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THE EVOLUTION AND GENETIC BASIS OF COMPLEX TRAITS IN 

DROSOPHILA MELANOGASTER 

ABSTRACT 

The current climate crisis, increasing habitat fragmentation, deforestation, the 

number of extreme weather events, contagious diseases, and more are major 

environmental stressors that threaten the survival of every species on Earth. It is 

necessary for organisms to evolve stress resistant traits and phenotypic plasticity to 

survive these catastrophic effects. To resist stress, organisms will need to invest some 

amount of energy, leading to trade-offs with other traits. In addition, organisms must 

develop behavioral adaptations to manage environmental stressors. Behaviors such as 

dispersal and migration, and stress-resistant traits such as starvation resistance, have 

evolved as a means of survival.  

While researchers have studied behavioral adaptations and stress-resistant traits, the 

genetic and evolutionary mechanisms and phenotypic plasticity of these traits are not 

fully known. For my dissertation research, I studied the genetic mechanisms and 

phenotypic plasticity of two traits: exploration behavior and starvation resistance, 

respectively, in evolved multiparent populations of D. melanogaster. 

I used a bulk-segregant analysis (BSA) approach using a multiparent population, the 

Drosophila Synthetic Population Resource (DSPR), to uncover the genetic basis of 

exploration tendency in D. melanogaster. I defined exploration as the tendency of female 

fruit flies to move from a starting chamber to a novel fly chamber through a narrow 



x 
 

tube. To identify the source of genetic variability in exploration, I generated 17 pairs of 

“high exploration” and “low exploration” bulk segregant populations consisting of 40 - 100 

female flies and performed whole genome pooled sequencing. I then compared allele 

frequency differences between these pools to identify regions of the genome implicated in 

exploration tendency. 

In my second chapter I studied starvation resistance in an experimentally evolved 

population of D. melanogaster. Our lab placed twelve replicate populations of D. 

melanogaster on three selection treatments: constant high nutritional diet (CHA), 

fluctuating nutritional diet (FA), and deteriorating nutritional diet (DA). These three 

treatments have been ongoing for over 50 generations. For my experiment, a duplicated 

set of flies from all replicates and treatments were placed on one of three diets for 10 

days: high sugar, standard, and low yeast diets. After 22 days post-oviposition (p.o.), 

flies were placed on nutrition-less agar. Starvation resistance was measured as the time it 

takes for a fly to die starting the moment it is placed on nutrition-less agar. We link 

these phenotypic changes to variation in artificial selection pressure and environmental 

conditions. 

In my code appendix, I established a novel method of statistical error estimation due 

to variation in coverage in pooled sequencing experiments. Coverage is defined as the 

number of reads at a given location along the genome. Due to the law of large numbers, 

a higher sequencing coverage value leads to a more accurate allele estimation at that 

locus. 
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CHAPTER 1 

INTRODUCTION 

The current climate crisis is a major environmental stressor that threatens the 

survival of every species on Earth. Warming climes, rising shores, habitat 

fragmentation, contagious diseases, wild fires, and an increased prevalence of 

extreme weather events are a few of the many environmental changes that 

threaten the survival of species (Kolbert 2014). It is necessary for organisms to 

evolve resistance and behavioral adaptations to environmental stressors to 

survive the catastrophic effects of climate change. Resisting stress requires some 

amount of energy on the organism’s part that leads to trade-offs with other 

energy-consuming traits. Organisms will evolve various resource allocation 

strategies to compensate. Indeed, resource management is essential for stress 

resistance, as many stressors involve a lack of resources (i.e., droughts and food 

scarcity). In addition to resisting stress, organisms develop behavioral 

adaptations to manage environmental stressors. Behaviors such as dispersal and 

migration have evolved as a means of survival. While researchers have 

extensively studied stress resistance and behavioral adaptations, the genetic and 

evolutionary mechanisms by which organisms resist environmental stressors, as 

well as the phenotypic plasticity of these stress resistant traits, are not fully 
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known (Ahmad et al. 2018; Everman et al. 2019; Evans et al. 2021; Mackay 

2004). 

Phenotypic plasticity occurs when a single genotype gives rise to multiple 

phenotypes, depending on the environment in which the genotype exists in. 

Abiotic and biotic environmental factors like temperature, altitude, competition, 

and access to water and shelter can influence an organism’s phenotype (Miner et 

al. 2005; Whitman and Agrawal 2009). This adds another complex layer to our 

understanding of the genetics of quantitative traits, as phenotypic plasticity can 

increase organismal fitness and facilitate evolution (Whitman and Agrawal 2009). 

In addition, standing genetic variation in a population is important for the 

evolution of beneficial adaptations such as stress resistance (Orr and Betancourt 

2001; Barrett and Schluter 2008).  

Drosophila melanogaster is a model organism that has been extensively 

phenotyped and genotyped for a multitude of stress-resistance traits. These 

include but are not limited to: desiccation resistance, heat tolerance, resource 

acquisition, starvation resistance, and physiological changes (McCue 2010; 

Kennington et al. 2001; Karan and Parkash 1998; Telonis-Scott et al. 2016; 

Harbison et al. 2005; Goenaga, Fanara, and Hasson 2013; Davidson 1990; King, 

Roff, and Fairbairn 2011; Long, Macdonald, and King 2014; Williams-Simon et 

al. 2019; Chippindale et al. 1998; Burke et al. 2010). Their widespread, historic 

use in genetic studies has made them a model organism for the elucidation of 
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genetic mechanisms of quantitative traits (Roff and Mousseau 1987; Mackay et 

al. 2012; Sokolowski 2001; Morgan 1910). In particular, the use of D. 

melanogaster in experimental evolution paradigms has played a major role in the 

elucidation of the mechanistic underpinning of polygenic, quantitative traits 

(Garland and Rose 2009; Schlötterer et al. 2015; Kofler and Schlötterer 2014). 

Experimental evolution is the process by which traits of interest are 

artificially selected for in highly controlled laboratory populations (Garland and 

Rose 2009). A researcher may expose an evolving population to specific 

conditions in order to artificially guide evolution (Kawecki et al. 2012). As an 

experimental paradigm, it is highly dynamic – the researcher can select for any 

trait they desire. Relatively recently, experimental evolution has been done in 

tandem with a next-generation sequencing technique known as pooled-sequencing 

(Schlötterer et al. 2015). Pooled-sequencing is a method of DNA sequencing by 

which large numbers of organisms are pooled and sequenced together (Tilk et al. 

2019; Zhu et al. 2012). This method is much more cost-effective than individual 

sequencing, and with the presence of a reference genome, the pooled DNA 

sequences can be properly aligned for analysis (Lou et al. 2021). 

We utilize artificial selection via experimental evolution to select for various 

resource allocation patterns and stress-related fitness traits and behaviors. For 

my dissertation research, I analyzed genotypic and phenotypic data from two 

stress-related traits: exploration behavior and starvation resistance. First, I 
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performed a bulk segregant analysis (BSA) of two segregating D. melanogaster 

populations: exploring and non-exploring flies (Pool 2016; Elkins, Storks, and 

King, n.d.). Second, I performed phenotyping of starvation resistance in an 

experimentally evolved population of D. melanogaster. We selected three 

populations for three separate resource allocation strategies by placing them on 

three nutritional regimes: a constant high (CH) nutritional diet, a fluctuating 

(FA) nutritional diet, and a deteriorating (DA) nutritional diet. We phenotyped 

for starvation resistance (SR) in two groups: direct measurement and diet 

treatment. In direct measurement, flies were placed directly onto a nutrition-less 

agar ‘diet,’ and time until death was recorded. In diet treatment, we explored 

phenotypic plasticity by placing flies on one of three diets prior to the SR assay. 

Once placed onto nutrition-less agar, time until death was recorded for diet 

treatment flies, as well. Finally, I established a novel method of calculating 

statistical error in allele frequency estimation due to variability in coverage in 

pooled sequencing experiments.  
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CHAPTER 2 

THE GENETIC BASIS OF EXPLORATION BEHAVIOR IN A 

MULTIPARENT POPULATION OF D. MELANOGASTER 

Z. Forrest Elkins, Levi Storks, Elizabeth G. King 

ABSTRACT 

The ability of animals to move throughout their environment to find food, 

mates, and suitable habitat is critical to their survival and reproduction. 

However, this behavior can be energetically expensive and potentially costly. As a 

result, individuals often vary widely in their overall motility, exploration, and 

dispersal tendency. We used a bulk-segregant analysis (BSA) approach using a 

multiparent population, the Drosophila Synthetic Population Resource (DSPR), 

to uncover the genetic basis of exploration tendency in Drosophila melanogaster. 

Our measurement of exploration tendency was the tendency of female fruit 

flies to move from a starting chamber to a novel fly chamber. We first 

demonstrated our measure of exploration tendency has a genetic basis by 

assaying 20 recombinant inbred lines (RILs) to estimate the broad-sense 

heritability of exploration tendency (H2=0.4). To identify the source of this 

genetic variability, we generated 17 pairs of “high exploration” and “low 

exploration” pools consisting of 40 - 100 female flies and performed whole genome 

sequencing. We compared allele frequency and haplotype frequency differences 
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between these pools to identify regions of the genome implicated in exploration 

tendency. 

 

INTRODUCTION 

The rapid rise in global temperatures, increasing habitat fragmentation, 

deforestation, an increase in the number of annual extreme weather events, 

contagious diseases, and more have made the Earth more perilous than ever for 

living organisms (Kolbert 2014). During the current sixth mass extinction event, 

the organisms and species that survive will be the ones that are able to adapt. 

