
VARIABLE SELECTION FOR INTERVAL-CENSORED

AND FUNCTIONAL SURVIVAL DATA

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

TIAN TIAN

Dr. (Tony) Jianguo Sun, Dissertation Supervisor



The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

VARIABLE SELECTION FOR INTERVAL-CENSORED

AND FUNCTIONAL SURVIVAL DATA

presented by Tian Tian,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. (Tony) Jianguo Sun

Dr. Guanyu Hu

Dr. Zhuoqiong He

Dr. Xinghe Wang



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my esteemed

advisor Dr. (Tony) Jianguo Sun for his critical inspiration, unflinching encouragement

and continuous support throughout the long journey of my doctorate study. It was

my great honor to be one of his students and study under his guidance.

I extend my sincere gratitude to my advisory committee members: Drs. Guanyu

Hu, Zhuoqiong He and Xinghe Wang for their insightful comments and suggestions

on my work.

I also owe a debt of gratitude to all faculty in the Department of Statistics who

have taught, encouraged, and assisted me during my graduate studies. I would like to

thank our excellent staff Judy, Kathleen, Abbie, and Laura, for their generous help.

I am so grateful to Dr. Larry Ries for helping me become a better instructor.

Moreover, I would like to extend many thanks to my cherished friends who helped

me through difficult times, cheered me on, and made my life at Mizzou much fun and

memorable.

Finally, my deepest gratitude goes to my husband, Dr. Qiwei Wu, my parents, Hui

Zhu and Zongpeng Tian, my lovely and supportive parents-in-law, and other family

members for their unconditional love, support, encouragement, and caring. Special

thanks to my husband for bringing sunshine into my life in every dark moment,

without whom I would not have been able to complete my Ph.D. study.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Variable Selection and Penalized Estimation . . . . . . . . . . . . . . 1

1.2 Variable Selection for Survival Data . . . . . . . . . . . . . . . . . . . 3

1.2.1 Regression Analysis of Failure Time Data . . . . . . . . . . . 3

1.2.2 Variable Selection for Survival Models . . . . . . . . . . . . . 4

1.3 Variable Selection for Functional Data . . . . . . . . . . . . . . . . . 5

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Variable Selection for Nonparametric Additive Cox Model with
Interval-censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Penalized, Sieve Variable Selection Procedure . . . . . . . . . . . . . 11

2.3 An Efficient Group Coordinate Descent Algorithm . . . . . . . . . . . 15

2.4 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Analysis of an Alzheimer’s Disease Study . . . . . . . . . . . . . . . . 22

2.6 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . 24

iii



3 Variable Selection for Nonlinear Covariate Effects with Interval-
censored Failure Time Data . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Notation, Models and Preparations . . . . . . . . . . . . . . . . . . . 38

3.3 Penalized Sieve Maximum Likelihood Variable Selection . . . . . . . . 41

3.3.1 Penalized Procedure . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 The Penalized EM Algorithm . . . . . . . . . . . . . . . . . . 42

3.4 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . 52

4 Variable Selection for Partially Functional Additive Cox Model
with Interval-censored Data . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Partially Functional Additive Cox Model . . . . . . . . . . . . . . . . 63

4.2.1 Bernstein Polynomials Approximation . . . . . . . . . . . . . 65

4.2.2 Functional Principal Component Analysis . . . . . . . . . . . 66

4.3 Penalized Estimation and Variable Selection Procedure . . . . . . . . 68

4.4 Group Coordinate Descent Algorithm . . . . . . . . . . . . . . . . . . 70

4.5 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . 77

5 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

iv



5.1 Variable Selection for Partially Functional Additive Transformation
Models with Interval-censored Data . . . . . . . . . . . . . . . . . . 88

5.2 Variable Selection for Functional Mixture or Nonmixture Cure Models
with Interval-censored Data . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



LIST OF TABLES

Table Page

2.1 Simulation results under scenario (a) with the right censoring percent-

age being around 30% . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Simulation results under scenario (b) with the right censoring percent-

age being around 30% . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Simulation results under scenario (c) with the right censoring percent-

age being around 30% . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Simulation results under scenario (c) with the right censoring percent-

age being around 45% . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Simulation results under scenario (c) with the right censoring percent-

age being around 30% and mj = 5 . . . . . . . . . . . . . . . . . . . 30

2.6 List of the selected SNPs for the ADNI data . . . . . . . . . . . . . . 31

3.1 Simulation results under scenario (a) . . . . . . . . . . . . . . . . . . 54

3.2 Simulation results under scenario (b) . . . . . . . . . . . . . . . . . . 55

3.3 Simulation results under scenario (c) . . . . . . . . . . . . . . . . . . 56

3.4 Variable selection results with r = 0 of ADNI data . . . . . . . . . . 57

4.1 Variable selection results for case (a) and m0 = mp = 3 . . . . . . . . 80

vi



4.2 Variable selection results for case (b) and m0 = mp = 3 . . . . . . . . 80

4.3 Variable selection results for case (c) and m0 = mp = 3 . . . . . . . . 81

4.4 Variable selection results for case (b) and m0 = mp = 5 . . . . . . . . 81

4.5 Selected covariates in ADNI data . . . . . . . . . . . . . . . . . . . . 82

4.6 Selected SNPs in ADNI data . . . . . . . . . . . . . . . . . . . . . . . 83

vii



LIST OF FIGURES

Figure Page

2.1 Estimated effects of the five SNPs selected by all of the three penalty

functions: row 1 - GLASSO, row 2 - GMCP, row 3 - GSCAD . . . . . 32

2.2 Estimated effects of the 31 SNPs selected by the GLASSO penalty . . 33

2.3 Estimated effects of the 13 SNPs selected by the GMCP penalty . . . 34

2.4 Estimated effects of the 14 SNPs selected by the GSCAD penalty . . 35

3.1 Estimated effects of covariates selected by GLASSO penalty . . . . . 58

3.2 Estimated effects of covariates selected by GMCP penalty . . . . . . 59

3.3 Estimated effects of covariates selected by GSCAD penalty . . . . . . 59

4.1 Thirty randomly selected patients in the MCI group from the ADNI

study. A: Longitudinal trajectories of Alzheimer’s Disease Assessment

Scale-Cognitive 13 items (ADAS-Cog 13); B, Longitudinal trajecto-

ries of Rey Auditory Verbal Learning Test score of learning (RAVLT-

learning) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Estimated effects of the SNPs selected by GLASSO penalty . . . . . . 85

4.3 Estimated effects of the SNPs selected by GMCP penalty . . . . . . . 86

4.4 Estimated effects of the SNPs selected by GSCAD penalty . . . . . . 86

viii



4.5 Estimated effects of the neurocognitive assessment factors selected by

GLASSO penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Estimated effects of the neurocognitive assessment factors selected by

GMCP penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Estimated effects of the neurocognitive assessment factors selected by

GSCAD penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



Variable Selection for Interval-censored and Functional Survival Data

Tian Tian

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Interval-censored data are a type of failure time data that is only known to belong

to a time interval but cannot be observed precisely. Note that interval-censoring is

often encountered in medical or health studies with periodic follow-ups nature and

includes right- or left-censoring as a particular case. Moreover, the linear form of

covariate effects in various survival models, such as the commonly used standard

Cox model, may not always be a realistic assumption. To relax this, additive models,

which assume nonlinear covariate effects, are useful alternatives to accommodate such

nonlinearity. Recently, more and more attention has been drawn to the provision of

variable selection for survival and functional data analysis when plenty of risk factors

are available. But limited literature has investigated variable selection for the func-

tional survival models with interval-censored data. In the dissertation, we shed light

on variable selection for a series of additive survival models with high-dimensional

interval-censored data via penalized estimation to address different statistical com-

plexities.

In Chapter 2, we will focus on high-dimensional variable selection for the non-

parametric additive Cox model with interval-censored failure time data to identify

important risk factors with potential nonlinear covariate effects. For the problem,

x



we propose a penalized sieve maximum likelihood approach with the use of Bern-

stein polynomials approximation and group penalization. To implement the pro-

posed method, an efficient group coordinate descent algorithm is developed and can

be easily carried out for both low- and high-dimensional scenarios. Furthermore, a

simulation study is performed to assess the performance of the presented approach

and suggests that it works well in practice. The proposed method is applied to an

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study to identify important and

relevant genetic factors.

In Chapter 3, we will extend the method given in Chapter 2 to a broad class of

nonparametric additive transformation models. A two-step regularization estimation

procedure that combines Bernstein polynomials expansions with a Poisson-based data

augmentation penalized expectation-maximization (EM) algorithm is developed for

implementation. The proposed method is assessed through an extensive simulation

study, and the results suggest that it works well in various scenarios. Finally, we apply

the presented method to the ADNI data described in Chapter 2 with demographic

and clinical factors for illustration.

In Chapter 4, we will perform the variable selection for a novel partially functional

additive Cox model with both functional and scalar predictors under interval-censored

failure time data and sparsely observed functional data. Specifically, we adopt Bern-

stein polynomials approximation to model the unspecified cumulative baseline hazard

function and additive components and apply functional principal component analysis

to extract functional features from trajectories of functional covariates. For implemen-

tation, a penalized sieve estimation approach with multiple group penalty functions

is investigated, and a group coordinate descent algorithm is used. A simulation study

xi



is conducted to demonstrate the finite-sample performance of the proposed method.

The method is applied to the ADNI study introduced in the previous two chapters

for illustration.
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Chapter 1

Introduction

1.1 Variable Selection and Penalized Estimation

Variable selection plays an increasingly important role in the advancement of statis-

tical techniques. A frequently encountered problem in regression analysis is which

variables should be included in the model, especially when an enormous number of

variables are available. Various traditional variable selection approaches such as step-

wise, forward, forward-stage, or best subset regression have been investigated in the

literature. However, these conventional methods exhibit instability and computa-

tional infeasibility, even in moderate dimensions.

To overcome this, other techniques such as penalization, also referred to as reg-

ularization or penalty-based methods, were well developed in literature, particularly

in linear models. Most of them can simultaneously perform parameter estimation

and variable selection, except ridge regression. Specifically, let Y be the response
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vector, denote X as the covariate matrix, and β as the regression parameter vector,

the penalized estimation for a linear model has the following expression:

β̂p = argmin
β

{(Y −Xβ)′(Y −Xβ) + Pλ(β)} , (1.1)

where Pλ(β) is a penalty function controlled by an unknown tuning parameter λ. The

ridge regression is equivalent to using the penalty function with form Pλ(β) = λ∥β∥22

which is also referred to as l2 penalty.

Tibshirani (1996) developed a least absolute shrinkage and selection operator

(LASSO), also known as l1 penalty, takes the form Pλ(β) = λ∥β∥1 in (1.1). The

LASSO penalty is popular and easily implemented, but it lacks oracle property and

may involve some noises and yield inconsistent variable selection results. The oracle

property indicates that the final estimator performs as well as the one if the true model

is known. Furthermore, other penalty functions were explored with enhanced selec-

tion accuracy. Among others, smoothly clipped absolute deviation (SCAD), minimax

concave penalty (MCP), and adaptive LASSO (ALASSO) penalty functions were pro-

posed by several authors, all of which possess the oracle property (Fan and Li, 2001;

Zhang, 2010; Zou, 2006).

When group structures appear, several methods have been proposed for group

selection that select or exclude a group of variables at the same time. Yuan and Lin

(2006) investigated the group LASSO and employed the group coordinate descent

for computation. The group LASSO is a group version of the LASSO penalty that

tends to behave similarly to the LASSO, which may not achieve selection consistency

and include some unimportant variables in the model with a high false positive rate.

Huang et al. (2012) provided a systematic review of group selection and bi-level selec-

2



tion for linear models, and several concave group selection techniques were proposed,

for example, the group MCP and SCAD penalization approaches.

1.2 Variable Selection for Survival Data

1.2.1 Regression Analysis of Failure Time Data

Variable selection for censored failure time data has attracted considerable attention

in recent decades. The Cox’s proportional hazards model (Cox, 1972) is likely the

most commonly used one among all survival models, which takes the following form

λ(t|X) = λ0(t) exp{Xβ}

with λ0(t) being an unknown baseline hazard function. In addition to the Cox model,

multiple survival models, such as proportional odds, additive hazards, and accelerated

failure time models, are also popular and widely used in the problem of time-to-event

data.

Notably, a broad class of semiparametric transformation models is another appeal-

ing approach to analyze survival data, which includes the Cox model and proportional

odds model as special cases. The transformation model is flexible and has the follow-

ing expression

λ(t|X) = G [λ0(t) exp{Xβ}] ,

where G(·) is a pre-specified increasing transformation function and λ0(t) represents

an unknown baseline hazard function (Dabrowska and Doksum, 1988). The right-

3



censored failure time data is frequently assumed in survival analysis, which means

that the exact failure time is either observed or only known to be greater than a time

point. The observed data under right-censoring is defined as {T ∗
i = min(Ti, Ci), δi =

I(Ti ≤ Ci)}{i=1,...,n}, where T
∗
i , Ti, Ci and δi are the observation time, the event time,

the censoring time and the censoring indicator, respectively, for subject i.

Nevertheless, the interval-censored failure time data is often more appropriate

than right-censoring in many cases where individuals have regular examination times.

For the interval-censoring, we usually mean that the failure time of interest cannot

be precisely observed but instead be observed or known to be within an interval

(Sun, 2006). A typical example where such data occur is periodic follow-up studies

such as clinical trials, in which study subjects are usually observed only from time

to time or at discrete time points. It is apparent that interval-censored data include

right-censored data as a special case.

Note that, in general, the analysis of interval-censored data is much more chal-

lenging than right-censored data due to the complicated data structure caused by

interval censoring. One such situation is the analysis of right-censored data under

the standard Cox model, for which a partial likelihood function that is independent

of the baseline hazard function is available and thus makes the analysis as well as

variable selection much more straightforward. In contrast, the same is not true for

interval-censored data.

1.2.2 Variable Selection for Survival Models

A great deal of research for variable selection with right-censored failure time data has

been studied. Tibshirani (1997) proposed penalized partial likelihood function for the

4



Cox model with the LASSO penalty. Fan and Li (2002) extended the SCAD penalty

for the Cox model and Cox frailty model. Zhang and Lu (2007) carried out variable

selection for the Cox model with the use of the ALASSO penalty. Liu and Zeng

(2013) further extended the ALASSO to the semiparametric transformation models

by using a penalized weighted negative partial log-likelihood function.

As mentioned earlier, analysis of interval-censored data is more challenging but

sometimes more realistic and reasonable than right-censoring due to the unavailability

of the partial likelihood function free of a baseline hazard function. Several methods

have been proposed for variable selection based on interval-censored failure time data.

Among others, Wu and Cook (2015) and Zhao et al. (2020) considered the selection

problem under the Cox model and, moreover, Wu and Cook (2015) assumed that

the baseline hazard function is piecewise constant. Furthermore, Zhao et al. (2020)

proposed a broken adaptive ridge-based (BAR) penalized procedure and established

the oracle property of the method. In addition, Scolas et al. (2016), Wu et al. (2020),

Li et al. (2020) and Tian and Sun (2022) investigated the same problem but under

a parametric mixture cure model, a partly linear Cox model with two sets of covari-

ates, a class of semiparametric transformation models and the additive Cox model,

respectively.

1.3 Variable Selection for Functional Data

Functional data analysis (FDA) is to analyze data that are in the form of functions.

Functional data are infinite-dimensional data whose observations are functions defined

on a continuum (e.g., time, space) but sampled at a finite number of points (Wang

5



et al., 2016a). Functional data are possibly measured from dense or spare sampling

schemes. Dense functional data are usually observed in a fine regular grid, such as

spectral data and imaging data. Sparse functional data are often with observations

taken irregularly and sparsely, for example, longitudinal trajectories of CD4 count

and blood pressure.

Functional principal component analysis (FPCA) is one of the most prevalent

techniques in the FDA that facilitates dimensionality reduction and extraction of

functional features. Through FPCA, the intrinsically infinite dimensional functional

data can be reduced to a finite-dimensional vector of random scores. The FPCA

can capture the primary pattern of variations in the observations and decompose the

stochastic process into multiple uncorrelated functional principal components (FPCs).

As a result, these FPCs can be further treated as new covariates in the regression

models.

Such a FPCA approach has been widely applied for functional regression models

(Yao et al., 2005a; Hall and Horowitz, 2007; Hall et al., 2006; Morris, 2015; Yao et al.,

2005b). When functional data are sparely sampled, Yao et al. (2005b) proposed the

principal analysis by conditional expectation (PACE) approach, and asymptotic prop-

erties were further established by Hall et al. (2006). Essentially, the PACE method

utilizes the local polynomial regression method to estimate the covariance function

and then achieves the estimates of FPCs by eigendecomposition of the estimated co-

variance function. The associated FPC score is estimated by conditional expectation

with the assumption that the FPC scores follow a Gaussian distribution.

A rich literature has investigated variable selection for functional regression mod-

els. Among others, Kong et al. (2016) proposed penalized estimation for partially

6



functional linear regression with the use of the FPCA, and group smoothly clipped ab-

solute deviation (SCAD) and SCAD penalty functions were applied for regularization

of functional and scalar predictors, respectively. Matsui and Konishi (2011) developed

the variable selection for functional regression models through the GSCAD penalty.

Aneiros et al. (2015) investigated a nonconcave-penalized least squares estimation for

high-dimensional partial linear regression with possibly functional variables. Aneiros

et al. (2022) offered a comprehensive review of methodological advancements for vari-

able selection in functional regression models.

