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ABSTRACT 
 

Immune checkpoints are a normal part of the immune system. It engages when proteins on 

the surface of immune cells called T cells recognize and bind to partner proteins on other 

cells, such as some tumor cells. Immune based therapies such as ICIs work by blocking 

checkpoint proteins from binding with their partner proteins. This prevents the “off” signal 

from being sent, allowing the T cells to kill cancer cells. One such drug act against a 

checkpoint protein called PD-1 or its partner protein PD-L1. Some tumors turn down the T 

cell response by producing lots of PD-L1. Recent years FDA have granted accelerated 

approval for the immunotherapy drug on treating specific subgroups or advanced stage of 

solid tumors. This groundbreaking treatment has shown remarkable promise which could 

prevent tumors from growing and allowing some patients who receive the treatments to 

essentially be cured. The fact that some patients treated with immunotherapy have a durable 

response to cancer shows this treatment’s potential. But despite response rates between 20 

and 50 percent in certain groups, such as microsatellite instability-high (MSI-H) colorectal 

cancer which are characterized by high mutational load, neoepitope formation, and an 

intense lymphocytic infiltrate when compared to microsatellite stable (MSS) tumors [1]. And 

some cancer, such as non-small cell lung cancer, rely on some indicators like PD-L1 protein, 

tumor mutation burden [2, 3]. But how accurate these indicators could predict patient’ 

responses are still in debating. Moreover, scientists still don’t know why the majority of 

people with cancer do not respond to immunotherapy drugs [4]. For those patients are not 

supposed to receive immunotherapy may cause unnecessary long term side effect, such as 

adrenal insufficiency, and financial burden[5]. Completion of the work we propose here 

would help us to identify characteristics of patients as subgroups who might benefit from 

ICIs from multi-omics. In this study, we applied an explainable AI approach for patient 

stratification. Exploratory mining is contrast pattern-based data mining process. We will 

integrate these two methods to explore clinically explainable subgroups with phenotypical 

and genotypical features. These features would be the labels for identify patients who really 

need ICIs. We applied this method in pan-cancer population and identified the patients’ 

subgroups based on distinctive features including demographic, phenotypical and genomic 

characteristics. We believe these distinctive features contribute together to the patients’ 
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response sensitivity to the ICIs. Further wet lab experiments to validate these findings are 

required prior to initiating clinical trials using these identified features. 
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1. INTRODUCTION 

 

Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding 

nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding 

nonmelanoma skin cancer) occurred in 2020 [6]. An estimated 1,806,590 new cases of 

cancer will be diagnosed and 606,520 people will die from the disease in the United States 

of year 2020. The goals of treatment are to “cure” the cancer, if possible; prolong survival; 

and provide the highest possible quality of life during and after treatment. Cancer treatment 

can include localized therapies, such as surgery, radiation therapy, cryotherapy, and heat or 

chemical ablation, and/or systemic therapies (e.g., chemotherapy, hormonal therapy, 

immune therapy, and targeted therapy) used alone or in combination. In recent years, there 

is four primary types of immunotherapies are currently applying on cancer treatment, which 

is monoclonal antibodies, immune checkpoint inhibitors, cancer vaccines, and some other 

non-specific immunotherapies. As one of the promise immunotherapies, ICIs have shown 

remarkable treatment effect which could prevent tumors from growing and allowing some 

people who receive the treatments to essentially be cured [7]. 

 

1.1 IMMUNE CHECKPOINT INHIBITOR AND EFFECTIVENESS 

 

PD-1 as a critical biomarker of the immune checkpoint, which is a surface protein on 

immune cells called T cells. It normally acts as a type of “off switch” that helps keep the T 

cells from attacking other cells in the body. When PD-1 binds to PD-L1, it basically tells the 

T cell to leave the other cell alone. Some cancer cells have large amounts of PD-L1, which 

helps them evade immune attack. PD-1 inhibitors and PD-L1 inhibitors as monoclonal 

antibodies that target either PD-1 or PD-L1 can block this binding and boost the immune 

response against cancer cells. After several clinical trials, in 2017, FDA approved 

pembrolizumab (anti-PD-1 immune checkpoint inhibitors) could be used on patients with 

molecular identity, microsatellite instability-high (MSI-H), such as MSI-H colorectal cancer; 

and very recently in this year, 2019, FDA approved atezolizumab (anti-PD-L1 immune 

checkpoint inhibitors) could be used on triple-negative breast cancer [8, 9]. FDA have 
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granted accelerated approval for the immunotherapy drug on treating specific subgroups or 

advanced stage of solid tumors. However, only colorectal cancer and breast cancer have 

been clearly indicated the subtypes which could get the benefit from immunotherapy despite 

response rates between 20 and 50 percent in these groups [10]. In the other solid tumors, 

FDA only could approve these immunotherapies could be used on advanced cancers with 

possible PD-L1 protein or/ and tumor mutation burden level testing [11]. In another word, 

these groundbreaking therapies have a substantial challenge: FDA only regard a small 

number of patients would benefit from the ICIs, but for the majority patients we haven't had 

a “gold standard” to indicate if there are portion of them would potentially qualified. 

Moreover, these incredible advances and the promise of cancer cures also come with eye-

popping price tags that reach well past at least $100,000 per patient[12]. And when ICIs like 

nivolumab take the brakes off of cancer-killing immune cells, these activated immune cells 

can also harm healthy tissues, leading to side effects such as adrenal insufficiency. Therefore, 

for those patients who are not supposed to receive immunotherapy may cause unnecessary 

long term side effect and financial burden. 

1.2 RELATED WORK  

 

Therefore, with those questions in mind, it makes revealing the subgroups cancer patients 

who would benefit ICIs become a necessary and urgent issue. Recently some studies have 

shown that each single-tissue cancer type can be further divided into three to four molecular 

subtypes. These sub-classifications are more based on recurrent genetic and epigenetic 

alterations that converge on common pathways, such as p53 and/or Rb checkpoint loss, 

RTK/RAS/MEK or RTK/PI3K/AKT activation, etc. Moreover, these single-tissue tumor 

subtypes have shown meaningful differences in clinical behaviors, some of them could 

directly lead to therapies that target these subtype-specific molecular alterations [13]. 

Fortunately, more and more large-scale and multi omics-included genomics projects now 

producing detailed molecular characterizations for thousands of tumors datasets are 

available. 

We brought to a unique combination of informatic approaches, a number of which we have 

recently developed, for integrating multi-omics and exploring the characteristics of ICI-
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sensitive subgroups[14-16]. Using our distinctive combination of pipeline and informatic 

expertise, we will determine that how would the population, phenotypical and transcriptome 

variables interact with each other; how multi-omics to modulate CTL activity in pan-cancer 

patients; the subgroups containing ICI-sensitive feature in large heterogeneous populations. 

In short, we contributed knowledge of the characteristics of ICI-sensitive subgroups in multi-

omics and how the multi-omics variables interact and affect ICI-sensitivity in pan-cancer 

scale. This contribution would be significant because it will identify more ICI-sensitive 

subpopulations and avoid unnecessary treatment. We expect that our pan-cancer and multi 

omics-based taxonomy will lead to improved quality of cancer patients’ life and survival 

outcomes, and reduced healthcare costs.  

Since the Initial clinical trial results with IgG4 PD1 antibody Nivolumab were published in 

2010 and was approved by the FDA in 2014 for inoperable or metastatic melanoma, it has 

been 8 years [17]. However, we haven’t had a clear understanding of the difference of 

benefits were obtained from patients and cancer types. There are some previous studies have 

categorized the molecular subtypes by machine learning methods for solid tumors, such as 

colorectal cancer, breast cancer, etc. [18, 19]. However, in these methods, the molecular-

based subtypes only limited in the one type of cancer, and it couldn’t be applied for the other 

type of cancers. 

 

1.3 PRELIMINARY RESULTS 

 

In our previous study, we were using TCGA data to determine the heterogeneity and 

homogeneity by the mRNAseq data which based on well-accepted molecular subtype in 

COADREAD and breast cancer. COADREAD patient with MSI-h status and triple-negative 

breast cancer (TNBC) are the two subtypes which have been approved by FDA to treat by 

ICIs. We did a DEGs analysis for COADREAD microsatellite stable (MSS) vs. MSI-h 

patients and non-TNBC vs. TNBC in breast cancer patients. Then we applied venn-diagram 

overlap and pathway analysis by DEGs from two cancers. In BRCA, there were 3,499 DEGs 

and 676 DEGs in COADREAD. Three hundred eighteen DEGs are crosstalk genes from two 

cancers. Even it looks the overlap genes occupied in BRAC is close Figure 1 to 10%, 
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however, in COADREAD, the percentage close to 47%. This result inspired us that even in 

two different tissue-of-origin cancers, it shows a significant common in the type of patients 

which potentially could acquire a benefit from immunotherapy. 

Some of the overlap DEGs might be the “driver-gene” could be identified in pan-cancer 

scale study. In addition, we did a pathway enrichment analysis for these overlapped DEGs. 

Interestingly, in all the pathway events, there are 56 DEGs, which close to 1/5 of total 

overlapped DEGs enriched in the immune pathway event. We assumed these 56 immunes 

functional DEGs might be the signature genes of immunotherapy sensitive type. 

In sum, the above preliminary data indicate that in two different tissue of-origin cancers, it 

shows a significant common in the type of patients which potentially could acquire a benefit 

from immunotherapy. Furthermore, the identified immune functional DEGs might be the 

signature genes of immunotherapy-sensitive type. From the primary results inspired us to 

determine a therapeutic-orientated, multi omics-based subtypes identification would support 

the clinical decision making for ICIs application. The following experiments of this proposal 

are designed to explore these questions. 
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2.1 INTRODUCTION 
 

This Patient Stratification and feature detection framework is composed of three major steps. 

(1) Build up a pipeline to integrate phenotypical and transcriptome data to identify 

immunotherapy targets in breast cancer (BRCA) and colorectal cancer (COADREAD). We 

collected COADREAD patient data from The Cancer Genome Atlas (TCGA) dataset. Then 

utilizing the Microenvironment Cell Population Counter (MCP-Counter) to create tumor 

cytotoxic lymphocyte (CTL) abundance scores. Grouping patients based on cytotoxic 

lymphocyte abundance score, stage, and tumor anatomic location. Last, running mRNA-seq 

differential gene expression analysis, pathway enrichment and survival analysis to identify 

phenotypic feature involved pathway and genomic targets. (2) Developed an approach to 

integration transcriptome data and Epigenetic data to determine CTL activity modulators in 

COADREAD. Again, we retrieved publicly available data repositories.  And grouping 

patients based on consensus molecular subtypes (CMSs, signature based COADREAD 

classification); and exploring crosstalk gene in differentially expressed genes and 

differentially methylated genes from subtypes. Last, integrating crosstalk genes with MCP 

counter score, neoantigen, tumor mutation burden and cell type score to determine CTL 

activity modulators and possible mechanisms. 

2.2 MATERIALS AND DATA PROCESSING 
 

The input data for the patient stratification framework consists of genotypic and phenotypic 

variables for a disease population. The phenotypic, genotypic, and heterogeneous features 

are used to guide subgroup discovery. In this study, the genotypic and phenotypic data for 

patients were obtained from TCGA. As part of the human-in-the-loop process, a physician 

panel involved in the care of cancer patients selected the phenotypic and clinical variables 

to be included in the analysis. Additionally, many of these phenotypic variables were 

continuous, which required stratification into categories for inclusion in the data mining 

algorithm. The medical guidelines and the physician panel guided the categorization of all 

continuous variables. For example, the original data set of COADREAD contains the age of 

each patient. Patient age was categorized into four age groups by quartile. The genotypic 

data in this study are genes differentially expressed between normal and tumor tissues. The 
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differential expression analysis using edgeR was implemented on the RNA-seq data of the 

patients [20]. The dimensionality reduction was made by deciding the p-value to be less than 

0.05. In addition, our study contains 14-17 different types of biomedical variables. The 

differences of number of variables we included were based on the features of type of cancer, 

such as BRCA and COADREAD have subtypes information collected but not all the other 

cancers.  

2.2.1 THE CANCER GENOME ATLAS DATA ACCESS AND 

PROCESSING 

 

Data repositories such as TCGA allow for the in-depth study of patients on a molecular and 

clinical basis. Recently, a novel computational method for predicting the abundance of 

different cells within the tumor microenvironment using RNA-seq data was developed and 

validated with histologic specimens called the Microenvironment Cell Population Counter 

(MCP-Counter) [21]. This method allows for an effective comparison of the composition 

and pathways associated with cellular infiltration in the tumor microenvironment, improving 

over other methods primarily based on microarray data and gene set enrichment analysis. 

The mRNA-seq from TCGA data is an ideal input for starting group patients by MCP-

counter score. 

The data will be retrieved here is based upon data originally generated and organized by 

FireCloud from the Broad Institute. Full permission access transcriptomic data was obtained 

from dbGAP. We will download COADREAD and BRCA patients’ open access, pre-

processed mRNA expression data (level 3 data) from both platforms, IlluminaHiSeq and 

Illumina-GA; as well as mRNA-Seq by RSEM normalized data; and patients’ clinical data 

from the cohorts TCGA_COAD_ControlledAccess, TCGA_READ_ControlledAccess, 

TCGA_BRCA_ ControlledAccess by gsutil Tool.  

For the COADREAD, we integrated pertinent clinical data (age, gender, microsatellite status, 

anatomical location, pathologic stage, Tumor Node and Metastasis (TNM) classification, 

days to last follow up, and vital status), and mRNAseq by participant ID. Each COADREAD 

patient has pre-identified microsatellite status labeled as “microsatellite instability test 

results”. Thirty-four patients with colon cancer and 18 patients with rectal cancer were 
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excluded due to missing information including indeterminate microsatellite status, unclear 

anatomical location or pathologic stage, and unmatched RNA-seq data. Then for every 

patient, we implemented the R package Microenvironment Cell Populations-Counter on the 

RNA-Seq by Expectation Maximization (RSEM) normalized RNA-seq data to create cell 

type abundance scores [21]. There are 10 cell populations simultaneously quantified in the 

tumor microenvironment, including 8 immune cell populations (T cells, CD8 T cells, 

Cytotoxic lymphocytes, NK cells, B lineage, Monocytic lineage, Myeloid dendritic cells, 

Neutrophils), endothelial cells and fibroblasts. Specifically, the gene set for cytotoxic 

lymphocytes includes the genes: CD8A, EOMES, FGFBP2, GNLY, KLRC3, KLRC4, and 

KLRD1. We used the median value of the CTL score to group the patients into high (≥ 

median value, CL-High) and low (< median value, CL-Low) groups. We then grouped 

patients by anatomical location and stratified by cytotoxic lymphocyte score and pathologic 

stage. For consistency in clinical intervention while increasing group size, we assigned 

pathologic stage I-II to “early” stage, stage I-III as “localized”, and stage IV as “metastatic” 

(Figure 1). Patients were grouped by tumor subsite: tumors located in the cecum, ascending 

colon, hepatic flexure, and transverse colon were categorized as having right-sided colon 

cancer (Figure 1, RSC); tumors located in the splenic flexure, descending colon, sigmoid 

colon or rectosigmoid junction were categorized as having left-sided colon cancers (Figure 

1, LSC); patients with tumors located in the rectum were kept in this group (Figure 1, REC). 
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As well as BC, we have identified 918 breast cancer tumor samples and compared RNAseq 

gene expression based on molecular subtypes and anatomic locations of biopsies (i.e., right, 

left, lower inner quadrant, lower outer quadrant, upper inner quadrant or upper outer 

quadrant). Genes with significantly different expression (p<0.01) were selected for survival 

analysis. R, Reactome Pathway Browser were used to retrieve and analyze data (Figure 2). 

 

 

 

 

Figure 1. An outline of the methods and organization of this study.  
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2.2.2 DEMOGRAPHICS AND CLINICOPATHOLOGIC 

CHARACTERISTIC ANALYSIS 

 

We group COADREAD patients by level of CTL score. It is necessary to determine how 

would the demographics and clinicopathologic characteristics are going to associate with 

CTL score level. And we group BC patients by subtypes, luminal A/B, HER2+ or Triple 

negative breast cancer (TNBC). Since FDA have been approved TNBC patients would 

benefit from ICIs. We assumed that there will be a significant difference in some of 

demographics and clinicopathologic characteristics between cytotoxic lymphocyte-high 

(CTL-High) and cytotoxic lymphocyte-low (CTL-Low) groups in COADREAD, likewise, 

TNBC compares with other subtypes.   

Demographic, clinical, and pathologic characteristics were retrieved as stated above for 

COADREAD and BC. Statistical analyses were performed using Prism 7 (GraphPad 

Software). Patients' basic clinical features were summarized by descriptive statistics, 

including means and standard deviation, and an unpaired t-test was used for normally 

distributed continuous data. Categorical variables were compared using Fisher’s exact and 

chi-square tests. A p value < 0.05 was considered statistically significant. 
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2.2.3 RNA-SEQ DIFFERENTIAL GENE EXPRESSION ANALYSIS 

 

COADREAD and BC, however, is a heterogeneous disease made up of multiple subgroups. 

Additionally, recent studies have suggested that the use of other markers including 

lymphocyte infiltration may better predict survival and the potential for response to immune 

based therapy. Therefore, we assumed that in each heterogeneous subgroup would identify 

the significant transcriptome differences. 

 

Figure 2. An outline of the methods and organization of this study. 
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RNA-seq differential gene expression analysis was performed with the edgeR package using 

the raw data downloaded from the Illumina- HiSeq and Illumina-GA platforms [20]. 

Differentially expressed genes were defined as genes with an absolute fold change >1 

between patients with high and low cytotoxic lymphocyte scores with a p value <0.05 (20). 

Genes with Benjamini-Hochberg adjusted False Discovery Rate (FDR) <0.05 were 

considered to be significantly differentially expressed for further steps. For each cohort, we 

identified 20,531 total genes by RNA-seq raw counts. The Reactome online browser was 

used to identify immune functional differentially expressed genes [22]. Figure 1 outlines this 

process. 

2.2.4 PATHWAY ENRICHMENT AND SURVIVAL ANALYSIS 

 

The immune functional differentially expressed genes identified from last aim would express 

similarity function from the heterogeneous subgroups. To further determine whether would 

have overlapping pathways associated with cytotoxic lymphocyte infiltration in 

COADREAD, we will perform the Reactome pathway enrichment analysis at each location 

based on stage. We hypothesize that among heterogeneity subjects, it should have conserved 

pathway to adjust the basic immune function across stage and location. Each individual gene 

in these pathways would positively and negatively affect patients’ survival. Pathway 

enrichment analysis will be performed to evaluate the pathways associated with 

differentially expressed genes. The genes included in the MCP-counter CTL gene panel 

(CD8A, EOMES, FGFBP2, GNLY, KLRC3, KLRC4, and KLRD1) will be excluded from 

pathway enrichment analysis. Dotplot will be used to illustrate the comparison of enriched 

Reactome pathways among differentially expressed genes in each location and stage. These 

results will be analyzed by clusterProfiler, DOSE, and ReactomePA R packages. Next, we 

will perform survival analyses using the identified differentially expressed genes. Patients 

would be organized by stage and location as outlined above. The normalized mRNA-seq 

data of differentially expressed genes will be used for survival analysis and be processed 

using the Survival R package [22]. For each differentially expressed gene, if the normalized 

gene expression value is more than the median level, we labeled it as “high,” and otherwise 

as “low.” The Kaplan–Meier survival curves will be generated is going to be assessed by the 

Cox regression model for each immune functional differentially expressed gene using the 
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Survminer R package. The survival curves of patients with high gene expression and low 

gene expression are going to be compared by log-rank test. For each patient, overall survival 

(OS) will be used as the endpoint, either the days from diagnosis to death, or to the last 

follow-up. 

2.3  MULTI-OMICS INTEGRATION 
 

Develop an approach to integration transcriptome data, mutation, and epigenetic data to 

determine CTL activity and CD8+ T cell dysfunction modulators. We applied in 

COADREAD and BC as an example.  

