

Volumetric Medical
Image Segmentation with
Deep Learning Pipelines

A THESIS PRESENTED TO THE FACULTY OF

GRADUATE SCHOOL – UNIVERSITY OF

MISSOURI-COLUMBIA

In partial fulfillment of

the requirements for the Degree

Master of Science

By:

IMAD EDDINE TOUBAL

Supervisor: Ye Duan

May, 2020

 i

The undersigned, appointed by the dean of the Graduate School, have

examined the thesis entitled:

VOLUMETRIC MEDICAL IMAGE SEGMENTATION WITH DEEP LEARNING

PIPELINES

presented by: Imad Eddine Toubal,

a candidate for the degree of Master of Science,

and hereby verify that, in their opinion, it is worthy of acceptance.

Dr. Ye Duan, Associate Professor

Dr. Kannappan Palaniappan, Professor

Dr. Filiz Bunyak Ersoy, Assistant Research Professor

 ii

Acknowledgements
This thesis is dedicated to my mother, Ourdia Berouaken. Without her

endless support and encouragement, I would have never been able to complete

my graduate studies. I will forever be grateful for the sacrifices you have made

to nurture my academic success.

This thesis is also dedicated to Dr. Duan whose assistance and guidance

made this work possible.

Finally, I would like to thank my lab mate, Yuyan Li for sharing her

expertise and being there for me as a friend. And with that, all the friends and

connections I have made during my time at the University of Missouri.

 iii

Table of contents

Acknowledgements .. ii

List of Figures ...v

List of Tables ... viii

Abstract .. ix

Chapter 1: Introduction .. 1

1.1 Problem Statement ... 1

1.2 Contribution of the Thesis .. 2

Chapter 2: Related Work .. 3

2.1 Medical Image Segmentation ... 3

2.2 Convolutional Neural Networks for Semantic Segmentation 3

2.3 CNN-based Correction Network .. 5

2.4 Attention and Gating Mechanisms.. 6

2.5 Squeeze-and-Excitation Networks .. 6

Chapter 3: Methods .. 9

3.1 Dataset ... 9

3.1.1 Dataset description .. 9

3.1.2 Training, validation, and testing.. 10

3.1.3 Dataset distribution .. 10

3.2 Spatial Normalization... 11

3.3 U-Net .. 13

3.4 Dense Blocks .. 15

3.5 Squeeze and Excitation .. 16

 iv

3.5.1 Spatial Squeeze and Channel Excitation Block (cSE)................ 16

3.5.2 Channel Squeeze and Spatial Excitation (sSE) 18

3.5.3 Spatial and Channel Squeeze and Excitation (scSE) 18

3.6 U-Net++ and Deep Supervision ... 19

3.7 GlobalSegNet: Dense U-Net++ with Squeeze and Excitation 21

3.8 Models’ Computational Complexity .. 22

3.8.1 Conv Block complexity .. 22

3.8.2 scSE Block complexity ... 23

3.8.3 Architecture summaries of the used models 23

3.9 Local Refinement Network RefNet .. 24

3.10 Segmentation Pipelines .. 25

3.11 Implementation Configuration and Hardware 27

Chapter 4: Experimental Results and Discussion ... 28

4.1 CNN Architectures .. 28

4.1.1 On half-resolution .. 29

4.1.2 On full resolution ... 32

4.2 Pipelines ... 33

4.3 Results Summary .. 37

4.3.1 Accuracy .. 38

4.3.2 Computational Complexity ... 38

Conclusion... 39

Future Work ... 39

References ... 40

 v

List of Figures
Figure 2.1 Fully convolutional network (FCN) architecture for semantic

segmentation .. 4

Figure 2.2: A simplified illustration of U-Net architecture with skip

connections. .. 4

Figure 2.3 A simplified illustration of U-Net++ .. 5

Figure 2.4 CNN+Correction Network architecture. ... 5

Figure 2.5 An example of a dense block of 4 layers. ... 6

Figure 2.6 Squeeze and Excite Block ... 7

Figure 2.7 Concurrent Spatial and Channel Squeeze-and-Excite [23] 8

Figure 3.1: Orthogonal views of a volumetric MRI image. A slice view along the

z, y, and x dimension is shown in (a), (b), and (c) respectively. The different

organs/classes are highlighted in different colors superposed on the greyscale

MRI image. ... 9

Figure 3.2: Class (organ) representation in the dataset (measured by the

number of voxels belonging to which class). (a) Taking into consideration the

background voxels. (b) Disregarding the background class for a better

comparison between organ sizes... 11

Figure 3.3 illustrates how to manually and roughly estimate the distance

(shown in blue dotted lines) from the axial plane of the origin (the middle point