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we will focus on variable selection for the nonparametric additive

Cox model with interval-censored failure time data. For the problem, we propose a

penalized sieve maximum likelihood approach with the use of Bernstein polynomi-

als approximation and group penalization. To implement the proposed method, an

efficient group coordinate descent algorithm is developed and can be easily carried

out for both low- and high-dimensional scenarios. Furthermore, a simulation study

is performed to assess the performance of the presented approach and suggests that

it works well in practice. The proposed method is applied to an Alzheimer’s disease

study to identify important and relevant genetic factors.

In Chapter 3, we will extend the variable selection for interval-censored data to a

broad class of nonparametric additive transformation models. A two-step regulariza-

tion estimation procedure that combines Bernstein polynomials with a Poisson-based

7



data augmentation penalized expectation-maximization (EM) algorithm is developed

for implementation. The proposed method is assessed through an extensive simula-

tion study, and the results suggest that it works well in various scenarios. Finally, we

apply the presented method to Alzheimer’s Disease Neuroimaging Initiative (ADNI)

data for illustration.

In Chapter 4, we will perform the variable selection for a novel partially func-

tional additive Cox model with both functional and scalar predictors under interval-

censored failure time data and sparsely and irregularly observed functional data.

Specifically, we adopt Bernstein polynomials approximation to model unspecified cu-

mulative baseline hazard functions and additive components and apply functional

principal component analysis to exact functional features from trajectories of func-

tional covariates. For implementation, a penalized sieve estimation approach with

multiple group penalty functions is investigated, and a group coordinate descent al-

gorithm is used. A simulation study is conducted to demonstrate the finite-sample

performance of the proposed method. The method is applied to the ADNI study with

genetic and clinical factors for illustration. Finally, several future research directions

will be discussed in Chapter 5.

8



Chapter 2

Variable Selection for
Nonparametric Additive Cox
Model with Interval-censored Data

2.1 Introduction

As mentioned in Chapter 1, the standard Cox model is perhaps the most commonly

used model for regression analysis of failure time data. One limitation is that it as-

sumes that all covariate effects are linear. To relax this, the nonparametric additive

Cox model, which allows for nonlinear covariate effects, has been proposed and inves-

tigated by some authors (Cai et al., 2007; Cheng and Wang, 2011; Huang, 1999; Lu

and McMahan, 2018). For the nonparametric additive Cox model, several authors

have discussed variable selection problems for such model, but they only considered

right-censored data (Du et al., 2010; Lv et al., 2018). However, the interval-censored

mechanism is more realistic and appropriate in many real-world problems, especially

9



in medical and clinical trials with periodic examination times.

In this chapter, we consider the situation where the failure time of interest follows

the nonparametric additive Cox model that allows nonlinear covariate effects and

only interval-censored data are observed, for which it seems that there is no existence

of an established variable selection procedure. For the problem, a penalized sieve

maximum likelihood approach is proposed with the use of Bernstein polynomials and

group penalty functions. The model considered here is much more general than and

includes the models considered in Wu and Cook (2015) and Wu et al. (2020) as special

cases, and in particular, unlike the existing methods, the proposed method can deal

with any nonlinear covariate effects.

The remainder of this chapter is organized as follows. After introducing some

notation and assumptions that will be used throughout the chapter, the proposed

penalized sieve variable selection procedure will be presented in Section 2.2. In the

method, Bernstein polynomials will be employed to approximate unknown functions

and group penalty functions will be used for the selection of relevant nonlinear co-

variate effects. For the implementation of the proposed method, an efficient group

coordinate descent algorithm will be developed in Section 2.3, which works for both

low- and high-dimensional scenarios. Section 2.4 presents some results obtained from

a simulation study to assess the finite sample performance of the proposed procedure,

and they suggest that the approach works well for practical situations. In Section

2.5, the proposed method is applied to an Alzheimer’s Disease study and Section 2.6

provides some concluding discussion and remarks.

10



2.2 Penalized, Sieve Variable Selection Procedure

Consider a failure time study that involves n independent individuals. For subject i,

let Ti denote the associated failure time of interest and suppose that there exists a

p-dimensional vector of covariates denoted by Xi = (Xi1, . . . , Xip)
′. In the following,

it will be assumed that p could be either smaller or larger than the sample size n. To

describe the covariate effects, we will assume that given Xi, the cumulative hazard

function of Ti has the form

Λ(t|Xi) = Λ0(t) exp{ψ(Xi)} , (2.1)

where Λ0(t) denotes an unknown baseline cumulative hazard function and ψ(Xi) =∑p
j=1 ψj(Xij) with ψj also being an unknown function. That is, Ti follows the non-

parametric additive Cox model with nonlinear covariate effects. For the identifiability

of the model above, it will be assumed that E [ψj(·)] = 0, 1 ≤ j ≤ p (Huang, 1999).

Suppose that the observed data on the Ti’s have the form O = {(Li, Ri],Xi}ni=1,

where (Li, Ri] indicates the interval that brackets Ti. That is, only interval-censored

data are available. It is easy to see that Li = 0 or Ri = ∞ corresponds to a left-

or right-censored observation on Ti, respectively. In following, we will assume an

independent or noninformative censoring mechanism, meaning that censoring inter-

vals are independent of the failure times of interest (Sun, 2006). Then the observed

likelihood function can be written as

L(Λ0,ψ) =
n∏
i=1

{exp [−Λ(Li)]− exp [−Λ(Ri)]}

11



=
n∏
i=1

{
exp

[
−Λ0(Li)e

∑p
j=1 ψj(Xij)

]
− exp

[
−Λ0(Ri)e

∑p
j=1 ψj(Xij)

]}
.

For variable selection, it would be natural to develop a penalized procedure based on

the likelihood function above. On the other hand, it is apparent that this would not

be easy since it involves unknown functions Λ0(t) and the ψj(·)’s. To deal with this,

by following Zhao et al. (2020) and others, we will first apply the sieve approach to

approximate them by using Bernstein polynomials.

To illustrate the Bernstein polynomials approximation, consider defining the pa-

rameter space

Θ = {(Λ0, ψ1, ..., ψp) ∈ M0 ⊗M1 ⊗ ...⊗Mp}

for all unknown functions. Here M0 denotes the collection of all bounded and contin-

uous nondecreasing, nonnegative functions over the interval [c, u] with c and u usually

taken to be min(Li) and max(Ri) (i = 1, ..., n), respectively, and Mj the collection of

all bounded and continuous functions over the interval [cj, uj] with cj and uj usually

set to be min(Xj) and max(Xj), respectively, j = 1, ..., p. Also define the sieve space

Θn = {(Λ0n, ψ1n, ..., ψpn) ∈ M0n ⊗M1n ⊗ ...⊗Mpn} ,

where

M0n =

{
Λ0n(t) =

m∑
k=0

ϕ∗
kB0k(t,m, c, u) :

∑
0≤k≤m

|ϕ∗
k| ≤M0n, 0 ≤ ϕ∗

0 ≤ ϕ∗
1 ≤ ... ≤ ϕ∗

m

}
,
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and

Mjn =

ψjn(Xj) =

mj∑
k=0

αjkBjk(Xj,mj, cj, uj) :
∑

0≤k≤mj

|αjk| ≤Mjn

 , j = 1, ..., p.

In the above,

B0k(t,m, c, u) =

(
m

k

)(
t− c

u− c

)k (
1− t− c

u− c

)m−k

, k = 0, 1, ...,m,

and

Bjk(Xj,mj, cj, uj) =

(
mj

k

)(
Xj − cj
uj − cj

)k (
1− Xj − cj

uj − cj

)mj−k

, k = 0, 1, ...,mj ,

which are the Bernstein basis polynomials of m and mj degrees, respectively. M0n

and Mjn can be used to control the size of sieve space (Zhou et al., 2017). Note that

in M0n, the constraint 0 ≤ ϕ∗
0 ≤ ϕ∗

1 ≤ ... ≤ ϕ∗
m is needed to guarantee the monotonic

properties of Λ0n(t) (Wang and Ghosh, 2012) and can be easily eliminated by the

re-parametrization ϕ∗
0 = eϕ0 , ϕ∗

l =
∑l

i=0 e
ϕi , ∀ 1 ≤ l ≤ m.

It is worth noting that with the use of Bernstein polynomial approximations, one

can reduce an infinite-dimensional estimation problem to a finite-dimensional estima-

tion problem and thus it has the advantages of relatively easy implementation and

computational efficiency (Zhou et al., 2017). It is apparent that instead of Bern-

stein polynomials, one could apply other smooth functions such as spline functions

or other polynomials. Some advantages of the use of Bernstein polynomials include

that the needed monotonicity and nonnegativity constraints can be easily satisfied

by some constraints on the parameters (Wang and Ghosh, 2012). In addition, among
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all polynomials, the Bernstein polynomial has the optimal shape-preserving property

(Carnicer and Pena, 1993) and it does not require the selection of interior knots.

Let ϕ = (ϕ0, ..., ϕm)
′ and α = (α10, ..., α1m1 , ..., αp0, ..., αpmp)

′. Note that if the goal

is to estimate Λ0 and ψ, it is natural to maximize the likelihood function L(Λ0,ψ)

over the sieve space Θn or minimize the following negative log-likelihood function

ℓ(ϕ,α) = − 1

n

n∑
i=1

log
{
exp

(
−Λ0n(Li)e

∑p
j=1 ψjn(Xj)

)
− exp

(
−Λ0n(Ri)e

∑p
j=1 ψjn(Xj)

)}

with respect to {Λ0n, ψ1n, ..., ψpn}. This suggests that for the variable selection onX,

we can minimize the penalized negative log-likelihood function

ℓp(ϕ,α) = ℓ(ϕ,α) +

p∑
j=1

Pλ(αj) , (2.2)

where Pλ(αj) denotes a penalty function of αj = (αj0, ..., αjmp) characterized by the

tuning parameter λ. It is easy to see that αj = 0 suggests that the corresponding

covariate Xj has no significant effect.

For the penalty function Pλ(αj), we will consider the following three group penalty

functions. One is the group LASSO penalty function given by

Pλ(αj) = λj∥αj∥2

with λj = λ
√
mj + 1 and ∥αj∥2 =

√∑mj

l=0 α
2
jl (Yuan and Lin, 2006), and another is
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the group SCAD penalty function

Pλ(αj; a) =



λj ∥αj∥2 if ∥αj∥2 ≤ λj ,

2aλj∥αj∥2 − ∥αj∥22 − λ2j
2(a− 1)

if λj < ∥αj∥2 ≤ aλj ,

(a2 − 1)λ2j
2(a− 1)

if ∥αj∥2 > aλj

with λj = λ
√
mj + 1 and a > 2 (Fan and Li, 2001; Huang et al., 2012). The third is

the group MCP penalty function

Pλ(αj; γ) =


λj∥αj∥2 −

∥αj∥22
2γ

if ∥αj∥2 ≤ λjγ ,

λ2γ

2
if ∥αj∥2 > λjγ

with λj = λ
√
mj + 1 and γ > 1 (Zhang, 2010; Huang et al., 2012). Of course, one

could apply other group penalty functions too.

2.3 An Efficient Group Coordinate Descent Algo-

rithm

Let ϕ̂ and α̂ denote the estimators of ϕ and α given by the minimization of the

penalized negative log-likelihood function ℓp(ϕ,α). In the following, for the determi-

nation of ϕ̂ and α̂, we will develop an optimization algorithm that estimates ϕ and

α alternately by following the idea of the group coordinate descent algorithm (Yuan

and Lin, 2006; Yang and Zou, 2015; Breheny and Huang, 2015; Cao et al., 2016; Lv

et al., 2018).
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First we will consider the determination of α̂ and for this, we will update each

αj while keeping all other elements of α and ϕ fixed at their current estimates.

More specifically, to update αj at the (k + 1)th iteration, let ϕ̂ = (ϕ̂
(k+1)
0 , ..., ϕ̂

(k+1)
m )

and α̂ = (α̂
(k+1)
1 , ..., α̂

(k+1)
j−1 , α̂

(k)
j , ..., α̂

(k)
p ) denote the current estimate of ϕ and α,

respectively. Also define ℓ′j(ϕ̂, α̂) = ∂ℓ(ϕ̂, α̂)/∂αj, the jth sub-gradient vector,

H
(k)
j = ∂2ℓ(ϕ̂, α̂)/∂α2

j , the jth sub-Hessian matrix of ℓ(ϕ,α) with respect to αj

evaluated at ϕ̂ and α̂, and h
(k)
j to be the largest eigenvalue of H

(k)
j . Note that

both ℓ′j(ϕ̂, α̂) and H
(k)
j depend on the current estimates ϕ̂ and α̂. Let α∗ =

(α̂
(k+1)
1 , ..., α̂

(k+1)
j−1 ,αj, α̂

(k)
j+1, ..., α̂

(k)
p ). The penalized negative log-likelihood function

ℓp(ϕ̂,α
∗) can be approximated by

ℓp(ϕ̂,α
∗) ≈ ℓ(ϕ̂, α̂) +

[
αj − α̂(k)

j

]′
ℓ′j(ϕ̂, α̂)

+
1

2

[
αj − α̂(k)

j

]′
H

(k)
j

[
αj − α̂(k)

j

]
+

p∑
j=1

Pλ(αj)

≈ ℓ(ϕ̂, α̂) +
[
αj − α̂(k)

j

]′
ℓ′j(ϕ̂, α̂)

+
h
(k)
j

2

[
αj − α̂(k)

j

]′ [
αj − α̂(k)

j

]
+

p∑
j=1

Pλ(αj),

with the sub-Hessian matrix H
(k)
j being replaced by its largest eigenvalue h

(k)
j . The

updated estimate α̂
(k+1)
j of αj can be determined by

α̂
(k+1)
j = argmin

αj

{[
αj − α̂(k)

j

]′
ℓ′(ϕ̂, α̂) +

h
(k)
j

2
∥αj − α̂(k)

j ∥22 + Pλ(αj)

}

and the closed-form solutions for various penalty functions will be shown subsequently.

Here, one can employ group coordinate descent algorithm and determine each α̂
(k+1)
j
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(j = 1, ..., p) individually while keeping all other parameters fixed at their current

estimates. Note that Lv et al. (2018) suggested that α̂
(k+1)
j (j = 1, ..., p) can be

determined in parallel.

With the use of the group LASSO penalty function, for example, we have that

α̂
(k+1)
j = S(cj;λj/hj) ,

where λj = λ
√
mj + 1 and S(cj;λ) = (1− λ/∥cj∥)+cj with cj = α̂(k)

j − ℓ′j(ϕ̂, α̂)/hj.

With the use of the group SCAD penalty function, it gives

α̂
(k+1)
j =



S(cj;λj/hj) if ∥cj∥2 ≤ λj + λj/hj ,[
hj(a− 1)− aλj

∥cj∥2

]
cj

hja− hj − 1
if λj + λj/hj < ∥cj∥2 ≤ aλj ,

cj if ∥cj∥2 > aλj.

If the group MCP penalty function is used, we have that

α̂
(k+1)
j =


S

(
hjcj

hj − 1/γ
;

λ

hj − 1/γ

)
if ∥cj∥2 ≤ λjγ ,

cj if ∥cj∥2 > λjγ.

Note that as pointed out before, all ψj(Xj)’s need to be centered to avoid the model

identification issue. For this, define

ψ̂∗
jn(Xj) =

mj∑
k=0

α̂∗
jkBjk(Xj,mj, cj, uj) and ψ̄∗

jn(Xj) =
n∑
i=1

ψ̂∗
jn(Xij)/n .
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The final estimator of ψj(Xj) will be defined as

ψ̂jn(Xj) = ψ̂∗
jn(Xj)− ψ̄∗

jn(Xj) , 1 ≤ j ≤ p .

For the determination of the estimate of ϕ in the iteration, we suggest employing

the Nelder-Mead simplex algorithm. The algorithm discussed above can be summa-

rized as follows.

Step 1: Set k = 0 and give initial estimates ϕ̂(0) and α̂(0).

Step 2: At the (k + 1)th iteration, determine ϕ̂(k+1) by using the Nelder-Mead simplex

algorithm with α = α̂(k).

Step 3: Also at the (k + 1)th iteration, determine α̂
(k+1)
j by using the group coordinate

descent algorithm by solving

α̂
(k+1)
j = argmin

αj

{
l(ϕ̂(k+1),α∗) + Pλ(αj)

}

for j = 1, ..., p. Then center ψ̂∗
jn(Xj) for each j = 1, ..., p.

Step 4: Repeat Steps 2 and 3 until convergence or k exceeding a given large number.

To implement the algorithm above, it is apparent that one needs to choose a

convergence criterion and the tuning parameter λ. For the stopping criterion, a

commonly used one is to base the convergence on the absolute difference between two

consecutive estimates or to stop the iteration if

mean
[
|(ϕ̂(k+1), α̂(k+1))− (ϕ̂(k), α̂(k))|

]
< ϵ
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for a pre-selected constant ϵ, which can be set to be 10−5 or 10−6. For the selection

of λ, many methods can be used and in the numerical study below, we employ the

extended Bayesian information criterion (EBIC) given by

EBIC(λ) = −2 ℓ(ϕ,α) + s(λ) log(n) + 2Γ log

(
p

s(λ)

)

with Γ = 1 (Chen and Chen, 2008). In the above, s(λ) denotes the total number of

nonzero estimated covariate effects.

