INTERMOLECULAR (4+3) CYCLOADDITION REACTION OF OXIDOPYRIDINUIM IONS WITH SILYLATED DIENES, EXPLORING THE OXIDATION CHEMISTRY AND PHOTOCHEMISTRY OF CYCLOADDUCTS

A Dissertation presented to
The Faculty of the Graduate School
At the University of Missouri-Columbia

In Partial Fulfillment
Of the Requirements for the Degree
Doctor of Philosophy
by
WANNA SUNGNOI
Dr. Michael Harmata, Dissertation Supervisor
DECEMBER, 2022

The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled

# INTERMOLECULAR (4+3) CYCLOADDITION REACTION OF OXIDOPYRIDINUIM IONS WITH SILYLATED DIENES, EXPLORING THE OXIDATION <br> CHEMISTRY AND PHOTOCHEMISTRY OF CYCLOADDUCTS 

Presented by Wanna Sungnoi,
A candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance.
$\qquad$
Professor Michael Harmata
$\qquad$
Professor Timothy Glass

Professor Justin Walensky

Professor Mark Hannink

## DEDICATION

## In the memory of

The one and only mom and dad, the person who let me have the freedom to live, learn, and explore of life. MaryBeth McCrumb, the beloved sister who shaped me a lot about an American's culture, life, and how to survive in the US. I wish all of you were here to celebrate with me.

And To
Another half of my life, Cat, who always be there when I look back. Thank you that you walk with me on the gravel road and you are still here. We will keep walking together. Sometimes the wrong train can lead us to the right destination.

A lot of love from Teresa Inkman, my sister, who is supporting me, training me very hard about critical thinking, giving me courage, and kicking my butt to continue every pathway that I chose.

## ACKNOWLEDGEMENTS

I would like to thank you my PI, Dr. Harmata. I have learned a lot and I am still learning every day. I am now known more about the organic chemistry than yesterday. I have picked up a lot of mechanisms and application of organic chemistry in my toolbox. I will keep reading anything that is related to chemistry as my fiction. The work experiences which I cannot gain elsewhere. The unsuccessful experiments made me learned the hard way yet to overcome it even made me the better organic synthesis chemist. I would like to thank you all my committees for an insightful questions and conversation to expand my knowledge in every meeting. Even though, I did not continue my career in the academic pathway, I believe the world of chemistry is everywhere. I still can do the great thing.

A big thank you to Adam Hunt to help me set up the rotavapor and the photochemistry reactor which made my life a lot easier and saving my time. Thank you the Harmata group members to discuss about the research and life and all my fellow in the chemistry building for a nice smile and the good old day outside the lab. Benjamin Washer to help me for proofreading my dissertation.

I would like to thank you, Dr. Steven Kelly, for the discussion about how to grow a better crystal throughout my Ph.D. career. Colleen Ray to help me solving the NMR's puzzle.

I would like to thank you Jerry and Holly to help me to solve the problems, and arrangement for every meeting and a fun conversation.

I would like to appreciate Dr. Alexander Wei who introduced the first chemistry research chapter in my life which I have carried on until now.

## TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..... ii
LIST OF FIGURES ..... vii
LIST OF SCHEMES ..... ix
LIST OF TABLES ..... xii
LIST ABBREVIATIONS ..... xiii
ABSTRACT ..... xv
CHAPTER I: ENDO SELECTIVITY OF INTERMOLECULAR (4+3)
CYCLOADDITION REACTION OF OXIDOPYRIDINIUM ION WITH TRIALKYL SILLYLATED DIENES
1.1 INTRODUCTION ..... 1
1.2 MECHANISM OF THE ALLYL CATION WITH 1,3-DIENES ..... 3
1.3 EXAMPLE OF GENERATING THE OXYALLYL CATION ..... 4
1.4 1,3-DIPOLAR CHARACTER OF SIX-MEMBERED AROMATIC RINGS ..... 6
1.5 PREVIOUS STUDY. ..... 9
1.6 RESULTS AND DISCUSSION ..... 11
1.6.1 PREPARATION OF DIENES ..... 11
1.6.2 CYCLOADDITION REACTION WITH DIENES ..... 13
1.6.3 DFT COMPUTATION. ..... 17
1.7 DIENES EQUIVALENT ..... 18
1.7.1 TEMPERATURE AND SOLVENT ..... 19
1.8 DESILYLATION OF (4+3) CYCLOADDITION REACTIONS ..... 21
1.9 SUMMARY ..... 23
CHAPTER II: THE OXIDATION REACTION OF (4+3) CYCLOADDUCTS
2.1 INTRODUCTION ..... 24
2.2 RESULTS AND DISCUSSION ..... 25
2.2.1 FIRST EXAMPLE OF THE BRIDGEHEAD OXIDATION OF A (4+3)
CYCLOADDUCT ..... 26
2.2.2 OXIDATION REACTION OF THE CYCLOADDUCTS ..... 27
2.2.3 THE SUBSTRATES DID NOT GIVE THE OXIDATION PRODUCT ..... 31
2.2.4 TRAPPING STUDY ..... 31
2.2.5 MECHANISM ..... 33
2.3 SUMMARY ..... 33
CHAPTER III: EXPLORATION OF [2+2] PHOTOCHEMISTRY OF (4+3)
CYCLOADDUCTS
3.1 INTRODUCTION ..... 34
3.2 RESULS AND DISCUSSION ..... 40
3.2.1 [2+2] PHOTOCYCLOADDUCTS ..... 40
3.2.2 POSSIBLE MECHANISM FOR GENERATION OF DIENES ..... 44
3.3 SUMMARY ..... 44
CHAPTER IV: INTERMOLECULAR (4+3) CYCLOADDITION REACTION OF OXIDOPYRIDINIUM AND VINYL INDOLE
4.1 INTRODUCTION ..... 45
4.2 RESULTS AND DISCUSSION ..... 47
4.2.1 THERMAL CONDITIONS ..... 48
4.2.2 PHOTO CONDITIONS ..... 50
4.2.3 (4+3) CYCLOADDITION REACTION OF OXIDOPYRIDINIUM ION
WITH VINYL INDOLE UNDER THE BASIC CONDITION ..... 53
4.3 SUMMARY ..... 53
CHAPTER V: RELATED STUDIES ..... 55
5.1 ALKYLATION OF THE PYRIDINIUM ION ..... 55
5.2 (4+3) CYCLOADDITION OF THE N-ALKYLATION ..... 56
5.3 SUMMARY ..... 56
CHAPTER VI: EXPERIMENTAL
6.1 GENERAL INFORMATION ..... 58
6.2 GENERAL PREPARATION PROCEDURE OF TRIALKYL SUBSTITUTED
DIENES ..... 60
6.3 GENERAL PREPARATION PROCEDURE OF INTERMOLECULAR (4+3)
CYCLOADDITION REACTIONS. ..... 60
6.4 GENERAL PREPARATION PROCEDURE OF OXIDATIVE
FUNCTIONALIZATION OF THE BRIDGEHEAD CARBON ..... 73
6.5 EXPLORATION OF [2+2] PHOTOCHEMISTRY OF (4+3)
CYCLOADDUCTS ..... 83
6.5.1 GENERAL PREPARATION PROCEDURE OF (4+3)
CYCLOADDUCTS ..... 84
6.5.2 GENERAL PREPARATION PROCEDURE OF PHOTOCYCLOADDUCTS ..... 84
APPENDIX

1. ${ }^{1} \mathrm{H}$ NMR DATA ..... 96
2. ${ }^{13} \mathrm{C}$ NMR DATA. ..... 96
3. 2D NMR DATA ..... 150
4. X-RAY CRYSTALLOGRAPHY ..... 155
5. HPLC OF COMPOUND 31a, 31b, AND 31c. ..... 167
6. DFT CALCULATION ..... 172
BIBLIOGRAPHY ..... 232
VITA ..... 241

## LIST OF FIGURES

Figure 1: Natural Products contain seven-membered ring

Figure 2: Method to construct the seven-membered ring

Figure 3: The allylic cation forms

Figure 4: Diene reacts with allylic cation to form the $(4+3)$ cycloadduct

Figure 5: Mechanism of the allylic cation with 1,3-dienes

Figure 6: Transition state of the concerted pathway of allylic cation with 1,3-dienes

Figure 7: Oxidopyridinium betaine behavior

Figure 8: Natural products contain 7-azabicyclo[4.3.1]decane ring system

Figure 9: Endo and exo approaches of a 2-trialkylsilyl-1,3-butadiene to oxidopyridinium ion

Figure 10: X-ray of the reduction of isomer 31a

Figure 11: X-ray of the reduction of isomer 31c

Figure 12: Transition state for (4+3) cycloadditions of dienes $\mathbf{9 0}$ and $\mathbf{9 p}$ with oxidopyridinium ion 18, calculated with M06-2X/6-311+G-(d,p) in SMD acetonitrile. Distances in $\AA$, and $\Delta \mathrm{G}^{\ddagger}$ and $\Delta \mathrm{H}^{\ddagger}$ in $\mathrm{kcal} / \mathrm{mol}$.

Figure 13: X-ray crystal structure of 47a

Figure 14: Substrates that did not lead to Oxidation

Figure 15: Regioselectivity and diastereoisomers of [2+2] photocycloaddition reaction

Figure 16: FMO of [2+2] photocycloaddition reaction

Figure 17: Examples of tropane alkaloids

Figure 18: X-ray crystal structure of 80a

## LIST OF SCHEMES

Scheme 1: Example of Generating the oxyallyl cation

Scheme 2: The first (4+3) cycloaddition reaction

Scheme 3: Föhlisch (4+3) cycloaddition's method

Scheme 4: $(4+3)$ cycloaddition reactions of oxidopyridinium ion

Scheme 5: Cycloaddition reactions of N -alkenyl betaine

Scheme 6: The s-triazinylpyridinium betaines in (4+3) cycloaddition

Scheme 7: Previous studies

Scheme 8: Highly Exo-Selective Diels-Alder Reaction

Scheme 9: Silylated diene synthesis

Scheme 10: Attempted diene synthesis

Scheme 11: Turk's method to synthesize the silyl substituted diene

Scheme 12: Desilylation of $(4+3)$ cycloadduct 31

Scheme 13: Reaction of $\mathbf{3 1}$ with NIS

Scheme 14: Synthesis and desilylation of a phenyldimethylsilyl-substituted (4+3) cycloadduct

Scheme 15: Example of a (4+3) Cycloaddition of an Oxidopyridinium ion

Scheme 16: Endo Selective (4+3) Cycloaddition of an Oxidopyridinium ion

Scheme 17: Zakarian's Vinyl Iodide Synthesis

Scheme 18: First Example of the Bridgehead Oxidation of a (4+3) Cycloadduct

Scheme 19: Proposed Mechanism of the Oxidation

Scheme 20: Photodimerization of thymoquinone via the sunlight

Scheme 21: $[2+2]$ photocycloaddition of an olefin and enone

Scheme 22: $[2+2]$ Photocycloaddition via the first excited triplet state

Scheme 23: [2+2] Photocycloaddition by single electron transfer from a catalyst

Scheme 24: Intermolecular [2+2] photocycloaddition of acyclic enones

Scheme 25: Endo selective (4+3) cycloaddition of an oxidopyridinium ion

Scheme 26: First trial of intramolecular photocycloaddition

Scheme 27: Possible Mechanism for the Generation of Dienes 30a and 30e

Scheme 28: The synthesis of Ervitsine

Scheme 29: The synthesis of cyclohepta[b]indoles

Scheme 30: The dimerization of vinyl indole

Scheme 31: $(4+3)$ cycloaddition reaction from room temperature to $200^{\circ} \mathrm{C}$

Scheme 32: The $(4+3)$ cycloaddition reaction under the blue LED and photocatalyst

Scheme 33: The (4+3) cycloaddition of oxidopyridinium ion with 2,3-dimethylbutadiene

Scheme 34: The (4+3) cycloaddition of oxidopyridinium ion with vinyl indole under the basic condition

Scheme 35: The synthesis of $N$-alkylation

Scheme 36: (4+3) cycloaddition reaction of N -alkylation with 2,3-dimethylbutadiene

## LIST OF TABLES

Table 1: Endo-selective (4+3) cycloaddition reactions of an $N$-methyloxidopyridinium ion

Table 2: Optimization condition of $(4+3)$ cycloadducts

Table 3: Optimization of compound 40

Table 4: Oxidation of (4+3) Cycloadducts

Table 5: Trapping study

Table 6: Intramolecular Photocycloadditions Producing Complex Tropanoids ${ }^{\text {a }}$

Table 7: The two bases in the $(4+3)$ cycloaddition reaction

Table 8: The ( $4+3$ ) cycloaddition reaction under the blue LED

Table 9: The $(4+3)$ cycloaddition reaction at room temperature

## LIST OF ABBREVIATIONS

| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | Dichloromethane |
| :---: | :---: |
| DCM | Dichloromethane |
| DMF | Dimethylformamide |
| DMSO | Dimethyl sulfoxide |
| Equiv | Equivalent |
| EtOAc | Ethyl acetate |
| $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ | Chloroplatinic acid |
| HFIP | Hexafluoroisopropanol |
| $\mathrm{HSiEt}_{3}$ | Triethyl silane |
| $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Potassium carbonate |
| KOTMS | Potassium trimethylsilanolate |
| LAH | Lithium aluminum hydride |
| Me | Methyl group |
| MeCN | Acetonitrile |
| MeOH | Methanol |
| $n-\mathrm{BuLi}$ | n-Butyllithium |
| NBS | N -bromosuccinimide |


| NIS | N -iodosuccinimide |
| :---: | :---: |
| OAc | Acetate |
| OMe | Methoxy group |
| OTf | Trifluoromethanesulfonate |
| $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | Palladium-tetrakis(triphenylphosphine) |
| Quant | Quantitative |
| RT | Room temperature |
| TBAF | Tetra-n-butylammonium fluoride |
| TEA | Triethylamine |
| TES | Triethylsilyl |
| TFA | Trifluoroacetic acid |
| THF | Tetrahydrofuran |
| TIPS | Triisopropylsilyl |
| TMEDA | Tetramethylethylenediamine |
| TMS | Trimethylsilyl |

# INTERMOLECULAR (4+3) CYCLOADDITION REACTION OF <br> OXIDOPYRIDINUIM IONS WITH SILYLATED DIENES, EXPLORING THE OXIDATION CHEMISTRY AND PHOTOCHEMISTRY OF CYCLOADDUCTS 

Wanna Sungnoi

Dr. Michael Harmata, Dissertation Supervisor


#### Abstract

The development of endolexo selectivity of intermolecular (4+3) cycloaddition reactions of an N -methyl oxidopyridinium ion has been studied. Dienes that contain silyl groups, R-groups, and contain both silyl group and R-groups were investigated to compare the stereoselectivity of the intermolecular (4+3) reaction. The introduction of steric hindrance in the form of 2-trialkylsilyl-4-alkylbutadienes can enhance the endo selectivity of the intermolecular $(4+3)$ reaction. The $N$-methyloxidopyridinium ion reacted with 2-trialkylsilyl-4-alkylbutadienes to afford cycloadducts with high regioselectivity and endo selectivity.

The attempted cleavage of a trialkyl silyl of the (4+3) cycloadducts has led to a new discovery. $N$-Iodosuccinimide (NIS) was employed as the reagent and the hexafluoroisopropanol (HFIP) was employed as the solvent for the iododesilylation. However, functionalization of the cycloadducts at the bridgehead carbon was the only observed. An attempt to modify the functional group at the bridgehead carbon was unsuccessful. Based on the proposed mechanism and the product formation, HFIP acted as the nucleophile.


An extension of the aforementioned study investigated the efficacy of the $(4+3)$ cycloadducts as reactants in a $[2+2]$ photocycloaddition reaction. Irradiation by a 450 -watt Hanovia medium-pressure mercury lamp of the $(4+3)$ cycloadducts can induce a $[2+2]$ photocycloaddition reaction. The intramolecular $[2+2]$ photocycloaddition reaction of $(4+3)$ cycloadducts afford polycyclic compounds possession an embedded tropane skeleton in excellent yield.

## CHAPTER I

## ENDO SELECTIVITY OF INTERMOLECULAR (4+3) CYCLOADDITION REACTION OF OXIDOPYRIDINIUM ION WITH TRIALKYL SILLYLATED DIENES

## Introduction

Many natural and synthetic products with important biological activity contain seven-membered rings. For example, diazepam is used to treat anxiety, bisulepin is used as an antihistamine, asenapine is CNS active, carvulamine is used an anantimicrobial agent, etc. (Figure 1) ${ }^{1,2}$

diazepam anti-anxiety

bisulepin antihistamine

asenapine CNS active

carvulamine antimicrobial

Figure 1. Natural products contain seven-membered ring

There are several strategies for synthesizing seven-membered rings, but a key route is through cycloaddition reactions such as $(4+3),(5+2)$, and $(6+1) .{ }^{3}$ The number in the parentheses represents the number of atoms that participate in the cycloaddition (Figure 2). The ( $\mathrm{x}+\mathrm{y}$ ) cycloaddition is pericyclic and obeys the Woodward-Hoffmann rules. ${ }^{4}$ Herein we will focus on the $(4+3)$ cycloaddition reaction.


Figure 2. Method to construct the seven-membered ring

The $(4+3)$ cycloaddition is analogous to the famous Diels-Alder reaction. The 4carbon moiety has $4 \pi$ electrons and behaves as a diene while the 3 -carbon species is an allylic cation that has $2 \pi$ electrons and behaves as a dienophile. ${ }^{5}$

To form a cycloadduct, the allylic cation has to be generated as a reactive intermediate that is stabilized by donating groups $(\mathrm{Z})$ at the central carbon. Common donating groups used include $\mathrm{O}^{-}, \mathrm{OR}, \mathrm{NR}_{2}, \mathrm{CH}_{2} \mathrm{SiR}_{3}$, and SR . The allylic cation intermediate can have three different forms ${ }^{6}$ : the U form, the sickle form and the W form (Figure 3).


U form

sickle form


W form

Figure 3. The allylic cation forms

If Z is nucleophilic, it will attack the electrophile (carbocation) to form species $\mathbf{2}$, and if Z is less nucleophilic, it will generate the intermediate $\mathbf{1}$, which reacts with the diene in a $(4+3)$ cycloaddition (Figure 4$).{ }^{7}$


Figure 4. Diene reacts with allylic cation to form the (4+3) cycloadduct

There are two mechanisms through which an allylic cation reacts with 1,3-dienes to form the $(4+3)$ cycloadduct, ${ }^{8}$ a concerted and a stepwise pathway (Figure 5). The concerted pathway is favored when the dienophile is weakly electrophilic and when the diene is strongly nucleophilic. ${ }^{9}$ In the concerted pathway, there are two transition states that can be adopted: the compact (endo) and extended (exo) configurations ${ }^{7}$ (Figure 6). This model is similar to the Diels Alder's transition state model.


Figure 5. Mechanism of the allylic cation with 1,3-dienes

The extended (exo) transition state has the oxyallyl cation is pointing away from the diene (Figure 6). The stepwise pathway is reliant on the lifetime and stability of the carbocation and leads to a mixture of isomeric product. ${ }^{7}$ Katritzky ${ }^{10}$ stated that the steric repulsion by bulky groups should also be considered.

compact (endo)

extended (exo)

Figure 6. Transition state of the concerted pathway of allylic cation with 1,3-dienes

Hoffman and co-workers demonstrated the generation of the oxyallyl cation can be performed by Lewis acids including $\mathrm{SnCl}_{4}, \mathrm{AgO}, \mathrm{Zn} / \mathrm{Cu}$, and $\mathrm{R}_{3} \mathrm{SiCl}$, etc. (Scheme 1). ${ }^{7} \mathrm{An}$ enolate is formed after the deprotonation of the $\alpha$-carbon of an $\alpha$-halogenated propanone and then Br acts as a leaving group to give the reactive intermediate oxyallyl cation. The oxyallylic cation is stabilized by alkyl substituents $\mathbf{4}$ and $\mathbf{5}$. Hoffman stated that highly electrophilic allyl cations tend to undergo the stepwise pathway whereas the weakly electrophilic ones tend to undergo the concerted pathway. The transition state between the oxyallyl cation and furan ${ }^{9}$ shows the initial carbon-carbon bond formation that gives (4+3) cycloadduct in a stepwise process. ${ }^{11}$



Scheme 1. Example of generating the oxyallyl cation

The first (4+3) cycloaddition reaction was reported in 1962 by Fort ${ }^{12}$ (Scheme 2). After the deprotonation of $\mathbf{6 a}$ by base and the loss of a leaving group, the chloroketone became the allylic cation then reacted with furan to form the $(4+3)$ cycloaddition product in low yield.


Scheme 2. The first (4+3) cycloaddition reaction

Since then, additional methodologies have been developed. Föhlisch ${ }^{13}$ used mesyloxy as a leaving group $\mathbf{6 b}$ (Scheme 3) to afford the product with a good $78 \%$ yield and the stereoselectivity was excellent: endo 93: exo 7.


Scheme 3. Föhlisch (4+3) cycloaddition's method

In 1976, Katrizky reported on the 1,3-dipolar character of six-membered aromatic rings, undergoing cycloaddition reactions. ${ }^{14}$ Katrizky demonstrated that addition at the 2and 6-positions of 3-oxidopyridinium betaine is a $(3+2)$ cycloaddition in the category of (4n) $\pi$-electrons while the 2 - and 4-positions undergo (4+3) cycloaddition in the category $(4 n+2) \pi$-electrons (Figure 7). ${ }^{15}$




Figure 7. Oxidopyridinium betaine behaviour

Katrizky showed that nitropyridyl 7 and pyrimidinyl betaine 9 react with 2,3dimethylbutadiene to give the ( $4+3$ ) cycloaddition adducts $\mathbf{8}$ and $\mathbf{1 0}$ (Scheme 4 ). ${ }^{14}$ Frontier Molecular Orbital (FMO) theory predicted oxidopyridinium betaine undergo thermal suprafacial cycloaddition. The addition at the 2- and 6-positions yields the thermodynamic product whereas addition at the 2- and 4-positions yields the kinetic product. The addition at the 2- and 4-positions is dependent on the LUMO of betaine, therefore the electronwithdrawing group at the nitrogen will help to lower the LUMO energy and promote a reaction with the electron-rich diene. In contrast, the addition at the 2 - and 6-positions is preferred when the diene is electron-deficient.


Scheme 4. (4+3) cycloaddition reactions of oxidopyridinium ion

Katritzky also explored the N -alkenyl betaine $\mathbf{1 1}$ (Scheme 5). ${ }^{16}$ The N -substituted betaines got activated by the substituent to lower the LUMO energy. The $N$-alkenyl betaine 11 reacted with 2,3-dimethylbutadiene to give the cycloadduct 12 in $14 \%$ yield. Conversely, when $N$-alkenyl betaine 11 reacted with cyclopentadiene, it gave two different cycloadducts. The addition at the 2 - and 4-positions gave the (4+3) cycloadduct $\mathbf{1 3}$ as an endo-isomer in $23 \%$ yield while addition at the 2- and 6-positions gave the $(3+2)$ cycloadduct 14 in $16 \%$ yield.


11



12

$23 \%$
$\mathrm{R}=$


Scheme 5. Cycloaddition reactions of N -alkenyl betaine

The cycloadduct 16 can also be obtained by employing $s$-triazinylpyridinium betaine $\mathbf{1 5}$ in the present of 2,3-dimethylbutadiene to yield $\mathbf{1 6}$ (Scheme 6). ${ }^{17}$ The $s$ triazinylpyridinium betaines were employed to increase the reactivity of the cycloaddition.

The 4,6-diphenyl-s-triazinyl betaines have higher electron withdrawing capacities than the 4,6-dimethoxy-s-triazinyl betaines. The dimer of the 4,6-diphenyl-s-triazinyl betaine $\mathbf{1 5 a}$ is more stable than the dimer of the 4,6-dimethoxy-s-triazinyl betaine $\mathbf{1 5 b}$. Combined with longer reaction times (5 days) a better yield of $88 \%$ was obtained (4,6-diphenyl-s-triazinyl betaines gave $22 \%$ ).


Scheme 6. The $s$-triazinylpyridinium betaines in $(4+3)$ cycloaddition

The study of oxidopyridinium ions from Katrizky ${ }^{21 c, \mathrm{~d}}$ influenced our group to explore the reactivity of oxidopyridinium ion to construct the seven-membered ring by $(4+3)$ cycloaddition reaction methodology in greater detail. Studies on seven-membered rings is a large field and provides an opportunity for discovery and expansion on the methodology of how we can control the regio- and stereoselectivity. Our group is especially interested in the 7 -azabicyclo[4.3.1]decane ring system because we can utilize the methodology toward the formation of natural products (Figure 8). ${ }^{18,19}$


ervitsine

daphnicyclidin A

nominine

Figure 8. Natural products contain 7-azabicyclo[4.3.1]decane ring system

Previous studies from our group on the $(4+3)$ cycloaddition reaction of oxidopyridinium ions with 4 -substituted butadienes ${ }^{20}$ showed that we could obtain cycloadducts with good yields (69-70\%) and regioselectivity, but low diastereoselectivity (Scheme 7).



Scheme 7. Previous studies

Cha ${ }^{22}$ studied its potential application in natural product synthesis. Although these studies show great promise for this type of process, the problem of poor endolexo diastereoselectivity was not addressed. Thus, while 4- substituted 1,3-butadienes reacted
with oxidopyridinium ion 18 to afford $(4+3)$ cycloadducts as single regioisomers in very good yields (Scheme 7), endolexo selectivity was absent, with the products being formed as ca. 1:1 mixtures of diastereoisomers.

We developed a diastereoselective variant of this cycloaddition that achieves a high level of endo selectivity by strategically tuning the substituents on the diene.

In exploring the stereodirecting influences of the diene substituents, we were particularly interested in substituents that could be easily removed or modified, e.g., through a coupling reaction. We drew inspiration from substituent-directed stereoselectivities observed in the Diels-Alder reaction. For example, Su, Song, and coworkers recently reported high exo selectivity in the Diels-Alder reaction of butadienes substituted at C 2 with a very bulky bis(silyl)methyl group. ${ }^{23}$ The selectivity was rationalized on the basis of steric effects, and computational analysis showed that the endo transition state (TS) was destabilized by steric clashing between the $\mathrm{CH}\left(\mathrm{SiR}_{3}\right)_{2}$ group and the dienophile. ${ }^{23}$ We reasoned that similar interactions might result in high endo selectivity in the $(4+3)$ cycloaddition reaction of $\mathbf{1 8}$ or its congeners (Figure 9$)$.


Figure 9. Endo and exo approaches of a 2-trialkylsilyl-1,3-butadiene to oxidopyridinium ion

However, we sought to further simplify the "steric steering" group and were inspired by the work of Turks, who showed that a $2-\mathrm{SiR}_{3}$ group was also an effective stereodirecting group for the Diels-Alder reaction to give a cycloadduct with complete exo selectivity (Scheme 8), ${ }^{24}$ though endo selectivity has been observed more commonly observed for such dienes. ${ }^{25}$


Scheme 8. Highly exo-selective Diels-Alder reaction

Moreover, the expected $(4+3)$ cycloadducts obtained from 2-silyl dienes contain a synthetically versatile vinylsilane functional group ${ }^{25,26}$ Thus, we prepared 2-silyldienes 28 (Table 1) using the methodology introduced by Welker and others (Scheme 9). ${ }^{27}$


Scheme 9. Silylated diene synthesis

As a representative example, the reaction of excess trimethylsilylacetylene (26, 2 equiv) with 4-phenyl-1-butene $\mathbf{2 5}$ in the presence of $8 \mathrm{~mol} \%$ of Grubbs II catalyst $\mathbf{2 9}$ at 40
${ }^{\circ} \mathrm{C}$ for 20 h afforded diene $\mathbf{2 8}$ in $69 \%$ yield after chromatographic purification. Other 2silyldienes were prepared in the same general fashion, except for $\mathbf{3 0 k}$ and $\mathbf{3 0 1}$, which were not accessible using the standard procedure. We solved this synthesis issue by employing ethylene gas instead of an argon atmosphere to obtain the desired dienes, as also demonstrated by Welker. ${ }^{28}$

The TIPS substituted diene was unable to be obtained by enyne cross metathesis. TIPS substituent was too bulky to coordinate with the Ru , no product was obtained (Scheme 10).

(2.0 equiv)



Scheme 10. Attempted diene synthesis

Later on, Turk's group ${ }^{24}$ synthesized TIPS at the carbon 2 of the diene from the terminal alkyne (scheme 11). So, we employed Turk's method to synthesize the TIPS substituted diene.





Scheme 11. Turk's method to synthesize the silyl substituted diene

The $(4+3)$ cycloadditions of the silyl-substituted dienes $\mathbf{3 0}$ with oxidopyridinium ion $\mathbf{1 7}$ are summarized in Table 1.

Table 1. Endo-selective (4+3) cycloaddition reactions of an N -methyloxidopyridinium ion ${ }^{49}$


| Entry | Diene | Product | a:b:c ${ }^{\text {a }}$ | endo/exo selectivity ${ }^{\text {b }}$ | Yield (\%) ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 31 | 81:13:6 | 87:13 | 93 |
| 2 |  | 32 | 81:15:4 | 85:15 | 88 |
| 3 |  | 33 | 82:14:4 | 86:14 | 71 |
| 4 |  | 34 | 89:9:2 | 91:9 | 77 |
| 5 |  | 35 | 80:16:4 | 84:16 | 87 |
| 6 |  | 36 | 83:16:1 | 84:16 | 74 |


| Entry | Diene | Product | $a: b: c^{\text {a }}$ | endo/exo selectivity ${ }^{\text {b }}$ | Yield (\%) ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  | 37 | 86:14:0 | 86:14 | 67 |
| 8 | ( | 38 | 46:54:0 | 46:54 | 86 |
| 9 |  | 39 | 41:0:59 | - | 99 |
| 10 |  | 40 | 46:0:54 | - | 68 |
| 11 |  | 41 | 47:0:53 | 100:0 | 74 |
| 12 |  | 42 | 46:0:54 | 100:0 | 70 |
| 13 |  | 43 | 92:6:2 | 94:6 | 85 |
| 14 |  | 44 | 87:13:0 | 87:13 | 89 |

${ }^{\text {a }}$ Ratios were determined by integration of ${ }^{1} \mathrm{H}$ NMR spectra of crude reaction mixtures. Isomer $\mathbf{d}$ was not detected. ${ }^{\text {b }}$ Entry $=\left(\right.$ sum of all endo isomers)/(sum of all exo isomers). ${ }^{\text {c }}$ Yields are the average of two runs after column chromatographic purification.

Heating the oxidopyridinium precursor 17 with triethylamine (TEA, 3 equiv) and diene $\mathbf{3 0 a}$ (3 equiv) in a sealed tube for 24 h afforded an $81: 13: 6$ mixture of cycloadducts 31a-c, as established by 1 H NMR analysis of the crude reaction mixture. No 31d could be detected. This result equates to an overall endo/exo selectivity $[(\mathbf{3 1 a}+\mathbf{3 1 c}) / \mathbf{3 1 b}]$ of 87:13. The major isomer 31a was endo, as we had expected. Its structure was established by X-ray crystallography of its ketone reduction product (Figure 10). In this case and in
general, separation of the cycloadduct isomers proved to be very challenging when using traditional liquid chromatography approaches (normal and reversed phase). Instead, semipreparative supercritical fluid chromatography (SFC) using a chiral stationary phase column enabled separation ${ }^{29,30}$ after which NMR analyses of the individual diastereomers (31a-c) could be performed.



Figure 10. X-ray of the reduction of isomer 31a

We assigned the structure of the minor isomer 31b by NMR. Attempts to obtain crystals of the ketone reduction product of 31b were not successful. Instead, NOESY spectra of the reduction product were used to establish the regiochemistry. In the alcohol derived from 31b, the the triplet proton $\mathbf{i}$ on the bridgehead appeared at 3.26 ppm , a signal that correlated with the N -methyl group at 2.93 ppm and correlated (COSY and NOESY) with a 1 H doublet of doublets $\mathrm{CH}_{2}$ proton $\mathbf{m}$ at 2.45 ppm , which we assigned as one of the diastereotopic hydrogens at C-5. The latter proton was coupled to the signal of its geminal partner at 2.77 ppm and the protons of the TMS group at 0.02 ppm . This established the regiochemistry of $\mathbf{3 1 b}$ as being the same as $\mathbf{3 1 a}$, confirming $\mathbf{3 1 b}$ as the exo diastereomer of the two.

For 31c, the stereochemistry was established in full after we fortunately grew a crystal of 31c for X-ray analysis (Figure 11).



Figure 11. X-ray of the isomer 31c

The $(4+3)$ cycloadditions of a range of other silylated dienes gave results similar to 28. The major product in each case was the expected endo isomer (32a-37a), and the kinetic endo/exo selectivities ranged from 84:16 to 91:9. Yields ranged from $67 \%$ to $93 \%$. The structures of these cycloadducts were assigned by comparison to the NMR data for 31a-c, and by crystallography in the cases of 33a and $\mathbf{3 7 a}$.

In order to quantify the influence of the silyl group on the selectivity, we explored the reaction of diene 30h lacking a silyl group. This diene gave two cycloadduct isomers, $\mathbf{3 8 a} \mathbf{+} \mathbf{b}$, in approximately equal amounts (46:54). As expected from our previous studies, ${ }^{20}$ the products had identical regiochemistry. Their relative stereochemistry was assigned on the basis of their NMR spectra. ${ }^{20}$ The lack of diastereoselectivity observed with $\mathbf{3 0 h}$ confirms that the silyl group was indeed responsible for the highly diastereoselective cycloadditions of $\mathbf{3 0 a}-\mathbf{g}$.

In these reactions, the silyl group leads to a slight erosion of the regioselectivity, producing small amounts ( $0-6 \%$ ) of the minor endo regioisomers 31c-37c. In our earlier
work, other 2-substituted dienes like isoprene and 2-methoxybutadiene reacted well with 17 but gave low regioselectivity. ${ }^{20}$ Therefore, any regiochemical preference observed with 2-silyl dienes was of interest, even if it worked against the regiochemical preference of the terminal substituent on the diene. To explore this further, reactions were performed with dienes $\mathbf{3 0 i}$ and $\mathbf{3 0} \mathbf{j}$, containing the 2 -silyl group but lacking a substituent at $\mathrm{C}-4$. As expected, in each case two regioisomeric cycloadducts were formed $(\mathbf{3 9 a}+\mathbf{c}$ or $\mathbf{4 0 a}+\mathbf{c})$, in a ca. $46: 54$ ratio (Table 1, entries 9 and 10) in very good to near quantitative yield. This suggests that the 2-silyl group exerts a modest regiodirecting influence, favoring the "c" isomer. The regiodirecting influence is countered by a 4-alkyl group, to favor "a". Finally, entry 13 illustrates the selectivity with a TIPS group on the diene. ${ }^{24}$ The endo/exo selectivity increases to $94: 6$, as might be expected from the increased size of the TIPS group.

We performed DFT computations to understand why 2-silyl-4-alkyl dienes give high levels of diastereoselectivity. The transition states calculated with M06-2X in SMD acetonitrile for the endo and exo $(4+3)$ cycloadditions of $\mathbf{1 8}$ with two model dienes, $\mathbf{9 0}$ and $\mathbf{9 p}$, in the favored regiochemistry are shown in Figure 12.


Figure 12. Transition state for (4+3) cycloadditions of dienes $\mathbf{9 o}$ and $\mathbf{9 p}$ with oxidopyridinium ion 18, calculated with M06-2X/6-311+G-(d,p) in SMD acetonitrile. Distances in $\AA$, and $\Delta \mathrm{G}^{\ddagger}$ and $\Delta \mathrm{H}^{\ddagger}$ in $\mathrm{kcal} / \mathrm{mol} .^{49}$

The computations show that the silyl group in $\mathbf{9 0}$ raises the $\Delta \mathrm{G} \neq$ of the exo transition state (TS-B) by $1.3 \mathrm{kcal} / \mathrm{mol}$ relative to the endo transition state (TS-A). This value corresponds to a theoretical diastereomer ratio of $86: 14$ at $85^{\circ} \mathrm{C}$, close to that from the experiment (e.g., 81:13 for 28). The endo selectivity originates from two effects: an enthalpic effect and an entropic effect. The enthalpic effect arises because endo TS-A can accommodate the silyl group without introducing major steric interactions, but the exo TSB must distort to avoid the clash between the silyl group and the N-methyl group. Thus, compared to the silyl-free exo TS (TSB'), the diene and dienophile in TS-B are tilted away from each other by $0.1 \AA$. This distortion destabilizes TS-B. TS-B is also more compact than the endo TS-A, especially in the region of the silyl group, making TS-B entropically disfavored. Interestingly, theory predicts enhanced reactivity for silylated dienes. ${ }^{31}$ While no quantitative experimental studies have yet been undertaken, the reaction of $\mathbf{2 8}$ with $\mathbf{1 7}$ was able to be performed at a lower temperature than is usually required for these reactions; the cycloaddition at $60^{\circ} \mathrm{C}$ produced 31a-c in an 88:10:2 ratio in $71 \%$ yield after 24 h .

In general, a 2-3 equiv excess of diene was used in the reactions shown in Table 1. This represents a considerable decrease from the 10 equiv we used at the outset of our work on oxidopyridinium cycloadditions. ${ }^{20}$

## Equivalents of Diene

We wanted to investigate the equivalents of the diene to accommodate the formation of the $(4+3)$ cycloaddition reaction and give a decent yield (Table 2). If we could reduce the equivalents of diene, we could reduce waste and perform the research in a more
economical way. The result of 3 different substituents was consistent with the same trend shown that the 2-3 equivalents of diene gave the best yield. Therefore, the $(4+3)$ cycloaddition reactions performed by the 2-3 equivalents of diene in these studies.

Table 2. Optimization condition of (4+3) cycloadducts


NOTE: PhCOONa 1.0 eq, diene 2.0 eq, $71 \%$ yield $2.0 \mathrm{eq}, 84 \%$ is in the gram scale


| TES |
| :---: | :---: |
| equiv |$\quad$ Yield (\%)



| equiv | Yield (\%) |
| :---: | :---: |
| 2.0 | 89 |
| 1.5 | 73 |
| 1.0 | 60 |

## TEMPERATURE AND SOLVENT

The diene that contains TIPS at carbon 2 has steric problem that obstructed the CC bond formation (Table 3). When the cycloaddition was obtained under standard conditions by using $\mathrm{CH}_{3} \mathrm{CN}, 85^{\circ} \mathrm{C}$ for 24 h , a low yield of product was observed. The solvent was changed to propionitrile to obtain the cycloaddition at a higher temperature $\left(130{ }^{\circ} \mathrm{C}\right)$. Moreover, when the propionitrile was not properly dried, the cycloadduct was obtained only $43 \%$ yield. After the solvent was dried over the activated $4 \AA$ molecular sieves for 48 h , the yield improved to $68 \%$.

Table 3. Optimization of compound 40




| equiv <br> TIPS |  |  |  |
| :---: | :---: | :---: | :---: |
| 2.0 | $\mathrm{CH}_{3} \mathrm{CN}$ | 85 | 20 |
| 2.0 | Toluene | 130 | 29 |
| 2.0 | Propionitrile | 130 | 43 |
| 2.0 | Propionitrile | 130 | 68 |

On a small scale, the reactions were conducted in resealable pressure tubes. However, we also performed a 1 g scale reaction in a more conventional way. On the basis of studies that had shown that the use of 2 equiv diene gave a better yield than 1 equiv, we reacted 1 g of $\mathbf{1 7}$ with 2 equiv of $\mathbf{2 8}$ in acetonitrile in the presence of TEA at reflux for 24 h. Cycloadducts $\mathbf{3 1 a}-\mathbf{c}$ were obtained in a respectable $84 \%$ yield in a ratio of 78:16:6. This result suggests that the process is scalable more generally than previously established without having to use pressure tubes. ${ }^{32}$

In our original work, ${ }^{20}$ we established a clear example of reversibility in the cycloaddition of 2 with 1-phenyl-1,3- butadiene. The cycloadditions of the two related phenyl-substituted 2-silyl dienes, $\mathbf{3 0 k}$ and $\mathbf{3 0 1}$, were performed (Table 1, entries 11 and 12) and were anticipated to afford products of thermodynamic control. Indeed, the fact that two endo cycloadducts were formed, as we had observed with 1-phenyl-1,3-butadiene, indicated that these two reactions likewise proceeded reversibly. Both reactions gave complete endo selectivity but gave low regioselectivity, affording ca. 1:1 mixture of 41a +
c or 42a $+\mathbf{c}$, respectively. These a:c ratios can be understood in terms of a situation intermediate between purely kinetic and purely thermodynamic control. ${ }^{33}$

To begin to establish some cycloadduct chemistry, we explored the desilylation of cycloadduct 13. Treatment of the mixture of $\mathbf{3 1 a}-\mathbf{c}$ with TBAF in THF at $55^{\circ} \mathrm{C}$ for 22 h resulted in the recovery of the starting material. ${ }^{34}$ With acids, retro-cycloaddition was observed: the diene could be recovered in yields ranging from $0 \%$ (excess HCl ) to $99 \%$ (camphorsulfonic acid). Treatment with KOTMS in DMSO at $100{ }^{\circ} \mathrm{C}$ afforded the desilylated cycloadduct 38 in $38 \%$ yield ${ }^{35}$ (Scheme 12).


