 

the state goal of being able to characterize unsafe driving behaviors due to certain 

limitations. These limitations include but are not limited to, the high cost of data collection 

and the manual processes required to extract information from NDS data.  

The cost of collecting naturalistic driving studies (NDS) data is prohibitively high, 

precluding the continuous collection and analysis of data related to driver behaviors. To 

provide a long-term solution to the high cost of data collection, there is a need for data-

driven approaches that can collect and process quality, high-resolution, and high-fidelity 

streams of data at a reasonable cost. The current approach to transportation data collection 

relies on expensive systems that are not easily scalable for continuous data streaming. The 

cost-prohibitive nature of this effort could lead to infrequent driver behavior assessment 

for agencies with limited funding. Low-cost data collection alternatives that are able to 

produce information comparable to these high-end systems are needed. Moreover, the 

process of driving event extraction from NDS data has been performed by a mixture of 

manual and semi-automated processes. The size of these datasets typically ranges between 

hundreds of terabytes to several petabytes depending on video compression rates. 

Therefore, relying on manual processing methods can be labor-intensive and awfully 

expensive to scale. There is a need to develop algorithms that can ingest multi-modal NDS 

data and accurately annotate different driving events useful for understanding crash 

causality. Additionally, many rear-end near-crashes have been attributed to drivers' car-
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following behavior. Only a few studies have investigated car-following behavior using 

NDS data. As such it is necessary for more investigations into cars following behaviors of 

drivers in a naturalistic driving environment.  

The main goal of the study is to develop an AI framework for automatically 

extracting high-low features from the NDS dataset in order to explain driver behavior while 

using a low-cost data collection method. The author proposed three novel objectives for 

achieving the study's goal based on the identified research gaps. First, the study builds a 

low-cost data acquisition system for acquiring naturalistic driving data. Second, the study 

designs a framework that automatically extracts high to low-level features such as vehicle 

density, turning movements, lane changes, and other relevant features from the data 

collected from the developed data acquisition system. Third, the study extracted 

information from the NDS data to gain a better understanding of people's car-following 

behavior, and other driving behaviors through data collection and analysis in order to 

develop countermeasures for traffic safety. 

To achieve the first objective, the study develops a multipurpose smartphone 

application for collecting NDS data. The designed app was made up of three major 

modules: a front-end user interface module, a sensor module, and a backend module. The 

front-end, which is also the user interface of the app, was designed to provide a streamlined 

view that exposed key aspects of the application via a tab bar controller. This enables us to 

compartmentalize the application's various critical components into distinct views. The 

backend module provides computational resources that can be used to accelerate front-end 

user query responses. The backend of the developed app was powered by Google Firebase. 

The sensor modules included CoreMotion, CoreLocation, and AVKit. The CoreMotion 
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module collects motion and environmental data from the onboard hardware of iOS devices, 

including accelerometers and gyroscopes, as well as the pedometer, magnetometer, and 

barometer. Whereas, the CoreLocation determines the altitude, orientation, and 

geographical location of a device, as well as its position in relation to a nearby iBeacon 

device. Finally, the AVKit provides a high-level interface for video content playback. The 

developed app was used to collect data on both freeways and arterials. The app utilizes 

both the front and rear cameras of the smartphone to collect video data of the driver's 

activity in the vehicle and the vehicle's surroundings during data collection. The data 

gathered by the application was then used to extract driving events from videos, conduct 

pavement distress detection analysis and predict IRI values of road surfaces. The results of 

the road roughness analysis indicate that the accuracy of estimating IRI values from 

smartphone data is comparable to that of high-end machines. Consequently, the developed 

smartphone application is a suitable substitute for the high-end machine, allowing the State 

Department of Transportation to save money on data collection. In addition, the high 

accuracy obtained from the pavement distress detection model will increase confidence in 

the model's dependability in providing pavement engineers with current information about 

road conditions. 

To accomplish objective two, we formulated our problem as both a classification 

and time-series segmentation problem. This is because most existing methods for driver 

maneuver detection formulate the problem purely as a classification problem, assuming a 

discretized input signal with known start and end locations for each event or segment. 

However, in practice, vehicle telemetry data used for detecting driver maneuvers are 

continuous, therefore, a fully automated driver maneuver detection system should 
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implement solutions for both time series segmentation and classification. Our proposed 

methodology can be divided into five stages: 1) preprocessing of data, 2) event 

segmentation, 3) machine learning classification, 4) heuristics classification, and 5) frame-

by-frame annotation of video. To begin, the input data is standardized and smoothed. The 

resulting output is segmented and then classified using both machine learning (main 

driving events) and heuristics (stops and lane-keeping). The study separated the detection 

of stops and lane-keeping from the rest of the driving events because the two can be easily 

identified using simple thresholding and to reduce false negatives when using only ML to 

classify all driving events. The result from the study indicates that the gyroscope reading 

is an exceptionally good parameter to be used to extract driving events since it showed 

consistent accuracy across all four developed models. The study shows that the accuracy 

of the Energy Maximization Algorithm ranges from 56.80% (left lane change) to 85.20% 