between two kidneys) to the top slice of the liver. The top of the liver is not

visible in (a), the distance is therefore roughly estimated. The bottom of the

right kidney (at the left side) is not visible in (c), therefore the origin point is

estimated. ... 11

Figure 3.4 An illustration of the constructed coordinate system in a axial views

of a sample image. (a) highlight the x-y component of the coordinate system

(kidneys are highlighted for reference); whereas (b) highlights the x-z

component (liver is highlighted for reference) .. 13

 vi

Figure 3.5 U-Net Architecture for volumetric images. Boxes indicated with

dotted lines represent “convolutional blocks”. The output of each spatial level

in the encoder is concatenated to the input of the corresponding spatial scale

in the decoder part. .. 14

Figure 3.6 Dense Convolutional Block: The input as well as the outputs of each

convolution operation is a tensor of rank 4 (𝑊 × 𝐻 × 𝐷 × 𝐶). For the sake of

simplicity, it is divided into C 3D tensors (cubes), distributed in a grid fashion

and color coded for clarity. The number of channels is displayed on top of each

tensor. The name of each tensor is annotated at the bottom........................... 16

Figure 3.7 Spatial squeeze and channel excitation block (cSE) 17

Figure 3.8 Channel squeeze and spatial excitation block (sSE) 18

Figure 3.9 Spatial and Channel Squeeze and Excitation (scSE)..................... 19

Figure 3.10 An overview of the used U-Net++ architecture. Each convolutional

block is represented by a circle. The input image X is fed to the first

convolutional block 𝑋0,0; 𝑌𝑖 for 𝑖 ∈ {1, 2, 3, 4} are the outputs of this

architecture. ... 20

Figure 3.11 Intermediate convolutional block in U-Net++ 21

Figure 3.12 Dense U-Net++ with Squeeze and Excitation (U-Net++ w/ scSE)

 ... 22

Figure 3.13 RefNet: .. 25

Figure 3.14 Different pipelines used for segmentation. Pipelines (a) and (b)

produce a half resolution segmentation, whereas (c), (d), (e) produce full

resolution output. ... 26

Figure 4.1 DICE Scores of different used CNN Architectures on half resolution

data. ... 29

Figure 4.2 Top axial view of a sample output volume image from the testing

set. ... 30

Figure 4.3 3D view of the segmentation output of GlobalSegNet (using the

developed tool Vol3D). ... 32

 vii

Figure 4.4 DICE Scores of different used CNN Architectures on full resolution

data. ... 32

Figure 4.5 Top axial view of a sample output volume image from the testing

set. ... 33

Figure 4.6 DICE Scores of different used pipelines .. 34

Figure 4.7 A qualitative comparison of the different pipelines with a half

resolution output. ... 35

Figure 4.8 A comparison of the different pipelines with a full resolution output.

(a), (b) and (c) shows a zoomed-in patch for clarity on the difference in detail.

 ... 36

Figure 4.9 3D view of the segmentation of the final pipeline. (a) shows a 3D

view, (b) shows a front view, (c) shows a side view, and (d) shows a top view.

 ... 37

 viii

List of Tables
Table 3.1 A complexity comparison of the two main networks (U-Net and U-

Net++) with and without added scSE blocks. The table highlights the number

of free parameters (denoted #P) as well as the number of multiply-adds

(FLOPS [29]) ... 23

Table 4.1 DICE score table for CNN+Correction Networkas reported in the

original paper [9]. 37

Table 4.2 Summary table of the accuracy of the different used methods....... 38

Table 4.3 Summary table of the inference time of the different used methods

 ... 38

 ix

Abstract
Automated semantic segmentation in the domain of medical imaging can

enable a faster, more reliable, and more affordable clinical workflow. Fully

convolutional networks (FCNs) have been heavily used in this area due to the

level of success that they have achieved. In this work, we first leverage recent

architectural innovations to make an initial segmentation: (i) spatial and

channel-wise squeeze and excitation mechanism; (ii) a 3D U-Net++ network

and deep supervision. Second, we use classical methods for refining the initial

segmentation: (i) spatial normalization and (ii) local 3D refinement network

applied to patches. Finally, we put our methods together in a novel

segmentation pipeline. We train and evaluate our models and pipelines on a

dataset of a 120 abdominal magnetic resonance – volumetric – images (MRIs).