Scheme 12. Desilylation of (4+3) cycloadduct 31

Attempts to brominate or iodinate the alkene with NBS or NIS, respectively, failed. ${ }^{36,37}$ However, the reaction with NIS did produce a product in which functionalization had occurred at the bridgehead to afford $\mathbf{4 5}$ (Scheme 13). This process will be discussed in the next chapter.


Scheme 13. Reaction of $\mathbf{3 1}$ with NIS ${ }^{49}$

In contrast to the difficulty encountered in removing the TMS substituent from 31, successful desilylation was achieved with the $\mathrm{SiPhMe}_{2}$-substituted cycloadduct mixture 44, which was obtained as an 87:13 mixture of endolexo isomers (single regioisomer, Scheme 14 and Table 1, entry 14). The ${ }^{13} \mathrm{C}$ chemical shifts of 44a,b for C-9 are 93.3 and 90.9 ppm , respectively. Those of $\mathbf{3 1 a}, \mathbf{b}$ are 93.7 and 91.4 ppm . These shifts lead to the stereochemical/regiochemical assignments shown, based on our previous work. ${ }^{20}$ Reaction of this cycloadduct with TBAF afforded a $75 \%$ yield of the desilylated cycloadducts $\mathbf{3 8 a}+$ b as an 89:11 mixture of isomers (Scheme 14).





Scheme 14. Synthesis and desilylation of a phenyldimethylsilyl-substituted (4+3) cycloadduct

## Summary

We have developed a $(4+3)$ cycloaddition of an oxidopyridinium ion that is both highly diastereoselective and regioselective, by using a 2 -silyl substituent on the diene as a directing group. Efforts to explore related dienes, explore the chemistry of the cycloadducts, design exo-selective processes, and broaden the scope of the dienophiles used in the cycloaddition are being undertaken.

## CHAPTER II

## THE OXIDATION REACTION OF (4+3) CYCLOADDUCTS

Since their beginnings in the mid-1970s, the $(4+3)$ cycloaddition reactions of N substituted oxidopyridinium ions have provided an attractive and facile method for the construction of nitrogenous, heterocyclic seven-membered rings (Scheme 15) ${ }^{38-47}$ While N -aryl and N -alkenyl substitution



Scheme 15. Example of a (4+3) cycloaddition of an oxidopyridinium ion of the pyridinium nitrogen have largely dominated the literature, to the best of our knowledge, there had been only one example of a (4+3) cycloaddition reaction of $N$-alkyl oxidopyridinium ions reported prior to $2017 .{ }^{43}$ Our recent reports of the reaction of $N$ methyl oxidopyridinium ions with conjugated dienes expanded the scope of $(4+3)$ process, due to the incorporation of an ester functional group at the 5-position of the hydroxypyridine starting material. ${ }^{20,48}$ Cycloadducts are formed in good to excellent yields, and the reactions of select dienes proceed in high regioselectivity. Furthermore, the cycloaddition process can be steered towards a high preference for the endo diastereomer when the starting diene bears a bulky trialkylsilyl groups at C 2 , as we have recently reported (Scheme 16). ${ }^{49}$


Scheme 16. Endo selective $(4+3)$ cycloaddition of an oxidopyridinium ion ${ }^{49}$

Upon our initial exploration into the chemistry of the latter (4+3) cycloadduct products, our intentions were the replacement of the trialkylsilyl group with a halogen functional group such as iodine or bromine. We were particularly inspired by a report from the Zarkarian group, who showed that vinylsilanes react with N -iodosuccinimide in hexafluoroisopropanol to afford iodoalkenes stereosepecifically and in good yield (Scheme 17). ${ }^{50}$ However, when our $(4+3)$ cycloadducts were exposed to such reaction conditions, the replacement of the C-Si bond by a C-I bond was not observed. Thus, when a mixture of 31a-c was treated with NIS in hexafluoroisopropanol (HFIP), a vinyl iodide was not formed.


Scheme 17. Zakarian's vinyl iodide synthesis

Instead, functionalization of the bridgehead carbon with hexafluoroisopropyl ether was observed, a formal oxidative $\mathrm{C}-\mathrm{H}$ activation process, affording 45a (Scheme 18). ${ }^{49}$ This communication reports further examples of this process and other results that provide some insights for future studies.


Scheme 18. First example of the bridgehead oxidation of a (4+3) cycloadduct

The substrates for the process are known compounds, produced in our laboratories using methodology we developed for the $(4+3)$ cycloaddition of oxidopyridinium ions with dienes. ${ }^{49}$ From the very first example of the process, we noted an interesting phenomenon. For example, entry 1 of Table 4 (see also Scheme 18) makes use of an inseparable mixture of diastereomers as the starting material. All three of the diastereomers are detectable by ${ }^{1} \mathrm{H}$ NMR in the mixture. Nevertheless, the product of the oxidation is a single diastereomer. The structure of $\mathbf{4 5 a}$ was supported by ${ }^{1} \mathrm{H}$ NMR data. The fate of the minor diastereomers of the starting material is unknown at this time, as nothing else could be isolated from the reaction mixture. This is also true for similar entries in Table 4.

Table 4. Oxidation of $(4+3)$ cycloadducts ${ }^{100}$



6



8

9
7


H(TES)


2
5.5

23



16

12

4


31
${ }^{\text {a }}$ The major diastereomer/regioisomer of the mixture is shown. ${ }^{\text {b }}$ Yields are based on the entire mass of the starting material, including isomers that may not have given rise to the product observed. ${ }^{\mathrm{b}}$ The substitution pattern of the major isomer is given in parentheses.

In general, the reactions were conducted with 0.25 mmol of substrate dissolved in 4 mL of hexafluoroisopropanol (HFIP). The stirred solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. After addition of $N$-Iodosuccinimide (1.5 equiv), the mixture was allowed to slowly warm to the room temperature. The reaction was monitored by TLC until starting material was completely consumed.

The substrates that contained an alkyl substituent at C-2 and a trialkylsilyl group at C-4 afforded product in about $50 \%$ yield (entries 1-4, Table 4). The assignment of structure using NMR was supported by an X-ray crystal structure of 47a (Figure 13).


Figure 13. X-ray crystal structure of 47a

Not all substrates bearing an alkyl substituent at C-2 and a trialkylsilyl group at C4 afforded product in the $50 \%$ range. The lower yield of $\mathbf{5 6 a}$ from 44a-b, is perhaps due to the phenyl group on the silicon being sufficiently reactive to cause side product formation (entry 11, Table 4). In the case of 43a-c, the TIPS group at C-4 may have afforded protection against side product formation, resulting in a relatively high yield for the formation of $\mathbf{5 7 a}$ (entry 12, Table 4).

The substrate lacking a trialkylsilyl group (38a-b) gave a very low yield of product, indicating that the trialkylsilyl group affords some protection against degradation in the oxidation process (entry 7, Table 4). There is improvement in yield when the double bond of $\mathbf{3 8}$ removed, indeed the yield is doubled (entry 8, Table 4). Interestingly, this is the only case in which a substituent is located at C-2 in which both diastereomers led to product.

When no substituent appears at C-2 but a trialkylsilyl group appears at C-3 or C-4, both regioisomers appear to participate in the oxidation reaction (entries 9-10, Table 4). However, some inconsistencies are apparent. When the trialkylsilyl group is TES, the yield is low but both isomers seem to react at equal rates, as the ratio does not change in going from substrate to product (entry 9 Table 4). This is not the case for the substrate with a TIPS group, in which it is clear that one isomer behaves better than the other (entry 10 Table 4). The reasons for this are not known.

Figure 14 shows substrates that did not afford bridgehead oxidation product and led to complex reaction mixtures when treated with NIS. It does appear that the silyl group provides protection to the alkene, but the effect is clearly not universal.




Figure 14. Substrates that did not lead to oxidation

We attempted to modify the reaction conditions in the hope of obtaining different products or limit the need for HFIP as solvent using 31a-c as a model substrate. When LiI, NaI , or NaBr was added to the reaction mixture, oxidation products were obtained in low yield. No halogen incorporation was observed, though such products might be expected to be labile in any case, as they would likely be readily solvolyzed. Attempts to reduce the amount of HFIP used in the process (2-30 equiv in MeCN ) gave bridgehead substitution products in $5-46 \%$ yield with recovered starting material ranging from 29-64\%. Addition of small amounts of trifluoroacetic acid to the standard reaction mixture led to decomposition. Excess NIS (15 equiv) gave decomposition and NBS was not effective at all in producing the oxidation product under the standard reaction conditions (Table 5).


Table 5. Trapping study ${ }^{100}$

| Substrate | NIS <br> (eq.) | Reagents (eq.) | Solvent <br> (M) | Time (h) | Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Product |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


$5 \quad \operatorname{LiI}(5.0)$

HFIP (400
eq.),
$\mathrm{CH}_{3} \mathrm{CN}$
$(0.09)$ (0.09)
SM recovered 60\% HFIP substituted (5\%)
SM recovered 60\%
SM recovered 64\% HFIP substituted 11\%
HFIP substituted $46 \%$

Our working mechanism for this reaction is shown in Scheme 19. Reaction of 31a with NIS produces the iminium ion 58a. ${ }^{51-53}$ Deprotonation of this intermediate with
succinimide anion affords the bridgehead iminium species 59a, which is trapped with HFIP to produce the product 45a. Inclusion of allyltrimethylsilane in the reaction in an attempt to trap 59a led to a complex product mixture.


Scheme 19. Proposed mechanism of the oxidation

## Summary

We have reported a unique bridgehead oxidation process of selected (4+3) cycloadducts derived from oxidopyridinium ions. While this process will certainly possess limitations, it raises questions about mechanism and what other reagents might be used to effect such an oxidation in a more general way and whether more general bridgehead functionalization might be possible through such a mechanism. We plan on addressing these questions.

## Chapter III

## EXPLORATION OF [2+2] PHOTOCHEMISTRY OF (4+3) CYCLOADDUCTS

Sunlight is the most abundant, cleanest, and primary source of energy that is essential for life. Sunlight has also been used historically to propagate various physical and chemical processes. In 1599, Gesner demonstrated the distillation by sunlight in "The maner of Distilling in the Sunne" ${ }^{54}$ Later on, Libavius reported his studies on mirrors and lens to develop many principles of optics using sunlight. In 1649, Priestley observed that liquid mercury turned into a red solid with an increase in weight when exposed to sunlight which was later revealed to be a photocatalyzed reaction between mercury and oxygen. ${ }^{54}$ The photodimerization of anthracene was described by Fritzsche in 1867. Ten years later, Liebermann described the first photochemical [2+2] cycloaddition of thymoquinone dimerization in the solid-state using sunlight (Scheme 20). ${ }^{55}$


Scheme 20. Photodimerization of thymoquinone via the sunlight

In 1885, Ciamician performed photochemical experiments on alcoholic solutions of benzoquinone which were exposed to sunlight for five months to give hydroquinone and acetaldehydes. Ciamician continued to explore the reactions between organic materials and sunlight and reported the first discovery of the [2+2] photocycloaddition of an olefin and enone in 1908 by irradiation of carvone by sunlight for one year (Scheme 21). ${ }^{56}$ Later,

Cookson performed the ultraviolet irradiation adducts of $p$-benzoquinone and cyclic dienes to obtain the cage-like structures (Scheme 21). ${ }^{57}$



Scheme 21. [2+2] photocycloaddition of an olefin and enone

Since then, there has been a huge expansion on intramolecular [2+2] photocycloaddition reactions containing even more complex units, such as cyclobutene. The [2+2] photocycloaddition is one of the classic methods to synthesize compounds which contain cyclobutane rings using ultraviolet or visible light. The cycloadduct can be formed by the excitation from the ground state of an olefin to first excited singlet state $\left(\mathrm{S}_{1}\right)$ which will react with another olefin to form the cycloadduct. ${ }^{58}$

There are 2 possible regioisomers in this reaction which are the head-to-head (HH) and head-to-tail (HT) isomers. The HH forms when the substitution is a 1,2-relationship and HT forms when it is a 1,3-relationship. The HT isomer is favored when R is an electron donating group, and the HH isomer is favored when R is an electron withdrawing group (Figure 15). ${ }^{58}$ The relative configuration when the cyclobutene is forming a bond to another ring is differentiated via cis/trans notation and the diastereoselectivity of the intermolecular $[2+2]$ photocycloaddition is differentiated via syn/anti notation (Figure 15). ${ }^{58}$


Figure 15. Regioselectivity and diastereoisomers of [2+2] photocycloaddition reaction ${ }^{58}$

FMO analysis of the $[2+2]$ cycloaddition reaction indicates that thermal suprafacial [2+2] cycloaddition is symmetry forbidden but symmetry allowed under photochemical (excited state) conditions. Upon excitation, the LUMO becomes the new HOMO to react with the LUMO of another alkene (Figure 16). ${ }^{59}$


Figure 16. FMO of $[2+2]$ photocycloaddition reaction
$\alpha, \beta$-unsaturated ketones (I) will undergo excitation to the singlet state $\mathrm{S}_{1}$ (II) then to the triplet state $\mathrm{T}_{1}$ through intersystem crossing (ISC) The triplet state unsaturated ketone then reacts with an alkene to form a 1,4-diradical intermediate. After intersystem crossing (ISC) to the singlet diradical, the product is formed (Scheme 22). ${ }^{60}$


Scheme 22. [2+2] Photocycloaddition via the first excited triplet state ${ }^{58}$

Furthermore, $[2+2]$ photocycloaddition can also be performed through catalytically activated single electron transfer (SET). Photoredox catalysis is photon-absorbing catalysis that is activated by visible light. After the irradiation, the olefin will be reduced or oxidized by the excited state of the photoredox catalyst via the single electron transfer. ${ }^{61}$ The radical anion reacts with the alkene to form a 1,4-diradical intermediate and then cyclizes to form the cyclobutene (Scheme 23). ${ }^{62}$


Scheme 23. [2+2] Photocycloaddition by single electron transfer from a catalyst ${ }^{58}$

Yoon and co-worker ${ }^{63}$ employed an aryl enone 60, an electron acceptor which forms a radical anion intermediate reacted with the Michael acceptor, methyl vinyl ketone 61 to obtain the [2+2] photocycloadduct 62 . The role of methyl vinyl ketone $\mathbf{6 1}$ was helping to prevent the homocoupling of an aryl enone $\mathbf{6 0}$ (Scheme 24).


$84 \%$, d.r. $>91 / 9$

$65 \%$, d.r. $=83 / 17$

$61 \%$, d.r. > 91/9

$57 \%$, d.r. $=83 / 17$

Scheme 24. Intermolecular [2+2] photocycloaddition of acyclic enones

The intramolecular reaction between enones and olefins has been well established for several decades, and we wanted to take this concept and investigate the intramolecular $[2+2]$ photocycloaddition reaction of substituted alkenes with vinylogous carbamates obtained from the intermolecular $(4+3)$ cycloaddition reaction of oxidopyridinium ions.

We have been investigating the intermolecular $(4+3)$ cycloaddition reaction ${ }^{12,39-42,64}$ of selected oxidopyridinium ions with dienes and have reported that the process is generally quite effective in terms of yield. ${ }^{20,32}$ Complete control of regioselectivity and endo/exo selectivity remain to be fully optimized, though progress has been made on both fronts. ${ }^{20,32,48,49}$ An example is shown in Scheme $25 .{ }^{20}$ As part of that program, the chemistry of the cycloadducts has become of interest. We realized that the cycloadducts were primed for an intramolecular [2+2] photochemical cycloaddition, which would lead
to molecularly complex scaffolds in which the tropane skeleton is embedded. This letter reports our successful realization of this process.


Scheme 25. (4+3) cycloaddition of an oxidopyridinium ion ${ }^{20}$

Cycloadducts such as $\mathbf{6 4}$ possess both a simple, substituted alkene as well as a vinylogous carbamate. Some photochemistry of vinylogous carbamates and amides has been reported. ${ }^{65-72}$ We thus expected the cycloadducts we planned to examine to be excellent candidates for intramolecular cycloaddition, with a few exceptions (vide infra).

Tropane alkaloids have a long history in drug use and abuse. ${ }^{73,74}$ Perhaps the two most "notorious" members of this class are scopolamine 65 and cocaine 66 (Figure 17). Both are characterized by an 8-azabicyclo[3.2.1]octane ring system and have notable biological activity. Scopolamine is an anticholinergic, muscarinic receptor antagonist used medicinally as an antinauseant and antispasmodic, with potential in the treatment of depression, and as a research tool to model neural degradation associated with diseases such as dementia (e.g., Alzheimer's). ${ }^{75-77}$ While cocaine is used medically as a local anesthetic, it has greater renown as a drug of abuse. ${ }^{73,78,79}$ However, the synthesis of tropane alkaloids remains of interest, for the treatment of cocaine addiction and as a tool for neuroscience. ${ }^{80}$ We were motivated by the possibility of obtaining rigid molecular scaffolds that might be useful for functionalization in the design of biologically active molecules.


Figure 17. Examples of tropane alkaloids

The precursors used in this study are the (4+3)-cycloadducts resulting from the reaction of dienes with the oxidopyridinium ion obtained from 17 upon treatment with base. Their syntheses have been reported elsewhere. ${ }^{20,32,48,49}$

When a solution of the $(4+3)$-cycloadduct 67 in acetonitrile in a borosilicate test tube was irradiated at a $0^{\circ} \mathrm{C}$ (bath) using a medium pressure mercury-vapor lamp, a new product was observed. ${ }^{81}$ The reaction mixture was purified by flash chromatography to afford the pure product as a colorless oil in $75 \%$ yield (Scheme 26 )..$^{82,83}$ The ${ }^{1} \mathrm{H}$ spectrum of the isolated product revealed the disappearance of the downfield vinylic proton previously assigned to the vinylogous carbamate. The two methyl singlet peaks at 1.36 ppm and 1.19 ppm showed that the two vicinal methyl groups were still connected to tertiary carbons. The methyl singlet peak at 3.76 ppm in ${ }^{1} \mathrm{H}$ NMR, along with the peak at 171.1 ppm in ${ }^{13} \mathrm{C}$ NMR indicated the retention of the methyl ester. The data collectively suggested an intramolecular $[2+2]$ cycloaddition between the alkene of the vinylogous carbamate and the alkene on the cycloheptanone ring, as we had expected.


Scheme 26. First trial of intramolecular photocycloaddition ${ }^{83}$

Substitution at the 2 position was well tolerated regardless of stereochemistry, affording [2+2] cycloadducts in excellent yields (Table 6, entries 2). Fusing a ring between the 2 and 3 positions of the substrates led to an expected dichotomy in behavior. The photocycloaddition of 71ab (from the mixture of 71a and 71b) proceeded to give 72a in a good yield (Table 6, entry 3 ). Compound 71ab and $\mathbf{8 5 a}$ was initially performed by Dr. Fu, ${ }^{83}$ the former lab member; however, the reproduction was required to obtain the pure product 72a and 86a. The compound 71a is exo, ${ }^{49}$ and produces a cycloadduct with a cis-fused sixmembered ring. However, the endo isomer 71b would be forced to produce a trans-fused six-membered ring on the same cyclobutane unit and consequently $\mathbf{7 2 b}$ is not formed (Table 6, entry3). Compound $\mathbf{6 8}$ was initially performed by $\mathrm{Dr} . \mathrm{Fu}^{83}$ it was also reproduced in the large scale 3.25 mmol .

Table 6. Intramolecular photocycloadditions producing complex Tropanoids ${ }^{\text {a }, 83}$
entry

6

7


5

3






$75^{i}$

0 k
${ }^{\text {a }}$ Reactions were conducted at $0{ }^{\circ} \mathrm{C}$ in MeCN for the time indicated. ${ }^{\text {b }}$ The starting material was a $46: 54$ mixture of endo and exo isomers, respectively. The product bore the same ratio by ${ }^{1} \mathrm{H}$ NMR. Data in parentheses shows that photolysis for a longer time leads to a lower yield. ${ }^{\text {c }}$ The starting material was a 37:63 mixture of endo and exo isomers, respectively. ${ }^{\mathrm{d}}$ The yield is corrected based on starting material composition; the amount of the unreactive isomer was not included in the yield calculation. ${ }^{e}$ A $22 \%$ yield of the endo starting material was recovered. ${ }^{9}$ The starting material was a 59:41 mixture of 3-TES and 4-TES isomers as determined by NMR (See ref. 3b). ${ }^{\text {h }}$ The starting material was a $54: 46$ mixture of 3-TES and 4-TES isomers as determined by NMR (See ref. 3b). ${ }^{\text {i The starting material was a } 55: 45 \text { mixture of regioisomers. The }}$ regioisomeric products were partially separable and could be characterized individually. See SI. ${ }^{\text {T The starting }}$ material was a $50: 50$ mixture of regioisomers. ${ }^{k}$ The starting material was an 81:13:6 mixture of isomers (See ref. $3 b$ ); the major isomer is shown. No evidence for any [2+2] cycloadduct was found. ${ }^{\text {l }}$ The starting material was an 80:16:4 mixture of isomers (See ref. 3b); the major isomer is shown. No evidence for any [2+2] cycloadduct was found.

Interestingly, substitution of a trialkylsilyl group on the 4 position of the substrate seems to inhibit cycloaddition. Entries $8-9$ of table 6 show that when inseparable mixtures of 3 and 4 silylated substrates are photolyzed, only products derived from substrates with silyl substituents at the 4 position are isolated. The yields are low, but they represent yields calculated based on the entire mass of the starting substrate, including the isomer that does not produce a photocycloadduct. When a mixture of $\mathbf{7 7 a} \mathbf{a} / \mathbf{b}$ was photolyzed, both isomers
produced a photocycloadduct. When a mixture of 79a/b ( $\mathrm{Ad}=1$-adamantyl) was similarly photolyzed, only cycloadduct 80a was obtained. Its structure was confirmed by X-ray analysis. This compound possesses a regiochemistry opposite to that of $\mathbf{7 4 b}$ and $\mathbf{7 6 b}$, suggesting that while steric plays a role in the outcome of the photocycloaddition vis-à-vis the results from $\mathbf{7 7 a} \mathbf{a} / \mathbf{b}$, there is likely another factor influencing and dominating the photocycloaddition of the silylated substrates. This observation warrants further investigation.


Figure 17. X-ray crystal structure of 80a

When the endo substrates $\mathbf{8 1}$ and $\mathbf{8 3}$ were photolyzed, no cycloadduct was formed. This is true not only for the major diastereomers shown in Table 6, but for minor, inseparable isomers that were part of the starting material. Apparently, the combination of silyl substitution and substitution at position 4 combined to thwart the cycloaddition process. However, for both starting materials of these (4+3) cycloadducts, dienes 30a and 30e were produced in $17 \%$ and $23 \%$ yields, respectively. This represents a formal, photochemical retro- $(4+3)$ cycloaddition, which we presently formulate as the result of two homolytic bond cleavages, as shown in Scheme 27.

Starting materials substituted at the 2 position with 2-iodobenzoyloxy group gave photocycloadducts in $54 \%$ yields, regardless of relative stereochemistry (Table 6, entries 10).


Scheme 27. Possible mechanism for the generation of dienes 30a and 30e

## Summary

We report that the intramolecular [2+2] photocycloadditions of 7-azabicyclo[4.3.1]deca-3,8-dien-10-ones, readily available products of the $(4+3)$ cycloaddition of oxidopyridinium ions and dienes, ${ }^{20,32,48,49}$ afford complex polycyclic structures containing the tropane ring system. The process promises to be applicable to many, but not all, such $(4+3)$ cycloadducts, providing rapid access to rigid molecular scaffolds that could be of use in, inter alia, drug development.

## CHAPTER IV

## INTERMOLECULAR (4+3) CYCLOADDITION REACTION OF OXIDOPYRIDINIUM AND VINYL INDOLE

Cyclohepta[b]indoles are 6,5,7-tricyclic compounds which contain a sevenmembered ring with a $\mathrm{C} 2-\mathrm{C} 3$ fused indole and are abundant in both natural products and pharmaceutical compounds. ${ }^{84}$ Examples include biologically active molecules such as ambiguine, antitubercular agent, exotines and ervitsine-ervatamine alkaloids. ${ }^{85}$

Existing methodologies to synthesize the cyclohepta[b]indoles include sigmatropic rearrangements, palladium-catalyzed cyclizations, and intermolecular (4+3) cycloadditions. Ervitsine-ervatamine alkaloids are isolated from Pandaca boiteaui. ${ }^{86}$ Bosch and co-workers demonstrated the biomimic total synthesis of Ervitsine via 1,4dihydropyridines. ${ }^{87-89}$ Bosch and co-worker (scheme 28) employed the pyridinium ion which reacted with the enolate from 2-acetylindoles to give an intermediate dihydropyridine. Protection of the nitrogen of the 2-acetylindoles is needed to increase the yield from 5\% to $15 \%$ yield. The functionalization with an electrophile such as BrSePh is essential at C-16 for the cyclization and then later to create the exocyclic substituent. The ervitsine was obtained in $65 \%$ yield.


Scheme 28. The synthesis of Ervitsine

In addition, there are also synthetic approaches to these tetracyclic structures through the gold-catalyzed $(4+3)$ cycloaddition toward cyclohepta[ $b]$ indoles by Zhang and co-worker. ${ }^{90}$ The gold-catalyzed intermolecular (4+3) cycloaddition of propargylic ester with 2-vinylindoles gave cyclohepta[b]indole derivative in a good yield (scheme 29). ${ }^{91}$


via





Scheme 29. The synthesis of cyclohepta[b]indoles

In the study of $(4+3)$ cycloaddition of 2-vinylindoles with oxyallyl cations by Rossi and co-workers, they reported that vinylindole nitrogen is required as electron-withdrawing protecting group to facilitate the cycloaddition..$^{92}$ In contrast, the electron-donating group on the vinylindole nitrogen promotes the nucleophilic addition product.

We would like to explore the synthesis of Ervitsine; so far only a few groups have reported the synthesis of Ervitsine. We started by preparing vinylindole from the known procedure ${ }^{93-95}$ The first $(4+3)$ cycloaddition reaction toward the synthesis of the ervitsine was investigated with the unprotected nitrogen of the vinylindole. No reaction occurred at ambient temperature, so the temperature was elevated, and the reaction was monitored by TLC. The result revealed that the unprotected nitrogen of the vinylindole tends to give the dimerized product with about $22 \%$ yield instead of the (4+3) cycloadduct with oxidopyridinium (Scheme 30).


17

$85^{\circ} \mathrm{C} 24$ h, $22 \%$ sm $48 \%$


Scheme 30. The dimerization of vinyl indole
A modified procedure has been developed by protecting the amine with an electron withdrawing group. ${ }^{96}$ The product was needed to synthesize then used it without further purification because the product was easily to decomposed. The reaction was again started at room temperature then $40^{\circ} \mathrm{C}$ and elevated to $100^{\circ} \mathrm{C}$ in the increment of $10^{\circ} \mathrm{C}$. TLC showed no reaction and crude NMR showed no cycloadduct.

Other reactions were performed using different bases: sodium benzoate as a heterogeneous base and TEA as a homogenous base. The electron withdrawing group on oxidopyridinium ion was modified from a ketone to an ester (table 7). The reaction run using sodium benzoate for approximately 3 days, gave a complex structure by NMR after flash chromatography. Whereas the reaction with TEA showed no product even when heated to $100^{\circ} \mathrm{C}$.

Table 7. The two bases in the $(4+3)$ cycloaddition reaction


17



| Diene <br> (eq.) | Base (eq.) | Solvent (M) | Time <br> (h) | Temp <br> $\left({ }^{\circ} \mathbf{C}\right)$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | TEA (3.0) | $\mathrm{CH}_{3} \mathrm{CN}$ <br> $(0.1)$ | 14 | rt |  |
|  |  |  | 2 | 40 |  |
|  |  |  | 2 | 60 |  |
|  |  | $\mathrm{PhCOO}^{-}$ <br> $\mathrm{Na}^{+}(1.2)$ | $\mathrm{CH}_{3} \mathrm{CN}$ <br> $(0.1)$ | 14 | rt |
| 2 |  |  | 58 | 85 | complex <br> structure |

Another modification was done by incorporating a methyl group on the diene portion of the vinyl indole (scheme 31). The reaction was started from room temperature, then slowly heated until the temperature reached $120^{\circ} \mathrm{C}$, but no reaction progressed based on TLC. Even running the reaction at $200{ }^{\circ} \mathrm{C}$ using a microwave reactor showed no reaction. However, upon heating to $230^{\circ} \mathrm{C}$, the compound decomposed.


17



Scheme 31. (4+3) cycloaddition reaction from room temperature to $200^{\circ} \mathrm{C}$

Since thermal treatment did not yield positive results, we were motivated to pursue photochemical routes instead. The Z isomer of vinyl indole was used in the (4+3) cycloaddition reaction with the pyridinium ion under a blue LED with a wavelength of 450 nm (table 8). The reaction set with sodium benzoate for 6 days gave $7 \%$ of the observed
product $61 \%$ recovered diene. The reaction set by using triethylamine for 5 days, gave only $2 \%$ of the observed product and $88 \%$ of recovered diene. After purification by flash column chromatography, the complex structure was obtained and determined using 2D NMR spectroscopy. All attempts to grow a crystal from the yellow oil using a variation of solvent systems did not yield any crystalline material.

Based on these promising results, we started to run the reaction with the addition of photocatalyst to study if it can help to accelerate the reaction and obtained a better yield. The catalyst $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ gave $43 \%$ product yield and $\left(\mathrm{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right]_{2}(\mathrm{dtbpy})\right) \mathrm{PF}_{6}$ gave a similar yield of $50 \%$ with $20 \%$ diene recovered (table 8 ).

Table 8. The (4+3) cycloaddition reaction under the blue LED

|  |  |  |  <br> expected |  |  <br> observed product |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diene (eq.) | $\begin{aligned} & \text { Base } \\ & \text { (eq.) } \end{aligned}$ | Catalyst (eq.) | Solvent (M) | Time | Temp $\left({ }^{\circ} \mathrm{C}\right)$ | Result |
| 2 | TEA (3.0) | N/A | $\mathrm{CH}_{3} \mathrm{CN}(0.1)$ | 5 days | rt | $2 \%$ prod., 88\% diene |
| 2 | $\begin{gathered} \mathrm{PhCOO}^{-} \\ \mathrm{Na}^{+}(1.2) \end{gathered}$ | N/A | $\mathrm{CH}_{3} \mathrm{CN}(0.1)$ | 6 days | rt | $7 \%$ prod., $61 \%$ diene |
| 2 | $\begin{gathered} \mathrm{PhCOO}^{-} \\ \mathrm{Na}^{+}(1.2) \end{gathered}$ | $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$ | $\mathrm{CH}_{3} \mathrm{CN}(0.1)$ | 9 hrs | rt | 43\% prod. |
| 2 | $\begin{gathered} \mathrm{PhCOO}^{-} \\ \mathrm{Na}^{+}(1.2) \end{gathered}$ | $\begin{gathered} \left(\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbpy})\right) \\ \mathrm{PF}_{6}(2 \mathrm{~mol} \%) \end{gathered}$ | $\mathrm{CH}_{3} \mathrm{CN}(0.1)$ | 9 hrs | rt | 50\% prod., $20 \%$ diene |

After the (4+3) cycloaddition reaction gave positive results under photochemical conditions, we chose to investigate more carefully the nature of this reaction by running the reaction of oxidopyridinium ion with 2,3-dimethylbutadiene at the room temperature for 7 days (table 9). The reaction was monitored by TLC every day, over 7 days with no sign of product formation. Similar results were obtained using triethylamine and sodium benzoate.

Table 9. The (4+3) cycloaddition reaction at room temperature


17



| Diene <br> (eq.) | Base (eq.) | Solvent <br> (M) | Time <br> (days) | Temp <br> $\left({ }^{\circ} \mathbf{C}\right)$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | TEA (3.0) | $\mathrm{CH}_{3} \mathrm{CN}$ <br> $(0.1)$ | 7 | rt | NR |
| 2 | PhCOO <br> $(1.2)$ | CH 3 CN <br> $(0.1)$ | 7 | rt | NR |

Investigations of this reaction using a blue LED with photocatalyst for 7 days also yielded no reaction (scheme 32).


17


NR


67

Scheme 32. The (4+3) cycloaddition reaction under the blue LED and photocatalyst

We further investigated the formation of the cycloadduct after the 2 conditions were failed. The 2,3-dimethylbutadiene did not react with the oxidopyridinium ion under the photochemical reaction. And the oxidopyridinium ion with the ketone as an electron withdrawing group ${ }^{97}$ did not give the $(4+3)$ cycloadduct when vinylindole was employed. Therefore, we tested the reaction of oxidopyridinium ion with 2,3-dimethylbutadiene under standard (4+3) cycloaddition conditions and obtained the cycloadduct in an excellent $92 \%$ yield (scheme 33). The result revealed that the ketone can activate the dienophile to react with the diene and yield the $(4+3)$ cycloadduct under thermal condition and not photo condition.


87



88

Scheme 33. The (4+3) cycloaddition of oxidopyridinium ion with 2,3-dimethylbutadiene

With this information in mind, we went back to the vinylindole system. We began by addressing the stereochemistry issue of the substituted vinylindole. By using Suzuki coupling instead of the Wittig reaction to form the substituted vinylindole. We also postulated that the product might be forming in situ (Scheme 34), which would expose it to acidic conditions and promote decomposition so, KHMDS was employed as a base. The present or absent of 18 -crown- 6 did not change the outcome. Without $\mathrm{NaBH}_{4}$ during the work up, $87 \%$ diene was recovered, but with $\mathrm{NaBH}_{4}$ during the worked up $100 \%$ diene was recovered. Running the reaction at room temperature or $85^{\circ} \mathrm{C}$ didn't give the product.


87


17


17




only diene recovered


Scheme 34. The $(4+3)$ cycloaddition of oxidopyridinium ion with vinyl indole under the basic condition

## Summary

The results of our thermal condition studies on the reaction of oxidopyridinium ion with vinyl indole with or without the protecting group did not give the expected $(4+3)$ cycloadduct. The unprotected vinylindole formed the dimerized product did not react with the oxidopyridinium ion. The same vinylindole did, however, react with 2chlorocyclopentanone as the dienophile was employed in the study by Rosi ${ }^{92}$ to give the cyclohepta[b]indole. The oxidopyridinium ion that was used in our study was not as reactive as the 2-chlorocyclopentanone. The photochemical reaction under the blue LED,
resulted only in the $(3+2)$ cycloadduct between the oxidopyridinium ion and the vinylindole and not the (4+3) adduct.

## CHAPTER V <br> RELATED STUDIES

Since the first example of oxidopyridinium ion has been utilized in the study of intermolecular $(4+3)$ cycloaddition reaction in our group. We have not explored the effect of the electronic effect on the nitrogen of the ethyl 5-hydroxynicotinate. Thus, we would like to create the library of the different substituent on the nitrogen of the ethyl 5hydroxynicotinate.

We started with benzyl bromide, 2-bromo benzyl bromide, and allyl bromide. The alkylation product on the nitrogen of ethyl 5-hydroxynicotinate was synthesized. The reactions needed to be carried out at high temperature since there were a lot of starting material left at room temperature (scheme 35). Then, we tested the reaction of oxidopyridinium with 2,3-dimethylbutadiene in the presence of $\mathrm{K}_{3} \mathrm{PO}_{4}$ under standard conditions which gave the $(4+3)$ cycloadduct in good yield (Scheme 36). The benzyl bromide-substituted substrate gave the best result of $99 \%$ yield. The presence of the electron withdrawing group, 2-bromo on the benzyl unit gave a lower yield of $88 \%$ which was a similar to the allyl substituted substrate ( $89 \%$ yield). For most substrates, products were purified by flash chromatography however except for the allyl substituted substrate which was purified by silica plug to afford the product.


$$
\xrightarrow[\text { 2-propanol (1.0 M), reflux } 16 \mathrm{~h}, 88 \%]{\text { Benzyl bromide (1.0 equiv) }}
$$





90


$$
\xrightarrow[\substack{\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{M}), \text { rt } 4 \mathrm{~h}, \\ \text { reflux } 21 \mathrm{~h}, \\ \text { anoo },}]{\text { allyl bromide (1.0 equiv) }}
$$



Scheme 35. The synthesis of N -alkylation


90


89



91





92


93


Scheme 36. (4+3) cycloaddition reaction of $N$-alkylation with 2,3dimethylbutadiene

## Summary

We developed the intermolecular (4+3) cycloaddition reaction of an alkylation on the nitrogen of ethyl 5-hydroxynicotinate gave an excellent yield. Further studies will be
continued using different alkyl, ester, and amide groups on the nitrogen of ethyl 5hydroxynicotinate and will be reported in a due course.

## Experimental Procedures

## Endo selectivity in the (4+3) cycloaddition of oxidopyridinium ions

## General Information

NMR spectra were recorded on either an AVIII-500 (500 MHz), or an AVIII-600 (600 $\mathrm{MHz})$ spectrometer with chemical shifts reported in d ppm with tetramethylsilane as an internal reference ( 0.00 ppm ). When CDCl 3 does not contain tetramethylsilane, an internal reference is 7.26 ppm ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, hept $=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet, ddd = doublet of doublet of doublet, dddd = doublet of doublet of doublet of doublet, $\mathrm{td}=$ triplet of doublet, etc). ${ }^{13} \mathrm{C}$ NMR spectra were obtained on the same instruments at 151 MHz , in $\mathrm{CDCl}_{3}$ solution with $\mathrm{CDCl}_{3}(77.16 \mathrm{ppm})$ as an internal reference. Melting points of crystalline
compound were determined with a Fisher-Johns melting point apparatus and are uncorrected. Infrared spectra were recorded on a Thermo Nicolet Summit Pro FT-IR spectrometer and major/diagnostic peaks were picked. High-resolution mass spectra were performed by College of Science Major Instrumentation Center, Old Dominion University, on a Bruker 12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source or at the Charles W. Gehrke Proteomics Center, University of Missouri, on a ThermoScientific LTQ Orbitrap XL mass spectrometer equipped with a static nanospray ECONO 12 tip (proxeon). All reactions were carried in oven-dried glassware with magnetic stir bar under an argon, ethylene atmosphere (balloon) unless otherwise noted. The reactions were heating by oil bath at the indicated temperature in the procedure. Toluene and tetrahydrofuran were order from Sigma Aldrich and distilled under a nitrogen atmosphere over sodium metal with benzophenone as an indicator. Acetonitrile and triethylamine were distilled under a nitrogen atmosphere over calcium hydride. Dichloromethane and methanol were dried over molecular sieves 4 A. Hexanes and ethyl acetate were purchased from Fisher and were used as received. Grubbs catalyst second generation were purchased from Accela ChemBio and AbaChemScene and were used as received. Upon the Grubbs catalyst second generation from different batches were given a different result. Monitoring the reaction by TLC or NMR will help to determine when the reaction will be completely done. Celite were purchased from Fisher. Analytical thin layer chromatography was performed on silica gel plates with UV indicator. The plates were strained with iodine, vanillin and KMnO 4 . Flash chromatography was carried out using 40-63 micron silica gel purchased from ZeoChem.

Single crystal X-ray diffraction (SCXRD) data for compounds 31a and $\mathbf{3 3}$ were measured on a Bruker D8 Venture diffractometer (Bruker AXS, Inc., Madison, WI, USA) equipped with a Photon 100 CMOS area detector using Mo-K $\alpha$ radiation from a microfocus source. SCXRD data for compounds 31c and 37 were measured on a Bruker X8 Prospector diffractometer equipped with an Apex II CCD area detector using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation from a microfocus source. Crystals were cooled to their collection temperatures under streams of cold N2 gas using Oxford Cryostream 700/800 cryostats (Oxford Cryosystems, Oxford,

UK). Hemispheres of unique data were collected for each crystal using strategies of 0.5 o scans about the omega and phi axes. Unit cell determination, data collection, data reduction, absorption correction, and scaling were performed using the Bruker Apex3 software suite. ${ }^{1}$

The crystal structures were solved by direct methods using SHELXS v.2013/1 ${ }^{2}$ and refined by full matrix least squares against F2 using SHELXL v.2017. ${ }^{3}$ Olex 2 was used for model building and as an interface for the refinement programs. ${ }^{4}$ Non-hydrogen atoms were located from the difference map and refined anisotropically. For 31a thermal parameters and difference map peaks for the phenyl ring indicated disorder by rotation about the $\mathrm{C}-\mathrm{C}$ bond linking it to the rest of the molecule. Alternate positions could be found for three of the carbon atoms, and the other atoms are too closely overlapped to be resolved. Restraints for rigid bond behavior ${ }^{5}$ were also applied to all nonhydrogen atoms in 31a.

For compound 37 the crystal was weakly diffracting and required long counting times per frame; because of this the resolution of the data collection was limited to 0.90 A in order to allow the entire data collection to finish before excess ice buildup on the crystal rendered the data unusable. This results in a B-level THETM01 checkCIF alert for this model. This has no noticeable effects on the refinement as the structural features of interest are well above this resolution, and the data-to-parameters ratio for this structure is acceptable due to the large fraction of observed data in the dataset.

