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Abstract 
Automated semantic segmentation in the domain of medical imaging can 

enable a faster, more reliable, and more affordable clinical workflow. Fully 

convolutional networks (FCNs) have been heavily used in this area due to the 

level of success that they have achieved. In this work, we first leverage recent 

architectural innovations to make an initial segmentation: (i) spatial and 

channel-wise squeeze and excitation mechanism; (ii) a 3D U-Net++ network 

and deep supervision. Second, we use classical methods for refining the initial 

segmentation: (i) spatial normalization and (ii) local 3D refinement network 

applied to patches. Finally, we put our methods together in a novel 

segmentation pipeline. We train and evaluate our models and pipelines on a 

dataset of a 120 abdominal magnetic resonance – volumetric – images (MRIs). 

The goal is to segment five different organs of interest (ORI): liver, kidneys, 

stomach, duodenum, and large bowel. Our experiments show that we can 

generate full resolution segmentation of comparable quality to the state-of-the-

art methods without adding computational cost. 
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Chapter 1: Introduction 

1.1 Problem Statement 

A fully automated segmentation of organs in abdominal medical images can 

enable a fast and efficient clinical workflow from diagnostics to treatment. For 

computer-assisted diagnostics and treatment, organ segmentation is a crucial 

first step [1].  

Stereotactic MRI-guided online adaptive radiotherapy (SMART) [2, 3] is an 

effective treatment for the pancreas and other upper abdominal cancers. 

SMART allows precise delivery of escalated prescription dose to the abdominal 

tumor targets while avoiding the complications of radiation toxicity to the 

mobile gastrointestinal (GI) organs surrounding the tumor target. In the 

clinical workflow of SMART, manual segmentation of the GI orangs at risk 

(OARs) is one of the most important but also the most labor-intensive steps. 

Manual segmentation takes 10 minutes on average but ranges from 5 to 22 

minutes [4]. The slow and costly manual segmentation step directly decreases 

the accessibility and affordability of online SMART and indirectly reduces the 

effectiveness of SMART due to intra-fractional body and organ movement of 

the patients. 

Deep learning has given the rise to computer vision fields such as semantic 

segmentation using Convolutional Neural Networks (CNNs). These CNN-

based segmentation methods have mainly focused on stable organs such as the 

brain and liver [5, 6, 7, 8]. Some digestive organs (stomach, bowel, and 

duodenum) present more of a challenge [9] due to their day-to-day instability 

(depending on different food consumed as well as the digestion process).  

Advancements made in convolutional neural networks for semantic 

segmentations present an opportunity to readdress this challenge.  
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1.2 Contribution of the Thesis 

In this study we explore a deep learning pipeline for semantic segmentation of 

3D MRI images of the abdominal area. To sum up the main contributions of 

this work:   

1. We leverage state-of-the-art CNN techniques to improve on fully 

convolutional networks and their segmentation quality. 

2. We exploit voxel properties beyond the intensity value for a superior 

local segmentation quality. 

3. We explore different pipelines that use the developed networks 

alongside data normalization and up-scaling techniques to achieve a 

high-resolution segmentation.   
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Chapter 2: Related Work 

2.1 Medical Image Segmentation 

Due to the essential role of medical image segmentation in computer-aided 

diagnosis system, it has pushed forward the research and development of new 

computer vision and image processing techniques [10].  

Advancements in medical imaging such as microscopy, dermoscopy, X-ray, 

ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET) inspires researchers to employ an 

image segmentation pipeline to automatically extract regions of interest (ROI). 

Based on the application, ROI extraction can be organ/tissue segmentation, 

tumor/mass segmentation (within organs). 

Both classical methods of medical image segmentation [11] as well as deep-

learning-driven methods [12] are deployed in today’s segmentation pipeline. 

However, it is inevitable that convolutional neural networks (CNNs) are what 

is driving the progress in the field.  

2.2 Convolutional Neural Networks for Semantic 

Segmentation 

Semantic segmentation in image processing is the task of assigning each pixel 

of an image (or each voxel in a volumetric image) a class. Most CNNs used in 

the field are based on the two main deep learning architectures for medical 

image segmentation: fully convolutional networks (FCN) [13] and U-Net [14].  
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Figure 2.1 Fully convolutional network (FCN) architecture for semantic segmentation 

FCN proposed single-step up-sampling (transpose-convolving) the output of 

multiple stacked convolutional layers. U-Net, on the other hand, proposed an 

encoder-decoder architecture that enabled multi-step up-sampling. Both of 

these methods included skip connections within the intermediate feature maps 

in order to improve prediction. 

 

Figure 2.2: A simplified illustration of U-Net architecture with skip connections. 

These two main methods have seen many iterations and revision in order to 

solve semantic segmentation problems in a variety of application. An extension 

of U-Net, for instance, is U-Net++ [15] where they introduced a core complex 

architecture that enables deep supervision (as can be seen in Figure 2.3).  
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Figure 2.3 A simplified illustration of U-Net++ 

The re-designed architecture aims at reducing the semantic gap between the 

feature maps of the encoder and decoder sub-networks. 

2.3 CNN-based Correction Network 

For the dataset that is used in this work, the state-of-the-art work by Fu, Y. et. 