We first developed a data-driven approach to identify the key modulators by integrating 

multi-omics data. To address this, we were: (1) Retrieving publicly available data 

repositories. (2) Grouping patients based on consensus molecular subtypes (CMSs, signature 

based COADREAD classification); and exploring crosstalk gene in differentially expressed 

genes and differentially methylated genes from subtypes. (3) Integrating crosstalk genes 

with MCP counter score, neoantigen, tumor mutation burden and cell type score to determine 

CTL activity modulators and possible mechanisms. Figure 3 describe overall methods for 

this step. 

 

Figure 3. An outline of the methods and organization of this study. 
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2.3.1 RETRIEVING PUBLICLY AVAILABLE DATA REPOSITORIES 

 

Most recently, large-scaled public data repositories such as TCGA, cbioportal, Gene 

Expression Omnibus, EMBL-EBI, as well as publicly available single cell sequencing data 

from each study are available for researchers. We hypothesized that comprehensively 

include multi-omics and large-scaled datasets would allow us to perform the in-depth study 

of cancer patients on a molecular and clinical basis from multi omics. We first will search 

and focus on publications and all public repositories for looking dataset which would contain 

scRNAseq, mRNAseq, microarray, mutation data and methylation data. In this study, we 

utilized 15 datasets, 2,391 COADREAD patients and 7 omics data and integrate 

comprehensive clinical, genomic data (epigenetic, scRNAseq, mRNAseq data, mutation), 

well-accepted immune infiltration indicator (TMB, neoantigen), and cell marker score, 

MCP-counter scores from multiple datasets to reveal that TBX21 is a critical regulator in 

CD8+T cell exhaustion (Figure 3). Meanwhile, we also included BC data from TCGA.  

We searched and focused on publications and all public repositories for looking dataset 

which would contain scRNAseq, mRNAseq, microarray, mutation data and methylation data. 

From our previous systematic review, we have found a few public data repositories to match 

our requirement. Currently, there are two clinical trials ongoing to investigate COADREAD 

patients categorized by CMS. One of them is focusing on evaluating the clinical benefit of 

anti-PDL1/TGFbetaRII fusion protein M7824 in treating COADREAD patients that has 

metastases status or cannot be removed by surgery (NCT03436563); another study is aimed 

to develop a genome-based platform to predict patients who can achieve pathologic 

complete response after neoadjuvant concurrent chemoradiotherapy in locally advanced 

rectal cancer and CMS status of these patients would be identified (NCT04738214). We 

hypothesized that starting with a robust subtype classification would bring a more precise 

evaluation and improvement in the application of ICK inhibitor therapy in COADREAD. 

We found 10× scRNA-seq raw_UMI_count_matrix and cell_annotation data from Gene 

Expression Omnibus (GEO) with accession number GSE132465. Bulk RNA-seq, DNA 

methylation (450k) and mutation data of COADREAD will be collected from TCGA 

(https://tcgadata.nci.nih.gov/). Moreover, we will retrieve publicly available data deposited 

in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession 
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number E-MTAB-7036 (methylation), EMTAB-8148 (microarray), and additional 

microarray data from Colorectal Cancer Subtyping Consortium (GSE13067, GSE13294, 

GSE17536, GSE20916, GSE33113, GSE37892, GSE39582, KFSYSCC) were stored under 

the synapse repository (https://www.synapse.org/#!Synapse:syn2623706/files/). Each 

COADREAD patient corresponded mutations (per Mb), neoantigens with its HLA alleles, 

and mutated expressed peptides can be retrieved from The Cancer Genome Atlas 

(http://tcia.at). Potential Problems and Alternatives: Every patient would be retrieved by us 

may not include the same omics data. The number of patients in each dataset may varies. 

For this case, we would perform the analysis separately for the patients cannot be integrated 

or use them for the evaluation of our results. 

2.3.2 Demographics and clinicopathologic analysis 

 

We integrated pertinent clinical data (age, gender, microsatellite status, pathologic stage, 

days to last follow up, and vital status), mRNAseq, and DNA methylation (450k) by 

participant ID. Each COADREAD patient has pre-identified CMS subtypes from the 

original study[23]. Due to missing information, including indeterminate microsatellite status, 

 

Figure 4. An outline of the methods and organization of this study.  
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and unclear CMSs, eventually, we identified 316 patients with DNA methylation data (450k) 

and 509 patients with mRNAseq data with distinct CMS labels. We then grouped DNA 

methylation data and mRNAseq data by CMSs. Statistical analyses based on grouped 

patients were performed by Prism 7 (GraphPad Software). Patients' basic clinical features 

were summarized by descriptive statistics, including means and standard deviation, and an 

unpaired t-test and Mann-Whitney test were used for normally distributed continuous data. 

Categorical variables were compared using Fisher's exact and chi-square tests. A p-value < 

0.05 was considered statistically significant. For BC patients, We retrieved RNA sequencing 

(n=1,212) and DNA methylation (Illumina Human Methylation 450K; n=783) databases to 

detect the gene expression and methylation profiles based on molecular subtypes: LumA vs 

TNBC, LumB vs TNBC, Her2+ vs TNBC. To be consistent with clinical diagnosis, our 

TNBC patients included all ER-, PR-, Her2 -/1+/2+ patients (n=192, Figure 4). 

2.3.3 DIFFERENTIAL GENE EXPRESSION, AND DNA METHYLATION 

DIFFERENTIAL REGION ANALYSIS 

 

The mRNAseq differential gene expression analysis was performed with the edgeR package 

using the raw data downloaded from the TCGA dataset Illumina- HiSeq and 

TCGA_Illumina-GA platforms [24]. Differentially expressed genes were defined as genes 

with an |logFC| >1 and p-Value <0.05 for comparisons of CMS1 vs. CMS2, CMS1 vs. CMS3, 

CMS1 vs. CMS4 and CMS1 patients with high-low vs. low-high for COADREAD patients. 

We applied the pipeline for BC subtypes comparison of LumA vs TNBC, LumB vs TNBC, 

Her2+ vs TNBC. Genes with Benjamini-Hochberg adjusted False Discovery Rate (FDR) 

<0.05 were considered to be significantly differentially expressed for further steps. For each 

cohort, we identified 20,531 total genes by mRNAseq raw counts. 

The Microarray data obtained from EMBL-EBI and Colorectal Cancer Subtyping 

Consortium had CMSs defined from the original study. We grouped the patients by CMSs 

for DEG analysis. Probe identification numbers were converted into gene symbols. The Affy 

package normalized gene expression values [25]. The Limma R package was applied to 

identify the DEGs between CMS1 and other CMSs [26]. Genes with P values < 0.05 and 

adjusted P values <0.05 as the DEGs cutoff. 
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COHCAP R package was used to identify differentially methylated regions (DMRs) [27]. 

Δβ and p-value between every two groups were calculated based on β -values of CpG sites 

using COHCAP. DMRs were defined as methylated regions with |Δβ| > 0.25 and P-value 

<0.05 (hypermethylated DMRs: Δβ > 0.25 and P-value <0.05; hypomethylated DMRs: Δβ 

< 0.25 and P-value <0.05) for both COADREAD and BC patients. Gene symbols were 

annotated based on DMRs using the annotation files of methylation profiling. DMRs 

corresponding to no gene symbol and multiple gene symbols were not obtained for further 

analysis. Genes with DMRs were defined as differentially methylated genes (DMGs). 

2.3.4 INTEGRATING CROSSTALK GENES 

 

Integrating crosstalk genes with MCP counter score, neoantigen, tumor mutation burden and 

cell type score to determine CL activity modulators and possible mechanisms. genomic 

instability, epigenetic abnormality, and gene expression dysregulation are primarily 

identified hallmarks of COADREAD. Tumorigenesis is never caused by a single factor. 

Genetic and epigenetic factor cooperate with other factors are responsible for COADREAD 

progress. The goal of this Aim is to test the hypothesis that key modulators would regulate 

CTL activity and CD8+ T cell dysfunction through multi-omics. 

Then for every patient, we implemented the R package Microenvironment Cell Populations 

(MCP)-Counter on the mRNAseq by Expectation-Maximization (RSEM) normalized 

mRNAseq data to create cell type abundance scores [21]. Ten cell populations are 

simultaneously quantified in the tumor microenvironment, including eight immune cell 

populations (T cells, CD8 T cells, Cytotoxic lymphocytes, NK cells, B lineage, Monocytic 

lineage, and Myeloid dendritic cells, Neutrophils), endothelial cells, and fibroblasts. Finally, 

we used heatmap from ggplot2 R packages to visualize the percentile of MCP-Counter 

scores for each CMS, BC subtypes and cell population.  

We identified the DEGs from mRNAseq DEG analysis and methylation DMG as crosstalk 

genes from each comparison. Pearson's r correlation coefficient performed correlations 

between crosstalk DEGs mRNAseq expression with cytotoxic lymphocytes scores and |r| 

≥0.7 used to determine the highly correlated genes. 
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We separate patients into four subgroups based on the median of TBX21 expression and 

mean of TBX21 methylation β value. The Kaplan–Meier survival curves generated were 

assessed by the Cox regression model for each immune functional differentially expressed 

gene using Prism 7. The survival curves between each subgroup of patients were compared 

by log-rank test. Overall survival was used as the endpoint for each patient, either the days 

from diagnosis to death or the last follow-up. 

Pathway enrichment analysis was performed to evaluate the pathways associated with 

differentially expressed genes of high-low vs. low-high in CMS1 patients. We highlighted 

the DEGs on the bar chart. And, these DEGs are also markers CD8+ T EX. Barplot was used 

to illustrate the comparison of enriched Reactome pathways among differentially expressed 

genes [21]. These results were analyzed by clusterProfiler, DOSE, and ReactomePA R 

packages [28-30]. 

Tumor mutation burden, neoantigens analysis and cell marker score calculation. TMB is a 

measure of the total number of mutations per megabyte of tumor tissue. The mutation density 

of tumor genes is also defined as the average number of mutations in the tumor genome, 

including the total number of gene coding errors, base substitution insertions, or deletions. 

The 38 Mb is routinely taken based on the length of the human exon, so the TMB estimate 

for each sample is equal to the total mutation frequency/38. TMB per megabase is calculated 

by dividing the total number of mutations by the size of the coding region of the target. 

We retrieved neoantigens data from TCIA [31]. For each patient, we counted the number of 

genes, neopeptides generated by each gene and the uptake HLA alleles. And we applied 

ordinary one-way ANOVA for the statistical analysis. 

We utilized mRNAseq expression of identified signature genes for each immune cell type. 

The modified geometric mean, jamGeomean R package, was applied to calculate the cell 

marker score, which is value of normalized each signature gene’s mRNAseq expression of 

each cell population. Machine learning-based methods identified these cell marker genes 

based on all TCGA patients and other large datasets from the TCIA database [31]. 

2.3.5 SCRNASEQ DATA ANALYSIS  
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All R packages were used to process the 10× scRNAseq data analyses under R version 4.0.3. 

SingleCellExperiment and scatter R packages were used to integrate cell_annotation and 

raw_UMI_count_matrix data as SingleCellExperiment object was collected from GEO [32]. 

After removing genes not expressed in any cell, we normalized the SingleCellExperiment 

object by log2-transformed. Principal component analysis (PCA) was performed based on 

the 27,953 genes to analyze the normalized object. Based on the available annotation from 

the original study, we subset the "Tumor" from the "Class" annotation label, including 

47,285 COADREAD cells. R package with Blueprint/EncodeData reference was applied to 

annotate immune cell types [32]. Next, we collected cell subtypes annotated by "CD8+ T-

cells","CD8+ Tcm" and "CD8+ Tem" as an overall CD8+ T-cells. Seurat R package was 

used to convert SingleCellExperiment object to Seurat object, and the 

"FindVariableFeatures" function was used to select the top 2000 highly variable genes [32]. 

The "FindClusters" function with resolution 0.5 was applied to the Seurat object following 

CD8+ T-cells clustering. Uniform manifold approximation and projection (UMAP) were 

applied to explore the subclusters. After identifying the CD8+ T-cells subclusters, the 

"FindAllMarkers" function was used to define highly differentially expressed genes between 

clusters. Moreover, the "Idents" and "Simplot" functions were utilized to visualize the 

overlap between annotated CD8+ T-cell subtypes with CD8+ T-cell subclusters. CellMarker 

dataset was applied to recognize the CD8+ T-cell subclusters by highly differentially 

expressed genes [33]. 

2.4 PAN-CANCER ICI-SENSITIVE PATIENT’ FEATURES DETECTION 

AND SUBGROUP MINING 

 

Integrated phenotypic, bulk genomic data from TCGA dataset to explore subgroups, which 

would potentially benefit from ICIs. The subgroups would determine potential genomic 

targets and features in Pan-cancer scales. The goal of this Aim is to test the hypothesis that 

there are conserved modulators with certain phenotypical patterns would be responsible to 

regulate CL activity and CD8+ T cell dysfunction in pan-cancer. To address this hypothesis, 

we will: (1) Collecting solid tumor cancer which FDA approved to apply ICIs from TCGA 

data for the primary selection. Applying previous created pipeline to categorize each patient 

phenotypical and genotypical data. (2) Applying the pipeline developed previously for 
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identifying targetable crosstalk gene across multi-omics. (3) Running exploratory subgroup 

contrast mining to determine subgroups and key modulators would possibly regulate CTL 

activity and CD8+ T cell dysfunction through multi-omics in pan-cancer. 

2.4.1 COLLECTING SOLID TUMOR TYPES WHICH FDA APPROVED 

TO APPLY ICIS FROM TCGA DATA FOR THE PRIMARY 

SELECTION 

 

Applying previous created pipeline to categorize each patient phenotypical based on the CL  

 

score. FDA has approved ICIs are approved to treat some people with a variety of cancer 

types such as triple-negative breast cancer, MSI-h colorectal cancer but not all cancer. The 

evidence for supporting approved solid tumor types and patients who would benefit from 

ICIs are not concrete. However, it has been well accepted that the effectiveness of ICIs is 

highly and positively correlated with CTL infiltration. We assumed that for each patient with 

the high level of CTL score would has varies status with tumor mutation burdens, subtypes, 

cell marker scores, etc. 

Currently, Immune checkpoint inhibitors have been approved to treat some people with a 

variety of cancer types, including BRCA, bladder cancer (BLCA), cervical cancer (CESC), 

COADREAD, head and neck cancer (HNSC), liver cancer (LIHC), lung cancer 

(LUAD,LUSC), renal cell cancer (KIRC,KIRP), skin cancer (SKCM), esophagus and 

 

 DATA TYPE DATA SOURCE 
ANALYSIS 

PLATFORM/TOOL 

mRNAseq 
raw counts, normalized 

counts, zscore 
TCGA-Firehose Legacy EdgeR, cBioPortal 

Methylation HM450 β-value TCGA-Firehose Legacy cBioPortal 

Mutation Processed mutated Gene TCGA-Firehose Legacy cBioPortal 

CNV copy number level  TCGA-Firehose Legacy cBioPortal 

RPPA protein level  TCGA-Firehose Legacy cBioPortal 

Clinical patient based clinical TCGA-Firehose Legacy cBioPortal 

 

Table 1. Data Omics and Data resource 
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stomach cancer (ESCA, STAD) or any solid tumor that is not able to repair errors in its DNA 

that occur when the DNA is copied. We next collected all the omics data from TCGA data 

from TCGA-Firehose Legacy, cBioPortal for 13 selected solid tumors mostly were FDA 

approved for receiving (Table 1). The thirteen cancers we included were breast cancer, 

bladder cancer, cervical cancer, colorectal cancer, head and neck cancer, liver cancer, lung 

cancer, renal cell cancer, skin cancer, stomach cancer. Again, we will integrate pertinent 

clinical data (age, race, BMI, gender, anatomical location, prelabeled subtypes, pathologic 

stage, TNM classification, vital status) and genotypical data (mRNA-seq, methylation, 

mutation, CNV, CTL score, TMB) by participant ID. 

2.4.2 PATIENT STRATIFICATION AND VARIABLES 

CATEGORIZATION 

 

Finding a homogeneous subgroup cohort is a crucial step in enabling precision medicine and 

clinical decision support. In this study, the focus was to systematically and strategically 

group patients into phenotypic subgroups based on their genotypic characteristics. The 

exploratory data mining method was extended by outcome-oriented analysis to guide the 

subpopulation discovery process. This exploratory data mining method provides an 

automatic subpopulation discovery tool that computationally investigates a large pool of 

subpopulations that have underlying factors differentiating each subpopulation within a 

given larger group (Figure 5). 
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For each type of selected cancers, we enrolled 14-17 phenotypical variables. The differences 

of the number of variables we enrolled for each cancer caused by the clinical data we 

collected. For example, BRAC patients doesn’t have patient’s weight and height recorded, 

therefore, BRAC patients doesn’t have BMI as variables. Moreover, except BRCA, 

COADREAD and KIRP patients, the rest of other cancers don’t have subtype were recorded 

in the TCGA clinical data. 

The results are presented as subgroups, each defined by a set of population criteria and 

underlying factors which differentiate each subgroup from the CTL-high vs. CTL-low from 

each cancer type. These criteria are the phenotypic variables, such as gender, age, and cancer 

stage. We then categorized each phenotypic variables based on pre-label or quartile (Table 

2).   

As table 2 showing, we totally enrolled 17 phenotypical variables for 13 cancers. The first 

12 variables are general variables. The last 5 variables are specific for certain cancers. 

Anatomical location, gender, race, subtypes, tumor site, breslow depth, clark level at 

 

 

Figure 5. Each container indicates each variable.  

 

And each variable would be categorized to multiple categorical sub-variables. After we categorized each patient each 

variable, subgroup mining will start to analyze and group the commonly occurred variables together. If a patient 

population all has the similar variables, then this population forms a pattern.  After we have all patterns, outcome-

oriented patterns would help us to identify how clinical meaningful of each pattern. 
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diagnosis, primary tumor laterality, AFP at procurement, and liver fibrosis ishak score 

category were labelled by the recorded patient ID – based information. Age and BMI were  

 

applying quartile. And pathologic categories TNM and pathologic stage were labelled by the 

one higher categories, such as in LIHC, we labelled T3a, T3b patients by T3. As well as 

pathologic categories N, M and pathologic stage. 

An example subgroup could be males, stage II cancer when got diagnosis at median high 

age across same type of cancer patients. When a phenotypic feature is added, a focus 

subpopulation is created and contrasted with the rest of the population. Adding additional 

population variables is desired, assuming there is statistical evidence to do so. The 

determination of the significance of a subgroup is based on underlying factors which are the 

genotypic patterns that are statistically unique to the subgroup in comparison to the rest of 

the population by utilizing Contrast Pattern Mining [34]. 

 

Phenotypical Variable Categorized variable 

Age Quartile 

Anatomical Location Labelled In TCGA 

BMI Quartile 

Gender Labelled In TCGA 

Pathologic Categories M M0, M1, MX 

Pathologic Categories N N0, N1, N2, N3, NX 

Pathologic Categories T T1, T2, T3, T4 

Pathologic Stage Stage I, Stage II, Stage III, Stage IV 

Race Labelled In TCGA 

Subtypes Labelled In TCGA 

Tumor Site Labelled In TCGA 

Vital Status Alive/Dead 

Breslow Depth (SKCM) Labelled In TCGA 

Clark level at diagnosis (SKCM) Labelled In TCGA 

Primary Tumor Laterality (KIRP) Labelled In TCGA 

AFP At Procurement (LIHC) Labelled In TCGA 

Liver fibrosis ishak score category (LIHC) Labelled In TCGA 

 

Table 2. Phenotypical variables and categorization 
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The patient subgroup stratification module takes a three-level approach. The top-level 

method, path expansion, includes a large number of second-level floating subgroup selection 

processes, each of which is supported by a series of third-level Inclusion and Exclusion 

procedures. This method is exploratory and differs from a decision tree approach in which 

samples are divided based on the decision for each node, and each leaf node contains a group 

of samples which are exclusively in a particular node. Unlike a traditional decision tree, the 

proposed method has a large number of dynamic fanouts for each node without dividing the 

samples during the expansion process, and each node represents a subgroup. As a result of 

the patient subgroup stratification process, a patient could be in multiple subgroups through 

branching expansion.  