Beneficial behavioral adaptations such as predator avoidance, foraging for food, 

and dispersal can confer higher rates of reproductive success to organisms that 

exhibit the beneficial trait (Alcock and Rubenstein 2009). In the face of climate 

change and habitat destruction, organisms must develop behavioral adaptations 

to survive. One such behavioral adaptation, exploration tendency, is an 

important trait for an organism to have in their survival toolkit. By exploring 

novel environments, organisms can find habitable environs to escape to when 

their previous habitat is rendered inhospitable or destroyed. 

Ecologists and behavioral researchers have observed and documented 

exploration behavior and its variability both within and between populations 

(Dingemanse et al. 2002; Arvidsson et al. 2017; Moran et al. 2017; Bengston et al. 
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2018; Lemanski et al. 2019; Arika et al. 2019; Mouchet et al. 2021). In particular, 

the variance in dispersal distance within metapopulations and its contribution to 

gene flow have been extensively studied in various species, including Glanville 

fritillaries and the Western European great tit (Fountain et al. 2018; Mouchet et 

al. 2021). In addition to metapopulation dynamics, there is a broad body of 

research on exploration behavior as a personality trait commonly linked with 

foraging behavior (Verbeek et al. 1994; Sokolowski et al. 1997; Fitzpatrick et al. 

2005; Arvidsson et al. 2017; Lemanski et al. 2019). As a sub-phenotype of 

dispersal, exploration tendency is commonly characterized as an individual’s 

movement through a novel space (Verbeek et al. 1994; Dingemanse et al. 2002; 

Réale et al. 2007).  

While we know a lot about exploration behavior and its effect on population 

structure, one key area is the genetic mechanism that controls variation in 

exploration tendency. There have been extensive studies on genetic variance 

between populations and its relation to behavioral phenotypes of exploration and 

dispersal, which indicate that exploration is a heritable trait with genetically-

based differences between populations (Rudin et al. 2018). Researchers have also 

identified that exploration behavior leads to upregulation of molecules implicated 

in neuroplasticity (Ramírez-Amaya et al. 2005; Paul et al. 2020). However, the 

exact genetic mechanisms that underlie exploration behavior are still relatively 

unknown.  
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One reason for our lack of knowledge of the genetic mechanism is that it is 

difficult to assess specific allele frequencies in natural populations. With the 

advent of next-generation sequencing, researchers can more cheaply and 

effectively peel back the curtain on the relationship between phenotype and 

genotype, particularly with polygenic traits like exploration tendency. Mass 

groups of organisms can be assayed and sequenced efficiently enough to provide 

sufficient power in implicating causative loci. Experimental evolution techniques 

such as pool-seq and bulk segregant analysis (BSA), as well as various other 

mapping paradigms have arisen over the past three decades (Baldwin-Brown et 

al. 4/2014; Michelmore et al. 1991; Nuzhdin and Turner 2013; Kofler and 

Schlötterer 2014; Long et al. 2015; Stanley et al. 2017). Bulk segregant 

approaches came about as a method to optimize our ability to detect genotypic 

differences underlying phenotypes while minimize sequencing costs (Michelmore 

et al. 1991; Magwene et al. 2011; Pool 2016). We use BSA, in which two samples 

(or bulks) from a single population have segregated into two opposing phenotypic 

groups whose genotypes can then be compared, to quickly observe genetic 

differences between “high” and “low” explorers. One downside of the BSA. 

Technique is that it is impossible to calculate linkage disequilibrium as the 

individual organism IDs are removed from the genetic data (Lynch et al. 2014). 

However, we can infer haplotype data from the DSPR’s fully-sequenced parent 

lines to identify linkage disequilibrium in our experimental population (King et 

https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
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https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
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https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
https://paperpile.com/c/ajhL9t/lIq8+OoDo+nJG2+pX14+ubZ5+fTr9
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al. 2012, 07/2012). In addition, the usage of inferred haplotype data increases the 

accuracy of our allele frequency differences between the two pooled populations 

(Tilk et al. 2019). 

To study the genetic components of exploration behavior, we looked at 

haplotype structure and single nucleotide polymorphisms (SNPs). We use a bulk-

segregant analysis (BSA) approach to identify the underlying genetic components 

of exploration tendency in a synthetic population of D. melanogaster. Bulk-

segregant analysis is a quick and affordable method for looking at genetic 

differentiation between populations that display extreme forms of a given 

phenotype (Magwene et al. 2011). The method works by sorting organisms by 

their extreme phenotype. In our case, flies are sorted as explorers (E) and non-

explorers (NE). Since the phenotype is binary, we can reasonably expect genetic 

differentiation to be present between the two populations if the phenotype in 

question is heritable. We use this method to answer the following questions: 1) is 

exploration tendency a heritable trait, 2) if it is, what are the QTLs (quantitative 

trait loci) that contribute to variation in exploration tendency, and 3) what is the 

overall genetic architecture involved in exploration tendency? 
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METHODS 

Experimental Population 

The DSPR is a collection of two populations of D. melanogaster recombinant 

inbred lines (RILs)  formed by intercrossing two sets of eight inbred founder lines 

(Elizabeth G. King, Macdonald, and Long 07/2012; E. G. King et al. 2012; Long, 

Macdonald, and King 2014). Here, we used lines from the pB population. The 

population was crossed for 50 generations to create offspring whose genetic 

material is a mosaic of the founders followed by 25 generations of inbreeding to 

create the RILs. The founders consist of lines from all over the world to gain a 

wide variety of genetic variation that exists in these populations. Therefore, any 

given RIL contains a mosaic of the founders' haplotypes. The eight founder 

haplotypes have been completely sequenced, and a hidden Markov model informs 

us which of the founder haplotypes exist at any given position along the genome 

in our experimental populations (King et al. 2012, Long et al. 2014). 

 

Exploration chamber design 

The exploration cages consist of two chambers (A and B) connected by a long, 

narrow tube. The two chambers, made of nylon and measuring 9.0cm x 9.5cm, 

are connected by a tube that is 14.5cm long with a diameter of 0.5cm. The tube 

is in the center of the inward sides of the two boxes. No food or smell was placed 
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inside either chamber. Chambers were placed randomly inside the environmental 

chamber. The cages were modeled after those used by Simon et al. (2011).  

 

Heritability 

Fly rearing 

We replicated out twenty recombinant inbred lines (RILs) from our DSPR fly 

population. After two generations of flies that were fed a standard yeast diet, 

offspring 14-16 days post-oviposition (po) were used for the heritability assay.  

 

Experimental design 

To test for the heritability of exploration tendency, a group of 30 male and 30 

female flies aged 14-16 days post-oviposition (po) were isolated from a single RIL, 

anesthetized with carbon dioxide, and placed on the floor of the A chamber of the 

apparatus 24 hours after anesthetization. The apparatus was then placed on a 

rack in the brightly lit environmental chamber at 23°C and 50% humidity. Flies 

were initially acclimated for 1 hour during which they were confined to the A 

chamber. After this acclimation period, A and B chambers were connected and 

the assay proceeded for 6 hours during which the flies were able to explore the B 

chamber. The assays took place between 08:00 and 19:00. Upon completion of the 

assay, the number of male and female flies in each chamber was counted and an 

exploration index was calculated as the percentage of total flies counted in the B 
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chamber after the assay. We performed the assay for 20 RILs with each 

replicated 4-5 times. We then calculated the overall proportion of flies found in 

the A chamber and B chamber per RIL. By graphing the proportion of flies found 

in the B chamber compared to the A chamber in order of least to greatest, we 

can visually see that some RILs are more exploratory than others. We also ran a 

simple linear regression model to test whether or not the time at which the assay 

began influences exploration tendency (lm(proportion explorers ~ 

time)).  

We estimated broad-sense heritability by calculating the genetic and 

phenotypic variation in exploration in the RILs from a linear mixed model in R 

(R Core Team 2022). We fit phenotype by genotype using an analysis of variance 

(aov) model in R (aov(phenotype~genotype)). We used the estimated 

genetic variance over the total variance in RIL means to get our estimated broad-

sense heritability of RIL means.  

 

Bulk segregant analysis (BSA) 

 

Fly rearing 

In our BSA, we used a series of inbred lines (supplemental materials) (King et 

al. 2012).  We then outbred the population by mixing the inbred lines for our 

BSA experiment (Figure 2). Flies from the outbred population were placed on a 
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control yeast diet similar to the control diet commonly used in studies (Bass et 

al. 2007; Stanley et al. 2017). We used the SAFPro Relax + YF 73050 brand of 

yeast. It contains 45-60 g of protein and 30-38 g of carbohydrate per 100 g 

inactivated yeast (Lesaffre Yeast Corp., Milwaukee, USA). The control diet was 

stored at 4 ºC and used within 2 weeks of the preparation date. When the female 

offspring were 14-16 days po, we placed them in the exploration assay. 
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Figure 1. The DSPR population started from eight inbred founders representing global 

standing variation in Drosophila melanogaster. They were mixed en masse for 50 generations and 

about 800 RILs from the DSPR were inbred from this population. The RILs were then re-mixed 

to create a base population for experimental evolution (modified from Ng’oma et al. 2021). 1) 

Details the creation of our outbred population that populates our exploration chamber assay. 2) 

Flies were placed into the exploration chamber and left there for a total of six hours. 3) Each 
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experimental replicate contained ten exploration chambers with flies gathered equally from the A 

and B chambers -- A denoting non-explorers and B denoting explorers. We ran a total of 

seventeen replicates. After all seventeen replicates were completed, we had a total of 34 pooled 

samples, 17 per both sides of the chamber. 4) The Burrows-Wheeler Alignment pipeline we used 

to obtain our genetic data. 5) To calculate the heritability of our exploration assay, we took 20 

RILs and placed 30 male and 30 female flies into the A chamber. At the end of 6 hours, we 

counted the number of flies that we found in both chambers. We performed four replicate assays 

per RIL, for a total of 20 RILs x 4 replicates = 80 experimental chambers.  