Al. [9] uses a “CNN-based correction network”; also referred to as 

“CNN+Correction Network” later in this thesis. Their proposed DL model 

contains a voxel-wise label prediction CNN and a correction network which 

consists of two sub-networks. The prediction CNN and sub-networks in the 

correction network each have a similar architecture, although their 

parameters are independent. The sub networks include a single deep “dense 

block” that consists of twelve densely connected convolutional layers  

The correction network was designed to improve the voxel-wise labeling 

accuracy of a CNN by learning and enforcing implicit anatomical constraints 

in the segmentation process. Figure 2.1 Shows the general architecture and 

flow of data for CNN+Correction Network. 

 

Figure 2.4 CNN+Correction Network architecture. 
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Figure 2.5 shows the architecture of the “dense block” used in this work. 

 

Figure 2.5 An example of a dense block of 4 layers. 

Its sub-networks learn to fix the erroneous classification of its previous 

network by taking as input both the original images and the Softmax 

probability maps generated from its previous sub-network.  

2.4 Attention and Gating Mechanisms 

Attention idea in deep learning has been one of the most influential ideas in 

the past years. The concept was originally developed for neural machine 

translation applications [16], but it then spread to image processing 

applications such as image analysis, natural language processing (NLP) for 

image captioning [17], classification [18, 19], and semantic segmentation [20].  

The integration of attention mechanisms in deep neural networks improved 

the quality of semantic segmentation by enhancing the networks’ 

representational capabilities. Many advancements have been made for medical 

images [20], as well as natural images [21]. 

2.5 Squeeze-and-Excitation Networks 

As a way to enhance the quality of special encoding through the CNN feature 

hierarchy, “Squeeze-and-Excitation” (SE) blocks [22] were first introduced in 
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the literature in 2017. The channel-wise SE block introduced can be seen in 

Figure 2.6. 

 

Figure 2.6 Squeeze and Excite Block 

The goal is to explicitly model interdependencies between channels, with the 

aim to recalibrate channel-wise features in the feature maps. In a normal 

convolutional layer scenario, each of the learned kernels operates with a local 

receptive field, and therefore each pixel/voxel in the output feature map 

represents only the contextual information inside the local region defined by 

the kernel size. This issue is tackled by concurrently squeezing global special 

information into a channel descriptor using average pooling. After which, a 

gating mechanism with sigmoid activation is applied to the channel descriptor, 

and finally, multiplied by the convolution output to rescale it (channel-wise). 

SE has demonstrated its utility across multiple image processing tasks like 

classification, object detection and scene classification. 

Concurrent Spatial and Channel Squeeze-and-Excitation [23] introduced other 

variants of SE to tackle the task of semantic segmentation in fully 

convolutional neural networks. As an extension to channel-wise SE (cSE), 

space-wise SE (sSE) was suggested along with concurrent spatial and channel 

squeeze-and-excitation (scSE) as can be seen in Figure 2.7. This work drew 

inspiration from previously mentioned SE to use the same concepts in spatial, 

×
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as well as spatial + channel wise squeezing. This work was evaluated on brain 

segmentation on MRI brain scans and organ segmentation on whole body CT 

scans. This novel method showed a consistent improvement over the classic 

architectures like DenseNet [24] and U-Net.  

 

Figure 2.7 Concurrent Spatial and Channel Squeeze-and-Excite [23] 

 

 

 

 

 

  



 9 

Chapter 3: Methods 
This chapter first describes the dataset [9] used to train and evaluate our 

models. The deep learning models implemented and tested on this dataset are 

then discussed in detail. 

3.1 Dataset 

3.1.1 Dataset description 

Dataset used for this project is composed of 120 volumetric MRI images [9]. 

The in-plane resolution of the images was 1.5 × 1.5 mm2 and a slice thickness 

of 3 mm. The organs were manually annotated by drawing an outline 

(contouring) the liver, kidneys, stomach, duodenum, and bowel for a total of 

five organs. The contours went through a thorough quality assurance by 

multiple trained professionals in order to ensure a high quality. The contouring 

process was highly time consuming but essential to achieve an accurate 

segmentation, and eventually, to train a high-quality network. 

The final volumetric images after preprocessing are 256 × 256 × 64 voxels. The 

preprocessing essentially consisted of cropping to only keep the relevant region 

containing the organs of interest. 

 

Figure 3.1: Orthogonal views of a volumetric MRI image. A slice view along the z, y, 

and x dimension is shown in (a), (b), and (c) respectively. The different organs/classes 

are highlighted in different colors superposed on the greyscale MRI image. 
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3.1.2 Training, validation, and testing 

The dataset is split into subsets of 100, 10, and 10 images that were used for 

training, validation, and testing respectively. The results on the testing data 

is reported. 

3.1.3 Dataset distribution 

Given the different anatomical structures of the different abdominal organs 

(size, shape, complexity…etc.), the final volumetric images contain an 

unbalanced representation of the different classes as can be observed in Figure 

3.2. 

 
(a) 
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(b) 

Figure 3.2: Class (organ) representation in the dataset (measured by the number of 

voxels belonging to which class). (a) Taking into consideration the background voxels. 

(b) Disregarding the background class for a better comparison between organ sizes. 