2.4 A Simulation Study

In this section, we present some results obtained from an extensive simulation study

conducted to evaluate the finite-sample performance of the variable selection proce-

dure proposed in the previous sections. In the study, the covariates were generated

from the multivariate normal distribution with mean zero and the covariance matrix

ΣX with the (j, k)th element being 0.5|j−k|. To generate the true failure times Ti’s, we

assumed that they follow model (2.1) with Λ0(t) = (2t)1.25. For the covariate effects,

we considered the following three scenarios with s denoting the number of significant

covariates or the covariates with nonzero effects.

• Scenario (a) with s = 4: ψ1(X1i) = −6X1i + 3, ψ2(X2i) = −5.4X2i + 2.7,

ψ3(X3i) = 4.6X3i−2.3, ψ4(X4i) = 3.5X4i−1.75, and ψj(Xji) = 0 for j = 5, ..., p.

• Scenario (b) with s = 4: ψ1(X1i) = 2sin(π(X1i − 0.5)), ψ2(X2i) = −6X2i + 3,

ψ3(X3i) = −1.8sin(1.5πX3i + 0.5), ψ4(X4i) = 2cos(πX4i), and ψj(Xji) = 0 for

j = 5, ..., p.
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• Scenario (c) with s = 6: ψ1(X1i) = 2sin(π(X1i − 0.5)), ψ2(X2i) = −6X2i + 3,

ψ3(X3i) = −1.8sin(1.5πX3i+0.5), ψ4(X4i) = 2cos(πX4i), ψ5(X5i) = −5.4X5i+

2.7, ψ6(X6i) = 4.6X6i − 2.3, and ψj(Xji) = 0 for j = 7, . . . , p.

Note that in scenario (a), we have four important covariates with all having linear

effects, and in scenario (b), we also have four important covariates but three have

nonlinear effects. In scenario (c), we have six important covariates and four of them

are the same as in scenario (b) with the other two having linear effects.

To generate interval-censored observations on the Ti’s, it was assumed that all

subjects could be potentially observed at ten equally spaced time points between 0 and

τ with τ selected to give the desired percentage of right-censored observations. For

each subject and at each of these time points, the observation occurs with probability

0.5 independent of other observations. Then for subject i, Li was defined as the

largest observation time point less than Ti and Ri as the smallest observation time

point greater than Ti. For all Bernstein polynomials approximations, the degree was

set to be m0 = mj = 3. The results given below are based on n = 300 or 500 and

p = 100, 500 or 1000 with 100 replications.

Tables 2.1 - 2.3 present the results given by the proposed variable selection ap-

proach under the scenario (a) - (c), respectively, with the use of the group LASSO,

MCP and SCAD penalty functions and the percentage of right-censored observations

being around 30%. The results include the number of times that the jth additive

component was selected (TPj), the average number of correctly selected components

whose true coefficients are nonzero (TP), and the average number of incorrectly se-

lected components whose true coefficients are zero (FP), j = 1, ..., s. In addition,

we also calculated and included in the tables the median of the mean squared errors
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(MMSE) given by MSE = s−1
∑s

j=1

∫
(ψj(x) − ψ̂j(x))

2dx along with their standard

deviation (SD) in 100 replications. In the analysis here, we set a = 3.7 for the group

SCAD penalty function by following Fan and Li (2001) and Huang et al. (2012) and

γ = 1.1 for the group MCP by following Zhang (2010) and Huang et al. (2012). These

authors have shown that the results are relatively robust with respect to the values

of these parameters.

One can see from the tables that the proposed variable selection procedure with

all of three penalty functions seems to perform well for the situations considered. In

particular, the results suggest that all linear and nonlinear effects could be correctly

detected with high percentages. On the other hand, the results indicate that compared

to the group MCP and group SCAD penalty functions, the method with the group

LASSO penalty function tends to identify more irrelevant variables and yield relatively

larger models, which is especially the case in the high-dimensional situations. One

possible reason for this is that the group selection consistency of the group LASSO

relies on the assumption that the design matrix satisfies the irrepresentable condition,

which is difficult to satisfy in p≫ n scenarios as pointed out in the literature (Zhang,

2010; Huang et al., 2012).

The results above also indicate that as expected, the FP increased when p in-

creased and decreased when n increased, while the TP and MMSE were relatively

stable when p and n changed. To see the possible effect of the right-censoring per-

centage on the proposed approach, we repeated the study giving Table 3 except setting

the percentage of right-censored observations being around 45% and give the results

in Table 4. In addition, we also repeated the study giving Table 3 except setting

m0 = mj = 5 to see the possible effects of the values of the mj’s on the proposed

21



method and present the results in Table 5. It is apparent that all results are similar

and they suggest that the proposed approach is relatively robust with respect to both

the censoring percentage and the values of the mj’s.

2.5 Analysis of an Alzheimer’s Disease Study

Now we apply the variable selection approach proposed in the previous sections to

the data arising from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), an

ongoing longitudinal multi-site study. Among others, one of the main objectives of

the study is to identify significant clinical, imaging, genetic or biochemical biomarkers

related to the progression or status of Alzheimer’s Disease (AD) such as the AD

conversion time from the initial visit. The patients in the study are classified into

three groups based on their cognitive status: cognitively normal (CN), mild cognitive

impairment (MCI), and AD. By following others, we will focus on the participants in

the MCI group (Li et al., 2017, 2018; Hu et al., 2018; Wu et al., 2020; Wang et al.,

2012). Due to the periodic follow-up nature, only interval-censored data are available

on the AD conversion time.

For the analysis, following Li et al. (2017) and Wu et al. (2020), we will consider

the 280 individuals who have complete information on the 327,354 single nucleotide

polymorphisms (SNPs) and four demographic and clinical factors in the MCI group

with the focus on identifying significant SNPs with either linear or nonlinear effects on

the risk of AD conversion given four demographic and clinical factors. The four factors

are participants’ Alzheimer’s Disease Assessment Scale Score of 13 items (ADAS13),

Rey auditory verbal learning test score of immediate recall (RAVLT.i), functional
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assessment questionnaire score (FAQ), and MRI volume of middle temporal gyrus

(MidTemp). The SNPs were read by the Illumina method and then translated into

continuous covariates with values 0, 1, and 2, indicating a SNP without allele T,

heterozygous with one allele T, and homozygous with two alleles T, respectively. The

additive Cox model can be used to investigate the possibly nonlinear effects of the

SNPs on the risk of developing AD.

Before the application of the proposed approach, as Wu et al. (2020), we first

used the mid-point imputation method to convert the interval-censored data to right-

censored data and then applied the sure independent screening procedure given in Fan

et al. (2010) to identify the top 500 SNPs. Table 6 presents the SNPs selected among

these 500 SNPs by the proposed method with a degree of 3 for all Bernstein poly-

nomials approximations and the use of the three group penalty functions considered

in the simulation study. In total, 40 SNPs were selected by the three group penalty

functions with 31, 13, or 14 SNPs selected by the group LASSO, group MCP or group

SCAD penalty function, respectively. In particular, five SNPs, rs1455888, rs1467025,

rs1619465, rs170519 and rs1953851, were selected by all three penalty functions. Note

that as seen and discussed in the previous section, the group LASSO is much more

conservative and selected more SNPs in high-dimensional scenarios. Among the 40

selected SNPs, 16 were also selected by Wu et al. (2020), and only rs1467025 among

the five commonly selected SNPs was selected by Wu et al. (2020), which assumed

that all SNPs only had linear effects.

To further investigate the selected SNPs, Figure 1 shows the estimated effects of

the SNPs selected by all three group penalty functions. Figures 2 - 4 display the

estimated effects of the selected SNPs by each of the three group penalty functions,
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respectively. Note that all of the covariates were re-scaled from 0 to 1 and the covariate

effects were calculated only at the three points. One can see that many of the selected

SNPs seem to have nonlinear covariates effects and the estimated effects are similar

or consistent with respect to the three penalty function. For instance, the estimated

curve of rs1455888 implies that the risk of AD conversion is higher among those with

heterozygous rs1455888 with one allele T than those with homozygous rs1455888 with

two alleles T and those without allele T. In other words, the risk of AD conversion

does not increase linearly with increase in the number of allele T in SNP rs1455888.

2.6 Discussion and Concluding Remarks

This chapter discussed the variable selection for the nonparametric additive Cox

model based on interval-censored failure time data, and for the problem, a penalized,

sieve variable selection procedure with the use of Bernstein polynomials approxima-

tions was developed. The proposed method can be seen as a generalization of that

given by Wu et al. (2020), which only considered the selection of the covariates with

linear effects. A simulation study was performed to assess the proposed method and

indicated that it works well for practical situations. Furthermore, the approach was

applied to the ADNI genetic data, which motivated this study, and identified some

significant SNPs that had nonlinear effects on the risk of AD conversion.

Note that in the proposed variable selection procedure, Bernstein polynomials were

employed to approximate unknown functions. Similar methods could be developed

with the use of other smooth function approximation such as splines. In the preceding

sections, we only considered the group LASSO, MCP and SCAD penalty functions
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and it is apparent that the procedure method would still be valid if some other group

penalty functions were used. However, the implementation could be different under

different group penalty functions. Also in the preceding sections, we have focused

on the nonparametric additive Cox model and it is straightforward to apply the idea

discussed above to other models.

The proposed method has some limitations or there exist several directions for

future research related to the proposed approach. One is that the focus here has

been on the low-dimensional (p < n) and high-dimensional (p > n) situations or the

proposed method cannot be applied to ultra-high dimensional (p≫ n) cases. In other

words, for the ultra-high dimensional situation, a new sure independent screening

procedure similar to that given in Fan et al. (2010) for right-censored data needs to

be developed. Another assumption imposed above is that the censoring mechanism is

independent or the mechanism behind censoring intervals is independent of the failure

time of interest. It is clear that this could be violated sometimes (Sun, 2006) and

thus it would be useful to generalize the method proposed above to the dependent

interval censoring situation. Of course, it would be desirable or helpful to provide

some theoretical justification to or establish the asymptotic properties of the proposed

method, which will not be straightforward.
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Table 2.1: Simulation results under scenario (a) with the right censoring percentage
being around 30%

n p Penalty TP1 TP2 TP3 TP4 TP FP MMSE(SD)

300 100 GLASSO 100 100 100 100 4 1.63 0.543 (0.232)
GMCP 100 100 100 99 3.99 0.5 0.146 (0.200)
GSCAD 100 100 100 99 3.99 1.37 0.156 (0.246)

500 GLASSO 100 99 98 100 3.97 1.9 0.720 (0.258)
GMCP 100 99 96 98 3.93 0.94 0.110 (0.279)
GSCAD 100 98 96 97 3.91 1.17 0.132 (0.322)

1000 GLASSO 100 99 98 100 3.97 3.05 0.785 (0.258)
GMCP 100 98 92 99 3.89 1.15 0.126 (0.300)
GSCAD 100 98 94 99 3.91 1.94 0.130 (0.334)

500 100 GLASSO 100 100 100 100 4 0.71 0.420 (0.167)
GMCP 100 99 99 99 3.97 0.08 0.083 (0.182)
GSCAD 100 100 100 99 3.99 0.11 0.088 (0.130)

500 GLASSO 100 100 98 100 3.98 0.43 0.578 (0.205)
GMCP 100 100 98 100 3.98 0.24 0.084 (0.143)
GSCAD 100 100 98 99 3.97 0.07 0.079 (0.153)

1000 GLASSO 100 100 100 100 4 0.44 0.626 (0.202)
GMCP 100 100 100 99 3.99 0.39 0.096 (0.138)
GSCAD 100 100 99 98 3.97 0.11 0.080 (0.142)
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Table 2.2: Simulation results under scenario (b) with the right censoring percentage
being around 30%

n p Penalty TP1 TP2 TP3 TP4 TP FP MMSE(SD)

300 100 GLASSO 100 99 99 100 3.98 3.64 0.808 (0.254)
GMCP 100 100 100 100 4.00 0.92 0.174 (0.327)
GSCAD 100 100 100 100 4.00 1.35 0.177 (0.371)

500 GLASSO 100 97 98 100 3.95 9.68 1.038 (0.324)
GMCP 100 100 100 100 4.00 1.97 0.156 (0.226)
GSCAD 100 100 100 100 4.00 5.24 0.216 (0.429)

1000 GLASSO 99 96 98 100 3.93 17.06 1.113 (0.348)
GMCP 99 99 100 99 3.97 2.89 0.177 (0.296)
GSCAD 99 98 99 100 3.96 9.02 0.311 (0.788)

500 100 GLASSO 100 100 99 100 3.99 0.58 0.827 (0.232)
GMCP 100 100 100 100 4 0.21 0.138 (0.210)
GSCAD 100 100 100 100 4 0.24 0.139 (0.213)

500 GLASSO 100 100 98 100 3.98 2.26 0.882 (0.248)
GMCP 100 100 100 100 4 0.4 0.139 (0.168)
GSCAD 100 100 100 100 4 0.33 0.138 (0.168)

1000 GLASSO 100 98 98 100 3.96 4.01 0.940 (0.282)
GMCP 100 100 100 100 4 0.46 0.138 (0.199)
GSCAD 100 100 100 100 4 0.69 0.134 (0.200)
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Table 2.3: Simulation results under scenario (c) with the right censoring percentage
being around 30%

n p Penalty TP1 TP2 TP3 TP4 TP5 TP6 TP FP MMSE(SD)

300 100 GLASSO 98 99 92 100 100 97 5.86 2.65 1.006 (0.317)
GMCP 100 99 96 100 100 99 5.94 0.79 0.166 (0.269)
GSCAD 100 99 99 100 100 100 5.98 1.43 0.198 (0.316)

500 GLASSO 100 92 92 100 99 99 5.82 11.10 1.119 (0.325)
GMCP 100 100 98 100 100 100 5.98 2.44 0.209 (0.349)
GSCAD 100 99 98 99 100 100 5.96 1.98 0.185 (0.310)

1000 GLASSO 98 93 85 100 99 96 5.71 20.36 1.210 (0.351)
GMCP 98 95 95 99 100 96 5.83 4.78 0.231 (0.555)
GSCAD 100 100 99 99 100 98 5.96 3.85 0.190 (0.487)

500 100 GLASSO 100 99 96 100 100 99 5.94 0.62 0.992 (0.250)
GMCP 100 100 99 100 100 100 5.99 0.14 0.133 (0.199)
GSCAD 100 100 99 100 100 100 5.99 0.02 0.133 (0.201)

500 GLASSO 100 94 97 100 100 99 5.90 1.96 1.069 (0.275)
GMCP 100 99 99 100 99 100 5.97 0.28 0.128 (0.226)
GSCAD 100 99 99 100 99 100 5.97 0.16 0.129 (0.227)

1000 GLASSO 99 94 94 100 100 98 5.85 3.47 1.154 (0.294)
GMCP 100 100 100 100 100 100 6.00 0.50 0.143 (0.183)
GSCAD 100 100 100 100 100 100 6.00 0.41 0.140 (0.175)
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Table 2.4: Simulation results under scenario (c) with the right censoring percentage
being around 45%

n p Penalty TP1 TP2 TP3 TP4 TP5 TP6 TP FP MMSE(SD)

300 100 GLASSO 98 92 80 100 100 94 5.64 2.19 1.111 (0.363)
GMCP 99 99 98 100 100 99 5.95 1.50 0.202 (0.424)
GSCAD 100 99 98 100 100 100 5.97 1.11 0.198 (0.358)

500 GLASSO 99 84 81 100 97 94 5.55 7.79 1.249 (0.379)
GMCP 100 99 99 100 98 99 5.95 5.53 0.238 (0.774)
GSCAD 100 99 98 99 98 99 5.93 4.25 0.216 (0.617)

1000 GLASSO 94 84 76 99 99 89 5.41 16.14 1.287 (0.379)
GMCP 97 90 88 99 100 91 5.65 9.09 0.317 (1.098)
GSCAD 97 93 93 100 100 94 5.77 7.37 0.245 (0.971)

500 100 GLASSO 99 94 90 100 99 95 5.77 0.46 1.117 (0.318)
GMCP 100 100 99 100 100 100 5.99 0.39 0.134 (0.209)
GSCAD 100 100 99 100 100 100 5.99 0.11 0.136 (0.208)

500 GLASSO 99 87 85 100 100 91 5.62 1.32 1.162 (0.334)
GMCP 100 99 100 100 100 100 5.99 0.71 0.138 (0.204)
GSCAD 100 100 100 100 100 100 6.00 0.38 0.141 (0.179)

1000 GLASSO 95 85 69 100 99 84 5.32 2.05 1.332 (0.361)
GMCP 100 99 100 100 100 99 5.98 0.97 0.157 (0.252)
GSCAD 100 100 100 100 100 99 5.99 0.58 0.146 (0.218)
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Table 2.5: Simulation results under scenario (c) with the right censoring percentage
being around 30% and mj = 5

n p Penalty TP1 TP2 TP3 TP4 TP5 TP6 TP FP MMSE(SD)

300 100 GLASSO 98 98 93 100 99 95 5.83 2.53 1.139 (0.310)
GMCP 100 99 96 100 100 99 5.94 2.94 0.278 (0.417)
GSCAD 100 100 98 100 98 97 5.93 0.79 0.247 (0.378)

500 GLASSO 100 91 88 100 99 97 5.75 8.12 1.302 (0.304)
GMCP 100 100 98 100 98 100 5.96 7.22 0.385 (0.699)
GSCAD 100 99 97 100 98 97 5.91 4 0.349 (0.632)

1000 GLASSO 98 91 91 100 99 96 5.75 17.81 1.332 (0.326)
GMCP 99 96 97 99 100 97 5.88 11.39 0.465 (1.183)
GSCAD 100 98 97 100 100 97 5.92 8.02 0.507 (0.766)