 

We used samples taken from an outbred population of the DSPR to select for 

exploration in a single generation. We sampled from an outbred population made 

up of the B synthetic population of the DSPR. We utilized an outbred population 

to increase the genetic variation between flies in our experiment, thereby allowing 

us to observe genetic differences between flies showing extreme phenotypic values 

in either direction within a single generation.  

 

BSA Assay 

Sets of 60 female flies were used to seed each cage. Individuals were placed 

into chamber A of the exploration cages. The assay lasted for six hours. Flies 

found within chamber B after the duration of the experiment are labeled as 

"explorers," while flies collected from chamber A are labeled as "non-explorers" 

(Figure 3). Both explorers and non-explorers are then pooled within their 
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respective groups in equal numbers to create matched pools. Because the number 

of non-explorers always exceeded explorers, we used a random set of the non-

explorers to match the number of explorers for each round.  There was a total of 

10 cages per trial. Seventeen trials were conducted. The result was a total of 34 

samples, with two samples per trial (Figure 2). 

We conducted bulk-segregant analyses (BSA) by designating the extreme 

forms of the phenotype – E and NE – as populations. We then used a next-

generation pooled sequencing approach to compare any genetic differentiation 

between explorers and non-explorers. We looked for differentiation at both the 

single nucleotide polymorphism (SNP) and haplotype level. 

For each trial, the explorer flies from each cage were combined and their DNA 

extracted into a single vial. This process was repeated for the non-explorers. 

There was a total of 17 trials, resulting in 34 total samples. Each sample 

contained 30-100 flies. The number of flies in the explorer and non-explorer vials 

for a single trial are equal. If more flies were collected from chamber A, the 

number placed into the vial matched the number of flies collected from chamber 

B. 

 

Sequencing 

We extracted the DNA using the Qiagen Puregene extraction method. The 

DNA yield was between 80-120 ng/uL, with 50-85 uL per sample. DNA was 
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suspended in a DNA hydration solution. The genetic library was prepared by the 

University of Missouri DNA core. The 34-plexed pool of DNA was sequenced 

with an Illumina NextSeq 500, using a paired-end read (150 base pairs) for 

roughly 20x coverage. We aligned the sequenced DNA reads with a Burrows-

Wheeler Alignment (BWA) pipeline that utilized the Drosophila reference 

genome Release 6 to call our SNPs. 

 

SNP Calling 

After mapping our sequence reads to the reference genome using BWA 0.7.15, 

we utilized Picard 2.7.1 tools to assign reads, find any duplicate reads and mark 

them, and create a sequence dictionary. We then used Samtools 1.3.1 to index 

our reads, and then used the HaplotypeCaller from GATK 3.8 with a –ploidy tag 

of 8 and the –variant tag for all 34 .vcf files to place our reads with raw SNP 

calls into a single output file. We then used the GATK 3.8 VariantFiltration 

method to filter out SNPs with LowQual values under 30.0, LowVQCBD values 

under 5.0, and FisherStrand values under 60.0. Finally, we used our list of 

founder SNPs to filter out any SNPs in the experimental population not found 

within the founders.   
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G’ analysis 

Since we used a BSA-seq approach, our genetic data consisted of varying levels 

of sequencing coverage. To counteract this, we used a statistic developed by 

Magwene et. al, 2011. This statistic, the G' statistic, takes coverage into account 

when calculating allelic differences between bulks. We prepared our genetic data 

with position along the genome, chromosome, and the counts of both alleles. G’ 

values were calculated using the code established by Magwene et. al 2011 

(https://bitbucket.org/pmagwene/bsaseq/src/master/).  

 

Significance testing 

We calculated significant G’ values using the Monte Carlo method. To 

simulate a null distribution of G’ values, we randomly assigned our observed data 

to either the E or NE bulks. This process was iterated 1000 times. This gave us 

simulated, randomly calculated G’ values across the genome 

(https://bitbucket.org/pmagwene/bsaseq/src/master/).   

 

 

 

 

https://bitbucket.org/pmagwene/bsaseq/src/master/
https://bitbucket.org/pmagwene/bsaseq/src/master/
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a)  

python3 ../bsacalc.py 

-L ../Gtest10D.txt ../Gtest7D.txt ../Gtest3N.txt 

-H ../Gtest5N.txt ../Gtest3D.txt ../Gtest1D.txt 

-o ../sim_N.out 

b)       

Figure 2. Diagram of our MCMC analysis. A) First, observed data is randomly shuffled into 

two groups: explorers (E) and non-explorers (NE). This process is repeated 1000 times for our 34 

total samples (17 E and 17 NE). B) Then, we use the randomly shuffled data to calculate G’ 

values. In the end, we run 1000 commands, one per simulation.  

 

Once we obtained our simulated data, we calculated the false discovery rate 

(FDR) and family-wise error rate (FWER) for the data. To calculate the FWER, 

we found the maximum G’ values from each simulation, for a total of 1000 

maximum G’ values. Then, we used the quantile function in base R 

(https://www.r-project.org) to find the G’ value demarcating the top 5% of these 

values (R Core Team 2022). This number became our FWER threshold.  

To calculate FDR, we created several thresholds within the simulated data. 

These thresholds started at 20 and increased by 10, ending with 50 as our highest 

threshold. We then counted the number of “peaks,” or G’ values, above each of 

these thresholds. We then took the number of simulated values above the current 

chosen threshold and divided it by the number of observed values above that 

https://www.r-project.org/
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threshold to get our FDR. Proceeding in this way, we narrowed down our 

threshold until we arrived at an FDR of 0.05. The G’ value at which our FDR is 

0.05 became the threshold of significance.  

 

Regions of interest 

After finding the 13 loci above the G’ FDR threshold, we grabbed the position, 

SNP name, chromosome arm, and G’ values of those loci. Then, we used the 13 

genetic loci to find genes close to those locations on flybase (https://flybase.org). 

We observed, on average, the genes found within 20 kilo base pairs (kbp) of the 

implicated loci. For some, we extended our search out to 100 kbp. We also used 

our linkage disequilibrium analysis to see if any of our implicated loci were in 

regions of high LD with other locations along the genome. For the sake of clarity, 

we also plotted the raw mean allele frequencies around the 13 loci.  

 

Linkage disequilibrium 

Linkage disequilibrium (LD) was calculated in the parent population using 

PLINK ver.1.90b. First, we used the sequenced DNA of our founder genomes to 

create required pedigree (.ped) and mapping (.map) files. The .map file contains 

the chromosome name, SNP, and its location in both centimorgans (cM) and base 

pairs. The .ped file contains the pedigree information of the sequenced flies. This 
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includes individual ID, mother and father IDs (which were set to 0 as parents are 

unknown), sex of the flies (2 for female), and phenotype (set to 0 for unknown). 

We then passed our .map and .ped files through PLINK with the ‘--make-

bed’ tag to create a binary file. This file makes the calculation of R2 linkage 

disequilibrium values quick and easy. We then made pairwise comparisons among 

the SNPs underlying our 13 G’ values of interest. We used the thirteen G’ SNP 

IDs to index the parent genome’s pedigree and mapping files for our LD 

calculation. We made a total of 13x13=169 LD comparisons to look for linkage 

between our significant hits. 

 

RESULTS 

Heritability 

We calculated a broad-sense heritability of H2 = 0.4, 95% CI [0.29,0.57]. 

In addition, we can clearly see that some RILs exhibit higher exploration 

behavior than others (Figure 3). We saw an extreme difference between the 

lowest and highest explorers, too, with low exploring lines almost never visiting 

the B chamber while the highest exploring lines would have half the flies explore 

the B chamber. Our linear regression model, lm(proportion explorers ~ 

time), ran on our RIL exploration data, indicates that time does not predict 
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exploration tendency (R2 = 7.51e-08, F(1,96) = 7.209e-06, p = 0.9979) (Figure 

4). 

 

 

 Figure 3. The proportion of flies found in the B chamber of our exploration assay, sorted 

from lowest to highest. Flies’ exploration behavior can be predicted by which RIL the flies come 

from. This confirms that exploration behavior has a genetic component.  
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 Figure 4. The proportion of flies found in the B chamber of our exploration assay 

predicted by the time at which the assay was ran. Exploration tendency is not significantly 

predicted by time (R2 = 7.51e-08, F(1,96) = 7.209e-06, p = 0.9979). 