Other than the phenotypical variables, the number of genotypical variables we selected and 

enrolled are varies based on each cancer characteristics, for example, SKCM has 610 

phenotypical and genotypical variables enrolled for subgroup mining; however, the LUAD 

has the fewest number of variables, which is 63 totally. The differences of the number of 

variables most caused by the number of DEGs from CTL- high vs. CTL-low comparison 

and if these DEGs were associated with survival.  

After collecting thirteen cancers and eight omics, for every patient in each cancer, we 

implemented the R package MCP-Counter on the mRNAseq by Expectation-Maximization 

(RSEM) normalized mRNAseq data to create cell type abundance scores. Ten cell 

populations are simultaneously quantified in the tumor microenvironment, including eight 

immune cell populations (T cells, CD8 T cells, CTL), NK cells, B lineage, Monocytic 

lineage, and Myeloid dendritic cells, Neutrophils), endothelial cells, and fibroblasts. We then 

processed CTL score to quartile then label patients under lower quartile with “low”; lower 

quartile to median with “median-low”; median to upper quartile with “median-high” and 

patients were out of upper quartile with label “high”. We then group patients with median-

high and high CTL score to CTL-high, and patients with median-low and low CTL score to 

CTL-low.  

mRNAseq differential gene expression analysis was performed with the edgeR package 

using the raw data downloaded from the TCGA dataset Illumina- HiSeq and 

TCGA_Illumina-GA platforms [24]. Differentially expressed genes were defined as genes 
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with an |logFC| >1 and p-Value <0.05 for comparisons of  CTL-low and CTL-high. Genes 

with Benjamini-Hochberg adjusted False Discovery Rate (FDR) <0.05 were considered to 

be significantly differentially expressed for further steps. For each cohort, we identified 

20,531 total genes by mRNAseq raw counts. 

Next, we performed survival analyses using the identified DEGs with patient’s vital status 

and last to follow up days were recorded from TCGA. The normalized RNA-seq data of 

differentially expressed genes used for survival analysis was processed using the Survival R 

package. For each differentially expressed gene, if the normalized gene expression value 

was more than the median level, we labeled it as “high,” and otherwise as “low.” The 

Kaplan–Meier survival curves generated were assessed by the Cox regression model for 

each immune functional differentially expressed gene using the Survminer R package. The 

survival curves of patients with high gene expression and low gene expression were 

compared by log-rank test. For each patient, overall survival was used as the endpoint, either 

the days from diagnosis to death, or to the last follow-up. The DEGs associated with survival 

were going to use for the next steps integration. 

2.4.3 INTEGRATION OF IDENTIFIED TARGETABLE CROSSTALK 

GENE ACROSS MULTI-OMICS 

 

We have known that tumorigenesis is the gain of malignant properties in normal cells, 

including primarily dedifferentiation, fast proliferation, metastasis, evasion of apoptosis and 

immunosurveillance, dysregulated metabolism and epigenetics, etc., which have been 

generalized as the hallmarks of cancer. In another word, any tumorigenesis is not caused by 

one progress, it must be contributed by complicated mechanisms and combination of these 

hallmarks. But each these hallmarks may share the common features. We hypothesized that 

different type of tumors may have its dominated tumorigenesis mechanisms, therefore, 

integrate multi-omics by key modulators will show the common features in different 

tumorigenesis mechanisms of pan-cancer scale. 

The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for 

exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal 

reduces molecular profiling data from cancer tissues and cell lines into readily 



 

27 
 

understandable genetic, epigenetic, gene expression, and proteomic events. The query 

interface combined with customized data storage enables researchers to interactively explore 

genetic alterations across samples, genes, and pathways and, when available in the 

underlying data, to link these to clinical outcomes. The portal provides graphical summaries 

of gene-level data from multiple platforms, network visualization and analysis, survival 

analysis, patient-centric queries, and software programmatic access. The intuitive Web 

interface of the portal makes complex cancer genomics profiles accessible to researchers 

and clinicians without requiring bioinformatics expertise, thus facilitating biological 

discoveries.  

We selected 13 cancers from more than 25 cancer studies. When selecting genomic profiles, 

mutations and CNVs are specified by default. When available, relative mRNA expression 

or relative protein and phosphoprotein abundance data can also be selected. Protein and 

phosphoprotein data are based on reverse phase protein array (RPPA) experiments. For 

mRNA data and RPPA, z scores are precomputed from the expression values, and users can 

specify the threshold or use the default setting (2 SDs from the mean). The z scores for 

mRNA expression are determined for each sample by comparing a gene's mRNA expression 

to the distribution in a reference population that represents typical expression for the gene. 

As we know, Z-score is a numerical measurement that describes a value's relationship to the 

mean of a group of values. We will use it to calculate for each patient by each row. If the Z-

Score of a gene is greater than 2, then the gene is considered “over”; if the Z-Score of a gene 

is less than -2, then the gene is considered “under”; and if the Z-Score of a gene is less than 

2 and greater than -2, then the gene is considered “normal”. 

Since we customized comparison groups for each cancer type, then based on patient ID with 

pre-labelled CTL-high and low to defining CTL-high and CTL-low patients’ sets for each 

cancer analysis. The default option is set to match the selected genomic profiles and we can 

choose two groups to compare by cBioPortal. For example, cases with sequencing data will 

be selected if querying for mutations only. However, the user can change this selection by 

choosing from the drop-down list of case sets defined by the available data (for example, 

tumors with mutations, CNA data, gene expression, or RPPA data) or by known tumor 

subtypes. For example, from Data sets, we select Bladder Urothelial Carcinoma (TCGA, 
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Firehose Legacy). In Groups module, we have grouped CTL-high and low patients. 

Selecting two groups’ patients to compare and analyze, cBioportal gives us immediate 

analysis and results. There are overlap, Survival, Clinical, Genomic Alterations, mRNA, 

protein and DNA methylation results from the comparison of CTL-high and low. Since we 

are interested to integrate DEGs associated with survival and copy number 

variation/alterations (CNV), RPPA, DNA methylation, we then download the analysis 

results for CNV, RPPA and DNA methylation.  

Thresholded copy number calls in the TCGA Firehouse Legacy datasets are generated by 

the GISTIC 2.0 algorithm and obtained from the Broad Firehose. The results for CNV 

contain Hugo gene symbol, cytoband, number patients and percentage in the CTL-high or 

low with this gene had amplification or deletion, co-occurrence pattern, log Ratio (Log2 

based ratio of (percentage (pct) in (A) BLCA_high/pct in (B)BLCA_low)), p-value (Derived 

from one-sided Fisher Exact test), q-value (Derived from Benjamini-Hochberg procedure) 

and enriched in (Log ratio >0 Enriched in (A)BLCA_high Log ratio <=0:Enriched in (B) 

BLCA_low). For identifying if there are significances between CTL-high vs. low, we 

primally choose p-Value < 0.05 as the threshold to select the differential copy number 

alteration genes.  

In the RPPA result, it included gene Hugo symbol, cytoband, μ in (A)BLCA_high  

(Mean log2 expression of the listed gene in samples in (A)BLCA_high), μ in (B)BLCA_low 

(Mean log2 expression of the listed gene in samples in (B)BLCA_low), σ in (A) BLCA_high 

(Standard deviation of log2 expression of the listed gene in samples in (A)BLCA_high), σ 

in (B) BLCA_low (Standard deviation of log2 expression of the listed gene in samples in 

(B)BLCA_low), Log Ratio (Log2 of ratio of (unlogged)mean in (A)BLCA_high to 

(unlogged)mean in (B)BLCA_low), p-Value(Derived from Student's t-test), q-Value 

(Derived from Benjamini-Hochberg procedure) and Higher expression in (Log ratio >0 

Enriched in (A)BLCA_high Log ratio <=0:Enriched in (B) BLCA_low) . As same as CNV, 

for identifying if there are significant differences between CTL-high vs. low protein 

expression, we chose p-Value < 0.05 as the threshold to select the genes with differential 

protein expression. 
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For the differentially methylated gene (DMG) analysis, cBioPortal applied HM450 

methylation data for analysis. The results listed gene Hugo symbol, cytoband, μ in 

(A)BLCA_high (Mean methylation of the listed gene in samples in (A)BLCA_high), μ in 

(B)BLCA_low (Mean methylation of the listed gene in samples in (B)BLCA_low), σ in (A) 

BLCA_high (Standard deviation of methylation of the listed gene in samples in 

(A)BLCA_high), σ in (B) BLCA_low (Standard deviation of methylation of the listed gene 

in samples in (B)BLCA_low), Log Ratio (Log2 of ratio of (unlogged)mean in 

(A)BLCA_high to (unlogged)mean in (B)BLCA_low), p-Value(Derived from Student's t-

test), q-Value (Derived from Benjamini-Hochberg procedure) and Higher expression in (Log 

ratio >0 Enriched in (A)BLCA_high Log ratio <=0:Enriched in (B) BLCA_low) . As same 

as CNV, for identifying if there are significant differences between CTL-high vs. low protein 

expression, we chose p-Value < 0.05 as the threshold to select the genes with differential 

methylated gene. 

With DEGs associated with survival, differential CNV, RPPN, and DMG, we did overlap 

analysis between these four omics. In overlap analysis, we labelled DEGs as D, Methylation 

by M, CNV by C and RPPA with R. We then identified each two, three and all four omics 

for overlap genes. To be more specific, we looked up DMCR, DM, DC, DR, DMR, MC, 

MR, MCR, MR, CR and DMR for overlap genes. For example, DM indicates the overlapped 

gene between DEGs and DMG. If any of omics identified overlapped gene with DEGs, it 

also indicated that the genes would associate with patient’s survival. In the genotypical 

variables, the genes would be selected for contrast mining analysis and labelled with “Hugo 

gene symbol_DM”. For examples, in BLCA, gene FBXW4 showed the significant 

differences in methylation and CNV between patients with CTL-high and low. If patient A 

with CTL-low score, patient A would be labelled Low_High (L_H). it indicated that FBXW4 

gene has lower level of methylation and higher copy number variation in patients with CTL-

low status. Any overlapped genes from each two, three or all omics were regarded as key 

modulators of certain type of cancers.  

Besides the overlapped genes as the genotypical variables, TMB is a measure of the total 

number of mutations per megabyte of tumor tissue. The mutation density of tumor genes is 

also defined as the average number of mutations in the tumor genome, including the total 
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number of gene coding errors, base substitution insertions, or deletions. The 38 Mb is 

routinely taken based on the length of the human exon, so the TMB estimate for each sample 

is equal to the total mutation frequency/38. TMB per megabase is calculated by dividing the 

total number of mutations by the size of the coding region of the target. We retrieved TMB 

from cBioPortal clinical data. We then utilized mRNAseq expression of identified signature 

genes for each immune cell type. The modified geometric mean formula, jamGeomean R 

package, was applied to calculate the cell marker score, which is value of normalized each 

signature gene’s mRNAseq expression of each cell population. Machine learning-based 

methods identified these cell marker genes based on all TCGA patients and other large 

datasets from the TCIA database [31]. For the contrast subgroup mining, we were interested 

the cell marker score from Activated CD8 T cell, Immunoinhibitor and Immunostimulator. 

It has evidence to support that Activated CD8 T cell, Immunoinhibitor and 

Immunostimulator are closely associated with CTL function.  Again, we applied quartile to 

categorize CTL score, TMB, Activated CD8 T cell, Immunoinhibitor and Immunostimulator 

into low, median.low, median.high and high. We summarized the enrolled genotypical 

variables to table 3.  
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2.4.4 EXPLORATORY SUBGROUP MINING 

 

Running exploratory subgroup mining to determine subgroups and key modulators would 

regulate CTL activity and CD8+ T cell dysfunction through multi-omics in pan-cancer. 

Rationale: ICIs mean to target a homogeneous subgroup which its CD8+ T cell cytotoxicity 

has been blocked from tumor. Regaining CTL abilities to kill cancer cells is the mission of 

ICIs. Deep Exploratory subgroup mining would help to identify these homogeneous 

subgroups. We hypothesized that ICIs sensitive homogeneous subgroups would be 

determined by deep Exploratory subgroup mining. These homogeneous subgroups would 

share the similar features of tumorigenesis mechanisms in pan-cancer. The features would 

be generated from previous categorized phenotypical and genotypical variables. 

As discussed in the previous section, the evaluation of subgroup significance is performed 

by measuring the contrast between the subgroup and its outer population. For each candidate 

 

Genotypical Variable Categorized variable 

TMB low, median.low, median.high, high 

Immunoinhibitor low, median.low, median.high, high 

Immunostimulator low, median.low, median.high, high 

Activated CD8 Tcell low, median.low, median.high, high 

Cytotoxic lymphocytes low, median.low, median.high, high 

Hugo gene 

symbol_DMCR 

Normal_H/L_H/L_H/L,over_H/L_H/L_H/L,under_H/L_H/L_H/L 

Hugo gene symbol_DM Normal_H/L,over_H/L,under_H/L 

Hugo gene symbol_DC Normal_H/L,over_H/L,under_H/L 

Hugo gene symbol_DR Normal_H/L,over_H/L,under_H/L 

Hugo gene symbol_DMR Normal_H/L_H/L,over_H/L_H/L,under_H/L_H/L 

Hugo gene symbol_MC H/L_H/L 

Hugo gene symbol_MR H/L_H/L 

Hugo gene symbol_MCR H/L_H/L_H/L 

Hugo gene symbol_MR H/L_H/L 

Hugo gene symbol_CR H/L_H/L 

 

Table 3. Genotypical variables and categorization 
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subgroup representing a set of phenotypic characteristics, the algorithm finds all genotypic 

patterns that are frequent within the subgroup but infrequent in the remaining population. 

Support is used to evaluate whether a given pattern is frequent in a subgroup and growth rate 

to evaluate the contrast of the pattern in the selected subgroup [34, 35].  

Let D be the patient dataset in a subgroup, which includes n genotypic variables, G = (g1, 

g2 , …, gn ). Pattern p that is commonly shared within patients in a given subgroup is defined 

as a set of genotypic variables, such as p = (g1,e1 ,g2,e2 ,…,gi,ei ), where g i,ei is the 

expression level or mutation status of gene i. The expression level or the mutation status 

should be represented as a categorial value. This process is accomplished using the 

PATTERN_MINING() function in the pseudo-code. 

The pattern is “frequent” if its support is greater than a user-defined threshold. The support 

of pattern p is the number of records (patients) that have that pattern (|<D,p>|) divided by 

the total number of records in the dataset D (|D|): 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑝, 𝐷) =
|<𝐷,𝑝>|

|𝐷|
  (1) 

 

To find the contrast pattern (cp) between the focus subpopulation and the rest of the 

population, SG1 represents the focused subgroup and SG2 represents the remaining population, 

where SG2 =D-SG1. The support of the contrast pattern should be significantly different 

between SG1 and SG2. Let s1 be the support of a contrast pattern in SG1 and s2 the support of 

the same pattern in SG2. The growth is used to measure the difference between the two groups. 

The growth of contrast pattern cp between subgroup SG1 and the remaining population SG2  

is defined as follows:  

𝐺𝑟𝑜𝑤𝑡ℎ (𝑐𝑝, 𝑆𝐺1, 𝑆𝐺2) =
Max{s1,s2}

Min{s1,s2}
 (2) 

The growth ratio is normalized to be between 0 and 1 using an extended version of the tanh 

function [36]. Let α be the threshold for the support and β the threshold of growth rate. To 
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ensure that a cp is frequent and has significant differences between the two groups, the 

following condition should be held: 

(Support (cp, SG1 ) ≥ α OR Support (cp, SG2 ) ≥ α) AND (Growth (cp, SG1 , SG2 ) ≥ β) (3) 

This condition identifies two sets of contrast patterns CP1 and CP2 for the target subgroup 

and the outer population, respectively. For each contrast pattern cp n with multiple genotype 

variables, the subset of the pattern cpi ⊆ cpn will be kept when Growth (cpi, SG1, SG2 ) − 

Growth(cpn, SG1, SG2) > 0. These selected contrast patterns are utilized to evaluate each 

subgroup during the floating and path expansion procedure discussed in previous section. 

2.4.5 OUTPUT AND SUBGROUPS PRIORITIZATION 

 

The number of candidate subgroups selected by the floating and expansion process could be 

hundreds. The G score could be used to rank the subgroups. The higher the G score, there 

are larger differences of two populations.  The G score is created by William I. Baskett, one 

of iDAS lab member. The basic idea G score is the rate of two support from each population 

with adding a small constant value to avoid the infinite value:  

𝐺 𝑠𝑐𝑜𝑟𝑒 =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑐𝑝,𝑆𝐺1 )

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑐𝑝,𝑆𝐺2 ) +0.000001
 (4) 

Because this method was developed to improve patient care, all steps should be explainable 

and acceptable for practitioners. For clinically meaningful results, a physician-in-the-loop 

process was necessary to prioritize the subgroups further using a two-phase method. First, 

physician-in-the-loop provides a filtering mechanism where the focus will be on only a 

subset of the subgroups instead of going through the hundreds of subgroups resulting from 

our method. Second, the physicians may decide the most relevant subgroups by evaluating 

the top subgroups using the G score or using initial hypotheses formed by clinical 

observations and literature to prioritize all candidate subgroups. For example, in the 

COADREAD study, the physician investigators chose to focus on the subgroups with 

microsatellite (MS) status as one of the clinical variables in the COADREAD case study in 

which seven subgroups with Microsatellite Instability (MSI) test results were further 

examined as a phenotypic characteristic among the statistically significant subgroups (p-
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value<0.05). The rationale for the selection of groups based on MS status is related to 

therapeutic selection and tumor biology [36]. Microsatellite instable (MSI) tumors are 

associated with hypermutation due to the inactivation of mismatch repair genes via either 

germline mutation or methylation, accounting for 13-15% of  COADREADs. The remaining 

85% of colorectal cancers develop via the chromosomal instability pathway, referred to as 

microsatellite stable, following a well-described pathway acquiring mutations through the 

adenoma to carcinoma sequence as described in seminal work by Vogelstein, et al [37]. 

While these tumors appear to be biologically different, most critically, these tumors are also 

characterized by different prognosis, response to standard therapy, and response to novel 

therapy including both targeted and immune-based therapy [38, 39]. Therefore, this 

designation was felt to be highly clinically relevant. The subgroups that are selected through 

the physician-in-the-loop process are then chosen as the input for the next step in which drug 

candidates are evaluated and analyzed for each subgroup. 
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3.1 INTRODUCTION 
 

Despite recent advances in detection and therapy, colorectal cancer (COADREAD) remains 

the second leading cause of cancer-related death in the US [40]. Immune based therapies 

such as immune checkpoint inhibition have recently made significant advances in a number 

of difficult to treat malignancies like non-small cell lung cancer, melanoma, and renal cell 

cancer [41]. However, these results have not yet extended to the majority of patients with 

COADREAD [39]. This is despite significant data that antitumor immunity is important for 

prognosis and treatment response in these patients [21, 42]. This suggests that there is 

significant progress to be made in the application of immune based therapy in COADREAD. 

When considering immune based treatments, a critical factor is effective tumor infiltration 

of cytotoxic lymphocytes [43]. In colorectal cancer, this is evident as patients who 

demonstrate response to immune checkpoint inhibition and currently have an FDA approved 

indication for this therapy, are those with microsatellite instability-high (MSI-H) tumors [1]. 

These tumors are characterized by high mutational load, neoepitope formation, and an 

intense lymphocytic infiltrate when compared to microsatellite stable (MSS) tumors [44]. 

Microsatellite instability high tumors, however, are also associated with increased mutations 

in immune related genes and expression of negative regulatory genes, demonstrating that 

tumors try to dampen the immune response by multiple pathways [45]. Additionally, recent 

studies have suggested that the use of other markers including lymphocyte infiltration and 

tumor mutational burden may better predict survival and the potential for response to 

immune based therapy [7, 42]. It is therefore critical to develop a better understanding of 

immune resistance mechanisms to improve therapy in colorectal cancer patients. 