[^0]
## General procedure for dienes

An oven-dried 100 mL round-bottom flask equipped with a magnetic stir bar. At the room temperature and backfilled with argon three times. Then trimethylsilylacetylene ( 1.05 mL , 7.6 mmol , 2.0 equiv), 4-phenyl-1-butene ( $500 \mathrm{mg}, 3.8 \mathrm{mmol}, 1.0$ equiv) were added in dichloromethane ( $63 \mathrm{~mL}, 0.064 \mathrm{M}$ ). The brown mixture was degassed for 5 min then Grubbs second generation ( $258.1 \mathrm{mg}, 8 \mathrm{~mol} \%$ ) was added and stirred for 20 h at 40 oC by oil bath under argon atmosphere. The reaction progress was monitored by TLC using $100 \%$ hexanes. After completion of the reaction, the mixture was filtered by celite in a sintered glass funnel, rinsingwith more hexanes and the filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel ( $100 \%$ hexanes, $\mathrm{R}_{\mathrm{f}}=0.63$ ). The product was obtained as a colorless oil ( $605 \mathrm{mg}, 2.63 \mathrm{mmol}$ ) in $69 \%$ yield.

## General procedure for (4+3) cycloadduct

An oven-dried 15 mL seal tube equipped with a magnetic stir bar. At the room temperature, Nmethyloxidopyridinium ion ( $200 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0$ equiv), ( $E$ )-trimethyl(6-phenylhexa-1,3-
dien-2-yl)silane ( $437.3 \mathrm{mg}, 1.9 \mathrm{mmol}, 3.0$ equiv) were added in acetonitrile ( $6.3 \mathrm{~mL}, 0.1$ M ), then degassed by argon for 5 min . Triethylamine ( $264 \mu \mathrm{~L} \mathrm{mg}, 1.9 \mathrm{mmol}, 3.0$ equiv) was added to the mixture then heating for 24 h at 85 oC by oil bath. Upon heating for 1 h , pale yellow and clear mixture turned to dark brown. After the reaction mixture was stirred for 24 h and cooled down to room temperature, 16 drops of $10 \% \mathrm{HCl}$ was added to the mixture. Then extraction by using dichloromethane ( $3 \times 15 \mathrm{~mL}$ ). The combined organic layers, brown and clear solution were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel (20\% - 30\% EtOAc:Hexanes)

## (E)-trimethyl(6-phenylhexa-1,3-dien-2-yl)silane (30a)



The crude product was purified by flash column chromatography on silica gel (100 \% hexanes, $\mathrm{Rf}=0.63$ ). The product was obtained as a colorless oil ( $605 \mathrm{mg}, 2.63 \mathrm{mmol}$ ) in $69 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J$ $=15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), $2.43-2.38(\mathrm{~m}, 2 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 149.2, 142.0, 135.5, $131.8,128.6,128.4,126.6,126.0,36.1,35.3,-0.7$; IR (neat) $v_{\max }: 3083,3065,3025,2930$, 2854, 1635, 1613, 1501, 1447, 1249, 917, 840, $701 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 253.1383$, found: 253.1384.
methyl (1R,2R,6R)-7-methyl-10-oxo-2-phenethyl-4-(trimethylsilyl)-7-
azabicyclo[4.3.1]deca-
3,8-diene-9-carboxylate (31)


The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.42$ ) to obtain a pale yellow oil ( $233 \mathrm{mg}, 0.59 \mathrm{mmol}$ ) in $93 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.20(\mathrm{dd}, J=7.9,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=5.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=$ $7.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.62$ (ddd, $J=13.7,10.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=16.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (dddd, $J=13.4,10.1$, $7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dddd}, J=13.7,10.1,8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 205.6, 167.7, 146.9, 144.1, 142.2, 137.1, 128.5, 128.4, 125.9, 93.7, 66.7, $50.8,49.0,40.2,34.3,34.2,28.5,-1.6$; IR (neat) $v_{\text {max }}: 3016,2946,2854,1720,1678,1609$, 1437, 1381, 1366, 1233, 1157, 1066, 833, 748, $699 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 398.2146$, found:
398.2144.

The product 31a was confirmed the stereochemistry by the reduction of ketone then obtained the x-ray crystallography.
methyl(1R,2R,6R,10R)-10-hydroxy-7-methyl-2-phenethyl-4-(trimethylsilyl)-7 azabicyclo [4.3.1]deca-3,8-diene-9-carboxylate (reduction of 31a)


The product was obtained as a white solid ( $183 \mathrm{mg}, 0.46 \mathrm{mmol}$ ) in $92 \%$ yield, $\mathrm{Rf}=0.31$ ( $30 \%$ EtOAc:Hexanes), and recrystallization by 2:8 EtOAc:Hexanes, $m p=132-133^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=8.1,1.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16(\mathrm{tt}, \mathrm{J}=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, \mathrm{J}=7.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dddd}, \mathrm{J}=5.5,3.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (quin, $\mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, 2.86 (dddd, $\mathrm{J}=12.3,9.3,7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.82(\mathrm{dt}, \mathrm{J}=16.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (ddddd, J $=23.2,19.6,13.6,9.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=16.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.70(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 168.3, 147.3, 144.8, $143.2,136.5,128.6,128.4,125.7,95.9,72.8,59.2,50.6,45.6,41.1,37.9,35.7,26.3,-1.5$;

IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v_{\text {max }}: 3425,3056,2989,1690,1640,1618,1438,1416,1267,1173,1074,894$, 840, 741, $706 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 422.2122$, found: 422.2120 .
methyl ( $1 R, 2 R, 6 R$ )-7-methyl-10-oxo-2-phenethyl-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (31b)

${ }^{1}$ H NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.63$ (ddd, $J=6.8,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 1 \mathrm{H})$, 2.72 (ddd, $J=13.7,9.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.14 (dddd, $J=13.7,9.3,7.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (dddd, $J=13.3,9.6,7.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 207.1, 168.3, 148.0, 147.7, 142.1, 139.8, 128.7, 128.5, 125.9, 91.4, 66.9, $50.8,49.5,43.7,40.7,37.0,34.3,30.5,-1.3$; IR (neat) $v_{\max }$ : 3016, 2946, 2854, 1720, 1678, 1609, 1437, 1381, 1366, 1233, 1157, 1066, 833, 748, $699 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESIFTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 398.2146$, found: 398.2144.


The product 31b was assigned the stereochemistry using the NOESY spectrum of the reduction of 13b. The NOESY spectrum indicates that the triplet proton $\mathbf{i}$ on the bridgehead at 3.26 ppm correlates with the Mee proton at 2.93 ppm , proton $\mathbf{d}$ on the bridge at 4.19 ppm , and CH 2 proton $\mathbf{k}$ at 2.77 ppm and $\mathbf{m}$ at 2.45 ppm . The doublet proton $\mathbf{f}$ on the bridgehead at 3.06 ppm correlates with CH 2 proton $\mathbf{n}$ at 2.10 ppm which indicates the exo isomer. The singlet proton $\mathbf{b}$ at 7.30 ppm correlates with the singlet Mee proton at 2.93 ppm . The triplet proton $\mathbf{c}$ at 5.63 ppm correlates with the proton $\mathbf{g}$ at 2.91 ppm and CH 2 proton of the alkyl group $\mathbf{j}, \mathbf{l}, \mathbf{n}$, and $\mathbf{o}$ at $2.83,2.71,2.10$, and 1.85 ppm respectively. The doublet of doublet CH2 proton $\mathbf{m}$ at 2.45 ppm correlates with the proton of TMS, Mee, and $\mathbf{i}$ on the bridgehead at $0.02,2.93$, and 3.26 ppm respectively.
methyl (1R,2R,6R)-7-methyl-10-oxo-2-phenethyl-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (31c)

${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{dd}, J=7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=5.1,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54(\mathrm{dt}, J=5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.81(\mathrm{~m}$, 1 H ), 2.67 (ddtt, $J=20.3,13.8,9.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.11 (dt, $J=15.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.66 (ddt, $J=13.6,8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.51(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 205.7, 167.4, 146.5, 144.6, 141.4, 137.5, 128.6, 128.5, 126.2, 93.3, 70.2, 50.8, 45.8, 40.3, $38.4,34.2,32.0,30.2,-2.4$; IR (neat) $v_{\max }: 3016,2946,2854,1720,1678,1609,1437$, 1381, 1366, 1233, 1157, 1066, 833, 748, $699 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 398.2146$, found: 398.2144 .
The product 13 c was assigned stereochemistry by the x-ray crystallography.

## (E)-triethyl(6-phenylhexa-1,3-dien-2-yl)silane (30b)



The crude product was purified by flash column chromatography on silica gel (100 \% hexanes, $\mathrm{Rf}=0.54$ ). The product was obtained as a pale yellow oil $(382 \mathrm{mg}, 1.40 \mathrm{mmol})$ in $25 \%$ yield.
${ }^{1}$ H NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.15(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.68$ (m, 2H), $5.28(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.90$ $(\mathrm{m}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 146.1, 142.0, 136.0, 130.8, 128.6, 128.4, 127.7, 125.9, 36.2, 35.2, 7.5, 3.5; IR (neat) $v_{\max }$ 3033, 3026, 2952, 2879, 2874, 1462,1455, 1415, 1237, 1002, 969, 822, 700, $697 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 273.2033$, found: 273.2036.
methyl (1R,2R,6R)-7-methyl-10-oxo-2-phenethyl-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (32)

a

b

c

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \%$ EtOAc:Hexanes, $\mathrm{Rf}=0.47$ ) to obtain a colorless oil ( $62 \mathrm{mg}, 0.14 \mathrm{mmol}$ ) in $88 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 3 \mathrm{H})$, 6.20 (dd, $J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-2.93 (m, 1H), 2.92 (s, 3H), $2.80(\mathrm{dd}, J=16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=7.9,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64(\mathrm{ddd}, J=13.5,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dt}, J=16.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddt, $J=$ $13.1,10.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.49 (dtt, $J=10.4,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.65$ - 0.52 (m, 6H); ${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$ ): 207.0, 205.5, 168.0, 167.6, 148.9, 148.0, $146.8,145.7,142.2,134.2,128.6,128.5,128.4,125.9,93.9,91.5,66.7,50.7,49.1,42.1$, 40.2, 34.7, 34.5, 28.8, 7.4, 2.7; IR (neat) $v_{\max }$ : 2948, 2872, 1717, 1678, 1610, 1410, 1408, 1334, 1236, 1157, 1066, 1002, $698 \mathrm{~cm}^{-1}$; HRMS (m/z):
(ESI-FTICR) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 440.2616$, found: 440.2617 .
methyl (1R,2R,6R)-7-methyl-2-octyl-10-oxo-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (33)

a

b

c

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $20 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.58$ ) to obtain a white solid (93 $\mathrm{mg}, 0.23 \mathrm{mmol}$ ) in $71 \%$ yield, and recrystallization by $20 \% \mathrm{EtOH}: \mathrm{H} 2 \mathrm{O}, \mathrm{mp}=88-89^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{dd}, \mathrm{J}=7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 3.65 -
$3.63(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{td}, \mathrm{J}=6.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}$, $\mathrm{J}=$
$16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dt}, \mathrm{J}=16.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.14(\mathrm{~m}, 14 \mathrm{H}), 0.89-0.86(\mathrm{~m}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 205.8, 167.7, 146.8, 144.8, 136.5, 94.0, $66.8,50.9,49.4,42.5,40.2,32.5,32.0,29.7,29.6,29.4,28.5,28.2,22.8,14.3,-1.6$; IR (neat) $v_{\text {max }}: 2922,2854,1714,1668,1614,1415,1413,1342,1236,1159,1073,833,748$ $\mathrm{cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 406.2772$, found: 406.2770.
methyl (1R,2R,6R)-7-methyl-2-octyl-10-oxo-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (34)

a

b


C

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \%$ EtOAc:Hexanes, $\mathrm{Rf}=0.44$ ) to obtain a colorless oil ( $55 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) in $77 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{dd}, J=6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 1 \mathrm{H})$, 2.76 (dd, $J=16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dt}, J=16.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.14(\mathrm{~m}, 17 \mathrm{H}), 0.92$ -0.83 (m, 9H), $0.63-0.49$ (m, 6H); ${ }^{13}$ C NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 207.4, 205.8, 167.7, $146.7,146.4,133.4,94.2,91.7,66.8,50.8,49.5,42.6,40.2,32.8,32.0,29.7,29.6,29.4$, 28.8, 28.2, 22.8, 14.2, 7.4, 2.8; IR (neat) $v_{\text {max }}$ : 2924, 2873, 2853, 1718, 1681, 1613, 1410, 1409, 1334, 1236, 1159, 1066, 1003, $716 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 448.3242$, found: 448.3243 .

## ethyl ( $E$ )-6-(trimethylsilyl)hepta-4,6-dienoate (30e)



The crude product was purified by flash column chromatography on silica gel (3\% ethyl acetate/hexanes). The product was obtained as a colorless oil ( $71 \mathrm{mg}, 0.31 \mathrm{mmol}$ ) in $62 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.18-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{qt}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 4 \mathrm{H}), 1.24$ $-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.13-0.12(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 173.1, 148.9, 136.0, 130.2, 127.0, 60.4, 34.4, 28.7, 14.4, -0.8; IR (neat) $v_{\max }$ 2954, 2899, 1732, 1373, 1247, 1162, 1026, 835, 755, $691 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}\right) \mathrm{H}$ $[\mathrm{M}+\mathrm{H}]^{+}: 227.1462$, found: 227.1460.
NOTE: When the Grubbs catalyst second generation was purchased from Accela ChemBio was used, the reaction time was 19 h in contrast when the Grubbs catalyst second generation was purchased from AbaChemScene was used, the reaction time was 2 h .
methyl (1R,2R,6R)-2-(3-ethoxy-3-oxopropyl)-7-methyl-10-oxo-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (35)

a

b

c

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.31$ ) to obtain a pale yellow oil ( $109 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) in $87 \%$ yield.
${ }^{1}$ H NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 2 \mathrm{H})$, $3.70-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94,(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{qd}, J=8.1$,
$4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=15.8,9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (ddd, $J=15.6,9.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.15 (dt, $J=16.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (dddd, $J=13.7,9.6$, $7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ (dddd, $J=14.1,9.6,8.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.09$ (s, 9H); ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 206.8, 205.3, 173.3, 167.6, 146.9, 143.1, 138.2, $93.5,91.0,66.6,60.5,50.8,49.0,41.7,40.2,32.9,28.6,27.4,14.3,-1.7$; IR (neat) $v_{\text {max }}$ : 2949, 2910, 1722, 1677, 1610, 1438, 1409, 1335, 1243, 1153, 1067, 832, $760 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for (C20H31NO5Si)Na [M+Na]+: 394.2044, found: 394.2044.
ethyl ( $E$ )-6-(triethylsilyl)hepta-4,6-dienoate (30f)


The crude product was purified by flash column chromatography on silica gel (5\% ethyl acetate/hexanes). The product was obtained as a red oil ( $35 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in $36 \%$ yield. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.18(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ $5.67(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{qd}, J=7.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 4 \mathrm{H})$, 1.25 (td, $J=7.1,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.66(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 173.0, 145.8, 136.4, 129.2, 128.0, 115.5, 60.3, 34.3, 28.6, 14.3, 7.4, 3.4 ; IR (neat) $v_{\text {max }}$ : 2952, 2875, 1734, 1457, 1416, 1377, 1373, 1237, 1161, 1003, 968, 719 $\mathrm{cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 269.1931$, found: 269.1931.

NOTE: When the Grubbs catalyst second generation was purchased from Accela ChemBio was used, the reaction time was 18 h in contrast when the Grubbs catalyst second generation was purchased from AbaChemScene was used, the reaction time was 5 h .

## methyl (1R,2R,6R)-2-(3-ethoxy-3-oxopropyl)-7-methyl-10-oxo-4-(triethylsilyl)-7

 azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (36)



The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.37$ ) to obtain a pale yellow oil ( $104 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) in $74 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=6.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}$, $3 \mathrm{H}), 2.89$ (dd, $J=7.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (dd, $J=16.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (ddd, $J=15.8$, $9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=15.5,9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dt}, J=16.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (ddt, $J=13.7,9.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dtt}, J=9.6,8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$,
0.88 (t, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}$ ), 0.56 (ddd, $J=22.7,14.9,7.5 \mathrm{~Hz}, 6 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.3,173.3,167.5,146.8,144.8,135.1,93.7,66.7,60.4,50.8,48.9,41.8,40.3$, $32.9,28.9,27.7,14.3,7.4,2.7$; IR (neat) $v_{\max }$ : 2950, 2873, 1724, 1677, 1611, 1412, 1410, 1335, 1238, 1155, 1067, 1003, $704 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 436.2514$, found: 436.2514.

## ( E)-(4-cyclohexylbuta-1,3-dien-2-yl)trimethylsilane (30g)



The crude product was purified by flash column chromatography on silica gel (100 \% hexanes, $\mathrm{Rf}=0.69$ ). The product was obtained as a yellow oil ( $115 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) in $15 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=16.1,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.30(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.00(\mathrm{~m}, 5 \mathrm{H})$, $0.16(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 149.5, 139.0, 132.1, 126.1, 41.4, 34.3, 33.5, $33.4,33.1,26.4,26.2,14.2,-0.6$; IR (neat) $v_{\max }$ : 2922, 2850, 1448, 1247, 965, 834, 755, $689 \mathrm{~cm}^{-1} ;$ HRMS $(\mathbf{m} / \mathbf{z})$ : (ESI-FTICR) calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{Si}\right) \mathrm{OH}[\mathrm{M}+\mathrm{OH}]^{-}: 207.1564$, found: 207.1564.
methyl (1R,2R,6R)-2-cyclohexyl-7-methyl-10-oxo-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (37)

a

b

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.42$ ) to obtain a white solid ( 63 $\mathrm{mg}, 0.17 \mathrm{mmol}$ ) in $67 \%$ yield, and recrystallization by $10 \% \mathrm{Et} 2 \mathrm{O}$ :pentane, $\mathrm{mp}=144-$ $145^{\circ} \mathrm{C}$. The product 19 was confirmed the stereoisomer by the x-ray crystallography.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 3.66 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.62 (dt, $J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.91 (s, 3H), 2.82 (dd, $J=16.3,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=10.1,8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dt}, J=16.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.26-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13}$ C NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 206.4, 167.7, 147.0, 145.0, 136.5, 94.1, 66.8, 50.8, 48.4, $46.3,40.3,39.9,32.1,31.5,28,5,26.6,26.4,26.0,-1.5$; IR (neat) $v_{\max }$ : 2926, 2849, 1709, 1661, 1615, 1415, 1411, 1338, 1236, 1160, 1064, 887, 832, $748 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESIFTICR) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 376.2303$, found: 376.2298 .
methyl (1R,2S,6R)-7-methyl-10-oxo-2-phenethyl-7-azabicyclo[4.3.1]deca-3,8-diene-9carboxylate (38)



The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}: H e x a n e s, \mathrm{Rf}=0.26$ ) to obtain a colorless oil ( $89 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) in $86 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{td}, J=7.6,4.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.21-7.15$ (m, 6H), 5.90 (ddd, $J=11.7,8.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.78 (dddd, $J=11.2,8.5,4.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dtd}, J=11.9,8.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.64$ $(\mathrm{s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.62(\mathrm{~m}$, $6 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 5 \mathrm{H}), 1.84$ (tdt, $J=9.0,6.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (dddd, $J=13.2,10.5$, $7.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ (dddd, $J=13.8,10.4,8.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.4,205.4,168.2,167.5,148.2,147.1,142.1,141.9,139.6,136.7,128.6,128.4,128.4$, $128.3,125.8,124.8,123.5,93.7,91.1,66.2,66.0,50.7,49.9,49.2,43.1,41.1,39.6,39.6$, $36.6,34.5,34.2,34.1,28.6,27.0$; IR (neat) $v_{\max }: 3025,2937,2855,1711,1671,1614,1441$, 1405, 1380, 1339, 1301, 1257, 1165, 1069, 948, 792, 749,
$703,684 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 326.1751$, found: 326.1748 .
methyl (1R,6R)-7-methyl-10-oxo-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (39)

a

c

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}: H e x a n e s, \mathrm{Rf}=0.33$ ) to obtain a colorless solid ( $106 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) in $99 \%$, and recrystallization by $20 \% \mathrm{EtOH}: \mathrm{H} 2 \mathrm{O}, \mathrm{mp}=64-65^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{ddt}, J=11.5,8.4,3.0 \mathrm{~Hz}$, 2 H ), 3.68 (dt, $J=5.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dt}, J=5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (dt, $J=5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=15.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.92$ (s, $3 \mathrm{H}), 2.91-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{dt}, J=22.9,7.9 \mathrm{~Hz}, 18 \mathrm{H})$, $0.65-0.45(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 207.3,207.0,167.5,146.7,144.6$, $141.5,137.0,134.4,93.3,93.3,67.1,66.4,50.8,50.7,46.1,45.5,40.4,39.7,32.8,32.3$, 30.5, 29.8, 7.4, 7.3, 2.8, 2.2; IR (neat) $v_{\text {max }}$ 2950, 2873, 1715, 1661, 1616, 1412, 1409,

1345, 1273, 1164, 1066, 1002, 868, 701, $670 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 336.19895$, found: 336.19859 .


The NOESY spectrum of the mixtures indicates the distinct peak to assign the major and minor isomers. The peak of singlet proton Mee at 2.93 ppm corresponds to the major isomer and the singlet proton Mee at 2.90 ppm corresponds to the minor isomer. Only the minor isomer shows the correlation with the triethylsilyl group which is assigned that the minor isomer product $\mathbf{3 9}$ is $\mathbf{a}$ and the major isomer is $\mathbf{c}$.

## methyl (1R,6R)-7-methyl-10-oxo-4-(triisopropylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (40)


a

c

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.32$ ) to obtain a white solid ( 82 $\mathrm{mg}, 0.22 \mathrm{mmol}$ ) in $68 \%$ yield, and recrystallization by $30 \% \mathrm{EtOH}: \mathrm{H} 2 \mathrm{O}, \mathrm{mp}=124-125^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{ddt}, J=15.6,8.4,3.1 \mathrm{~Hz}$, 2 H ), 3.70 (dt, $J=6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.65 (s, 3H), 3.64-3.63 (m, 1H), 3.62 (s, 3H), 3.60 (dd, $J=5.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.93$ - $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{dq}, J=15.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{q}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.13(\mathrm{qd}, J=14.3,7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 27 \mathrm{H}), 0.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 9 \mathrm{H})$; ${ }^{13}$ C NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.3$, 207.1, 167.4, 146.6, 142.7, 142.1, 135.8, 135.5, 94.0, 93.6, 67.3, 66.4, 50.8, 50.8, 46.1, 45.4, 41.1, 39.6, 33.9, 32.5, 31.6, 30.1, 18.9, 18.8, $18.8,18.5,11.2,10.9$; IR (neat) $v_{\text {max }}$ : 2941, 2864, 1716, 1664, 1616, 1438, 1415, 1344, 1273, 1164, 1070, 1013, 882, 753, $646 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 400.2278$, found: 400.2276 .

## ( E)-trimethyl(4-phenylbuta-1,3-dien-2-yl)silane (30k)

The compound was prepared from the known literature. ${ }^{27 a}$


The crude product was purified by flash column chromatography on silica gel (100 \% hexanes, $\mathrm{Rf}=0.53$ ). The product was obtained as a colorless oil ( $113 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) in 40\% yield.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 149.0, 137.8, 134.2, 130.7, 128.8, 128.7, 127.5, 126.4, -0.6; IR (neat) $v_{\text {max }}$ 2935, 2922, 2851, 1448, 1247, 961, 833, $752,692 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Si}\right) \mathrm{OH}[\mathrm{M}+\mathrm{OH}]^{-}: 219.1200$, found: 219.1200.

## methyl (1R,2R,6R)-7-methyl-10-oxo-2-phenyl-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (41)


a

c

The crude product was concentrated in vacuo and purified by flash column chromatography on silica gel ( $20 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.20$ ) to obtain a white solid ( 30 $\mathrm{mg}, 0.08 \mathrm{mmol}$ ) in $74 \%$ yield, and recrystallization by $30 \% \mathrm{EtOH}: \mathrm{H} 2 \mathrm{O}, \mathrm{mp}=154-155^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 11 \mathrm{H}), 6.28(\mathrm{dd}, J=7.5,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=7.3$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.67-3.66 (m, 1H), 3.49 (td, $J=4.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.96$ (s, 3H), 2.93 (dd, $J=$ $16.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.88 (dd, $J=15.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.41 (ddd, $J=15.6,4.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.28(\mathrm{dt}, J=16.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 203.8, 203.7, 167.7, 167.3, 146.7, 146.4, 145.6, 141.1, 139.5, 139.2, 137.4, 136.7, 128.9, 128.6, 128.1, 127.9, 127.4, 126.9, 94.9, 93.9, 73.6, 66.4, 53.2, 50.9, 50.9, 49.3, 46.9, 45.1, $40.8,40.2,32.0,29.5,-1.7,-2.4$; IR (neat) $v_{\max }: 3001,2946,2895,1711,1684,1598,1439$, 1329, 1240, 1153, 1074, 902, 832, 741, $696 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 370.1833$, found: 370.1829 .
methyl (1R,2R,6R)-7-methyl-10-oxo-2-phenyl-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (42)

a


C

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $20 \%$ EtOAc:Hexanes, $\mathrm{Rf}=0.24$ ) to obtain a colorless oil ( $29 \mathrm{mg}, 0.07 \mathrm{mmol}$ ) in $70 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.24$ (dd, $J=7.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.70(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dt}, J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{td}, J=4.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.97$ (s, 3H), $2.88(\mathrm{td}, J=16.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41$ (ddd, $J=15.8,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=$ $16.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 18 \mathrm{H}), 0.71-0.55(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 126 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 203.8,203.8,167.7,167.3,146.7,145.6,143.5,142.7,139.3,138.4,137.6$, 136.6, 128.9, 128.6, 128.1, 128.0, 127.4, 126.9, 95.1, 94.1, 73.7, 66.5, 53.2, 50.9, 50.8, $49.6,47.2,45.2,40.8,40.3,32.5,29.9,7.5,7.4,2.8,2.3$; IR (neat) $v_{\text {max: }}$ 2950, 2873, 1719, 1677, 1611, 1438, 1408, 1335, 1242, 1238, 1159, 1065, 1003, 916, 729, $699 \mathrm{~cm}^{-1}$; HRMS $(\mathbf{m} / \mathbf{z}):$ : ESI-FTICR) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 412.2303$, found: 412.2305.


The recovery of starting material from the oxidation reaction was leading to only the minor Isomer of product $\mathbf{4 2}$. The minor isomer product $\mathbf{4 2}$ was also assigned the regiochemistry using the COSY spectrum. The COSY spectrum indicates that the triplet of doublet proton $\mathbf{h}$ on the bridgehead carbon at 3.48 ppm correlates with the proton $\mathbf{d}$ on the bridgehead carbon at $3.80 \mathrm{ppm}, \mathrm{CH} 2$ proton $\mathbf{I}$ at 2.86 ppm , and $\mathbf{l}$ at 2.42 ppm . The doublet of doublet proton a at 6.17 ppm correlates with the proton $\mathbf{c}$ at 4.18 ppm , proton $\mathbf{l}$ at 2.42 ppm , and proton d on the bridgehead carbon at 3.80 ppm .

## Methyl (1R,2R,6R)-7-methyl-10-oxo-2-propyl-4-(triisopropylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (43)


a

b

c

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $20 \%$ EtOAc:Hexanes, $\mathrm{Rf}=0.40$ ) to obtain a white solid ( 224 $\mathrm{mg}, 0.53 \mathrm{mmol}$ ) in $85 \%$ yield, and recrystallization by $20 \% \mathrm{EtOH}: \mathrm{H} 2 \mathrm{O}, \mathrm{mp}=89-90^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(1 \mathrm{H}, \mathrm{s}), 6.17(1 \mathrm{H}, \mathrm{dd}, J=7.6,2.6 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s})$, $3.58(1 \mathrm{H}, \mathrm{dt}, J=5.7,2.9 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dd}, J=4.2,3.2 \mathrm{~Hz}), 2.94(3 \mathrm{H}, \mathrm{s}), 2.93-2.89(1 \mathrm{H}$, m), $2.77(1 \mathrm{H}, \mathrm{dd}, J=16.3,5.7 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{dt}, J=16.3,2.7 \mathrm{~Hz}), 1.49-1.40(3 \mathrm{H}, \mathrm{m})$,
$1.26-1.23(1 \mathrm{H}, \mathrm{m}), 1.20-1.12(3 \mathrm{H}, \mathrm{m}), 1.05(18 \mathrm{H}, \mathrm{dd}, J=11.9,7.4 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{t}, J=$ 7.0 Hz ); ${ }^{13}$ C NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.7,167.6,147.1,146.6,132.8,94.8,67.0,50.8$, $49.2,42.6,41.0,35.1,30.1,21.3,18.9,18.8,14.1,11.3$; IR (neat) $v_{\max }: 3011,2943,2864$, $1717,1680,1610,1443,1438,1408,1334,1239,1160,1065,882,752,647,645 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 442.2748$, found: 442.2751 .
(E)-dimethyl(phenyl)(6-phenylhexa-1,3-dien-2-yl)silane (30n)


The crude product was purified by flash column chromatography on silica gel (100 \% hexanes, $\mathrm{Rf}=0.34$ ). The product was obtained as a red/orange oil ( $547 \mathrm{mg}, 1.87 \mathrm{mmol}$ ) in $81 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.17(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), 2.33 - 2.29 (m, 2H), 0.39 (s, 6H); ${ }^{13}$ C NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 147.1,141.9$, 138.6, 135.1, 134.1, 132.9, 129.1, 128.6, 128.4, 127.9, 125.9, 35.9, 35.3, -2.0; IR (neat) $v_{\max }$ : 3065, 3024, 2954, 2853, 1453, 1428, 1248, 1110, 967, 815, 702, $696 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 315.1539$, found: 315.1539.
methyl (1R,2R,6R)-4-(dimethyl(phenyl)silyl)-7-methyl-10-oxo-2-phenethyl-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (44)

a

b

The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.39$ ) to obtain a pale yellow oil ( $131 \mathrm{mg}, 0.29 \mathrm{mmol}$ ) in $89 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.49-7.16(\mathrm{~m}, 11 \mathrm{H}), 6.35(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dt}, J=12.2,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.71$ (dd, $J=16.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (ddd, $J=13.8,10.0,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{dt}, J=16.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddt}, J=13.4,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.54 (dddd, $J=13.7,9.8,7.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13}$ C NMR ( 126 MHz , $\mathrm{CDCl}_{3}$ ): 206.9, 205.5, 168.3, 167.7, 147.0, 145.7, 142.1, 137.6, 135.8, 134.2, 129.4, 128.5, 128.4, 128.0, 125.9, 93.3, 90.8, 66.5, 50.8, 48.9, 41.9, 39.5, 34.4, 34.3, 28.6, -3.1, -3.8; IR (neat) $\nu_{\max }: 3008,2946,2916,1714,1631,1608,1411,1409,1334,1239,1157,1073$, 1066, 809, 747, $698 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 482.2122$, found: 482.2116.

## Oxidative Functionalization of the Bridgehead Carbon of (4+3) Cycloadducts Obtained from Oxidopyridinium Ions

## General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either an AVIII-500 ( ${ }^{1} \mathrm{H}$ NMR: 500 MHz; ${ }^{13} \mathrm{C}$ NMR: 100 MHz ) or an AVIII-600 ( ${ }^{1} \mathrm{H}$ NMR: $600 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR: 125 MHz ) spectrometer. Chemical shifts are reported in ppm ( $\delta$ ) relative to tetramethylsilane (TMS) as an internal standard $\left[\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}\right.$ NMR ( 0.00 ppm ), ${ }^{13} \mathrm{C}$ NMR ( 77.16 ppm )]. When $\mathrm{CDCl}_{3}$ does not contain tetramethylsilane, residual traces of the hydrogenated solvent were used as an internal reference ( 7.26 ppm ). Signal splitting patterns are indicated as such: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin = quintet, sex = sextet, hept = heptet, $\mathrm{m}=$ multiplet, dd = doublet, ddd = doublet of doublet of doublet, dddd $=$ doublet of doublet of doublet of doublet, $\mathrm{td}=$ triplet of doublet, etc. Melting points of crystalline compound were determined with a Fisher-Johns melting point apparatus and are uncorrected. Infrared spectra were recorded on a Thermo Nicolet Summit Pro FT-IR spectrometer and characteristic peaks were highlighted. High-Resolution Mass Spectrometry (HR-MS) was recorded on a Bruker 12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source (performed by College of Science Major Instrumentation Center, Old Dominion University).

All reactions were carried out in oven-dried glassware, with a magnetic stir bar, and under an atmosphere of argon (balloon) unless otherwise noted. N -iodosuccinimide was purchased from Ambeed and was used as received. ACS reagent grade hexanes and ethyl acetate were purchased from Fisher and were used as received. ACS reagent grade dichloromethane was purchased from Fisher and dried over $4 \AA$ molecular sieves. ACS grade acetonitrile was purchased from Fisher and was distilled under an atmosphere of nitrogen over calcium hydride. ACS reagent grade triethylamine was purchased from Sigma Aldrich and was distilled under and atmosphere of nitrogen over calcium hydride. ACS grade hexafluoroisopropanol was purchased from Halocarbon and dried over $4 \AA$ molecular sieves. Analytical thin layer chromatography (TLC) was performed on TLC Silica gel $60 \mathrm{~F}_{254}$ plates and visualized with a handheld UV lamp ( 254 nm ). The plates were stained with iodine or vanillin for further evaluation. Flash chromatography was performed using 40-63 micron silica gel purchased from ZeoChem.

Single crystal X-ray diffraction data was collected on a Bruker X8 Prospector diffractometer equipped with an Apex II CCD area detector (Bruker AXS, Madison, WI, USA) using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation from a microfocus source ( $\lambda=1.54178 \AA$; beam power: 45 $\mathrm{kV}, 0.65 \mathrm{~mA}$ ). A full sphere of unique data was collected to greatest completeness possible with a 3-circle goniometer using strategies of scans about the omega and phi axes. The Bruker Apex3 software suite was used for unit cell determination, data collection, data reduction, absorption correction and scaling, and space group determination. ${ }^{6}$

[^1]The crystal structure was solved by direct methods as implemented in SHELXS ${ }^{7}$ and refined by full-matrix least squares refinement against $\left|\mathrm{F}^{2}\right|$ using SHELXL v.2017. ${ }^{8}$ Olex2 was used as an interface for model building and refinement programs. ${ }^{9}$ Nonhydrogen atoms were located from the difference map and refined anisotropically. Hydrogen atoms were placed in calculated positions, and their thermal parameters and coordinates were constrained to ride on the carrier atoms. Hydrogen atoms on methyl groups were refined using a riding-rotating model.

## 2. Experimental Procedures

### 2.1 General Procedure for Preparation of Starting Materials

The starting materials were synthesized according to the known literature procedure. ${ }^{10}$ To an oven-dried 15 mL seal tube (CG-1880-21 pressure vessel) equipped with a magnetic stir bar was added $N$-methyloxidopyridinium ion ( $0.63 \mathrm{mmol}, 1.0$ equiv) and diene ( 1.9 mmol , 3.0 equiv) in acetonitrile ( $6.3 \mathrm{~mL}, 0.1 \mathrm{M}$ ) at room temperature. The mixture was then degassed with an argon balloon for 5 min followed by addition of triethylamine ( 1.9 mmol , 3.0 equiv), sealed with screw cap, and heated for 24 h at $85^{\circ} \mathrm{C}$ in an oil bath. Upon heating for 1 h , the reaction solution changed in color from pale-yellow to brown. After 24 h , the reaction mixture was cooled to room temperature, quenched with 16 drops of $10 \% \mathrm{HCl}$, and extracted with dichloromethane ( $3 \times 15 \mathrm{~mL}$ ). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by flash chromatography on silica gel ( $20-30 \%$ EtOAc:Hexanes) to obtain the respective cycloadduct starting material as an isomeric mixture.

### 2.2 General Procedure for Synthesis of Products



To an oven-dried 10 mL RBF equipped with a magnetic stir bar was added an isomeric mixture of cycloadduct ( $100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) in hexafluoroisopropanol ( 4.0 mL ,

[^2]0.06 M ) at room temperature. The solution was cooled to $0^{\circ} \mathrm{C}$, and upon addition of N Iodosuccinimide ( $85.5 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.5$ equiv), the mixture changed in color from paleyellow to orange/brown. The mixture was allowed to warm to room temperature and stir for the indicated time ( $1-23 \mathrm{~h}$ ). Reactions were monitored by TLC ( $20-30 \%$ EtOAc:Hexanes) until all starting material was consumed. Upon completion, the reaction was quenched with water to give a dark red solution, and the resulting mixture was extracted with dichloromethane ( $3 \times 5 \mathrm{~mL}$ ). The combined organic layers were washed with $\mathrm{NaHCO}_{3}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by flash chromatography on silica gel ( $20-30 \%$ EtOAc:Hexanes) to obtain the product.

## Methyl (1R,2R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2 phenethyl-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (45a) ${ }^{5}$



1 mmol scale

To an oven-dried 25 mL RBF equipped with a magnetic stir bar was added cycloadduct ( $400 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv, isomeric ratio of $81: 13: 6$ ) in hexafluoroisopropanol ( 11.1 $\mathrm{mL}, 0.09 \mathrm{M}$ ) at room temperature. The solution was cooled to $0^{\circ} \mathrm{C}$, and upon addition of $N$-Iodosuccinimide ( $337.5 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv), the mixture changed in color from pale-yellow to orange/brown. The mixture was allowed to warm to room temperature and stirred for 21 h . The reaction was monitored by TLC ( $30 \%$ EtOAc:Hexanes) until all starting material was consumed. Upon completion, the reaction was quenched with water to give a dark red solution, and the resulting mixture was extracted with dichloromethane ( 3 x 15 mL ). The combined organic layers were washed with $\mathrm{NaHCO}_{3}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by flash chromatography on silica gel ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.72$ ) to obtain the product as a pale-yellow solid ( 300 mg , $0.53 \mathrm{mmol}, 53 \%$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave a white solid, $\mathrm{mp}=150-151^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.30-7.27(2 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{s}), 7.20-7.17(3 \mathrm{H}, \mathrm{m})$, $6.19(1 \mathrm{H}, \mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}), 4.86(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 2.90$ $-2.86(2 \mathrm{H}, \mathrm{m}), 2.82-2.76(4 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{ddd}, J=13.0,10.5,6.0 \mathrm{~Hz}), 2.29(1 \mathrm{H}$, dd, $J=17.0,3.5 \mathrm{~Hz}), 1.70(1 \mathrm{H}$, dddd, $J=13.5,10.0,7.5,6.0 \mathrm{~Hz}), 1.50(1 \mathrm{H}$, dddd, $J=13.5$, $10.0,8.0,6.0 \mathrm{~Hz}), 0.11(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 199.8, 166.8, 146.4, 143.8, $141.7,134.0,128.5,128.5,126.1,121.5(\mathrm{q}, J=286.9 \mathrm{~Hz}), 121.2(\mathrm{q}, J=288.4 \mathrm{~Hz}), 97.4$, 93.8, 71.5 (hept, $J=33.2 \mathrm{~Hz}$ ), 51.2, 49.4, 43.3, 36.6, 34.8, 34.6, 34.1, -1.2; IR $\left(\mathrm{CHCl}_{3}\right)$ $\nu_{\max }: 3030,2954,2918,1739,1695,1628,1365,1247,1245,1187,1103,1058,998,837$,

737, $691 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 586.1819, found: 586.1813.
methyl (1R,2R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2 phenethyl-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (45a)


The crude product was concentrated in vacuo, and purified by flash column chromatography on silica gel ( $30 \% \mathrm{EtOAc}$ :Hexanes, $\mathrm{Rf}=0.61$ ) to obtain a white solid ( 35 $\mathrm{mg}, 0.06 \mathrm{mmol}$ ) in $48 \%$ yield, and recrystallization by $20 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{mp}=150-151^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.30-7.27(2 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{s}), 7.20-7.17(3 \mathrm{H}, \mathrm{m})$, $6.19(1 \mathrm{H}, \mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}), 4.86(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 2.90$ $-2.86(2 H, ~ m), 2.82-2.76(4 H, m), 2.63(1 H, d d d, J=13.0,10.5,6.0 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{dd}$, $J=17.0,3.5 \mathrm{~Hz}), 1.70(1 \mathrm{H}$, dddd, $J=13.5,10.0,7.5,6.0 \mathrm{~Hz}), 1.50(1 \mathrm{H}$, dddd, $J=13.5$, $10.0,8.0,6.0 \mathrm{~Hz}), 0.11(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 199.8, 166.8, 146.4, 143.8, $141.7,134.0,128.5,128.5,126.1,121.5(\mathrm{q}, J=286.9 \mathrm{~Hz}), 121.2(\mathrm{q}, J=288.4 \mathrm{~Hz}), 97.4$, 93.8, 71.5 (hept, $J=33.2 \mathrm{~Hz}$ ), 51.2, 49.4, 43.3, 36.6, 34.8, 34.6, 34.1, -1.2; IR $\left(\mathrm{CHCl}_{3}\right)$ $\nu_{\text {max }}: 3030,2954,2918,1739,1695,1628,1365,1247,1245,1187,1103,1058,998,837$, $737,691 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 586.1819, found: 586.1813.