 

G’ analysis  

We found no significant peaks utilizing an FWER of 0.05. However, we did 

find thirteen significant G’ values after calculating the false discovery rate.  
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Figure 5. G’ values plotted across the entire genome. The blue line denotes family-wise error 

rate of 0.05 for our data. There were no observed data points above the FWER threshold. The 

red line denotes a false discovery rate of 0.306. We found 13 loci above our false discovery rate.  
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Regions of interest 

 

 Figure 6. Each plot shows mean allele frequencies of explorers in red and non-explorers 

in blue across the genome. The red dots centered in the grey rectangles indicate the positions of 

the 13 significant G’ QTLs. Plots A, E and H contain 2, 3, and 2 significant QTLs, respectively.  
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Chromosome Position Gene Associated phenotype 

2L 17054316, 

17054384 

CG15136 Abnormal flight 

2L 18515161 Ugt201D1 Enables UDP-glycosyltransferase activity 

  CG10211 Involved in response to oxidative stress 

3L 6818526 vvl Specification of cell fates, patterning and 

immune defense 

3L 12226612 app Regulation of fat signaling abnormal 

locomotive behavior 

3L 14401683, 

14401693, 

14401703 

Dscam2 Abnormal neuroanatomy, size, body color 

3R 25454633 Men Abnormal heat stress response, abnormal 

sleep 

3R 27194130 G14369, 

CG14370 

Little to no information 

X 10174752, 

10174756 

CG32767 Involved in several transcription factor 

activities, expressed in wing hinge primordium 

and wing pouch 

  CG15465 Little to no information 

X 12446014 Btnd Flightless, abnormal heat stress response 

  Efr Manifests in wing vein 

  sqh Involved in cytokinesis and tissue 

morphogenesis 

  dtn Abnormal heat stress response 

Table 1. List of regions of interest by chromosome arm, position (Mb), gene name and 

associated phenotype. Information was collated from FlyBase (https://flybase.org). 
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We found several regions of interest that appeared above our false 

discovery rate significance threshold. On chromosome arm 2L, we found two loci 

of interest involved in abnormal flight. On chromosome arm 3L, we found one 

locus of interest suspected to be involved in abnormal locomotive behavior. On 

the X chromosome arm, we found several loci involved in heat response and 

variation in wing vein phenotypes. The genes in question on the X chromosome 

were Btnd, Efr, dtn (detonator) and sgh (spaghetti squash).  

 

Linkage disequilibrium  

 

 Figure 7. Pairwise linkage disequilibrium calculated between the 13 significant SNPs 

obtained from the G’ analysis. Plotted heatmap values are R2 values calculated with the parent 
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population data, where numbers closer to 1 indicate SNPs in high LD and numbers closer to 0 

indicate SNPs in low LD.  

 

 Our analysis of linkage disequilibrium indicates that significant QTLs 

further from each other are not in LD. We can see that QTLs close to each other, 

like SNPs 78240 and 78238, are in LD with each other. This makes sense, as 

SNPs that are physically close to each other are more likely to be in high LD 

than SNPs far apart from each other.  

 

DISCUSSION 

We found 15 genes of interest underlying our 13 significant G’ hits. These 

genes are located on chromosome arms 2L, 3L, 3R and X. The full list of 

implicated genes is listed in Table 1. Among the 15 genes, 4 are involved to some 

extent with flight or locomotive phenotypes. In addition, 5-6 of the genes are 

involved in the Scer\GAL4 pathway. This pathway is involved in abnormal stress 

and temperature responses in D. melanogaster. There are two additional genes 

involved in abnormal temperature stress response as well. One implicated QTL 

encodes for the cell-surface protein Down syndrome cell adhesion molecule 2 

(Dscam2). The original Dscam protein was discovered in a region of human 

chromosome 21 critical for Down’s syndrome (Yamakawa et al. 1998). Dscam2 is 

expressed in the D. melanogaster nervous system, and has been primarily studied 
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due to its involvement in the Drosophila visual system and the role it plays in 

the formation of neuronal synapses (Millard et al. 2007; Lah et al. 2014; Bosch et 

al. 2015; Odierna et al. 2020). Perhaps our non-exploring flies were unable to 

visually identify the passage opening due to changes in their visual system caused 

by Dscam2.  

Of the 13 significant loci implicated by G’ in exploration behavior, we 

found 3 of them to be in high LD. We compared implicated regions along the 

genome with known LD within those regions. Implicated regions with low LD are 

more likely to house true QTLs that contribute to exploration. Conversely, 

implicated regions with high LD may house a QTL, or they might be linked to 

the true alleles that underlie exploration tendency. The 3 loci in high LD were all 

physically clustered together. This matches our expectations, as genes that are 

physically close are physically linked, and any selection on one of the loci will 

invariably affect the linked loci. Overall, we found that exploration behavior is a 

heritable, polygenic trait with several loci of interest. The QTLs we identified 

have been previously implicated in other behavioral traits, such as locomotive 

behavior and flight.  

We used a multiparent population of D. melanogaster (the DSPR) that 

gave us higher power and insight into our experimental results. Since the 

experimental population is descended from the eight founding lines, our 
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experimental population exhibits one of eight possible haplotypes at any given 

position along the genome (Burke et al. 2010; Long et al. 2014; King et al. 

07/2012). This increases the power we have in determining QTLs of interest that 

actually underlie exploration tendency (Kessner and Novembre 2015). In 

addition, we used linkage disequilibrium across the genome calculated from the 

parent population in comparison to the significant G’ analysis results. The DSPR 

has been used by multiple research groups to identify the genetic basis of traits 

like longevity, resistance to toxins, learning and place memory, transposable 

element abundance, relative fitness, nicotine resistance, and fungal resistance 

(Cridland et al. 2013; Marriage et al. 2014; Najarro et al. 2015; Highfill et al. 

2016; Everman et al. 2019; Williams-Simon et al. 2019; Singh et al. 2022; Riddle 

and Farnoudi). 

One of the key benefits of using the DSPR in this set of experiments is our 

ability to utilize linkage disequilibrium (LD) to inform our results. By adding LD 

to our analysis, we can determine which significant signals are in high LD with 

other regions of the genome. This tells us that our observed significant signal 

could either a) underlie our trait of interest, or b) merely be in high LD with the 

true region underlying our trait. However, this combined analysis does not tell us 

which signal is the true QTL. It does give us more information than we had 

previously, adding to the overall power of our experimental design to detect 



 
 

37 

significant QTLs. The ability to reduce the level of uncertainty in our results due 

to LD is a unique aspect of this technique.  

We calculated LD between the 13 loci of interest that we discovered in our 

G’ analysis. We expected high LD to occur around the loci that are close to each 

other, as loci that are physically close to each other are physically linked as well. 

What this indicates is that if one of the loci in high LD is selected for, the loci 

that it is in LD with will change in frequency as well. We found three of our 

thirteen loci of interest were in high LD (Figure 7). 

We also used a bulk segregant analysis approach, allowing us to view 

genetic differences within a single generation due to the nature of our binary 

phenotype. Since our exploration assay result is binary, we can exploit this to 

rapidly view genetic differences via BSA-seq (Michelmore et al. 1991).  

We found that exploration tendency is a complex trait with several loci 

across the genome contributing to it in our synthetic population. This coincides 

with previous QTL mapping studies conducted with the DSPR, where fungal 

resistance, sleep, cold tolerance, nicotine resistance, and more are polygenic traits 

controlled by several alleles of small effect (Crawford 2013; Marriage et al. 2014; 

Smith and Macdonald 2020; Riddle and Farnoudi). While to our knowledge no 

other QTL mapping studies have been conducted on exploration behavior as 

defined in this study, related traits have been found to be polygenic 
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(Saastamoinen et al. 2018). It follows that the genetic mechanism controlling 

exploration tendency would also be polygenic in nature. 
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SUPPLEMENTAL MATERIALS  

Recombinant inbred lines  

22004 22035 

22009 22036 

22014 22037 

22017 22038 

22018 22039 

22024 22042 

22028 22046 

22029 22049 

22030 22052 

22033 22054 

Supplemental table 1. List of recombinant inbred lines used for the outbred population.  
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CHAPTER 3 

STARVATION RESISTANCE IN AN EXPERIMENTALLY EVOLVED 

POPULATION OF D. MELANOGASTER 

Z. Forrest Elkins, Jordyn Moaton, Elizabeth G. King 

ABSTRACT 

An organism’s access to food fluctuates over the course of its life. In many 

populations, organisms experience prolonged lengths of time with limited or no 

access to food. In such cases, an organism’s ability to resist starvation is essential 

to its survival. Starvation resistance (SR) can differ among individuals due to 

both genetic differences as well as environmental differences. We used an 

experimental evolution framework to assay for SR in three different populations 

of D. melanogaster selected for three different resource allocation patterns. Our 

goal was to see how three different diets affected SR in each of the three evolved 

populations. We placed twelve replicate populations of D. melanogaster on three 

selection treatments: constant high availability (CHA), fluctuating availability 

(FA) and deteriorating availability (DA). Flies in the CHA treatment were fed a 

high sugar diet for their entire lifespan. Flies in the FA treatment are in turn 

given a standard diet followed by a low yeast diet followed by a standard diet. 

Flies in the DA treatment start with a standard diet and then are put on a low 

yeast diet until eggs are collected for the next generation. These three treatments 
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have been ongoing for over 50 generations. For our experiment, flies from all 

replicates and treatments were placed on one of three diets for 10 days: high 

sugar, standard and low yeast diets. After 22 days post-oviposition (p.o.), flies 

were placed on nutrition-less agar. SR was measured as the time it takes for a fly 

to die starting the moment it is placed on nutrition-less agar. We determined 

how these different selection treatments led to the evolution of plasticity in SR in 

response to diet. We link these phenotypic changes to variation in artificial 

selection pressure and environmental conditions. 