3.2 Spatial Normalization  

The advantage there is to the used MRI dataset is the uniformity that it 

provides; the relative positions and the general shape of the organs of interest 

are always going to be similar for different data samples. This helps the 

training process as the network can remember the general landmarks in the 

abdominal MRI image. However, as can be seen in Figure 3.3, the acquired 

dataset may have a slight shift in position or scale across samples. 

 

(a) 

 

(b) 

 

(c) 

Figure 3.3 illustrates how to manually and roughly estimate the distance (shown in 

blue dotted lines) from the axial plane of the origin (the middle point between two 

kidneys) to the top slice of the liver.  The top of the liver is not visible in (a), the distance 

is therefore roughly estimated. The bottom of the right kidney (at the left side) is not 

visible in (c), therefore the origin point is estimated. 
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In order to further exploit this property of the data, a spatial normalization 

[25] procedure has been used. This process involves building a coordinate 

system that ensures uniformity across data samples.  

Spatial normalization across data samples involves: 

1. Identifying the origin 𝑜𝑝, a reference point in each image volume that 

are stable and can be easily identified for any patient 𝑝. 

o We use the middle point of the two kidneys as the cross-patient 

reference point. 

𝑜𝑝⃗⃗⃗⃗ (

𝑜𝑥
𝑖

𝑜𝑦
𝑖

𝑜𝑧
𝑖

) =
𝑐1

𝑖⃗⃗  ⃗ + 𝑐2
𝑖⃗⃗  ⃗

2
 

where: 𝑐1
𝑖⃗⃗  ⃗, and 𝑐2

𝑖⃗⃗  ⃗ are the centroids of the first  

and second kidneys. This is visually described in Figure 3.4. 

o If the kidneys are defined, the origin coordinates can be 

automatically calculated. However, for data samples with a single 

kidney, the x component of the origin 𝑜𝑥
𝑖  is moved to the mean x 

component of all healthy data samples (with both kidneys) 

𝑜𝑥
𝑖 = mean

𝑗
(𝑜𝑥

𝑗
) 

Where 𝑗 belongs to the list of indices indicating healthy data 

samples.  

2. Defining the patient body cavity size on the axial slice at the origin. 

3. Defining the patient vertical size, from the patient origin to the top slice 

of the liver. 
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(a) 

 

 

(b) 

Figure 3.4 An illustration of the constructed coordinate system in a axial views of a 

sample image. (a) highlight the x-y component of the coordinate system (kidneys are 

highlighted for reference); whereas (b) highlights the x-z component (liver is 

highlighted for reference) 

Finally, for each image voxel (with intensity 𝑣𝑖,𝑗,𝑘), we compute the 𝑥𝑖,𝑗,𝑘, 𝑦𝑖,𝑗,𝑘 

and 𝑧𝑖,𝑗,𝑘 coordinates, with 0 value at the origin, and values normalized to the 

use height and body cavity size. 

If we assume the slicing of a volume image 𝑋 = [𝑣1,1,1, 𝑣1,1,2, … , 𝑣𝑖,𝑗,𝑘 , … , 𝑣𝑊,𝐻,𝐷], a 

normalized image 𝑍 ∈ ℝ𝑊×𝐻×𝐷×4 is an augmented version of 𝑋 where each 

component is concatenated with the voxel’s position in the new coordinate 

system: 

𝑍 = [[

𝑣1,1,1

𝑥1,1,1

𝑦1,1,1

𝑧1,1,1

] , [

𝑣1,1,2

𝑥1,1,2

𝑦1,1,2

𝑧1,1,2

] , …    , [

𝑣𝑊,𝐻,𝐷

𝑥𝑊,𝐻,𝐷

𝑦𝑊,𝐻,𝐷

𝑧𝑊,𝐻,𝐷

]] 

3.3 U-Net 

As a backbone architecture, we have used a U-Net architecture [14] that 

consists of an encoder-decoder with skip connections as described in Figure 3.5. 

In this research, exploring U-Net was favored over fully convolutional network 
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architectures (FCNs) as it provides more spatial resolutions, thus, suggesting 

a better multi-scale feature extraction. 

The architecture provides five (5) spatial resolutions. The encoder part of the 

network follows a traditional CNN; it is composed of five convolutional (dense) 

blocks in five different resolutions. Each convolutional block consisting of two 

densely connected convolutional layers as shown in Figure 3.6. After each 

convolutional block of the encoder, the resolution of feature map is reduced by 

factor of 2 in all dimensions (width, height and depth) using max-pooling {1, 

1/2, 1/4, 1/8, 1/16}; whereas the feature channels count is doubled {16, 32, 64, 

128, 256}.  

 

Figure 3.5 U-Net Architecture for volumetric images. Boxes indicated with dotted lines 

represent “convolutional blocks”. The output of each spatial level in the encoder is 

concatenated to the input of the corresponding spatial scale in the decoder part. 

In the decoder part of the network, the blocks are similar to the encoder part. 

The difference being in doubling resolution after each block using a transpose 

convolution of size 2 × 2 × 2. Additionally, as previously mentioned, the output 
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of the encoder of the same spatial resolution is concatenated to the input of the 

decoder convolutional block. 

The transpose convolution used for up-sampling in the network is sometimes 

replaced by simple up-sampling in other parts of this research in order to: 

1. Decrease the number of learned parameters, and 

2. Avoid the checkerboarding effect [26] at the output map that is usually 

caused by the transpose convolution operations. 