500 100 GLASSO 100 99 98 100 100 97 5.94 0.54 1.146 (0.239)
GMCP 100 100 99 100 100 100 5.99 1.75 0.171 (0.222)
GSCAD 100 99 97 100 100 100 5.96 0.02 0.172 (0.254)

500 GLASSO 100 94 97 100 100 97 5.88 1.62 1.206 (0.258)
GMCP 100 99 99 100 99 100 5.97 1.98 0.174 (0.242)
GSCAD 100 100 100 100 99 100 5.99 0.14 0.172 (0.202)

1000 GLASSO 99 94 95 100 100 97 5.85 2.52 1.296 (0.271)
GMCP 100 99 99 100 100 100 5.98 2.21 0.177 (0.241)
GSCAD 100 100 100 100 100 99 5.99 0.44 0.164 (0.204)
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Table 2.6: List of the selected SNPs for the ADNI data
SNP Name GLASSO GMCP GSCAD

rs10089267 +
rs10178349 +
rs10512849 +
rs10771958 +
rs1158464 +
rs1161397 +
rs11704226 + +
rs12042017 +
rs12334868 + +
rs12454238 + +
rs12555515 +
rs12589973 +
rs13037957 +
rs1330312 +
rs1336703 +
rs138957 +
rs1397228 +
rs1399417 + +
rs1455888 + + +
rs1467025 + + +
rs1475950 +
rs1499966 +
rs1619465 + + +
rs1638438 +
rs170519 + + +
rs1953851 + + +
rs2050635 +
rs2255417 +
rs2295894 +
rs2428754 +
rs2514897 +
rs1063666 + +
rs10799802 + +
rs11128570 + +
rs12694110 + +
rs10879354 +
rs17170619 +
rs1868750 +
rs1470002 +
rs2444907 +
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Figure 2.1: Estimated effects of the five SNPs selected by all of the three penalty
functions: row 1 - GLASSO, row 2 - GMCP, row 3 - GSCAD
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Figure 2.2: Estimated effects of the 31 SNPs selected by the GLASSO penalty
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Figure 2.3: Estimated effects of the 13 SNPs selected by the GMCP penalty
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Figure 2.4: Estimated effects of the 14 SNPs selected by the GSCAD penalty
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Chapter 3

Variable Selection for Nonlinear
Covariate Effects with
Interval-censored Failure Time
Data

3.1 Introduction

This chapter discusses variable selection when one faces general, high-dimensional

interval-censored failure time data, which commonly occur in many areas such as

epidemiological, medical and public health studies (Sun, 2006). By interval-censored

data, we usually mean that the failure time of interest is known or observed only to

belong to an interval instead of being observed exactly. It is apparent that right-

censored data, the type of failure time data discussed most in the literature, can be

seen as a special case of interval-censored data. In addition to high dimensionality

and interval censoring, it can also often be the case that covariates may have non-
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linear effects on the failure time of interest, which makes the variable selection more

challenging.

Several methods have been proposed for variable selection based on interval-

censored failure time data (Wu and Cook, 2015; Zhao et al., 2020; Wu et al., 2020;

Li et al., 2020). However, most of the existing methods have assumed that or only

considered the situation where covariate effects are linear, and it is well-known that

sometimes, this may not be true in practice. In other words, some covariates may have

nonlinear effects on the failure time of interest (Cai et al., 2007; Cheng and Wang,

2011; Huang, 1999; Lu and McMahan, 2018). To address this, in the following, we

will propose a penalized sieve maximum likelihood variable selection procedure under

a general class of semiparametric additive transformation models.

The semiparametric additive transformation model provides a flexible and com-

prehensive way to model the failure time variable and a key feature is that it allows for

arbitrary forms or patterns of the effects of covariates on the failure time of interest. In

the proposed method, we will adopt the sieve approach with the use of Bernstein poly-

nomials to approximate unknown functions involved, which can significantly reduce

the computational burden among other advantages. Also in the proposed procedure,

group penalty functions will be used. In particular, we will focus on the group least

absolute shrinkage and selection operator (GLASSO) penalty function (Yuan and

Lin, 2006), the group smoothly clipped absolute deviation (GSCAD) penalty func-

tion (Fan and Li, 2001), and the group minimum concave penalty (GMCP) penalty

function (Zhang, 2010) although other group penalty functions could be applied too.

The remainder of the chapter is organized as follows. In Section 3.2, we will first

introduce some notation and the semiparametric additive transformation model and
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then describe the other needed background. Section 3.3 will present the proposed,

penalized sieve maximum likelihood variable selection procedure, and in particular,

a novel EM algorithm will be developed for the implementation of the proposed

approach. In Section 3.4, some results from a simulation study conducted to assess

the finite-sample performance of the proposed method are provided and indicate that

it works well for the situations considered. We will apply the procedure to a set of

real data arising from an Alzheimer’s Disease study in Section 3.5 and Section 3.6

concludes with some discussion and remarks.

3.2 Notation, Models and Preparations

Consider a failure time study with n independent individuals and let Ti and Xi =

(Xi1, ..., Xip)
′ denote the failure time of interest and a p-dimensional vector of co-

variates associated with the ith subject, respectively. For Ti, suppose that only an

interval (Li, Ri] such that LI < Ti ≤ Ri is observed, i = 1, ..., n. That is, only

interval-censored data are observed and the observed data have the form {(Xi, Li <

Ti ≤ Ri), i = 1, ..., n}.

For the covariate effect, we will assume that given Xi, Ti follows the semipara-

metric additive transformation model with the cumulative hazards function having

the form

Λ(t|Xi) = G [Λ0(t) exp {f(X)}] = G

[
Λ0(t) exp

{
p∑
j=1

fj(Xj)

}]
. (3.1)

In the above, G(·) denotes a pre-specified increasing transformation function, Λ0(t)

is an unknown baseline cumulative hazard function, and f1, ..., fp are unknown func-
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tions. It is easy to see that the class of models above is quite flexible and includes

many commonly used models as special cases. For instance, the choices of G(x) = x

and G(x) = log(1+x) give the additive Cox model and the additive proportional odds

model, respectively. For the identification of the model above, we will assume that

E[fj(·)] = 0 for all 1 ≤ j ≤ p and the censoring is independent (Huang, 1999; Sun,

2006). Also we will adopt the sparsity assumption although p can be small (p < n)

or large (p > n) (Lv et al., 2018).

Under the assumptions above, one can easily derive the observed likelihood func-

tion as

L(Λ0,f) =
n∏
i=1

{
exp

[
−G

{
Λ0(Li)e

∑p
j=1 fj(Xij)

}]
− exp

[
G
{
−Λ0(Ri)e

∑p
j=1 fj(Xij)

}]}
,

(3.2)

where f = (f1, ..., fp). It is apparent that the direct use of the likelihood function

above would not be easy because of the involvement of unknown functions H0 and

f . To deal with this, following others (Zhao et al., 2020; Li et al., 2020), we suggest

to employ the sieve approach first to approximate f using Bernstein polynomials.

Specifically, define the parameter space

Θ = {(Λ0, f1, ..., fp) ∈ (H0 ⊗M1 ⊗ ...⊗Mp)}

and the sieve parameter space

Θn = {(Λ0, f1n, ..., fpn) ∈ (H0 ⊗M1n ⊗ ...⊗Mpn)} .

39



In the above,

Mjn =

fjn(Xj) =

mj∑
k=0

αjkBjk(Xj,mj, cj, uj) :
∑

0≤k≤mj

|αjk| ≤Mjn

 , j = 1, ..., p ,

with

Bjk(Xj,mj, cj, uj) =

(
mj

k

)(
Xj − cj
uj − cj

)k (
1− Xj − cj

uj − cj

)mj−k

, k = 0, 1, ...,mj ,

which are the Bernstein polynomials with the degree of freedoms mj = o(na) for some

a ∈ (0, 1).

Define α = (α10, ..., α1m1 , ..., αp0, ..., αpmp)
′. Then the likelihood function in (3.2)

can be rewritten as

L(Λ0,α) =
n∏
i=1

{
exp

[
−G

{
Λ0(Li)e

∑p
j=1 fjn(Xij)

}]
− exp

[
G
{
−Λ0(Ri)e

∑p
j=1 fjn(Xij)

}]}
.

(3.3)

Note that instead of Bernstein polynomials, one could use other smoothing functions

such as B-splines. The advantages of Bernstein polynomials include their simplicity

and no requirement of specifying interior knots (Wang and Ghosh, 2012; Zhou et al.,

2017; Carnicer and Pena, 1993).
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3.3 Penalized Sieve Maximum Likelihood Variable

Selection

3.3.1 Penalized Procedure

Now we discuss the variable or covariate selection or how to identify relevant and

important covariates. For this, motivated by the literature, we propose to minimize

the penalized negative log likelihood function

ℓp(α,Λ0) = − 1

n
logL(Λ0,α) +

p∑
j=1

Pλ(αj) = ℓ1(Λ0,α) +

p∑
j=1

Pλ(αj) , (3.4)

where Pλ(αj) denotes a group penalty function with respect to αj = (αj0, ..., αjmp)

and λ is a tuning parameter. It is apparent that αj = 0 will mean that the covariate

Xj has zero or non-significant effect on the failure time of interest.

For the penalty function Pλ(αj), although one can use any, we will focus on

GLASSO, GMCP, and GSCAD penalty functions in the following. The GLASSO

penalty function, proposed by Yuan and Lin (2006), is given by Pλ(αj) = λj∥αj∥2

with λj = λ
√
mj + 1 and ∥αj∥2 =

√∑mj

l=0 α
2
jl, while the GMCP penalty function has

the form

Pλ(αj; η) =


λj∥αj∥2 −

∥αj∥22
2η

if ∥αj∥2 ≤ λjη ,

λ2jη

2
if ∥αj∥2 > λjη

with λj = λ
√
mj + 1 and η > 1 (Zhang, 2010). Finally the GSCAD penalty function
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takes the form

Pλ(αj;ω) =



λj ∥αj∥2 if ∥αj∥2 ≤ λj ,

2ωλj∥αj∥2 − ∥αj∥22 − λ2j
2(ω − 1)

if λj < ∥αj∥2 ≤ ωλj ,

(ω2 − 1)λ2j
2(ω − 1)

if ∥αj∥2 > ωλj

with λj = λ
√
mj + 1 and ω > 2 (Fan and Li, 2001). Fan and Li (2001) suggested

to set ω = 3.7 in the above. For the selection of the tuning parameter λ, many

procedures can be used, and in the following, we will adopt the extended Bayesian

information criterion (EBIC) by following Chen and Chen (2008).

It is easy to see that the direct minimization of the penalized negative log-

likelihood function ℓp(α,Λ0) given in (3.4) is difficult or not feasible. Corresponding

to this, we will develop a penalized EM algorithm in the next subsection by intro-

ducing subject-specific Poisson random variables in the data augmentation. For the

baseline cumulative hazard function Λ0, we will take the nonparametric approach and

it will be seen that one advantage of this is that the closed-form solution of Λ0 can

be obtained.

3.3.2 The Penalized EM Algorithm

To present the developed penalized EM algorithm, first not that for the transforma-

tion function G in model (3.1), one can adopt the Laplace transformation and write

it as a frailty-induced transformation function (Wang et al., 2016b; Zeng et al., 2016;

Li et al., 2020).

G(x) = −log
∫ ∞

0

exp(−xµ) ρ(µ|r) dµ
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In the above, ρ(t) denotes the density function of a frailty variable µ with the support

[0,∞). It is easy to show that if ρ(µ|r) is set to be the density function of the gamma

distribution with mean one and variance r, it yields G(x) = log(1 + rx), the class

of logarithmic transformations (Kosorok et al., 2004). It follows that the likelihood

function given in (3.3) can be rewritten as

L(Λ0,α) =
n∏
i=1

∫
µi

{
exp

[
−Λ0(Li)µie

∑p
j=1 fjn(Xij)

]
− exp

[
−Λ0(Ri)µie

∑p
j=1 fjn(Xij)

]}
ρ(µi|r)dµi .

(3.5)

In other words, the transformation above transfers model (3.1) to the additive Cox

frailty model.

Let t1 < t2 < · · · < tKn denote the ordered unique time points of {Li > 0, Ri <

∞; i = 1, ..., n } and hk be the jump size of Λ0 at tk. Define θ = (α′,h′) with

h = (h1, ..., hKn)
′. Then the likelihood function can be rewritten as

L(θ) =
n∏
i=1

∫
fi

exp

− ∑
tk≤Li

hk exp

 p∑
j=1

fjn(Xij)

µi


×

1− exp

− ∑
Li<tk≤Ri

hk exp

 p∑
j=1

fjn(Xij)

µi


I(R<∞)

× ρ (µi | r) dµj .

(3.6)

As mentioned above, for the baseline cumulative hazard function Λ0, we take the

nonparametric approach. To augment the observed data, by following Li et al. (2020),

let {Yik, k = 1, ..., Kn} be a set of independent Poisson random variables with the

mean hk exp{
∑p

j=1 fjn(Xij)} for each i. Then the likelihood function above can be

reexpressed as

L(θ) =
n∏
i=1

∫
µi

Pr

(∑
tk≤Li

Yik = 0

)
Pr

( ∑
Li<tk≤Ri

Yik > 0

)I(Ri<∞)

ρ (µi | r) dµi . (3.7)
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This suggests that one can treat the µi’s and Yik’s as the pseudo complete data and

the corresponding likelihood function has the form

LC(θ) =
n∏
i=1

Kn∏
k=1

p

(
Yik | hk exp

(
p∑
j=1

fjn(Xij)

)
µi

)
ρ (µi | r) (3.8)

with
∑

tk≤Li
Yik = 0 and

∑
Li<tk≤Ri

Yik > 0 if Ri <∞ and
∑

ti≤Li
Yik = 0 if Ri = ∞.

In the E-step of the EM algorithm, we need to calculate the conditional expecta-

tions of Yik and µi given the observed data and the current estimates of all unknowns.

For simplicity, we will denote them by E(Yik) and E(µi) by omitting the conditional

arguments. More specifically, we have that

E (Yik) =

 hk exp
(∑p

j=1 fjn(Xij)
)

exp {−G (Vi)} − exp {−G (Wi)}

∫
µi

µi (exp {−µiVi} − exp {−µiWi})
1− exp {−µi (Wi − Vi)}

×ρ (µi | r) dµiI (Li < tk ≤ Ri) + hk exp

(
p∑
j=1

fjn(Xij)

)
E (µj) I (tk > Ri)

}
I (Ri <∞)

+hk exp

(
p∑
j=1

fjn(Xij)

)
E (µi) I (tk > Li) I (Ri = ∞) ,

and

E (µi) =
exp {−G (Vi)}G′ (Vi)− exp {−G (Wi)}G′ (Wi)

exp {−G (Vi)} − exp {−G (Wi)}
I (Ri <∞)+G′ (Vi) I (Ri = ∞)

where Vi =
∑

tk≤Li
hk exp

(∑p
j=1 fjn(Xij)

)
, andWi =

∑
tk≤Ri

hk exp
(∑p

j=1 fjn(Xij)
)
.

Note that by setting ρ (µi|r) to be the gamma density function as mentioned above,

44



we have that

∫
µi

µ2
i exp (−µix) ρ (µi | r) dµi = (1 + r)(rx+ 1)−r

−1−2 .

Also one can use the Gauss quadrature technique to calculate

∫
µi

µi (exp {−µiVi} − exp {−µiWi})
1− exp {−µi (Wi − Vi)}

ρ (µi | r) dµi .

In the M-step of the EM algorithm, one can first update hk with the following

closed-form expression

hk =

∑n
i=1 E (Yik)∑n

i=1 E (µi) exp
(∑p

j=1 fjn(Xij)
) , k = 1, . . . , Kn . (3.9)

It is easy to see that the existence of the closed-form solution above can considerably

reduce the computational burden of the optimization process, an appealing feature

with the use of the Poisson-based data augmentation. For the estimation of α, at the

lth iteration, we need to minimize

Qp(α;θ
(l)) = Q2(α;θ

(l)) +

p∑
j=1

Pλ(αj) ,

where θ(l) denotes the estimate of θ at the lth iteration and

Q2(α;θ
(l)) = − 1

n

n∑
i=1

Kn∑
k=1

E(Yik)

p∑
j=1

fjn(Xij) + E(Yik)log

 n∑
i=1

E(µi)exp(

p∑
j=1

fjn(Xij))

 .

For this, we suggest to employ the group coordinate descent algorithm to update the

estimates of α (Yuan and Lin, 2006; Yang and Zou, 2015; Breheny and Huang, 2015; Cao
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et al., 2016; Lv et al., 2018).

Specifically, for estimation of α, we will update each αj while keeping all other ele-

ments of α fixed at their current estimates sequentially. To obtain the updated estimate

α̂
(l+1)
j at the (l + 1)th iteration, let â

(l+1)
j = (α̂

(l+1)
1 , ..., α̂

(l+1)
j−1 , α̂

(l)
j , ..., α̂

(l)
p ), the current

estimate of α for which the first (j − 1)th elements have been updated at the (l + 1)th it-

eration, and define Q′
j(α;θ

(l)) = ∂Q2(α;θ
(l))/∂αj and H

(l)
j = ∂2Q2(α;θ

(l))/∂α2
j , both

evaluated at â
(l+1)
j . Also let h

(l)
j denote the largest eigenvalue of H

(l)
j and â

(l+1)∗
j =

(α̂
(l+1)
1 , ..., α̂

(l+1)
j−1 ,αj , α̂

(l)
j+1, ..., α̂

(l)
p ). Note that Q′

j(â
(l+1)
j ;θ(l)) depends on the current esti-

mates â
(l+1)
j , and the objective function Qp(â

(l+1)∗
j ;θ(l)) can be approximated by

Qp(α
∗;θ(l)) ≈ Q2(α̂;θ

(l))+
[
αj − α̂(l)

j

]′
Q′
j(α̂;θ

(l))+
1

2

[
αj − α̂(l)

j

]′
H

(l)
j

[
αj − α̂(l)

j

]
+

p∑
j=1

Pλ(αj)

≈ Q2(α̂;θ
(l)) +

[
αj − α̂(l)

j

]′
Q′
j(α̂;θ

(l)) +
h
(l)
j

2

[
αj − α̂(l)

j

]′ [
αj − α̂(l)

j

]
+

p∑
j=1

Pλ(αj) .