 

INTRODUCTION 

Nearly all species experience periods of food scarcity or nutritional 

imbalance (McCue 2010). An organism’s ability to survive these periods of 

starvation and malnutrition is important for its overall fitness. Organisms 

without the ability to resist periods of stress exhibit reduced survival (Lee and 

Jang 2014). Starvation resistance is correlated with various stress response traits, 

longevity and energy storage (Chippindale et al. 1996; Djawdan et al. 1998; 

Harshman et al. 1999; Schwasinger-Schmidt et al. 2012; Lee and Jang 2014; 

Everman et al. 2019). Since starvation resistance allows organisms to survive 

periods of little to no food, it comes as no surprise that it would evolve alongside 

desiccation resistance, reduced fecundity and general stress resistance (Service et 
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al. 1985; Hoffmann and Parsons 1989b; Rose et al. 1992; van Herrewege and 

David 1997; Hoffmann and Harshman 1999).  

We suspect that starvation resistance evolves alongside resource allocation 

strategies. Previous research found that lines of D. melanogaster selected for 

starvation resistance tended to store more lipid, develop more slowly, show lower 

rates of early-age reproduction, and grow to be larger than control lines 

(Harshman et al. 1999). Flies selected for starvation resistance were also able to 

resist desiccation, suggesting that the mechanism underlying starvation resistance 

is linked to other stress-resistant traits (Hoffmann and Parsons 1989b; Harshman 

et al. 1999). For example, artificially selecting for starvation resistance negatively 

correlates with fecundity, and positively correlates with longevity, consistent with 

the Y-model of trade-offs (Chippindale et al. 1993). Starvation resistance has also 

been found to negatively correlate with cold resistance another stress-related 

trait, in female Drosophila (Hoffmann et al. 2005). There is even evidence to 

suggest pre-adult temperatures mediate resistance to starvation, with lower 

ambient temperatures resulting in reduced resistance (Pijpe et al. 2007). 

Starvation resistance is a phenotypically plastic trait, i.e., a single genotype can 

give rise to multiple phenotypes depending on the environment surrounding it 

(Pijpe et al. 2007). Environmental differences in access to lipids, or different 

environments that lead to varying lipid levels, can lead to increased resistance to 

starvation (Djawdan et al. 1998). Changes in lipid content directly contribute to 
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starvation resistance in D. melanogaster, as well (Chippindale et al. 1996; 

Djawdan et al. 1998; Hoffmann and Harshman 1999). Therefore, it would make 

sense that various resource allocation strategies, with variable levels of energy 

and lipid storage, would lead to differences in starvation resistance. While we 

know a lot about starvation resistance and its relation to other stress-related 

traits, we do not know how it co-evolves in response to consistent, cross-

generational variation in resources. The genetic mechanisms underlying 

starvation resistance and phenotypic plasticity of starvation resistance are 

generally unknown, as well. 

Experimental evolution is a powerful paradigm by which lab populations 

are placed in highly controlled environments to select for specific traits (Garland 

and Rose 2009). The evolved organisms can then be resequenced, and changes in 

the allele frequency of single nucleotide polymorphisms (SNPs) or genomic 

haplotypes that occur between the unevolved and evolved populations are 

attributed to the artificial selection (Baldwin-Brown et al. 2014). We can also 

compare phenotypic trait values between populations that were placed on 

differing artificial selection regimes. This method allows us to address our 

unknown questions: 1) we can artificially evolve populations on drastically 

different resource availabilities and assay for starvation resistance, and 2) we can 

place evolved organisms on a specific diet prior to the starvation resistance assay 

to assess phenotypic plasticity.  
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We utilize the Drosophila Synthetic Population Resource (DSPR), a multi-

parent intercross mapping panel of D. melanogaster, a powerful tool that allows 

us to dissect phenotypic variation and its underlying genetic basis to address this 

question (King et al. 2012, 07/2012; Long et al. 2014). We used a subset of flies 

from the DSPR to perform an evolve and resequence experiment where three 

distinct resource allocation strategies were selected for via cross-generational 

variation in access to nutritional resources. We then assayed for starvation 

resistance in flies from these three selection lines. This directly addresses the co-

evolution of starvation in response to cross-generational variation in resources. 

Finally, we conducted two different starvation assays: a ‘direct measurement’ 

experiment where flies were placed directly onto the starvation resistance assay, 

and a ‘diet treatment’ experiment, where flies were placed onto one of three diets 

for ten days prior to the assay. The diet treatment assay allows us to address our 

third unknown – the contributions of the organism’s nutritional environment on 

phenotypic plasticity in starvation resistance.  
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METHODS 

Base population 

We used flies taken from the Drosophila Synthetic Population Resource 

(DSPR). These flies are an eight-way multi-parent population comprised of >800 

recombinant inbred lines (RILs). The development and genetic properties of the 

DSPR can be found in (Elizabeth G. King, Macdonald, and Long 07/2012; E. G. 

King et al. 2012). The founder lines were crossed for 50 generations and then 

inbred for 25 generations, forming the set of recombinant inbred lines. We crossed 

835 of these RILs together for 5 generations to form an outbred panel by placing 

5 mated females from each line in an acrylic cage. The outbred panel served as 

our base population for our artificial evolution experiment.  

 

 

 

 

 

Figure 1. This population started from eight inbred founders representing global standing 

variation in Drosophila melanogaster. They were mixed en masse for 50 generations and 835 

recombinant inbred lines (RILs) were inbred from this population. The RILs were then re-mixed 

for five generations to create a base population for experimental evolution. 
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Experimental evolution   

Flies from the outbred population were used in our artificial selection 

experiment. We selected for three different resource allocation patterns in our 

outbred populations of flies. The fluctuating availability (FA) selection regime 

consists of a diet that fluctuates over the course of the fly’s lifetime. Prior to 

eclosure, they are placed on a control (C) diet (Bass et al. 2007). After six days 

on the control diet, they are transferred to a dietary restriction (DR) diet (Bass 

et al. 2007). After four more days, they are placed back onto the control diet. 

Eggs are collected from the flies after four days on the control diet. The 

deteriorating availability (DA) selection regime consists of a diet that deteriorates 

over time. These flies are placed onto a control diet prior to eclosure and stay on 

that diet for ten days. They are then placed onto the DR diet, and eggs are 

collected for the next generation after four days. The final selection regime is a 

high sugar (HS) dietary regime. These flies are placed onto a high sugar diet 

prior to eclosure and remain on that diet for fourteen days before eggs were 

collected from their offspring.  
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 Days post-oviposition 

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

FA C C C C C C DR DR DR DR C C C C 

DA C C C C C C C C C C DR DR DR DR 

CH HS HS HS HS HS HS HS HS HS HS HS HS HS HS 

   Eclosure           Egg 

collection 

 

Table 1. Selection regime schedule. Flies eclosed from their eggs on day 10 post-oviposition 

(p.o.). Flies on the fluctuating availability selection regime were placed on a control diet for 6 

days, then onto the DR diet for 4 days, and spent the last 4 days on the control diet again, with 

egg collection occurring on the last day. Flies on the deteriorating availability selection regime 

were placed on the control diet for 10 days before being moved to the DR diet for the final 4 

days, with egg collection occurring on the last day. Flies on the constant high availability 

selection regime were kept on the HS diet for the entire 14-day period, with egg collection 

occurring on day 21 p.o.  

 

Starvation resistance assays 

We ran two separate SR assays using flies that were duplicated out of our 

selection population. We then maintained the duplicated flies for two generations, 

and we used the second generation’s offspring in our two experimental assays. 

The first and second generation of duplicated flies were kept on a standard yeast 

diet to remove maternal and transgenerational effects of the selection regimes on 

our experimental flies. In the direct measurement, eggs collected from the second 
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generation of duplicated flies were placed onto a standard diet until eclosure. 

Once the flies eclosed, they were placed directly onto the nutrition-less agar. We 

will refer to these as direct measurement flies (Figure 2).  

In the second assay, eggs collected from the third generation of duplicated 

flies were placed on one of three diets for ten days before they were transferred to 

the nutrition-less agar. These flies will be referred to as diet treatment flies 

(Figure 3). The nutrition-less agar consists of 1000 mL of water, 15 g of agar, 12 

mL of acid mix (330 mL water/259 mL propionic acid/31 mL phosphoric acid), 

and 2 g of Tegosept dissolved in 20 mL of 95% ethanol.  

 Maintenance DR C HS Nutrition-less 

Water (ml) 1066 1000 1000 1000 1000 

Agar (g) 6.25 10 10 10 15 

Dextrose (g) 86.26 - - - - 

Sucrose (g) - 50 50 342 - 

Yeast (g) 21.6 100 200 200 - 

Cornmeal (g) 40.8 - - - - 

Tegosept (g) 1.8 2.7 2.7 2.7 2 

Ethanol (ml) 7.3 11 11 11 20 

Acid mix (330 ml water/ 

259 ml proprionic acid/ 

31 ml phosphoric acid) 

- - - - 12 

 

Table 2. The four diets used in the selection experiment, plus the nutrition-less agar diet used in 

our starvation resistance assay.  
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Direct measurement 

Flies were duplicated from the three experimental selection regimes for two 

generations before they were placed onto the nutrition-less agar starvation 

resistance assay. The time until death (counted in 12-hour increments) for these 

direct measurement flies were recorded. Flies were labeled by their RIL line, 

replicate number, and sex (ex: 1FA-1-M). Each vial contained 10 flies of a single 

sex. Flies were sorted and sexed using pre-sterilized paintbrushes with a 10% 

bleach mix. To sort and sex the flies, we used CO2 to put them to sleep. The 

CO2 bed was sterilized using a Kim wipe that had been dampened with a 10% 

bleach mix. Each vial was checked post-sorting to make sure the flies did not die 

from the CO2 bed.  