The output of the final convolutional block in this network is then fed into a 

final convolution operation with a Softmax activation function to produce the 

final segmentation output 𝑌. The final output of this network is a single 

volumetric image of 6 channels, each channel representing an organ of interest: 

{Background, Liver, Kidneys, Stomach, Duodenum, Large bowel}. 

3.4 Dense Blocks 

Let’s consider an input feature map of channel size C, or 𝑋 ∈ ℝ𝑊×𝐻×𝐷×𝐶. This 

input is passed through a convolutional layer ℎ1 to produce the feature map 

𝐻1 = ℎ1(𝑋) where 𝐻1 ∈ ℝ𝑊×𝐻×𝐷×2𝐶 . 𝐻1 is concatenated to the input again and 

then passed through a second convolutional layer ℎ2 to produce a feature map 

𝐻2 = ℎ2([𝑋, 𝐻1]). The final convolution takes the concatenation of 𝑋,𝐻1, and 𝐻2 

as an input as pass it through a third convolutional layer ℎ3. The final output 

is then: 

 𝑋̂ = ℎ3([𝑋, 𝐻1, 𝐻2]) = ℎ3([𝑋, ℎ1(𝑋), ℎ2([𝑋, ℎ1(𝑋)])]) (1) 
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Figure 3.6 Dense Convolutional Block: The input as well as the outputs of each 
convolution operation is a tensor of rank 4 (𝑊 × 𝐻 × 𝐷 × 𝐶). For the sake of simplicity, 

it is divided into C 3D tensors (cubes), distributed in a grid fashion and color coded for 

clarity. The number of channels is displayed on top of each tensor. The name of each 

tensor is annotated at the bottom. 

Each convolution operation in the block is a 3D convolution 𝑊𝑖 of size 

𝐶 × 3 × 3 × 3 × 2𝐶 and padding of 1 × 1 × 1 to match the input feature map size; 

followed by a rectify linear unit (ReLU) [27] referred to mathematically as the 

function 𝛿. 

 ℎ𝑖(𝑋) = 𝛿(𝑊𝑖 ∗ 𝑋) (2) 

The output of the dense block 𝑋̂ is feature map of double the input channel 

count. 𝑋̂ ∈ ℝ𝑊×𝐻 ×𝐷×2𝐶. A visual representation of the dense block is shown in 

Figure 3.6. 

3.5 Squeeze and Excitation 

3.5.1 Spatial Squeeze and Channel Excitation Block (cSE) 

If we assume the slicing of the feature map 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝐶] where 𝑋𝑖 ∈

ℝ𝑊×𝐻×𝐷 is the volumetric map associated to the  𝑖𝑡ℎ channel. Spatial squeeze is 

essentially performing a global average on each volumetric image 𝑋𝑖 for 𝑖 ∈

W
×

H
×

D
C 2C

3C 5C

H
1

h
1

h
2

h
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{1, 2,… , 𝐶}. The output of this operation is a vector z = [𝑧1, 𝑧2, … , 𝑧𝐶] with each 

component 𝑧𝑖 ∈ ℝ is calculated using the following formula: 

 𝑧𝑖 =
1

𝑊 × 𝐻 × 𝐷
× ∑∑∑𝑋𝑖(𝑖, 𝑗, 𝑘)

𝐷

𝑘

𝐻

𝑗

𝑊

𝑖

 (3) 

The vector z is then fed through a two-layer multiplayer perceptron (MLP) [28] 

with sigmoid activation function 𝜎 applied after each layer. The output of the 

MLP is calculated as follows: 

  ẑ = 𝜎(𝑊2 • 𝛿(𝑊1 • z)) (4) 

Where 𝑊1 ∈ ℝ𝐶×
𝐶

2 and 𝑊2 ∈ ℝ
𝐶

2
×𝐶

 are the weights associated with the MLP. The 

vector ẑ ∈ ℝ encodes the channel-wise dependencies. Since the final activation 

of the MLP is a sigmoid function, we ensure that the values 𝑧̂𝑖 are between 0 

and 1. The encoded vector ẑ is then used to weigh the feature map 𝑋. The output 

of the cSE block is calculated as follows: 

 𝑋̂𝑐𝑆𝐸 = 𝑓𝑐𝑆𝐸(𝑋) = [𝑧̂1𝑋1, 𝑧̂2𝑋2, … , 𝑧̂𝐶𝑋𝐶] (5) 

An illustration of the cSE block architecture is shown in detail in Figure 3.7. 

 

Figure 3.7 Spatial squeeze and channel excitation block (cSE) 

The network learns the activations ẑ adaptively to in order to give weights to 

each channel of the feature map with respect to the channel’s importance.  
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3.5.2 Channel Squeeze and Spatial Excitation (sSE) 

The channel squeeze and spatial excitation channel (sSE) block squeezes the 

feature map channel-wise, then excites spatially. If we consider again the same 

slicing of the feature map 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝐶] where 𝑋𝑖 ∈ ℝ𝑊×𝐻×𝐷. The squeeze 

operation produces a single channel feature map q through a convolutional 

layer with sigmoid activation ℎ𝑠𝑞. 

  q = ℎ𝑠𝑞 = 𝜎(𝑊𝑠𝑞 ∗ 𝑋) (6) 

Where 𝑊𝑠𝑞 ∈ ℝ𝐶×3×3×3×1 is the learned convolution kernel. For the excitation 

part of this operation, the feature map q is element-wise multiplied with each 

channel of the input feature map 𝑋 as follows: 

 𝑋̂𝑠𝑆𝐸 = 𝑓𝑠𝑆𝐸(𝑋) = [q ∘ 𝑋1, q ∘ 𝑋2, … ,q ∘ 𝑋𝐶] (7) 

Channel squeeze and spatial excitation block (sSE) will learn during the 

training to highlight the most relevant spatial locations in a feature map. An 

illustration of the sSE block is shown in Figure 3.8. 