In the current era of precision medicine, research is concentrated on providing more effective 

treatments by focusing on patient specific factors. This is particularly important in colorectal 

cancer, as subsets of patients responsive to targeted therapy, immune-based therapy, and 

chemotherapy have previously been identified [8, 9, 39]. Colorectal cancer, however, is a 

heterogeneous disease made up of multiple subgroups [23]. Even simple clinical 

characteristics often overlooked in molecular studies, such as anatomic location, are 

important for prognosis [18, 19]. Despite these differences in subtype and clinical 
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characteristics, T lymphocyte infiltration has been demonstrated to be important for 

prognosis [42]. 

Data repositories such as The Cancer Genome Atlas (TCGA) allow for the in-depth study of 

patients on a molecular and clinical basis. Recently, a novel computational method for 

predicting the abundance of different cells within the tumor microenvironment using RNA-

seq data was developed and validated with histologic specimens called the MCP-Counter 

[21]. This method allows for an effective comparison of the composition and pathways 

associated with cellular infiltration in the tumor microenvironment, improving over other 

methods primarily based on microarray data and gene set enrichment analysis. In this study, 

we use the MCP-counter program to create tumor CTL abundance scores. After grouping 

patients based on cytotoxic lymphocyte abundance score, stage, and tumor location, we 

found one immune pathway that was highly enriched at all tumor locations and stages, the 

“Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell” pathway, 

suggesting specific targets to improve immune based therapy in colorectal cancer patients. 

3.2 PATIENT CHARACTERISTICS 
 

In the most recently updated TCGA dataset (June 01, 2016), there are 461 colon cancer 

(COAD) and 172 rectal cancer (READ) cases (Figure 1). Thirty-four patients with colon 

cancer and 18 patients with rectal cancer were excluded due to missing information. The 

RNA-seq data with matched clinical data were integrated from COAD patients (Nc = 427) 

and READ patients (Nc = 154). Cytotoxic lymphocyte abundance scores were generated 

using the MCP-counter method. Patients were then separated based on the median cytotoxic 

lymphocyte score (26.72; 95% CI: 24.1–30.1). Patients with cytotoxic lymphocyte scores ≥ 

the median were  
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Characteristic High Low p Value 

Gender, n 

RSC 156 96 0.3637 

Male 77 54   

Female 77 42   

LSC 68 106 0.1231 

Male 41 51   

Female 27 55   

REC 63 91 0.5118 

Male 37 48   

Female 26 43   

MS, n 

RSC 156 96 <0.0001* 

MSS/MSI-L 92 89   

MSI-H 64 7   

LSC 68 106 0.0771 

MSS/MSI-L 64 105   

MSI-H 4 1   

REC 63 91 0.0264* 

MSS/MSI-L 59 91   

MSI-H 4 0   

Age,Mean ± SD 

RSC 70±13.69  67±12.95 0.2222 

LSC 66±11.11 64±13.07 0.4267 

REC 64±10.56 65±12.32 0.81 

Pathologic stage, n (%) 

RSC 156 96 0.0278* 

I 33(21.2%) 11(11.5%)   

II 73(46.8%) 38(39.6%)   

III 38(24.4%) 32(33.3%)   

IV 12(7.7%) 15(15.6%)   

LSC 68 106 0.1374 

I 12(17.6%) 17(16.0%)   

II 26(38.2%) 33(31.1%)   

III 23(33.8%) 30(28.3%)   

IV 7(10.3%) 26(24.5%)   

REC 63 91   

I 10(15.9%) 20(22.0%) 0.0279* 

II 29(46.0%) 21(23.1%)   

III 17(27.0%) 33(36.3%)   

IV 7(11.1%) 17(18.7%)   

Table 3. Patients’ characteristics 

RSC Right-sided colon cancer, LSC Left-sided colon cancer, REC Rectal cancer, MSS Microsatellite 

stable, MSI-L Microsatellite instability-low, MSI-H Microsatellite instability-high *Indicates statistically 

significant difference (p < 0.05) 
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classified as cytotoxic lymphocyte-high (CTL-high) and those with scores < the median were 

classified as cytotoxic lymphocyte-low (CTL-low). We then confirmed that there was a 

significant difference in cytotoxic lymphocyte scores between CTL-high and CTL-low 

groups (73.66 ± 64.2 v 14.07 ± 6.69, p < 0.0001). Colorectal cancer patients were then 

separated by anatomical location, cytotoxic lymphocyte score, and stage (Fig. 1). The 

demographic, clinical, and pathologic characteristics of each patient cohort is summarized 

in Table 1. Microsatellite status composition of patients with CTL-high and CTL-low tumors 

was significantly different in the right-sided colon cancer (p < 0.0001) and rectal cancer (p 

= 0.0264) groups with more MSI-H patients among the CL-High patients at both locations 

(Table 3). Additionally, cytotoxic lymphocyte scores correlated significantly with 

pathologic tumor stage in right-sided colon cancer (p = 0.0278) and rectal cancer (p = 0.0279) 

patients, but not in left-sided colon cancer patients (Table 3). This analysis demonstrates that 

there are significant differences based on tumor location, suggesting that this variable is an 

important consideration when analyzing patient data [18, 46]. 

3.3 DIFFERENTIAL GENE EXPRESSION ANALYSIS 
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For each cohort, we next performed RNA-seq differential gene expression analysis. 

Expression of 20,531 genes was determined for each tumor sample from the TCGA. Then 

gene expression was compared between patients with CL-High and CL-Low tumors in 

each cohort based on tumor location and stage using the edgeR. In right-sided early, 

localized, and metastatic colon cancer patients, 1882, 1781, and 1054 differentially 

expressed genes were observed, respectively. In left-sided patients, 805, 925, and 1255 

genes were differentially expressed in each stage. And in rectal cancer patients, 888, 1316 

and 150 genes were differentially expressed at each stage (Figure 7). In the left-sided 

 

Figure 7a. Pathway Enrichment analysis based on tumor location and stage.  

Pathway enrichment was ranked using a composite of the adjusted p value for false discovery rate (color) and gene 

ratio (size). a) pathway enrichment for early stage COADREAD (Stage I and II) based on location; 
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group, differentially expressed genes were highest in the metastatic cohort; however, in 

right-sided and rectal cancer patients, the metastatic cohort had the lowest number of 

differentially expressed genes. This again suggests that both tumor location and stage are 

important considerations when analyzing alterations in gene expression. Differentially 

expressed genes found in the above analysis were subsequently imported into the 

Reactome Pathway Browser to determine involvement in immune related functional 

pathways (Fig. 7). Interestingly, despite significant variation in the number of differentially 

expressed genes, the ratio of genes associated with immune function was similar in all sites 

and stages. 

3.4 PATHWAY ENRICHMENT AND SURVIVAL ANALYSIS 
 

To further determine whether there were overlapping pathways associated with cytotoxic 

lymphocyte infiltration in colorectal cancer, we then compared the Reactome pathway 

 

Figure 7b. pathway enrichment analysis for localized COADREAD (Stages I-III) based on location; 
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enrichment analysis at each location based on stage. Using the p value adjusted for false 

discovery rate and the ratio of differentially expressed genes in each pathway, we found that 

the “immunoregulatory interactions between a lymphoid and a non-lymphoid cell” was the 

most highly enriched pathway in early and local patients at all tumor locations. Additionally, 

this was the most highly enriched pathway in patients with metastatic right-sided cancer. 

This pathway was also among the top pathways enriched among patients with metastatic 

left-sided colon cancer and rectal cancer (Figure 8).This suggests that despite significant 

heterogeneity among subjects, redundant pathways of deregulation may be conserved across 

stage and location. 

To further understand the potential for targetable genes within this pathway, we then took 

differentially expressed genes in the “immunoregulatory interactions between a lymphoid 

and non-lymphoid cell” pathway and performed a survival analysis using the KaplanMeier 
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method and Cox-Proportional Hazards Model based on differentially expressed gene, 

location, cytotoxic lymphocyte score, and pathologic stage (Figure 9, Table 4). There are a 

total of 297 genes included in this pathway, and we found 21  

(7.1%) unique genes associated with survival in this pathway. As figure 1 demonstrates, the 

number of differentially expressed genes were variable with most genes associated with 

survival in the right-sided colon cancer group. Additionally, the positive and negative impact 

of differentially expressed genes on survival depended  

 

Figure 8. pathway enrichment analysis for metastatic stage COADREAD (Stage IV) based on location.  

 

This analysis showed that the “immunoregulatory interactions between a lymphoid and a non-lymphoid cell” was the most highly 

enriched pathway in early and local patients at all sites. Additionally, this was the most highly enriched pathway in patients with 

metastatic right-sided cancer. This pathway was also among the top pathways enriched among patients with metastatic left-sided 

colon cancer and rectal cancer. (Input data included in Additional file 2) 
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Figure 9. Representative survival curves based on tumor location and stage.  

Survival curves with the p values derived from Kaplan-Meier analysis. a RAET1E was positively associated with survival in right-

sided colon cancer patients with high cytotoxic lymphocyte scores in early and localized stages; b LAIR1(CD305) was positively 

associated with survival in right-sided colon cancer patients with low cytotoxic lymphocyte scores in the metastatic stage; c KLRC1 

was positively associated with survival in left-sided colon cancer patients with low cytotoxic lymphocyte scores in the early stage; d 

HCST was negatively associated with survival in rectal cancer patients with low cytotoxic lymphocyte scores in the localized group. 

 



 

45 
 

on cytotoxic lymphocyte abundance scores. The majority of genes associated with a positive 

impact on survival (bold in Table 4) were in the CTL-low group whereas the majority of 

genes with a negative impact on survival (italicized in Table 4) were  

 

Table 4a. Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 

Location Stages 
CLs 

Status 
Pathways Gene Symbol HR 95% CI 

Right 

Early (I,II) 
High 

NKG2D homodimer 

interacting with ligands 
RAET1E 0.88 

0.78, 

1.00 

LILRs interact with MHC 

Class I 
LILRA1 1.04 

0.98, 

1.09 

Sialic acid binds SIGLEC CD33 1 
0.98, 

1.02 

Low NA   

Localized 

(I,II,III) 

High 

NKG2D homodimer 

interacting with ligands 
RAET1E 0.9 

0.81, 

0.99 

LILRs interact with MHC 

Class I 

LILRA1 1.04 
0.99, 

1.09 

LILRA4 1.02 
0.98, 

1.06 

Sialic acid binds SIGLEC CD33 1 
0.98, 

1.02 

Low 

KLRC1:KLRD1 

heterodimer interacts with 

HLA-E 

KLRC1 1.23 
0.93, 

1.63 

Metastasis 

(IV) 

High 

MADCAM1-1 binds 

Integrin alpha4beta7 
MADCAM1 1.02 

0.94, 

1.11 

Ligands bind L-selectin MADCAM1   

Fc gamma receptors interact 

with antigen-bound IgG 
FCGR2B(CD32) 1.01 

0.98, 

1.03 

Sialic acid binds SIGLEC SIGLEC8(CD329) 1.06 
0.94, 

1.21 

PILRA binds PIANP, 

COLLEC12 trimer, 

NPDC1, CLEC4G 

CLEC4G 42.7 
0.00, 

469970 
 

Low 

CD96 binds PVR CD96 0.98 
0.93, 

1.03 
 

LILRs interact with MHC 

Class I 
LILRB1 0.97 

0.94, 

1.00 
 

ICAM1-5 bind Integrin 

alphaLbeta2 (LFA-1) 
ITGB2(CD18) 1 

1.00, 

1.00 
 

CD40L binds CD40 CD40LG 0.97 
0.89, 

1.06 
 

C3d-complexed antigen 

binds to complement 

receptor 

C3 1 
1.00, 

1.00 
 

Sialic acid binds SIGLEC SIGLEC9 0.96 
0.89, 

1.04 
 

SAP and EAT2 binds 

SLAMF6 
SH2D1A 0.95 

0.85, 

1.05 
 

LAIR1 binds collagen LAIR1(CD305) 0.99 
0.98, 

1.00 
 

TREM,CD300 binds lipids CD300A 0.99 
0.97, 

1.00 
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found in the CTL-High group. In CTL-High right-sided colon cancer patients with metastatic 

disease, all differentially expressed genes had a negative impact on survival; however, all 

immune functional differentially expressed genes in the CTL-Low group had a positive 

impact on survival. Often, patients with rectal cancer and left-sided cancer are considered to 

have similar disease biologically. While we found few differentially expressed genes in this 

pathway associated with survival in the left sided and rectal cancer groups, differentially 

expressed genes in the left-sided colon cancer group primarily had a positive impact on 

survival with the converse being true in patients in the rectal cancer group. Together this 

data demonstrates that even within conserved immune pathways, there is significant 

 

Table 4b. Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 

Left 

Early  

High NA     

Low 

KLRC1:KLRD1 

heterodimer 

interacts with 

HLA-E 

KLRC1 0.21 
0.02, 

1.78 

Localized 
High NA     

Low NA     

Metastasis 

High NA     

Low 
CLEC2B binds 

KLRF1 dimer 
CLEC2B 0.91 

0.79, 

1.05  

Rectum 

Early  

High NA     

Low 

PILRA binds 

PIANP, 

COLLEC12 

trimer, NPDC1, 

CLEC4G 

CLEC4G 1.55 
0.55, 

4.37 

Localized 

High NA     

Low 

NKG2D 

homodimer 

interacting with 

ligands 

HCST 1.09 
0.99, 

1.19 

viral HA binds 

NCRI  
FCGR1A(CD64) 

1.05 
0.97, 

1.14 

NCR3LG1 binds 

NCR3 
FCGR1A(CD64) 

CMVPP65 binds 

NCR3 
FCGR1A(CD64) 

PILRA binds 

PIANP, 

COLLEC12 

trimer, NPDC1, 

CLEC4G 

CLEC4G 1.19 
0.40, 

3.52 

Metastasis 
High NA     

Low NA     
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heterogeneity in the impact on patient survival. This further suggests the importance of a 

patient centered approach for the application of immune based therapy in colorectal cancer. 

3.5 IMMUNOGENOMIC PATHWAY AND SURVIVAL ANALYSIS IN 

BREAST CANCERS BASED ON TUMOR LOCATION AND 

MOLECULAR SUBTYPES 
 

3.5.1 DIFFERENTIAL GENE EXPRESSION ANALYSIS 

 

Using the TCGA dataset, we have identified 918 breast cancer tumor samples and compared 

mRNAseq gene expression based on molecular subtypes and anatomic locations of biopsies 

(i.e., right , left , lower inner quadrant (LI), lower outer quadrant (LO), upper inner quadrant 

(UI) or upper outer quadrant (UO). After group 918 into six groups, for each cohort, we next 

performed RNA-seq differential gene expression analysis. Expression of 20,531 genes was 

determined for each tumor sample from the TCGA. Then gene expression was compared 

between patients with CTL-High and CTL-Low tumors in each cohort based on tumor 

location and stage using the edgeR package. In the UO group, there were 307 non-TNBC 

patients and 27 TNBC patients; in the patients who labelled with Right, there were 144 non-

TNBC patients and 7 TNBC patients; in the LO group, there were 67 non-TNBC patients 

and 13 TNBC patients; in the UI group, there were 138 non-TNBC patients and 10 TNBC 

patients; in the left group, there were 155 non-TNBC patients and 6 TNBC patients; in the 

LI group, there were 40 non-TNBC patients and 4 TNBC patients (Table 5).  

For each cohort, we next performed RNA-seq differential gene expression analysis. 

Expression of 20,531 genes was determined for each tumor sample from the TCGA. Then 

gene expression was compared between patients with non-TNBC and TNBC tumors in each 

cohort based on tumor location and stage using the edgeR package. In UO, right, LO, UI, 

left, LI, BRAC patients, 3794, 2622,2447,3233,2379, and 1847 differentially expressed 

genes were observed, respectively. After applying Reactome pathway enrichment analysis, 
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in UO, right, LO, UI, left, LI, 

BRAC patients, we identified 320, 

291, 318, 301,208 and 168 

immune associated DEGs. The 

percentage of these immune 

associated DEGs were 8.43%, 

11.10%, 9.23%, 9.31%, 8.74% 

and 9.10% (Table 5, Figure 10). 

Interestingly, despite significant 

variation in the number of 

differentially expressed genes, 

the ratio of genes associated with 

immune function was similar in 

all sites. 

We then did the Venn diagram 

overlap analysis for DEGs and 

immune associated DEGs (Figure 

11). We observed that there were 

25 DEGs from overlapping set - 

[Right] and [LO] and [UI] and 

[Left] and [LI]. And gene GBP1 

were the only immune associated 

DEGs. We assume that GBP1 

might be a homogeneous 

modulator in these sites (Figure). 

It has been reported that in breast, colorectal, and skin cancers, transcriptional and 

immunohistochemical profiling of patient samples has revealed that high GBP1 signatures 

are favorable prognostic indicators (15, 51–53, 55, 56) associated with decreased disease 

progression and greater overall survival (10.3389/fimmu.2019.03139)  

 

The percentage of Immune DEGs vary by each location 

 DEGs Immune DEGs 
Percentage of 

Immune DEGs 

UO 3794 320 8.43% 

Right 2622 291 11.10% 

LO 3447 318 9.23% 

UI 3233 301 9.31% 

Left 2379 208 8.74% 

LI 1847 168 9.10% 

Table 5. DEGs by each location 

 

Figure 10. The number of DEGs and immune associated DEGs 

UO Right LO UI Left LI
0

1000

2000

3000

4000

5000

Differential expreesed gene(DEGs) results with their 

immune functional DEGs in each anatomical location 

Anatomical location

D
E

G
s
 (

N
g

)

DEGs

Immune DEGs



 

49 
 

3.5.2 Pathway enrichment and 

survival analysis 

 

To further determine whether 

there were DEGs/immune DEGs 

associated survival in different 

site, we then compared the 

Reactome pathway enrichment 

analysis at each location based on 

non-TNBC and TNBC patients. 

As table 6 shows, mostly 

DEGs/immune DEGs associated 

with survival were enriched in 

UO (5/59) and right site (26/272).  

From immune pathway analysis, 

genes involved in the antigen 

activates B cell receptor (BCR) 

pathway (p<0.05) were 

associated with overall survival 

(OS) in right and left sided 

Luminal A/B and HER2 tumors 

and right sided TNBC tumors. 

Genes from the antigen 

processing (ubiquitination and 

proteasome degradation) 

pathway (p<0.05) was associated 

with OS in left and right sided 

lower outer quadrant  

Figure 11a. The number of overlapped DEGs 

Figure 11b. The number of overlapped immune associated DEGs 
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in luminal A/B and HER2 tumors and all right TNBC tumors. Finally, genes from pathway 

involved in immune-regulatory interactions between a lymphoid and a non-lymphoid cells 

were associated with OS in lower outer quadrant, upper outer quadrant tumors in luminal 

A/B and HER2 cases and right sided tumors in TNBC (p<0.05). 

3.6 DISCUSSION 
 

Cytotoxic lymphocyte infiltration is critical for response to immune based therapy [43] and 

has been shown to predict survival and treatment response in colorectal cancer. A better 

understanding of potential targets is critical for the improvement of immune based therapy 

in colorectal cancer as currently utilized therapy is not effective in the majority of patients. 

Therefore, in this study we have combined publicly available data resources with 

computational methods to focus on genes that may have an impact both on tumor associated 

cytotoxic lymphocytes and survival. Comparing patients with high and low cytotoxic 

lymphocyte abundance scores, we found many differentially expressed genes at all tumor 

locations and stages. Unsurprisingly, the group with the highest number of immune related 

differentially expressed genes was the right-sided colon cancer group. This may be a 

reflection of the higher number of MSI-H patients in this group, which is expected to have 

a higher mutation rate, and therefore, potentially more genes with altered expression. 