The experimental vials were placed in a temperature- and light-controlled 

chamber. After the number of dead flies were counted every 12 hours, the vials’ 

placement in the chamber was rotated to control for environmental effects.  
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Figure 2. Flies were duplicated from the three experimental selection regimes for two generations 

before they were placed onto the nutrition-less agar starvation resistance assay. The time until 

death (counted in 12-hour increments) for these direct measurement flies were recorded.  
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Diet treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flies were duplicated from the three experimental selection regimes for two generations 

before they were placed on one of three diets – dietary restrictive, control, and high sugar diets. 

After ten days, all flies were placed onto the nutrition-less agar starvation resistance assay and 

the time until death (counted in 12-hour increments) for these diet treatment flies were recorded.  

 

Ten flies were placed into a vial containing nutrition-less agar. Flies were 

labeled by their RIL line, replicate number, sex and diet (ex:1FA-1-M-C). Each 

vial contained 10 flies of a single sex. Flies were sorted and sexed using pre-
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sterilized paintbrushes with a 10% bleach mix. In order to sort and sex the flies, 

we used CO2 to put them to sleep. The CO2 bed was sterilized using a Kim wipe 

that had been dampened with a 10% bleach mix. Each vial was checked post-

sorting to make sure the flies didn’t die from the CO2 bed.  

The experimental vials were placed in a temperature- and light-controlled 

chamber. After the number of dead flies were counted every 12 hours, the vials’ 

placement in the chamber was rotated to control for environmental effects.  

 

Phenotypic analysis 

At the end of the experiment, we had the time (in 12-hour increments) at 

which flies from every vial died (i.e., the time that they resisted starvation). We 

then utilized R and, more specifically, the tidyverse package to clean and 

prepare our data for analysis and visualization (Wickham et al. 2019; R Core 

Team 2022). From our recorded data, we calculated the total time, per sample, 

when all flies in a sample had died. We right-censored data from vials in which 

flies never experienced death due to starvation. This would occur in flies that 

died from methods other than starvation (i.e., a fly was crushed by the vial’s 

foam plug during the transfer of flies to nutrition-less agar), or other 

experimental error. Since the flies, prior to censorship, did not experience death 

due to starvation, we can use that knowledge in our survivorship analysis. These 
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flies still contribute to our survival analysis as censored data, which is better than 

dropping those vials from our analysis completely.  

To conduct survival analyses, including a Cox Proportional Hazard (CPH) 

model, we needed to calculate several factors from our gathered data. These 

factors included the selection treatment, diet, sex, and batch number, as well as 

our right-censored data and total time until complete death per vial.  

We conducted survival analyses on our cleaned and prepped SR phenotype 

data (Clark et al. 2003b, 2003a; Bradburn et al. 2003a, 2003b; Zabor 2022; 

Therneau 2022).  

We then fitted our survival data using the Kaplan-Meier (KM) method 

using the ’ggsurvfit::survfit2’ function (Clark et al. 2003a; Kaplan and 

Meier 1958; Sjoberg and Baillie 2022; R Core Team 2022). This method estimates 

survival probability nonparametrically. Each vial is observed at regular time 

intervals, with the assumption that the occurrence of an event (in our case, the 

death of all ten flies in a given vial) happens independently of each other. 

Therefore, the probabilities of surviving across time intervals can be multiplied 

together. This gives us a cumulative survival probability where each vial 

contributes information to the KM method if no event has occurred. It also 

allows censored data to contribute to the calculations (Kaplan and Meier 1958). 

Next, we fitted our data using the Cox proportional hazard model 

(Andersen and Gill 1982). The Cox regression model is semi-parametric and can 
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fit univariable and multivariable regression models that have survival outcomes. 

The Cox model assumes 1) non-informative censoring and 2) proportional 

hazards. Cox regression models output what is known as a hazard ratio (HR). 

The HR represents proportional hazards between two groups at a given time 

point. For our data, the HR can be interpreted as the proportional, instantaneous 

rate of occurrence of death due to starvation in flies still at risk of starvation. HR 

values less than 1 indicate a reduced hazard of death, and an HR greater than 1 

indicates an increased hazard of death. 

Once we fitted our Cox proportional hazard models, we then used Akaike’s 

Information criterion (AIC) to perform a model comparison (Mazerolle 2020). We 

used the model comparison to find the Cox model that best fit our data. 

 

Direct measurement 

For the direct measurement flies, we fitted the survival data with eight 

different models using the ‘survival::Surv’ and ‘survival::coxph’ 

functions in R (Therneau 2022; R Core Team 2022). For our first fitted model, 

we wanted to see how the selection ID fit our data. For our second model, we 

fitted our data by selection ID and sex. Then, to make sure that our two batches 

didn’t influence our survival data, we fitted our data by batch ID. We then used 

the ‘AICcmodavg::aictab’ function in R to perform our model comparison 

(Mazerolle 2020; R Core Team 2022). 
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Cox proportional hazard models 

Survival ~ Selection + Sex + Batch 

Survival ~ Selection 

Survival ~ Selection + Sex 

Survival ~ Sex 

Survival ~ Selection * Sex 

Survival ~ Batch 

Table 3. Cox proportional hazard models that we ran on our direct measurement data. 

 

Diet treatments 

For the diet treatment flies, we fitted the survival data with seven models, 

then performed model comparison to find the best-fitting model. First, we wanted 

to see how diet predicted our survival data. For our second fitted model, we 

wanted to see how diet plus the selection ID fit our data. For our third model, we 

fitted our data by diet, selection ID, and sex. Finally, to make sure that our two 

batches did not influence our survival data, we fitted our data by batch ID.  
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Cox proportional hazard models 

Survival ~ Diet + Selection + Sex + Batch 

Survival ~ Diet 

Survival ~ Diet + Selection 

Survival ~ Diet + Selection + Sex 

Survival ~ Selection 

Survival ~ Sex 

Survival ~ Diet * Selection 

 

Table 4. The seven Cox proportional hazard models that we ran on our diet treatment data.  

 

RESULTS 

Direct measurement 

In our direct measurement flies, sex was a major predictor of starvation 

resistance according to both Kaplan-Meier and Cox proportional hazard models. 

Males were always more likely to die at earlier time periods than female flies (1
2 

= 25.08, p = 5.507e-07) (Figure 6). In fact, male flies were three times more 

likely to die at any given time point during the starvation resistance assay than 

female flies (Table 1).  
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Figure 4. Sex was a significant predictor (1
2 = 25.08, p = 6.732e-09) of survival in the direct 

measurement (DM) flies. 

 

In our direct measurement flies, the selection regime significantly 

contributed to differences in survival probability during the starvation resistance 

assay (2
2 = 12.09, p = 0.002371). Flies from the CH and FA selection regimes 

were much more likely to survive at any given time point during the assay than 

flies from the DA selection regime (Figure 7). Unlike our flies from the diet 

treatment, where the contributions of selection regime appeared to be washed out 

by diet treatment, we clearly saw differences in survival due to selection regime 

in our direct measurement flies.  

We also saw that patterns of starvation resistance due to selection regime 

remained the same regardless of sex (Figure 8). When we predict survival 
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probability by both sex and selection regime, males and females on the CH and 

FA selection regimes resisted starvation for longer periods of time than flies from 

both sexes on the DA selection regime. Adding to this, males always died quicker 

than females, with male flies on the CH selection regime resisting starvation at a 

similar rate as female flies on the FA selection regime.  

 

Figure 5. Selection was a significant predictor of survival in the direct measurement (DM) flies. 

Flies from both the CH and FA selection regimes resisted starvation for longer periods of time 

than DA flies, with CH flies surviving the longest.  
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Figure 6. Selection and sex together were a significant predictor (3
2 = 39.54, p = 1.335e-08) of 

survival probability. Males, regardless of selection regime, died quicker than females. However, 

our selection regime results are the same regardless of sex. Both males and females on the CH and 

FA selection regimes resisted starvation longer than males and females on the DA selection 

regime.  

 

Cox proportional hazard model 

We fit Cox proportional hazard models to our survival data to see how 

selection and sex altered the hazard ratio, which in our case, is the likelihood that 

a fly will die from starvation at a given time. Hazard ratios (HR) < 1 indicate a 

reduced hazard of death due to SR. HR > 1 indicates an increased hazard of 

death due to SR. The Cox proportional hazard model uses one category from 

each dependent variable as a ‘baseline’ hazard around which the other categories 
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are compared to. For selection regime, the Cox proportional hazard model used 

the CH regime as its baseline. Compared to CH, flies from the DA regime were 

1.73 times as likely to die due to starvation at a given point in time. Likewise, 

FA flies were 1.41 times as likely to die due to starvation than CH flies. For sex, 

female flies were ‘baseline,’ and male flies were found to be 1.9 times more likely 

to die due to starvation than females at a given point in time. We see selection 

treatment significantly influence starvation resistance (ꭓ2
2 = 12.09, p = 

0.002371), while selection + sex + batch was our top predictor for survival (ꭓ4
2 = 

43.9, p = 6.732e-09).  

Characteristic HR1 95% CI1 p-value 

Selection    

CH - -  

DA 1.73 1.30, 2.31 <0.0001 

FA 1.41 1.05, 1.88 0.022 

Sex    

F -   

M 1.90 1.50, 2.42 <0.001 

1 HR = Hazard Ratio, CI = Confidence Interval 

 

Table 5. Cox proportional hazard model for direct measurement data. Hazard ratios (HR) < 1 

indicate reduced hazard of death. HR > 1 indicate an increased hazard in death. A HR of 1 

indicates neither a reduction nor an increase in likelihood of death. In the selection treatments, 

HR values of 1.73 and 1.41 imply that roughly 1.7 and 1.4 times as many flies in the deteriorating 

availability (DA) and fluctuating availability (FA) selection regimes, respectively, die in 
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comparison to the constant high (CH) availability selection regime. We also saw a higher hazard 

ratio for male flies, with male flies dying at 1.9 times the rate of female fly death. 