 

Figure 3.8 Channel squeeze and spatial excitation block (sSE) 

3.5.3 Spatial and Channel Squeeze and Excitation (scSE) 

Finally, the full spatial and channel squeeze and excitation module is 

illustrated in Figure 3.9. This block uses a combination of sSE and cSE block 

by adding the output feature maps of both operations: 
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 𝑋̂𝑠𝑐𝑆𝐸 = 𝑋̂𝑐𝑆𝐸 + 𝑋̂𝑠𝑆𝐸 (8) 

 

 

Figure 3.9 Spatial and Channel Squeeze and Excitation (scSE) 

A the activation of voxel in location (𝑖, 𝑗, 𝑘, 𝑐) of the input feature map 𝑋 is 

higher when it gets high importance from both squeeze and excitation blocks. 

This recalibration encourages the network to learn more meaningful feature 

maps, that are relevant both spatially and channel-wise. 

3.6 U-Net++ and Deep Supervision 

Similar to U-Net, U-Net++ is an encoder-decoder style architecture. However, 

it is augmented with multiple nested convolutional blocks that are connected 

as seen in Figure 3.10. The main encoder-decoder is referred to as the 

“backbone”; instead of concatenating the output of each encoder to the input of 

its equivalent decoder convolutional block, a number of intermediate 

convolutional blocks are introduced.  
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Figure 3.10 An overview of the used U-Net++ architecture. Each convolutional block is 

represented by a circle. The input image X is fed to the first convolutional block 𝑋0,0;  

𝑌̂𝑖 for 𝑖 ∈ {1, 2, 3, 4} are the outputs of this architecture. 

The intermediate blocks take as input the output of encoder block of the same 

spatial resolution, concatenated with the output of the previous intermediate 

block, and the output of the next smaller spatial resolution (scaled-up). This 

can be seen in Figure 3.11. 
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Figure 3.11 Intermediate convolutional block in U-Net++ 

The total loss for this network is calculated through adding the losses 

associated with each output. The total loss equation then becomes: 

 ℒ = ∑ℒ𝑓(𝑌, 𝑌̂𝑖)

m

𝑖

 (9) 

Where: 

• ℒ𝑓: The loss function. 

• 𝑌̂𝑖: The 𝑖𝑡ℎ output segmentation of the network. 

• 𝑌: The ground truth segmentation. 

3.7 GlobalSegNet: Dense U-Net++ with Squeeze and 

Excitation 

As a way to improve the accuracy of the high performing U-Net++, a Spatial 

and Channel Squeeze and Excitation (scSE) module was added as an extra 

layer to each convolutional block (except for the bottleneck) as can be seen in 

Figure 3.12. 
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Figure 3.12 Dense U-Net++ with Squeeze and Excitation (U-Net++ w/ scSE) 

The conducted experiments – as well as other work on squeeze and excitation 

mechanisms in the literature – pointed that a better training performance is 

achieved by leaving the bottleneck without a scSE block. As previously 

mentioned in U-Net++, this model is trained by minimizing the loss function 

described in Equation (9). 

3.8 Models’ Computational Complexity 

3.8.1 Conv Block complexity 

If we consider the convolutional block (shown in Figure 3.6). The number of 

parameters for such block is calculated as follows: 
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#P𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = (𝐶 + 1) × 3 × 3 × 3 × 2𝐶 + (3𝐶 + 1) × 3 × 3 × 3 × 2𝐶

+ (5𝐶 + 1) × 3 × 3 × 3 × 2𝐶 
(10) 

In the case of a decoder block, since the output of the corresponding encoder 

block is also used as in input, the equation becomes: 

 

#P𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = (𝟐𝑪 + 1) × 3 × 3 × 3 × 2𝐶 + (3𝐶 + 1) × 3 × 3 × 3 × 2𝐶

+ (5𝐶 + 1) × 3 × 3 × 3 × 2𝐶 
(11) 

3.8.2 scSE Block complexity 

Let us consider the spatial squeeze and channel-wise excitation first (cSE). The 

spatial squeeze is an average pooling process; therefore, no learned parameters 

are associated with this operation. The equation for the number of parameters 

of two-layer MLP in terms of the number of channels 𝐶 is given as follows: 

 #P𝑐𝑆𝐸 = (𝐶 + 1) ×
𝐶

2
+ (

𝐶

2
+ 1) × 𝐶 (12) 

Next, let us consider the channel-wise squeeze and spatial excitation (sSE). 

The channel-wise squeeze is a (1 × 1 × 1) convolution operation with an output 

channel size of 1. The kernel of this convolution operation is the only learnable 

parameter of sSE block; therefore, the number of parameters association with 

sSE block is given by the equation below: 

 #P𝑠𝑆𝐸 = 𝐶 + 1 (13) 

3.8.3 Architecture summaries of the used models 

A comparison of the models used in this research in terms of the number of 

parameters as well as the number of operations is described in Table 3.1. 