(lane-keeping) All four models developed had comparable accuracies to studies that used 

similar models (Bakhit et al. 2017; Kumar et al. 2013; Mandalia and Salvucci 2005; Zheng 

et al. 2014). The 1D-CNN model had the highest accuracy of 98.99%, followed by the 

LSTM model at 97.75%, the RF model at 97.71%, and the SVM model at 97.65%. To 

serve as a ground truth, continuous signal data was annotated. Also, the proposed 

methodology outperformed the fixed time window approach when compared. The study 

further analyzed the accuracy of the overall pipeline by penalizing the F1 scores of the ML 

models with the duration score of the EMA. The overall accuracy of the pipeline was in 

the range of 56.8% to 85.2%. To test the model's transferability, the developed models 

were used to detect driving events from multiple streams of datasets. The F1 scores were 

high and consistent across all three datasets used. The predicted results were compared to 
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the ground truth annotations. Using the LSTM model, the test was 91% accurate. Based on 

the results of this study, conducting the study on a large scale, will provide insight and the 

extraction of critical information regarding drivers' lane-changing behaviors (which have 

recently caused the majority of vehicle crashes on the highway) and turning maneuvers, as 

well as aggressive driving behaviors, in order to improve traffic safety. This study's 

underlying structure is both rapid and extensible. As a result, the framework developed in 

this study will facilitate the annotation of a large number of NDS videos into diverse 

driving events. This will allow for more rapid analysis of collisions in conflict zones, 

particularly at intersections (i.e., the extraction of right and left turning events). 

This study's final objective was to extract variables from naturalistic driving videos 

that will aid in the comprehension of driver behavior in a naturalistic driving environment. 

In order to reach this objective, three sub-goals were developed. First, we developed a 

framework for extracting features relevant to understanding the behavior of drivers in 

natural environments. Second, we analyzed the car-following behaviors of various 

demographic groups based on the extracted features. Thirdly, using a machine learning 

algorithm, we modeled the acceleration of both the ego-vehicle and the leading vehicle. 

According to the study's findings, young drivers are more likely to be aggressive than older 

drivers. In addition, the study revealed that drivers tend to speed up when the gap between 

them and the leading vehicle is large. Finally, compared to younger drivers, elderly drivers 

keep a much larger car-following distance. The findings of this study have numerous safety 

implications. First, the analysis of the driving behavior of different demographic groups 

will improve safety engineers' understanding of the driving styles of different demographic 

groups and the causes of collisions, enabling them to develop the most effective crash 
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countermeasures. Second, the models developed for predicting the acceleration of both the 

ego-vehicle and the leading vehicle will provide sufficient information to explain the ego-

driver's behavior.  

5.1 Limitations of the Study 

No study is devoid of limitations. Several limitations were encountered while 

developing the various frameworks proposed in this study. For each objective, we highlight 

the various limitations encountered.  

The limitations encountered during the development of smartphone data acquisition 

includes 

1. The GPS coordinates of the developed smartphone app are slightly off. The next update of 

the app should extend versions of newer smartphone devices with more accurate GPS 

coordinate values.  

2. Also, the developed app was designed exclusively for the iOS operating system. Given the 

substantial number of Android users, the app's next update should include support for the 

Android operating system. 

3. In the analysis of the International Roughness Index (IRI), we assumed that the observed 

spikes in vertical accelerations were caused solely by pavement distress. This assumption 

is not always accurate, as other driving activities can also result in such a significant huge 

spike. Future research should include multimodal analysis of video images and sensor 

readings. This will greatly lead to a reduction in false positives during the analysis. 

4. The current study utilized the TabNet model to develop the IRI model. Even though the 

study's results were favorable, the model did not make use of the temporary information 
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present in the data. Using more sophisticated sequential modeling architecture in the future 

could help improve the results accuracy.  

Similar to objective one, objective two was poised with some limitations which are 

highlighted below. 

1. The energy maximization algorithm assumes that all enormous peaks of greater magnitude 

were due to driving events. This is not always the case, as some drivers' activities, such as 

eating, dancing, or shaving, may also result in significant amount spikes comparable to 

driving events. Future research should consider analyzing both video data and gyroscope 

data simultaneously. This will help reduce false positives by identifying anomalous spikes 

caused by the driver's actions.  

2. The approach developed in this study cannot be used in the real-time detection of vehicle 

maneuvers. For real-time applications, future studies should consider detecting driver 

maneuvers from image frames directly.  

 Finally, the limitations of the third objectives are as follows; 

1.  The heuristic method utilized by the study to track the leading vehicle is not always 

effective at intersections or when the driver is negotiating a curve. Future research should 

track the leading vehicle using an automated algorithm. 

2. Developing our own model with the lidar data would have improved the accuracy of the 

predicted car-following distances. Despite the fact that the monocular depth estimation 

model gave us a comparable result. Future research should develop its own model for 

predicting car-following distance utilizing Lidar data.  
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