 

Model comparison 

We used AICc from the AICcmodavg package in R to compare our Cox 

proportional hazard models (Mazerolle 2020). From this comparison, we found 

that an additive model of selection + sex + batch best fit our data, and an 

interaction between selection and sex fit our data third best (Table 3). There is 

not much evidence to suggest that a more complex interaction occurs between 

selection and sex.  

Model K AICc Delta AICc AICc Weight Cum. Wt.  LL 

Selection + Sex + Batch 4 2612.94 0.00 0.74 0.74 -1302.40 

Selection + Sex 3 2615.25 2.31 0.23 0.97 -1304.58 

Selection * Sex 5 2619.27 6.33 0.03 1.00 -1304.53 

Sex 1 2625.64 12.69 0.00 1.00 -1311.81 

Selection 2 2640.65 27.71 0.00 1.00 -1318.31 

Batch 1 2647.53 34.58 0.00 1.00 -1322.76 

 

Table 6. AICc model comparison of seven models that we used to fit our direct measurement 

data. Selection + Sex + Batch fit our data the best out of all our Cox proportional hazard 

models, with Selection + Sex and Selection * Sex fitting second and third best, respectively.  
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Diet treatments 

We can see that flies in the diet treatments experiment were heavily 

influenced by their 10-day pre-SR assay diet treatment (Figure 9). Flies on the 

DR and HS diets both were more resistant to starvation than the C diet flies, 

although we did see an outlier fly from a C diet treatment living abnormally long 

on the SR assay. 

As for the interplay between diet treatment and selection regime, we did 

notice that the two combined additively to significantly contribute to SR survival 

in both Kaplan-Meier and Cox proportional hazard models. While diet 

treatments exhibit a much more significant effect on SR survival than diet plus 

selection regime, and selection regime exhibits a much less significant effect on 

SR survival than both diet and diet plus selection regime, the additive interaction 

between the two is significant in our Cox proportional hazard analysis (diet – ꭓ2
2 

= 15.4, p = 5e-04; selection – ꭓ2
2 = 0.01, p = 1; diet + selection – ꭓ4

2 = 16.76, p 

= 0.002). We observe that flies from the CH and FA selection regimes, plus the 

HS and DR diets, resist starvation for longer periods of time than flies from the 

DA selection regime and C dietary treatment.  
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Figure 7. The overall survival probability predicted by an additive model of diet + selection. 

Each row denotes diet treatment, with the first row containing flies on the HS diet treatment, the 

second row the DR diet treatment, and the third row the C diet treatment.  Each plot shows 

differences in survival between the three selection regimes, denoted by color and linetype.  
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Figure 8. The risk (1 – survival probability) at a given point of time between male and female 

diet treatment flies. As time went on, the risk of death for males approached 1 prior to the 200-

hour mark, while the risk of death for females approached 1 between 300 and 400 hours. As you 

can see, female flies lived much longer than male flies, regardless of diet or selection regime. The 

difference in survival probability between males and females is significant in our KM analysis (p 

< 0.001). 
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Figure 9. The cumulative hazard (-log (survival probability)) over time for flies on three 

separate dietary treatments. The cumulative hazard for flies from the control diet accumulated 

the quickest, with flies from the DR and HS diet treatments accumulating hazard at a slower 

rate. Survival probability between diets was significant in our KM analysis (p < 0.001). 

 

Cox proportional hazard model 

Our Cox proportional hazard model gives us more insight into our data 

(Table 7). In the different diet treatments, HR values of 0.72 and 0.49 imply that 

roughly 0.7 and 0.5 times as many flies on the dietary restrictive and high sugar 

diets, respectively, die in comparison to the control diet. This matches what we 

see in Figure 11, where flies from the C diet accumulate hazard at a faster rate 

than flies from the other diet treatments. 
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Characteristic HR1 95% CI1 p-value 

Diet    

C - -  

DR 0.72 0.54, 0.96 0.027 

HS 0.49 0.37, 0.67 <0.001 

Selection    

CH - -  

DA 1.16 0.87, 1.54 0.3 

FA 1.27 0.94, 1.70 0.12 

Sex    

F - -  

M 3.34 2.52, 4.43 <0.001 

1 HR = Hazard Ratio, CI = Confidence Interval 

 

Table 7. Cox proportional hazard model for diet treatment data. Hazard ratios (HR) < 1 

indicate reduced hazard of death. HR > 1 indicate an increased hazard in death. An HR of 1 

indicates neither a reduction nor an increase in likelihood of death. In the diet treatments, HR 

values of 0.72 and 0.49 indicate that roughly 0.7 and 0.5 times the amount of flies in the diet 

restriction (DR) and high sugar (HS) diet treatments, respectively, die in comparison to the 

control (C) diet treatment. In the selection treatments, HR values of 1.16 and 1.27 imply that 

roughly 1.7 and 1.4 times as many flies in the deteriorating availability (DA) and fluctuating 

availability (FA) selection regimes, respectively, die in comparison to the constant high (CH) 

availability selection regime. However, this result was not statistically significant in our Cox 

proportional hazard model (p = 0.3, 0.12). We also saw a higher hazard ratio for male flies, with 

male flies dying at 3.34 times the rate of female fly death. 
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Likewise, in the selection treatment, HR values of 1.16 and 1.27 imply that 

roughly 1.2 and 1.3 times as many flies in the deteriorating availability (DA) and 

fluctuating availability (FA) selection regimes, respectively, die in comparison to 

the constant high (CH) availability selection regime. Finally, roughly 3.3 times as 

many males die than female flies. In our diet treatment, diet overshadows 

selection in contributing to starvation resistance (diet – ꭓ2
2 = 15.4, p = 5e-04; 

selection – ꭓ2
2 = 0.01, p = 1; diet + selection – ꭓ4

2 = 16.76, p = 0.002). Overall 

Cox proportional hazard model trends indicate that in both direct measurement 

and diet treatment, batch ID does not significantly predict resistance to 

starvation (ꭓ1
2 = 0.04, p = 0.8). Sex was our main predictor for starvation 

resistance, as females were much more likely to live longer than males (direct 

measurement – ꭓ1
2 = 25.08, p = 5.507e-07; diet treatment – ꭓ1

2 = 209.5, p =< 

2e-16). 

 

Model comparison  

We used AICc from the AICcmodavg package in R to compare our Cox 

proportional hazard models (Mazerolle 2020). From this comparison, we found 

that an additive model of diet + selection + sex best fit our data, and an 

interaction between diet and selection with sex as an additive effect fit our data 

second best (Table 4). This indicates a more complex relationship between diet 

and selection regime may be occurring. 
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Model K AICc Delta AICc AICc Weight Cum. Wt.  LL 

Diet + Selection + Sex 5 2626.07 0.00 0.81 0.81 -1307.94 

Diet * Sel. + Sex 9 2629.03 2.96 0.19 1.00 -1305.23 

Diet 2 2694.03 67.96 0.00 1.00 -1345.00 

Diet + Selection 4 2696.76 70.69 0.00 1.00 -1344.32 

Diet * Selection 8 2702.52 76.46 0.00 1.00 -1343.03 

Sex 1 6160.77 3534.71 0.00 1.00 -3079.38 

Selection 2 6372.28 3746.21 0.00 1.00 -3184.13 

 

Table 8. AICc model comparison of seven models that we used to fit our diet treatment data. 

The model that best explains SR is the Diet + Selection + Sex Cox proportional hazard model, 

followed closely by the Diet * Selection + Sex Cox proportional hazard model.   

 

 

DISCUSSION 

We found that the top-performing model for diet treatment was Diet + 

Selection + Sex (AICc = 2626.07), while the second-best model was Diet * 

Selection + Sex (AICc = 2629.03). The interaction term between diet and 

selection indicates that there is a more complex relationship between the two that 

is not only additive. Put another way: while an additive effect of diet, selection 

and sex has a significant impact on a fly’s hazard of death, diet and selection 

interact with each other with the additive effect of sex to significantly impact a 

fly’s hazard of death as well, albeit to a slightly lower degree. Our top performing 

models according to our AIC model comparison for direct measurement flies was 
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Selection + Sex + Batch (AICc = 2612.94), with Selection + Sex nearly identical 

to it (AICc = 2615.25). However, according to our KM model, batch was not a 

significant predictor of survival probability (p = 0.1).  

Flies from different selection regimes are not statistically different from 

each other when it comes to SR in the diet treatment flies. However, we observed 

a statistically significant interaction between diet and selection. Since we 

observed significant changes in SR due to selection in our direct measurement 

flies, it seems likely that diet overshadows selection in our diet treatment flies. 

This is not what we expected, as we predicted that SR would clearly co-evolve 

alongside differing resource allocation patterns.  

While we do see that slightly less flies die from the CHA selection regime 

compared to the other two, this difference is not statistically significant in our 

diet treatment flies. The greater predictors of SR, rather, are sex and diet. Male 

flies were dying from starvation at over three times the rate of death in females 

at any given time. Likewise, flies that had access to a high sugar diet and flies 

that had a dietary restricted diet for the first 10 days post-eclosure were dying 

less than flies on the control diet. We did note some instances of cannibalism in 

our experimental population, a phenomenon that has been documented in 

starvation resistance assays before (Vijendravarma et al. 2013; Ahmad et al. 