 Model Model + scSE Blocks 

#P FLOPs #P FLOPs 

U-Net 8.82 × 106 234.13  × 109 8.93 × 106 234.22  × 109 

U-Net++ 10.85 × 106 750.04 × 109 10,97 × 106 750.17 × 109 

Table 3.1 A complexity comparison of the two main networks (U-Net and U-Net++)  

with and without added scSE blocks. The table highlights the number of free 

parameters (denoted #P) as well as the number of multiply-adds (FLOPS [29])  
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It is apparent that adding scSE component to convolutional blocks does not 

add a significant complexity to the neural network. However, while the 

difference between U-Net and U-Net++ is relatively small in terms of the 

number of parameters, the number of multiply-adds (FLOPS) is significantly 

higher (more than thrice as many operations). Therefore, adding squeeze and 

excitation components does not significantly add to the complexity of the 

network as much as changing the architecture would. 

3D convolution is often much more computationally expensive than 2D 

convolution, however, it is undoubtedly better at capturing 3D context [30]. 

Given the architecture of U-Net++, the data needs to downscale by half in the 

𝑥 and 𝑦-axis in order to preserve memory.  

3.9 Local Refinement Network RefNet 

The refinement network (RefNet) is a U-Net architecture that is designed 

improve local segmentation accuracy. The inputs to this network is a 3D patch 

𝑃 ∈ ℝ64×64×16×10 of the normalized image 𝑍 and the segmented organ 

probability map 𝑌̂ from the initial segmentation network in the current patch. 

The output is a locally refined organ segmentation 𝑌̂𝑃 contained in this 3D 

patch.  

The training data will be the pairs of 3D patches (64 × 64 × 16) randomly 

sampled around the neighborhoods of the segmented organ contours by 

GlobalSegNet. 4000/400/400 of the training data patches, produced from the 

cohort of 100 training samples will be used for training/validation/testing.  

To apply the RefNet (after GlobalSegNet) on a new image, patches will be 

selected in the same way but will be uniformly sampled with half overlapping 

in order to ensure smooth transition between adjacent patches. The final 

segmentation 𝑌̃ is formed by reconstructing the patches. For a voxel with 

multiple overlapping patches, we take the mean value for that voxel across 

patches. The refinement process is visually displayed in Figure 3.13. 
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Figure 3.13 RefNet: 

Comparing with the global auto-segmentation network GlobalSegNet, RefNet 

1) focuses on a much smaller 3D region and 2) uses a voxel size = 1.5 mm3, 

halving the voxel size (≈ 3.5×3.5×3 mm3) in GlobalSegNet. Thus, we expect 

RefNet to improve the local segmentation accuracy.  

3.10 Segmentation Pipelines 

In this section we discuss a number of different pipelines for segmentation and 

how they compare to each other as well as to simply using end-to-end 

convolutional neural network architecture (U-Net and U-Net++). 

Figure 3.14 shows the different pipelines implemented in this research; their 

performance is then compared in Experimental Results chapter. 

RefNet (U-Net)
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Y
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P Y
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Y
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Figure 3.14 Different pipelines used for segmentation. Pipelines (a) and (b) produce a 

half resolution segmentation, whereas (c), (d), (e) produce full resolution output. 

Pipelines (a) and (b) are applied to the half-resolution dataset in order to 

compare with the original work [9] on this dataset. In (a) we simply use the 
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GlobalSegNet model to make a half resolution segmentation. In pipeline (b), 

we attempt to refine the segmentation using RefNet, and produce a 

segmentation of the same size. For (c) and (d), we simply augment (a) and (b) 

by adding an up-sampling step on the output probability maps. The final 

pipeline (e) uses GlobalSegNet to make an initial segmentation on half 

resolution, which is then upscaled and concatenated with the full resolution 

spatially normalized data 𝑍. The 10-channel tensor is then processed with 

RefNet to produce a final segmentation.  

3.11 Implementation Configuration and Hardware 

The networks discussed in this thesis are implemented using TensorFlow and 

Keras [31] in Python. The networks were trained by minimizing the loss 

function using Adam optimizer [32] with learning rate 𝛼 = 1 × 10−4. The 

trained parameters of the networks were initialized randomly using Xavier 

[33] uniform initializer. The training ran for a maximum of 1000 epochs, with 

an early stopping condition in the case where loss does not improve for 50 

epochs. 

The training took advantage of GPU acceleration. An NVIDIA TITAN X with 

11 Gb of RAM and  
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Chapter 4: Experimental Results 

and Discussion 
In order to evaluate the quality of the models and pipelines used for this 

segmentation task, we use the previously discussed Methods on the testing set 

composed of 10 volume images. 

The empirical performance of the different methods is the DICE coefficient [34] 

as computed in the following equation: 

 DICE(𝑌𝑖 , 𝑌𝑖̂) = 2 ×
|𝑌𝑖⋂𝑌̂𝑖|

|𝑌𝑖| + |𝑌̂𝑖|
 (14) 

With 𝑌𝑖 being the ground truth 3D binary mask of organ 𝑖 and 𝑌̂𝑖 is the 

segmentation output mask of the same organ. 