## Methyl (1R,2R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2-phenethyl-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (46a)



According to the general procedure, the respective cycloadduct (isomeric ratio of 81:15:4) yielded 46 a as a white solid ( $66 \mathrm{mg}, 0.11 \mathrm{mmol}, 54 \%$ ) after purification by flash chromatography ( $30 \% \mathrm{EtOAc}:$ Hexanes, $\mathrm{R}_{\mathrm{f}}=0.68$ ). Recrystallization ( $20 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave white solid, $\mathrm{mp}=93-94^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.27(2 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.20-7.17(3 \mathrm{H}, \mathrm{m})$, $6.17(1 \mathrm{H}, \mathrm{dd}, J=7.6,3.0 \mathrm{~Hz}), 4.89(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.67$ $(3 \mathrm{H}, \mathrm{s}), 2.91(1 \mathrm{H}, \mathrm{qd}, J=7.5,3.9 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.80(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}$, dd, $J=8.0,3.5 \mathrm{~Hz}), 2.66(1 \mathrm{H}, \mathrm{ddd}, J=14.0,10.5,6.0 \mathrm{~Hz}), 2.26(1 \mathrm{H}, \mathrm{dd}, J=16.5,3.0 \mathrm{~Hz})$, $1.72(1 \mathrm{H}$, dddd, $J=13.1,10.3,7.0,5.9 \mathrm{~Hz}), 1.51(1 \mathrm{H}$, dddd, $J=13.6,10.2,7.8,5.8 \mathrm{~Hz})$, $0.92(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 0.63(6 \mathrm{H}, \mathrm{tdd}, J=22.5,15.1,7.5 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ( 151 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 199.9,166.8,146.3,145.0,141.7,131.0,128.6,128.6,126.1,121.6(\mathrm{q}, J=288.4$ $\mathrm{Hz}), 121.2(\mathrm{q}, J=285.4 \mathrm{~Hz}), 97.3,93.6,71.5($ hept, $J=32.2 \mathrm{~Hz}), 51.3,49.5,43.6,37.0$, $34.9,34.8,34.2,7.6,3.2$; IR $(\mathrm{MeOH}) \nu_{\max }=3194,2969,2842,1734,1693,1639,1344$, 1287, 1186, 1098, 938, 877, 737, $696 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 628.2288$, found 628.2280 .
methyl (1R,2R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-2-octyl-10-oxo-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (47a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 82:14:4) yielded 47 a as a white solid ( $66 \mathrm{mg}, 0.12 \mathrm{mmol}, 46 \%$ ) after purification by flash chromatography ( $20 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.65$ ). Recrystallization ( $80 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave long, white needles, $\mathrm{mp}=78-79^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(1 \mathrm{H}, \mathrm{s}), 6.18(1 \mathrm{H}, \mathrm{dd}, J=7.6,3.0 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{td}$, $J=7.0,3.5 \mathrm{~Hz}), 2.78(3 \mathrm{H}, \mathrm{s}), 2.27(1 \mathrm{H}, \mathrm{dd}, J=16.5,3.0 \mathrm{~Hz}), 1.44-1.16(14 \mathrm{H}, \mathrm{m}), 0.88$ $(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 0.10(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 199.9,166.9,146.3,144.4$, $133.3,121.6(\mathrm{q}, J=288.4 \mathrm{~Hz}), 121.2(\mathrm{q}, J=280.9 \mathrm{~Hz}), 97.6,93.9,71.6$ (hept, $J=34.7$ $\mathrm{Hz}), 51.3,49.6,43.9,36.6,34.8,32.8,32.0,29.6,29.4,27.8,22.8,14.2,-1.1$; IR $\left(\mathrm{CHCl}_{3}\right)$ $\nu_{\text {max }}$ : 2931, 2922, 2853, 1734, 1676, 1641, 1361, 1279, 1234, 1188, 1102, 1070, 829, 763, $687 \mathrm{~cm}^{-1} ;$ HRMS $(\mathbf{m} / \mathbf{z})$ : calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 572.2625$, found: 572.2623.
methyl (1R,2R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-2-octyl-10-oxo-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (48a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 89:9:2) yielded 48a as a white solid ( $72 \mathrm{mg}, 0.12 \mathrm{mmol}, 52 \%$ ) after purification by flash chromatography ( $20 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.60$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave long, white needles, $\mathrm{mp}=66-67^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21(1 \mathrm{H}, \mathrm{s}), 6.15(1 \mathrm{H}, \mathrm{dd}, J=7.6,3.0 \mathrm{~Hz}), 4.88(1 \mathrm{H}$, hept, $J=5.9 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.59(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}), 2.87-2.81(2 \mathrm{H}, \mathrm{m}), 2.79(3 \mathrm{H}, \mathrm{s}), 2.24$ $(1 \mathrm{H}, \mathrm{dd}, J=16.5,3.0 \mathrm{~Hz}), 1.48-1.17(14 \mathrm{H}, \mathrm{m}), 0.91(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 0.88(3 \mathrm{H}, \mathrm{t}, J=$ $6.6 \mathrm{~Hz}), 0.68-0.56(6 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 199.9,166.8,146.1,145.6$, $130.2,121.5(\mathrm{q}, J=285.4 \mathrm{~Hz}), 121.2(\mathrm{q}, J=285.4 \mathrm{~Hz}), 97.6,93.7,71.5(\mathrm{hept}, J=33.2$ $\mathrm{Hz}), 51.2,49.6,44.1,36.9,34.7,33.1,32.0,29.6,29.4,27.9,22.8,14.2,7.5$; IR (neat) $v_{\text {max }}$ = 2928, 2919, 2853, 1731, 1677, 1642, 1358, 1278, 1234, 1189, 1101, 1069, 1004, 872, $688 \mathrm{~cm}^{-1} ;$ HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 614.3095$, found 614.3096.
methyl (1R,2R,6R)-2-(3-ethoxy-3-oxopropyl)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-4-(trimethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9carboxylate (49a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 80:16:4) yielded 49a as a pale-yellow oil ( $56 \mathrm{mg}, 0.10 \mathrm{mmol}, 44 \%$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.63$ ).

[^3]methyl (1R,2R,6R)-2-(3-ethoxy-3-oxopropyl)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-4-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9carboxylate (50a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 83:16:1) yielded 50a as a white solid ( $62 \mathrm{mg}, 0.10 \mathrm{mmol}, 38 \%$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.66$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave short, white needles, $\mathrm{mp}=87-88^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(1 \mathrm{H}, \mathrm{s}), 6.13(1 \mathrm{H}, \mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}), 4.87(1 \mathrm{H}$, hept, $J=5.9 \mathrm{~Hz}), 4.14(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,3.6 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}), 2.81(3 \mathrm{H}, \mathrm{s}), 2.47(1 \mathrm{H}, \mathrm{ddd}, J=16.2,9.6,6.6$ $\mathrm{Hz}), 2.37(1 \mathrm{H}, \mathrm{ddd}, J=15.0,9.0,6.0 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=16.6,3.0 \mathrm{~Hz}), 1.70-1.56(2 \mathrm{H}$, $\mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 0.69-0.59(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathbf{C}$ NMR ( 151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 199.7,173.0,166.7,146.3,144.1,131.7,121.5(\mathrm{q}, J=286.9 \mathrm{~Hz}), 121.2$ $(\mathrm{q}, J=286.9 \mathrm{~Hz}), 97.1,93.6,71.5(\mathrm{hept}, J=33.2 \mathrm{~Hz}), 60.6,51.3,49.1,43.2,37.0,34.8$, $32.4,27.9,14.3,7.5,3.1$; IR (neat) $v_{\max }=2965,2865,1732,1681,1640,1345,1236,1189$, 1074, 1057, 1008, 877, $688 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{Si}\right) \mathrm{H}$ $[\mathrm{M}+\mathrm{H}]^{+}: 602.2367$, found: 602.2366 .
methyl (1R,2S,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2-phenethyl-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (51a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 46:54) yielded 51a as a white cotton ( $16 \mathrm{mg}, 0.03 \mathrm{mmol}, 16 \%$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.63$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave a white cotton, $\mathrm{mp}=129-130^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{s}), 7.21-7.16(3 \mathrm{H}, \mathrm{m})$, $5.92(1 \mathrm{H}, \mathrm{ddd}, J=11.7,8.2,2.9 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{ddd}, J=12.4,9.3,3.4 \mathrm{~Hz}), 4.80(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 2.84(1 \mathrm{H}, \mathrm{td}, J=7.7,4.0 \mathrm{~Hz}), 2.81(3 \mathrm{H}$,
s), $2.80-2.75(2 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}$, ddd, $J=13.8,10.0,5.9 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{dt}, J=16.3,3.2$ $\mathrm{Hz}), 1.76(1 \mathrm{H}$, dddd, $J=13.4,10.1,7.0,5.9 \mathrm{~Hz}), 1.57(1 \mathrm{H}$, dddd, $J=13.9,10.1,8.1,5.9$ $\mathrm{Hz}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 199.7, 166.8, 147.0, 141.7, 136.8, 128.5, 126.1, 121.6 $(\mathrm{q}, J=289.9 \mathrm{~Hz}), 121.2(\mathrm{q}, J=285.4 \mathrm{~Hz}), 98.1,93.5,71.5(\mathrm{hept}, J=34.7 \mathrm{~Hz}), 51.3,50.2$, $42.0,34.9,34.6,34.3,34.1 ; \mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \nu_{\max }=2953,2864,1702,1685,1635,1439,1334$, 1232, 1187, 1096, 1058, 1009, 876, 753, $688 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{NO}_{4}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 514.1423$, found: 514.1424.

## methyl ( $1 R, 2 R, 6 R$ )-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2-phenethyl-7-azabicyclo[4.3.1]dec-8-ene-9-carboxylate (53a-b)




According to the general procedure, the respective cycloadduct (isomeric ratio of 45:55) yielded 53a-b as a white solid ( $10 \mathrm{mg}, 0.02 \mathrm{mmol}, 33 \%$, isomeric ratio of $63: 37$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.84$ ).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(1 \mathrm{H}, \mathrm{s})$ minor isomer, $7.33(1 \mathrm{H}, \mathrm{s})$ major isomer, 7.28 $-7.24(4 \mathrm{H}, \mathrm{m}), 7.20-7.14(6 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}$, hept, $J=5.9 \mathrm{~Hz})$ major isomer, $4.46(1 \mathrm{H}$, hept, $J=5.9 \mathrm{~Hz}$ ) minor isomer, $3.81(1 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s})$ major isomer, 3.69 $(3 \mathrm{H}, \mathrm{s})$ minor isomer, $3.38(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 2.96(3 \mathrm{H}, \mathrm{s})$ major isomer, $2.93(3 \mathrm{H}, \mathrm{s})$ minor isomer, $2.86-2.59(4 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dt}, J=14.8,3.8 \mathrm{~Hz}), 2.18-2.11(1 \mathrm{H}, \mathrm{m})$, $2.05-1.91(3 \mathrm{H}, \mathrm{m}), 1.89-1.73(4 \mathrm{H}, \mathrm{m}), 1.68-1.58(3 \mathrm{H}, \mathrm{m}), 1.53-1.47(1 \mathrm{H}, \mathrm{m}), 1.38$ ( 1 H , dddd, $J=13.5,9.8,7.1,6.0 \mathrm{~Hz}), 1.29-1.22(2 \mathrm{H}, \mathrm{m}), 1.05(1 \mathrm{H}, \mathrm{dt}, J=14.3,11.2 \mathrm{~Hz})$; ${ }^{13}$ C NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.6,200.9$, 195.0, 167.5, 167.0, 164.8, 146.7, 145.4, $142.7,142.2,142.1,139.9,134.1,130.9,128.5,128.5,128.5,128.4,126.0,125.9,125.8$, $121.6(\mathrm{q}, J=284.8 \mathrm{~Hz}), 121.2(\mathrm{q}, J=284.9 \mathrm{~Hz}), 112.6,101.3$, 96.1 , 94.5 , 94.4, 71.1 (hept, $J=32.6 \mathrm{~Hz}$ ), $51.5,51.3,51.1,50.3,48.6,44.6,44.6,42.4,38.7,38.3,38.3,36.2$, $35.2,35.0,34.9,34.8,34.6,33.9,33.0,31.6,30.9,29.6,26.6,21.2,20.8,19.4$; IR (CHCl3) $\nu_{\text {max }}=3023,2858,1708,1637,1630,1537,1439,1252,1196,1188,1097,871,749,687$ $\mathrm{cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 516.1580$, found: 516.1575.
methyl (1R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-3-(triethylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (54a/54c)


According to the general procedure, the respective cycloadduct (isomeric ratio of 41:59) yielded $\mathbf{5 4 a} / \mathrm{c}$ as a white solid ( $53 \mathrm{mg}, 0.11 \mathrm{mmol}, 35 \%$, isomeric ratio of $41: 59$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.70$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave short, white needles.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(1 \mathrm{H}, \mathrm{s})$ minor isomer, $7.14(1 \mathrm{H}, \mathrm{s})$ major isomer, 6.14 $(1 \mathrm{H}, \mathrm{dt}, J=8.6,3.4 \mathrm{~Hz})$ major isomer, $6.09(1 \mathrm{H}, \mathrm{dt}, J=8.3,2.8 \mathrm{~Hz})$ minor isomer, 4.91 $(2 \mathrm{H}$, hept, $J=6.5 \mathrm{~Hz})$ major and minor isomers, $3.76(1 \mathrm{H}, \mathrm{dd}, J=5.6,2.7 \mathrm{~Hz}), 3.71(1 \mathrm{H}$, $\mathrm{t}, J=4.2 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s})$ minor isomer, $3.68(3 \mathrm{H}, \mathrm{s})$ major isomer, $3.01-2.88(4 \mathrm{H}, \mathrm{m})$ major and minor isomers, $2.80(3 \mathrm{H}, \mathrm{s})$ minor isomer, $2.79(3 \mathrm{H}, \mathrm{s})$ major isomer, $2.26(1 \mathrm{H}$, ddd, $J=15.7,3.7,1.8 \mathrm{~Hz}), 2.23-2.16(2 \mathrm{H}, \mathrm{m})$ major and minor isomers, $2.11(1 \mathrm{H}, \mathrm{dq}, J$ $=15.4,2.7 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz})$ minor isomer, $0.87(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz})$ major isomer, $0.69-0.46(12 \mathrm{H}, \mathrm{m})$ major and minor isomers; ${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.6, 201.1, 166.8, 166.6, 146.9, 146.2, 144.9, 140.4, 133.5, 131.5, 121.6 (q, $J=283.9$ $\mathrm{Hz}), 121.2(\mathrm{q}, J=285.4 \mathrm{~Hz}), 97.5,96.6,94.7,94.5,71.8$ (hept, $J=33.2 \mathrm{~Hz}$ ), 51.3, 51.3, $47.2,46.0,38.4,37.2,35.0,34.9,33.4,33.2,7.5,7.4,3.2,2.2$; IR (neat) $v_{\max }=2966,2875$, 1733, 1674, 1642, 1364, 1247, 1242, 1187, 1102, 1062, 1016, 872, $690 \mathrm{~cm}^{-1} ;$ HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}: 502.1843$, found: 502.1847.

## methyl (1R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-3-(triisopropylsily))-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (55a/55c)



According to the general procedure, the respective cycloadduct (isomeric ratio of 46:54) yielded $\mathbf{5 5 a} / \mathrm{c}$ as a white solid ( $80 \mathrm{mg}, 0.15 \mathrm{mmol}, 59 \%$, isomeric ratio of $17: 83$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.55$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave short, white needles.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(1 \mathrm{H}, \mathrm{s})$ major isomer, $7.18(1 \mathrm{H}, \mathrm{s})$ minor isomer, 6.15 $(1 \mathrm{H}, \mathrm{dt},=8.8,3.3 \mathrm{~Hz})$ minor isomer, $6.09(1 \mathrm{H}, \mathrm{dt}, J=8.1,2.8 \mathrm{~Hz})$ major isomer, $4.99(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}$ ) major isomer, $4.88(1 \mathrm{H}$, hept, $=6.1 \mathrm{~Hz})$ minor isomer, $3.76(1 \mathrm{H}$, dd, $=$ $5.2,3.1 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{t}, J=4.3 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s})$ major isomer, $3.66(3 \mathrm{H}, \mathrm{s})$ minor isomer, $3.03-2.97(3 \mathrm{H}, \mathrm{m})$ major and minor isomers, $2.92(1 \mathrm{H}, \mathrm{ddd},=16.1,8.3,4.6 \mathrm{~Hz}), 2.87$ $(3 \mathrm{H}, \mathrm{s})$ major isomer, $2.81(3 \mathrm{H}, \mathrm{s})$ minor isomer, $2.32-2.28(1 \mathrm{H}, \mathrm{m}), 2.28-2.21(2 \mathrm{H}, \mathrm{m})$,
$2.16(1 \mathrm{H}, \mathrm{dq}, J=15.5,3.0 \mathrm{~Hz}) 1.20-1.11(6 \mathrm{H}, \mathrm{m})$ major and minor isomers, $1.06(18 \mathrm{H}$, dd, $J=9.5,7.2 \mathrm{~Hz})$ major isomer, $1.00(18 \mathrm{H}, \mathrm{dd},=23.6,7.4 \mathrm{~Hz})$ minor isomer; ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.7,201.1,166.8,166.6,146.9,146.1,142.8,140.7,132.6,132.5$, $121.5(\mathrm{q}, J=288.4 \mathrm{~Hz}), 121.2(\mathrm{q}, J=283.9 \mathrm{~Hz}), 97.6,96.5,94.5,94.4,71.6$ (hept, $J=33.2$ $\mathrm{Hz}), 51.3,46.9,45.7,39.4,37.3,35.4,34.9,34.3,33.7,19.1,19.0,18.8,18.5,11.6,10.8 ;$ IR (neat) $\nu_{\text {max }}=2955,2866,1734,1675,1641,1362,1340,1284,1242,1188,1101,877$, $659,656 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 566.2132, found: 566.2128.
methyl (1R,2R,6R)-4-(dimethyl(phenyl)silyl)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2-phenethyl-7-azabicyclo[4.3.1]deca-3,8-diene-9carboxylate (56a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 87:13) yielded 56a as a pale-yellow oil ( $63 \mathrm{mg}, 0.10 \mathrm{mmol}, 31 \%$ ) after purification by flash chromatography ( $30 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.63$ ).
${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.48(2 \mathrm{H}, \mathrm{m}), 7.40-7.34(3 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{t}, J=$ $7.4 \mathrm{~Hz}), 7.21-7.13(3 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{s}), 6.29(1 \mathrm{H}, \mathrm{dd}, J=7.6,3.0 \mathrm{~Hz}), 4.83(1 \mathrm{H}$, hept, $J$ $=5.9 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.66(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{qd}, J=7.5,3.8 \mathrm{~Hz}), 2.84(1 \mathrm{H}$, d, $J=16.6 \mathrm{~Hz}), 2.78(1 \mathrm{H}$, ddd, $J=14.1,10.3,6.4 \mathrm{~Hz}), 2.63(1 \mathrm{H}, \operatorname{ddd}, J=13.9,10.1,5.8$ $\mathrm{Hz}), 2.36(3 \mathrm{H}, \mathrm{s}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=16.5,3.0 \mathrm{~Hz}), 1.72(1 \mathrm{H}, \mathrm{dddd}, J=13.5,10.1,7.0,6.2$ $\mathrm{Hz}), 1.52(1 \mathrm{H}$, dddd, $J=13.6,10.0,7.7,5.8 \mathrm{~Hz}), 0.40(6 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz})$; ${ }^{13}$ C NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,166.9,146.5,145.4,141.6,137.2,134.2,132.6,129.8,128.6,128.6$, $128.3,126.2,121.5(\mathrm{q}, J=286.9 \mathrm{~Hz}), 121.2(\mathrm{q}, J=288.4 \mathrm{~Hz}), 96.9,93.6,71.5$ (hept, $J=$ 33.2 Hz ), 51.3, 49.3, 43.4, 36.7, 34.7, 34.3, 34.1, -2.8, -3.0; IR (neat) $\nu_{\text {max }}=3023,2951$, 1704, 1643, 1631, 1428, 1296, 1241, 1199, 1188, 1098, 1061, 765, 735, $687 \mathrm{~cm}^{-1}$; HRMS $(\mathbf{m} / \mathbf{z})$ : (ESI-FTICR) calcd for $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 648.1975$, found: 648.1982.
methyl (1R,2R,6R)-6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-7-methyl-10-oxo-2-propyl-4-(triisopropylsilyl)-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (57a)


According to the general procedure, the respective cycloadduct (isomeric ratio of 92:6:2) yielded 57 a as a white solid ( $90 \mathrm{mg}, 0.15 \mathrm{mmol}, 64 \%$ ) after purification by flash chromatography ( $20 \%$ EtOAc:Hexanes, $\mathrm{R}_{\mathrm{f}}=0.64$ ). Recrystallization ( $70 \% \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ) gave short, white needles, $\mathrm{mp}=126-127^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(1 \mathrm{H}, \mathrm{s}), 6.14(1 \mathrm{H}, \mathrm{dd}, J=7.4,2.7 \mathrm{~Hz}), 4.94(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.39(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.87(3 \mathrm{H}, \mathrm{s})$, $2.83(1 \mathrm{H}, \mathrm{qd}, J=7.4,4.1 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=16.5,2.8 \mathrm{~Hz}), 1.52(1 \mathrm{H}, \mathrm{dddd}, J=13.0$, $10.5,7.5,5.5 \mathrm{~Hz}), 1.47-1.33(2 \mathrm{H}, \mathrm{m}), 1.29-1.22(1 \mathrm{H}, \mathrm{m}), 1.16(3 \mathrm{H}$, hept, $J=7.8 \mathrm{~Hz})$, $1.07(18 \mathrm{H}, \mathrm{dd}, J=10.1,7.3 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $199.9,166.8,146.0,129.9,121.5(\mathrm{q}, J=285.7 \mathrm{~Hz}), 121.2(\mathrm{q}, J=283.9 \mathrm{~Hz}), 97.5,93.6$, 71.5 (hept, $J=33.4 \mathrm{~Hz}$ ), 51.2, 49.0, 44.2, 38.1, 35.2, 35.0, 20.9, 19.0, 18.9, 13.8, 11.6; IR $\left(\mathbf{C H C l}_{3}\right) \nu_{\max }=2948,2868,1701,1648,1641,1440,1340,1264,1198,1192,1101,1062$, 1001, 880, $734 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left(\mathrm{C}_{2} \mathrm{H}_{41} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{Si}\right) \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 608.2601, found: 608.2590.

## Tropane Skeleta from the Intramolecular Photocycloaddition of (4+3) Cycloadducts of Oxidopyridinium Ions and Dienes

## General Information

A Fisher $10 \times 75 \mathrm{~mm}$ disposable borosilicate tube was used to carry the photocycloaddition due to its convenience and the UV cutoff at $350 \mathrm{~nm} .{ }^{11}$ Nuclear Magnetic Resonance (NMR) spectroscopies were measured by Bruker DRX-500 ( 500 MHz ) and Bruker DRX-600 (600 MHz ) for ${ }^{1} \mathrm{H}$ (proton) and ${ }^{13} \mathrm{C}$ (carbon). Norell® ${ }^{508}$-up NMR tubes were used to measure NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR were reported in $\delta$ units, parts per million ( ppm ), relative to tetramethylsilane as an internal standard ( 0.00 ppm ). ${ }^{13} \mathrm{C}$ NMR were reported in ppm relative to ( 77.16 ppm ) chloroform-d. Infrared spectra were measured with a ThermoScientific Nicolet Summit PRO FTIR spectrometer with an EverestTM Diamond

[^4]ATR Accessory spectrometer either as a neat compound or using chloroform-d as a solvent. Melting points were measured with a Fisher-Johns melting point apparatus. Samples were further characterized with high-resolution mass spectrometry with an Apollo II ion source on a Bruker 10 Tesla APEX -Qe instrument, or with an Apollo II ion source on a Bruker 12 Tesla APEX -Qe FTICR-MS, or with a Bruker's TIMS-TOF pro with an ESI positive ion source, or with FTMS positive ion on an LTQ Orbitrap XL.

## General preparation procedure of (4+3) cycloadducts.



An oven-dried 15 mL seal tube equipped with a magnetic stir bar. At the room temperature, N -methyloxidopyridinium ion ( $0.32 \mathrm{mmol}, 1.0$ equiv.), diene ( $0.95 \mathrm{mmol}, 3.0$ equiv.) were added in acetonitrile ( $3.2 \mathrm{~mL}, 0.1 \mathrm{M}$ ), then degassed by argon for 5 min and triethylamine ( $132 \mu \mathrm{~L} \mathrm{mg}, 0.95 \mathrm{mmol}, 3.0$ equiv) was added. The mixture was heated at $85^{\circ} \mathrm{C}$ for 24 h by oil bath. After the reaction was completed, the mixture was cooled down to room temperature, and 8 drops of $10 \% \mathrm{HCl}$ aq. was added. The mixture was extracted by dichloromethane ( $3 \times 6 \mathrm{~mL}$ ) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by flash chromatography on silica gel (EtOAc:Hexanes) to afford the resulting (4+3)-cycloadducts. All of the starting materials are known and were published by our group previously. ${ }^{12}$

## General preparation procedure of photocycloadducts

[^5]A solution of vinylogous amide ( $200 \mathrm{mg}, 0.80 \mathrm{mmol}$ ) in acetonitrile ( 8 ml ) in a borosilicate tube. The tube was capped by a rubber septum and purged with an argon balloon for 5 mins, and then the argon balloon was removed. The reaction was irradiated (450-watt Hanovia medium pressure mercury lamp) in iced water bath for $0.5-3 \mathrm{~h}$. TLC analysis ( $50 \%$ EtOAc-hexanes) indicated the complete consumption of starting material. Evaporation of volatiles gave a brown oil. The resulting brown residue was purified by column chromatography ( $30-70 \%$ EtOAc-hexanes) to give cycloadduct.


Figure 1. Starting material before starting the reaction


Figure 2. Submerge the starting material into the $0^{\circ} \mathrm{C}$ bath


Figure 3. Starting material before closing the box and turned on the Hg lamp


Figure 4. The box for running the $[2+2]$ cycloaddition reaction

methyl 3,4,9-trimethyl-10-oxo-9-azatetracyclo[4.3.1.03,8.04,7]decane-7-carboxylate (68)

Colorless oil ( $2.5 \mathrm{~h}, 48 \mathrm{mg}, 96 \%$ yield; an 1 mmol scale was also performed, affording $\mathbf{8}$ in $79 \%$ yield, 197 mg ), column: Hexanes: $\mathrm{EtOAc}=60: 40 ;{ }^{1} \mathbf{H}$ NMR ( $800 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $3.80(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dtd}, J=11.5$, $1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.383(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.379(\mathrm{dd}, J=12.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.30(\mathrm{dd}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, \mathrm{J}=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.19$ (s,3H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 211.1,171.1,72.7,67.2,52.7,51.9,46.4,45.5$, $42.9,37.6,34.7,34.4,22.2,18.7$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v_{\max } 3052,2980,2948,1717,1438,1272$, 1029, 890, $697 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI) calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}\right) \mathrm{H}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 250.1438$, found: 250.1438 .


## methyl 9-methyl-10-oxo-5-phenethyl-9 azatetracyclo [4.3.1.0 ${ }^{3,8} .0^{4,7}$ ] decane-7carboxylate (70)

Colorless oil ( $16.8 \mathrm{mg}, 91 \%$ yield), column: Hexanes:EtOAc $=50: 50 .{ }^{1} \mathbf{H}$ NMR ( 600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{td}, J=7.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.50(\mathrm{ddd}, J=22.6,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.39-3.35 (m, 1H), $3.25(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{td}, J=7.6,3.6 \mathrm{~Hz}$, 0.5 H ), 2.76 (dd, $J=7.7,3.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.5(\mathrm{ddd}, J=13.8,9.2,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06$ (ddd, $J=14.5,8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (dtd, $J=14.4,8.6,5.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.83(\mathrm{ddt}, J=13.9,8.8,7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.74(\mathrm{dtd}, J=$ $14.1,9.1,5.8 \mathrm{~Hz}, 0.5 \mathrm{H}$ ), 1.66 (ddt, $J=14.3,9.7,7.1 \mathrm{~Hz}, 0.5 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 210.7,209.3,172.7,172.3,141.5,141.4,128.6,128.6,128.5,128.5,126.1$, $126.1,71.9,71.8,62.9,61.5,52.4,52.3,51.4,51.2,50.9,49.3,41.5,40.5,39.9,38.9,36.9$, $36.1,35.3,35.0,34.8,33.5,32.8,31.5,28.7,28.4,0.1$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max }=2982,2946$, 2848, 1707, 1435, 1276, 1242, 1232, 1196, 1130, 1025, 895, 747, $699 \mathrm{~cm}^{-1} ;$ HRMS (m/z): (ESI-FTICR) calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}\right) \mathrm{H}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 326.1751$, found: 326.1751 .


## methyl (3bS,7aS)-1-methyl-3-oxodecahydro-1H,3a ${ }^{1} \mathrm{H}$-1-aza-2,8-methanocyclobuta[de]biphenylene-3a ${ }^{1}$-carboxylate (72a)

Yellow oil ( 2.5 h , $32 \mathrm{mg}, 77 \%$ yield), column: Hexanes:EtOAc $=50: 50$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( 500 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 4.21(\mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.46$ (dd, $J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.02(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=19.4,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.57(\mathrm{~m} .3 \mathrm{H}), 1.43$ (dddd, $J=24.0,16.8$, $10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.04$ (qdd, $J=12.9,4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{qd}, J=$ $13.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 209.9,172.2,71.4,60.9,52.20,52.16$, $51.49,46.0,44.2,38.8,34.7,31.2,31.0,27.7,23.5,23.3$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v_{\max } 3061,2989$, 1708, 1425, 1254, 894, 773, $692 \mathrm{~cm}^{-1}$.; HRMS (m/z): (ESI) calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}\right) \mathrm{H}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 276.1594$, found: 276.1595 .

methyl 9-methyl-10-oxo-4-(triethylsilyl)-9-azatetracyclo [4.3.1.0 ${ }^{3,8} .0^{4,7}$ ] decane-7carboxylate (74b)

Colorless oil ( $9 \mathrm{mg}, 37 \%$ yield), column: Hexanes: $\mathrm{EtOAc}=70: 30 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=12.6,11.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=14.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.67-0.63(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 211.1,172.3$, $72.0,65.3,53.2,52.2,46.2,36.8,34.8,33.8,30.7,26.3,7.7,2.0,0.1 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right) v_{\max }=$ 2951, 2876, 1712, 1457, 1434, 1268, 1219, 1177, 1068, 1011, 907, $729 \mathrm{~cm}^{-1} ;$ HRMS (m/z): (ESI-FTICR) calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 358.1809$, found: 358.1809.


## methyl 9-methyl-10-oxo-4-(triisopropylsilyl)-9-azatetracyclo [4.3.1.0 3,8.0 $0^{4,7}$ ]decane-7-carboxylate (76b)

Colorless solid ( $4 \mathrm{mg}, 24 \%$ yield), $\mathrm{Mp}=61-63{ }^{\circ} \mathrm{C}$ (recrystallized in ethanol:water $=$ 80:20), column: Hexanes:EtOAc = 80:20. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.26(1 \mathrm{H}, \mathrm{d}, J=$ $0.8 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dt}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=6.8$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (ddd, $J=12.6,11.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.04(\mathrm{dd}, J=12.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{sept}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{dd}, J=12.9,7.4 \mathrm{~Hz}$, ${ }_{18 H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 211.9,172.6,71.0,66.0,53.5,52.2,46.2,37.7,34.7$, $34.2,32.1,26.1,19.4,19.3,11.5,0.1 \mathrm{ppm}$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max }=2943,2866,1712,1461$, 1267, 1216, 1176, 1068, 883, 749, $661 \mathrm{~cm}^{-1}$. HRMS (m/z): (ESI-FTICR) calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}\right) \mathrm{Na}+[\mathrm{M}+\mathrm{Na}]^{+}: 400.2278$, found: 400.2279.

methyl 4,9-dimethyl-10-oxo-9-azatetracyclo [4.3.1.0 ${ }^{3,8} .0^{4,7}$ ]decane-7-carboxylate (78a)

Colorless oil ( $28 \mathrm{mg}, 34 \%$ yield), column: Hexanes:EtOAc $=50: 50 .{ }^{\mathbf{1}} \mathbf{H}$ NMR ( 600 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 4.25(\mathrm{dd}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (ddd, $J=11.5,2.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 2.28(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=14.5,8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=12.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 210.6,171.2,72.0,60.5,53.8$, $52.0,43.4,43.1,43.0,35.0,32.9,28.9,22.3$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v_{\max }=2949,2790,1709,1439$, 1284, 1264, 1229, 1130, 1065, $750 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI) calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}\right) \mathrm{H}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 236.1281$, found: 236.1280.

methyl 3,9-dimethyl-10-oxo-9-azatetracyclo [4.3.1.0 $\left.{ }^{3,8} .0^{4,7}\right]$ decane-7-carboxylate (78b)

Starting material contained 2 isomers, the ratio is $1.2: 1(100 \mathrm{mg}, 0.43 \mathrm{mmol})$, the product was obtained as 2 isomers which are purified by flash chromatography to separate the 2 isomers. Colorless solid ( $21 \mathrm{mg}, 21 \%$ yield), $\mathrm{Mp}=45-46{ }^{\circ} \mathrm{C}$ (recrystallized in Hexanes:EtOAc =50:50), column: Hexanes:EtOAc $=50: 50 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (dddt, $J=11.2,3.9,1.9$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (ddd, $J=12.5,11.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dd, $J=13.8,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 211.1,172.3,72.9,68.8,52.3,49.5,46.3$, 44.1, 43.0, 35.7, 34.8, 27.2, 25.9; IR (neat) $v_{\max }=2944,2792,1702,1439,1262,1214$, $1114,1028,906,751,661 \mathrm{~cm}^{-1} ;$ HRMS (m/z): (ESI) calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}\right) \mathrm{H}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 236.1281, Found: 236.1281.

methyl 4-adamantyl-9-methyl-10-oxo-9-azatetracyclo [4.3.1.0 3,8.04,7] decane-7carboxylate (80a)

Colorless solid ( $55 \mathrm{mg}, 32 \%$ yield), $\mathrm{Mp}=194-195^{\circ} \mathrm{C}$ (recrystallized in Hexanes:EtOAc $=50: 50$ ), column: Hexanes: $\mathrm{EtOAc}=80: 20 .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.20(\mathrm{dd}, J=$ $8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (ddd, $J=12.0,3.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.18(\mathrm{~m}$, $2 \mathrm{H}), 1.98(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=12.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.60-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{dq}, J=12.1,3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 210.8$, $172.4,71.9,60.9,54.9,53.5,52.0,42.1,37.0,37.0,36.0,35.4,34.9,28.5,28.1,25.3$; IR (neat) $v_{\max }=2900,2849,1699,1697,1435,1433,1261,1222,1121,1065,1021,892,750$ $\mathrm{cm}^{-1} ;$ HRMS (m/z): (ESI) calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3}\right) \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 378.2040$, found: 378.2042 .

methyl 5-((2-iodobenzoyl)oxy)-9-methyl-10-oxo-9azatetracyclo[4.3.1.0 $\left.{ }^{3,8} .0^{4,7}\right]$ decane-7- carboxylate (86a).

Yellow solid ( $2.5 \mathrm{~h}, 26 \mathrm{mg}, 62 \%$ yield), $\mathrm{mp}=120-122{ }^{\circ} \mathrm{C}$, column: Hexanes:EtOAc $=$ 30:70. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl} 3$ ): $\delta 8.00(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=$ $8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, J=8.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 205.3,171.1,165.2,141.5,133.1,131.3,128.0,94.2,73.5$, $71.5,62.7,53.4,52.4,41.0,35.4,34.6,27.4$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v \max 3065,2998,2997,2948$, 1726, 1267, 1236, 1142, 1101, 728, $701 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI) calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{INO}_{5}\right) \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 468.0302$, found: 468.0299.


## 3-acetyl-5-hydroxy-1-methylpyridin-1-ium trifluoromethanesulfonate (87)

The compound was prepared from the known literature. ${ }^{32,97}$
Pale orange solid ( $1.14 \mathrm{~g}, 91 \%$ ), $\mathrm{mp}=86-87^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ( 600 MHz , DMSO) $\delta 12.24$ $(1 \mathrm{H}, \mathrm{s}), 9.04(1 \mathrm{H}, \mathrm{s}), 8.67(1 \mathrm{H}, \mathrm{s}), 8.21(1 \mathrm{H}, \mathrm{s}), 4.35(3 \mathrm{H}, \mathrm{s}), 2.67(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR (151 MHz , DMSO) $\delta$ 194.1, 156.6, 137.0, 136.8, 135.9, 129.1, 123.9, 121.7, 119.6, 117.5, 48.3, 27.2; IR (neat) $v_{\max }=3091,1702,1631,1291,1216,1169,1022,750625 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}\right) \mathrm{H}^{+}: 303.1339$, found: 303.1337.


## 9-acetyl-3,4,7-trimethyl-7-azabicyclo[4.3.1]deca-3,8-dien-10-one (88)

Pale Orange solid ( $215 \mathrm{mg}, 92 \%$ ), $\mathrm{mp}=164-165{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.36$ $(1 \mathrm{H}, \mathrm{s}), 3.64(1 \mathrm{H}, \mathrm{ddd}, J=7.4,2.9,1.0 \mathrm{~Hz}), 3.43(1 \mathrm{H}$, ddd, $J=7.1,2.9,1.6 \mathrm{~Hz}), 2.99(3 \mathrm{H}$, s), $2.78(1 \mathrm{H}, \mathrm{dd}, J=15.5,7.4 \mathrm{~Hz}), 2.56(1 \mathrm{H}, \mathrm{dd}, J=14.5,7.1 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{d}, J=15.2$ $\mathrm{Hz}), 2.09(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR ( 151 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ) $\delta 207.7,192.0,150.4,132.9,126.8,106.5,67.0,46.1,40.9,38.1,37.2,24.2$, 23.5, 23.2; IR (neat) $v_{\max }=2932,1716,1554,1345,1258,1167,1035,749,633 \mathrm{~cm}^{-1}$; HRMS calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}\right) \mathrm{Na}^{+}: 256.1308$, found: 256.1308.

## General preparation procedure of $\mathbf{N}$-alkylation

To an oven-dried 50 mL RBF equipped with a magnetic stir bar was added ethyl 5hydroxynicotinate ( $1.0 \mathrm{~g}, 5.98 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL}, 0.30 \mathrm{M})$ at room temperature. The solution was white cloudy mixture. Upon addition of 2-bromobenzyl bromide ( $1.50 \mathrm{~g}, 5.98 \mathrm{mmol}, 1.0$ equiv), the mixture changed in color to pale-yellow and cloudy. The mixture was stirred at room temperature for 10 h , there was still $70 \%$ of starting material and was judged by TLC ( $10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). Then the mixture was refluxed for 14 h , the mixture was pale yellow and clear. The reaction was monitored by TLC ( $10 \%$ $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) until all starting material was consumed. Upon completion, the reaction was cooled down to room temperature, and the resulting mixture was concentrated under reduced pressure, and purified by flash chromatography on silica gel (5 - 10\% $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to obtain the product.


## 1-benzyl-3-(ethoxycarbonyl)-5-hydroxypyridin-1-ium bromide (89)

pale-yellow solid ( $1.81 \mathrm{~g}, 6.27 \mathrm{mmol}, 88 \%$ ). Recrystallization ( $10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) gave a pale-yellow solid, $\mathrm{mp}=43-44^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.32(1 \mathrm{H}, \mathrm{s}), 8.62(1 \mathrm{H}$, s), $8.46(1 \mathrm{H}, \mathrm{s}), 8.05-7.61(1 \mathrm{H}$, broad $), 7.53(2 \mathrm{H}, \mathrm{dd}, J=7.0,3.5 \mathrm{~Hz}), 7.44(3 \mathrm{H}, \mathrm{t}, J=3.3$ $\mathrm{Hz}), 5.93(2 \mathrm{H}, \mathrm{s}), 4.42(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 1.39(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 161.6, 159.7, 136.4, 133.7, 132.7, 132.1, 131.5, 130.3, 129.8, 129.5, 65.6, 63.2, 14.2; IR (Neat) $v_{\max }=2935,1728,1595,1455,1256,1239,1016,745,700 \mathrm{~cm}^{-1} ;$ HRMS $(\mathbf{m} / \mathbf{z})$ : (ESI-FTICR) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}]^{+}: 258.1125$, found: 258,1122 .


## 1-(2-bromobenzyl)-3-(ethoxycarbonyl)-5-hydroxypyridin-1-ium bromide (90)

pale-yellow solid ( $2.43 \mathrm{~g}, 5.83 \mathrm{mmol}, 98 \%$ ). Recrystallization ( $10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) gave a pale-yellow solid, $\mathrm{mp}=52-53^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.94-9.25(1 \mathrm{H}$, broad), $9.10(1 \mathrm{H}, \mathrm{s}), 8.58(1 \mathrm{H}, \mathrm{s}), 8.45(1 \mathrm{H}, \mathrm{s}), 7.92(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.66-7.65(1 \mathrm{H}, \mathrm{m}), 7.49$
$(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 7.42-7.33(1 \mathrm{H}, \mathrm{m}), 6.08(2 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 1.40(3 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.6,159.7,136.5,134.0,133.9,133.8,133.0$, $132.5,131.2,131.1,129.1,125.4,65.3,63.3,14.2$; IR (Neat) $v_{\max }=2935,1728,1594$, 1468, 1238, 1016, $750 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}_{3}$ [M] ${ }^{+}: 336.0230$, found: 336.0231 .