To further define potential therapeutic targets, we then performed pathway enrichment 

analysis. In this analysis, we found the pathway, “immunoregulatory  

 

Table 6. DEGs and Immune functional DEGs associated with survival  

  Non-TNBC (Ng) TNBC (Ng)   Non-TNBC (Ng) TNBC (Ng) 

  DEGs associated wth survival   

Immune DEGs associated wth 

survival 

UO 313 59 UO 32 5 

Right 185 272 Right 24 26 

LO 137 0 LO 9 0 

UI 90 0 UI 5 0 

Left 182 0 Left 14 0 

LI 86 0 LI 10 0 
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interactions between a lymphoid and non-lymphoid cell”, was among the most highly 

enriched and altered in all sites and stages. And it was noy only enriched in the CTL-high of 

COADREAD patients, but TNBC BRCA patients in multiple sites. A few pathways were 

Table 7a. Pathways in immune systems 

Location Subtype

Immune DEGs 

associated with 

survival

Adaptive Immune System Innate Immune System
Cytokine Signaling in Immune 

system

Costimulation by the CD28 family Toll-Like Receptors Cascades Signaling by Interleukins

TCR signaling Regulation of Complement cascade Interferon gamma signaling

Immunoregulatory interactions 

between a Lymphoid and a non-

Lymphoid cell

DDX58/IFIH1-mediated induction of 

interferon-alpha/beta

TNFR2 non-canonical NF-kB 

pathway

DAP12 interactions

C-type lectin receptors (CLRs)

Antimicrobial peptides

Neutrophil degranulation

ROS, RNS production in phagocytes

Complement cascade

Signaling by the B Cell Receptor 

(BCR)
Toll-Like Receptors Cascades Signaling by Interleukins

Fcgamma receptor (FCGR) dependent 

phagocytosis

DAP12 interactions

Fc epsilon receptor (FCERI) signaling

C-type lectin receptors (CLRs)

Neutrophil degranulation

Signaling by the B Cell Receptor 

(BCR)

Fcgamma receptor (FCGR) dependent 

phagocytosis
Signaling by Interleukins

MHC class II antigen presentation Toll-Like Receptors Cascades
TNFR2 non-canonical NF-kB 

pathway

TCR signaling
Advanced glycosylation endproduct 

receptor signaling

Class I MHC mediated antigen 

processing & presentation

Nucleotide-binding domain, leucine 

rich repeat containing receptor (NLR) 

signaling pathways

DDX58/IFIH1-mediated induction of 

interferon-alpha/beta

Cytosolic sensors of pathogen-

associated DNA

C-type lectin receptors (CLRs)

Fc epsilon receptor (FCERI) signaling

Antimicrobial peptides

Neutrophil degranulation

Signaling by the B Cell Receptor 

(BCR)

Fcgamma receptor (FCGR) dependent 

phagocytosis
Interferon signaling

MHC class II antigen presentation Toll-Like Receptors Cascades Signaling by Interleukins

Immunoregulatory interactions 

between a Lymphoid and a non-

Lymphoid cell

DAP12 interactions
Growth hormone receptor 

signaling

Fc epsilon receptor (FCERI) signaling

Complement cascade

Neutrophil degranulation

Antimicrobial peptides

TNBC 

IFITM2;IL20;ITGB5;

DEFB1;GATA3;KIR

2DL3;KIR2DL4;C4A

;TUBA3C;RNASE7;

TRIM3;SKP2;SH3G

L2;CD177;CCR1;DU

SP4;VAV3;LAG3;CI

SH;AZU1;LRG1;STI

M1;IFNG;CEACAM6

;ULBP1;SPSB4

Right

Non-TNBC 

BLK;CDA;CSF3;IL2

0;TSLP;MYO10;CD

180;C19orf59;AZU1;

RAGE;IL27RA;MMP

20;IKBKB;EDAR;T

UBA3E;HK3;TUBA3

C;MYC;MBP;PSMG

1;KIF20A;C20orf114;

SKP2;SLC27A2

UO

TNBC 

DUSP4;CHRNB4;IL

1RL2;SERPINB2;PL

CG2

COL17A1;SERPINA

3;SERPINA1;CXCL1

;C4BPA;DEFB1;CX

CL3;IFIT1;CD1A;IL

22RA2;FCGR3B;PT

PRZ1;PCBP3;TRIM

29;SPINLW1;SIRPA;

NOS1;PI3;PAK3;AT

P8B4;MGAM;ANXA

1;IL13;DUSP7;EDA

R;TF;FABP5;DSG1;

PKP1;PADI2;C12orf

53;DSC3

Non-TNBC 
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occasionally more highly enriched, however were not affected at all sites or stages, therefore, 

we chose to focus on this pathway. The “immunoregulatory interactions between a lymphoid  

and non-lymphoid cell” pathway involves a number of cell surface signaling pathways that 

are involved in the regulation of anti-tumor immunity [22]. After performing survival 

analyses using the differentially expressed genes from this pathway, we found the majority 

of genes affecting survival were in the right-sided patient group consistent with the 

differential gene expression analysis. Patients with right-sided colon cancer have 

significantly worse survival than other tumor locations at all stages, and right-sided colon 

cancer patients with metastatic disease demonstrate poorer survival with current 

chemotherapy regimens. This group, therefore, likely represents the group with the most 

important need for new therapeutic options [18, 46]. There was, however, a clear dichotomy 

between patients with high and low cytotoxic lymphocyte abundance scores. Nearly all 

genes affecting survival found in the CTL-low patients had a positive impact, whereas nearly 

all genes affecting survival in the CTL-high patients had a negative impact. This is not 

entirely unsuspected given we know that tumors attempt to evade anti-tumor immunity 

Table 7b.Pathways in immune systems 

Signaling by the B Cell Receptor 

(BCR)
Toll-Like Receptors Cascades Signaling by Interleukins

TCR signaling DAP12 interactions
TNFR2 non-canonical NF-kB 

pathway

Class I MHC mediated antigen 

processing & presentation
Fc epsilon receptor (FCERI) signaling

MHC class II antigen presentation C-type lectin receptors (CLRs)

Immunoregulatory interactions 

between a Lymphoid and a non-

Lymphoid cell

Antimicrobial peptides

Neutrophil degranulation

UI Non-TNBC 

CDKN1A;IL20RA;P

OLR1E;XDH;EDA2

R

Butyrophilin (BTN) family 

interactions

Cytosolic sensors of pathogen-

associated DNA
Signaling by Interleukins

TNFR2 non-canonical NF-kB 

pathway

Signaling by the B Cell Receptor 

(BCR)
Antimicrobial peptides Signaling by Interleukins

Class I MHC mediated antigen 

processing & presentation
Neutrophil degranulation Interferon signaling

MHC class II antigen presentation ROS, RNS production in phagocytes

Signaling by the B Cell Receptor 

(BCR)

Cytosolic sensors of pathogen-

associated DNA 
Signaling by Interleukins

Class I MHC mediated antigen 

processing & presentation
Fc epsilon receptor (FCERI) signaling

TNFR2 non-canonical NF-kB 

pathway

TCR signaling C-type lectin receptors (CLRs)

MHC class II antigen presentation Antimicrobial peptides

LI Non-TNBC 

TUBB4;POLR3G;AL

OX12;AZU1;RHOF;

MS4A2;C20orf114;A

SB2;RAPSN;MMP20

LO Non-TNBC 

CHGA;HEBP2;PGL

YRP2;SHFM1;CD36;

CD300LG;CTSC

Left Non-TNBC 

PIGR;DAPP1;PTGS

2;CXCL3;KBTBD10;

CXCL10;TUBB6;KI

F5C;COTL1;PIM1;L

CN2;ZNF225;ATP6V

1E2;MEGF9
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through various mechanisms [19]. Other groups have also demonstrated this in the context 

of MSI-H colorectal cancer, noting a significant upregulation of multiple negative regulators 

of immunity in these patients. This data further underscores the need to develop and test new 

immune based therapy in patients with colorectal cancer tailored to patient specific factors. 

In our survival analysis, we identified several potential targets for combination therapy. 

CD40L is a cell surface marker expressed on activated T cells that promotes maturation of 

antigen presenting cells, upregulating costimulatory molecules and activating antigen 

presentation machinery, and may represent the most attractive target identified in this work. 

In our analysis, this gene demonstrated a positive impact on survival in metastatic patients 

with low cytotoxic lymphocyte abundance scores. In preclinical models, CD40 agonists have 

demonstrated a significant ability to activate anti-cancer immunity, overcome immune 

checkpoint inhibition resistance, and work in concert with other immune based treatments 

[47]. Currently, a number of clinical trials are open studying these drugs in combination with 

other immune based treatments; however, none are specifically directed at colorectal cancer 

patients. The fact that there are drugs available targeting this interaction may lend itself to 

rapid translation in these patients. Additionally, we found potentially attractive targets in 

CD96 and CD18 (ITGB2), each of which has demonstrated some significant impact on anti-

tumor immunity in preclinical studies with the potential for translation in the future [48, 49].  

One limitation of this study is related to patient numbers and clinical data available, as with 

many database studies. Due to patient numbers, we included patients in Stage I and II in the 

analysis for both “early” and “local” disease. This was done to increase patient numbers 

assigned to each group and improve our analysis. Based on our results, we felt this helped 

to support findings in the “early” stage patients as the Stage III patients contributed 40–60% 

of “local” patients depending on disease location. Another important potential confounding 

factor, however, is significant heterogeneity in therapy, most notably in patients with 

metastatic disease (Stage IV). These were real world patients not treated on specific study 

protocols, so this heterogeneity in treatment may represent an impactful difference. 

Additionally, the patients included in this study did not receive immune based therapy, so 

the impact of cytotoxic lymphocyte infiltration on response to immune based treatments 

cannot be directly assessed. However, a number of studies have previously shown that 
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cytotoxic lymphocyte infiltration in colorectal cancer predicts survival and response to 

therapy, therefore augmenting anti-tumor immunity is likely to be impactful when 

considering combination with conventional treatments such as chemotherapy, or immune 

based therapy alone. Recent studies in cancer therapy have also begun to understand that the 

immune response is critical to the efficacy of chemotherapy and radiotherapy, further 

highlighting the need to understand altered immune pathways in cancer [50]. Despite these 

limitations, resources such as the TCGA, when combined with informatics-based analysis, 

yield highly impactful results that can be used to develop future human studies and inform 

translational pre-clinical studies. The goals of precision-based oncology will be best met by 

combining studies of all types to select both the best therapy for each patient, as well as the 

best patient for each therapy. 

Conclusion In this study, we integrate comprehensive RNA-seq data, clinical and pathologic 

data, and cytotoxic lymphocyte scores to determine pathways associated with immune 

response and survival in patients with colorectal cancer. We identified one pathway, 

“immunoregulatory interactions between a lymphoid and non-lymphoid cell”, that was 

highly enriched and included in all tumor locations and stages. We then found specific genes 

associated with survival, primarily in patients with the worst survival, those with metastatic 

right-sided colon cancer, that may be targeted to improve therapy. Future studies will focus 

on further exploration of immune pathway interactions using multi-omics analysis in 

humans, and mechanistic studies of T lymphocyte recruitment and activation in murine 

models of colorectal cancer. 

3.6.1 TBX21 METHYLATION AS A POTENTIAL REGULATOR OF IMMUNE 

SUPPRESSION IN CMS1 SUBTYPE COLORECTAL CANCER 

 

COADREAD is a heterogeneous disease characterized by distinct genome-wide changes, 

with the third-highest incidence rate and the second-highest rate of cancer-related deaths 

worldwide [10]. To better design treatments for COADREAD, it is crucial to understand 

tumor heterogeneity and how this contributes to therapeutic resistance and disease 

progression. Genomic instability and epigenetic abnormalities with resultant dysregulation 

of gene expression are hallmarks of COADREAD. The high frequency of DNA somatic 

copy number alterations (SCNA) and APC tumor suppressor gene loss of function closely 
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links with CIN-caused deletions, gains, translocations, and other chromosomal 

rearrangements, one of the primary pathways of COADREAD development [51]. 

Additionally, ~15% of COADREAD demonstrate alterations in DNA mismatch repair 

(MMR) proteins which lead to hypermethylation and cancer development [52-54]. 

Importantly, a single factor does not lead to tumorigenesis and underlines the importance of 

understanding the molecular features of each individual tumor so that may improve therapy 

using a precision based approach. 

Immune-based therapies such as ICI have recently made significant advances in difficult-to-

treat malignancies like non-small cell lung cancer, melanoma, and renal cell cancer [55, 56]. 

However, these treatments are limited to patients with microsatellite instability- high (MSI-

H) COADREAD as they have not yet demonstrated efficacy in other patient groups [57]. 

Additionally, even in patients with an indication for use of ICI therapy, response is limited 

[58]. This is despite data demonstrating that the number of CTLs within the tumor 

microenvironment (TME) is a critical prognostic marker for COADREAD [59, 60]. This 

again highlights the importance for improved methods of assessing the TME and 

understanding therapeutic resistance. 

Dysregulated methylation impacts signaling pathways associated with apoptosis avoidance, 

metastasis, and therapeutic resistance, including immunotherapy and represents an important 

Characteristic CMS1 (n=76) CMS2 (n=218) CMS3 (n=72) CMS4 (n=143) p Value

Gender, n

Male 37 123 38 75 0.6748

Female 39 95 34 68

MS, n

MSS/MSI-L 14 217 60 137 <0.0001

MSI-H 62 1 12 6

Age, Mean ± SD 71±14 66±12 66±13 65±13 0.0019

Pathologic stage, n (%)

I 12(16) 46(21.8) 21(30.4) 9(6.6) <0.0001

II 42(56) 71(33.6) 30(43.5) 49(36.0)

III 17(22.7) 58(27.5) 15(21.7) 54(39.7)

IV 4(5.3) 36(17.1) 3(4.3) 24(17.6)  

Table 8. Patient Characteristics. CMS, consensus molecular subtypes; MSS, Microsatellite stable; MSI-L, Microsatellite instability-

low; MSI-H, Microsatellite instability-high. 
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process in COADREAD [61]. Additionally, combined treatments with drugs targeting 

epigenetic modification exploit the dynamic nature of epigenetic changes to potentially 

modulate responses to immunotherapy [62]. However, current drugs targeting epigenetic 

modification are globally hypomethylating agents, such as Azacitidine, Decitabine, which 

are non-selective and may cause have unexpected effects [63]. We found gene TBX21, MX1, 

and SP140 may play a crucial role impacting function through the TP53/P53 pathway in 

modification of TBX21 methylation level and then further upregulate TBX21 expression 

[64].Therefore, identifying more specific candidate epigenetic biomarkers and targets may 

provide a rationale for patient stratification and targeted therapy, maximizing the chances of 

treatment success while minimizing unwanted effects. Recently, large-scale public data 

repositories such as The Cancer Genome Atlas (TCGA) and cBioPortal, as well as publicly 

available single-cell sequencing data, have allowed us to perform further in-depth study of 

cancer patients on a molecular and clinical basis using multi-omics [65-67]. To better 

classify COADREAD patients, the consensus molecular subtypes (CMS) were developed 

by an expert panel using eighteen different COADREAD mRNAseq and microarray datasets, 

settling on four different subtypes based on molecular features [23]. Patients classified as 

CMS1 are characterized by microsatellite instability (MSI), hypermutation, and are 

considered the “immune” subtype. CMS2 is referred to as “canonical”, characterized by 

marked Wnt/β-catenin/ TCF7L2 pathway activation, and APC mutation. Characterized by 

metabolic deregulation, KRAS mutations, and mixed MSI patients, CMS3 is the least 

common. Tumors classified as CMS4 are “mesenchymal”, demonstrating prominent TGF-β 

activation, stromal infiltration, angiogenesis, and epithelial-mesenchymal transition (EMT) . 

Recognizing the importance of molecular classification, there are ongoing pre-clinical trials 

utilizing this system for patient stratification and selection of immune based treatments 
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(NCT03436563, 

NCT04738214).To address 

limitations regarding the current 

knowledge in resistance to 

immune-based therapy and the 

role of epigenetic modification 

of gene expression, in this study 

we sought to combine multi-

omics data with cutting-edge 

data analytics and 

comprehensive molecular 

classification using CMS (Figure 

2). Utilizing publicly available 

data from four data repositories, 

including 15 datasets, 2,391 

COADREAD patients, and seven -omics datasets, we found a difference in survival based 

on differential expression and methylation of the critical T cell regulatory factor T-bet 

(TBX21). Additional exploration of this data pointed to alterations in CD8 T cell exhaustion, 

suggesting that T-bet methylation and expression is a critical factor for T cell dysfunction 

impacting survival in patients with COADREAD.  

3.6.2 CMS1 SUBTYPE PATIENTS DEMONSTRATE FEATURES 

CONSISTENT WITH IMMUNE ACTIVATION 

 

To address the question of the clinical impact of DNA methylation on gene expression and 

resistance to immune based therapy, we chose to use the TCGA, the largest publicly 

available multi-omics dataset with substantial clinical annotation. First, we downloaded and 

integrated the 461 colon cancer (COAD) and 171 rectal cancer (READ) patients from this 

dataset. We then classified patients in CMS subtypes to use the most comprehensive current 

molecular classification. Using this system, there were 316 patients with DNA methylation 

 

Figure 12. Ten tumor microenvironment cell populations of MCP-counter score. 

CMS1 patients have significantly higher cytotoxic lymphocytes scores 

than the others. Each three columns represent one CMS subtype, each 

row represents the cell population. 
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data (450k) and 509  patients 

with mRNAseq data labelled 

with CMS subtypes.The 

demographic, clinical, and 

pathologic characteristics of 

each patient group by CMS 

subtype are summarized in 

Table 8 .As expected, the 

microsatellite status 

composition of patients 

between CMS subtypes was 

significantly different (p 

< 0.0001) with the CMS1 

subtype containing more 

MSI-H patients and the CMS3 

subtype containing more 

MSI-L/MSS patients. The 

median age of CMS1 patients’ 

diagnosis was 71, ranging 

from 58 to 85, significantly 

higher than patients in the 

other CMS subtypes (p = 

0.0019). Additionally, in the 

CMS2 and CMS4 subtypes, 

more patients were diagnosed 

at stage III and IV than the 

other subtypes (p < 0.0001).  

Next, we sought to combine 

CMS classification with 

stratification by cytotoxic 

lymphocyte (CTL) infiltration 

 

Figure 13. The distribution of crosstalk genes.  

With identified crosstalk genes for each comparison, most crosstalk genes enriched 

in Quadrant 2 and 3. TBX21 is the only gene differentially expressed, differentially 

methylated, across three comparisons X axis is the delta beta value of methylation, 

Y axis is the RNAseq LogFC.(a) Distribution of crosstalk genes from CMS2 vs. 

CMS1 DEG and DMG analysis. (b) Distribution of crosstalk genes from CMS3 vs. 

CMS1 DEG and DMG analysis. (c) Distribution of crosstalk genes from CMS4 vs. 

CMS1 DEG and DMG analysis. 
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as a marker for anti-tumor immunity [68]. MCP-counter scores were derived for each patient, 

and patients were then stratified by MCP-counter score quartile and CMS classification 

(Figure 12) [16, 21].  Patients in the CMS1 subtype had the highest median CTL abundance 

score, and the majority of patients in this subgroup were in the highest quartile of CTL 

infiltration. Additionally, we also found that when considering tumor mutational burden 

(TMB) and neoantigen predicted peptides, CMS1 subtype patients were again much higher 

than the other subtypes. This data combined supports the idea that CMS1 subtype patients 

represent an “inflamed” phenotype and are the most immune active. 

3.6.3 TBX21 IS THE ONLY GENE DIFFERENTIALLY EXPRESSED, 

DIFFERENTIALLY METHYLATED, AND HIGHLY CORRELATED WITH 

CTL INFILTRATION ACROSS ALL CMS SUBTYPES 

 

CTL infiltration is critical for anti-tumor immunity and response to immune-based therapy, 

therefore, we next sought to understand how gene expression and DNA methylation were 

associated with CTL infiltration and molecular alteration. Using CMS1 as the reference 

subtype given its high level of CTL infiltration and predicted response to ICI, we performed 

differential gene expression and differential methylated region analysis (Figure 2). 