The mean DICE coefficient is then calculated as the unweighted average of 

DICE coefficient associated to each organ: 

 DICE𝑚𝑒𝑎𝑛 = mean
𝑖∈{𝑜𝑟𝑔𝑎𝑛𝑠}

(DICE(𝑌𝑖 , 𝑌𝑖̂)) (15) 

Both the DICE score of the individual organs, and the average DICE score of 

all organs are summarized in Figure 4.1, Figure 4.4, and Figure 4.6. 

In order to compare with the original work on this dataset [9], the evaluation 

was performed on the half-resolution dataset (of 128×128×64 voxels). 

Additionally, some methods took advantage of the full resolution dataset (of 

256×256×64 voxels) produced a full resolution segmentation. Due to hardware 

limitation, we were not able to use the full resolution data to train U-Net++. 

4.1 CNN Architectures 

We first evaluate the individual models directly on the dataset (original full 

resolution as well as downsized half resolution) 
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4.1.1 On half-resolution 

In this part, we discuss the performance of the U-Net family of architectures 

as well as the U-Net++ family on the down-sampled dataset (𝑋𝑆 ∈ ℝ128×128×64).  

 

Figure 4.1 DICE Scores of different used CNN Architectures on half resolution data. 

For the sake of comparison, a 2D variation of each network has been 

implemented. The 2D networks use 3 × 3 × 1 kernels for all convolution 

operations. This kind of convolution cuts on the computational cost of the 

model; however, it comes with a slight sacrifice on the quality of segmentation 

as it does not take advantage of the depth context. This can be directly seen in 
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Figure 4.1. Another thing to note is that U-Net++ outperforms simple U-Net 

in general.  

 

Ground 

Truth U-Net 

U-Net 

(2D) 

U-Net 

w/ scSE U-Net++ 

U-Net++ 

(2D) 

U-Net++  

w/ scSE 

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 4.2 shows that the global quality of the segmentation is improved from 

U-Net to U-Net++; additionally, scSE blocks seem to improve the segmentation 

quality in a local level for U-Net++. 

 

Ground 

Truth U-Net 

U-Net 

(2D) 

U-Net 

w/ scSE U-Net++ 

U-Net++ 

(2D) 

U-Net++  

w/ scSE 

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 4.2 Top axial view of a sample output volume image from the testing set. 

Rows represent the slice used in the z-axis whereas the columns represent the 

different architectures attempted. 
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Some artifacts can be observed for the segmentations produced by U-Net 

architecture (both with and without the squeeze and excitation blocks). These 

artifacts represented in columns (b) and (d) in   

 

Ground 

Truth U-Net 

U-Net 

(2D) 

U-Net 

w/ scSE U-Net++ 

U-Net++ 

(2D) 

U-Net++  

w/ scSE 

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 4.2 where it shows empty areas misclassified as Liver (red). 

Artifacts appear on a smaller scale for other U-Net / U-Net++ architectures. 

This is one of the reasons why we introduced RefNet and the different pipelines 

(which are discussed in “Pipelines”). The aim is to capture those artifacts and 

eliminate them to finally produce a cleaner segmentation. 

In order to visualize the 3D structure of the output segmentations. We have 

implemented a Vis3D, a tool built with the python library Mayavi [35].  

  
(a) (b) 
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(c) (d) 

Figure 4.3 3D view of the segmentation output of GlobalSegNet (using the developed 

tool Vol3D). 

 

4.1.2 On full resolution 

In this part, we discuss the performance of the U-Net architectures on the full 

resolution dataset (𝑋 ∈ ℝ256×256×64).  

Similarly to applying these networks on the down-sampled images, we can see 

from Figure 4.5.d that the U-Net architecture augmented with squeeze and 

excitation blocks (scSE) introduces artifacts to the segmentation. However, the 

quality of segmentation appears to be superior than U-Net and U-Net 2D. This 

time, the empty area on the bottom of the axial view is misclassified as “large 

bowel” this time. 

 

Figure 4.4 DICE Scores of different used CNN Architectures on full resolution data. 
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Even though the segmentation produced by U-Net w/ scSE appears the closest 

to the ground truth (according to Figure 4.5), the network’s overall dice score 

is the lowest of the U-Net family when trained on full resolution. This is due 

to the previously mentioned artifacts. Artifacts appear on  

Ground Truth U-Net 2D U-Net U-Net w/ scSE 

 

(a) (b) (c) (d) 

Figure 4.5 Top axial view of a sample output volume image from the testing set.  

4.2 Pipelines 

To evaluate the performance of the different used pipelines, we first evaluate 

the dice score of the produced segmentations from each pipeline. DICE scores 

are summarized in Figure 4.6. (a), and (b) are pipelines that produce half 

resolution segmentation; whereas (d), (e), and (f) produce full resolution 

segmentation. 

In general, it is easier to achieve a better average DICE score in low resolution. 

This is true for end-to-end networks, but also for the pipelines used.  
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 (a) (b)  

 
 

(c) (d) (f) 

 
Figure 4.6 DICE Scores of different used pipelines 

Figure 4.6 shows that up-scaling the low-resolution output to produce a full 

resolution segmentation leads to a lower DICE score. This is due to the fact 

that up-scaling causes a blocky low-detail segmentation (as shown in Figure 

4.8.  