## 1-allyl-3-(ethoxycarbonyl)-5-hydroxypyridin-1-ium bromide (91)

pale-yellow solid ( $1.81 \mathrm{~g}, 6.27 \mathrm{mmol}, 99 \%$ ). Recrystallization ( $10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) gave a white solid, $\mathrm{mp}=122-123^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(1 \mathrm{H}, \mathrm{s}), 8.90-8.40$ ( 1 H , broad), $8.74(1 \mathrm{H}, \mathrm{s}), 8.50(1 \mathrm{H}, \mathrm{s}), 6.17(1 \mathrm{H}, \mathrm{ddt}, J=13.2,10.1,6.6 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{d}$, $J=17.0 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 5.43(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$, $1.43(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.5,159.0,136.1,134.5,132.7$, 131.5, 129.2, 125.1, 64.5, 63.3, 14.2; IR (Neat) $v_{\max }=2938,1728,1591,1459,1235,1017$, $750 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}]^{+}: 415.1864$, found: 415.1861.

## General preparation procedure of (4+3) cycloadducts

To an oven-dried 15 mL sealed tube equipped with a magnetic stir bar was added 1-(2-bromobenzyl)-3-(ethoxycarbonyl)-5-hydroxypyridin-1-ium bromide ( $150 \mathrm{mg}, 0.36 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(3.6 \mathrm{~mL}, 0.1 \mathrm{M})$ at room temperature. The mixture was then degassed with an argon balloon for 5 min followed by addition of 2,3-dimethyl-1,3-butadiene ( 410 $\mu \mathrm{L}, 3.6 \mathrm{mmol}, 10.0$ equiv) and potassium phosphate ( $76.4 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ equiv) then sealed with screw cap and heated for 16 h at $85^{\circ} \mathrm{C}$ in an oil bath. The reaction mixture was turned brown from pale yellow and clear upon the heating. The reaction was monitored by TLC ( $30 \%$ EtOAc:Hexane). The reaction was cooled down to room temperature and extracted with $\mathrm{Satd} \mathrm{NaHCO}_{3}(2 \times 8 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the resulting mixture was concentrated under reduced pressure, and purified by flash chromatography on silica gel ( $30 \%$ EtOAc:Hexane) to obtain the product.

ethyl 7-(2-bromobenzyl)-3,4-dimethyl-10-oxo-7-azabicyclo[4.3.1]deca-3,8-diene-9carboxylate (92)
pale-yellow oil ( $132 \mathrm{~g}, 0.32 \mathrm{mmol}, 88 \%$ ). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(1 \mathrm{H}, \mathrm{dd}, J=$ $7.9,1.1 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{td}, J=7.5,1.1 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{qd}, J=7.7,1.6 \mathrm{~Hz}), 4.45$ $(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}), 4.13(1 \mathrm{H}$, $\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=6.6,2.4 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{ddd}, J=7.0,2.7,1.6 \mathrm{~Hz})$, $2.69(2 \mathrm{H}, \mathrm{dt}, J=14.3,7.0 \mathrm{~Hz}), 2.23(2 \mathrm{H}, \mathrm{t}, J=14.6 \mathrm{~Hz}), 1.87(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.26$ $(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.6,167.1,146.7,135.0,133.4$, $132.5,129.9,129.4,128.1,125.6,123.8,94.1,63.9,59.3,56.4,46.3,38.3,37.2,23.6,23.3$, 14.7; IR (Neat) $v_{\max }=2932,1683,1671,1601,1440,1364,1275,1137,1077,1024,749$ $\mathrm{cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 440.0832$, found: 440.0831 .

ethyl 7-benzyl-3,4-dimethyl-10-oxo-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (93)
pale-yellow oil ( $364 \mathrm{mg}, 1.07 \mathrm{mmol}, 99 \%$ ). ${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50(1 \mathrm{H}, \mathrm{s})$, 7.35-7.28 (3H, m), 7.19-7.17 (2H, m), $4.36(1 H, d, J=15.2 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{d}, J=15.2$ $\mathrm{Hz}), 4.18(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{dq}, J=9.8,6.1 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{dd}, J=6.6$, $2.6 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{ddd}, J=7.1,2.7,1.5 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{dd}, J=14.7,7.1 \mathrm{~Hz}), 2.61(1 \mathrm{H}$, dd, $J=15.5,7.3 \mathrm{~Hz}), 2.19(2 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 1.83(3 \mathrm{H}, \mathrm{s}), 1.67(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.1$ $\mathrm{Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.5,167.1,146.6,135.7,132.3,129.0,128.2,127.6$, $125.5,93.4,63.4,59.2,56.7,46.2,38.2,36.9,23.5,23.2,14.6$; IR (Neat) $v_{\max }=2932$, 1682, 1671, 1598, 1430, 1345, 1275, 1132, 1074, $750 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 362.1727$, found: 362.1730 .

ethyl 7-allyl-3,4-dimethyl-10-oxo-7-azabicyclo[4.3.1]deca-3,8-diene-9-carboxylate (94)
pale-yellow oil ( $269 \mathrm{mg}, 0.93 \mathrm{mmol}, 89 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.35(1 \mathrm{H}, \mathrm{s})$, $5.75(1 \mathrm{H}, \mathrm{dddd}, J=15.4,10.1,6.8,5.3 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddd}, J=10.2,2.5,1.3 \mathrm{~Hz}), 5.23(1 \mathrm{H}$, ddd, $J=17.1,2.8,1.5 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz})$, $3.76(1 \mathrm{H}, \mathrm{ddt}, J=15.4,5.2,1.5 \mathrm{~Hz}), 3.71-3.67(2 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{ddd}, J=7.1,2.8,1.6$ $\mathrm{Hz}), 2.68(1 \mathrm{H}, \mathrm{dd}, J=14.7,7.1 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{dd}, J=15.5,7.3 \mathrm{~Hz}), 2.23(2 \mathrm{H}, J=22.5$, $15.6 \mathrm{~Hz}), 1.81(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$, ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.0,167.3,146.2,132.7,132.5,125.6,119.5,93.6,64.0,59.4,55.7,46.4,38.3,37.3$, 23.6, 23.3, 14.8; IR (Neat) $v_{\max }=2901,1683,1670,1598,1275,1155,1138,1075,764$ $\mathrm{cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 601.3248$, found: 601.3241. NOTE: Purification by silica plug instead of flash chromatography, it worked well.

## Spectral data of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR






WS-III-16B-C13



WS-II-39B3-C13



WS-2-22B2-C13



WS-III-21A-f21-25-C13



WS-II-41A2-C13


> WS-III-24a2



WS-III-24A-recrystal-C13


ws-III-8a


WS-III-8B-C13



WS-III-28A-C13



WS-III-48A-f25-C13



WS-III-47B-f26-C13



WS-IV-101b


WS-IV-101-c13




79a/b


79a/b



WS-2-26Bp


30a

WS-III-9Bb-C13




WS-III-22B-C13




WS-II-35A-C13*



WS-2-34B-C13


















$$
\begin{aligned}
& \text { goar inncoay } \\
& \text { Compound 55a/55c } \\
& { }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
\end{aligned}
$$






Compound 56a
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


謫 1 Uunar




｜





```
MSTV-12+[5.1.f
```















WS-V-6a-c13.2.fid
WS-V-6a-c13




WS-V-23.1.fid - WS-v-23







ws-v-22a


89





90

ws-v-24aa-c13






91

ws-v-33b-c13





```
ws-v-29
```





```
WS-V-39
```





NOESY of the Reduction of Compound 39


WS-III-10B-NOE


Zoom in NOESY of the Reduction of Compound 39



COSY of the Reduction of Compound 31b


## NOESY of the Reduction of Compound 31b




COSY of the Minor Isomer of Compound 42


WS-IV-56sm2-COSY


X-Ray Crystallographic of Compound 31a

Bond precision: $\mathrm{C}-\mathrm{C}=0.0039 \mathrm{~A}$
 Wavelength $=0.71073$

Cell: $\mathrm{a}=15.8194(10) \mathrm{b}=6.6586(5) \mathrm{c}=21.5171(15)$ alpha=90 beta=92.423(3) gamma=90
Temperature: 100 K

|  | Calculated | Reported |
| :---: | :---: | :---: |
| Volume | 2264.5(3) | 2264.5(3) |
| Space group | P 21/n | P 1 21/n 1 |
| Hall group | -P 2yn | -P 2yn |
| Moiety formul | 33 N O3 Si | C23 H33 N O3 Si |
| Sum formula | C23 H33 N O3 Si | C23 H33 N O3 Si |
| Mr | 399.59 | 399.59 |
| Dx,g cm-3 | 1.172 | 1.172 |
| Z | 4 | 4 |
| $\mathrm{Mu}(\mathrm{mm}-1)$ | 0.126 | 0.126 |
| F000 | 864.0 | 864.0 |
| F000 ${ }^{\prime}$ | 864.66 |  |
| h,k, $\operatorname{lmax}$ | 19,8,26 | 19,8,26 |
| Nref | 4645 | 4643 |
| Tmin, Tmax | 0.998,0.999 | 0.671,0.745 |
| Tmin' | 0.959 |  |
| Correction method= \# Reported T Limits: Tmin=0.671 Tmax=0.745 |  |  |
| AbsCorr $=$ MULTI-SCAN |  |  |
| Data completeness $=1.000$ |  | Theta $(\max )=26.375$ |
| R (reflections) $=0.0687(3090$ ) |  | $w R 2($ reflections $)=0.1236(4643)$ |
| $\mathrm{S}=1.086$ |  | Npar $=288$ |



Thermal ellipsoids are set at the 50\% probability level


## Compound 31c


Bond precision: $\mathrm{C}-\mathrm{C}=0.0018 \mathrm{~A}$
Cell: $\quad \mathrm{a}=7.0770(3) \quad$ Wavelength $=1.54178$

Temperature: 150 K



Thermal ellipsoids are set at the $50 \%$ probability level


## Compound 33



| Bond precision: C-C $=0.0052 \mathrm{~A}$ |  | Wavelength $=0.71073$ |  |
| :---: | :---: | :---: | :---: |
| Cell: | $\mathrm{a}=7.0328$ (11) | $\mathrm{b}=39.280$ (6) | $\mathrm{c}=9.0010(14)$ |
|  | alpha=90 | beta $=98.548$ (6) | ) gamma=90 |
| Temperature: | 100 K |  |  |
|  | Calculated |  | Reported |
| Volume | 2458.9(7) |  | 2458.9(6) |
| Space group | P 21/n |  | P 1 21/n 1 |
| Hall group | -P 2yn |  | -P 2yn |
| Moiety formula C23 H39 N O3 Si |  |  | C23 H39 N O3 Si |
| Sum formula | C23 H39 N O3 Si |  | C23 H39 N O3 Si |
| Mr | 405.64 |  | 405.64 |
| Dx, g cm-3 | 1.096 |  | 1.096 |
| Z | 4 | 4 | 4 |
| $\mathrm{Mu}(\mathrm{mm}-1)$ | 0.116 |  | 0.116 |
| F000 | 888.0 |  | 888.0 |
| F000' | 888.66 |  |  |
| h,k, $\operatorname{lmax}$ | 8,49,11 |  | 8,49,11 |
| Nref | 5074 |  | 5059 |
| Tmin, Tmax | 0.990,0.999 |  | 0.629,0.745 |
| Tmin' | 0.986 |  |  |
| Correction method= \# Reported T Limits: Tmin=0.629 Tmax $=0.745$ |  |  |  |
| AbsCorr $=$ MULTI-SCAN |  |  |  |

Data completeness= 0.997

R (reflections) $=0.0814$ (3292)
$\mathrm{S}=1.154$
Npar $=259$

Theta $(\max )=26.444$
$w R 2$ (reflections) $=0.1557$ (5059)


Thermal ellipsoids are set at the 50\% probability level


## Compound 37

Bond precision: $\mathrm{C}-\mathrm{C}=0.0049 \mathrm{~A} \quad$ Me $\quad$ Wavelength $=1.54178$

Cell: $\mathrm{a}=16.5870(19) \mathrm{b}=7.2183(9) \mathrm{c}=17.885(2)$ alpha=90 beta=105.909(10) gamma=90
Temperature: 100 K

|  | Calculated |  |
| :--- | :--- | :---: |
| Volume | 2059.4(4) | Reported <br> $2059.4(4)$ |
| Space group | $\mathrm{P} 21 / \mathrm{c}$ | $\mathrm{P} 121 / \mathrm{c} 1$ |
| Hall group | -P 2 ybc | -P 2 ybc |
| Moiety formula C21 H33 N O3 Si | C21 H33 N O3 Si |  |
| Sum formula | C21 H33 N O3 Si | C21 H33 N O3 Si |
| Mr | 375.57 | 375.57 |
| Dx,g cm-3 | 1.211 | 1.211 |
| Z | 4 | 4 |
| Mu (mm-1) | 1.158 | 1.158 |
| F000 | 816.0 | 816.0 |
| F000 | 819.14 |  |
| h,k,lmax | $18,8,19$ | $18,8,19$ |
| Nref | 2962 | 2950 |
| Tmin,Tmax | $0.933,0.977$ | $0.547,0.752$ |
| Tmin' | 0.601 |  |

Correction method= \# Reported T Limits: Tmin=0.547 Tmax=0.752
AbsCorr $=$ NONE

Data completeness $=0.996$

R (reflections) $=0.0545$ (2284)
$S=1.046$
Npar $=240$


Thermal ellipsoids are set at the $50 \%$ probability level


Crystal data and structure refinement for 80a.



Thermal ellipsoids are set at the $50 \%$ probability level


## X-Ray Crystallographic Data of Compound 47a



| Bond precision: $\mathrm{C}-\mathrm{C}=0.0019 \mathrm{~A}$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Cell: | $\mathrm{a}=7.2552(2)$ | $\mathrm{b}-13.8552(4)$ | $\mathrm{c}=15.7314(5)$ |
|  | alpha$=105.3326(16)$ | beta $=99.3403(19)$ | gamma $=101.6075(17)$ |

Temperature: 150 K

|  | Calculated | Reported |
| :--- | :--- | :--- |
| Volume | $1454.49(8)$ | $1454.49(8)$ |
| Space group | $\mathrm{P}-1$ | $\mathrm{P}-1$ |
| Hall group | -P 1 | -P 1 |
| Moiety formula | C26 H39 F6 N O4 Si | C26 H39 F6 N O4 Si |
| Sum formula | C26 H39 F6 N O4 Si | C26 H39 F6 N O4 Si |
| Mr | 571.67 | 571.67 |
| Dx, g cm-3 | 1.305 | 1.305 |
| Z | 2 | 2 |
| Mu (mm-1) | 1.335 | 1.335 |
| F000 | 604.0 | 604.0 |
| F000, | 606.71 |  |
| h, k, lmax | $9,17,19$ | $9,17,19$ |
| Nref | 5928 | 5717 |
| Tmin, Tmax | $0.880,0.961$ | $0.661,0.754$ |
| Tmin, | 0.563 |  |

Correction method= \# Reported T Limits: Tmin=0.661 Tmax $=0.754$
AbsCorr $=$ NONE

Data completeness $=0.964$
$R($ reflections $)=0.0340$ (5225)
$S=1.020$

Theta $(\max )=74.291$
$w R 2$ (reflections) $=0.0899$ (5717)

Npar $=349$


Thermal ellipsoids are set at the $50 \%$ probability level


## HPLC of Compound 31a, 31b, and 31c

Preparative sub-critical fluid chromatography (SFC-UV) - Rxn Mixture


Column: Chiralpak IC ( $21 \times 250 \mathrm{~mm}$, 5 um), Mobile phase: $15 \% \mathrm{MeOH} / 85 \% \mathrm{CO}_{2}$ at $80 \mathrm{~mL} / \mathrm{min}$, UV: 205 nm , BPR: 100 bar Sample in 10 ml of $\mathrm{MeOH}, 0.35 \mathrm{~mL}$ injection ELN 5025104-0047, tab: "Sep on Ic"

Preparative SFC-UV - $\mathbf{2}^{\text {nd }}$ pass purification of 47-F2


Column: Chiralpak IC ( $21 \times 250 \mathrm{~mm}, 5 \mathrm{~mm}$ ), Mobile phase: $15 \% \mathrm{MeOH} / 85 \% \mathrm{CO}_{2}$ at $80 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 205 \mathrm{~nm}, \mathrm{BPR}: 100$ bar Sample in MeOH, 0.6 mL injection ELN 5025104-0047, tab: "Sep 47-F2"


Column: Chiralpak IC ( $21 \times 250 \mathrm{~mm}$, 5 um ), Mobile phase: $15 \% \mathrm{MeOH} / 85 \% \mathrm{CO}_{2}$ at $70 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 205 \mathrm{~nm}, \mathrm{BPR}: 100 \mathrm{bar}$ Sample in MeOH, 1.7 mL injection ELN 5025104-0047, tab: "Sep 47-F3"

Preparative SFC-UV - $\mathbf{2}^{\text {nd }}$ pass purification of 47-F4


Column: Chiralpak IC ( $21 \times 250 \mathrm{~mm}$, 5 um ), Mobile phase: $15 \% \mathrm{MeOH} / 85 \% \mathrm{CO}_{2}$ at $70 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 205 \mathrm{~nm}, \mathrm{BPR}: 100 \mathrm{bar}$ Sample in MeOH, 1.5 mL injection


Analytical SFC-UV - Fractions
$\checkmark$ Slide $7 \rightarrow$ QC 47-F1
$\checkmark$ Slide $8 \rightarrow$ QC 47-F5 and 47-F5
$\checkmark$ Slide $9 \rightarrow$ QC 47-F2 ( $1^{\text {st }}$ and $2^{\text {nd }}$ passes)
$\checkmark$ Slide $10 \rightarrow$ QC 47-F3 (1 ${ }^{\text {st }}$ and $2^{\text {nd }}$ passes)
$\checkmark$ Slide $11 \rightarrow$ QC 47-F4 (1 ${ }^{\text {st }}$ and $2^{\text {nd }}$ passes)

Fractions 47-F2, F3 and F4 required the application of offline 2D-SFC to upgrade purity
sent $82 \mathrm{mg} 47-\mathrm{F} 1,3 \mathrm{mg} 47-\mathrm{F} 2,6 \mathrm{mg} 47-\mathrm{F} 3,2 \mathrm{mg} 47-\mathrm{F} 4,84 \mathrm{mg}$ 47-F5, and 3 mg 47-F6 to Harmata***







## Computational Methods

Density functional theory calculations were performed in Gaussian 16. ${ }^{13}$ The calculations were performed with M06-2X/6-311+G(d,p), ${ }^{14}$ using the SMD model ${ }^{15}$ of acetonitrile solvent. We previously used a similar method to explore the kinetics and thermodynamics of the $(4+3)$ cycloadditions of the oxidopyridinium ion 2 with other dienes [in that case we performed M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ single point energies in solution on geometries optimized with M06-2X/6$31 G(d)] .{ }^{16}$ The computations employed the ultrafine integration grid of Gaussian 16. Vibrational frequency calculations were performed to characterize each species as a minimum or transition state, and to determine thermochemical quantities. In order to reduce errors in entropy associated with the harmonic treatment of low-frequency vibrational modes, a quasi-harmonic correction ${ }^{17}$ was applied, in which all vibrational frequencies less than $100 \mathrm{~cm}^{-1}$ were raised to exactly $100 \mathrm{~cm}^{-}$ ${ }^{1}$ before evaluation of the vibrational component of the thermal contribution to entropy. Gibbs free energies are reported at a standard state of 298.15 K and $1 \mathrm{~mol} / \mathrm{L}$.

[^6]
## Computed Activation Energies and Reaction Energies of (4+3) Cycloadditions

The computed values of $\mathrm{D} G$ and $\mathrm{D} G^{\ddagger}$ for the (4+3) cycloadditions of oxidopyridinium ion $\mathbf{2}$ with dienes $\mathbf{9 0}, \mathbf{9 p}$, and $\mathbf{9 k}$ are listed in Tables $\mathrm{S} 1-\mathrm{S} 3$. The theoretical isomer ratios predicted under kinetic control (based on the activation free energies and the Eyring equation) and under thermodynamic control (based on the products' relative free energies) are listed. These data indicate that for both of the 2 -silyl dienes ( $\mathbf{9 0}$ and $\mathbf{9 k}$ ), the endo cycloadduct "a" is predicted to be the major cycloadduct (at least $78 \%$ of the total products formed) under conditions of kinetic control. The "a" product is not the most stable product for either of these two dienes, however. Instead, " $\mathbf{c}$ " is most stable and is therefore the expected major product under conditions of thermodynamic control. These results agree with the experiments, in which the cycloaddition of $9 \mathbf{a}$ (a diene similar to 90 ) gave primarily product "a" with little evidence of reversibility, while the cycloaddition of $\mathbf{9 k}$ gave a 47:53 ratio of "a" and " $\mathbf{c}$ " and showed evidence of reversibility.

The barrier heights for the reverse reactions (retro-cycloadditions) are overall smaller for diene $9 \mathrm{k}\left(\mathrm{D} G^{\ddagger}=30-34 \mathrm{kcal} / \mathrm{mol}\right)$ than for $9 \mathrm{o}\left(\mathrm{D} G^{\ddagger}=35-38 \mathrm{kcal} / \mathrm{mol}\right)$, consistent with the experimental observation that the cycloaddition with $9 \mathbf{k}$ showed a greater degree of reversibility than that of $\mathbf{9 a}$ (which is modeled by $\mathbf{9 0}$ ).

Moreover, the barrier for the cycloaddition in the kinetically favored mode "a" is lower for diene $9 \mathrm{k}\left(\mathrm{D} G^{\ddagger}=22 \mathrm{kcal} / \mathrm{mol}\right)$ than for $9 \mathrm{o}\left(\mathrm{D} G^{\ddagger}=24 \mathrm{kcal} / \mathrm{mol}\right)$. This is consistent with the greater nucleophilicity of $\mathbf{9 k}$ compared to $\mathbf{9 0}$. The HOMO of $\mathbf{9 k}$ is 0.4 eV higher in energy than that of 90. The transition state is polarized, with charge transfer of $0.11-0.20 e$ from the diene to the oxidopyridinium ion. The preferred transition state for each diene is the one in which the more nucleophilic carbon of the diene is forming a bond to the more electrophilic carbon of the oxidopyridinium ion (the carbon adjacent to the NMe group). ${ }^{18}$

[^7]Tables S1-S3. Computed $\Delta G^{\ddagger}$ and $\Delta G$ values for the (4+3) cycloadditions of oxidopyridinium ion $\mathbf{2}$ with dienes $\mathbf{9 0}, \mathbf{9 p}$, and $\mathbf{9 k}$, and the theoretically predicted isomer ratios at $85^{\circ} \mathrm{C}$ under conditions of kinetic and thermodynamic control.

## Table S1.



90
$(\mathrm{HOMO}=-7.56 \mathrm{eV})$

| Isomer | $\Delta G^{\ddagger}(\mathrm{kcal} / \mathrm{mol})$ | Isomer \% if <br> kinetically <br> controlled | $\Delta G(\mathrm{kcal} / \mathrm{mol})$ | Isomer \% if <br> thermodynamically <br> controlled |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{a}$ | 23.9 | 78 | -11.2 | 12 |
| $\mathbf{b}$ | 25.2 | 13 | -10.4 | 4 |
| $\mathbf{c}$ | 25.6 | 7 | -12.3 | 55 |
| $\mathbf{d}$ | 26.3 | 3 | -11.8 | 29 |

Table S2.


9p
$(\mathrm{HOMO}=-7.58 \mathrm{eV})$

| Isomer | $\Delta G^{\ddagger}(\mathrm{kcal} / \mathrm{mol})$ | Isomer \% if <br> kinetically <br> controlled | $\Delta G(\mathrm{kcal} / \mathrm{mol})$ | Isomer \% if <br> thermodynamically <br> controlled |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{a}$ | 25.6 | 29 | -10.6 | 42 |
| $\mathbf{b}$ | 25.0 | 65 | -10.2 | 25 |
| $\mathbf{c}$ | 26.9 | 5 | -10.2 | 25 |
| $\mathbf{d}$ | 28.0 | 1 | -9.3 | 7 |

Table S3.


9k
$(\mathrm{HOMO}=-7.16 \mathrm{eV})$

| Isomer | $\Delta G^{\ddagger}(\mathrm{kcal} / \mathrm{mol})$ | Isomer \% if <br> kinetically <br> controlled | $\Delta G(\mathrm{kcal} / \mathrm{mol})$ | Isomer \% if <br> thermodynamically <br> controlled |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{a}$ | 21.5 | 80 | -8.1 | 18 |
| $\mathbf{b}$ | 22.5 | 18 | -8.1 | 18 |
| $\mathbf{c}$ | 24.3 | 2 | -8.7 | 41 |
| D | 25.6 | 0 | -8.2 | 22 |

Distortion/Interaction Analysis of (4+3) Cycloaddition Transition States

In order to gain further insights into the factors that influence the (4+3) cycloaddition transition state energies, we analysed the transition states $\mathbf{T S}-\mathbf{A} / \mathbf{B}$ and $\mathbf{T S}-\mathbf{A}^{\prime} / \mathbf{B}^{\prime}$ using the distortion/interaction model of reactivity. ${ }^{19}$ The results are shown in Figure S1.
${ }^{19}$. Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. Angew. Chem. Int. Ed. 2017, 56, 10070-10086.


Figure S1. Distortion/interaction analyses for (4+3) cycloaddition transition states. Energies in $\mathrm{kcal} / \mathrm{mol}$.

For the 2-silyl diene, both the diene and the oxidopyridinium ion are less distorted in the favored (endo) transition state TS-A than in the disfavored (exo) transition state TS-B; the total distortion energy is $1.1 \mathrm{kcal} / \mathrm{mol}$ smaller in TS-A than in TS-B. This feature is countered by a stronger interaction between the more distorted diene and oxidopyridinium ion in TS-B. Overall, these two influences almost cancel each other out, such that the activation energies $\mathrm{D} E^{\ddagger}$ for the two reactions differ by only $0.1 \mathrm{kcal} / \mathrm{mol}$, favoring the endo TS. In contrast, for the non-silylated diene, the total distortion energies are similar in both endo and exo TSs , while the interaction energy is $0.6 \mathrm{kcal} / \mathrm{mol}$ larger in the favored (exo) TS-B'. Overall, the activation energies ( $\mathrm{D} E^{\ddagger}$ ) for this diene favor TS-B' by $0.5 \mathrm{kcal} / \mathrm{mol}$.

## Computed Coordinates and Energies

The Cartesian coordinates of optimized structures are shown below. Underneath each set of coordinates are listed the following energies, all calculated with M06-2X/6-311+G(d,p) in SMD acetonitrile:

E: electronic potential energy
H: enthalpy at 298.15 K
G: Gibbs free energy at 298.15 K and $1 \mathrm{~mol} / \mathrm{L}$ including quasi-harmonic energy correction

## Oxidopyridinium ion 2

$\begin{array}{llll}\text { C } & -0.308829 & -0.101096 & -0.006464\end{array}$
$\begin{array}{llll}\text { C } & 0.135468 & 1.205830 & -0.002976\end{array}$
$\begin{array}{llll}\text { C } & 1.537601 & 1.517924 & -0.004281\end{array}$
C $2.383221 \quad 0.362734-0.009604$
$\begin{array}{llll}\mathrm{N} & 1.902400 & -0.888966 & -0.011818\end{array}$
C $0.590757-1.163576-0.011103$
$\begin{array}{lllll}\text { O } & 1.999880 & 2.683546 & -0.002037\end{array}$
$\begin{array}{llll}\text { C } & 2.866710 & -2.005900 & 0.030700\end{array}$
C $-1.761642-0.458541-0.008468$
$\begin{array}{llll}\text { O } & -2.168626 & -1.594265 & -0.031153\end{array}$
$\begin{array}{llll}\text { O } & -2.549873 & 0.609622 & 0.018144\end{array}$
$\begin{array}{llll}\text { C } & -3.962167 & 0.349775 & 0.019213\end{array}$
$\begin{array}{llll}\text { H } & 3.461384 & 0.463110 & -0.011084\end{array}$
$\begin{array}{llll}\text { H } & -0.572819 & 2.026175 & -0.000856\end{array}$
H 0.292356 -2.200451 -0.013275
H $3.676983-1.793741-0.662940$
$\begin{array}{llll}\text { H } & 2.354733 & -2.920237 & -0.255872\end{array}$
$\begin{array}{llll}\text { H } & 3.253129 & -2.092043 & 1.045429\end{array}$
H $-4.244810-0.193083-0.882796$
H $\quad-4.438591 \quad 1.326197 \quad 0.040128$

```
H -4.236933 \(-0.227288 \quad 0.902252\)
```

0 imaginary frequencies

$$
\begin{aligned}
& \mathrm{E}=-590.626673 \\
& \mathrm{H}=-590.449113 \\
& \mathrm{G}=-590.495280
\end{aligned}
$$

## Diene 90

C $\quad-3.689967$-0.482833 0.000001
$\begin{array}{llll}\text { C } & -2.203937 & -0.304231 & 0.000009\end{array}$
H -4.205783 $0.479414-0.000024$
H -4.012178 -1.051108 0.878038
H $-4.012164-1.051145-0.878018$
$\begin{array}{llll}\text { C } & -1.587225 & 0.883142 & 0.000003\end{array}$
$\begin{array}{llll}\text { C } & -0.131006 & 1.108983 & 0.000015\end{array}$
$\begin{array}{llll}\text { C } & 0.315541 & 2.376380 & 0.000017\end{array}$
H -2.205001 1.783371 -0.000006
H -1.614712 $-1.218720 \quad 0.000022$
$\begin{array}{llll}\text { H } & -0.375273 & 3.218854 & 0.000012\end{array}$
$\begin{array}{llll}H & 1.372658 & 2.622609 & 0.000024\end{array}$
$\begin{array}{llll}\text { Si } & 1.124314 & -0.315962 & 0.000001\end{array}$
$\begin{array}{llll}\text { C } & 2.854236 & 0.411243 & 0.000031\end{array}$
$\begin{array}{llll}\text { H } & 3.038990 & 1.024699 & 0.886434\end{array}$
$\begin{array}{llll}\text { H } & 3.585759 & -0.403223 & 0.000053\end{array}$
$\begin{array}{llll}\text { H } & 3.039025 & 1.024682 & -0.886377\end{array}$
C 0.915830 -1.368972 -1.542913
H -0.039072 -1.899809 -1.564538
H $\quad 0.980331$-0.751187 -2.443794
H $1.715033-2.115760-1.591583$
C 0.915816 -1.369065 1.542846
H $\quad 1.714902$-2.115988 1.591367
$\begin{array}{llll}\text { H } & 0.980534 & -0.751358 & 2.443767\end{array}$
H -0.039172 $-1.899738 \quad 1.564553$
0 imaginary frequencies
$E=-603.898566$
$H=-603.668660$
$\mathrm{G}=-603.718510$

Transition state "a" for (4+3) cycloaddition of oxidopyridinium ion 2 with 90 (TS-A)
$\begin{array}{lllll}\mathrm{N} & 0.786225 & 2.355323 & -0.009636\end{array}$
$\begin{array}{lllll}\text { C } & -0.242983 & 1.585268 & 0.498905\end{array}$
$\begin{array}{lllll}\text { C } & 2.008291 & 1.837256 & -0.216835\end{array}$
$\begin{array}{llll}\text { C } & 0.440554 & 3.667575 & -0.555731\end{array}$
$\begin{array}{llll}\text { C } & 2.326533 & 0.574451 & 0.243407\end{array}$
$\begin{array}{llll}\text { C } & 1.360792 & -0.211629 & 0.908249\end{array}$
C $3.702357 \quad 0.096456-0.015903$
$\begin{array}{llll}\text { C } & 0.085191 & 0.349768 & 1.212846\end{array}$
$\begin{array}{llll}\text { O } & -0.797501 & -0.207534 & 1.888460\end{array}$
$\begin{array}{llll}\text { O } & 3.915643 & -1.128679 & 0.475187\end{array}$
$\begin{array}{llll}\text { O } & 4.553806 & 0.725498 & -0.603826\end{array}$
C 5.216657 -1.682427 0.245845
$\begin{array}{llll}\text { C } & -1.797420 & -0.364062 & -0.708147\end{array}$
C $-1.002276-1.546081-0.658758$
$\begin{array}{llll}\text { H } & 5.196689 & -2.673787 & 0.691937\end{array}$
H 5.980881 -1.068339 0.723005
H $5.415670-1.752391 \quad-0.823961$
H $\quad 1.352915$ 4.233667 -0.729542
$\begin{array}{llll}\text { H } & -0.190417 & 4.195178 & 0.158837\end{array}$
H $\quad$-0.100219 3.543023 -1.497243
C $-1.227378 \quad 0.857402 \quad-1.088437$

C $\quad 0.326992-1.618998$-0.977131
$\begin{array}{lllll}\text { C } & 1.117508 & -2.890175 & -0.894797\end{array}$
H 2.134041 -2.703124 -0.540343
H $\quad 0.639869$-3.612366 -0.228932
$\begin{array}{llll}\text { H } & 1.203981 & -3.348634 & -1.886882\end{array}$
H -0.347295 $0.860920-1.730950$
H -1.885356 1.707492 -1.253387
H $\quad 0.796027-0.801887-1.513653$
$\begin{array}{llll}\text { H } & -1.456165 & -2.439522 & -0.232173\end{array}$
H 2.729511 2.465930 -0.721059
H 1.640287 -1.142349 1.385720
$\begin{array}{llll}\mathrm{H} & -1.072910 & 2.162476 & 0.889469\end{array}$
Si -3.553083 -0.374494 -0.020525
$\begin{array}{llll}\text { C } & -3.859667 & 1.218351 & 0.926103\end{array}$
$\begin{array}{llll}\text { H } & -4.896158 & 1.254451 & 1.277047\end{array}$
H $\quad$-3.199214 $1.276390 \quad 1.794930$
$\begin{array}{llll}\text { H } & -3.691326 & 2.101460 & 0.301970\end{array}$
C $\quad-3.801807-1.854881 \quad 1.104403$
H -4.796015 -1.8181591 .561132
H -3.722990 -2.7998630 .559045
H $\quad$-3.054460 -1.8517991 .902449
$\begin{array}{llll}\text { C } & -4.774421 & -0.467032 & -1.451512\end{array}$
H -5.806006 -0.459310 -1.084660
H $\quad-4.650647 \quad 0.385850-2.126379$
H $\quad-4.630235-1.381381-2.035177$
1 imaginary frequency
$\mathrm{E}=-1194.510733$
$\mathrm{H}=-1194.102282$
$\mathrm{G}=-1194.175676$

Product "a" for (4+3) cycloaddition of oxidopyridinium ion 2 with 90
$\begin{array}{llll}\mathrm{N} & -0.033140 & 1.410688 & 1.512682\end{array}$
C $-1.053217 \quad 0.547369 \quad 1.613452$
C $\quad-1.859498 \quad 0.168741 \quad 0.579302$
C $\quad-1.631002 \quad 0.709141-0.813429$
$\begin{array}{llll}\text { C } & -0.890347 & 2.015127 & -0.720293\end{array}$
$\begin{array}{llll}\text { C } & 0.282280 & 2.058095 & 0.241101\end{array}$
C $\quad-2.905381 \quad-0.798353 \quad 0.859210$
$\begin{array}{llll}\text { O } & -3.150134 & -1.311359 & 1.937462\end{array}$
O $\quad-3.628037-1.094873-0.244119$
$\begin{array}{llll}\text { C } & -4.683917 & -2.040388 & -0.065118\end{array}$
C $\quad 0.705977 \quad 1.872460 \quad 2.676978$
$\begin{array}{llll}\text { O } & -1.140759 & 2.969487 & -1.421870\end{array}$
C $\quad-0.842391-0.283954-1.723177$
C $\quad 1.515622 \quad 1.418622 \quad-0.441252$
C $\quad 1.476351-0.094340-0.596126$
C $\quad 0.459094-0.786912-1.132569$
$\begin{array}{llll}\text { C } & -0.616286 & 0.286398 & -3.129160\end{array}$
$\begin{array}{llll}\text { H } & -1.224190 & 0.139149 & 2.604539\end{array}$
$\begin{array}{llll}H & 0.502224 & 3.109750 & 0.438763\end{array}$
$\begin{array}{llll}\text { H } & -5.143533 & -2.160180 & -1.043822\end{array}$
$\begin{array}{llll}\text { H } & -4.290092 & -2.995948 & 0.283595\end{array}$
$\begin{array}{llll}\text { H } & -5.418136 & -1.667525 & 0.650212\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.528603 & 1.194168 & 3.510584\end{array}$
H $1.774777 \quad 1.888042 \quad 2.457330$
$\begin{array}{llll}H & 0.389621 & 2.882191 & 2.957229\end{array}$
Н $-1.507038-1.146858-1.814162$
$\begin{array}{llll}H & 2.386026 & 1.708001 & 0.155627\end{array}$
H $\quad 1.644922 \quad 1.901901 \quad-1.416795$
H $\quad 0.571505 \quad-1.868414-1.196052$

```
H -0.199538 -0.482750 -3.783359
H -1.558541 0.632809 -3.562474
H 0.082534 1.126916 -3.111410
H -2.579132 0.912413 -1.314881
Si 2.999114 -1.017650 0.027007
C 4.510837 -0.381747 -0.892390
H 5.420062 -0.860498 -0.515065
H 4.437760 -0.592152 -1.963537
H 4.627147 0.699148 -0.767144
C 2.818710 -2.864662 -0.243847
H 3.719277 -3.373036 0.115319
H 1.964660 -3.273676 0.303596
H 2.697299 -3.111045 -1.302518
C 3.210480 -0.661705 1.861426
H 3.459486 0.388114 2.040480
H 2.300419 -0.899594 2.421039
H 4.025828 -1.268032 2.269606
0 imaginary frequencies
E = -1194.573584
H=-1194.160329
G=-1194.231677
```

Transition state "b" for (4+3) cycloaddition of oxidopyridinium ion $\mathbf{2}$ with 90 (TS-B)

| N | -0.416341 | 1.710787 | -1.473753 |
| :--- | ---: | ---: | ---: |
| C | -0.355356 | 2.354447 | -0.251696 |
| C | 0.388668 | 0.669620 | -1.717219 |
| C | -1.596114 | 1.943721 | -2.301858 |
| C | 1.488269 | 0.425330 | -0.906571 |
| C | 1.775051 | 1.245220 | 0.189520 |


| C | 2.308913 | -0.762352 | -1.240657 |
| :--- | :--- | :--- | :--- |
| C | 0.912861 | 2.349792 | 0.489909 |
| O | 1.114658 | 3.190837 | 1.385206 |
| O | 3.276523 | -0.974493 | -0.346265 |
| O | 2.128616 | -1.476866 | -2.201206 |
| C | 4.113864 | -2.112933 | -0.582807 |
| C | -1.509435 | 1.382957 | 1.006348 |
| C | -1.288342 | -0.006887 | 0.993307 |
| C | -0.171028 | -0.586461 | 1.671063 |
| C | 0.806977 | 0.086409 | 2.342758 |
| C | 1.972375 | -0.597707 | 2.988716 |
| H | 0.685320 | 1.140018 | 2.575815 |
| H | -1.140071 | 1.971588 | 1.847051 |
| H | -2.465642 | 1.736173 | 0.626589 |
| H | -0.033628 | -1.663750 | 1.568456 |
| H | 1.863149 | -0.588867 | 4.079366 |
| H | 2.059144 | -1.635570 | 2.660652 |
| H | 2.909670 | -0.080922 | 2.764124 |
| H | 4.826670 | -2.128344 | 0.237951 |
| H | 4.634440 | -2.009907 | -1.535374 |
| H | 3.518793 | -3.026547 | -0.584873 |
| H | 2.712324 | 1.154062 | 0.722818 |
| H | 0.192171 | 0.084896 | -2.605501 |
| H | -0.914154 | 3.283581 | -0.221491 |
| H | -1.447497 | 1.479757 | -3.274424 |
| H | -1.741366 | 3.016678 | -2.423513 |
| H | -2.476584 | 1.511632 | -1.817260 |
| Si | -2.513267 | -1.177962 | 0.150210 |
| C | -2.675260 | -2.709677 | 1.230573 |
| H | -1.748006 | -3.289194 | 1.255298 |

```
H -2.938006 -2.446101 2.259364
H -3.462190 -3.360882 0.836629
C -4.194376 -0.347317 0.025399
H -4.558796 -0.050270 1.013503
H -4.183953 0.540911 -0.612041
H -4.917522 -1.050082 -0.401144
C -1.958136 -1.735396 -1.558268
H -2.621570 -2.529077 -1.919362
H -1.985369 -0.918488 -2.284229
H -0.939175 -2.133767 -1.528061
1 imaginary frequency
\(\mathrm{E}=-1194.510639\)
\(\mathrm{H}=-1194.101824\)
\(\mathrm{G}=-1194.173586\)
```