2015, 2018). It was rare, but present. In future studies on starvation resistance, 
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we counteract fly cannibalism by placing the remaining living flies on fresh 

nutrition-less agar every 24 hours. 

In sum, the diet treatment results are interesting because they indicate 

two different methods of SR – flies on the HS diet might have more fat stores to 

access during the period of starvation, while flies on the DR diet might have 

allocated the limited resources, they did have access to towards survival – an 

excess of wealth compared to a survival tactic. Female flies resisted starvation 

longer regardless – if a fly was male, they were three times as likely to die at any 

given moment. In both diet treatment and direct measurement flies, an additive 

Cox proportional hazard model of three terms fit our data best. This gives 

support to selection treatment playing a significant role in starvation resistance.  

The phenotypic variation we observed, and the variables that our Cox, 

Kaplan-Meier and AIC models indicated as significantly different in predicting 

SR, reinforces the conclusions of previous research. Starvation resistance did co-

evolve alongside cross-generational variation in resource availability. Flies from 

certain diets and selection regimes survived for longer periods of time than others. 

Selection on certain resource allocation strategies confers resistance to starvation, 

just as it confers longevity and other forms of stress resistance (Harshman et al. 

1999). In the future, we will address the underlying genetic mechanisms of 

resistance to starvation in our resequenced fly population.  
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Previous studies have found that flies selected for starvation resistance 

exhibit a concurrent increase in body size (Brown et al. 2019). Flies from the CH 

selection regime are much larger than flies from the DA and FA selection 

regimes. The CH flies resisted starvation for significantly longer periods of time 

than the other selection regimes in both direct measurement and diet treatment 

paradigms, as well. Even in the diet treatment flies, those placed on an HS diet 

prior to the SR assay resisted starvation for significantly longer periods of time 

than flies placed on the control or DR diets. This makes sense, as increased body 

size has been shown to be a fitness-related trait conferring stress resistance 

(Ewing 1961). 

Other studies show that animals develop starvation resistance by reducing 

their energy expenditure – a ‘thrifty’ resource allocation pattern whereby animals 

store energy in the form of lipids (Hoffmann and Parsons 1989a; Marron et al. 

2003; Rion and Kawecki 2007; Aggarwal 2014). This coincides nicely with our 

observed results, where flies from the FA selection regime resist starvation longer 

than flies from the DA selection regime. We suspect that these flies have a 

‘thriftier’ resource allocation strategy, where fluctuating availability of resources 

leads to lower metabolic rates and higher rates of lipid storage when access to 

resources is more abundant. 

However, previous research from our lab suggests that plastic nutrient 

allocation strategies under different diets in flies do not affect crucial parts of 
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nutrient signaling pathways like the insulin/TOR signaling pathway (Ng’oma et 

al. 2020). Phenotypic plasticity in resource allocation strategies, and related traits 

such as starvation resistance, are not solely due to allele frequency differences in 

metabolism and nutrient-sensing mechanisms. Therefore, the actual mechanism of 

genetic control underlying resource allocation and starvation resistance are still 

unknown. 

Our next steps are to resequence the evolved population of D. 

melanogaster to find allele and haplotype frequency differences between our 

unevolved and evolved populations. We will also look for regions of significant 

differentiation between selection lines and diet treatment groups with high and 

low resistance to starvation, which will give us insight into possible genes of 

interest underlying SR. We plan to further inform our observed phenotypic 

differences with our genotypic analyses. Significant genetic differentiation 

between phenotypic extremes, for example, can be reasonably attributed to SR. 

This will further elucidate the genetic mechanism by which SR is controlled.  
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CHAPTER 4
CODE APPENDIX

Z. Forrest Elkins

Background

Pooled sequencing has become a cost-effective and accurate method of DNA sequenc-

ing. As a result, we lose individual genetic data identifiers. The sequenced DNA are

a representative sample of the pool instead of the individual. While this method re-

duces sequencing cost without sacrificing accurate allele & haplotype frequency reads,

it does introduce extra sources of statistical error. Since the DNA reads are a repre-

sentative sample, we wind up with varying amounts of sequenced DNA reads along

the genome. In addition, the resulting allele & haplotype frequencies are influenced

by the formation of the sample.

Here, I establish a novel method of statistical error estimation due to varying amounts

of coverage. Coverage is defined as the number of reads at a given location along the

genome. Due to the law of large numbers, a higher sequencing coverage value leads

to a more accurate allele estimation at that loci.
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Simple pairwise comparisons

Simulate a pairwise comparison between alleles at a single location without error.

Here, calculate the absolute allele frequency difference between segregated bulks. The

allele frequencies for the ‘high’ and ‘low’ bulks are assumed to be true – i.e., there is

no error in allele frequency estimation.

# load dependencies
library(ggplot2)
library(tidyverse)
library(purrr)
library(cowplot)
set.seed(172452)

# establish pairwise parameters

## allele frequencies for high and low populations
popH <- 0.3
popL <- 0.09
## absolute difference in allele frequencies
diff <- abs(popH - popL)
## scale data logarithmically
logdiff <- -log10(diff)
## print pairwise comparison value -- 'true' value
logdiff

[1] 0.6777807

Estimating ‘effective coverage’

A simulated calculation of coverage using the math detailed in Tilk et al. 2019. In

other words, my own miniature HAF-pipe functions. Our variable cvg_e is the ‘the-

oretical coverage at which binomial sampling of reads would be expected to contain
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the observed amount of error from estimated frequencies.’ Put another way, the esti-

mated and theoretical root mean squared error (RMSE) rates will equal each other

under ‘effective coverage.’

This method provides a level of sequencing coverage that researchers should aim for

in their genetic data to minimize error in their observed allele frequencies. It does

not give an estimation of that error as a function of coverage.

# modulate pairwise comparison with coverage as a source of error

# n is the number of sites, which in our case is just one
n <- 1

## estimated and true allele frequencies at one site
AFtrue <- rbinom(100,100,0.38) / 100
AFest <- rbinom(100,100,0.43) / 100

## effective coverage -- Tilk et al. 2019
cvg_e <- sum(AFtrue * (1 - AFtrue)) / sum((AFest - AFtrue) ^ 2)
cvg_e

[1] 30.42092

## theoretical root mean squared error
RMSEthe <- sqrt( sum(AFtrue * (1 - AFtrue)) / (cvg_e * n) )
RMSEthe

[1] 0.8772115

## estimated RMSE
RMSEest <- sqrt( sum((AFest - AFtrue) ^ 2) / n)
RMSEest

[1] 0.8772115
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In this case, with the code above, error introduced by variation in coverage would be

evaluated via the magnitude of difference between theoretical and estimated RMSE

values.

Tilk, Susanne, Alan Bergland, Aaron Goodman, Paul Schmidt, Dmitri
Petrov, and Sharon Greenblum. 2019. “Accurate Allele Frequencies from
Ultra-Low Coverage Pool-Seq Samples in Evolve-and-Resequence Exper-
iments.” G3 9 (12): 4159–68.

Coverage and pairwise allele frequency comparisons

The following is a novel method of estimating error as a function of coverage. Simulate

a pairwise comparison between alleles at a single location with coverage error. To

do this, we use a random binomial distribution that takes in coverage and true allele

frequency and outputs the estimated allele frequency.

First, we simulate a single allele frequency estimation given coverage and true allele

frequency:

# how to simulate coverage
## rbinom(1, cvg, AFtrue) / cvg
## output is estimated AF

cvg <- 20
trueAF <- 0.43

estAF <- rbinom(1,cvg,trueAF) / cvg
estAF

[1] 0.4

Next, we establish a function that calculates estimated allele frequency when it is

given coverage and true allele frequency:
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# function calculating estimated allele frequency
estAF <- function(cvg,trueAF){
est <- rbinom(1,cvg,trueAF) / cvg
return(est)

}

Finally, we can scale our code and plot the results:

# run this n times, scale up
n <- 1000
tru <- 0.43
cvg <- sample(2:150,n,replace = TRUE)
af <- tibble(
"cvg" = cvg,
"trueAF" = rep(tru,times=n)

)

af$estAF <- af %>% pmap(estAF) %>% unlist()

# plot estimated allele frequency by coverage
plt <- af %>% ggplot(aes(x = estAF, y = cvg)) +
geom_point(alpha = 0.15,colour="red") +
geom_smooth(method = "gam", colour = "red",se=FALSE) +
geom_vline(xintercept=tru, size = 0.8,linetype = "dashed") +
labs(x = "Estimated allele frequency", y = "Coverage") +
annotate("label",x = tru, y = -50, label = "True allele frequency") +
theme_cowplot()

plt
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Figure 1: Variability in allele frequency estimations due to coverage.

We can see the level of coverage and its effect on allele frequency estimation in the

plot above.

Simple plot of random allele frequencies

Pull allele frequencies from a distribution for ‘low’ and ‘high’ poolseq populations and

plot them.

## the following code is from my professional website
expl_freqs <- readRDS('expl-freqs.Rds')
arm <- expl_freqs %>%
filter(chrom=='2L') %>%
slice(1:800)

D <- (sample(400:600,800,replace = TRUE))/1000
N <- (sample(300:600,800, replace = TRUE))/1000

sampledata <- tibble(
"pos" = arm$pos,
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"N" = N,
"D" = D

)

plt <- ggplot(data=sampledata, aes(pos/16)) +
geom_line(aes(y = N, colour = "non-explorers")) +
geom_line(aes(y = D, colour = "explorers"))

plt + labs(x = "Position (Mb)")
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Figure 2: Allele differences between exploring and non-exploring flies.
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