Additionally, it is noted that applying refinement network before up-scaling 

reduces the DICE score; however, it generates a more robust segmentation. 

This can be explained by (c) and (d) in Figure 4.6; up-scaling the output of 
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GlobalSegNet leads to a lower DICE score than up-scaling 

GlobalSegNet+RefNet output. 

 
 Ground Truth GlobalSegNet GlobalSegNet + RefNet 

 

 (a) (b) (c) 
Figure 4.7 A qualitative comparison of the different pipelines with a half resolution 

output. 
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 Ground Truth 

GlobalSegNet output 

upscaled 

GlobalSegNet + 

RefNet output 

upscaled 

Upscaled 

GlobalSegNet Scaled 

+ RefNet 

 

Figure 4.8 A comparison of the different pipelines with a full resolution output. (a), (b) 

and (c) shows a zoomed-in patch for clarity on the difference in detail.  

From Figure 4.8, it is noticed that the segmentation made by the final pipeline 

provides the highest resolution; wheras up-scaling a low resolution output 

causes a blocky and low-detailed segmentation. 
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(a) (b) 

  
(c) (d) 

Figure 4.9 3D view of the segmentation of the final pipeline. (a) shows a 3D view, (b) 

shows a front view, (c) shows a side view, and (d) shows a top view. 

4.3 Results Summary 

To summarize our experimental results, we report the accuracy of each method 

as well as its execution time as our computational complexity efficiency 

measure. In order to compare our results with the state-of-the-art methods, we 

compare our work to CNN+Correction Network explained in Related Work. 

In order to evaluate CNN+Correction Network, the model has been retrained 

and tested without any added post-processing steps in order to compare the 

deep learning networks. The results reported in the original work are 

summarized in 

Organ Liver Kidneys Stomach Duodenum Bowel Mean 

DICE Score 95.3 93.1 85.0 86.6 65.5 85.1 
Table 4.1 DICE score table for CNN+Correction Network as reported in the original 

paper [9]. 
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4.3.1 Accuracy 

The three first rows of Table 3.1 show the mean DICE scores associated with 

the output of the testing data. We report the DICE scores for individual organs 

as well as a mean score across organs. 

 DICE Scores 

 Liver Kidneys Stomach Duodenum Bowel Mean 

CNN+Correction 

Network 
93.9 79.1 82.4 52.8 75.5 76.74 

GlobalSegNet 93.74 82.28 83.14 53.30 75.63 77.63 

GlobalSegNet + 

RefNet 93.87 79.54 83.29 51.83 75.27 76.76 

       

GlobalSegNet + 

Upscale 
92.02 77.04 80.42 51.48 69.64 74.12 

GlobalSegNet + 

RefNet + Upscale 
92.02 80.11 81.34 52.53 70.02 75.20 

GlobalSegNet + 

Upscale + RefNet 
93.14 81.14 82.25 51.47 74.36 76.47 

Table 4.2 Summary table of the accuracy of the different used methods 

4.3.2 Computational Complexity 

In order to evaluate our methods from a computational complexity perspective, 

we measure the inference time of each method. The inference time is computed 

through sequentially inputting 100 images and measuring the mean inference 

time. Similar to the accuracy table, the first three rows of Table 4.3 show the 

inference time on half resolution; whereas the last four rows on full resolution. 

Network 
Inference 

time (seconds) 

Table 4.3 Summary 

table of the inference 

time of the different used 

methods 

The most efficient 

methods for half 

resolution output (top 

three rows) as well as 

full resolution output 

(bottom four rows) are 

highlighted in bold. 

CNN+Correction Network 6.333 

GlobalSegNet 0.466 

GlobalSegNet + RefNet 1.888 

CNN+Correction Network + Up-scale 6.545 

GlobalSegNet + Up-scale 0.517 

GlobalSegNet + RefNet + Up-scale 2.077 

GlobalSegNet + Upscale + RefNet 9.118 
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Conclusion 
In this work, we explored different segmentation deep learning networks and 

methods to segment liver, kidneys, stomach, bowel and duodenum on MRI 

volumes. We have leveraged recent deep learning methods like deep 

supervision and squeeze and excitation mechanisms into the fully 

convolutional network; GlobalSegNet. Deep-learning-based segmentation 

pipelines have also been implemented through introducing up-scaling, spatial 

normalization components, as well as patch-based local refinement step 

(RefNet). We have evaluated our methods and pipelines against the state-of-

the-art work on the MRI dataset. We have achieved comparable results to the 

original work while significantly improving the inference time and work 

around GPU memory limitation in order to create full resolution 

segmentations. 

Future Work 
While it is challenging to improve segmentation quality on this dataset, there 

is always room for improvement in terms of performance.  

“2.5D” Convolution to improve computational cost: Due to current 

hardware limitations, 3D convolution is significantly more expensive than 2D 

convolution. However, using 2D convolution for a 3D dataset makes the 

network ignore important depth information. A workaround worth exploring 

is to use 2.5D convolution [36], in order to take full advantage of 3D geometry 

relations whilst still keeping computational cost low. 

Semi-automated workflows: Including deep-learning-powered semi-

automatic procedures that use user interactive contour correction will improve 

the accuracy of segmentation while adding an insignificant amount of work to 

physicians.  
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