Product "b" for (4+3) cycloaddition of oxidopyridinium ion 2 with 90
$\begin{array}{llll}\mathrm{N} & 0.243556 & 1.589985 & 1.196573\end{array}$
$\begin{array}{lllll}\text { C } & -0.750092 & 0.726683 & 1.450772\end{array}$
$\begin{array}{llll}\text { C } & -1.670817 & 0.299176 & 0.535459\end{array}$
$\begin{array}{llll}\text { C } & -1.570897 & 0.741190 & -0.907092\end{array}$
$\begin{array}{lllll}\text { C } & -0.839502 & 2.054595 & -0.963418\end{array}$
$\begin{array}{llll}\text { C } & 0.428368 & 2.152406 & -0.137436\end{array}$
$\begin{array}{llll}\text { C } & -2.746744 & -0.547005 & 1.022501\end{array}$
$\begin{array}{llll}\text { O } & -3.701253 & -0.747493 & 0.088664\end{array}$
$\begin{array}{llll}\text { O } & -2.835601 & -1.032497 & 2.137427\end{array}$
$\begin{array}{llll}\text { C } & 1.216116 & 1.982142 & 2.202085\end{array}$
$\begin{array}{llll}\text { O } & -1.163245 & 2.961035 & -1.698197\end{array}$
$\begin{array}{llll}\text { C } & -0.803289 & -0.259748 & -1.848271\end{array}$
$\begin{array}{llll}\text { C } & 1.578484 & 1.446215 & -0.912064\end{array}$
$\begin{array}{llll}\text { C } & 1.534505 & -0.065988 & -0.809300\end{array}$
$\begin{array}{llll}\text { C } & 0.479132 & -0.776525 & -1.233447\end{array}$
C $-1.703579-1.430256-2.240706$
$\begin{array}{lllll}\text { H } & -0.817968 & 0.383637 & 2.478288\end{array}$
H -2.559003 0.899534 -1.341442
$\begin{array}{lllll}\text { H } & 0.673941 & 3.211520 & -0.032775\end{array}$
$\begin{array}{llll}\text { H } & 0.969529 & 1.505016 & 3.149513\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.225234 & 1.679093 & 1.905616\end{array}$
$\begin{array}{llll}\text { H } & 1.202562 & 3.067927 & 2.330832\end{array}$
$\begin{array}{llll}\text { H } & -0.558040 & 0.308031 & -2.755714\end{array}$
H 0.503682 -1.860578 -1.107493
H -1.187208 -2.071792 -2.959621
H -1.954191 -2.034503 -1.364939
H $-2.634066-1.080243-2.691701$
C $\quad-4.780067-1.6025040 .467211$
H $\quad-5.432550-1.657877-0.401653$
H $-5.323124-1.1872671 .317249$
H $-4.411454 \quad-2.5971550 .722746$
H $\quad 1.519316 \quad 1.769737-1.957842$
H 2.521935 1.831999 -0.521024
$\begin{array}{llll}\text { Si } & 2.923595 & -1.014648 & 0.059852\end{array}$
C 3.345776 -2.555112 -0.928185
H 4.149532 -3.111286 -0.435277
$\begin{array}{llll}\text { H } & 2.485124 & -3.224074 & -1.018189\end{array}$
$\begin{array}{llll}\text { H } & 3.681563 & -2.296670 & -1.936714\end{array}$
$\begin{array}{llll}\text { C } & 4.449505 & 0.068915 & 0.215008\end{array}$
$\begin{array}{lllll}\text { H } & 4.784698 & 0.429500 & -0.762381\end{array}$
$\begin{array}{llll}\text { H } & 4.272458 & 0.938151 & 0.855296\end{array}$
$\begin{array}{llll}\text { H } & 5.268414 & -0.507125 & 0.657604\end{array}$
$\begin{array}{llll}\text { C } & 2.328538 & -1.536472 & 1.766079\end{array}$
$\begin{array}{llll}\text { H } & 2.091793 & -0.675370 & 2.397208\end{array}$

| H | 1.426620 | -2.151366 | 1.681520 |
| :--- | :--- | :--- | :--- |
| H | 3.094138 | -2.128291 | 2.278627 |
| 0 | imaginary frequencies |  |  |
| $\mathrm{E}=-1194.572233$ |  |  |  |
| $\mathrm{H}=-1194.159344$ |  |  |  |
| $\mathrm{G}=-1194.230374$ |  |  |  |

Transition state " c " for (4+3) cycloaddition of oxidopyridinium ion $\mathbf{2}$ with 90
$\begin{array}{llll}\mathrm{N} & 2.096987 & 2.023758 & 0.390024\end{array}$
$\begin{array}{llll}\text { C } & 0.811090 & 2.003742 & 0.854454\end{array}$
$\begin{array}{llll}\text { C } & 2.743916 & 0.883685 & 0.066628\end{array}$
$\begin{array}{llll}\text { C } & 2.729560 & 3.311478 & 0.086361\end{array}$
$\begin{array}{llll}\text { C } & 2.157211 & -0.342447 & 0.259394\end{array}$
$\begin{array}{lllll}\text { C } & 0.807563 & -0.436596 & 0.722766\end{array}$
C 2.937997 -1.534689 -0.122981
$\begin{array}{llll}\text { C } & 0.202206 & 0.764541 & 1.266378\end{array}$
$\begin{array}{llll}\text { O } & -0.872646 & 0.747557 & 1.886963\end{array}$
$\begin{array}{llll}\text { O } & 2.215839 & -2.658143 & -0.033376\end{array}$
$\begin{array}{llll}\text { O } & 4.094193 & -1.524596 & -0.485070\end{array}$
$\begin{array}{llll}\text { C } & 2.895097 & -3.870514 & -0.381207\end{array}$
C $-1.6125331 .444986-0.793860$
$\begin{array}{llll}\text { C } & -1.583658 & 0.029053 & -0.730511\end{array}$
$\begin{array}{llll}\text { H } & 2.165382 & -4.665264 & -0.247119\end{array}$
$\begin{array}{llll}\text { H } & 3.751262 & -4.028128 & 0.275392\end{array}$
$\begin{array}{llll}\text { H } & 3.229056 & -3.834522 & -1.418517\end{array}$
$\begin{array}{llll}\text { H } & 2.527706 & 3.590476 & -0.949448\end{array}$
$\begin{array}{llll}\text { H } & 3.803608 & 3.221666 & 0.238458\end{array}$
$\begin{array}{llll}\text { H } & 2.326857 & 4.069865 & 0.755640\end{array}$
$\begin{array}{llll}\text { C } & -0.523523 & 2.256390 & -1.045063\end{array}$
$\begin{array}{llll}\text { C } & -0.396431 & -0.658680 & -0.991839\end{array}$

```
H 3.746569 0.989471 -0.325547
H 0.464531 -1.372670 1.144680
H
C -0.676136 3.750907 -1.132186
H 0.350778 1.834564 -1.535223
H -2.530632 1.945803 -0.489738
H -0.398047 -1.745244 -1.004022
H 0.357462 -0.213157 -1.633360
H -1.520437 4.091389 -0.528171
H -0.860186 4.052156 -2.169638
H 0.218728 4.279721 -0.799639
Si -3.049766 -0.922630 -0.023557
C -2.421394 -2.274029 1.119358
H -1.903191 -1.833685 1.974857
H -3.258040 -2.874490 1.491341
H -1.730994 -2.950821 0.606325
C -4.001238 -1.726459 -1.437009
H -4.852396 -2.301813 -1.058556
H -4.385319 -0.973532 -2.132218
H -3.358603 -2.408813 -2.002377
C -4.195960 0.234838 0.907656
H -5.011123 -0.332877 1.367759
H -3.649001 0.755625 1.698114
H -4.645657 0.981829 0.246897
1 imaginary frequency
\(\mathrm{E}=-1194.508770\)
\(\mathrm{H}=-1194.100132\)
\(G=-1194.172990\)
```

Product " c " for (4+3) cycloaddition of oxidopyridinium ion 2 with 90
$\begin{array}{llll}\mathrm{N} & -2.052702 & -0.963360 & 1.272236\end{array}$
$\begin{array}{llll}\text { C } & -0.829712 & -1.519727 & 1.262746\end{array}$
$\begin{array}{lllll}\text { C } & -0.040953 & -1.656033 & 0.159683\end{array}$
C $-0.479379-1.084236-1.166883$
C $\quad-1.980040-0.958977-1.181790$
$\begin{array}{lllll}\text { C } & -2.620195 & -0.372686 & 0.062000\end{array}$
$\begin{array}{lllll}\text { C } & 1.254370 & -2.290746 & 0.328086\end{array}$
$\begin{array}{llll}\text { O } & 1.967178 & -2.291727 & -0.820409\end{array}$
$\begin{array}{llll}\text { O } & 1.697130 & -2.776557 & 1.353887\end{array}$
$\begin{array}{llll}\text { C } & -2.732148 & -0.675216 & 2.525969\end{array}$
$\begin{array}{llll}\text { O } & -2.651773 & -1.227058 & -2.152294\end{array}$
$\begin{array}{llll}\text { C } & 0.134511 & 0.316384 & -1.464294\end{array}$
$\begin{array}{llll}\text { C } & -2.493089 & 1.178454 & 0.057447\end{array}$
$\begin{array}{llll}\text { C } & -1.081940 & 1.673730 & 0.301168\end{array}$
$\begin{array}{llll}\text { C } & 0.049108 & 1.331219 & -0.335535\end{array}$
H $\quad$-0.480761 $-1.891436 \quad 2.221084$
H $-0.203581-1.744632-1.990210$
H $\quad-3.684929-0.618000 \quad 0.029618$
H -2.395205 -1.380668 3.284856
$\begin{array}{llll}\text { H } & -2.525668 & 0.343119 & 2.870521\end{array}$
H $\quad$-3.808947 $-0.790367 \quad 2.387241$
$\begin{array}{llll}\text { H } & -0.337237 & 0.715582 & -2.369916\end{array}$
H $\quad$-3.102996 1.5103900 .901969
$\begin{array}{llll}\text { C } & -3.103638 & 1.787824 & -1.210733\end{array}$
H -1.011357 2.417403 1.093905
$\begin{array}{llll}\text { H } & 1.182014 & 0.134384 & -1.720152\end{array}$
H $\quad$-3.148410 2.874101 -1.110262
H $\quad-2.509882$ 1.556193 -2.097791
H -4.119153 1.415468 -1.370129
$\begin{array}{llll}\text { C } & 3.275025 & -2.860883 & -0.741054\end{array}$

| H | 3.712556 | -2.738034 | -1.729506 |
| :--- | :--- | :--- | :--- |
| H | 3.219358 | -3.919962 | -0.485121 |
| H | 3.877047 | -2.338873 | 0.004515 |
| Si | 1.692975 | 2.089523 | 0.195402 |
| C | 2.457035 | 2.974726 | -1.276668 |
| H | 3.440651 | 3.377491 | -1.014903 |
| H | 2.590055 | 2.294279 | -2.123302 |
| H | 1.827881 | 3.806688 | -1.606672 |
| C | 1.451588 | 3.294409 | 1.612278 |
| H | 1.031113 | 2.803067 | 2.494451 |
| H | 2.418555 | 3.720896 | 1.897587 |
| H | 0.792512 | 4.121770 | 1.333704 |
| C | 2.834851 | 0.690396 | 0.721056 |
| H | 2.409568 | 0.118628 | 1.551599 |
| H | 3.020292 | 0.002550 | -0.109304 |
| H | 3.801141 | 1.091073 | 1.044613 |

0 imaginary frequencies
$\mathrm{E}=-1194.575802$
$\mathrm{H}=-1194.162547$
$G=-1194.233400$

Transition state " $d$ " for (4+3) cycloaddition of oxidopyridinium ion $\mathbf{2}$ with 90
$\begin{array}{llll}\mathrm{N} & -1.649176 & -1.277458 & 1.272823\end{array}$
$\begin{array}{lllll}\text { C } & -2.265530 & -1.352189 & 0.054066\end{array}$
$\begin{array}{llll}\text { C } & -0.306409 & -1.329117 & 1.391286\end{array}$
$\begin{array}{lllll}\text { C } & -2.454348 & -0.846837 & 2.413165\end{array}$
C $0.493893-1.5727170 .300752$
$\begin{array}{llll}\text { C } & -0.074411 & -1.608961 & -1.002067\end{array}$
C $1.946594-1.6463290 .529196$
C $-1.512251 \quad-1.747642 \quad-1.123240$

O $-2.088291-2.049972-2.182390$
O $\quad 2.634741-1.773292-0.613156$
$\begin{array}{llll}\text { O } & 2.484551 & -1.596082 & 1.614930\end{array}$
C $\quad 4.059228-1.849284-0.481753$
C $-2.753571 \quad 0.684955-0.666040$
$\begin{array}{llll}\text { C } & -1.639617 & 1.419126 & -0.283371\end{array}$
C $\quad-0.338773 \quad 1.294690 \quad-0.824756$
$\begin{array}{llll}\text { C } & -0.062167 & 0.402816 & -1.856828\end{array}$
$\begin{array}{llll}\text { C } & -4.108659 & 0.984655 & -0.080528\end{array}$
H 4.445404 -1.908560 -1.496414
$\begin{array}{llll}\text { H } & 4.340526 & -2.739144 & 0.082532\end{array}$
H 4.444847 -0.960639 0.019309
$\begin{array}{llll}\text { H } & 0.517405 & -1.985335 & -1.827471\end{array}$
H $\quad 0.094577-1.216989 \quad 2.390076$
$\begin{array}{llll}\text { H } & -3.326152 & -1.568156 & 0.083438\end{array}$
$\begin{array}{llll}\text { H } & -2.544828 & 0.243573 & 2.394304\end{array}$
$\begin{array}{llll}\text { H } & -1.970319 & -1.161044 & 3.335762\end{array}$
H $\quad-3.444816-1.294712 \quad 2.341953$
$\begin{array}{llll}H & -4.025452 & 1.408706 & 0.922255\end{array}$
$\begin{array}{llll}\text { H } & -4.742575 & 0.096337 & -0.032922\end{array}$
$\begin{array}{llll}\text { H } & -4.628179 & 1.712196 & -0.713675\end{array}$
H $\quad-2.768700 \quad 0.236741 \quad-1.657485$
$\begin{array}{llll}\mathrm{H} & -0.837470 & 0.081148 & -2.548804\end{array}$
$\begin{array}{llll}\text { H } & 0.946177 & 0.353739 & -2.257670\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.767717 & 2.070952 & 0.582925\end{array}$
$\begin{array}{llll}\text { Si } & 1.059835 & 2.250546 & 0.015888\end{array}$
C $\quad 0.688459 \quad 4.086999-0.136936$
$\begin{array}{llll}\mathrm{H} & -0.255743 & 4.339894 & 0.355205\end{array}$
H $\quad 1.479647 \quad 4.680967 \quad 0.331378$
$\begin{array}{llll}H & 0.613195 & 4.387352 & -1.186132\end{array}$
$\begin{array}{lllll}\text { C } & 2.690073 & 1.852090 & -0.823334\end{array}$
$\begin{array}{llll}\text { H } & 3.508491 & 2.364277 & -0.307546\end{array}$
$\begin{array}{llll}\text { H } & 2.902070 & 0.778929 & -0.804112\end{array}$
H 2.695590 2.178401 -1.867649
$\begin{array}{llll}\text { C } & 1.169087 & 1.811397 & 1.841477\end{array}$
$\begin{array}{llll}\text { H } & 1.563351 & 0.802502 & 1.990068\end{array}$
$\begin{array}{llll}\text { H } & 1.839526 & 2.512796 & 2.349780\end{array}$
H $\quad 0.190079 \quad 1.873495 \quad 2.327106$
1 imaginary frequency
$\mathrm{E}=-1194.508844$
$\mathrm{H}=-1194.100112$
$\mathrm{G}=-1194.171884$

Product "d" for (4+3) cycloaddition of oxidopyridinium ion $\mathbf{2}$ with 90
N -1.908886 $-1.089696 \quad 1.113881$
C $\quad-0.620235-1.4465371 .250291$
C $0.266013-1.596783 \quad 0.225635$
C $-0.148595-1.258915-1.185764$
$\begin{array}{llll}\text { C } & -1.639001 & -1.442867 & -1.298645\end{array}$
$\begin{array}{llll}\text { C } & -2.475295 & -0.808912 & -0.201929\end{array}$
$\begin{array}{llll}\text { C } & 1.620851 & -2.002579 & 0.553088\end{array}$
$\begin{array}{llll}\text { O } & 2.418064 & -2.018650 & -0.538149\end{array}$
$\begin{array}{llll}\text { O } & 2.043237 & -2.298808 & 1.656798\end{array}$
$\begin{array}{lllll}\text { C } & -2.714477 & -0.789078 & 2.288661\end{array}$
$\begin{array}{llll}\text { O } & -2.169145 & -1.971982 & -2.249517\end{array}$
$\begin{array}{llll}\text { C } & 0.215884 & 0.202474 & -1.606396\end{array}$
$\begin{array}{llll}\text { C } & -2.591876 & 0.715518 & -0.555526\end{array}$
$\begin{array}{llll}\text { C } & -1.358417 & 1.479570 & -0.133702\end{array}$
$\begin{array}{llll}\text { C } & -0.110493 & 1.271406 & -0.578128\end{array}$
H $\quad-0.297598$-1.635226 2.269726

```
H 0.314668 -1.934143 -1.905909
H -3.475380 -1.247003 -0.245099
H -2.391007 -1.421835 3.115442
H -2.617487 0.259627 2.585230
H -3.762181 -1.000864 2.069223
H -0.291855 0.420603 -2.554351
C -3.868106 1.343648 0.005291
H -1.532336 2.252769 0.614794
H 1.288218 0.198612 -1.819429
H -2.665216 0.747167 -1.650583
H -3.977225 2.360223 -0.380799
H -4.748283 0.769814 -0.292891
H -3.845936 1.402846 1.094907
C 3.784676 -2.363384 -0.306126
H 4.278294 -2.286607 -1.272587
H 3.865806 -3.381953 0.076081
H 4.240236 -1.672049 0.404811
Si 1.325228 2.307947 0.068220
C 
H 0.306945 2.962169 2.250482
H 1.579849 4.086942 1.760894
H -0.017740 4.189431 1.013066
C 2.060741 3.267949 -1.371342
H 2.387277 2.595260 -2.170442
H 1.331169 3.965334 -1.793542
H 2.931574 3.845158 -1.044802
C 2.643389 1.161711 0.761894
H 2.263852 0.570436 1.600408
H 3.008104 0.473874 -0.006914
H 3.497730}1.746694 1.118276 
```

0 imaginary frequencies
$\mathrm{E}=-1194.574730$
$\mathrm{H}=-1194.161810$
$\mathrm{G}=-1194.232662$

Diene 9p
$\begin{array}{llll}\text { C } & 2.462252 & -0.215452 & 0.000021\end{array}$
C $1.1079920 .418364-0.000010$
H 2.392002 -1.304826 -0.000341
$\begin{array}{llll}\text { H } & 3.035800 & 0.096969 & 0.878125\end{array}$
$\begin{array}{llll}\text { H } & 3.036141 & 0.097558 & -0.877645\end{array}$
C $-0.049373-0.252277-0.000051$
C $-1.3568730 .399209-0.000023$
C -2.518706 -0.260135 0.000035
H $\quad-0.041875-1.341795-0.000100$
$\begin{array}{llll}\text { H } & 1.076505 & 1.507400 & 0.000049\end{array}$
$\begin{array}{llll}\text { H } & -2.548570 & -1.346166 & 0.000049\end{array}$
H $-1.3544941 .487823-0.000034$
$\begin{array}{llll}\text { H } & -3.467257 & 0.264782 & 0.000068\end{array}$
0 imaginary frequencies
$\mathrm{E}=-195.265811$
$\mathrm{H}=-195.145221$
$\mathrm{G}=-195.178030$

Transition state "a" for (4+3) cycloaddition of oxidopyridinium ion 2 with 9p (TS-A')
$\begin{array}{llll}\mathrm{N} & -1.239577 & 1.943737 & 0.036868\end{array}$
$\begin{array}{llll}\text { C } & -1.923376 & 0.871074 & 0.572915\end{array}$
$\begin{array}{llll}\text { C } & 0.079916 & 1.869409 & -0.212125\end{array}$
$\begin{array}{llll}\text { C } & -2.030505 & 3.050787 & -0.500964\end{array}$

C $\quad 0.824391 \quad 0.796770 \quad 0.234268$
$\begin{array}{llll}\text { C } & 0.208521 & -0.270466 & 0.929381\end{array}$
$\begin{array}{llll}\text { C } & 2.272627 & 0.821915 & -0.065658\end{array}$
$\begin{array}{llll}\text { C } & -1.172264 & -0.164580 & 1.284597\end{array}$
$\begin{array}{llll}\text { O } & -1.783488 & -0.970151 & 2.004483\end{array}$
$\begin{array}{llll}\text { O } & 2.912431 & -0.242516 & 0.429879\end{array}$
$\begin{array}{llll}\text { O } & 2.836217 & 1.696308 & -0.685548\end{array}$
C $4.318830-0.3122260 .166795$
$\begin{array}{llll}\text { C } & -2.679788 & -1.526419 & -0.647196\end{array}$
C $-1.551441-2.367276-0.527892$
H 4.659138 -1.234209 0.631864
H 4.8306280 .5443760 .606222
$\begin{array}{llll}\text { H } & 4.502512 & -0.339760 & -0.907655\end{array}$
H -1.375390 $3.897570-0.693901$
$\begin{array}{llll}\text { H } & -2.790059 & 3.331498 & 0.227689\end{array}$
$\begin{array}{llll}\text { H } & -2.514402 & 2.740685 & -1.430568\end{array}$
C $\quad-2.597614-0.185316-1.014296$
C $-0.266300-1.983139-0.821714$
C $0.902330-2.913333-0.685134$
H 1.809890 -2.374726 -0.405010
$\begin{array}{llll}\text { H } & 0.707190 & -3.686867 & 0.060998\end{array}$
H $1.103765-3.409830-1.641634$
H $-1.764622 \quad 0.135422-1.636576$
H $-3.523413 \quad 0.352775-1.189931$
H $-0.103430 \quad-1.095709-1.422771$
$\begin{array}{llll}\text { H } & -3.634767 & -1.915082 & -0.308177\end{array}$
H -1.702243 -3.345322 -0.077045
$\begin{array}{llll}\text { H } & 0.529388 & 2.701252 & -0.736966\end{array}$
H $\quad 0.808260$-1.023247 1.425082
$\begin{array}{llll}\mathrm{H} & -2.898650 & 1.122688 & 0.971914\end{array}$

1 imaginary frequency
$\mathrm{E}=-785.874325$
$\mathrm{H}=-785.574814$
$\mathrm{G}=-785.632585$

Product "a" for (4+3) cycloaddition of oxidopyridinium ion 2 with $9 p$
N $-1.309295-1.681353-0.249885$
$\begin{array}{llll}\text { C } & 0.016439 & -1.674695 & -0.037217\end{array}$
C $0.832684-0.600267-0.230966$
$\begin{array}{llll}\text { C } & 0.252518 & 0.744008 & -0.599943\end{array}$
$\begin{array}{llll}\text { C } & -1.057406 & 0.532076 & -1.311911\end{array}$
$\begin{array}{llll}\text { C } & -2.007628 & -0.481870 & -0.700659\end{array}$
$\begin{array}{llll}\text { C } & 2.255274 & -0.781439 & 0.000936\end{array}$
$\begin{array}{llll}\text { O } & 2.810268 & -1.817239 & 0.322937\end{array}$
$\begin{array}{llll}\text { O } & 2.947040 & 0.364988 & -0.180076\end{array}$
$\begin{array}{llll}\text { C } & 4.358748 & 0.283198 & 0.024869\end{array}$
$\begin{array}{lllll}\text { C } & -2.141207 & -2.785892 & 0.200373\end{array}$
$\begin{array}{llll}\text { O } & -1.398986 & 1.182079 & -2.274025\end{array}$
$\begin{array}{llll}\text { C } & 0.050345 & 1.673687 & 0.638975\end{array}$
$\begin{array}{llll}\text { C } & -2.787572 & 0.206820 & 0.445714\end{array}$
$\begin{array}{llll}\text { C } & -1.972382 & 0.488858 & 1.682999\end{array}$
$\begin{array}{lllll}\text { C } & -0.777839 & 1.081567 & 1.758288\end{array}$
$\begin{array}{llll}\text { C } & -0.505527 & 3.042941 & 0.226749\end{array}$
$\begin{array}{llll}\text { H } & 0.438975 & -2.617016 & 0.297398\end{array}$
H $\quad-2.722093-0.772285-1.474469$
$\begin{array}{llll}\text { H } & 4.743556 & 1.283248 & -0.162693\end{array}$
$\begin{array}{llll}\text { H } & 4.582193 & -0.018361 & 1.049010\end{array}$
$\begin{array}{llll}\text { H } & 4.808331 & -0.427540 & -0.669815\end{array}$
$\begin{array}{llll}\text { H } & -1.536209 & -3.689842 & 0.261472\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.576224 & -2.581274 & 1.184164\end{array}$
$\begin{array}{llll}\text { H } & -2.949028 & -2.946391 & -0.516477\end{array}$
H 1.0604031 .8230691 .029037
$\begin{array}{llll}\mathrm{H} & -3.627862 & -0.437822 & 0.708860\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.218963 & 1.129178 & 0.041170\end{array}$
H $-2.4232090 .165871 \quad 2.617681$
$\begin{array}{llll}\text { H } & -0.353427 & 1.199656 & 2.752548\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.503582 & 3.722790 & 1.081696\end{array}$
$\begin{array}{llll}\text { H } & 0.102798 & 3.485283 & -0.566734\end{array}$
$\begin{array}{llll}\text { H } & -1.534405 & 2.960148 & -0.134048\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.908550 & 1.278185 & -1.289539\end{array}$
0 imaginary frequencies
$\mathrm{E}=-785.938327$
$H=-785.634178$
$\mathrm{G}=-785.690152$

Transition state "b" for (4+3) cycloaddition of oxidopyridinium ion 2 with 9p (TS-B')

| N | 1.859894 | -1.430191 | 0.192737 |
| :--- | :--- | :--- | :--- |
| C | 2.197271 | -0.167463 | 0.642966 |
| C | 0.576657 | -1.703658 | -0.086065 |
| C | 2.916804 | -2.244353 | -0.401206 |
| C | -0.437019 | -0.897694 | 0.410730 |
| C | -0.153926 | 0.239914 | 1.172789 |
| C | -1.824878 | -1.274338 | 0.046818 |
| C | 1.209062 | 0.602007 | 1.418345 |
| O | 1.580473 | 1.561090 | 2.119446 |
| O | -2.720671 | -0.393519 | 0.495442 |
| O | -2.126053 | -2.254872 | -0.595596 |
| C | -4.089209 | -0.666230 | 0.170043 |
| C | 2.382966 | 0.961323 | -0.930460 |


| C | 1.281434 | 0.842710 | -1.786541 |
| :--- | :--- | :--- | :--- |
| C | 0.040999 | 1.505947 | -1.600701 |
| C | -0.276474 | 2.288555 | -0.530851 |
| C | -1.623858 | 2.912068 | -0.343013 |
| H | 0.498663 | 2.603707 | 0.162247 |
| H | 2.492627 | 1.873408 | -0.346190 |
| H | 3.322120 | 0.554182 | -1.293795 |
| H | 1.359258 | 0.162505 | -2.629892 |
| H | -0.748599 | 1.279362 | -2.315004 |
| H | -1.568889 | 3.996080 | -0.495532 |
| H | -2.354702 | 2.501929 | -1.042858 |
| H | -1.991137 | 2.757382 | 0.675489 |
| H | -4.662653 | 0.147478 | 0.607067 |
| H | -4.398330 | -1.620418 | 0.597614 |
| H | -4.223656 | -0.686309 | -0.911822 |
| H | -0.939862 | 0.781841 | 1.682323 |
| H | 0.368767 | -2.614773 | -0.631439 |
| H | 3.223934 | -0.084909 | 0.983310 |
| H | 2.573423 | -3.273981 | -0.477923 |
| H | 3.800784 | -2.198764 | 0.233099 |
| H | 3.160013 | -1.861712 | -1.397308 |
| 1 imaginary frequency |  |  |  |
| E $=-785.875068$ |  |  |  |
| H $=-785.575784$ |  |  |  |
| G $=-785.633496$ |  |  |  |

$G=-785.633496$

Product "b" for (4+3) cycloaddition of oxidopyridinium ion $\mathbf{2}$ with 9 p
$\begin{array}{llll}\mathrm{N} & -1.571570 & 1.480255 & 0.080773\end{array}$
$\begin{array}{llll}\text { C } & -0.255614 & 1.562425 & -0.174198\end{array}$
$\begin{array}{llll}\text { C } & 0.665549 & 0.607560 & 0.144068\end{array}$

C $\quad 0.214241 \quad-0.718854 \quad 0.707279$
C $-1.086082-0.5206231 .439730$
C $\quad-2.143443 \quad 0.310376 \quad 0.737231$
C $\quad 2.067513 \quad 0.935959 \quad-0.062084$
$\begin{array}{llll}\text { O } & 2.891922 & 0.000396 & 0.453438\end{array}$
O $\quad 2.500412 \quad 1.931125 \quad-0.616531$
$\begin{array}{llll}\text { C } & -2.513514 & 2.423049 & -0.499941\end{array}$
$\begin{array}{llll}\text { O } & -1.340870 & -1.067444 & 2.489282\end{array}$
C $\quad-0.001261-1.842057-0.369208$
C $\quad-2.898583-0.610149-0.260800$
C $\quad-2.104498-0.924947-1.500156$
C $\quad-0.869049-1.428077-1.537974$
C $\quad 1.344550-2.353870 \quad-0.882875$
$\begin{array}{llll}\mathrm{H} & 0.068190 & 2.488397 & -0.639209\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.934170 & -1.106997 & 1.429073\end{array}$
$\begin{array}{llll}\text { H } & -2.853148 & 0.652628 & 1.493889\end{array}$
$\begin{array}{llll}\text { H } & -1.995622 & 3.354623 & -0.725652\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.953489 & 2.028071 & -1.421812\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.313479 & 2.623466 & 0.215686\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.501417 & -2.663956 & 0.160206\end{array}$
$\begin{array}{llll}\text { H } & -2.584800 & -0.694269 & -2.447133\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.423402 & -1.576200 & -2.519714\end{array}$
Н $\quad 1.187135-3.199811 \quad-1.556835$
H $\quad 1.868975-1.571639-1.438697$
H $\quad 1.985221$-2.676273 -0.060304
C $\quad 4.289141 \quad 0.215831 \quad 0.252746$
$\begin{array}{llll}\mathrm{H} & 4.788955 & -0.631016 & 0.718235\end{array}$
$\begin{array}{llll}\text { H } & 4.609099 & 1.145609 & 0.724767\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.523410 & 0.250042 & -0.812416\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.174165 & -1.522998 & 0.278987\end{array}$
$\begin{array}{llll}\text { H } & -3.830056 & -0.113807 & -0.536894\end{array}$
0 imaginary frequencies

$$
\begin{aligned}
& \mathrm{E}=-785.937657 \\
& \mathrm{H}=-785.633760 \\
& \mathrm{G}=-785.689564
\end{aligned}
$$

Transition state " $\mathbf{c}$ " for ( $4+3$ ) cycloaddition of oxidopyridinium ion $\mathbf{2}$ with $9 p$
$\begin{array}{llll}\mathrm{N} & -0.830603 & 1.741981 & 0.323006\end{array}$
$\begin{array}{llll}\text { C } & -1.508461 & 0.670447 & 0.848872\end{array}$
$\begin{array}{llll}\text { C } & 0.474394 & 1.656611 & -0.004214\end{array}$
$\begin{array}{llll}\text { C } & -1.581028 & 2.944814 & -0.048731\end{array}$
$\begin{array}{llll}\text { C } & 1.199564 & 0.518531 & 0.255037\end{array}$
$\begin{array}{llll}\text { C } & 0.559361 & -0.636029 & 0.795505\end{array}$
$\begin{array}{lllll}\text { C } & 2.622480 & 0.520005 & -0.133908\end{array}$
$\begin{array}{llll}\text { C } & -0.774198 & -0.476864 & 1.336842\end{array}$
$\begin{array}{llll}\text { O } & -1.330210 & -1.344795 & 2.024760\end{array}$
$\begin{array}{llll}\text { O } & 3.193181 & -0.678143 & 0.038596\end{array}$
$\begin{array}{llll}\text { O } & 3.225509 & 1.478362 & -0.565449\end{array}$
C $4.581376-0.767896-0.303370$
C $-2.406100-1.704830-0.620696$
C $\quad-1.204737-2.435684-0.620051$
H $4.870025-1.795093-0.094313$
$\begin{array}{llll}\text { H } & 5.167778 & -0.078878 & 0.305197\end{array}$
H $4.727863-0.541448-1.359823$
H -1.962202 2.846552 -1.067114
$\begin{array}{llll}\text { H } & -0.919066 & 3.806616 & 0.011709\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.412269 & 3.071701 & 0.642795\end{array}$
$\begin{array}{llll}\text { C } & -2.497438 & -0.347837 & -0.890974\end{array}$
C $0.027030-1.864682-0.903627$
H $\quad 0.920651 \quad 2.533871-0.453216$

H $\quad 1.165162$-1.419316 1.232272
$\begin{array}{llll}\text { H } & -2.470177 & 0.899694 & 1.290614\end{array}$
$\begin{array}{lllll}\text { C } & -3.845830 & 0.321875 & -0.945658\end{array}$
H $-1.707544 \quad 0.118104-1.476320$
$\begin{array}{llll}\text { H } & -3.301507 & -2.209531 & -0.266150\end{array}$
$\begin{array}{llll}\text { H } & 0.912355 & -2.490665 & -0.914964\end{array}$
$\begin{array}{llll}\text { H } & 0.075061 & -0.986425 & -1.535701\end{array}$
$\begin{array}{llll}\text { H } & -1.235647 & -3.452401 & -0.240911\end{array}$
H $\quad-4.540483-0.151035-0.247422$
H $\quad-4.268477 \quad 0.234844-1.952634$
$\begin{array}{lllll}\text { H } & -3.793605 & 1.385396 & -0.708467\end{array}$
1 imaginary frequency
$\mathrm{E}=-785.872598$
$H=-785.572966$
$\mathrm{G}=-785.630500$

Product " $\mathbf{c}$ " for (4+3) cycloaddition of oxidopyridinium ion 2 with $9 p$
$\begin{array}{llll}\mathrm{N} & 1.000942 & 1.647943 & -0.300168\end{array}$
$\begin{array}{llll}\text { C } & -0.323167 & 1.550993 & -0.097228\end{array}$
$\begin{array}{llll}\text { C } & -1.057048 & 0.413121 & -0.251742\end{array}$
$\begin{array}{llll}\text { C } & -0.379073 & -0.893402 & -0.586222\end{array}$
C $0.927976-0.606943-1.279901$
$\begin{array}{lllll}\text { C } & 1.796212 & 0.480034 & -0.672068\end{array}$
$\begin{array}{llll}\text { C } & -2.488216 & 0.492296 & -0.016317\end{array}$
$\begin{array}{llll}\text { O } & -3.085922 & -0.712715 & -0.141937\end{array}$
$\begin{array}{llll}\text { O } & -3.122485 & 1.493348 & 0.266441\end{array}$
$\begin{array}{llll}\text { C } & 1.731800 & 2.843360 & 0.091949\end{array}$
$\begin{array}{llll}\text { O } & 1.321345 & -1.248555 & -2.227529\end{array}$
$\begin{array}{llll}\text { C } & -0.105407 & -1.777071 & 0.663549\end{array}$
$\begin{array}{llll}\text { C } & 2.601320 & -0.082422 & 0.534512\end{array}$

| C | 1.752390 | -0.388176 | 1.747082 |
| :---: | :---: | :---: | :---: |
| C | 0.628828 | $-1.108438$ | 1.800186 |
| H | -0.817527 | 2.471927 | 0.195710 |
| H | -0.984064 | $-1.483410$ | -1.275770 |
| H | 2.517151 | 0.787454 | -1.434367 |
| H | 1.059081 | 3.699710 | 0.059757 |
| H | 2.140059 | 2.750703 | 1.103346 |
| H | 2.553236 | 3.009970 | -0.607551 |
| H | 0.439650 | -2.670840 | 0.337058 |
| H | 3.290443 | 0.719753 | 0.810680 |
| C | 3.447452 | -1.293721 | 0.123398 |
| H | 2.134070 | 0.003380 | 2.686968 |
| H | 0.181709 | -1.243389 | 2.781690 |
| H | -1.077536 | -2.116333 | 1.024884 |
| H | 4.118824 | $-1.566857$ | 0.939937 |
| H | 2.821037 | -2.160055 | -0.102433 |
| H | 4.052128 | -1.065587 | -0.758323 |
| C | -4.498079 | -0.737614 | 0.074217 |
| H | -4.801287 | $-1.772442$ | -0.069503 |
| H | -5.009027 | -0.094150 | -0.643153 |
| H | -4.737988 | -0.414173 | 1.087948 |
| 0 imaginary frequencies |  |  |  |
| $E=-785.937857$ |  |  |  |
| $H=-785.633614$ |  |  |  |
| $\mathrm{G}=-785.689490$ |  |  |  |

$G=-785.689490$

Transition state "d" for (4+3) cycloaddition of oxidopyridinium ion 2 with 9p
$\begin{array}{llll}\mathrm{N} & -1.009880 & 1.513426 & 0.468097\end{array}$
C $\quad-1.583171 \quad 0.388301 \quad 0.998925$
C $\quad 0.285434 \quad 1.534288 \quad 0.096080$

C $-1.898666 \quad 2.587320 \quad 0.030621$
$\begin{array}{llll}\text { C } & 1.120761 & 0.475071 & 0.363915\end{array}$
C $0.594994-0.7276420 .902845$
$\begin{array}{llll}\text { C } & 2.528614 & 0.602984 & -0.053483\end{array}$
$\begin{array}{llll}\text { C } & -0.745198 & -0.711355 & 1.452738\end{array}$
$\begin{array}{llll}\text { O } & -1.213757 & -1.624127 & 2.153883\end{array}$
$\begin{array}{llll}\text { O } & 3.212533 & -0.534616 & 0.117114\end{array}$
$\begin{array}{llll}\text { O } & 3.030568 & 1.608677 & -0.506868\end{array}$
C $4.596607-0.496090-0.249951$
$\begin{array}{llll}\text { C } & -2.623474 & -0.725369 & -0.562369\end{array}$
C $-1.763005-0.640104-1.650844$
C $-0.516811-1.283134-1.738819$
$\begin{array}{llll}\text { C } & 0.023925 & -2.089010 & -0.753558\end{array}$
C $-3.997302-0.109556-0.625275$
$\begin{array}{llll}\text { H } & 4.983662 & -1.490730 & -0.042817\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.126966 & 0.247639 & 0.345602\end{array}$
H $4.702704-0.262292-1.309582$
$\begin{array}{llll}\text { H } & 1.271271 & -1.478877 & 1.291989\end{array}$
H $\quad 0.639727$ 2.442947 -0.372396
$\begin{array}{llll}\mathrm{H} & -2.529453 & 0.546891 & 1.501344\end{array}$
H $\quad-2.294277$ 2.344952 -0.960014
$\begin{array}{llll}\text { H } & -1.341490 & 3.521145 & -0.014112\end{array}$
$\begin{array}{llll}\text { H } & -2.721337 & 2.680992 & 0.738227\end{array}$
H $-4.0170550 .758443-1.287207$
H -4.3586870 .1933630 .359901
H -4.708906 -0.846303 -1.013427
H -2.537721 -1.587312 0.096820
H -0.609358 -2.611279 -0.043034
H 1.001770 -2.528156 -0.919272
$\begin{array}{llll}\text { H } & 0.116300 & -1.012813 & -2.579619\end{array}$

H $\quad$-2.025957 0.053708 -2.447065
1 imaginary frequency
$\mathrm{E}=-785.871260$
$H=-785.571692$
$G=-785.628706$

Product "d" for (4+3) cycloaddition of oxidopyridinium ion 2 with 9p
$\begin{array}{llll}\mathrm{N} & -1.138343 & 1.378810 & 0.392972\end{array}$
C $\quad 0.182552 \quad 1.4457430 .156563$
$\begin{array}{llll}\text { C } & 1.054152 & 0.402880 & 0.261760\end{array}$
$\begin{array}{llll}\text { C } & 0.545992 & -0.979204 & 0.590565\end{array}$
$\begin{array}{lllll}\text { C } & -0.748610 & -0.849067 & 1.349836\end{array}$
$\begin{array}{lllll}\text { C } & -1.770342 & 0.122136 & 0.783903\end{array}$
C $2.4552670 .654736-0.024595$
$\begin{array}{llll}\text { O } & 3.192692 & -0.475148 & 0.045427\end{array}$
$\begin{array}{lllll}\text { O } & 2.957505 & 1.729029 & -0.303809\end{array}$
$\begin{array}{llll}\text { C } & -1.991131 & 2.528846 & 0.124415\end{array}$
$\begin{array}{llll}\text { O } & -1.024631 & -1.542228 & 2.302792\end{array}$
C $0.302212-1.863578$-0.673235
C $-2.516481-0.626328-0.373518$
C $-1.700405-0.659947-1.643130$
C $-0.485216-1.195742-1.771440$
H $\quad 0.553133$ 2.426788 -0.124359
$\begin{array}{llll}\text { H } & 1.244363 & -1.514365 & 1.234728\end{array}$
H -2.4964930 .3348691 .571947
$\begin{array}{llll}\mathrm{H} & -1.434173 & 3.443920 & 0.327227\end{array}$
$\begin{array}{llll}\text { H } & -2.332252 & 2.544443 & -0.914455\end{array}$
$\begin{array}{llll}\text { H } & -2.860663 & 2.492439 & 0.782602\end{array}$
H -0.198682 -2.784017 -0.349325
$\begin{array}{llll}\text { C } & -3.915129 & -0.059347 & -0.621072\end{array}$