Expression of 20,531 genes and 293,276 methylation loci were determined for each tumor 

sample from the TCGA. There were 2,977 differentially expressed genes and 11,541 

differentially methylated regions (3,500 differentially methylated genes) from the 

comparison of CMS1 and CMS2. In the comparison of CMS1 and CMS3, there were 2,385 

differentially expressed genes and 4,231 differentially methylated regions (1,583 

differentially methylated genes). And in the comparison of CMS1 and CMS4, there were 

3,246 differentially expressed genes and 9,393 differentially methylated regions (2,359 

differentially methylated genes). To identify “crosstalk genes”, genes both differentially 

expressed and differentially methylated genes, we then performed a correlative analysis 

plotting differentially expressed genes (|logFC| >1 and p-Value <0.05 adjusted for FDR) 
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against differentially 

methylated genes (|Δβ| > 0.25 

and P-value <0.05, adjusted for 

FDR, Figure 13).  Identified 

crosstalk genes were 

predominantly enriched in 

quadrants “higher methylation 

& higher expression” and 

“higher methylation % lower 

expression (Figure 14), 

demonstrating increased 

methylation (Δβ >0.25) 

associated with either increased 

or decreased differentially 

expressed gene expression. To 

validate these findings, we 

analyzed publicly available 

gene expression and DNA 

methylation datasets [69].Using 

this data, we confirmed that 

TBX21 was consistently 

differentially methylated when 

comparing CMS1 vs. other 

CMS subtypes. Specifically, we 

found that one specific loci in 

the coding region of TBX21 

(SiteID: cg26281453, Loc: 

45810610) was differentially 

methylated in all datasets. 

To explore the relationship of crosstalk genes with CTL infiltration, we correlated the 

crosstalk gene expression with MCP-counter CTL abundance scores. Interestingly, TBX21 

  

 

Figure 14. TBX21 is the highly correlated with CTL.X axis is the CTL score,Y 

axis is the normalized TBX21 mRNAseq expression.(a)Normalized TBX21 

expression highly correlated with CTL in CMS2.(b)Normalized TBX21 

expression highly correlated with CTL in CMS3.(c)Normalized TBX21 

expression highly correlated with CTL in CMS4. 
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was the only gene differentially expressed, differentially methylated, and highly correlated 

with CTL from each CMS1 comparison (r > |0.7|, Figure 13). Interestingly, we observed that 

TBX21 was more highly expressed in CMS1 patients,  but was also more highly methylated 

(Figure 13). However, the typical expectation is that methylation is an epigenetic 

modification that leads to decreased gene expression [54]. Moreover, previous studies have 

suggested that TBX21 is an important transcriptional regulator of tumor-reactive CD8+ T-

cells which are critical for response and survival [70]. Given these results, we hypothesized 

that the importance of alterations in the expression of TBX21 via methylation may be most 

important within CMS1 patients.   

3.6.4 CMS1 PATIENTS WITH HIGH TBX21 EXPRESSION AND LOW TBX21 

METHYLATION HAVE THE BEST SURVIVAL 

 

To better understand the relationship between TBX21 expression and methylation and 

CMS1 patient outcomes, we next performed a survival analysis. When using TBX21 

expression or methylation values as independent variables, there was no difference in 

survival (data not shown). Therefore, we further classified CMS1 patients using the median 

value of TBX21 expression and mean methylation β value to separate these patients into 

four groups (Figure 15). Patients were grouped as: high TBX21 expression with low 

methylation (high-low); high TBX21 expression with high methylation (high-high); low 

TBX21 expression with high methylation (low-high); and low TBX21 expression with low 

methylation (low-low). We then repeated the survival analysis with CMS1 patients stratified 

by these four subgroups (Figure 15). Patients classified as high-low (high expression, low 

methylation) demonstrated the best survival, followed by low-high patients. Interestingly, 

the group of patients classified as high-high, appeared to represent a potential intermediate 

subgroup (Figure 15) with worse survival (Figure 15) than both high-low and low-high 

subgroups. This data suggests that the interaction between TBX21 expression and 

methylation plays an important role in patient prognosis. 

3.6.5 THERE WERE NO SIGNIFICANT CLINICAL DIFFERENCES 

BETWEEN HIGH-LOW AND LOW-HIGH CMS1 PATIENT SUBGROUPS 
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This result inspired us to investigate the potential mechanisms of the observed difference in 

survival between CMS1 patient subgroups. Therefore, we retrieved the patient clinical 

attributes from cBioPortal including 41 separate attributes. We found no clinical attributes 

 

 

Figure 15 TBX21 in CMS1 patients. (a) Subtype of CMS1 patients based the expression and methylation of TBX21. There were 24 

patients with higher TBX21 methylation and 17 patients with lower methylation. X axis is TBX21 mRNAseq expression, Y axis is 

TBX21 methylation beta value. high-low: high TBX21 mRNA expression, low TBX21 methylation (number of patients(n) =13); 

highhigh: high TBX21 mRNA expression, high TBX21 methylation (n=8); low-high: low TBX21 mRNA expression, high TBX21 

methylation (n=16);low-low: low TBX21 mRNA expression, low TBX21 methylation (n=4). (b) Patients with higher expression and 

low methylation of TBX21 has the best survival, and the patients with lower expression and higher methylation has the worse 

survival than high-low group and it also has the largest number of patients with this status in this group. X axis is patients' days 

elapsed, Y axis is percent of patients were still survive. 
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with significant differences when 

comparing high-low and low- high 

patients. However, when comparing the 

high-high group to other groups, we 

found multiple significant factors. There 

were eight clinical attributes with 

significant differences between high-low 

and high-high patient groups. Most 

specifically, we noted that high-high 

patients had a significantly higher 

number of Positive Lymph Nodes than 

high-low patients (p-Value: 0.0442, 

Figure 15), a known marker of poorer 

survival. Additionally, high-high patients 

had significantly higher rates of 

lymphovascular invasion (LVI) than 

low-high patients (p-Value: 0.0192, Fig 

6b), another important clinical risk factor 

for survival. These results suggest that 

the survival difference demonstrated by 

the high-high group may be driven by 

clinical factors, however, the survival 

difference between the high-low and 

low-high patient groups is more likely driven by molecular factors.  

3 3.6.6 Patients with high TBX21 expression and low methylation are the most 

highly immune infiltrated 

 

To further evaluate the impact of TBX21 on survival and anti-tumor immunity, we looked 

at other indicators of immune resistance. Tumor mutational burden (TMB) has been shown 

to predict survival and response to immune checkpoint, so we first derived these scores for 

each patient [25]. However, when comparing the subgroups of CMS1 patients, we observed 

 

Figure 16 Clinical status in CMS1 patients. (a) high-high patients 

had more positive lymph nodes than high-low patients. (b) high-high 

patients have more patients had lymphovascular invasion than low-

high patients. 
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no significant differences in TMB (Table S4). Next, we derived neopeptides a potentially 

better marker of immune reactive antigen in the tumor microenvironment. But again, we did 

not observe any differences between subgroups of CMS1 patients (Table S4). Given the lack 

of overt differences in these measures, we sought to further investigate other aspects of anti-

tumor immunity. 

     To obtain a more in-

depth look at immune 

alterations in CMS1 

patient subgroups, we 

next looked more 

specifically at different 

cell populations in the 

TME using cell marker 

score analysis [26]. 

Signature genes for 

calculating the cell 

marker score of each 

cell population were 

obtained from the 

TCIA dataset (Table 

S5)[26]. Using this 

analysis, we found that 

high-low patients had 

significantly higher 

infiltration of CD8+ T 

cell subtypes including 

activated CD8+ T cell 

(p value = 0.0008), 

central memory CD8+ 

T cell (p value = 

0.0027), and effector 

  

 

Figure 17. Cell marker score analysis for immune cell populations. High-low patients had the 

significant higher infiltration of CD8+T cell subtypes including (a)activated CD8+T 

cell,(b)central memory CD8+T cell,and (c)effector memory CD8+T cell;We also found 

increased infiltration of (d)T helper cells(Th1)and (e)activated dendritic cells (DC);we also 

saw increased infiltration of cell subtypes suggest to be immune suppressive,(f)Treg and 

(g)myeloid derived suppressor cells. 
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memory CD8+ T cell (p value = 0.0023) (Fig 7a-c).  We also found increased infiltration of 

T helper cells (Th1, p value = 0.0007) and activated dendritic cells (DC, p value = 0.0007) 

(Fig 7d, e). However, in addition to the significantly higher infiltration of cell subtypes that 

are consistent with anti-tumor immune profiles, we also saw increased infiltration of immune 

suppressive cell subtypes, such as Treg (p value = 0.0040) and myeloid derived suppressor 

cells (p value = 0.0027) (Fig 7f, g). TH17 and monocyte subsets were not significantly 

different (data not shown). Given the evidence of increased immune cell infiltration, both 

pro-and anti-inflammatory, we sought to further understand the molecular differences that 

may suggest a mechanism for the observed difference in survival associated with TBX21 in 

these patients.     

3.6.7 Epigenetic modification of MX1, SP140, and TBX21 caused their expression 

to be upregulated in high expression-low methylation patients 

 

To look at the question of molecular differences impacting survival in CMS1 patient 

subgroups, we completed DEG analysis, focusing on the differences between high-low and 

low-high patients (Table 9). Notably, we found that there were many more genes 

differentially expressed when comparing high-low and low-high patients than when 

comparing the other subgroups (1,482 DEGs, Table S6), further supporting an important 

molecular difference in these patient groups. Next, DEGs obtained from comparing high-

low and low-high subgroups were analyzed using Reactome gene enrichment analysis. We 

found 741 DEGs that were enriched in 41 pathways. Eighteen CD8+ TEX marker genes 

were enriched in 13 pathways, all of which were upregulated in high-low patients (Figure 

Pathway identifier Pathway name Submitted entities hit interactor

R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release TBX21

R-HSA-6804760 Regulation of TP53 Activity through Methylation TBX21

R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest TBX21

R-HSA-6811555 PI5P Regulates TP53 Acetylation MX1;SP140;TBX21

R-HSA-6804758 Regulation of TP53 Activity through Acetylation MX1;SP140;TBX21

R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes TBX21

R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes TBX21

R-HSA-5633007 Regulation of TP53 Activity MX1;SP140;TBX21

R-HSA-3700989 Transcriptional Regulation by TP53 MX1;SP140;TBX21  

Table 9. Reactome pathway analysis for crosstalk gene with CD8Tex feature from the DEG and DMR analysis of high-low and 

low-high CMS1 patients. 
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18). After processing DMG analysis between low-high and high-low patients, five crosstalk 

genes associated with the CD8+ TEX signature were identified .We next applied Reactome 

analysis specifically for crosstalk genes. These five crosstalk genes participated in 303 

pathways. Notably, we observed that genes MX1, SP140, and TBX21 were frequently 

enriched in the "Regulation of TP53 Activity" and its cascade pathways. Moreover, we 

identified the function of SP140 from the EpiFactors database as a Zinc finger structure that 

mainly targets Histone modification read and transcription factor (TF) regions to participate 

in epigenetic modification [71]. Together this data suggests a critical role for epigenetic 

modification of TP53 pathway genes impacting TBX21 and patient outcome in these 

subgroups.  

3.6.8 TBX21 IS A KEY MODULATOR IN CD8+ T EXHAUSTED CELLS 

 

 

Figure 18. Eighteen CD8+ TEX marker genes were enriched in 13 pathways, all of which were upregulated in high-low patients. 

Longer bars indicate that had more DEGs enriched in the pathway. Bar color from blue to red indicate that the DEGs enriched 

pathways had higher p adjust value. 
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To validate our hypothesis regarding the importance of TBX21 in TEX in COADREAD, we 

explored publicly available scRNAseq data from 23 COADREAD patients with 65,362 

matched normal and tumor single cells. Data was first normalized and then utilizing cell 

subtypes identified by the original study, we retrieved 47,285 tumor cells labeled as TP. 

Blueprint/ENCODE reference from the SingleR subtype identifier was then used to re-

annotate tumor cells [72]. We identified 36 pure stroma and immune cell types, including 

2,268 central memory CD8 positive alpha-beta T cell (CD8+ TCM); 4,214 effector memory 

CD8 positive alpha-beta T cell (CD8+ TEM); and 84 CD8 positive alpha-beta T cell (CD8+ 

T-cells). To focus on exhausted CD8+ T cells, we retrieved all CD8+ T cell subsets (CD8+ 

T-cells) and performed an independent cluster analysis. In this analysis, we found eight 

distinct CD8+ T cell subclusters, each exhibiting a distribution of clusters. To annotate these 

clusters, we then used CellMarker, a marker-based annotation database, and identified 

clusters 1 and 7 as CD8+ T exhausted (CD8+ TEX) cells [29].  Compared with the pre-

identified annotation from the Blueprint/ENCODE reference, CD8+ TEX predominantly 

overlapped with CD8+ 

TEM cells and a small 

proportion of CD8+ 

TCM.Additionally, we 

selectively looked at the 

expression of 

transcription factors, 

checkpoint receptors, 

and effector molecules, 

noting that in 

subclusters of CD8+ 

TEX, cluster 7 was 

enriched with cells that 

have a significantly 

higher average 

 

Figure 19. Cluster 1 and cluster 7 are identified CD8+ T cell sub-clusters with CD8+TEX 

features. X axis is the interested gene with scaled average expression (low to high: 

-1.0 to 1.0) and bigger dot indicate higher percentage of expression of interested 

genes in totally analyzed cells; Y axis is the identified CD8+ T cell subclusters. 
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expression of MKI67, 

PDCD1, and lower 

expression of TBX21 than 

cluster 1 (Figure 19) 

[33].Cluster 1 

demonstrated expression 

of cells that are consistent 

with the identified low-

proliferative TEX cluster 

in the previous research 

consistent with the idea 

that TBX21 expression is 

associated with more 

highly functional cells. In 

contrast, cluster 3 

contained cells with the 

highest TBX21 

expression and low levels of expression of checkpoint receptors, such as PDCD1, LAG3, 

and TIGIT, when compared with CD8+ TEX (clusters 1 and 7) (Fig 19, 20). We then 

performed featureplots to show the distribution of TBX21, PDCD1, and EOMES. 

Specifically, PDCD1 showed the highest density in CD8+ TEX (clusters 1 and 7) and was 

associated with CD8+ TEM (Figure 21) and there was minimal overlap in cells expressing 

TBX21 and PDCD1. To further confirm our findings in the bulk mRNAseq and DNA 

methylation data we then looked to see if the expression of MX1 and SP140 were associated 

Figure 

Figure 20 Cluster 3 of CD8+T cell sub-clusters has highest TBX21 expression associate 

with low levels of checkpoint receptors (PDCD1,LAG3,and TIGIT).X axis is the 

interested gene with scaled average expression (low to high:-1.0 to 1.0)and 

bigger dot indicate higher percentage of expression of interested genes in totally 

analyzed cells;Y axis is the identified CD8+T cell sub- clusters. 
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with TBX21 expression and found that the expression of these genes was associated with 

TBX21 expression, supporting our findings. Together, this data suggests strongly that MX1, 

SP140 utilize epigenetic modification and cooperate with TBX21 through TP53 cascade 

pathways to decrease expression of TEX cell markers and improve function in CD8+ T cells.  

In addition, beside the COADREAD, as we know, low CTLs infiltration and poor 

immunogenicity in the BC microenvironment is a challenge to treatment with ICIs. And ICIs 

were recently approved by the FDA in TNBC, which are characterized by high levels of 

tumor infiltrating CTL. However, DNA methylation is a component of epigenetic 

modification involved in gene expression programming that can promote the progression of 

cancers, including BC. Therefore, the association between transcriptional and methylation 

changes that modulate CTL infiltration in the tumor microenvironment in specific subtypes 

of breast cancer is still unclear.  

We then next compare transcriptional and methylation profile data in patients with different 

BC subtypes to identify targetable genes to improve CTL infiltration and ICI efficacy in BC 

patients. We enrolled 1,212 BC patients with mRNAseq and 783 patients with HM450 

methylation data. Again, we applied MCP-counter to generate the abundance of ten cell 

populations for further analysis. 

As expected, Patients in the 

TNBC subtype had the highest 

median CTL abundance score, 

and the majority of patients in 

this subgroup were in the 

highest quartile of CTL 

infiltration (Figure 22).  

As previously described in the 

methods, using TNBC as the 

reference subtype given its high 

level of CTL infiltration and 

predicted response to ICI, we 

performed differential gene 

 

Figure 21. Feature plot to show the distribution of TBX21, PDCD1, and EOMES 

in each cluster. PDCD1 showed the highest density in CD8+TEX 

(clusters 1 and 7) and was associated with CD8+TEM. X axis and Y 

axis are two dimensions of UMAP. 
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expression and 

differential methylated 

region analysis. 

Expression of 20,531 

genes and 293,276 

methylation loci were 

determined for each 

tumor sample from the 

TCGA. We then did 

Pearson correlation 

coefficient analysis for 

crosstalk genes and 

MCP-counter score for 

each patients and each 

cell population (r>|0.7|). 

We observed that CD38, 

HLA.DOB, LAMP3, RUNX3 were hypomethylated in LumA and highly correlated with 

CTL scores; AIM2, SEL1L3, TOX were hypermethylated in LumA and highly correlated 

with CTL scores; AIM2，GPR55，UBD were hypermethylated in LumB and highly 

correlated with CTL scores; CHST2 were hypermethylated in LumB and highly correlated 

with CTL scores (Figure 23).  Specifically, interferon-inducible protein AIM2 is a gene that 

was altered in both LumA and LumB, is associated with response to ICK in murine models 

and may be a potential target to improve response to immune based therapy in these subtypes 

of BC patients. 

3.6.9 DISCUSSION 

 

DNA methylation plays an important role in the development of COADREAD; however, its 

potential role in immune dysfunction is less well characterized [54]. This may be most 

important in the subgroup of patients that demonstrate hypermethylation, MSI-H patients.  

 

Figure 22. Quartiles of MCP-counter scores in molecular subtypes: 1) Selected 

microenvironment cell populations scores were presented by Quartiles for each molecular 

subtype of BC; 2) Red box highlighted the differences of CTL cell population MCP – 

counter score between subtypes, and the CTL score in Triple negative BC(the 75th 

percentile) is significantly higher than the others. 
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These are the patients most likely to respond to immune checkpoint inhibition and are the 

only COADREAD patients with a current FDA approved indication for ICI therapy. 

However, MSI status has been shown to be an incomplete marker, leading to the 

establishment of CMS subtypes to better characterize this heterogeneous disease on a 

molecular level [73].  To better understand the impact of DNA methylation on immune 

dysfunction and potential resistance to immune-based therapy in COADREAD patients, we 

integrated data from the TCGA with cutting edge bioinformatic techniques demonstrating 

that in CMS1 patients, the “inflamed” subtype of COADREAD, TBX21 methylation and 

expression stratified patients into groups with significantly different survival. A known 

 

 

Figure 23. Correlations between microenvironment subpopulations and crosstalk genes: a, CD38，HLA.DOB， LAMP3，

RUNX3 were hypomethylated in LumA and highly correlated with CTL scores; b, AIM2，SEL1L3，TOX， were 

hypermethylated in LumA and highly correlated with CTL scores; c, AIM2，GPR55，UBD， were 

hypermethylated in LumB and highly correlated with CTL scores; Fig 2d, CHST2 were hypermethylated in LumB 

and highly correlated with CTL scores; 
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critical transcriptional factor in T cell function, this suggested an important role for 

methylation of TBX21 in COADREAD [70]. Using further in-depth analysis validated in 

publicly available scRNAseq data, we found evidence that TP53 pathway genes MX1 and 

SP140 may participate in the epigenetic modification of TBX21, impacting patient survival.   

Unlike the canonical pattern of epigenetic modification, TBX21 demonstrated both 

increased methylation and expression (high-high) in CMS1 patients. This may primarily be 

related to the majority of CMS1 patients being MSI-H. However, this implied that 

methylation of TBX21 was most important in CMS1 patients. Previous research suggests 

that genes in the high-high quadrant have a more complex and dynamic manner of regulation 

of gene expression by DNA methylation, especially during carcinogenesis and metastasis 

[74]. Our results identified that hypermethylated loci in TBX21 are mainly enriched in CTCF, 

a promoter, and some coding areas in CMS1 patients. In this case, it is reasonable to suggest 

that these patients potentially developed a protective mechanism that hypermethylated 

selective promoters within CpG islands in the TBX21 gene under tumor associated stress 

that blocks the binding of transcriptional tumor-induced repressor proteins to facilitate active 

TBX21 transcription, contributing to our observations in this study.  