In the above, the sub-Hessian matrixH
(l)
j is replaced by its largest eigenvalue h

(l)
j . It follows

that the updated estimate α̂
(l+1)
j of αj can be determined by

α̂
(l+1)
j = argmin

αj

{[
αj − α̂(l)

j

]′
Q′
j(α̂;θ

(l)) +
h
(l)
j

2
∥αj − α̂(l)

j ∥22 + Pλ(αj)

}
,

which can yield different closed-form expressions for different penalty functions as shown

below.

Withe the use of the GLASSO penalty function, the formula above gives

α̂
(l+1)
j = S(dj ;λj/hj) ,

where λj = λ
√
mj + 1 and S(dj ;λ) = (1−λ/∥dj∥)+dj with dj = α̂(l)

j −Q′
j(α̂;θ

(l))/hj . By
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using the GMCP penalty function, one can obtain

α̂
(l+1)
j =


S

(
hjdj

hj − 1/η
;

λj
hj − 1/η

)
if ∥dj∥2 ≤ λjη ,

dj if ∥dj∥2 > λjη.

If the group SCAD penalty function is used, we have that

α̂
(l+1)
j =



S(dj ;λj/hj) if ∥dj∥2 ≤ λj + λj/hj ,[
hj(ω − 1)− ωλj

∥dj∥2

]
dj

hjω − hj − 1
if λj + λj/hj < ∥dj∥2 ≤ ωλj ,

dj if ∥dj∥2 > ωλj .

Note that as mentioned above, all of the fj(Xj)’s need to be centered to avoid the model

identification issue. For this, define

f̂∗jn(Xj) =

mj∑
k=0

α̂∗
jkBjk(Xj ,mj , cj , uj) and f̄∗jn(Xj) =

n∑
i=1

f̂∗jn(Xij)/n .

Then by following Huang (1999), one can estimate fj(Xj) by

f̂jn(Xj) = f̂∗jn(Xj)− f̄∗jn(Xj) , 1 ≤ j ≤ p .

For given λ, the EM algorithm discussed above can be summarized as follows.

Step (1): Set initial values of θ(0).

Step (2): At the (l + 1)th iteration, calculate E(Yik), E(µi).

Step (3): Obtain each element in ĥ(l+1) at the (l + 1)th iteration by equation (3.9).

Step (4): Determine α̂
(l+1)
j at the (l + 1)th iteration by the group decent algorithm

α̂
(l+1)
j = argmin

αj

{
l(ĥ(l+1), α̂(l+1)∗) + Pλ(αj)

}
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for j = 1, ..., p. Then center f̂∗jn(Xj) for each j = 1, ..., p.

Step (5): Repeat Steps (2) and (4) until convergence or l exceeding a given large number.

For the selection of the tuning parameter λ, as mentioned above, various criteria can be

used. In the numerical study below, we will employ the EBIC defined as

EBIC(λ) = −2 logℓ(θ̂) + S log(n) + 2 ξ log

(
p

S

)
.

Here θ̂ denotes the estimate of θ, ℓ(·) the logarithm of the observed likelihood function

given in (3.2), S the total number of the estimated nonzero covariate effects, and ξ ∈ [0, 1].

It is easy to see that if ξ = 0, the EBIC becomes the BIC.

3.4 A Simulation Study

In this section, we present some results obtained from a simulation study conducted to

evaluate the empirical performance of the variable selection approach proposed in the pre-

vious sections. In the study, we first generated the covariates from the multivariate normal

distribution with mean zero and the correlation corr(Xj , Xk) = 0.5|j−k| between Xj and

Xk. Given the covariates Xij ’s, the true failure times Ti’s were generated based on the

additive transformation model

Λ(t|Xi) = G

Λ0(t) exp


p∑
j=1

fj(Xij)




with Λ0(t) = log(1 + 0.5t) and G(x) = log(1 + rx)/r (r ≫ 0).

For the covariate effects, we considered the following three scenarios.

• Scenario (a): f1(x) = 8x− 4, f2(x) = −8x+ 4, f3(x) = 8x− 4, f4(x) = −8x+ 4, and

fj(x) = 0 (j = 4, ..., p);
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• Scenario (b): f1(x) = 8x − 4, f2(x) = 4cos(πx), f3(x) = −4cos(πx), f4(x) =

6sin(πx)− 3, and fj(x) = 0 (j = 4, ..., p);

• Scenario (c): f1(x) = 5cos(πx), f2(x) = 10sin(πx)−5, f3(x) = −5sin(1.5π(x−0.5)),

f4(x) = −5cos(2πx), f5(x) = 5sin(1.5π(x− 0.5)), f6(x) = −5cos(−πx), and fj(x) =

0 (j = 6, ..., p).

Let S denote the number of the covariates that have significant effects or nonzero coefficients.

Then we have S = 4, 4 and 6 for the three situations above, respectively. Also scenario (a)

has four significant covariates all having linear effects, scenario (b) includes one covariate

with linear effect and three with nonlinear effects, and scenario (c) involves six significant

covariates all having nonlinear effects.

For the generation of the observed data, for each subject, we first generated a sequence

of observation times from the homogeneous Poisson process with the study length of 4 and

the inter-examination times following the exponential distribution with the mean of 0.2.

Then for subject i, Li and Ri were set to be the largest observation time that was smaller

than Ti and the smallest observation time that was larger than Ti. For the two parameters

η and ω in the GMCP and GSCAD penalty functions, they were chosen to be 2.7 and 3.7,

respectively, following Fan and Li (2001) and Zhang (2010). Furthermore, we set ξ = 1 in

the EBIC, m0 = mj = 3 for Bernstein polynomial approximations, and r = 0, 0.5 and 1 for

the link function G. As mentioned above, r = 0 gives the additive Cox model, while r = 1

corresponds to the additive proportional odds model. The results given below are based on

the sample size n = 300 or 500 and the total number of covariates p = 100 or 500 with 100

replications.

Table 3.1 presents the results of the variable or covariate selection given by the proposed

procedure with the use of the GLASSO, GMCP and GSCAD penalty functions under sce-

nario (a). In the table, we calculated the average of the number of times, TPj , when a
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covariate was selected for each of the covariates with significant effects, the average of the

number of the selected covariates, TP , whose true effects are significant, the average of

the number of the selected covariates, FP , whose true effects are not significant. In addi-

tion, we determined the median of the mean squared errors, denoted by MMSE, given by

S−1
∑S

j=1

∫
{fj(x)− f̂j(x)}2 dx along with their standard deviation denoted by SD.

The results given by the proposed approach under scenarios (b) and (c) are given in

Tables 3.2 and 3.3, respectively. One can see from the three tables that the proposed variable

selection procedure seems to give similar results and perform well under the three scenarios

and with respect to all of three penalty functions in general. It appears that all important or

significant covariates, no matter with linear or nonlinear effects, can be identified with high

percentages or probabilities although the probabilities slightly decreased when the number

of covariates increased. As expected, the method with the use of the GLASSO penalty

function tends to yield slightly larger FP or the models with more noise and prediction

errors than the other two penalty functions. Also as expected, the method gave better

performance when the sample size increased.

3.5 An Application

Now we apply the sieve penalized variable selection procedure proposed in the previous

sections to a study on Alzheimer’s Disease (AD), the Alzheimer’s Disease Neuroimaging

Initiative (ADNI), which is an ongoing, longitudinal and multi-site study. One primary

objective of the ADNI is to investigate various factors, including genetic, demographic and

clinical factors, and identify these that can be used for early diagnosis, tracking, and preven-

tion of AD. The study consists of three groups of patients classified based on their cognitive

conditions, cognitive normal, mild cognitive impairment (MCI), and AD. Among others,

one event or variable of interest is the time from the initial visit date to the AD conversion
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and on it, only interval-censored data are available because of the periodic examination and

monitoring nature for all study participants.

For the analysis here, following Li et al. (2020), we will focus on the 310 patients in the

MCI group with complete information on 24 factors described below. Among them, 5 factors

are demographic factors, 12 are clinical factors, and the rest are associated to the patient’s

MRI volumetric data. More specifically, the five demographic factors are the participant’s

baseline age, gender (1 for male and 0 for female), apolipoprotein E ϵ4 (APOEϵ4) genotype,

years of receiving education (PTEDUCAT), and marital status (MaritalStatus, 1 for married

and 0 otherwise). The clinical factors are the participant’s Alzheimer’s Disease Assessment

Scale scores of 11 and 13 items (ADAS11 and ADAS13), delayed word recall score in ADAS

(ADASQ4), clinical dementia rating scale-sum of boxes score (CDRSB), mini-mental state

examination score (MMSE), Rey auditory verbal learning test score of immediate recall

(RAVLT.i), learning ability (RAVLT.l), the total number of words that were forgotten in

the RAVLT delayed memory test (RAVLT.f), and the percentage of words that were forgot-

ten in the RAVLT delayed memory test (RAVLT.perc.f) as well as the participant’s digit

symbol substitution test score (DIGITSCOR), trails B score (TRABSCOR), and functional

assessment questionnaire score (FAQ). The participant’s MRI volumetric data consist of

ventricles, hippocampus, whole brain (WholeBrain), entorhinal, fusiform gyrus (Fusiform),

middle temporal gyrus (MidTemp), and intracerebral volume (ICV).

To apply the proposed method, as in the simulation, we chose G(x) = log(1 + r x)/r in

model (3.1) and considered several values of r between 0 and 2 with an increment of 0.1.

For each value of r, the EBIC with ξ = 1 was used to select the optimal tuning parameter

λ and it turned out that the smallest EBIC value was given by r = 0, corresponding to

the additive Cox model. Also as in the simulation, we set m0 = mj = 3 for the Bernstein

polynomial approximation and scaled all covariates from 0 to 1. Table 3.4 gives the factors

selected by the proposed procedure with the use of the GLASSO, GMCP, and GSCAD
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penalty functions with r = 0. One can see from Table 3.4 that three factors, ADAS13,

RAVLT.i and MidTemp, were selected by all three penalty functions and also they are

the only factors selected by the GMCP and GSCAD penalty functions. In contrast, the

GLASSO selected eight more factors.

Figures 3.1 - 3.3 display the estimated effects of the factors selected by using the

GLASSO, GMCP, and GSCAD penalty functions, respectively. It seems that all three

factors, ADAS13, RAVLT.i and MidTemp had significant and nonlinear effects on the AD

conversion. More specifically, ADAS13 appears to be positively related to the risk of the

AD conversion, while the other two were negatively related. All other selected factors did

not seem to have significant effects. As discussed above, Li et al. (2020) considered the

same problem discussed here under the class of semiparametric transformation models but

assumed linear effects for all covariates. They identified the same three factors as above

plus FAQ by using various penalty functions. Their method also suggested that RAVLT.i

and MidTemp were negatively related to the risk of the AD conversion, and the ADAS13

was positively related.

3.6 Discussion and Concluding Remarks

In this chapter, we discussed variable selection for a class of semiparametric additive trans-

formation models based on high-dimensional interval-censored failure time data, and a key

feature of the model is that it allows for the existence and estimation of nonlinear covariate

effects. For the problem, a sieve penalized maximum likelihood procedure was proposed

and the proposed method can be seen as a generalization of the method given in Li et al.

(2020). Although only the GLASSO, GMCP, and GSCAD penalty functions were consid-

ered, the proposed approach allows for the use of other group penalty functions, and for

the implementation of the method, an efficient and reliable EM algorithm was developed
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with the use of Poisson variables for the data augmentation. The numerical study indicated

that the proposed procedure performed well for both low-dimensional and high-dimensional

practical situations.

It is worth noting that the proposed method has some limitations or there exist several

directions for future research. One is that in the preceding sections, we have assumed that

interval censoring is non-informative or independent of the failure time of interest (Sun,

2006). As pointed out in the literature (Du et al., 2022), this may not be true sometimes

and in the presence of informative censoring, the use of the methods that ignore it could

yield biased results. In other words, it would be useful to develop a method similar to that

proposed above but allowing for informative interval censoring. Another assumption used

above is that all covariates effects are constant and it is apparent that in some situations,

the effects may be time-dependent (Lv et al., 2018). In other words, some new methods

need to be developed when there exist time-varying factors under the interval-censored data

context.

Many authors have discussed the analysis of multivariate interval-censored data, and in

particular, Sun et al. (2021) investigated the variable selection for such situations. However,

their method applies only to the situation where covariate effects are linear and thus new

procedures have to be developed when one faces nonlinear covariate effects. One choice

would be to generalize the method proposed above to multivariate interval-censored data.

As another direction for future research, it is apparent that it would be helpful to develop

some methods for estimating the standard errors of the estimated covariate effects. Also

it would useful to provide some theoretical justifications to or establish the asymptotic

properties of the proposed method such as the oracle property and thus derive confidence

bands for the estimated effect curves.
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Table 3.1: Simulation results under scenario (a)

n p r Penalty TP1 TP2 TP3 TP4 TP FP MMSE(SD)

300 100 0 glasso 98 95 97 99 3.89 2.31 2.147 (0.581)
gmcp 98 99 100 98 3.95 0.13 0.375 (0.161)
gscad 100 100 100 99 3.99 0.09 0.355 (0.158)

0.5 glasso 99 88 92 99 3.78 1.35 2.635 (0.633)
gmcp 99 95 92 100 3.86 1.37 0.250 (0.633)
gscad 100 92 91 99 3.82 1.33 0.250 (0.739)

1 glasso 99 82 86 99 3.66 1.56 2.975 (0.693)
gmcp 100 98 95 100 3.93 0.41 0.457 (0.404)
gscad 99 100 97 98 3.94 0.53 0.464 (0.319)

500 0 glasso 99 91 97 100 3.87 4.83 2.574 (0.506)
gmcp 99 98 100 99 3.96 0.19 0.324 (0.217)
gscad 99 99 100 100 3.98 0.22 0.335 (0.209)

0.5 glasso 98 77 85 98 3.58 1.64 3.410 (0.588)
gmcp 100 58 69 98 3.25 1.57 0.500 (1.316)
gscad 100 57 68 98 3.23 1.44 1.307 (1.311)

1 glasso 98 70 75 99 3.42 2.52 3.813 (0.448)
gmcp 100 87 87 100 3.74 0.51 0.446 (0.748)
gscad 97 89 89 99 3.74 0.82 0.438 (0.717)

500 100 0 glasso 100 99 99 98 3.96 1.21 1.722 (0.34)
gmcp 99 99 100 100 3.98 0.04 0.277 (0.106)
gscad 98 100 100 100 3.98 0.07 0.280 (0.106)

0.5 glasso 100 100 99 100 3.99 1.07 2.093 (0.336)
gmcp 100 99 99 100 3.98 0.58 0.187 (0.254)
gscad 100 98 97 100 3.95 0.42 0.189 (0.333)

1 glasso 100 98 97 100 3.95 0.77 2.468 (0.435)
gmcp 100 100 100 99 3.99 0.11 0.359 (0.132)
gscad 99 100 100 97 3.96 0.18 0.340 (0.131)

500 0 glasso 100 95 99 99 3.93 1.91 2.111 (0.593)
gmcp 99 100 99 97 3.95 0.1 0.296 (0.123))
gscad 99 100 100 98 3.97 0.05 0.296 (0.124)

0.5 glasso 100 92 91 98 3.81 1.4 2.478 (0.647)
gmcp 100 94 95 100 3.89 0.65 0.195 (0.621)
gscad 100 94 95 100 3.89 0.82 0.192 (0.625)

1 glasso 100 81 81 97 3.59 1.05 2.974 (0.711)
gmcp 99 98 97 100 3.94 0.2 0.358 (0.397)
gscad 100 96 96 100 3.92 0.28 0.362 (0.398)

54



Table 3.2: Simulation results under scenario (b)

n p r Penalty TP1 TP2 TP3 TP4 TP FP MMSE(SD)

300 100 0 glasso 99 98 99 99 3.95 2.13 3.022 (0.492)
gmcp 99 99 99 100 3.97 0.16 1.383 (0.487)
gscad 100 100 99 100 3.99 0.18 1.385 (0.242)

0.5 glasso 100 100 100 96 3.96 2.58 3.006 (0.521)
gmcp 99 99 100 100 3.98 0.51 1.408 (0.314)
gscad 100 100 100 99 3.99 0.46 1.404 (0.280)

1 glasso 98 94 99 89 3.8 1.47 3.045 (0.696)
gmcp 99 98 100 100 3.97 0.59 1.390 (0.498)
gscad 99 97 99 100 3.95 0.52 1.417 (0.645)

500 0 glasso 98 99 98 99 3.94 2.43 3.918 (0.596)
gmcp 99 94 99 100 3.92 0.22 1.388 (0.781)
gscad 99 92 96 100 3.87 0.3 1.424 (0.838)