H $\quad-2.153976-0.191597-2.514234$
H -0.005546 -1.138562 -2.744574
H $\quad 1.283788$-2.148689 -1.053757
H $-2.640910-1.653977-0.007863$
H $\quad-4.453646-0.705829-1.318457$
H $-4.486249 \quad-0.009922 \quad 0.308570$
$\begin{array}{llll}\text { H } & -3.875446 & 0.939712 & -1.058490\end{array}$
C $4.588407-0.329629-0.223638$
H 5.015117 -1.324892 -0.120630
$\begin{array}{llll}\mathrm{H} & 5.049784 & 0.351705 & 0.492386\end{array}$
H $4.7481110 .044076-1.235886$
0 imaginary frequencies
$E=-785.935984$
$\mathrm{H}=-785.632186$
$\mathrm{G}=-785.688152$

## Diene 9k

$\begin{array}{llll}\text { C } & 0.611324 & 0.049495 & -0.003739\end{array}$
$\begin{array}{llll}\text { C } & -0.152121 & 1.153373 & 0.024625\end{array}$
C $\quad-1.622053 \quad 1.176664 \quad 0.024035$
$\begin{array}{llll}\text { C } & -2.229825 & 2.376174 & 0.045857\end{array}$
$\begin{array}{llll}\text { H } & 0.326394 & 2.132031 & 0.052437\end{array}$
$\begin{array}{llll}\text { H } & 0.137115 & -0.928451 & -0.024537\end{array}$
$\begin{array}{llll}\text { H } & -1.653974 & 3.300662 & 0.063858\end{array}$
$\begin{array}{llll}\text { H } & -3.309902 & 2.482540 & 0.046471\end{array}$
$\begin{array}{llll}\text { C } & 4.887029 & -0.207547 & 0.002932\end{array}$
$\begin{array}{llll}\text { C } & 4.274099 & 1.045420 & -0.029563\end{array}$
$\begin{array}{llll}\text { C } & 2.889537 & 1.152957 & -0.034363\end{array}$
$\begin{array}{llll}\text { C } & 2.082467 & 0.005025 & -0.004453\end{array}$
$\begin{array}{llll}\text { C } & 2.712106 & -1.246650 & 0.024623\end{array}$

C $4.099413-1.354378 \quad 0.029172$
H $5.968130-0.2858970 .005918$
H 4.880587 1.943897 -0.053074
$\begin{array}{llll}\text { H } & 2.437383 & 2.137630 & -0.064971\end{array}$
H 2.100439 -2.143139 0.044863
H 4.563322 -2.333993 0.052812
Si -2.680888 -0.401454 -0.007449
$\begin{array}{llll}\text { C } & -2.330355 & -1.447147 & 1.513911\end{array}$
H -3.017026 -2.299444 1.542534
H $-1.310603-1.8392541 .533262$
$\begin{array}{llll}\text { H } & -2.485031 & -0.862630 & 2.425961\end{array}$
$\begin{array}{llll}\text { C } & -4.489502 & 0.095962 & 0.008605\end{array}$
$\begin{array}{llll}\text { H } & -4.754760 & 0.697984 & -0.865094\end{array}$
H $-5.109559 \quad-0.806103-0.007732$
H -4.7490420 .6619940 .907708
C $\quad-2.339597-1.379658-1.575227$
H -2.504914 -0.756880 -2.459678
H -1.318325 -1.765673 -1.620223
H -3.022928 -2.233066 -1.634725
0 imaginary frequencies
$\mathrm{E}=-795.617450$
$\mathrm{H}=-795.330491$
$\mathrm{G}=-795.386910$

Transition state "a" for (4+3) cycloaddition of oxidopyridinium ion 2 with $9 k$
$\begin{array}{llll}\mathrm{N} & -0.555302 & 2.969521 & -0.186140\end{array}$
$\begin{array}{llll}\text { C } & -1.335265 & 1.975503 & 0.378726\end{array}$
$\begin{array}{lllll}\text { C } & 0.776357 & 2.848738 & -0.287527\end{array}$
$\begin{array}{llll}\text { C } & -1.253002 & 4.052558 & -0.880794\end{array}$
$\begin{array}{llll}\text { C } & 1.441320 & 1.810139 & 0.342252\end{array}$
$\begin{array}{llll}\text { C } & 0.722137 & 0.840072 & 1.058052\end{array}$
$\begin{array}{llll}\text { C } & 2.913672 & 1.753835 & 0.189910\end{array}$
$\begin{array}{lllll}\text { C } & -0.688759 & 0.972737 & 1.226770\end{array}$
$\begin{array}{llll}\text { O } & -1.393512 & 0.212317 & 1.912835\end{array}$
$\begin{array}{llll}\text { O } & 3.469839 & 0.823218 & 0.968255\end{array}$
$\begin{array}{llll}\text { O } & 3.554868 & 2.468238 & -0.548516\end{array}$
$\begin{array}{llll}\text { C } & 4.884349 & 0.651990 & 0.829534\end{array}$
$\begin{array}{llll}\text { C } & -2.161829 & -0.456213 & -0.671485\end{array}$
$\begin{array}{llll}\text { C } & -1.029615 & -1.306921 & -0.522873\end{array}$
$\begin{array}{llll}\text { H } & 5.141907 & -0.195679 & 1.460170\end{array}$
$\begin{array}{llll}\text { H } & 5.408928 & 1.547404 & 1.166023\end{array}$
H $5.1418550 .444120-0.209232$
H -1.673804 3.675434 -1.815991
H -0.549869 4.854882 -1.091143
$\begin{array}{llll}\text { H } & -2.055911 & 4.422305 & -0.243842\end{array}$
C $-2.007120 \quad 0.855191 \quad-1.143027$
$\begin{array}{llll}\text { C } & 0.257721 & -0.927882 & -0.806159\end{array}$
H $\quad-1.167591 \quad 1.096753-1.793266$
H -2.902476 1.429496 -1.369023
H $\quad 0.426781-0.019959-1.373973$
H -1.192082 -2.281853 -0.069228
H $\quad 1.299387 \quad 3.616911 \quad-0.840989$
$\begin{array}{llll}\mathrm{H} & 1.237988 & 0.080527 & 1.631981\end{array}$
$\begin{array}{llll}\text { H } & -2.317089 & 2.312017 & 0.690496\end{array}$
C 3.836974 -3.206380 -0.265902
C 3.809291 -2.109702 -1.123684
C 2.634642 -1.383541 -1.289330
C $1.459576-1.744222-0.612442$
$\begin{array}{lllll}\text { C } & 1.504079 & -2.846385 & 0.256447\end{array}$
$\begin{array}{llll}\text { C } & 2.679314 & -3.567651 & 0.424735\end{array}$

```
H 4.751580 -3.772357 -0.130710
H 4.704173 -1.817912 -1.662251
H 2.617695 -0.523139 -1.952661
H 0.621266 -3.128343 0.819850
H 2.696277 -4.413183 1.103567
Si -3.843937 -0.987904 -0.005480
C -4.924265 -1.555305 -1.439891
H -4.474677 -2.406827 -1.959793
H -5.914465 -1.860012 -1.085696
H -5.060554 -0.749977 -2.168552
C -4.668370 0.480829 0.824712
H -5.667707 0.203922 1.176087
H -4.077666 0.809224 1.683526
H -4.782474 1.324842 0.137389
C -3.641310 -2.398896 1.213534
H -2.964091 -2.108593 2.021286
H -4.610123 -2.658928 1.651901
H -3.243957 -3.298213 0.733833
```

1 imaginary frequency
$\mathrm{E}=-1386.234342$
$\mathrm{H}=-1385.769030$
$\mathrm{G}=-1385.847982$

Product "a" for (4+3) cycloaddition of oxidopyridinium ion 2 with $9 k$
$\begin{array}{llll}\mathrm{N} & -1.209527 & 1.699500 & 1.661892\end{array}$
$\begin{array}{llll}\text { C } & -0.467964 & 2.454973 & 0.842502\end{array}$
$\begin{array}{llll}\text { C } & 0.728050 & 2.078152 & 0.303760\end{array}$
$\begin{array}{llll}\text { C } & 1.310787 & 0.716330 & 0.593234\end{array}$
$\begin{array}{llll}\text { C } & 0.729697 & 0.178778 & 1.872806\end{array}$
$\begin{array}{lllll}\text { C } & -0.761596 & 0.372102 & 2.076042\end{array}$

| C | 1.395810 | 3.016271 | -0.580427 |
| :--- | :--- | :--- | :--- |
| O | 0.998987 | 4.124493 | -0.895357 |
| O | 2.565026 | 2.524185 | -1.048050 |
| C | 3.295881 | 3.378492 | -1.929977 |
| C | -2.426924 | 2.198097 | 2.282629 |
| O | 1.378009 | -0.450999 | 2.677231 |
| C | 1.057928 | -0.297767 | -0.577203 |
| C | -1.513908 | -0.745478 | 1.320333 |
| C | -1.487171 | -0.663612 | -0.197778 |
| C | -0.396225 | -0.484575 | -0.958923 |
| H | -0.874695 | 3.434719 | 0.612838 |
| H | 2.391497 | 0.776885 | 0.729235 |
| H | -0.961686 | 0.262856 | 3.144501 |
| H | 4.188022 | 2.822217 | -2.209443 |
| H | 2.705602 | 3.611262 | -2.817184 |
| H | 3.574604 | 4.304454 | -1.425279 |
| H | -2.740123 | 3.110356 | 1.776786 |
| H | -3.223960 | 1.457317 | 2.196189 |
| H | -2.256472 | 2.410463 | 3.342517 |
| H | -2.548997 | -0.719995 | 1.674258 |
| H | -1.107806 | -1.706523 | 1.657090 |
| H | -0.541990 | -0.483904 | -2.037900 |
| H | 1.543797 | 0.179362 | -1.432705 |
| C | 3.296652 | -3.932562 | 0.163578 |
| C | 3.942723 | -2.746363 | -0.182980 |
| C | 3.201712 | -1.596657 | -0.429088 |
| C | 1.805030 | -1.603865 | -0.332860 |
| C | 1.168422 | -2.798345 | 0.004039 |
| C | 1.909286 | -3.953856 | 0.253194 |
| H | 3.871269 | -4.831533 | 0.355626 |

$\begin{array}{llll}\text { H } & 5.023571 & -2.719374 & -0.265869\end{array}$
$\begin{array}{llll}\text { H } & 3.710160 & -0.676336 & -0.702429\end{array}$
H $\quad 0.086660-2.836920 \quad 0.064650$
H $\quad 1.395714$-4.872649 0.514081
Si $-3.165154-0.883700-1.037211$
C $\quad-2.997902-0.807121-2.902997$
H $\quad-2.338716-1.591628 \quad-3.285424$
H $\quad-3.982586-0.947580-3.360233$
$\begin{array}{llll}\text { H } & -2.610878 & 0.159779 & -3.237196\end{array}$
C $\quad-4.314222 \quad 0.480059-0.441330$
$\begin{array}{llll}\text { H } & -5.259091 & 0.442807 & -0.993379\end{array}$
$\begin{array}{llll}\text { H } & -4.549413 & 0.372078 & 0.621272\end{array}$
$\begin{array}{llll}\text { H } & -3.872061 & 1.469204 & -0.596653\end{array}$
$\begin{array}{llll}\text { C } & -3.865716 & -2.550045 & -0.521848\end{array}$
H $\quad-4.861336-2.700588 \quad-0.951022$
$\begin{array}{llll}\text { H } & -3.223326 & -3.367350 & -0.863572\end{array}$
$\begin{array}{llll}\text { H } & -3.957193 & -2.623563 & 0.566119\end{array}$
0 imaginary frequencies
$E=-1386.287278$
$H=-1385.817530$
$G=-1385.895117$

Transition state " $b$ " for $(4+3)$ cycloaddition of oxidopyridinium ion 2 with 9 k
$\begin{array}{llll}\mathrm{N} & -2.087136 & -1.985127 & -0.539622\end{array}$
C $-1.643897-1.501642-1.755431$
C $\quad-1.274214-1.982890 \quad 0.521654$
C $\quad-3.525961-2.176870-0.374251$
C $\quad 0.097035-1.818147 \quad 0.356038$
C $0.647036-1.613385-0.907107$
C $\quad 0.930456-1.817351 \quad 1.583701$

C $\quad-0.207765-1.550027-2.058437$
$\begin{array}{llll}\text { O } & 0.190824 & -1.427389 & -3.229450\end{array}$
$\begin{array}{llll}\text { O } & 2.234103 & -1.783197 & 1.309227\end{array}$
$\begin{array}{llll}\text { O } & 0.488225 & -1.833741 & 2.710025\end{array}$
C $3.114604-1.687451 \quad 2.434425$
C $-1.9381630 .452967-1.787676$
$\begin{array}{llll}\text { C } & -1.531618 & 1.080976 & -0.595984\end{array}$
$\begin{array}{llll}\text { C } & -0.157450 & 1.342792 & -0.322729\end{array}$
$\begin{array}{llll}\text { C } & 0.902455 & 1.013969 & -1.124155\end{array}$
H $\quad 0.733378$ 0.720877 -2.156090
$\begin{array}{llll}\text { H } & -1.325018 & 0.554339 & -2.683945\end{array}$
H $\quad$-3.004685 0.436821 -1.999587
$\begin{array}{llll}\text { H } & 0.069851 & 1.777136 & 0.649601\end{array}$
H 4.118119 -1.634032 2.019328
$\begin{array}{llll}\text { H } & 3.013918 & -2.567676 & 3.070521\end{array}$
H 2.893985 -0.789250 3.012451
H $1.719093-1.617790-1.056528$
H -1.711405 -2.203654 1.485866
H -2.310169 -1.721866 -2.582290
H $-3.715453-2.6558660 .583962$
H -3.895867 -2.807434 -1.182065
H -4.031468 -1.207967 -0.411336
$\begin{array}{llll}\text { C } & 5.041539 & 1.452067 & -0.125079\end{array}$
$\begin{array}{llll}\text { C } & 4.078669 & 1.494160 & 0.883765\end{array}$
$\begin{array}{llll}\text { C } & 2.730813 & 1.357190 & 0.577713\end{array}$
$\begin{array}{llll}\text { C } & 2.309982 & 1.187467 & -0.751930\end{array}$
C $3.291006 \quad 1.134151$-1.754105
C $4.640669 \quad 1.267430-1.446222$
$\begin{array}{llll}H & 6.092836 & 1.553879 & 0.118715\end{array}$
H $\quad 4.382966 \quad 1.6210671 .917104$

| H | 2.003302 | 1.358698 | 1.382315 |
| :--- | :--- | :--- | :--- |
| H | 2.982257 | 0.986924 | -2.784562 |
| H | 5.380073 | 1.225254 | -2.238294 |
| Si | -2.803518 | 1.669493 | 0.676980 |
| С | -2.938588 | 0.519007 | 2.158814 |
| H | -3.564300 | 0.983312 | 2.929027 |
| H | -3.389669 | -0.440954 | 1.894158 |
| H | -1.953472 | 0.326752 | 2.595110 |
| С | -2.247859 | 3.354618 | 1.300304 |
| H | -2.100786 | 4.055283 | 0.473096 |
| H | -3.007402 | 3.773678 | 1.968146 |
| H | -1.311473 | 3.291516 | 1.861981 |
| С | -4.484296 | 1.850707 | -0.142273 |
| H | -5.200674 | 2.250095 | 0.583001 |
| H | -4.436714 | 2.548012 | -0.984164 |
| H | -4.883962 | 0.902000 | -0.510495 |

1 imaginary frequency
$\mathrm{E}=-1386.233446$
$H=-1385.768132$
$G=-1385.846302$

## Product "b" for (4+3) cycloaddition of oxidopyridinium ion 2 with $9 k$

$\begin{array}{llll}\mathrm{N} & 1.592344 & -2.131168 & -0.262633\end{array}$
C $0.460983-1.949611-0.959931$
$\begin{array}{llll}\text { C } & -0.721056 & -1.514459 & -0.431743\end{array}$
$\begin{array}{llll}\text { C } & -0.790459 & -1.082733 & 1.011941\end{array}$
C $\quad 0.268023-1.810168 \quad 1.795339$
$\begin{array}{llll}\text { C } & 1.646189 & -1.873135 & 1.171245\end{array}$
C -1.890290 -1.523989 -1.298102
$\begin{array}{llll}\text { O } & -3.037021 & -1.358452 & -0.608513\end{array}$

O -1.888046 -1.682527 -2.506645
$\begin{array}{llll}\text { C } & 2.840142 & -2.527992 & -0.892288\end{array}$
$\begin{array}{llll}\text { O } & 0.080052 & -2.242002 & 2.910452\end{array}$
$\begin{array}{llll}\text { C } & -0.581902 & 0.470743 & 1.232937\end{array}$
$\begin{array}{llll}\text { C } & 2.373533 & -0.538607 & 1.496888\end{array}$
$\begin{array}{llll}\text { C } & 1.924792 & 0.629725 & 0.644498\end{array}$
$\begin{array}{llll}\text { C } & 0.649328 & 1.036067 & 0.554392\end{array}$
C $\quad-1.849107 \quad 1.1847830 .804235$
$\begin{array}{lllll}\text { C } & -2.063662 & 1.569364 & -0.522295\end{array}$
$\begin{array}{llll}\text { C } & -3.270398 & 2.147084 & -0.907836\end{array}$
$\begin{array}{llll}\text { C } & -4.282076 & 2.350121 & 0.027385\end{array}$
$\begin{array}{llll}\text { C } & -4.076747 & 1.972874 & 1.352363\end{array}$
$\begin{array}{lllll}\text { C } & -2.868786 & 1.395594 & 1.734303\end{array}$
H $\quad 0.514889$-2.212933 -2.011496
H $-1.752665 \quad-1.3351591 .457674$
H 2.190788 -2.691186 1.648242
$\begin{array}{llll}\text { H } & 2.657757 & -2.756865 & -1.941393\end{array}$
$\begin{array}{llll}\text { H } & 3.584229 & -1.727469 & -0.829746\end{array}$
$\begin{array}{lllll}\text { H } & 3.240732 & -3.414885 & -0.394020\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.478220 & 0.598808 & 2.318007\end{array}$
$\begin{array}{llll}\text { H } & 3.444461 & -0.712036 & 1.375802\end{array}$
$\begin{array}{llll}\text { H } & 2.213160 & -0.327977 & 2.560640\end{array}$
H $\quad 0.4456431 .896317-0.081405$
H -1.293282 1.403612 -1.269129
H $\quad$-3.421350 2.434500 -1.942684
$\begin{array}{llll}\text { H } & -5.221281 & 2.800806 & -0.273034\end{array}$
H $-4.855724 \quad 2.1305292 .090145$
$\begin{array}{llll}\text { H } & -2.714686 & 1.098301 & 2.767427\end{array}$
C $\quad-4.229148$-1.262598 -1.386689
H $-5.029482-1.054541-0.679231$
$\begin{array}{llll}\mathrm{H} & -4.425818 & -2.200281 & -1.909350\end{array}$
$\begin{array}{llll}\text { H } & -4.150167 & -0.452194 & -2.112879\end{array}$
$\begin{array}{llll}\text { Si } & 3.169743 & 1.535435 & -0.462642\end{array}$
C $\quad 4.924453 \quad 1.071087 \quad 0.016443$
$\begin{array}{llll}\text { H } & 5.635039 & 1.644140 & -0.587659\end{array}$
$\begin{array}{llll}H & 5.124438 & 1.294755 & 1.068816\end{array}$
H $5.128881 \quad 0.009446-0.150470$
$\begin{array}{llll}\text { C } & 2.834650 & 1.045502 & -2.247119\end{array}$
H $\quad 1.813656 \quad 1.322157-2.529974$
$\begin{array}{llll}\text { H } & 3.524139 & 1.554203 & -2.928796\end{array}$
$\begin{array}{llll}\text { H } & 2.944686 & -0.032345 & -2.398299\end{array}$
C $\quad 2.939396 \quad 3.390575-0.285556$
$\begin{array}{llll}\text { H } & 3.106933 & 3.711367 & 0.746785\end{array}$
$\begin{array}{llll}\text { H } & 3.651092 & 3.922159 & -0.925248\end{array}$
$\begin{array}{llll}\text { H } & 1.932310 & 3.701340 & -0.578117\end{array}$
0 imaginary frequencies
$E=-1386.286982$
$\mathrm{H}=-1385.817701$
$G=-1385.895144$
Transition state " $\mathbf{c}$ " for $(4+3)$ cycloaddition of oxidopyridinium ion 2 with 9 k
$\begin{array}{llll}\mathrm{N} & -0.853795 & -2.235639 & -0.924768\end{array}$
C $\quad-0.863169-0.946704-1.345742$
C $\quad 0.266365-2.787149-0.401437$
C $\quad-2.065704-3.059212-1.045108$
C $\quad 1.438699-2.079188 \quad-0.338525$
C $\quad 1.499314-0.704188 \quad-0.746147$
C $\quad 2.608652-2.766180 \quad 0.248436$
C $\quad 0.348867-0.185823-1.470304$
$\begin{array}{llll}\text { O } & 0.358298 & 0.927623 & -2.021371\end{array}$
$\begin{array}{llll}\text { O } & 3.660173 & -1.948576 & 0.368079\end{array}$

| O | 2.634196 | -3.926909 | 0.592508 |
| :--- | ---: | ---: | ---: |
| C | 4.846495 | -2.527897 | 0.925385 |
| C | -0.734396 | 1.472656 | 0.582664 |
| C | 0.677743 | 1.577740 | 0.647376 |
| H | 5.582772 | -1.728220 | 0.945387 |
| H | 5.196875 | -3.349963 | 0.300669 |
| H | 4.653010 | -2.889718 | 1.935509 |
| H | -2.241302 | -3.584280 | -0.107462 |
| H | -1.932326 | -3.780174 | -1.852878 |
| H | -2.911935 | -2.412148 | -1.264157 |
| C | -1.423594 | 0.285576 | 0.711007 |
| C | 1.451636 | 0.444993 | 0.942393 |
| H | -0.920306 | -0.571805 | 1.150094 |
| H | 1.030606 | -0.341268 | 1.560989 |
| H | -1.297199 | 2.360820 | 0.304255 |
| H | 0.191192 | -3.813461 | -0.067818 |
| H | 2.459499 | -0.300766 | -1.043125 |
| H | -1.759257 | -0.607859 | -1.849080 |
| C | -5.670758 | -0.201649 | 0.485471 |
| C | -4.886476 | -1.102609 | 1.201249 |
| C | -3.508190 | -0.926303 | 1.270476 |
| C | -2.885493 | 0.155042 | 0.631672 |
| C | -3.686347 | 1.050874 | -0.093535 |
| C | -5.062893 | 0.874813 | -0.161392 |
| H | -6.744502 | -0.337832 | 0.426565 |
| H | -5.347920 | -1.944552 | 1.705309 |
| H | -2.898347 | -1.631675 | 1.827047 |
| H | -3.225913 | 1.877696 | -0.623830 |
| H | -5.665276 | 1.574720 | -0.729888 |
| Si | 1.542915 | 3.157634 | 0.091876 |


| H | 2.524290 | 0.562477 | 1.068583 |
| :--- | :--- | :--- | :--- |
| C | 2.091659 | 4.123170 | 1.613732 |
| H | 2.772187 | 3.526963 | 2.229932 |
| H | 2.614447 | 5.041498 | 1.326965 |
| H | 1.234507 | 4.402443 | 2.234201 |
| C | 3.065196 | 2.710480 | -0.912210 |
| H | 3.610761 | 3.616704 | -1.195003 |
| H | 3.752217 | 2.075223 | -0.344495 |
| H | 2.774304 | 2.180880 | -1.822593 |
| C | 0.373881 | 4.220140 | -0.919913 |
| H | -0.006899 | 3.656153 | -1.775519 |
| H | -0.477104 | 4.566123 | -0.325653 |
| H | 0.897109 | 5.106026 | -1.293914 |

1 imaginary frequency
$\mathrm{E}=-1386.229809$
$\mathrm{H}=-1385.764573$
$G=-1385.843515$

Product " c " for ( $\mathbf{( 4 + 3 \text { ) cycloaddition of oxidopyridinium ion } 2 \text { with } 9 k ~}$
$\begin{array}{llll}\mathrm{N} & -0.110543 & -2.086225 & 1.475152\end{array}$
C 1.171820 -1.999112 1.080025
C $1.583378-1.582344-0.148931$
C 0.580249 -1.089875 -1.162873
C $-0.778843-1.659949-0.852786$
C $\quad-1.199940-1.6562520 .605119$
C $3.012799-1.548847-0.408333$
$\begin{array}{llll}\text { O } & 3.895610 & -1.911514 & 0.348354\end{array}$
$\begin{array}{llll}\text { O } & 3.289922 & -1.048135 & -1.632280\end{array}$
C 4.675816 -0.936201 -1.961112
C $-0.447026-2.367282 \quad 2.862969$

| O | -1.544471 | -2.033887 | -1.711555 |
| :--- | :--- | :--- | :--- |
| C | 0.457813 | 0.460127 | -1.189604 |
| C | -1.738949 | -0.245963 | 1.019951 |
| C | -0.668138 | 0.825263 | 1.063545 |
| C | 0.273424 | 1.135308 | 0.158873 |
| C | -2.982457 | 0.113301 | 0.214741 |
| C | -3.010238 | 1.141877 | -0.726155 |
| C | -4.173647 | 1.415642 | -1.445515 |
| C | -5.325551 | 0.667367 | -1.230960 |
| C | -5.311593 | -0.355670 | -0.283713 |
| C | -4.151492 | -0.625485 | 0.432265 |
| H | 1.906987 | -2.306681 | 1.816984 |
| H | -2.020416 | -2.369250 | 0.712251 |
| H | 4.710346 | -0.485346 | -2.950631 |
| H | 5.191820 | -0.300699 | -1.239558 |
| H | 5.147674 | -1.919553 | -1.980912 |
| H | 0.345861 | -2.966755 | 3.309147 |
| H | -0.565981 | -1.446609 | 3.443121 |
| H | -1.380595 | -2.931942 | 2.899075 |
| H | -0.364782 | 0.729898 | -1.862455 |
| H | 1.372734 | 0.825527 | -1.663967 |
| H | -2.081844 | -0.386685 | 2.049216 |
| H | -0.693818 | 1.408462 | 1.982631 |
| H | -2.126085 | 1.745710 | -0.894310 |
| H | -4.176064 | 2.221009 | -2.171638 |
| H | -6.229434 | 0.882303 | -1.789513 |
| H | -6.206905 | -0.938578 | -0.098372 |
| H | -4.150175 | -1.417509 | 1.175654 |
| H | 0.844112 | -1.416355 | -2.169821 |
| Si | 1.516149 | 2.505732 | 0.538666 |
|  |  |  |  |

$\begin{array}{llll}\text { C } & 1.355554 & 3.836713 & -0.778553\end{array}$
H 2.095045 4.627992 -0.619738
$\begin{array}{llll}\text { H } & 1.516742 & 3.425655 & -1.779789\end{array}$
H $\quad 0.361521 \quad 4.293455-0.756181$
$\begin{array}{llll}\text { C } & 3.239675 & 1.758750 & 0.450919\end{array}$
H $3.446599 \quad 1.363722-0.548224$
$\begin{array}{llll}\text { H } & 3.994382 & 2.520943 & 0.670743\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.359142 & 0.945383 & 1.173233\end{array}$
$\begin{array}{llll}\text { C } & 1.211826 & 3.239841 & 2.236766\end{array}$
$\begin{array}{llll}\text { H } & 1.944335 & 4.030294 & 2.429088\end{array}$
$\begin{array}{llll}\text { H } & 0.215307 & 3.684083 & 2.314354\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.315850 & 2.489900 & 3.026235\end{array}$
0 imaginary frequencies
$\mathrm{E}=-1386.288557$
$\mathrm{H}=-1385.818789$
$\mathrm{G}=-1385.896043$

Transition state " $d$ " for (4+3) cycloaddition of oxidopyridinium ion 2 with $9 k$
$\begin{array}{llll}\mathrm{N} & -0.423232 & -1.324198 & 1.422757\end{array}$
$\begin{array}{llll}\text { C } & -1.011002 & -1.747662 & 0.276654\end{array}$
C $\quad 0.918578$-1.166794 1.529810
$\begin{array}{lllll}\text { C } & -1.285004 & -0.839470 & 2.501637\end{array}$
C $1.744453-1.4430520 .473432$
C $1.176970-1.710578-0.811273$
C 3.192176 -1.270327 0.678740
$\begin{array}{llll}\text { C } & -0.212735 & -2.145581 & -0.861506\end{array}$
O -0.718473 -2.697949 -1.852716
$\begin{array}{llll}\text { O } & 3.889253 & -1.446307 & -0.451162\end{array}$
$\begin{array}{llll}\text { O } & 3.715936 & -0.994951 & 1.736996\end{array}$
$\begin{array}{llll}\text { C } & 5.309465 & -1.290626 & -0.342517\end{array}$

C $-1.878794 \quad 0.157287-0.881913$
$\begin{array}{llll}\text { C } & -0.918722 & 1.095829 & -0.546928\end{array}$
$\begin{array}{llll}\text { C } & 0.430287 & 1.062173 & -0.966388\end{array}$
$\begin{array}{lllll}\text { C } & 0.912051 & 0.061189 & -1.822575\end{array}$
$\begin{array}{llll}\text { H } & 0.242091 & -0.423711 & -2.531371\end{array}$
Н $-1.710809 \quad-0.484597-1.742224$
H $-1.199445 \quad 1.8730830 .163147$
H 5.699088 -1.437643 -1.346832
$\begin{array}{llll}\text { H } & 5.721428 & -2.037940 & 0.336513\end{array}$
H 5.557219 -0.291470 0.017724
$\begin{array}{llll}\text { H } & 1.819455 & -2.119622 & -1.582187\end{array}$
H 1.288989 -0.850086 2.495404
H $\quad-2.042082$-2.068101 0.352381
H
$\begin{array}{llll}\text { H } & -1.521330 & 0.211812 & 2.317647\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.764324 & -0.941469 & 3.451739\end{array}$
H $1.9359860 .143377-2.176352$
C $\quad-5.986332 \quad 0.1649550 .344286$
C $\quad-5.545251-0.659408-0.687227$
C $-4.207989-0.643106-1.069622$
$\begin{array}{llll}\text { C } & -3.280978 & 0.196585 & -0.434059\end{array}$
$\begin{array}{lllll}\text { C } & -3.739020 & 1.015594 & 0.609759\end{array}$
$\begin{array}{llll}\text { C } & -5.075469 & 1.001761 & 0.989107\end{array}$
$\begin{array}{llll}\text { H } & -7.027303 & 0.155367 & 0.646110\end{array}$
H -6.242406 -1.315771 -1.195946
H $\quad-3.868433-1.286064-1.875945$
H $\quad$-3.049449 1.6650191 .136832
H $\quad-5.408799 \quad 1.644520 \quad 1.796322$
$\begin{array}{llll}\text { Si } & 1.615519 & 2.334127 & -0.222123\end{array}$
$\begin{array}{llll}\text { C } & 3.317393 & 2.125740 & -0.984452\end{array}$

```
H 4.018765 2.830095 -0.526073
H 3.709982 1.116225 -0.829033
H 3.302856 2.318932 -2.061335
C 0.942561 4.048305 -0.598210
H 0.844801 4.205804 -1.676214
H -0.042265 4.195468 -0.144331
H 1.612041 4.817722 -0.200785
C 1.741358 2.135979 1.644703
H 2.341886 1.263061 1.914401
H 2.220673 3.020721 2.077522
H 0.753730 2.030427 2.104919
1 imaginary frequency
\(E=-1386.228640\)
\(\mathrm{H}=-1385.763253\)
\(G=-1385.841387\)
```

Product "d" for (4+3) cycloaddition of oxidopyridinium ion 2 with 9 k
N $0.934581-1.727332-0.697331$
C $-0.360554-1.787071-1.074311$
C $-1.426925-1.580263-0.255930$
C $\quad-1.236927-1.3281551 .219749$
C $\quad 0.139062 \quad-1.7625571 .641701$
C $1.273971-1.4264350 .692242$
C $-2.753981-1.606396-0.855938$
$\begin{array}{llll}\text { O } & -3.724041 & -1.421629 & 0.063710\end{array}$
$\begin{array}{llll}\text { O } & -3.011454 & -1.778941 & -2.032923\end{array}$
C 1.943646 -2.415380 -1.499262
$\begin{array}{llll}\text { O } & 0.369197 & -2.261592 & 2.720140\end{array}$
$\begin{array}{llll}\text { C } & -1.394655 & 0.170208 & 1.622677\end{array}$
$\begin{array}{llll}\text { C } & 1.674748 & 0.074211 & 0.913125\end{array}$
$\begin{array}{llll}\text { C } & 0.642775 & 1.079453 & 0.434339\end{array}$
$\begin{array}{lllll}\text { C } & -0.662825 & 1.152405 & 0.731146\end{array}$
C $3.036078 \quad 0.3111170 .285226$
$\begin{array}{llll}\text { C } & 4.190863 & 0.095264 & 1.040858\end{array}$
$\begin{array}{llll}\text { C } & 5.453197 & 0.241353 & 0.472719\end{array}$
$\begin{array}{lllll}\text { C } & 5.577880 & 0.604390 & -0.866197\end{array}$
C $4.433037 \quad 0.820618$-1.628729
C $3.171416 \quad 0.675879-1.056947$
H $\quad-0.526111$-2.025293 -2.120640
H $-1.953624 \quad-1.9022171 .808963$
$\begin{array}{llll}\text { H } & 2.127445 & -2.041819 & 0.981904\end{array}$
H 1.690533 -2.313976 -2.554967
H 2.921048 -1.968019 -1.326736
H 1.988278 -3.478509 -1.239743
$\begin{array}{llll}\text { H } & -1.064051 & 0.283700 & 2.662333\end{array}$
H $\quad$-2.467393 0.3798981 .612940
$\begin{array}{llll}\text { H } & 1.789335 & 0.175970 & 1.999876\end{array}$
H $\quad 1.053355 \quad 1.855941-0.206125$
$\begin{array}{llll}\text { H } & 4.097040 & -0.190329 & 2.084383\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.338348 & 0.074434 & 1.076276\end{array}$
$\begin{array}{llll}\text { H } & 6.559660 & 0.720398 & -1.310994\end{array}$
H 4.5202841 .100001 -2.672796
$\begin{array}{llll}\text { H } & 2.288562 & 0.832130 & -1.668538\end{array}$
C $-5.062987-1.408332-0.435748$
H -5.696732 -1.189190 0.420921
H $\quad-5.324886-2.379998-0.857029$
H $-5.180666-0.637877-1.199246$
Si -1.708195 2.540451 -0.007155
$\begin{array}{llll}\text { C } & -2.410395 & 3.573725 & 1.397116\end{array}$
$\begin{array}{llll}\text { H } & -3.070399 & 4.355515 & 1.008078\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.994316 & 2.957743 & 2.087934\end{array}$
H $-1.612004 \quad 4.0578561 .967232$
$\begin{array}{llll}\text { C } & -3.131340 & 1.764338 & -0.958893\end{array}$
H $\quad-3.772547$ 1.177997 -0.294579
$\begin{array}{llll}\text { H } & -3.748801 & 2.545354 & -1.414637\end{array}$
H -2.771292 1.108739 -1.757769
$\begin{array}{lllll}\text { C } & -0.675581 & 3.615425 & -1.144955\end{array}$
H -1.303369 4.404514 -1.570969
H $\quad 0.148371 \quad 4.097940-0.611427$
$\begin{array}{lllll}\text { H } & -0.256052 & 3.038618 & -1.974508\end{array}$
0 imaginary frequencies
$\mathrm{E}=-1386.287200$
$\mathrm{H}=-1385.817814$
$\mathrm{G}=-1385.895316$

## Computational NMR Analysis of Structures 13, 20, and 23

## I. Summary

A computational analysis of structures 13, 20, and 23 was undertaken to verify their experimental NMR spectra and identify diagnostic peaks as well as conclude their mixture compositions in the case of the latter two structures. Computational spectra supported the experimental assignments in structure 13 and determined the structure 20 reaction mixture was of isomers A and B while the structure 23 reaction mixture was isomers A and C.

The DP4-AI workflow developed by the Goodman group ${ }^{98}$ was used in combination with diagnostic peaks to assign the spectra. Computational methods were chosen in accordance to best practice for DP4-AI ${ }^{99}$. Geometry optimizations used B3LYP/6-31G(d), energy calculations used M06-2X/def2tzvp, and NMR shift calculations used mPW19PW91/6-311G(d).

## II. Structure 13

Experimental assignment of major isomer A and minor isomers B and C was supported by computational NMR and certain bridgehead atoms were located as diagnostic peaks for further experimental work. A theoretical exo regioisomer, D, was created but did not match experimental spectra. Discriminating between minor isomers B and C was also supported by DP4-AI analysis.

The newly formed bridgehead carbons of 13B exhibit different shifts at 70 ppm and 50 ppm for C -xx and C -yy respectively. The proton attached to C -xx resonates at 3.63 ppm and couples to proton $\mathrm{H}_{1}-\mathrm{zz}$ and geminal $\mathrm{H}_{2}$-zz attached to C-zz. The former exhibits a doublet of doublets at 2.97 ppm and the latter is contained in the multiplet between $2.10-2.04 \mathrm{ppm}$. These carbons are identified in Figure 1 below.


Figure 1. Minor isomer 13B shown with labelled carbon atoms.

Corresponding couplings and shifts were observed for 13C but centered around C-yy rather than C -xx. The proton attached to $\mathrm{C}-\mathrm{yy}$ resonated at 3.62 ppm and coupled with two geminal partners on C-aa with proton shifts of 2.99-2.97 ppm and 2.19 ppm. Figure 2 below shows 13C with carbon labels.


Figure 2. Minor isomer 13C shown with labelled carbon atoms.

Although other protons such as those alpha to the phenyl ring exhibited different computational shifts, the aforementioned protons are easily detectable and suited for experiments.

## III. Structure 20

Computational analysis determined that the structure 20 product mixture was of isomers A and B. As before, the exo regiosomer D was created for further validation.

The first diagnostic region was the alkyl chain protons closest to the stereocentre which correlated to three experimental peaks for three protons below 2 ppm at $1.52,1.73$, and 1.84 ppm . Computationally (mPW19PW91/6-311G(d)), isomers A, B, C, and D had 2, 1, 2, and 0 peaks respectively in this region. The lowest shift for 13D was 2.06 ppm . To achieve the three peaks seen experimentally, this meant a combination of B (1) and either A (2) or C (2). The next diagnostic region involved the bridgehead protons shown in Figure 3. Experimentally, there is a peak at 3.57 ppm which corresponds well with computational shifts (mPW19PW91/6-311G(d)) for isomer A ( 3.53 ppm ) but not as well with isomer C ( 3.39 ppm ). In addition, amine methyl peaks supported the presence of both A and B. Peak height analysis guided by computational shifts for the amine and ester groups suggested that isomer B was the major product.



Figure 3. Structures 20A (right) and 20C (left) with diagnostic bridgehead protons shown by green bond.

## IV. Structure 23

Identification of the structure 23 mixture followed the same general procedure as for structure 20 and determined that the experimental spectra of structure 23 was an approximately 50:50 mixture of isomers A and C. As before, the exo regiosomer D was created for further validation.

The proton peaks corresponding to the amine and ester functionalities were used as diagnostic peaks because the phenyl ring exerts an observable influence on the shifts of these two functionalities. The amine methyl group saw average computational shifts of $3.00,2.97,3.12$, and $2.51 \mathrm{ppm}(\mathrm{mPW} 19 \mathrm{PW} 91 / 6-311 \mathrm{G}(\mathrm{d})$ ) for isomers A, B, C, and D. Isomers A, B, and C corroborated well with experimental singlets at 2.96 ppm and 3.00 ppm . Experimental ester shifts of 3.68 ppm and 3.73 ppm were then used to eliminate isomer B since computational shifts of $3.69,2.95$, and $3.64 \mathrm{ppm}(\mathrm{mPW} 19 \mathrm{PW} 91 / 6-311 \mathrm{G}(\mathrm{d})$ ) were observed for isomers A, B, and C respectively. The positioning of the phenyl ring on B as shown in Figure 4 likely leads to anisotropic interactions with the ester methyl in a similar manner to isomer D and the amine methyl. Peak height analysis guided by computational shifts for the OTMS, amine, and ester functionalities suggested that isomer A was the major product.


Figure 4. Top conformer of structure 23B shown from two different perspectives with phenyl ring pointed towards ester methyl group.