There is significant research linking TBX21 with T cell exhaustion, therefore it fits that this 

gene would impact survival in the subset of COADREAD patients characterized by an active 

anti-tumor immune response. Early studies first demonstrated that a gradient of TBX21 

expression led to direction of CD8 T cells towards short-lived, highly active effectors versus 

long-term “slow burn” effectors in response to viral illness [75]. Further work has then 

developed the story into showing clearly important roles for TBX21 in the regulation of 

interferon-γ production by regulating the accessibility of the IFNG gene by chromatin 

remodeling in the context of infection[76]. In another murine infection model, others further 

demonstrated that TBX21 appeared to be a critical regulator of PD-1 expression and was 

susceptible to epigenetic disruption impacting CD8 T cell exhaustion[77]. Most recently, 

Beltra, et al published an elegant description of the impact of transcriptional alteration of 

TBX21 and TOX on CD8 T cell exhaustion where they also demonstrate that the CTL 

exhaustion depicted in chronic viral illness correlates with similar makers in CTL from a 

small group of patients with melanoma [78]. In this study, we further build on the data 
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exhibited by Beltra, et al by demonstrating that TBX21 expression and epigenetic 

modification have an impact on patient outcome in COADREAD which has not previously 

been shown. Additionally, we connect the work of Barili, et al by showing that epigenetic 

alteration of TP53 pathway genes is dysregulated in conjunction with TBX21, suggesting 

novel therapeutic combinations that may work to improve outcomes in “inflamed” 

COADREAD [79]. Despite the substantial improvement in outcome that has been seen with 

the application of ICI therapy in these patients, most recent data suggests that only 40% of 

patients demonstrate therapeutic response [58].” 

    Although we have attempted to control for weaknesses, our study suffers from some 

significant limitations. First, as with any retrospective analysis of clinical data, this study is 

subjected to bias based on clinical factors. Additionally, while the TCGA is the most robust 

publicly available dataset including multi-omics and clinical data, our analysis suffers from 

limitations due to patient number in the specific subgroups [80].  Additionally, due to the 

nature of the data we are unable to review patient records for accuracy and to further explore 

potential impact of confounding variables on outcomes of interest.  We attempted to 

compensate for this by comparative analysis of clinical factors associated with survival, 

which we noted no differences between the high-low and low-high CMS1 patients on 

univariate analysis. To validate our findings, we used other publicly available methylation 

datasets; however, there were no datasets in which to confirm all our findings, particularly 

in the context of CMS subtyping. To test our hypothesis regarding the importance of TBX21 

in CTL function, we utilized a large publicly available scRNAseq dataset, but we are unable 

to directly explore TBX21 expression and methylation at the single cell level in 

COADREAD using existing available data. This represents an exciting area of future 

exploration utilizing advanced single cell techniques [81].  

In this study, we integrate comprehensive scRNAseq, mRNAseq, methylation, TMB, 

neoantigen, clinical and MCP-counter scores from multiple datasets to explore the role of 

TBX21 in CD8+ T cell exhaustion and patient outcome in COADREAD. We demonstrate 

that in CMS1 subtype COADREAD patients, those with high TBX21 expression and low 

methylation have improved survival suggesting a critical role for epigenetic regulation of 

TBX21 in the outcome of these patients. Moreover, epigenetic modification of TBX21 along 
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with MX1 and SP140 may provide this impact via the TP53/P53 pathway. Therefore, DNA 

methyltransferase inhibitors combined with immune checkpoint blockade may further 

support CTL function in CMS1 patients via protection of TBX21 expression. Future work 

focusing on enrolling sufficient patients with strict quality control and application cutting 

edge biomedical informatics techniques at the single cell level is required for further 

understanding of DNA methylation and gene expression in CD8+T cell function and patient 

outcome[82].   

3.7 PAN-CANCER ANALYSIS 
 

Cancer is a group of diseases that is the second leading cause of death in the United States. 

Each cancer type has a different mortality rate, and patients of each type have heterogeneous 

responses to treatment. However, all these types of cancer are characterized by uncontrolled 

growth and the spread of abnormal cells. This suggests the existence of common 

mechanisms among these types in addition to the unique mechanisms for each type. Studying 

the inter and intra heterogeneity of cancer is crucial to understanding the mechanisms of 

action, identifying biomarkers, finding drug targets, and developing or repurposing therapies. 

To study the heterogeneity of cancer, pan-cancer analyses need to be conducted over a wide 

range of cancer types. The purpose of these analyses is to find homogeneous subgroups of 

patients across different cancer types. Finding these subgroups enables targeting the cancer 

mechanism over different cancer types and this can reduce the cost of treating patients 

because one drug can be used as a regimen for more than one cancer type. Additionally, 

finding subgroups across cancer types will improve patient survival by finding a better 

treatment through targeting common mechanisms instead of only targeting a mechanism 

unique to a specific cancer type. Also, to reduce the cost associated with treating patients, 

old drugs can be investigated for new uses by developing and implementing drug 

repositioning methods over pan-cancer data after stratifying patients into subgroups. 

Pan-cancer represents a comprehensive heterogeneity analysis required to solve the intra-

heterogeneity problem which is the major barrier to classifying patients into potential 

benefited groups [83]. This type of analysis has been used for a variety of research questions 

including studying genes’ effect on cancer in general instead of studying their effect on each 
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cancer type [84, 85]. For the subgrouping, pan-cancer analysis has been done using different 

methods to stratify cancer patients into subgroups. It was used to stratify patients based on 

the expression status of one gene and its upstream, downstream, and correlated genes to 

study cancer prognosis in each subgroup. This type of study does not consider the wide range 

of the genetic variation because it focuses on a narrow set of genes. A wider set of molecular 

features were considered for stratifying patients into groups where patients in each subgroup 

share the same molecular features. These molecular features were represented by RNA 

signatures, Tumor Mutational Burden (TMB), Copy-Number Alteration (CNA), and genes 

expression using network analysis [83, 86, 87]. These methods represent an improvement 

on previous methods that depend on a limited set of genes, but they only focus on genotypic 

features without taking into account heterogeneity on the phenotypic level. Other methods 

addressed the importance phenotypic heterogeneity by using the phenotypic features to 

stratify patients into subgroups. For the stratification purposes, the surgery and radiotherapy 

status, socioeconomic status, mortality after surgery, race, age, and metastasis site were used 

[79]. While these methods do use the phenotypic features, they miss the importance of 

genotypic features to stratify patients into subgroups. 
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3.7.1 DATA DESCRIPTION AND PROCESSING 

     

Next, we overviewed and did crosswise comparison to phenotypical and genotypical 

variables. From TCGA, we totally selected 13 cancers types for analysis, and patients got 

recorded in the TCGA dataset is 6420 and the patients were collected for analysis was 6129. 

Fourteen caner types and one subtype in 11 organs were included (Table 10). The dataset 

for these patients consists of genotypic and phenotypic variables. It has 17 phenotypic and 

15 categories genotypic variables (Table 11). The genotypic data consists of two parts. TMB, 

Immunoinhibitor, Immunostimulator, Activated CD8 T cell and Cytotoxic lymphocytes 

were general genotypical variables. In another word, these 5 genotypical variables were all 

enrolled for subgroup mining analysis. The rest of specific 12 genotypic variables were 

partially enrolled in different cancer. The different number of specific genotypic variables 

enrolled were mainly caused by the number DEGs, DEGs associated with survival and 

overlapped genes across different omics. The continuous variables in the phenotypic dataset 

were categorized by quartile. The genotypic variables were categorized based on the z-score 

of each gene in each cancer. 

 

 

 

Organs Cancer Types Enroll patients Patient Recorded in TCGA

Blader BLCA 408 412

Breast BRCA 1100 1101

Cervical & endocervical CESC 306 308

Colon & Rectum COADREAD 599 636

Esophagus ESCA 185 185

Head and neck HNSC 520 528

Kidney KIRC 534 537

Kidney KIRP 290 292

Liver LIHC 373 377

Lung LUAD 517 584

Lung LUSC 501 511

Skin SKCM 471 471

Stomach STAD 415 478  

Table 10. Types of cancers with enrolled number of patients 
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Table 11. Variables enrolled and categorization 

Phenotypical Variable Categorized variable

Age Quartile

Anatomical Location Labelled In TCGA

BMI Quartile

Gender Male, Female

Pathologic Categories M M0, M1, MX

Pathologic Categories N N0, N1, N2, N3, NX

Pathologic Categories T T1, T2, T3, T4

Pathologic Stage Stage I, Stage II, Stage III, Stage IV

Race African American, White, Hispanic, Asian, others

Subtypes Labelled In TCGA

Tumor Site Labelled In TCGA

Vital Status Alive/Dead

Breslow Depth (SKCM) Labelled In TCGA

Clark level at diagnosis (SKCM) Labelled In TCGA

Primary Tumor Laterality (KIRP) Labelled In TCGA

AFP At Procurement (LIHC) Labelled In TCGA

Liver fibrosis ishak score category (LIHC) Labelled In TCGA

Genotypical Variable Categorized variable

TMB low, median.low, median.high, high

Immunoinhibitor low, median.low, median.high, high

Immunostimulator low, median.low, median.high, high

Activated CD8 Tcell low, median.low, median.high, high

Cytotoxic lymphocytes low, median.low, median.high, high

Hugo gene symbol_DMCR Normal_H/L_H/L_H/L,over_H/L_H/L_H/L,under_H/L_H/L_H/L

Hugo gene symbol_DM Normal_H/L,over_H/L,under_H/L

Hugo gene symbol_DC Normal_H/L,over_H/L,under_H/L

Hugo gene symbol_DR Normal_H/L,over_H/L,under_H/L

Hugo gene symbol_DMR Normal_H/L_H/L,over_H/L_H/L,under_H/L_H/L

Hugo gene symbol_MC H/L_H/L

Hugo gene symbol_MR H/L_H/L

Hugo gene symbol_MCR H/L_H/L_H/L

Hugo gene symbol_MR H/L_H/L

Hugo gene symbol_CR H/L_H/L
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3.7.2 PATIENT CHARACTERISTICS 

 

In totally enrolled 6,420 patients, there were 3,200 males (49.8%), 3,102 females (48.3%), 

118 patients without records (1.8%). The lowest median age with CESC diagnosis is 46 

years old, and highest median age with BLCA diagnosis is 69 years old (Figure 24). However, 

the SKCM has the earliest minimum diagnosis age. This distribution would help to make the 

decision to initiate the early screening for patients with high predispose or family histories. 

Overview patients’ survival, 4,306 (67.1%) were living, and 1,966 (31.1%) were deceased. 

As figure 25 and table 12 shows that SKCM has the lowest survival rate and BRCA has the 

highest overall survival percentage.  

 

Figure 24 The distribution of number of patients 
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Study ID Living Deceased NA Total

Deceased 

Percent

blca 231 182 0 413 44%

brca 949 155 4 1108 14%

cesc 236 73 1 310 24%

coadread 502 131 7 640 20%

esca 108 78 0 186 42%

hnsc 305 225 0 530 42%

kirc 361 177 0 538 33%

kirp 248 44 1 293 15%

lihc 247 132 379 35%

luad 336 288 62 686 42%

lusc 284 220 7 511 43%

skcm 251 228 1 480 48%

stad 268 175 35 478 37%  

Table 12 The number of patients’ overall survival 

 

Figure 25. patients’ overall survival 
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We next observed that BLCA all the patients recorded were white; KIRP has the highest 

black or African American than the other cancer; and Asian population has the highest 

portion in LIHC than any other cancers (Table 13, Figure 26).  

Study ID blca brca cesc coadread esca hnsc kirc kirp lihc luad lusc skcm stad
WHITE 100% 76% 78% 79% 60% 88% 88% 75% 51% 86% 90% 97% 73%

BLACK OR 

AFRICAN 

AMERICAN

0% 18% 11% 18% 16% 9% 11% 22% 5% 12% 8% 0% 3%

ASIAN 0% 6% 7% 3% 24% 2% 2% 2% 44% 2% 2% 3% 23%

AMERICAN 

INDIAN OR 

ALASKA 

NATIVE

0% 0% 3% 0% 0% 0% 0% 1% 1% 0% 0% 0% 0%

NATIVE 

HAWAIIAN OR 

OTHER PACIFIC 

ISLANDER

0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

 

Table 13 Patients’ Race  

 

 

Figure 26. The distribution of race 
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Additionally, in the comparison of pathologic stages, KIRP has the highest ratio of patients 

were diagnosed at Stage I; BRCA patients were mostly diagnosed at Stage II; STAD and 

SKCM patients were most likely diagnosed at Stage III; additionally, HNSC patients close 

to 50% of patients were diagnosed at Stage IV. In the TNM comparisons, not surprisingly, 

HNSC has the highest rates of patients got diagnosis at T4; ESCA has the earliest lymph 

node metastasis; and KIRC has the earliest distal metastasis (Figure 27,28).  

 

 

 

 

Figure 27. Percentage of Pathologic stage cross the cancers 
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Figure 28. Percentage of TNM Pathologic stage cross the cancers 
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For each cancer, we applied the quartile methods to categorize the general genotypical 

variables, such CTL score. However, the range of each genotypical variables are widely 

different (Figure 29). For example, the maximum of KIRP TMB value is close to the median 

value of HNSC. Therefore, for better comparison and align across pan-cancer, we compared 

the quartile values for general variables as references for the further subgroup results 

interpretation. As figure 29 shows that SKCM has the highest median and 75 percentile TMB 

 

Figure 29. TMB level across pan-cancers 
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Figure 30. CTL level across pan-cancers 
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level, whereas, KIRC has the lowest average TMB level. Next, we evaluated the CTL score 

 

 

 

Figure 31. cell marker score across pan-cancers.  
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and cell marker score (Figure 30). Interestingly, LUAD has the highest cell marker scores in 

all three subsets and KIRP has the lowest over all cell marker scores (Figure 31).  
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 We further did the overlap analysis between each cancer to determinate if there are 

Names total elements Names total elements

KIRC SKCM 34

SLFN14 POU2AF1 KIAA1324 IGSF11 CPEB1 LAG3 ECEL1 GTSF1L GFI1 

STAP1 NKG7 ZNF80 KLRK1 TMC8 PYHIN1 CD72 BCL11B ZBP1 

SERPIND1 BATF XCL1 FASLG PARP15 GZMH ARHGAP9 GRIK1 CD79A 

PSAT1 IFNG CORO1A FCRL5 LTA ZNF683 CACNA1G

BRCA CESC 

HNSC
1 TCL1A

BRCA SKCM 18
TNIP3 CRTAM IRF1 TNFRSF9 CXCL11 KLRC1 TMIGD2 IL21R SNX20 

CCR7 CD1B CR1L CXCL9 CD48 GPR25 IL21 GBP5 HSPB7

BRCA CESC 

HNSC SKCM
1 CD19

KIRC KIRP 12
CLCNKA TYRP1 FAM83E CRISP3 ASB15 FAM92B GAGE2A DDN KLRC3 

MAGEA1 NPTX1 SERPINA5

BRCA CESC 

KIRC KIRP 

SKCM

1 SP140

BRCA COADREAD 10 ANXA1 BCL2 SCD EEF2K BCL2A1 CDH1 ETS1 PGR FOXO3 PRKCA

BRCA CESC 

KIRC LIHC 

SKCM

1 CD5

CESC SKCM 9 SPAG6 ITK ZNF831 CLNK LILRB1 NAPSA P2RY10 ITGAL NLRC3
BRCA CESC 

LIHC
1 CD2

HNSC SKCM 9 CCDC88B ITGB2 BLK CXCR5 GPR65 CNR2 TMPRSS3 CD22 FCRL1
BRCA CESC 

LIHC SKCM
1 TRAT1

LIHC SKCM 9 SYT13 HCK IL18RAP CCR8 KLK13 UGT1A7 NKX6.1 CD96 THEMIS

BRCA 

COADREAD 

ESCA

1 ERBB3

BRCA KIRC 8 FOXP3 MAP4K1 CYP2A6 CACNA1S SLC36A2 CXorf49B TNNI1 APOA1

BRCA 

COADREAD 

HNSC SKCM

1 MS4A1

BRCA KIRC SKCM 8 KIT PTPN7 GZMA APOBEC3H PDCD1 ZBED2 ICOS IL2RG

BRCA 

COADREAD 

HNSC STAD

1 RAB25

HNSC KIRC 5 HMGCS2 LYPD4 RUFY4 CEND1 TNFRSF13B

BRCA 

COADREAD 

KIRC

1 CDH3

LUSC SKCM 5 NEUROG3 FCN1 CLEC4D TNFSF8 MARCO
BRCA ESCA 

SKCM
1 CXCL10

BRCA CESC SKCM 4 SH2D1A CD6 LCK SLAMF6 BRCA HNSC 1 CCR4

ESCA SKCM 4 ARHGAP30 MNDA SH2D1B LYZ
BRCA HNSC 

KIRC SKCM
1 TIGIT

KIRC LUAD 4 PSG8 PSG3 FETUB TM4SF20

BRCA HNSC 

KIRC SKCM 

STAD

1 FCRL4

KIRC LUSC 4 CLIC5 APOH FCER2 OTC
BRCA HNSC 

KIRP SKCM
1 FCRL3

LUAD LUSC 4 EPB42 CD300LG CA4 PKHD1L1
BRCA HNSC 

LIHC
1 SMR3B

BRCA CESC 3 TGM2 IGFBP2 PDYN

BRCA HNSC 

LIHC SKCM 

STAD

1 SIT1

BRCA ESCA 3 LMOD3 GATA3 ERBB2
BRCA KIRC 

LIHC SKCM
1 CXCR3

BRCA HNSC SKCM 3 LTB CLEC6A SPOCK2
BRCA KIRC 

SKCM STAD
1 SLA2

BRCA LIHC SKCM 3 TRAF3IP3 CCR5 LY6D
BRCA KIRP 

LIHC
1 FAM129C

BRCA LUSC 3 CPB2 TCF21 KCNH6 BRCA LIHC 1 GPR18

CESC HNSC KIRC SKCM 3 TTC24 TBC1D10C CXCR6
BRCA LIHC 

LUSC SKCM
1 DES

CESC KIRC 3 PSTPIP1 KLRC2 REG3A

CESC 

COADREAD 

KIRC SKCM 

STAD

1 JAKMIP1

HNSC STAD 3 CALCA FAM81B SPRR3 CESC ESCA 1 GRIA2

KIRC STAD 3 FMR1NB GBP6 ITIH1 CESC HNSC 1 CD3G

KIRP LUAD 3 PADI3 SPANXA2 PI3

CESC HNSC 

KIRC LIHC 

SKCM

1 ZAP70

KIRP SKCM 3 CD38 KIR2DL4 GAGE2E
CESC HNSC 

KIRP
1 C20orf85

 

Table 14a. Overlapped specfic genotypical variables 

 

 

 



 

87 
 

homogeneous genes caused by the significant differences between CTL-high and CTL-low 

(Table 14). Each part of table xx contains two names, total and elements columns. Each 

elements cell has the overlapped genes according to the cancer types under names cell. The 

total between names and elements were the number of overlapped genes. For example, 

between cancer KIRC and SKCM, there were 34 overlapped genes. These 34 genes were 

both DEGs from CTL-high and CTL-low comparison from each cancer. However, we 

couldn’t determine if these genes were modulated by multiple omics. Since we labelled 

Names total elements Names total elements

BLCA KIRP 2 SP9 VCX3B
CESC HNSC 

SKCM
1 BTLA

BLCA LIHC 2 FABP3 CPB1
CESC KIRC 

LIHC SKCM
1 UBASH3A

BRCA CESC HNSC KIRC SKCM 2 CD27 CD3E CESC KIRP 1 PAEP

BRCA CESC KIRC 2 GZMM CCL5 CESC LUSC 1 SCML4

BRCA CESC KIRC SKCM 2 CST7 CD3D
COADREAD 

KIRC SKCM
1 PLA2G2D

BRCA KIRP 2 GADL1 CRP
COADREAD 

LUSC
1 SFTPA1

BRCA STAD 2 CRH CSN2
COADREAD 

LUSC STAD
1 AQP4

CESC KIRC SKCM 2 XCL2 RAB3B
COADREAD 

SKCM
1 PATL2

CESC LIHC SKCM 2 SLAMF1 GPR171
COADREAD 

STAD
1 F7

COADREAD ESCA 2 FCGR2C SRC ESCA HNSC 1 TPTE2

COADREAD HNSC 2 HTN1 B2M
ESCA HNSC 

KIRC SKCM
1 FCRL2

COADREAD KIRC 2 PROZ HS6ST3
ESCA HNSC 

SKCM
1 AWAT2

ESCA KIRC 2 PPP1R1B KRT34
ESCA KIRC 

LIHC
1 BNC1

HNSC LIHC 2 SCGB2A2 SPRR2E ESCA KIRP 1 SSX1

KIRC LIHC 2 PVALB BMPR1B ESCA LUAD 1 C20orf141

KIRP LIHC 2 APCDD1L CHGA ESCA STAD 1 TTC29

KIRP LUSC 2 GAGE13 RETN
HNSC KIRC 

LIHC
1 PAX9

SKCM STAD 2 KRT31 KIR2DL1
HNSC KIRC 

SKCM
1 CR2

BLCA BRCA 1 F2
HNSC KIRP 

LIHC
1 KRT4

BLCA BRCA CESC KIRC SKCM 1 CCL25
HNSC LIHC 

STAD
1 RTL1

BLCA CESC 1 ANKS4B HNSC LUSC 1 HBG1

BLCA HNSC 1 HTN3
KIRC KIRP 

LUSC
1 PAGE1

BLCA KIRC 1 SH2D6
KIRC KIRP 

SKCM
1 CXCL13

BLCA KIRC LUAD STAD 1 PLG
KIRC LIHC 

STAD
1 GPR87

BLCA LUAD 1 SSTR5
KIRC LUAD 

LUSC
1 PRG4

BLCA SKCM 1 SPOCK3 LIHC LUSC 1 LYVE1

BLCA STAD 1 TF LUAD SKCM 1 KLK12

LUAD STAD 1 PSG4  

Table 14b. Overlapped specific genotypic variables. 
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DEGs during categorization, we would identify if any DEG was modulated by multiple 

omics and associate with survival in subgroup mining analysis. To have an overview to the 

overlapped genes between different cancers, it would help to give us a clue for further 

integration of subgroups from different cancers.  