0.5 glasso 99 99 100 97 3.95 5.77 3.575 (0.591)
gmcp 96 88 99 97 3.8 1.01 1.462 (0.962)
gscad 90 82 95 93 3.6 0.5 1.485 (1.339)

1 glasso 96 85 97 82 3.6 2.21 4.234 (0.652)
gmcp 83 72 95 90 3.4 0.85 1.634 (1.482)
gscad 89 77 99 94 3.59 0.99 1.592 (1.264)

500 100 0 glasso 100 100 100 100 4 0.12 3.278 (0.355)
gmcp 99 100 100 100 3.99 0.06 1.343 (0.178)
gscad 100 100 100 100 4 0.05 1.331 (0.180)

0.5 glasso 100 100 100 97 3.97 0.13 3.602 (0.304)
gmcp 100 100 100 100 4 0.08 1.370 (0.187)
gscad 100 100 100 100 4 0.09 1.370 (0.187)

1 glasso 100 100 100 96 3.96 0.99 2.565 (0.335)
gmcp 99 100 100 99 3.98 0.14 1.314 (0.211)
gscad 100 100 100 100 4 0.09 1.308 (0.205)

500 0 glasso 100 100 99 99 3.98 1.82 3.103 (0.465)
gmcp 100 100 99 100 3.99 0.01 1.364 (0.178)
gscad 100 100 100 100 4 0.06 1.368 (0.184)

0.5 glasso 99 99 100 98 3.96 1.75 3.099 (0.468)
gmcp 98 100 99 100 3.97 0.23 1.379 (0.294)
gscad 99 97 99 100 3.95 0.11 1.376 (0.250)

1 glasso 97 98 100 91 3.86 1.35 3.446 (0.591)
gmcp 99 99 99 99 3.96 0.55 1.397 (0.383)
gscad 99 99 99 98 3.95 0.43 1.414 (0.382)
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Table 3.3: Simulation results under scenario (c)

n p r Penalty TP1 TP2 TP3 TP4 TP5 TP6 TP FP MMSE(SD)

300 100 0 glasso 99 98 100 99 99 100 5.95 2.06 9.734 (0.666)
gmcp 96 97 98 99 99 99 5.88 0.49 6.121 (0.744)
gscad 98 97 97 99 99 98 5.88 0.53 6.148 (0.747)

0.5 glasso 99 95 99 98 99 99 5.89 1.64 9.424 (0.756)
gmcp 97 95 92 95 99 99 5.77 0.55 6.697 (0.925)
gscad 96 94 92 94 99 98 5.73 0.67 6.795 (0.958)

1 glasso 99 92 99 96 99 99 5.84 0.99 8.885 (0.743)
gmcp 93 91 84 92 98 98 5.56 0.34 7.746 (0.938)
gscad 92 90 85 86 98 97 5.48 0.32 7.796 (1.040)

500 0 glasso 100 95 100 98 99 100 5.92 3.04 10.538 (0.431)
gmcp 99 93 92 93 98 98 5.73 0.84 6.416 (0.930)
gscad 96 93 91 91 97 97 5.65 0.94 7.160 (0.843)

0.5 glasso 98 82 99 88 100 99 5.66 1.09 10.329 (0.560)
gmcp 95 89 91 78 98 98 5.49 0.58 7.297 (1.040)
gscad 92 87 89 69 95 97 5.29 0.69 7.402 (1.167)

1 glasso 99 85 98 89 100 100 5.71 1.7 10.064 (0.602)
gmcp 94 92 90 82 96 97 5.51 0.53 7.066 (0.941)
gscad 91 87 86 78 93 96 5.31 0.39 7.137 (1.064)

500 100 0 glasso 100 100 100 100 100 100 6 1.13 9.273 (0.519)
gmcp 100 100 100 100 100 100 6 0.13 5.872 (0.470)
gscad 99 98 100 98 100 99 5.94 0.06 5.873 (0.667)

0.5 glasso 100 100 100 100 100 100 6 1.29 8.673 (0.577)
gmcp 100 97 100 99 100 100 5.96 0.21 6.393 (0.608)
gscad 100 96 100 99 99 100 5.94 0.26 6.393 (0.624)

1 glasso 100 99 100 98 100 100 5.97 0.81 8.190 (0.646)
gmcp 100 96 99 97 99 99 5.9 0.25 6.347 (0.793)
gscad 100 95 100 100 99 100 5.94 0.3 6.331 (0.582)

500 0 glasso 100 95 100 98 100 100 5.93 1.76 9.538 (0.626)
gmcp 100 99 99 98 100 100 5.96 0.29 5.939 (0.562)
gscad 100 99 100 97 100 99 5.95 0.24 5.937 (0.609)

0.5 glasso 100 93 100 96 99 100 5.88 1.5 9.442 (0.728)
gmcp 100 90 99 94 100 100 5.83 0.25 6.590 (0.656)
gscad 100 92 99 96 100 100 5.87 0.42 6.558 (0.652)

1 glasso 100 90 100 95 100 100 5.85 1.04 8.646 (0.669)
gmcp 98 88 98 96 100 100 5.8 0.31 6.428 (0.654)
gscad 99 89 99 96 100 100 5.83 0.38 6.409 (0.614)
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Table 3.4: Variable selection results with r = 0 of ADNI data

Covariate GLASSO GMCP GSCAD

Gender
MaritalStatus
AGE
PTEDUCAT
APOEϵ4 +
ADAS11 +
ADAS13 + + +
ADASQ4 +
CDRSB
MMSE +
RAVLT.i + + +
RAVLT.l
RAVLT.f
RAVLT.perc.f +
DIGITSCOR
TRABSCOR +
FAQ +
Ventricles
Hippocampus
WholeBrain
Entorhinal +
Fusiform
MidTemp + + +
ICV
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Figure 3.1: Estimated effects of covariates selected by GLASSO penalty
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Figure 3.2: Estimated effects of covariates selected by GMCP penalty
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Figure 3.3: Estimated effects of covariates selected by GSCAD penalty

59



Chapter 4

Variable Selection for Partially
Functional Additive Cox Model
with Interval-censored Data

4.1 Introduction

In regression analysis of time-to-event data, Cox’s proportional hazards model, with the

merits of straightforward interpretation and easy implementation, has become the most

popular and widely used model that assumes covariates take a linear form (Cox, 1972).

However, the applications of the standard Cox model are sometimes too restricted in practice

owing to the assumption of linear covariate effects. It is appealing to adopt additive Cox

models that assume nonlinear covariates effects to provide flexible modeling for time-to-

event data to incorporate nonlinearity. In addition, by treating longitudinal predictors as

functional data, more information from longitudinal trajectory of multiple predictors can

be obtained, which can effectively improve estimation and variable selection performance.

Motivated by the time of AD progression along with a large number of genetic factors
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and sparsely observed longitudinal neurocognitive assessments in the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) study, we propose to perform the variable selection by using

a novel partially functional additive Cox model (PFACM) with a set of functional predictors

and a set of scalar predictors with possibly nonlinear covariate effects. In particular, the

longitudinal trajectories of neurocognitive assessments can be modeled by functional data

analysis techniques, namely, functional principal component analysis (FPCA).

The proposed partially functional additive Cox model (PFACM) is an extension of

the standard Cox model that combines a functional linear Cox regression model (Kong

et al., 2018; Gellar et al., 2015; Qu et al., 2016; Lee et al., 2015; Hao et al., 2021) and

a nonparametric additive Cox model (Huang, 1999; Du et al., 2010; Lv et al., 2018; Wu

et al., 2020). And it can capture both underlying trajectories of longitudinal covariates and

nonlinear patterns of scalar covariates. Most existing functional survival models tend to

depend on the assumption of proportional hazards structure and right-censored data. For

instance, Kong et al. (2018) proposed the functional linear Cox regression model (FLCRM)

to discover functional characteristics from surface data by applying functional principal

component analysis (FPCA). Lee et al. (2015) extended the estimation of the FLCRM to the

Bayesian framework. Gellar et al. (2015) and Qu et al. (2016) investigated penalized partial

likelihood functions. These methods with functional survival models are only designed for

right-censored failure time data. However, interval-censoring is sometimes more realistic

and appropriate and often observed in medical and health studies with regular follow-ups.

The analysis of interval-censored data intensifies considerable technical difficulty in com-

putation and implementation because there is no partial likelihood function feasible. One

needs to cope with both unknown baseline hazard functions and coefficients. For functional

regression models with interval-censored data, Ye et al. (2015) proposed a joint modeling

method based on functional data analysis for longitudinal data and interval-censored time.

Shi et al. (2022) studied a functional proportional hazard cure rate model with functional
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and scalar predictors for sparsely and irregularly sampled longitudinal data and interval-

censored failure time data. To deal with such sparsely and irregularly sampled longitudinal

data, the authors adopted the principal analysis by conditional expectation (PACE) ap-

proach proposed by Yao et al. (2005a) for functional disease trajectory feature extraction.

To our knowledge, only limited research has been focusing on variable selection for func-

tional survival models, even for right-censored data (Fang et al., 2016; Shi et al., 2021). To

fill the research gap, we propose a flexible partially functional additive Cox model (PFACM)

to distinguish critical predictors with underlying functional and nonlinear structures under

the interval-censored failure time data framework. Specifically, a unified penalized sieve

estimation approach is developed where the PACE method and Bernstein polynomials are

used for modeling the functional predictors and scalar predictors with nonlinear covariate

effects, respectively. Moreover, three group penalty functions of the group least absolute

shrinkage and selection operator (GLASSO) (Yuan and Lin, 2006), group smoothly clipped

absolute deviation (GSCAD) (Fan and Li, 2001; Huang et al., 2012), and group minimum

concave penalty (GMCP) (Zhang, 2010; Huang et al., 2012) are considered for regularization

of predictors, and a group coordinate descent algorithm is adopted for implementation.

The main contributions of the proposed method are three-fold. Firstly, our method is ca-

pable of handling the estimation of covariates with potential nonlinear effects as well as func-

tional covariates. Both of them are infinite-dimensional. Secondly, the proposed penalized

estimation method can regularize estimates of all functional covariates and scalar covariates

simultaneously while identifying significant covariates with possibly nonlinear effects and

sparsely measured longitudinal covariates under the Cox model framework. Thirdly, the

proposed method is designed for the interval-censored failure time data, which is more rea-

sonable but complicated for some real-world problems, such as the ADNI data with regular

examination times. Note that interval-censoring includes right-censoring as a particular

case.
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The remainder of this chapter is organized as follows. Section 4.2 introduces the pro-

posed partially functional additive Cox regression model and constructs the observed data

likelihood function. The Bernstein polynomials and principal analysis by conditional ex-

pectation (PACE) methods are adopted to approximate unknown baseline hazard functions

and additive components as well as functional covariates. In Section 4.3, we employ a pe-

nalized estimation procedure using the GLASSO, GMCP, and GSCAD penalty functions.

The group coordinate descent algorithm is developed for the implementation in Section 4.4.

In Section 4.5, a simulation study is performed to evaluate the empirical performance of the

variable selection method. The ADNI study described in the previous chapters is applied

to the proposed method in Section 4.6, and concluding remarks are presented in Section

4.7.

4.2 Partially Functional Additive Cox Model

Consider a failure time study that involves two sets of predictors, which are a set of P -

dimensional time-independent scalar predictors Z with potential nonlinear covariate effects

and a set of J-dimensional functional predictors X(s), s ∈ S, where S is the observation

time window of the trajectories. Suppose that the study recruits n subjects (i = 1, ..., n)

and Ti’s are the actual failure time of interest. We aim to identify a small subset of Z and

X(s) that are relevant to the failure time T .

In many real-world problems, the failure time T cannot be observed exactly and may

suffer from interval-censoring, which means that the exact failure time T is only known

within a time interval that covers T ∈ (Li, Ri]i=1,...,n. For the jth functional predictor

with ith subject at kth visit, one can only observe covariates Yij(sik) with measurement

errors instead of the true covariates Xij (sik), where Yij(sik) = Xij (sik)+ ϵijk and ϵijk’s are

independent and identically distributed random errors with mean zero and variance σ2ϵj (i =
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1, ..., n; j = 1, ...J ; k = 1, ...,Ki). To simplify the notation, we let Yijk = Yij(sik) and Yijk is

the jth longitudinal outcomes for subject i at the time sik(sik ≤ Li). Therefore, the observed

data is ({Y1jk, 1 ≤ k ≤ K1} , Z1, (L1, R1]) , . . . , ({Ynjk, 1 ≤ k ≤ Kn} , Zn, (Ln, Rn]), where

(Li, Ri] indicates the interval that brackets Ti. That is, only interval-censored data are

observed. It can be seen that Li = 0 or Ri = ∞ represents a left- or right-censored

observation on Ti, respectively.

Under the partially functional additive Cox model (PFACM), the cumulative hazard

function of the ith subject is

Hi(t) = H0(t) exp


P∑
p=1

fp(Zi) +
J∑
j=1

∫
S
Xij(s)βj(s)ds

 , (4.1)

where Zi = (Zi1, . . . , ZiP )
T, βj(·) is the jth coefficient function, and T ∈ [0, τ ] for some

finite τ > 0. The model (4.1) is determined by the unknown functions βj(·) and fp(·), and

the cumulative baseline hazard function H0(·). For the identifiability of the model above,

it will be assumed that E [fp(·)] = 0, 1 ≤ p ≤ P (Huang, 1999).

In the following, we will assume an independent or noninformative interval-censoring

mechanism (Sun, 2006). Then the observed likelihood function can be written as

L(H0, fp, βj) =

n∏
i=1

{exp [−H(Li)]− exp [−H(Ri)]}

=
n∏
i=1

{
exp

[
−H0(Li)e

∑P
p=1 fp(Zip)+

∑J
j=1

∫
S Xij(s)βj(s)ds

]
− exp

[
−H0(Ri)e

∑P
p=1 fp(Zip)+

∑J
j=1

∫
S Xij(s)βj(s)ds

]}
.

(4.2)
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4.2.1 Bernstein Polynomials Approximation

Following Zhou et al. (2017), we adopt the sieve approach with the use of the Bernstein poly-

nomials expansion to approximate H0(t) and fp(·). The Bernstein polynomials expansion

for modeling the monotone and nonnegative function H0(t) is given by

H0n(t) =

m∑
l=0

ψ∗
l B0l(t,m, c, u), 0 ≤ ψ∗

0 ≤ ψ∗
1 ≤ ... ≤ ψ∗

m ,

where B0l(t,m, c, u) is the Bernstein basis polynomials of degree m = o(nω) for some ω ∈

(0, 1) and has the form

B0l(t,m, c, u) =

(
m

l

)(
t− c

u− c

)l (
1− t− c

u− c

)m−l
, l = 0, 1, ...,m.

Note that the constraint 0 ≤ ψ∗
0 ≤ ψ∗

1 ≤ ... ≤ ψ∗
m is required to guarantee the monotonic

properties of Λ0n(t) and can be easily addressed by the re-parameterization ψ∗
0 = eψ0 , ψ∗

d =∑l
i=0 e

ψi , ∀ 1 ≤ l ≤ m (Zhou et al., 2017; Wang and Ghosh, 2012).

The Bernstein polynomials expansion for fp(·) is

fpn(Zp) =

mp∑
l=0

αplBpl(Zp,mp, cp, up), p = 1, ..., P ,

where

Bpl(Zp,mp, cp, up) =

(
mp

l

)(
Zp − cp
up − cp

)l (
1− Zp − cp

up − cp

)mp−l
, l = 0, 1, ...,mp .

Bpl(Zp,mp, cp, up) is the Bernstein basis polynomials of mp degrees. It is apparent that

there is no constraint on fp(·), and the re-parameterization is not needed. Spline and other

polynomial functions are also applicable to replace the Bernstein polynomials. Zhou et al.

(2017) mentioned that the Bernstein polynomials expansion has the optimal shape preserv-
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ing property that can naturally model H0 with the nonnegative and monotone properties,

and no specification of interior knots is required in the approximation. In the following sub-

section, we will employ the functional principal component analysis (FPCA) to characterize

the pattern of sparsely and irregularly observed trajectories of functional predictors.

4.2.2 Functional Principal Component Analysis

In the following, we propose to estimate the trajectories of covariates X(s) and the coef-

ficients functions β(·) by the functional principal component analysis (FPCA) (Yao et al.,

2005a; Shi et al., 2022; Li and Luo, 2019). To extract information from the sparsely-

measured longitudinal data, following Yao et al. (2005a), we consider the principal analysis

conditional expectation (PACE) approach, which can accommodate sparsely and irregularly

sampled longitudinal data.

For the PACE approach, let µj(s) = E(Xj(s)) be the mean function and Gj(s, s
′) =

Cov(Xj(s)− µj(s), Xj(s
′)− µj(s

′)) be the covariance function of the functional predictors

{Xj(s), s ∈ S}. It is natural to consider the Karhunen-Lovève decomposition in the FPCA

approach, and then Xij(s) can be expanded as

Xij(s) = µj(s) +
∞∑
r=1

ξijrϕjr(s),

where ϕjr(s) is the rth functional principal component (FPC) with constraint that
∫
S ϕjr(s)ϕjr′(s) =

δrr′ , and δrr′ = 1 if r = r′ and 0 otherwise. ξijr is the corresponding FPC score for the ith

subject and jth predictor.

Define the FPC score ξijr as

ξijr =

∫
S
(Xij(s)− µj(s))ϕjr(s)ds
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with E (ξijr) = 0 and Var (ξijr) = λjr, where λj1 ≥ λj2 ≥ ... ≥ 0. By Mercer’s theorem, the

covariance function Gj(s, s
′) can be written as

Gj(s, s
′) =

∞∑
r=1

λjrϕjr(s)ϕjr(s
′).