## V. Computational Data

## V.I. Proton Computational NMR Data

| Calculated Proton Shift $(\mathbf{6 - 3 1 1 G}(\mathbf{d})) / \mathbf{p p m}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 3 A}$ | $\mathbf{1 3 B}$ | $\mathbf{1 3 C}$ | $\mathbf{1 3 D}$ |
| -0.02 | -0.01 | -0.25 | -0.3 |
| 0 | 0.01 | -0.08 | -0.17 |
| 0 | 0.06 | -0.06 | -0.16 |
| 0.03 | 0.07 | -0.03 | -0.04 |
| 0.04 | 0.07 | 0 | 0.05 |
| 0.04 | 0.08 | 0 | 0.11 |
| 0.08 | 0.09 | 0.01 | 0.14 |
| 0.1 | 0.1 | 0.04 | 0.19 |
| 0.12 | 0.11 | 0.13 | 0.19 |
| 1.59 | 1.89 | 1.67 | 2.1 |
| 1.71 | 2.07 | 1.71 | 2.26 |
| 2.08 | 2.08 | 2.1 | 2.27 |
| 2.79 | 2.22 | 2.8 | 2.39 |
| 2.9 | 2.84 | 2.84 | 2.74 |


| 2.91 | 3.1 | 2.85 | 3.03 |
| :---: | :---: | :---: | :---: |
| 3.04 | 2.93 | 2.83 | 2.92 |
| 2.86 | 2.98 | 2.61 | 2 |
| 2.92 | 2.84 | 2.71 | 2.6 |
| 2.91 | 3.05 | 2.97 | 3.33 |
| 3.45 | 3.54 | 3.44 | 3.33 |
| 3.46 | 3.67 | 3.5 | 3.41 |
| 3.48 | 3.69 | 3.67 | 3.63 |
| 3.56 | 3.51 | 3.63 | 3.65 |
| 3.6 | 3.62 | 3.61 | 3.35 |
| 6.46 | 6.18 | 6.42 | 6.25 |
| 7.44 | 7.42 | 7.44 | 7.5 |
| 7.45 | 7.5 | 7.48 | 7.58 |
| 7.53 | 7.53 | 7.5 | 7.62 |
| 7.55 | 7.55 | 7.55 | 7.64 |
| 7.56 | 7.55 | 7.6 | 7.69 |
| 7.26 | 7.31 | 7.19 | 7.04 |


| Calculated Proton Shift (6-311G(d)) $/ \mathbf{p p m}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0 A}$ | $\mathbf{2 0 B}$ | $\mathbf{2 0 C}$ | $\mathbf{2 0 D}$ |
| 1.63 | 1.81 | 1.63 | 2.06 |
| 1.68 | 2.05 | 1.79 | 2.1 |
| 2.1 | 2.14 | 2.18 | 2.11 |
| 2.79 | 2.14 | 2.62 | 2.18 |
| 2.81 | 2.85 | 2.72 | 2.79 |
| 2.81 | 2.93 | 2.88 | 2.86 |
| 2.92 | 3.12 | 2.91 | 2.94 |
| 2.8 | 2.68 | 2.79 | 2.9 |
| 2.94 | 3.03 | 2.81 | 3.09 |


| 3.04 | 2.95 | 2.39 | 2.83 |
| :---: | :---: | :---: | :---: |
| 3.53 | 3.7 | 3.39 | 3.35 |
| 3.44 | 3.71 | 3.58 | 3.51 |
| 3.53 | 3.66 | 3.6 | 3.65 |
| 3.56 | 3.55 | 3.62 | 3.64 |
| 3.6 | 3.58 | 3.73 | 3.53 |
| 5.96 | 5.93 | 6.04 | 6.01 |
| 6.2 | 6.11 | 6.12 | 6.18 |
| 7.32 | 7.37 | 7.25 | 7.27 |
| 7.45 | 7.42 | 7.49 | 7.41 |
| 7.48 | 7.51 | 7.49 | 7.47 |
| 7.53 | 7.52 | 7.51 | 7.48 |
| 7.53 | 7.53 | 7.57 | 7.54 |
| 7.57 | 7.6 | 7.6 | 7.55 |

Calculated Proton Shift (6-311G(d)) /ppm

| $\mathbf{2 3 A}$ | $\mathbf{2 3 B}$ | $\mathbf{2 3 C}$ | $\mathbf{2 3 D}$ |
| :---: | :---: | :---: | :---: |
| 0.06 | -0.06 | -0.2 | -0.08 |
| 0.08 | 0.04 | -0.07 | -0.06 |
| 0.11 | 0.06 | 0 | -0.04 |
| 0.12 | 0.09 | 0.04 | -0.01 |
| 0.12 | 0.13 | 0.05 | -0.01 |
| 0.16 | 0.19 | 0.09 | 0.01 |
| 0.2 | 0.19 | 0.13 | 0.15 |
| 0.23 | 0.21 | 0.27 | 0.18 |
| 0.24 | 0.25 | 0.34 | 0.19 |
| 2.28 | 2.27 | 2.28 | 2.23 |
| 3.05 | 3.22 | 3.17 | 3.27 |


| 2.84 | 3.02 | 2.92 | 2.29 |
| :---: | :---: | :---: | :---: |
| 2.92 | 3.03 | 3.02 | 2.6 |
| 3.25 | 2.85 | 3.43 | 2.63 |
| 3.51 | 3.46 | 3.41 | 3.42 |
| 3.58 | 2.93 | 3.51 | 3.61 |
| 3.73 | 2.66 | 3.7 | 3.62 |
| 3.77 | 3.27 | 3.72 | 3.74 |
| 3.64 | 3.63 | 3.68 | 3.51 |
| 4.44 | 3.73 | 4.46 | 3.58 |
| 6.58 | 6.65 | 6.56 | 6.69 |
| 7.26 | 7.43 | 7.23 | 7.62 |
| 7.46 | 7.5 | 7.29 | 7.67 |
| 7.46 | 7.52 | 7.5 | 7.67 |
| 7.49 | 7.59 | 7.52 | 7.67 |
| 7.54 | 7.6 | 7.55 | 7.71 |
| 7.34 | 7.36 | 7.31 | 7.33 |

## V.I.I. Carbon Computational NMR Data

| Calculated Carbon Shift $(\mathbf{6 - 3 1 1 G}(\mathbf{d})) / \mathbf{p p m}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 3 A}$ | $\mathbf{1 3 B}$ | $\mathbf{1 3 C}$ | $\mathbf{1 3 D}$ |
| -1.71 | -1.51 | -2.15 | -2.4 |
| -1.18 | -0.91 | -1.96 | -2.11 |
| -0.87 | -0.7 | -1.46 | -0.97 |
| 32.1 | 34.17 | 34.66 | 36.71 |
| 37.9 | 37.69 | 36.32 | 39.1 |
| 38.87 | 41.98 | 37.27 | 40.34 |
| 42.25 | 42.46 | 41.37 | 43.59 |
| 46.73 | 48.63 | 41.83 | 50.95 |


| 52.58 | 52.76 | 50.85 | 52.32 |
| :---: | :---: | :---: | :---: |
| 53.21 | 53.35 | 52.78 | 52.71 |
| 70.76 | 70.78 | 74.16 | 72.04 |
| 97.79 | 95.6 | 97.55 | 97.41 |
| 131 | 130.74 | 131.39 | 131.59 |
| 133.33 | 133.05 | 133.49 | 133.98 |
| 133.52 | 133.47 | 133.83 | 134.13 |
| 134.06 | 134.14 | 133.84 | 134.17 |
| 134.51 | 134.92 | 134.58 | 136.53 |
| 146.26 | 148.63 | 148.05 | 149.65 |
| 149.47 | 149.54 | 148.53 | 150.77 |
| 153.36 | 154.5 | 152.8 | 152.97 |
| 155.17 | 158.06 | 154.72 | 156.08 |
| 173.65 | 174.7 | 174.09 | 173.98 |
| 215.71 | 216.64 | 215.54 | 216.81 |

Calculated Carbon Shift (6-311G(d)) /ppm
20A
20B
20C
20D

| 30.87 | 33.04 | 34.17 | 35.72 |
| :---: | :---: | :---: | :---: |
| 37.47 | 37.36 | 36.3 | 38.23 |

39.04
41.26
36.36
43.3
41.28
46.12
41.34

40
44.5
48.14
41.28
47.07
52.62
52.64
70.6
52.84
50.02
50.67
98.16
130.9
$\begin{array}{llll}131.59 & 132.48 & 133.62 & 133.58\end{array}$
53.18
52.75
52.77
76.92
70.92
73.15
97.38

| 30.9 | 130.71 | 131.4 | 131.39 |
| :--- | :--- | :--- | :--- |


| 133.23 | 133.18 | 133.72 | 133.61 |
| :--- | :---: | :---: | :---: |
| 133.46 | 133.25 | 133.73 | 134.15 |
| 133.61 | 134.31 | 134.53 | 134.71 |
| 134.84 | 134.71 | 138.76 | 140.6 |
| 146.06 | 148.75 | 139.07 | 141.12 |
| 149.42 | 149.53 | 148.12 | 148.04 |
| 153.36 | 154.39 | 152.85 | 153.57 |
| 173.81 | 174.97 | 173.65 | 173.52 |
| 215.82 | 216.02 | 216.13 | 215.99 |


| Calculated Carbon Shift $(\mathbf{6 - 3 1 1 G}(\mathbf{d})) / \mathbf{p p m}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 3 A}$ | $\mathbf{2 3 B}$ | $\mathbf{2 3 C}$ | $\mathbf{2 3 D}$ |
| -1.6 | -2.08 | -2.34 | -2.2 |
| -1.27 | -0.47 | -1.85 | -1.61 |
| -0.76 | -0.38 | -0.99 | -1.34 |
| 33.1 | 36.27 | 35.73 | 38.18 |
| 42.33 | 42.36 | 42 | 45.15 |
| 52.91 | 52.19 | 50.22 | 51.21 |
| 55.27 | 56.42 | 51.01 | 52.97 |
| 58.71 | 57.95 | 52.85 | 55.09 |
| 70.58 | 71.45 | 78.39 | 78.4 |
| 97.99 | 94.49 | 98.23 | 100.33 |
| 131.81 | 131.7 | 132.35 | 132.73 |
| 133.19 | 133.35 | 133.64 | 134.18 |
| 133.24 | 133.4 | 133.72 | 134.24 |
| 133.55 | 133.77 | 133.87 | 134.26 |
| 134.19 | 134.49 | 134.06 | 134.37 |
| 146.22 | 149.88 | 143.49 | 149.66 |


| 149.25 | 152.15 | 145.69 | 151.35 |
| :---: | :---: | :---: | :---: |
| 151.36 | 154.38 | 152.58 | 154.35 |
| 153.21 | 155.61 | 156.5 | 156.75 |
| 173.96 | 174.6 | 174.14 | 173.95 |
| 212.69 | 215.44 | 212.6 | 216.42 |

## Bibliography

1. Joule, J. A. Chapter four-natural products containing nitrogen heterocycles-some highlights 1990-2015. Adv. Heterocycl. Chem. 2016, 119, 81 - 106.
2. Reekie, T. A., Kavanagh, M. E.; Longworth, M.; Kassiou, M. Synthesis of biologically active seven-membered-ring heterocycles. Synthesis, 2013, 45, 3211-3227.
3. Oliveira, K. T. D.; Servilha, B. M.; Alves, L. D. C.; Desiderá, A. L.; Brocksom, T. J. The synthesis of seven-menbered rings in natural products. Stud. Nat. Prod. Chem. 2014, 42, 421-463.
4. Woodward, R. B.; Hoffmann, R. The conservation of orbital symmetry. Angew. Chem. Internat. Edit. 1969, 8, 781 - 932.
5. Rigby, J. H.; Pigge, F. C. [4+3] Cycloaddition Reactions. Org. React. 1997, 51, 351 478.
6. Rigby, J. H.; Pigge, C. F. Organic Reactions, Vol. 51 (Eds.: L. A. Paquette), Wiley, Hoboken, 1997, 351-478.
7. Hoffmann, H. M. R. The cycloaddition of allyl cations to 1,3-dienes: general method for the synthesis of seven-membered carbocycles. Angew. Chem. Int. Ed. Engl. 1984, 23, 1 19.
8. Harmata, M. Intramolecular Cycloaddition Reactions of Allylic Cations. Tetrahedron. 1997, 53, 6235 - 6280.
9. Cramer, C. J.; Barrows, S. E. Quantum chemical characterization of cycloaddition reactions between the hydroxyallyl cation and dienes of verifying nucleophilicity. J. Org. Chem., 1998, 63, 5523 - 5532.
10. Dennis, N.; Ibrahim, B.; Katritzky, A. R. 1,3-Dipolar character of six-membered aromatic rings. Part xxi. Thermal cycloadditions of 1-(5-nitro-2-pyridyl)-and 1-(4,6-dimethyl-pyrimidin-2-yl)-3-oxidopyridinium with 2 , 4, and $6 \pi$-electron components. J. Chem. Soc. Perkin Trans. 1976, 1, 2307 - 2328.
11. Cramer, C. J.; Barrows, S. E. Quantum chemical characterization of cycloaddition reactions between 1,3-butadiene and oxyallyl cations of varying electrophilicity. J. Phys. Org. Chem. 2000, 13, 176 - 186.
12. Harmata, M. The (4+3)-cycloaddition reaction: simple allylic cations as dienophiles. Chem. Соттй. 2010, 46, 8886 - 8903.
13. Dennis, N.; Ibrahim, B.; Katritzky, A. R. 1,3-Dipolar character of six-membered aromatic rings. Part XXI. Thermal cycloadditions of 1-(5-nitro-2-pyridyl)-and 1-(4,6-dimethyl-pyrimidin-2-yl)-3-oxidopyridinium with 2,4 , and $6 \pi$-electron components. $J$. Chem. Soc. Perkin Trans. 1976, 1, 2307 - 2328.
14. Dennis, N.; Ibrahim, B.; Katritzky, A. R. 1,3-Dipolar character of six-membered aromatic rings. Part XX. Preparation and dimerization of 1-(5-nitro-2-pyridyl)- and 1-(4,6-dimethylpyrimidin-2-yl)-3-oxidopyridinium. J. Chem. Soc., Perkin Trans. 1, 1976, 2296 2307.
15. Katrizky, A. R.; Rahimi-Rastgoo, S.; Sabongi, G. J. 1,3-Dipolar character of sixmembered aromatic rings. Part 51. Cycloaddition of 1-( $\beta$-benzoylvinyl)-3oxidopyridiniums and subsequent transformations. J. Chem. Soc., Perkin Trans.1, 1980, 362-371.
16. Dennis, N.; Katrizky, A. R.; Sabounji, G. J.; Turker, L. 1,3-Dipolar character of sixmembered aromatic rings. Part 33. Transformations of cycloadducts derived from 3-oxido-1-triazinylpyridiniums. J. Chem. Soc. Perkin Trans. 1, 1977, 1930-1940.
17. Shoemarker, A. H.; Griffith, D. R. Synthetic approaches to non-tropane, bridged, azapolycyclic ring systems containing seven-membered carbocycles. Synthesis, 2021, 53, 65-78.
18. Peese, K. M.; Gin, D. Y. Asymmetric synthesis access to the hetisine alkaloids: total synthesis of (+)-Nominine. Chem. Eur. J. 2008, 14, 1654 - 1665.
19. Fu, C.; Lora, N.; Kirchhoefer, P. L.; Lee, D. R.; Altenhofer, E.; Barnes, C. L.; Hungerford, N. L.; Krenske, E. H.; Harmata, M. (4+3) Cycloaddition Reactions of N-Alkyl Oxidopyridinium Ions. Angew. Chem. Int. Ed. 2017, 56, 14682-14687.
20. (a) Dennis, N.; Ibrahim, B.; Katritzky, A. R. The dimer of 1-(5- nitro-2-pyridyl)-3oxidopyridinium and its reactions. J. Chem. Soc., Chem. Commun. 1974, 500-501. (b) Dennis, N.; Ibrahim, B.; Katritzky, A. R. Rationalization of the variation or reactivity towards cycloaddition with structure in 3-oxidopyridinium and -azinium betaines and a study of 1-(4,6-dimethyl-2-pyrimidyl)-3-oxidopyridi- nium. J. Chem. Soc., Chem. Commun. 1975, 425-427. (c) Dennis, N.; Ibrahim, B.; Katritzky, A. R. 1,3-Dipolar character of six-membered aromatic rings. Part XXI. Thermal cycloadditions of 1-(5-nitro2 - pyridyl)- and 1-(4,6-dimethylpyrimidin-2-yl)-3-oxidopyridinium with 2 , 4, and $6-\pi$ electron components. J. Chem. Soc., Perkin Trans. 1 1976, 2307-2328. (d) Dennis, N.; Katritzky, A. R.; Rittner, R. 1,3- Dipolar character of six-membered aromatic rings. Part XXV. 5-Aryl- 1-methyl-3-oxidopyridiniums. J. Chem. Soc., Perkin Trans. 1 1976, 2329-2334. (e) Dennis, N.; Katritzky, A. R.; Sabounji, G. J.; Turker, L. 1,3-Dipolar
character of six-membered aromatic rings. Part 33. Transformations of cycloadducts derived from 3-oxido-1-triazinylpyr- idiniums. J. Chem. Soc., Perkin Trans. 1 1977, 1930-1940. (f) Katritzky, A. R.; Banerji, J.; Boonyarakvanich, A.; Cutler, A. T.; Dennis, N.; Rizvi, S. Q. A.; Sabongi, G. J.; Wilde, H. 1,3-Dipolar character of six-membered aromatic rings. Part 34 . The search for superior 1 -substituents to facilitate cycloadditions of 3-oxidopyridi- nium. J. Chem. Soc., Perkin Trans. 1 1979, 399-407. (g) Katritzky, A. R.; Dennis, N.; Chaillet, M.; Larrieu, C.; El Mouhtadi, M. 1,3-Dipolar character of sixmembered aromatic rings. Part 38. FMO treatment of peri-, site, regio, and stereoselectivity, and relative reaction rates of cycloaddition reactions. J. Chem. Soc., Perkin Trans. 1 1979, 408-417. (h) Katritzky, A. R.; Dennis, N.; Sabongi, G. J.; Turker, L. 1,3Dipolar character of six-membered aromatic rings. Part 43. Cycloadditions leading to tricyclic adducts. J. Chem. Soc., Perkin Trans. 1 1979, 1525- 1535. (i) Katritzky, A. R.; Rahimi-Rastgoo, S.; Sabongi, G. J.; Fischer, G. W. 1,3-Dipolar character of six-membered aromatic rings. Part 51. Cycloadditions of 1-( $\beta$-benzoylvinyl)-3-oxidopyridiniums and sub- sequent transformations. J. Chem. Soc., Perkin Trans. 1 1980, 362-371. (j) Katritzky, A. R.; Dennis, N. Cycloaddition reactions of heteroaromatic six-membered rings. Chem. Rev. 1989, 89, 827-861.
21. (a) Kun Cha, J.; Ik Lee, H.; Je Sung, M.; Bong Lee, H. Synthetic studies toward sarain A: An improved synthesis of the tricyclic core of sarains by a 3-oxidopyridinium betaine cycloaddition. Heterocycles 2004, 62, 407-422. (b) Sung, M. J.; Lee, H. I.; Chong, Y.; Cha, J. K. Facile Synthesis of the Tricyclic Core of Sarain A. 3-Oxidopyridinium Betaine Cycloaddition Approach. Org. Lett. 1999, 1, 2017-2019.
22. (a) Liu, Z.; Lin, X.; Yang, N.; Su, Z.; Hu, C.; Xiao, P.; He, Y.; Song, Z. Unique steric effect of geminal bis(silane) to control the high exo-selectivity in intermolecular Diels-Alder reaction. J. Am. Chem. Soc. 2016, 138, 1877-1883. (b) Wang, J.; Liu, Z.; Li, J.; Song, Z.; Hu, C.; Su, Z. exo/endo selectivity control in Diels-Alder reactions of geminal bis(silyl) dienes: Theoretical and experimental studies. J. Org. Chem. 2019, 84, 3940-3952.
23. Puriņs, M.; Mishnev, A.; Turks, M. Brønsted Acid Catalyzed 1,2- silyl shift in propargyl silanes: synthesis of silyl dienes and silyl indenes. J. Org. Chem. 2019, 84, 3595-3611.
24. (a) Pidaparthi, R. R.; Junker, C. S.; Welker, M. E.; Day, C. S.; Wright, M. W. Preparation of 2 -silicon-substituted 1,3-dienes and their Diels-Alder/cross-coupling reactions. J. Org. Chem. 2009, 74, 8290-8297. (b) Junker, C. S.; Welker, M. E.; Day, C. S. Synthesis of 4-aryl- and 4-alkyl-2-silyl-1,3-butadienes and their Diels-Alder/crosscoupling reactions. J. Org. Chem. 2010, 75, 8155-8165. (c) Kaminsky, L.; Clark, D. A. Ruthenium catalyzed cycloisomerization of silicon- tethered 1,7-enynes to give exocyclic 1,3-dienes. Org. Lett. 2014, 16, 5450-5453.
25. Fleming, I.; Dunogues, J.; Smithers, R. The electrophilic substitution of allylsilanes and vinylsilanes. Org. React. 1989, 37, 57-575.
26. (a) Choudhury, P. P.; Junker, C. S.; Pidaparthi, R. R.; Welker, M. E. Syntheses of 2-silicon-substituted 1,3-dienes. J. Organomet. Chem. 2014, 754, 88-93. (b) Ostrowska, S.; Powała, B.; Jankowska-Wajda, M.; Ż ak, P.; Rogalski, S.; Wyrzykiewicz, B.; Pietraszuk, C. Regio- and steroselective cross-metathesis of silylacetylenes with terminal olefins and $\alpha, \omega$-dienes. J. Organomet. Chem. 2015, 783, 135-140.
27. Choudhury, P. P.; Welker, M. E. Preparation and reaction chemistry of novel siliconsubstituted 1,3-dienes. Molecules 2015, 20, 16892-16907.
28. Conditions as follows: injection volume, 1.7 mL sample in $\mathrm{CH}_{3} \mathrm{OH}$; column, Chiralpak IC ( $21 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ ); mobile phase, isocratic $15 \% \mathrm{MeOH} / 85 \% \mathrm{CO}_{2}$; flow rate, 70 $\mathrm{mL} / \mathrm{min}$; detection, UV at 205 nm ; backpressure regulator (BPR), 100 bar.
29. In this process, we also separated the enantiomers of each individual diastereomer, but this is not relevant to the present study.
30. See Supporting Information for a discussion of this point.
31. Harmata, A. S.; Harmata, M. From 5-hydroxynicotinic acid to nitrogenous (4 + 3)cycloadducts. Org. Synth. 2020, 97, 139-156.
32. Consistent with this idea, the isomeric TS energies for the $(4+3)$ cycloaddition of 2 with 9 k follow a similar order to those with 9 a (i.e., 23a is kinetically favored), but the product energies predict that 23 c is the most stable product. Details are provided in the Supporting Information.
33. Oda, H.; Sato, M.; Morizawa, Y.; Oshima, K.; Nozaki, H. Cleavage of vinyl carbonsilicon bond with tetrabutylammonium fluoride. Tetrahedron, 1985, 41, 3257-3268.
34. Yao, W.; Li, R.; Jiang, H.; Han, D. An additive-free, base- catalyzed protodesilylation of organosilanes. J. Org. Chem., 2018, 83, 2250-2255.
35. Szudkowska-Fratczak, J.; Marciniec, B.; Hreczycho, G.; Kubicki, M.; Pawluc, P. Ruthenium-catalyzed silylation of 1,3-butadienes with vinylsilanes. Org. Lett., 2015, 17, 2366-2369.
36. Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Hexafluoroisopropanol as a unique solvent for stereoselective iododesilylation of vinylsilanes. Org. Lett., 2008, 10, 1727-1730.
37. Harmata, M. The $(4+3)$-cycloaddition reaction: simple allylic cations as dienophiles. Chem. Сommun. 2010, 46, 8886-8903.
38. Harmata, M. The (4+3)-cycloaddition reaction: heteroatom-substituted allylic cations as dienophiles. Chem. Commun. 2010, 46, 8904-8922.
39. Mascareñas, J. L.; Gulias, M.; Lopez, F. (4+3) cycloadditions. In Cycloaddition Reactions in Organic Syntheses, Nishiwaki, N., Ed.; John Wiley \& Sons: Hoboken, 2014, pp 595-655.
40. Lam, S. Y. Y.; Chiu, P. [4+3] Cycloadditions of enol silane derivatives. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses, Nishiwaki, N., Ed.; Wiley: New York, 2014; Chapter 18.
41. Jones, D. E.; Harmata, M. Application of the [4+3]-Cycloaddition Reaction to the Synthesis of Natural Products. In Methods and Applications of Cycloaddition Reactions in Organic Synthesis; Nishiwaki, N., Ed.; Wiley: New York, 2014; Chapter 19.
42. Dennis, N.; Katritzky, A. R.; Rittner, R. 1,3-Dipolar Character of Six-Membered Aromatic Rings. Part XXV. 5-Aryl-1-methyl-3-oxidopyridiniums. J. Chem. Soc., Perkin Trans. 1 1976, 2329-2334.
43. Katritzky, A. R.; Rahimi-Rastgoo, S.; Sabongi, G. J.; Fischer, G. W. 1,3-Dipolar Character of Six-Membered Aromatic Rings. Part 51. Cycloadditions of 1-( $\beta$ -Benzoylvinyl)-3-oxidopyridiniums and Subsequent Transformations. J. Chem. Soc., Perkin Trans. 1 1980, 362-371.
44. Katritzky, A. R.; Dennis, N. Cycloaddition Reactions of Heteroaromatic SixMembered Rings. Chem. Rev. 1989, 89, 827-861.
45. Sung, M. J.; Lee, H. I.; Chong, Y.; Cha, J. K. Facile Synthesis of the Tricyclic Core of Sarain A. 3-Oxidopyridinium Betaine Cycloaddition Approach. Org. Lett. 1999, 1, 20172019.
46. Lee, H. I.; Sung, M. J.; Lee, H. B.; Cha, J. K. Synthetic studies toward sarain A: An improved synthesis of the tricyclic core of sarains by a 3-oxidopyridinium betaine cycloaddition. Heterocycles 2004, 62, 407-422.
47. Fu, C.; Kelley, S. P.; Tu, J.; Harmata, M., Generation of the 7-azabicyclo[4.3.1]decane ring system via $(4+3)$ cycloaddition of oxidopyridinium ions. J. Org. Chem. 2021, 86, 7028-7037.
48. Sungnoi, W.; Keto, A. B.; Roseli, R. B.; Liu, J.; Wang, H.; Fu, C.; Regalado, E. L.; Krenske, E. H.; Harmata, M., Endo selectivity in the (4+3) cycloaddition of oxidopyridinium ions. Org. Lett. 2021, 23, 8302-8306.
49. Iiardi, E. A.; Stivala, C. E.; Zakarian, A. Hexafluoroisopropanol as a unique solvent for stereoselective iododesilylation of vinylsilanes. Org. Lett. 2008, 10, 1727-1730.
50. Brummond, K. M.; Hong, S.-p. A Formal total synthesis of (-)-FR901483, Using a tandem cationic aza-Cope rearrangement/Mannich cyclization approach. J. Org. Chem. 2005, 70, 907-916.
51. Franz, M. H.; Roeper, S.; Wartchow, R.; Hoffmann, H. M. R. The first and second Cinchona rearrangement. Two fundamental transformations of alkaloid chemistry. J. Org. Chem. 2004, 69, 2983-2991.
52. Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Cyclizations of $N$-acyliminium ions. Chem. Rev. 2004, 104, 1431-1628.
53. Roth, H. D. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. Engl., 1989, 28, 1193 - 1207.
54. Liebermann, C. Ann. Chem. Pharm., 1871, 158, 300.
55. Crimmins, M. T. Synthetic applications of intramolecular enone-olefin photocycloadditions. Chem. Rev., 1988, 88, 1453-1473.
56. Cookson, R. C.; Crundwell, E.; Hill, R. R.; Hudec, J. Photochemical cyclisation of Diels-alder adducts. Chem. Ind., 1958, 1003.
57. Poplata, S.; Tröster, A.; Zou, Y-Q.; Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev., 2016, 116, 9748 9815.
58. Woodward, R. B.; Hoffmann, R. The conservation of orbital symmetry. Angew. Chem. Internat. Edit., 1969, 8, 781 - 932.
59. Schuster, D. I.; Lem, G.; Kaprinidis, N. A. New insights into an old mechanism: [2+2] photocycloaddition of enones to alkenes. Chem. Rev., 1993, 93, 3-22.
60. Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898-6926.
61. Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11, 2387 - 2403.
62. Yoon, T. P. and Du, J. Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J. Am. Chem. Soc., 2009, 131, 14604-14605.
63. Harmata, M. Fun with $(4+3)$ cycloadditions. Synlett 2019, 30, 532-541.
64. Winkler, J. D.; Hershberger, P. M.; Springer, J. P., A stereoselective synthesis of the azaspiroundecane ring system of (-)-histrionicotoxin from (+)-glutamic acid. Tetrahedron Lett. 1986, 27, 5177-5180.
65. Winkler, J. D.; Hershberger, P. M., A stereoselective synthesis of (-) perhydrohistrionicotoxin. J. Am. Chem. Soc. 1989, 111, 4852-4856.
66. Winkler, J. D.; Scott, R. D.; Williard, P. G., Asymmetric induction in the vinylogous amide photocycloaddition reaction. A formal synthesis of vindorosine. J. Am. Chem. Soc. 1990, 112, 8971-8975.
67. Comins, D. L.; Zheng, X., A novel approach to the perhydrohistrionicotoxin ring system. J. Chem. Soc., Chem. Commun. 1994, 2681-2682.
68. Kwak, Y.-S.; Winkler, J. D., Synthesis of 6-aza-bicyclo[3,2,1]octan-3-ones via vinylogous imide photochemistry: An approach to the synthesis of the hetisine alkaloids. J. Am. Chem. Soc. 2001, 123, 7429-7430.
69. Ragains, J. R.; Winkler, J. D., Pseudosymmetry in azabicyclo[2.1.1]hexanes. A stereoselective construction of the bicyclic core of peduncularine. Org. Lett. 2006, 8, 44374440.
70. White, J. D.; Ihle, D. C., Tandem photocycloaddition-retro-Mannich fragmentation of enaminones. A route to spiropyrrolines and the tetracyclic Core of koumine. Org. Lett. 2006, 8, 1081-1084.
71. Sahn, J. J.; Comins, D. L., [2 + 2] Photochemical cycloaddition/ring opening of 6-alkenyl-2,3-dihydro-4-pyridones. J. Org. Chem. 2010, 75, 6728-6731.
72. Drake, L. R.; Scott, P. J. H., DARK classics in chemical neuroscience: Cocaine. ACS Chem. Neurosci. 2018, 9, 2358-2372.
73. Afewerki, S.; Wang, J. X.; Liao, W. W.; Córdova, A. In The Alkaloids: Chemistry and Biology; Knölker, H. J., Ed.; Elsevier:Cambridge, MA, 2019; Vol. 81, Chapter 3, pp 151-233.
74. Ullrich, S. F.; Hagels, H.; Kayser, O., Scopolamine: a journey from the field to clinics. Phytochem. Rev. 2017, 16, 333-353.
75. Drevets, W. C.; Bhattacharya, A.; Furey, M. L., The antidepressant efficacy of the muscarinic antagonist scopolamine: past findings and future directions. Adv. Pharmacol. 2020, 89, 357-386.
76. Tang, K. S., The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci. 2019, 233, 116695.
77. Bezerra, M. M.; Leao, R. A. C.; Miranda, L. S. M.; de Souza, R. O. M. A., A brief history behind the most used local anesthetics. Tetrahedron 2020, 76, 131628.
78. Brain, P. F.; Coward, G. A., A review of the history, actions, and legitimate uses of cocaine. J. Subst. Abuse 1989, 1, 431-451.
79. Kohnen-Johannsen, K. L.; Kayser, O., Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules 2019, 24, 796/1.
80. We conducted the photolysis at $0^{\circ} \mathrm{C}$ to mitigate against any untoward effects of the heat generated by the lamp.
81. Repeated sampling for TLC analysis may have lowered the yield.
82. Fu, C.; Sungnoi, W.; Tu, J.; Kelley, S. P.; Harmata, M. Tropane skeletal from the intramolecular photocycloaddition of $(4+3)$ cycloadducts of oxidopyridinium ions and dienes. Org. Lett. 2022, 24, 3521 - 3525.
83. Stempel, E.; Gaich, T. Cyclohepta[b]indoles: a privileged structure motif in natural products and drug design. ACC. Chem. Res. 2016, 49, 2390 - 2402.
84. Li, Y.; Zhu, C. Z.; Zhang, J. Gold-catalyzed [4+3]cycloaddition/C-H functionalization cascade: regio- and diastereoselective route to cyclohepta[b]indoles. Eur. J. Org. Chem. 2017, 6609 - 6613 .
85. Andraintsiferana, M.; Besselievre, R.; Riche, C.; Husson, H. -P. Tetrahedron Lett. 1977, 2587.
86. Bennasar, M. -L.; Vidal, B.; Bosch, J. Biomimic total synthesis of Ervitsine and indole alkaloids of the ervatamine group via 1,4-dihydropyridines. J. Org. Chem., 1997, 62, 3597 - 3609 .
87. Husson, H. -P.; Bannai, K.; Freire, R.; Mompon, B.; Reis, F. A. M. Tetrahedron. 1978, 34, 1363.
88. Bennasar, M. -L.; Vidal, B.; Bosch, J. Chem. Commun. 1996, 2755.
89. Bosch, J.; Rubiralta, M.; Bolos, J. Tetrahedron. 1987, 43, 391.
90. Li, Y.; Zhu, C.-Z.; Zhang, J. Gold-catalyzed (4+3) cycloaddition/c-h functionalization cascade: regio- and diastereoselective route to cyclohepta[b]indoles. Eur. J. Org. Chem., 2017, 6609-6613.
91. Pirovano, V.; Brambilla, E.; Moretti, A.; Rizzato, S.; Abbiati, G.; Nava, D.; Rossi, E. Synthesis of cyclohepta[b]indoles by (4+3) cycloaddition of 2-vinylindoles or 4H-furo[3,2$b$ ]indoles with oxyallyl cations. J. Org. Chem. 2022, 85, 3265 - 3276.
92. Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Gold-catalyzed synthesis of tetrahydrocarbazole derivatives through an intermolecular cycloaddition. Chem. Commun., 2013, 49, 3594 - 2596.
93. Qin, W. B.; Li, W. W.; Zhu, P. F.; Mo, X. G.; Zhang, H. J.; Wen, T. B. Rh(III)-catalyzed regio- and stereoselective bisindolylation of vinyl acetate: an efficient approach toward (E)-1,2-bis(2-indolyl)ethenes. Org. Chem. Front., 2018, 5, 1096-1100.
94. Porcs-Makkay, M.; Argay, G.; Kalman, A.; Simig, G. Synthesis of 1,3-di[alkoxy(aryloxy)]carbonyl]-2-oxo-2,3-dihydroindoles. Tetrahedron, 2000, 56, 5893 5903.
95. Rossi, E.; Abbiati, G.; Canevari, V.; Celentano, G.; Magri, E. 2-Trifluoromethanesulfonyloxyindole-1-carboxylic acid ethyl ester: a practical intermediate for the synthesis of 2-carbosubstitute indoles. Synthesis, 2006, 2, 299 - 304.
96. The compound was prepared from the known procedure WO2006100413 A2 2006-0928.
97. Howarth, A.; Ermanis, K.; Goodman, J. M., DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chemical Science 2020, 11 (17), 4351-4359.
98. Ermanis, K.; Parkes, K. E. B.; Agback, T.; Goodman, J. M., The optimal DFT approach in DP4 NMR structure analysis - pushing the limits of relative configuration elucidation. Org Biomol Chem 2019, 17 (24), 5886-5890.
99. Sungnoi, W.; Harmata, M. Oxidative bridgehead functionalization of (4+3) cycloadducts obtained from oxidopyridinium ions. RSC Adv., 2022, 12, 28572-28575.

## VITA

Wanna Sungnoi was born in Bangkok, Thailand. She got her BA majoring in English and minoring in Chinese from the Rajamangala University of Technology Thanyaburi in Thailand. Then She obtained her BS in Biochemistry(chemistry) from Purdue University. Later, she joined the University of Missouri-Columbia to earn her Ph.D. in Chemistry working with Dr. Harmata. Her Ph.D. study is focusing on intermolecular (4+3) cycloaddition reactions. She loves to play sports, especially tennis in the nice weather. She enjoys the art of culinary skills and baking in her free time.


[^0]:    ${ }^{1}$ Apex3, AXScale, and SAINT, version 2017.3-0, Bruker AXS, Inc., Madison, WI, 2017.
    ${ }^{2}$ Sheldrick, G. M. SHELXS, v.2013-1, 2013.
    ${ }^{3}$ Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C. Struct. Chem. 2015, 71, 3-8.
    ${ }^{4}$ Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement, and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
    ${ }^{5}$ Thorn, A.; Dittrich, B.; Sheldrick, G. M. Enhanced rigid bond restraints. Acta Cryst. Sect. A. Found. Adv. 2012, 68, 448-451.

[^1]:    ${ }^{6}$ Apex3, AXScale, and SAINT, version 2017.3-0, Bruker AXS, Inc., Madison, WI, 2017.

[^2]:    ${ }^{7}$ G. M. Sheldrick, SHELXS, v.2013-1, 2013.
    ${ }^{8}$ G. M. Sheldrick, Acta Cryst. Sect. C. Struct. Chem. 2015, 71, 3.
    ${ }^{9}$ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
    ${ }^{10}$ W. Sungnoi, A. B. Keto, R. B. Roseli, J. Liu, H. Wang, C. Fu, E. L. Regalado, E. H. Krenske, M. Harmata, Org. Lett., 2021, 23, 8302.

[^3]:    ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(1 \mathrm{H}, \mathrm{s}), 6.16(1 \mathrm{H}, \mathrm{dd}, J=7.6,3.1 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, hept, $J=6.0 \mathrm{~Hz}), 4.14(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 2.90-2.83$ $(2 \mathrm{H}, \mathrm{m}), 2.79(3 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}, \mathrm{ddt}, J=15.5,9.0,6.5 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{dddd}, J=21.3,15.4$, $9.1,6.1 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=16.5,3.0 \mathrm{~Hz}), 1.70-1.55(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$, 0.11 ( $9 \mathrm{H}, \mathrm{s}$ ); ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 199.7, 173.0, 166.7, 146.4, 142.8, 134.8, $121.5(\mathrm{q}, J=286.9 \mathrm{~Hz}), 121.2(\mathrm{q}, J=286.9 \mathrm{~Hz}), 97.2,93.7,71.5(h e p t, J=33.2 \mathrm{~Hz}), 60.6$, $51.3,49.1,43.0,36.7,34.8,32.4,27.6,14.3,-1.2$; IR (neat) $v_{\text {max }}=2951,2865,1731,1646$, 1637, 1196, 1188, 1067, 1059, 1010, 835, 750, $687 \mathrm{~cm}^{-1}$; HRMS (m/z): (ESI-FTICR) calcd for $\left.\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{Si}\right) \mathrm{H} \mathrm{M}+\mathrm{H}\right]^{+}: 560.1898$, found. 560.1894 .

[^4]:    ${ }^{11}$ McMurray, T. A.; Byren, J. A.; Dunlop, P. S. M.; McAdams, E. T., Photocatalytic and Electrochemically Assisted Photocatalytic Oxidation of Formic Acid on $\mathrm{TiO}_{2}$ Films under UVA and UVB Irradiation. J. Appl. Electrochem. 2005, 35, 723-731.

[^5]:    ${ }^{12}$ (a) Fu, C.; Lora, N.; Kirchhoefer, P. L.; Lee, D. R.; Altenhofer, E.; Barnes, C. L.; Hungerford, N. L.; Krenske, E. H.; Harmata, M., (4+3) Cycloaddition Reaction of $N$-Alkyl Oxidopyridinium Ions. Angew. Chem. Int. Ed. 2017, 56, 14682-14687; (b) Harmata, A. S.; Harmata, M., From 5-Hyrdroxynicotinic Acid to Nitrogenous (4+3) cycloadducts. Org. Synth. 2020, 94, 139-156; (c) Fu, C.; Kelley, S. P.; Tu, J.; Harmata, M., Generation of the 7-Azabicyclo[4.3.1]decane Ring System via (4+3) Cycloaddition of Oxidopyridinium Ions. J. Org. Chem. 2021, 86, 7028-7037; (d) Sungnoi, W.; Keto, A. B.; Roseli, R. B.; Liu, J.; Wang, H.; Fu, C.; Regalado, E. L.; Krenske, E. H.; Harmata, M., Endo Selectivity in the (4+3) Cycloaddition of Oxidopyridinium Ions. Org. Lett. 2021, 23, 8302-8306.

[^6]:    ${ }^{13}$. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
    ${ }^{14}$. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 2008, 120, 215-241.
    ${ }^{15}$. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 63786396.
    ${ }^{16}$. Fu, C.; Lora, N.; Kirchhoefer, P. L.; Lee, D. R.; Altenhofer, E.; Barnes, C. L.; Hungerford, N. L.; Krenske, E. H.; Harmata, M. (4+3) Cycloaddition reactions of N Alkyl Oxidopyridinium Ions. Angew. Chem. Int. Ed. 2017, 56, 14682-14687.
    ${ }^{17}$. Zhao, Y.; Truhlar, D. G. Computational characterization and modeling of buckyball tweezers: density functional study of concave-convex p $\cdots$ p interactions. Phys. Chem. Chem. Phys. 2008, 10, 2813-2818.

[^7]:    ${ }^{18}$. This was also observed in previous computations on related oxidopyridinium ion (4+3) cycloadditions (see ref. 16 for details).