3.7.3 PATIENT SUBGROUP MINING RESULTS 

 

The implementation of the subgroup discovery process resulted in a set of subgroups with a 

contrast score (G score). Comparing with unsupervised contrast subgroup mining, our 

modified outcome-oriented contrast subgroup mining would be more comparative when 

integrate with other cancer types. Therefore, we predefined and selected five general 

genotypical variables and one phenotypical varible, which were CTL score, TMB, activated 

CD8 T cell score, immunoinhibitory, immunostimulatory and vital status as outcomes for 

processing for every cancer. After defining the outcome, each categorized under outcome 

would be contrasted, and all the other variables were not defined as outcome would be 

applied for the mining themselves. Every time, we only defined one outcome for contrast 

mining processing. The reason was that we tried to define multiple outcomes at same time, 

it turned out that the subgroups lost the tracking of co-occurrence between defined outcomes.  

The subgroups then were initially clustered based on the phenotypic variables’ distribution 

in cancer types. After implementing subgroup mining, we used patients’ overall survival as 

references as primary subgroups crosswise comparison.  

We highlighted subgroups from each cancer with living and deceased overall survival status 

as an example. There were couple of steps of how we selected these subgroups: 1) Each 

outcome with its categorized value generates large amount of patterns, in here, we also called 

subgroups. 2) From each cancer with living or deceased, we removed the reduplicated 

variables from all the subgroups. 3) We next reviews by general phenotypical and 

genotypical variables. 4) We then pick out the patterns with interesting co-occurrence 

general phenotypical and genotypical variables. 5) Some contrast patterns were contained in 

their superior patterns; we then applied the G score as references to rank and analysis them.   

As table 15 shows that COADREAD, KIRC, BRCA, LIHC, LUAD, LUSC, and STAD 

patients with living status, we noticed that these patients with immunoinhibitor_median.high, 
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ActivatedCD8Tcell_median.low, Immunoinhibitor_high, Immunostimulator_low, and 

Cancer_VitalStatus Pattern Num 1 Num 2 P G score

coadread_living

['Immunoinhibitor_median.high', 'MStatus_mss', 

'PathologicCategories_M_M0', 'SFTPA1_normal', 

'TCAP_normal']

76 2 1.72E-05 10.1434288

kirc_living

['ARG1_normal', 'ActivatedCD8Tcell_median.low', 

'CR2_normal', 'G6PC_normal', 'KCNJ11_normal', 

'LRRN2_normal', 'PathologicStage_Stage I', 

'TAGLN3_normal', 'TRIML2_normal', 

'WFDC5_normal']

64 1 1.04E-08 31.1923129

kirc_living

['ADH4_normal', 'APOA1_normal', 'ARG1_normal', 

'Age_low', 'CR2_normal', 'PRR15L_normal', 

'PathologicStage_Stage I', 

'PrimaryTumorLaterality_Right', 'TRIML2_normal']

44 0 1.33E-06 122562.674

kirc_living

['ARG1_normal', 'CEND1_normal', 'CR2_normal', 

'CXCR3_normal', 'KLRG2_normal', 

'LRRN2_normal', 'PathologicStage_Stage I', 

'TMB_median.low', 'TRIML2_normal', 

'ZNF80_normal']

44 0 1.33E-06 122562.674

kirp_living ['MAGEA11_normal', 'Subtypes_Type 1'] 75 2 0.00583082 4.65108837

brca_living
['Cytotoxic.lymphocytes_high', 'FOXP3_normal', 

'Immunoinhibitor_high', 'SMR3B_normal']
115 4 0.00015362 5.109531

blca_living

['ARHGAP36_normal', 'GC_normal', 

'Immunostimulator_low', 

'PathologicCategories_N_N0', 

'PathologicStage_Stage II', 'SERPINA10_normal']

27 0 1.77E-06 118421.053

lihc_living

['Gender_Male', 'HGF_normal', 

'Immunostimulator_low', 'PTGS2_normal', 

'PathologicCategories_N_N0']

46 1 0.00018468 14.4142101

luad_living

['CHGB_normal', 'CRCT1_normal', 

'Immunoinhibitor_high', 'KRT75_normal', 

'PKHD1L1_normal', 'PSG5_normal', 

'PathologicStage_Stage I', 'REG3G_normal', 

'TM4SF20_normal']

59 0 3.61E-06 150895.141

lusc_living
['Immunostimulator_median.low', 'SFTPC_normal', 

'SLC10A2_normal', 'TFPI2_normal']
96 24 0.00181537 1.84255347

skcm_living

['C4orf50_normal', 'CEACAM21_normal', 

'DSG4_normal', 'KLRD1_normal', 'LYPD2_normal', 

'MARCO_normal', 'PLA2G2D_normal', 

'PathologicCategories_T_T4', 

'PathologicStage_Stage II', 'ZNF831_normal']

61 0 3.44E-09 193650.794

skcm_living

['BreslowDepth_high', 'GAB4_normal', 

'GIMAP7_normal', 'KLRD1_normal', 

'PathologicStage_Stage II', 'ZNF831_normal']

40 0 3.05E-06 126984.127

skcm_living

['LYPD2_normal', 'PathologicCategories_T_T4', 

'PathologicStage_Stage II', 'Tumor.Site_Trunk', 

'ZNF831_normal']

33 0 2.61E-05 104761.905

esca_living ['TMB_low'] 39 8 0.01421112 2.22636181

stad_living

['Cytotoxic.lymphocytes_median.low', 

'NAA11_normal', 'PLG_normal', 

'PathologicCategories_M_M0', 

'PathologicCategories_N_N0', 'SERPINB3_normal']

24 0 4.93E-05 95238.0952

 

Table 15.Patients with living overall status highlighted subgroups in pan-cancer 
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Cytotoxic.lymphocytes_median.low scores. In KIRC, ESCA patients, there some 

populations with TMB_low. Additionally, there was a subgroup of COADREAD patients 

with MSS status, meanwhile the immunoinhibitory score was high. And KIRC patients with 

tumor collected at right side and type 1 KIRP patients were associated with better survival. 

In SKCM, the subgroups had more varieties than the other cancer types. For example, one 

subgroup had BreslowDepth_high  associated with PathologicStage_Stage II still may have 

better survival. As well as another subgroup, patients identified tumor at trunk and the tumor 

stage was T4.  

We then analyzed the deceased patients’ subgroups (Table 16). In the COADREAD patients 

with AnatomicalLocation_Ascending Colon and ActivatedCD8Tcell_low were more likely 

Cancer_VitalStatu

s Pattern Num 1 Num 2 P G score

coadread_deceased

['ActivatedCD8Tcell_low', 'AnatomicalLocation_Ascending Colon', 

'PathologicStage_Stage IV'] 6 0 1.68E-06 48000

kirc_deceased

['FGFBP1_normal', 'KCNIP1_normal', 'KIF5A_normal', 

'PathologicStage_Stage IV', 'PrimaryTumorLaterality_Right', 

'TIGIT_normal'] 31 0 2.09E-16 177142.8571

brca_deceased

['ActivatedCD8Tcell_median.low', 'AnatomicalLocation_Left', 

'Cytotoxic.lymphocytes_high', 'Race_WHITE'] 5 0 2.78E-08 32467.53247

blca_deceased

['CCL25_normal', 'Cytotoxic.lymphocytes_high', 'MYT1L_normal', 

'PathologicStage_Stage IV', 'VCX3B_normal'] 22 0 5.72E-08 122222.2222

cesc_deceased ['BMI_low', 'PLA2G5_normal', 'PathologicStage_Stage IV'] 11 0 1.59E-09 150684.9315

lihc_deceased

['ActivatedCD8Tcell_median.low', 'SPSB4_DM_normal_H', 

'TMB_high'] 6 1 0.00010619 19.1406315

lihc_deceased ['ActivatedCD8Tcell_median.low', 'CD5_DM_normal_L', 'TMB_high'] 6 1 0.00010619 19.1406315

lihc_deceased

['ActivatedCD8Tcell_median.low', 'DES_DM_DES_normal_L', 

'TMB_high'] 6 1 0.00010619 19.1406315

luad_deceased ['AnatomicalLocation_r-lower', 'PathologicCategories_N_N1'] 14 7 4.04E-06 6.206002557

luad_deceased ['Cytotoxic.lymphocytes_high', 'PathologicCategories_N_N1'] 15 11 4.89E-05 4.23145132

luad_deceased ['PathologicCategories_T_T4', 'TMB_median.high'] 5 0 7.55E-05 39682.53968

skcm_deceased

['CLEC4E_normal', 'GIMAP4_normal', 'HSD11B1_normal', 

'PathologicStage_Stage I', 'TMB_low'] 8 0 4.90E-05 51282.0513

skcm_deceased

['CSF2RB_normal', 'GIMAP4_normal', 'HSD11B1_normal', 

'PathologicStage_Stage I', 'TMB_low'] 8 0 4.90E-05 51282.0513

skcm_deceased

['C1QC_normal', 'GIMAP4_normal', 'HSD11B1_normal', 

'PathologicStage_Stage I', 'TMB_low'] 8 0 4.90E-05 51282.0513

skcm_deceased

['CCL8_normal', 'GIMAP4_normal', 'HSD11B1_normal', 

'PathologicStage_Stage I', 'TMB_low'] 8 0 4.90E-05 51282.0513

skcm_deceased

['GIMAP4_normal', 'GIMAP5_normal', 'HSD11B1_normal', 

'PathologicStage_Stage I', 'TMB_low'] 8 0 4.90E-05 51282.0513

skcm_deceased

['CASP5_normal', 'GIMAP4_normal', 'HSD11B1_normal', 

'PathologicStage_Stage I', 'TMB_low'] 8 0 4.90E-05 51282.0513

esca_deceased

['AnatomicalLocation_Distal', 'NECAB2_normal', 

'PathologicStage_Stage IV'] 5 0 0.0007952 86206.8966  

Table 16. Patients with deceased overall status highlighted subgroups in pan-cancer 
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associated with worse survival. And one BRCA subgroup patients were associated with 

worse survival even with Cytotoxic.lymphocytes_high score. However, this population were 

also with ActivatedCD8Tcell_median.low status, and the tumor location was at left breast. 

In addition, we observed that one LIHC population with TMB high status associated with 

ActivatedCD8Tcell_median.low status. In LUAD and ESCA subgroups, algorithms 

identified tumor were at right-lower side of lung and distal of esophagus were associated 

with worse survival.  

3.8 DISCUSSION 
 

Cancer is a group of diseases characterized by the abnormal growth of cells. The existence 

of common characteristics among these different types of cancer indicates the importance of 

pan-cancer analysis to study the inter heterogeneity in cancer. This part of the study aims to 

find homogeneous subpopulations that share genotypic and phenotypic characteristics across 

the cancer type. Exploring homogeneous subgroups will help identify “True eligible” ICI-

sensitive populations that can apply on more cancer types and provide the healthcare more 

comprehensive clinical decision support for different subgroups of patients in each cancer 

type. In this pan-cancer analysis, the stratification algorithm was applied to identify 

homogeneous and heterogeneous features of patients across cancer types by multi-omics 

from each subgroup. 

From TCGA, the genotypic and phenotypic data for 6,420 patients across 13 cancer types 

were obtained. The patient stratification framework was implemented to find the subgroups. 

Then, using the genotypic features of these homogeneous and heterogeneous subgroups, 

“True-eligible” patients were identified based on the phenotypic and genotypic features and 

their connection to each other. After filtering the resulting subgroup, vital status and general 

genotypical variables as outcome were selected to explore the subgroups. This resulted in 

358 possibilities of outcomes were identified. Because the goal is to find the homogeneous 

and heterogeneous feature from each subgroup that should be identified in cancer types. The 

homogeneous feature may help to identify ICI-sensitive populations, and the heterogeneous 

features may provide more evidence to improve the ICI sensitivity in the rest of not sensitive 

populations. 
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The subgroups were identified based on the genotypical and phenotypical features with pre-

selected outcomes were interested. In the section 3.7.3, we mainly introduced vital status as 

outcome-oriented subgroups. The highlighted subgroups were selected based on the 

variables included general genotypical, phenotypical and partially specific genotypical 

variables. In the table 15, each cancer as an example we selected interesting subgroups to 

show from living or deceased outcomes. From the living populations across pan-cancer, we 

revealed that single omic is not always representative. Any well accepted biomarkers are 

varies based on the differences of characteristics of cancers. For example, TMB is a measure 

of the total number of mutations per megabyte of tumor tissue. A TMB is generally 

predictive of response to ICI therapy across multiple tumor types[88]. But the universal 

cutoff of 10 mutations/Mb to signify a high burden may not be applicable for all tumors. For 

example, a LIHC population with deceased status were TMB_high but at meantime, the 

ActivatedCD8Tcell of this population was median.low. And in a SKCM population, the 

TMB status associated with low status and this population of patients were deceased in a 

very early pathologic stage. However, all the subgroups were determined by the data 

exploration, further analysis is needed in the context of wet lab experiments and clinical 

trials to validate these results before recommending them for clinical use. 
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4.1 CONCLUSION 
 

This dissertation aims to stratify a disease population based on the genotypic and phenotypic 

features into phenotypic and genotypic features for each subgroup. To achieve that, an 

explainable artificial intelligence (XAI) framework was implemented. The design, 

implementation, and validation results demonstrate the potential of the XAI framework to 

stratify patients into subgroups based on their genotypic features. Stratifying patients using 

genotypic and phenotypic features, the ability of explaining the results, and the ability to 

provide clinical decision for each subgroup to overcome the limitation of identifying “True 

eligible” ICI receivers.  

In Chapter Two, the development of the patient stratification and the outcome-oriented 

framework was introduced. The stratification process consists of a three-layer system where 

data mining was used to find co-occurrence phenotypic and genotypic features within a 

heterogeneous disease population.  

In Chapter Three, the implementation of patient stratification, subgroup identification and 

interpretation were presented. The implementation was performed on different datasets from 

the TCGA database. First, the pipeline was developed on colorectal cancer and breast cancer 

data to integrate the phenotypical and genotypical data. MCP-counter were introduced by 

applying mRNAseq data and anatomic location. Then, we developed the pipeline for 

integrating of multi-omics by colorectal and breast cancer data. In the second step of building 

pipeline, the cut-in-edge single cell RNAseq data and 10 publicly available datasets were 

applied to validate the results. Last, we introduced the subgroup contrast mining results by 

vital status as an example to summarize and interpret.  

From the identified subgroups, we confirmed that any individual of biomarkers is not 

accurate enough as a “gold” standard to guide the clinical decisions. For a comprehensive 

evaluation to a patient characteristic has to weight and consider from multi-omics.  
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4.2 LIMITATIONS 
 

This is a data driven approach and the availability of the data represents a crucial need to do 

this kind of analysis. One of the limitations of this study is the availability of open access 

datasets. This could be a limitation for any other data driven approach, but what makes it 

more challenging in this study is the requirement to have both phenotypical and genotypical 

data for a large number of patients because this is a data mining-based analysis. 

The other significant challenge that this study faced in all the implementations is the 

validation in a wet lab setting or ICI clinical trial data. To overcome this limitation, a 

literature review was used to find the biomedical merit for the results. Still, wet lab 

experimentation and clinical trial validation is needed before implementing any of our 

findings on patients. 

4.3 CONTRIBUTION TO INFORMATICS AND CANCER RESEARCH 

This work aims to find homogeneous subgroups of patients within a disease population to 

implement precision medicine in our healthcare system to improve patient survival and 

reduce treatment costs. This was addressed in this study as follows: 

1  Developing a pipeline to determine the possible mechanism by genotypical, phenotypical 

feature. 

Methods uses heterogeneous data types to represent the biological system. The genotypic 

data, phenotypic data, and biomedical entities were used to stratify patients and find groups 

of patients that share phenotypic and genotypic similarities. At the same time, they have 

significant contrast from the rest of the disease population. Finding these subgroups will 

improve drug efficiency, where the drugs will be used only for the patients who can benefit 

from them because the drug targets the common mechanism among the patients in that 

subgroup. 

2 Presenting explainable results for the medical practitioners: The explainability of this 

method demonstrates the ability to explain the reasoning behind the selection of the 
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subgroups and drugs. Its explainability offers the possibility to understand the mechanism 

of action to address drug resistance and to find combined therapy. This represents an 

important factor in ensuring the implementation of the method in the clinical setting because 

applying black-box methods is challenging due to the lack of the explainability of the results. 

This explainability is crucial for medical practitioners to decide if a patient or a group of 

patients can be treated with any recommended drug when referring to a computational 

method. 

 

4.4 FUTURE WORK 

The future work will continue to identify the outcome-oriented subgroups and provide 

clinical meaning information. The “gold standard” of ICIs therapy for cancer patients is an 

urgent mission. However, from our multi-omics based subgroup mining analysis, we 

revealed that single omic based “gold standard” is not realistic. Integrating multi-omics on 

pan-cancer scale-based study is necessary and responsible to determine the dominate and 

common tumorigenesis in different cancer. Cancer type based homogeneous ICI-sensitive 

subpopulation identification is possible. Identifying these subgroups may provide more 

evidence and prediction if a cancer patient with specific feature would benefit from ICIs. 

The evaluation of the results would be needed to be done by using data from ICIs 

neoadjuvant clinical trials, the experts’ knowledge, and the biomedical knowledge from 

literature. To increase the scope of this framework implementation, a web-based tool will be 

developed to ensure easy access to this framework by other researchers in the scientific 

community. In the next phase of this research, the plan is to validate these promising results 

at the bench in tumor cell lines in vitro and in vivo.  
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