Next, we will consider estimating the FPCs and first develop smoothed estimates of the

mean and covariance functions. Let µ̂j(s) be the estimates of the mean function and denote

Ĝj(s, s
′) as the estimates of the covariance function. One can obtain the estimated mean

function and covariance function Gj(s, s
′) by local linear smoother and a two-dimensional

kernel smoother, respectively. Therefore, the estimates for ϕjr(s) and λjr can be solved via

the following eigenequation

∫
S
Ĝj(s, s

′)ϕjr(s)ds = λjrϕjr(s
′)

with the constraints ∥ϕjr∥2 = 1 and
〈
ϕjr, ϕjr′

〉
= 1 if r = r′, and 0 otherwise. By us-

ing spectral decomposition to the discretized covariance function Ĝj(s, s
′), the estimated

eigenequation ϕ̂r(s) can be solved.

Following Yao et al. (2005a), we will take advantage of the PACE method and calculate

the FPC scores of the ith subject, the jth predictors, and the rth FPC as follows.

ξ̂ijr = Ê (ξijr | Yij) = λjrϕ̂
T
ijrΣ̂

−1
Yij

(Yij − µ̂ij) ,

where Yij = (Yij1, . . . , YijKi)
T , Σ̂Yij = G̃ij + σ̂2IKi . Here, ϕ̂ijr and µ̂ij represent the vectors

of values of ϕ̂jr(s) and µ̂j(s) evaluated at time points sik. And G̃ij denotes the matrix of

values of Ĝj(s, s
′) evaluated at the two-dimensional grid consisting of sik.

67



Based on the basis of FPCs {ϕjr(s), r = 1, . . . ,∞}, βj(s) can be expanded as

βj(s) =

∞∑
r=1

βjrϕjr(s),

where βjr =
∫
S βj(s)ϕjr(s)ds are the basis coefficients. Since the number of FPCs and

FPCs scores are infinite, one can approximate Xij(s) and βj(s) by remaining the first Rn

number of FPCs and associated FPC scores in practice. Denote βj = (βj1, . . . , βjRn).

Consequently, the integral
∫
S Xij(s)βj(s)ds in (1) can be computed and the model (4.1)

can be re-expressed as

Hi(t) = H∗
0n(t) exp


P∑
p=1

fpn(Zip) +
J∑
j=1

Rn∑
r=1

ξijrβjr

 , i = 1, ..., n, (4.3)

where H∗
0n(t) = H0n(t)exp{

∑J
j=1

∫
S µj(s)βj(s)ds}. It is worth noting that the Bern-

stein polynomials expansion and the FPCA approach convert the estimation problem with

infinite-dimensional parameters to a simpler one with finite-dimensional parameters.

4.3 Penalized Estimation and Variable Selection

Procedure

In this section, we will establish penalized estimation procedure for both Z and X(·).

Let θ = (ψT ,βT ,αT )T contain all unknown parameters, where β = (β1, ...,βJ)
T =

(β11, ..., β1Rn , ..., βJ1, ..., βJRn)
T , α = (α1, ...,αP )

T = (α10, ..., α1m1 , ..., αP0, ..., αPmP
)T and

ψ = (ψ0, ..., ψm)
T . To carry out variable selection and obtain the sparse estimator of θ, we

first let η = (η1, ...,ηP+J)
T = (αT ,βT )T = (α1, ...,αP ,β1, ...,βJ)

T , it is natural to employ
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the following penalized negative log-likelihood

ℓp(θ) = ℓ(θ) +

P+J∑
d=1

Pλ(ηd) , (4.4)

where Pλ(ηd) denotes a group penalty function of ηd characterized by the tuning parameter

λ. And ℓ(θ) is the negative log-likelihood function with respect to θ derived from the

observed data likelihood function (4.2) and takes the following form

ℓ(θ) = − 1

n

n∑
i=1

log
{
exp

(
−H∗

0n(Li)e
∑P

p=1 fpn(Zip)+
∑J

j=1

∑rn
r=1 ξijrβjr

)
− exp

(
−H∗

0n(Ri)e
∑P

p=1 fpn(Zip)+
∑J

j=1

∑rn
r=1 ξijrβjr

)}
,

where H∗
0n(t) = H0n(t)exp{

∑J
j=1

∫
S µj(s)βj(s)ds}. It is easy to see that ηd = 0 suggests

that the corresponding covariate Zp or Xj has no significant effect. Then sparse estimator

for ηd can be obtained by minimizing the penalized negative log-likelihood function (4.4).

For the penalty function Pλ(ηd), we will consider the following three group penalty

functions. One is the group LASSO penalty function given by

Pλ(ηd) = λd∥ηd∥2

with λd = λ
√
md + 1 and ∥ηd∥2 =

√∑md
l=0 η

2
dl (Yuan and Lin, 2006), and the group MCP

penalty function is also considered

Pλ(ηd; γ) =


λd∥ηd∥2 −

∥ηd∥22
2γ

if ∥ηd∥2 ≤ λdγ ,

λ2dγ

2
if ∥ηd∥2 > λdγ

with λd = λ
√
md + 1 and γ > 1 (Zhang, 2010). The third one is the group SCAD penalty
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function

Pλ(ηd;κ) =



λd ∥ηd∥2 if ∥ηd∥2 ≤ λd ,

2κλd∥ηd∥2 − ∥ηd∥22 − λ2d
2(κ− 1)

if λd < ∥ηd∥2 ≤ κλd ,

(κ2 − 1)λ2d
2(κ− 1)

if ∥ηd∥2 > κλd

with λd = λ
√
md + 1 and κ > 2 (Fan and Li, 2001; Huang et al., 2012). It is possible to

investigate other group penalty functions, and one needs to develop an associated estimation

procedure for different penalty functions.

4.4 Group Coordinate Descent Algorithm

We employ the group coordinate descent algorithm for implementation. The group co-

ordinate descent algorithm is stable and efficient and can be applied for low- and high-

dimensional cases. Each unknown function is approximated by either functional principal

component analysis or Bernstein polynomials associated with a group of parameters that

can be included or excluded together in the final model by the group coordinate descent

algorithm. Let ψ̂ and η̂ be the estimators of ψ and η, where η = (αT ,βT )T can be esti-

mated by minimizing the penalized negative log-likelihood function ℓp(θ). In the following,

for the determination of ψ̂ and η̂, the group coordinate descent algorithm (Yuan and Lin,

2006; Yang and Zou, 2015; Breheny and Huang, 2015; Cao et al., 2016; Lv et al., 2018) is

used to estimate ψ and η alternately.

To determining η̂, we will update each ηd while letting all other elements of η and ψ

fixed at their current estimates. More specifically, to obtain the updated estimate η̂
(q+1)
d

at the (q + 1)th iteration, let ψ̂(q+1) be the current estimate of ψ at the (q + 1)th it-

eration and let η̂
(q+1)
d = (η̂

(q+1)
1 , ..., η̂

(q+1)
d−1 , η̂

(q)
d , ..., η̂

(q)
P+J) be the current estimate of η

for which the first (d − 1)th elements have been updated at (q + 1)th iteration, and
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define ℓ
′
d(ψ,η) = ∂ℓ(ψ,η)/∂ηd, H

(q)
d = ∂2ℓ(ψ,η)/∂η2d, both evaluated at η̂

(q+1)
d . Let

η̂
(q+1)∗
d = (η̂

(q+1)
1 , ..., η̂

(q+1)
d−1 ,ηd, η̂

(q)
d+1, ..., η̂

(q)
P+J) and h

(q)
d denote the largest eigenvalue or

diagonal element of H
(q)
d . Note that ℓ′d(ψ̂

(q+1), η̂
(q+1)
d ) depends on the current estimates

ψ̂(q+1) and η̂
(q+1)
d , and the objective function ℓp(ψ̂

(q+1), η̂
(q+1)∗
d ) can be approximated by

ℓp(ψ̂
(q+1), η̂

(q+1)∗
d ) ≈ ℓ(ψ̂(q+1), η̂

(q+1)
d ) +

[
ηd − η̂

(q)
d

]′
ℓ′d(ψ̂

(q+1), η̂
(q+1)
d )

+
1

2

[
ηd − η̂

(q)
d

]′
H

(q)
d

[
ηd − η̂

(q)
d

]
+

P+J∑
d=1

Pλ(ηd)

≈ ℓ(ψ̂(q+1), η̂
(q+1)
d ) +

[
ηd − η̂

(q)
d

]′
ℓ′d(ψ̂

(q+1), η̂
(q+1)
d )

+
h
(q)
d

2

[
ηd − η̂

(q)
d

]′ [
ηd − η̂

(q)
d

]
+
P+J∑
d=1

Pλ(ηd)

with the sub-Hessian matrix H
(q)
d being replaced by its largest eigenvalue h

(q)
d . The updated

estimate η̂
(q+1)
d of ηd can be determined by

η̂
(q+1)
d = argmin

ηj

{[
ηd − η̂

(q)
d

]′
ℓ
′
d(ψ̂

(q+1), η̂
(q+1)
d ) +

h
(q)
d

2
∥ηd − η̂

(q)
d ∥22 + Pλ(ηd)

}
.

The closed-form expressions of various penalty functions can be obtained and will be pre-

sented in the following. To simplify the notation, we let h
(q)
d = hd, then the estimate of the

parameter η gained from the group LASSO penalty function takes a form

η̂
(q+1)
d = S(cd;λd/hd) ,

where λd = λ
√
md + 1 and S(cd;λd) = (1−λ/∥cd∥)+cd with cd = η̂

(q)
d −ℓ′d(ψ̂(q+1), η̂

(q+1)
d )/hd.

With the use of the group MCP penalty function, we have

η̂
(q+1)
d =


S

(
hdcd

hd − 1/γ
;

λd
hd − 1/γ

)
if ∥cd∥2 ≤ λdγ ,

cd if ∥cd∥2 > λdγ.
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(q+1)
d =



S(cd;λd/hd) if ∥cd∥2 ≤ λd + λd/hd ,[
hd(κ− 1)− κλd

∥cd∥2

]
cd

hdκ− hd − 1
if λd + λd/hd < ∥cd∥2 ≤ κλd ,

cd if ∥cd∥2 > κλd.

It is worth pointing out that all fp(Zp)’s need to be centered on avoiding the model

identification issue. For this, define

f̂∗pn(Zp) =

mp∑
l=0

η̂∗plBpl(Zp,mp, cp, up) and f̄∗pn(Zp) =
n∑
i=1

f̂∗pn(Zip)/n .

The final estimator of fp(Zp) will be defined as

f̂pn(Zp) = f̂∗pn(Zp)− f̄∗pn(Zp) , 1 ≤ p ≤ P .

In the following, we develop a detailed estimation procedure .

Step 1: Apply the FPCA/PACE to functional covariates, then calculate estimated FPC

scores ξijr of all subjects and use ξijr as new covariates.

Step 2: Set q = 0 and choose the initial estimates ψ̂(0), η̂(0) = (α̂(0), β̂(0))T .

Step 3: At the (q+1)th iteration, calculate the estimates ψ̂(q+1) by using the Nelder-Mead

simplex algorithm.

Step 4: Calculate the η̂(q+1) by the group coordinate descent algorithm. The sparse estimate

of ηd can be obtained by minimizing the following objective function

η̂
(q+1)
d = argmin

ηd

{
l(ψ̂(q+1), η̂

(q+1)∗
d ) + Pλ(ηd)

}

for d = 1, ..., P + J . Then center f̂pn(Zp) for each p = 1, ..., P .

Step 5: Repeat steps 2 - 4 until convergence or exceed a pre-specified number of iterations.

Particularly, we conduct a grid search of λ1, λ2 with Bayesian information criterion
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(BIC) developed by Schwarz (1978) to select the optimal values of the tuning parameter

λ = (λ1, λ2). The degree of the Bernstein polynomials is set as m0 = mp = 3 suggested

by Wu et al. (2020). In the FPCA, we set the number of basis functions as 3, and the

number of FPCs and associated FPC scores Rn is chosen by the pre-determined percentage

of variance explained (PVE), such as 95% in simulation and application.

4.5 A Simulation Study

An intensive simulation study is performed to evaluate the finite-sample performance of the

proposed variable selection approach. In the simulation, the nonfunctional covariates Zn×P

were generated from the multivariate normal distribution with mean zero and the covariance

matrix ΣX with the (j, k)th element being 0.2|j−k|. We consider to generate 100 simulated

data with the sample size n = (500, 800) and the number of covariates Zp is P = (10, 50)

in each scenario. Suggested by Fan and Li (2001) and Zhang (2010), we set parameters

γ = 2.7 and κ = 3.7 in the group MCP and SCAD penalty functions, respectively. To

simplify the setting, we assume that among all Zp, the first Pimp of them are important,

with covariates having linear or nonlinear forms. We consider setting true functions of Zp

in the following three scenarios:

• Case (a) has two important Zp, and one is linear covariate effects and another one

is nonlinear covariate effects. f1(Z1) = −4Z1 + 2, f2(Z2) = 2sin(π(Z2 − 0.5)) and

fp(Zp) = 0, p = 3, ..., P.

• Case (b) has two important Zp and all of them have nonlinear covariate effects.

f1(Z1) = 4sin(π(Z1 − 0.5)), f2(Z2) = 4cos(πZ2) and fp(Zp) = 0, p = 3, ..., P.

• Case (c) has three important Zp and all of them have nonlinear covariate effects.

f1(Z1) = 4sin(π(Z1 − 0.5)), f2(Z2) = 4cos(πZ2), f3(Z3) = −4.5Z2
3 − 3Z3 + 2.7 and
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fp(Zp) = 0, p = 4, ..., P.

In other words, the first Pimp of Zp have true covariate effects that are nonzero, and the

rest of Zp are unimportant covariates with zero covariate effects.

For the generation of the longitudinal covariates and corresponding covariate effects, we

simulate the following three underlining true trajectories Xj(s), j = 1, .., 3, where

• X1(s) = cos (2π (s− a1)) + a2s, a1 ∼ N
(
−1, 23

)
, a2 ∼ N (2, 1) ,

• X2(s) = b1sin (2πs) + b2, b1 ∼ U (3, 5) , b2 ∼ N (0, 1) ,

• X3(s) = c1s
2 + c2s+ c3, c1 ∼ N

(
2, 0.52

)
, c2 ∼ N (−2, 1) , c3 ∼ N

(
2, 1.52

)
,

and error term ϵ ∼ N(0, 0.01). The true coefficient functions β(s)’s are given by β1(s) =

sin (2πs), β2(s) = sin (πs), βj(s) = 0, j = 3, ..., J , which implies that the first two coefficient

functions β1(s) and β2(s) are nonzero, and others are all equal to zero. To generate si, we

first let the observation time window si be eight equally spaced time points from 0 to 1,

and then randomly select six to eight time points for each subject i. Then the true failure

times Ti’s are generated from model (4.1) with H0(t) = νtζ .

To generate interval-censoring, we set the observation time window to be ten equally

spaced time points from (0, τ) with a fifty percent probability of observing the time point for

each subject i, where τ is the length of study. The parameters of τ , ζ, and ν are controlled

by obtaining desirable left- and right- censored rates in different cases. We set ζ = 3, ν = 0.5

and τ = 4, yielding a right-censored rate of 15%. For subject i, Li is specified as the largest

observation time point less than Ti, and Ri is specified as the smallest observation time

point greater than Ti. For all Bernstein polynomials approximations, the degree is set to be

m0 = mp = 3. In the FPCA method, the number of FPCs is determined by the proportion

of variance explained not smaller than 95%.

Owing to the primary interest being to select significant covariates with actual nonzero

covariate effects, we will calculate the following measurements and focus on the variable
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selection performance so that the proposed method can correctly select the significant

variables and exclude insignificant variables. The true positive (TPZ) and false posi-

tive (FPZ) represent the number of correctly selected important variables with actual

covariate effects being nonzero and the number of incorrectly selected unimportant vari-

ables with actual covariate effects being zero for covariates Z. Similarly, TPX and FPX

stand for the true positive and false positive for covariates X, respectively. TPZp and

TPXj are denoted as the number of times of the covariate is selected among 100 repli-

cates, for p = 1, ..., Pimp and j = 1, ..., Jimp. The average mean square error of important

scalar covariates is defined as MSEZ = 1
Pimp

∑Pimp

p=1

∫
{fp(Zp)− f̂p(Zp)}2dx for function fp,

p = 1, ..., Pimp. The average mean square error of important functional covariates is defined

as MSEβ = 1
Jimp

∑Jimp

j=1

∫
{βj(s)− β̂j(s)}2ds for coefficient functions βj(s), j = 1, ..., Jimp.

Tables 4.1 - 4.3 display the variable selection results in cases (a), (b) and (c), respectively.

One can see from the tables that the proposed variable selection approach seems to perform

reasonably well in all cases with the use of all three penalty functions. With respect to the

incorrectly selected nonzero covariate Z, it seems that FPZ increases when the number of

important covariates Z increases, which means more insignificant covariates are included

in the model. In general, the variable selection accuracy is improved when the sample

increases. Also, it is expected that the GLASSO penalty tends to remain more noise in

the model in terms of larger FPZ and FPX than other penalty functions, which was also

mentioned by Li et al. (2020). Table 4.4 shows the simulation results of case (b) when

m0 = mp = 5. It seems that Table 4.4 performs similarly to Table 4.2 with m0 = mp = 3 .

4.6 An Application

Now we apply the proposed method to the motivating example of the ADNI study, which

contains a rich set of neuropsychological measurements and genetic factors. It is apparent
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that the time to AD conversion suffers from interval-censoring because of the periodic follow-

up nature. We will consider the 407 individuals with complete information on the 327, 354

single nucleotide polymorphisms (SNPs) in the mild cognitive impairment (MCI) group.

Each SNP is continuous and has values of 0, 1, 2 corresponding to the number of Allele T.

Following others (Li and Luo, 2019), we also include five longitudinal neuropsychological

assessment factors in the MCI group. The five neuropsychological assessment factors are

participants’ Alzheimer’s Disease Assessment Scale-Cognitive 13 items (ADAS-Cog 13),

Rey Auditory Verbal Learning Test score of immediate recall (RAVLT-immediate), Rey

Auditory Verbal Learning Test score of learning (RAVLT-learning), Functional assessment

questionnaire score (FAQ) and Mini-Mental State Examination (MMSE). Since missing data

are detected in the five longitudinal neurocognitive measurements, we adopt the multiple

imputation approach developed by Honaker et al. (2011) with the available R package

Amelia to impute missing values. The right-censored rate in the study is around 45%.

Figure 4.1 displays 30 randomly selected patients from the ADNI study with longitu-

dinal trajectories of the ADAS-Cog 13 (panel A) and RAVLT-learning (panel B). Some

information can be obtained from this figure. The variables ADAS-Cog 13 and RAVLT-

learning are observed repeatedly, sparely, and irregularly with missing values. Moreover,

the longitudinal trajectories of each individual are heterogeneous. Therefore, the PACE

method for sparse longitudinal data is well suited to accommodate such data. To model

the longitudinal predictors by functional principal component analysis, we first keep the

measurements of the five factors before the left examination times Li that AD has not oc-

curred as functional data. Furthermore, to reduce the dimensionality of the SNPs, following

Wu et al. (2020), we select the top 500 SNPs correlated to time-to-AD transition by using

a sure independent screening method (Fan and Lv, 2008). Also as in the simulation, we

set m0 = mp = 3 for the Bernstein polynomial approximation and scaled all covariates

between 0 and 1. In the study, we are interested in distinguishing key risk factors that can
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significantly affect the time to AD progression from MCI, where failure time of interest is

the time from the baseline to AD conversion.

Table 4.5 and 4.6 present estimated nonzero covariate effects of neurocognitive assess-

ments and SNPs identified by the GLASSO, GMCP and GSCAD penalty functions, respec-

tively. It can be seen that among five longitudinal covariates, the ADAS-Cog 13 and FAQ

are selected by all penalty functions. Figures 4.2 - 4.4 show the estimated effects of SNPs

selected by using GLASSO, GMCP and GSCAD penalty functions. The results in these

tables and figures show that the GLASSO, GMCP, and GSCAD can identify 31, 6, and 6

SNPs, respectively. Among them, 6 SNPs are commonly selected by all three penalty func-

tions, which are rs10957236, rs11894455, rs17170619, rs1786747, rs2169089, and rs2587535.

Note that 8 SNPs identified by the method in this chapter are also selected by the method in

Chapter 2, which are rs12042017, rs12454238, rs1475950, rs170519, rs2428754, rs10879354,

rs17170619 and rs2444907. Figures 4.5 - 4.7 display the estimated effects of neuropsy-

chological assessment factors versus time in years selected by using the GLASSO, GMCP,

and GSCAD penalty functions. The figures imply that the ADAS-Cog 13 and FAQ have

significant effects on AD conversion. As discussed in Chapter 3, the similar variable se-

lection problem was considered only for twenty-four demographic and clinical factors with

the assumption of nonlinear effects, including the five neuropsychological assessment factors

described above. The method in Chapter 3 identifies the same two factors as above, plus

FAQ and RAVT-immediate, using all three penalty functions.

4.7 Discussion and Concluding Remarks

The occurrence of interval-censoring and the presence of multiple functional covariates lead

to intensive computational and theoretical challenges. Direct optimization is infeasible due

to the infinite dimensionality of parameters. In the chapter, we proposed a unified variable
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selection technique for the partly functional additive Cox regression model under interval

censorship and sparsely and irregularly sampled functional data. Specifically, we mod-

eled the multiple longitudinal predictors as functional data with the principal analysis of

conditional expectation (PACE) approach and approximated the unknown baseline hazards

function and additive components of scalar predictors by the Bernstein polynomials. There-

fore, a group penalized sieve estimation approach was proposed with the group coordinate

descent algorithm for implementation. The penalization method can simultaneously carry

out estimation and variable selection of both functional predictors and scalar predictors.

Simulation studies demonstrate selection accuracy, and results suggest that the presented

approach is flexible and robust in different scenarios. The results of the ADNI study indi-

cate that the proposed variable selection method can identify six SNPs and two longitudinal

neurocognitive assessments by all three group penalty functions.

Compared with functional linear models, we introduce an additive form of covariate

functions, improving the flexibility of the variable selection method that can account for

nonlinear covariate effects. Compared with general nonparametric additive models, the

proposed partially functional model can take advantage of longitudinal data with repeated

measurements. However, current work depends on several assumptions that can be relaxed

in the future. The first assumption is the independent or noninformative interval censoring

mechanism. It may not always be accurate and can be violated in many cases (Sun, 2006).

The second assumption is the Cox model structure, and one can investigate other survival

models, such as a class of transformation models with the Cox model as a particular case.

The third assumption is to assume a univariate time-to-event outcome in the model. It is

often to confront multivariate failure time data in practice. Among others, Sun et al. (2021)

proposed a variable selection technique for multivariate interval-censored data under a gen-

eral class of semiparametric transformation frailty models. An expectation-maximization

(EM) approach that incorporates a minimum information criterion into the optimization
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procedure was employed to produce the parameter estimator.

Establishing asymptotic properties of the variable selection method, such as the oracle

property, is one crucial direction of future research. Nevertheless, it is not trivial to derive

such theoretical property owing to the presence of interval censorship and trajectories of

various functional data. Moreover, it is straightforward to deal with densely sampled func-

tional data, such as image data, by replacing the PACE method with the standard functional

principal component analysis (FPCA). Another direction is to increase the computation effi-

ciency of the algorithm. Although the proposed method can be applied for high-dimensional

cases, it is time-consuming and computationally expensive when the number of covariates

is large. A parallel computation or more efficient algorithms are appealing to explore in the

future.
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Table 4.1: Variable selection results for case (a) and m0 = mp = 3

TPZ1
TPZ2

TPZ FPZ MSEZ(SD) TPX1
TPX2

TPX FPX MSEβ(SD)

n=500, P=10
GLASSO 100 100 2 1.03 0.957 (0.182) 100 85 1.85 0.93 7.004 (26.092)
GMCP 97 100 1.97 0.33 0.563 (0.204) 96 79 1.75 0.05 9.971 (33.435)
GSCAD 99 100 1.99 0.51 0.573 (0.163) 100 89 1.89 0.12 9.978 (34.010)

n=500, P=50
GLASSO 100 100 2 1.14 1.179 (0.234) 100 84 1.84 0.93 7.314 (14.809)
GMCP 99 100 1.99 0.12 0.613 (0.180) 100 67 1.67 0.04 9.430 (23.273)
GSCAD 99 100 1.99 0.42 0.606 (0.177) 100 79 1.79 0.13 9.768 (22.613)

n=800, P=10
GLASSO 100 100 2 0.91 0.910 (0.156) 100 93 1.93 0.93 6.359 (12.291)
GMCP 100 100 2 0.47 0.566 (0.122) 100 90 1.9 0.03 8.248 (14.937)
GSCAD 99 100 1.99 0.34 0.566 (0.132) 100 93 1.93 0.1 8.316 (17.181)

n=800, P=50
GLASSO 100 100 2 1.18 1.083 (0.159) 100 82 1.82 0.95 5.992 (6.906)
GMCP 95 100 1.95 0.08 0.613 (0.271) 97 73 1.70 0.02 7.721 (8.157)
GSCAD 99 100 1.99 1.36 0.609 (0.135) 99 81 1.8 0.07 7.821 (8.169)

Table 4.2: Variable selection results for case (b) and m0 = mp = 3

TPZ1 TPZ2 TPZ FPZ MSEZ(SD) TPX1 TPX2 TPX FPX MSEβ(SD)

n=500, P=10
GLASSO 100 100 2 0 3.179 (0.313) 100 48 1.48 0.88 4.060 (10.862)
GMCP 100 100 2 0.08 1.163 (0.238) 96 70 1.66 0.04 10.846 (24.542)
GSCAD 100 100 2 0 1.163 (0.209) 99 72 1.71 0.04 11.115 (24.800)

n=500, P=50
GLASSO 100 100 2 0.01 3.174 (0.318) 100 39 1.39 0.86 3.654 (11.633)
GMCP 100 100 2 0.2 1.200 (0.216) 96 69 1.65 0.05 9.634 (26.736)
GSCAD 100 100 2 0.04 1.188 (0.206) 98 69 1.67 0.02 9.153 (26.741)

n=800, P=10
GLASSO 100 100 2 0 3.337 (0.360) 100 36 1.36 0.92 2.795 (4.510)
GMCP 100 100 2 0.07 1.215 (0.283) 100 75 1.75 0.03 8.014 (16.027)
GSCAD 100 100 2 0 1.208 (0.188) 100 79 1.79 0.02 7.891 (16.080)

n=800, P=50
GLASSO 100 100 2 0 3.228 (0.251) 100 34 1.34 0.83 3.145 (6.361)
GMCP 100 100 2 0.07 1.223 (0.369) 99 74 1.73 0.04 8.197 (16.634)
GSCAD 100 100 2 0.01 1.216 (0.148) 100 73 1.73 0 8.182 (17.783)
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Table 4.3: Variable selection results for case (c) and m0 = mp = 3

TPZ1
TPZ2

TPZ3
TPZ FPZ MSEZ(SD) TPX1

TPX2
TPX FPX MSEβ(SD)

n=500, P=10
GLASSO 100 100 100 3 1.54 2.045 (0.333) 100 85 1.85 0.98 9.694 (18.725)
GMCP 100 100 100 3 0.25 1.294 (0.231) 100 85 1.85 0.25 14.241 (23.482)
GSCAD 100 100 100 3 0.02 1.270 (0.207) 100 84 1.84 0.29 14.299 (23.654)

n=500, P=50
GLASSO 100 100 100 3 2.71 2.670 (0.476) 100 78 1.78 0.97 6.910 (18.336)
GMCP 100 100 100 3 2.6 1.275 (0.239) 100 83 1.83 0.28 10.113 (27.724)
GSCAD 100 100 100 3 0.52 1.279 (0.223) 100 82 1.82 0.34 10.295 (27.653)

n=800, P=10
GLASSO 100 100 100 3 0.89 2.119 (0.319) 100 86 1.86 1 7.653 (18.933)
GMCP 100 100 100 3 0.07 1.362 (0.227) 100 81 1.81 0.18 11.173 (23.324)
GSCAD 100 100 100 3 0 1.350 (0.208) 100 88 1.88 0.33 10.915 (23.333)

n=800, P=50
GLASSO 100 100 100 3 4.28 2.056 (0.300) 100 87 1.87 0.98 5.554 (17.340)
GMCP 100 100 100 3 0.61 1.313 (0.174) 100 90 1.9 0.27 7.314 (25.299)
GSCAD 100 100 100 3 0 1.307 (0.151) 100 87 1.87 0.34 7.395 (25.390)

Table 4.4: Variable selection results for case (b) and m0 = mp = 5

TPZ1 TPZ2 TPZ FPZ MSEZ(SD) TPX1 TPX2 TPX FPX MSEβ(SD)

n=500, P=10
GLASSO 100 100 2 0 3.469 (0.314) 100 31 1.31 0.86 3.972 (14.352)
GMCP 100 100 2 0.43 1.355 (0.259) 97 70 1.67 0 12.861 (26.799)
GSCAD 100 100 2 0.13 1.358 (0.259) 99 75 1.74 0.03 12.714 (26.551)

n=500, P=50
GLASSO 100 100 2 0.01 3.500 (0.288) 100 27 1.27 0.82 3.857 (12.914)
GMCP 100 100 2 2.15 1.351 (0.261) 98 64 1.62 0.03 10.704 (30.047)
GSCAD 100 100 2 0.31 1.359 (0.256) 97 69 1.66 0.03 10.713 (30.117)

n=800, P=10
GLASSO 100 100 2 0 3.634 (0.274) 100 37 1.37 0.89 3.198 (6.131)
GMCP 100 100 2 0.36 1.447 (0.213) 100 73 1.73 0.01 9.334 (17.416)
GSCAD 100 100 2 0.08 1.453 (0.213) 100 81 1.81 0.03 8.745 (17.560)

n=800, P=50
GLASSO 100 100 2 0 3.582 (0.221) 100 29 1.29 0.82 3.690 (8.959)
GMCP 100 100 2 0.21 1.459 (0.188) 99 67 1.66 0 8.758 (20.105)
GSCAD 100 100 2 0.06 1.454 (0.190) 100 76 1.76 0 8.765 (20.227)
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Table 4.5: Selected covariates in ADNI data

Covariate GLASSO GMCP GSCAD

ADAS-Cog 13 + + +
RAVLT-immediate +
RAVLT-learning
MMSE
FAQ + + +
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Table 4.6: Selected SNPs in ADNI data

SNP GLASSO GMCP GSCAD

rs10491224 +
rs10506650 +
rs10517034 +
rs10850973 +
rs10879354 +
rs10957236 + + +
rs11022360 +
rs11060153 +
rs11083215 +
rs11229457 +
rs11894455 + + +
rs12042017 +
rs12454238 +
rs12595578 +
rs12607795 +
rs1475950 +
rs1540967 +
rs1572237 +
rs1584033 +
rs16315 +
rs16893622 +
rs170519 +
rs17170619 + + +
rs1786747 + + +
rs1984823 +
rs2169089 + + +
rs2191849 +
rs2428754 +
rs2444907 +
rs2580358 +
rs2587535 + + +
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Figure 4.1: Thirty randomly selected patients in the MCI group from the ADNI study.
A: Longitudinal trajectories of Alzheimer’s Disease Assessment Scale-Cognitive 13
items (ADAS-Cog 13); B, Longitudinal trajectories of Rey Auditory Verbal Learning
Test score of learning (RAVLT-learning)
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Figure 4.2: Estimated effects of the SNPs selected by GLASSO penalty
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Figure 4.3: Estimated effects of the SNPs selected by GMCP penalty
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Figure 4.4: Estimated effects of the SNPs selected by GSCAD penalty
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Figure 4.5: Estimated effects of the neurocognitive assessment factors selected by
GLASSO penalty
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Figure 4.6: Estimated effects of the neurocognitive assessment factors selected by
GMCP penalty
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Figure 4.7: Estimated effects of the neurocognitive assessment factors selected by
GSCAD penalty
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Chapter 5

Future Research

In this chapter, we will point out several potential directions for future research that are

related to the variable selection for interval-censored failure time data and functional data.

5.1 Variable Selection for Partially Functional Ad-

ditive Transformation Models with Interval-

censored Data

The current work in Chapter 4 considers the additive Cox model with functional covariates.

It will be of great interest if we extend such a problem to a flexible class of transformation

models, namely, partially functional additive transformation models. Under the partially

functional additive transformation models, the cumulative hazard function of the ith subject

is

Hi(t) = G

H0(t) exp


P∑
p=1

fp(Zi) +
J∑
j=1

∫
S
Xij(s)βj(s)ds


 , (5.1)
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where Zi = (Zi1, . . . , ZiP )
T, Xj(·) and βj(·) are the jth functional predictor and corre-

sponding coefficient function, and T ∈ [0, τ ] for some finite τ > 0. The model (5.1) is

determined by the unknown functions βj(·) and fp(·), and the cumulative baseline hazard

function H0(·). G(·) is an increasing transformation function, and H0(t) represents an un-

known non-decreasing and non-negative baseline cumulative hazard function. Note that

when G(X) = X, the above model reduces to the partially functional additive Cox model

introduced in Chapter 4.

Under the data structure of the interval-censored and sparely sampled functional data,

we will identify significant risk factors by using the partially functional additive trans-

formation models with several group regularization methods. The principal analysis by

conditional expectation (PACE) and Bernstein polynomials will be adopted to deal with

unknown functions. A penalized EM algorithm will be employed for implementation.

5.2 Variable Selection for Functional Mixture or

Nonmixture Cure Models with Interval-censored

Data

A cure subgroup is often accompanied by failure time data. Some patients could cure from

an event of interest, like heart disease. It is natural to employ cure models to accommodate

the cure subgroup, such as mixture and non-mixture cure models. In the ADNI study,

not all individuals would eventually convert to AD from MCI. Therefore, a cure rate exists

among these patients. Furthermore, the availability and existence of several trajectories of

clinical outcomes and a large number of genetic factors make the variable selection desirable

and necessary to select key risk factors that significantly affect the risk of AD conversion.

Developing a variable selection technique for functional cure models with interval-censored

and sparsely sampled longitudinal data with a cure fraction is one direction of future re-
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search.

For cure models, Sun et al. (2019) developed a variable selection method in the semi-

parametric non-mixture or promotion time cure model when interval-censored data with a

cured subgroup are present. Shi et al. (2022) proposed a functional proportional hazard

cure rate model with functional and scalar predictors for sparsely measured longitudinal

data and interval-censored failure time data. One can employ the functional principal com-

ponent analysis (FPCA) to deal with the functional predictors, then the functional principal

components (FPCs) derived from the FPCA can be viewed as new predictors. A penalized

EM algorithm can be adopted to implement the cure model.
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