The goal is to segment five different organs of interest (ORI): liver, kidneys,

stomach, duodenum, and large bowel. Our experiments show that we can

generate full resolution segmentation of comparable quality to the state-of-the-

art methods without adding computational cost.

 1

Chapter 1: Introduction

1.1 Problem Statement

A fully automated segmentation of organs in abdominal medical images can

enable a fast and efficient clinical workflow from diagnostics to treatment. For

computer-assisted diagnostics and treatment, organ segmentation is a crucial

first step [1].

Stereotactic MRI-guided online adaptive radiotherapy (SMART) [2, 3] is an

effective treatment for the pancreas and other upper abdominal cancers.

SMART allows precise delivery of escalated prescription dose to the abdominal

tumor targets while avoiding the complications of radiation toxicity to the

mobile gastrointestinal (GI) organs surrounding the tumor target. In the

clinical workflow of SMART, manual segmentation of the GI orangs at risk

(OARs) is one of the most important but also the most labor-intensive steps.

Manual segmentation takes 10 minutes on average but ranges from 5 to 22

minutes [4]. The slow and costly manual segmentation step directly decreases

the accessibility and affordability of online SMART and indirectly reduces the

effectiveness of SMART due to intra-fractional body and organ movement of

the patients.

Deep learning has given the rise to computer vision fields such as semantic

segmentation using Convolutional Neural Networks (CNNs). These CNN-

based segmentation methods have mainly focused on stable organs such as the

brain and liver [5, 6, 7, 8]. Some digestive organs (stomach, bowel, and

duodenum) present more of a challenge [9] due to their day-to-day instability

(depending on different food consumed as well as the digestion process).

Advancements made in convolutional neural networks for semantic

segmentations present an opportunity to readdress this challenge.

 2

1.2 Contribution of the Thesis

In this study we explore a deep learning pipeline for semantic segmentation of

3D MRI images of the abdominal area. To sum up the main contributions of

this work:

1. We leverage state-of-the-art CNN techniques to improve on fully

convolutional networks and their segmentation quality.

2. We exploit voxel properties beyond the intensity value for a superior

local segmentation quality.

3. We explore different pipelines that use the developed networks

alongside data normalization and up-scaling techniques to achieve a

high-resolution segmentation.

 3

Chapter 2: Related Work

2.1 Medical Image Segmentation

Due to the essential role of medical image segmentation in computer-aided

diagnosis system, it has pushed forward the research and development of new

computer vision and image processing techniques [10].

Advancements in medical imaging such as microscopy, dermoscopy, X-ray,

ultrasound, computed tomography (CT), magnetic resonance imaging (MRI),

and positron emission tomography (PET) inspires researchers to employ an

image segmentation pipeline to automatically extract regions of interest (ROI).

Based on the application, ROI extraction can be organ/tissue segmentation,

tumor/mass segmentation (within organs).

Both classical methods of medical image segmentation [11] as well as deep-

learning-driven methods [12] are deployed in today’s segmentation pipeline.

However, it is inevitable that convolutional neural networks (CNNs) are what

is driving the progress in the field.

2.2 Convolutional Neural Networks for Semantic

Segmentation

Semantic segmentation in image processing is the task of assigning each pixel

of an image (or each voxel in a volumetric image) a class. Most CNNs used in

the field are based on the two main deep learning architectures for medical

image segmentation: fully convolutional networks (FCN) [13] and U-Net [14].

 4

Figure 2.1 Fully convolutional network (FCN) architecture for semantic segmentation

FCN proposed single-step up-sampling (transpose-convolving) the output of

multiple stacked convolutional layers. U-Net, on the other hand, proposed an

encoder-decoder architecture that enabled multi-step up-sampling. Both of

these methods included skip connections within the intermediate feature maps

in order to improve prediction.

Figure 2.2: A simplified illustration of U-Net architecture with skip connections.

These two main methods have seen many iterations and revision in order to

solve semantic segmentation problems in a variety of application. An extension

of U-Net, for instance, is U-Net++ [15] where they introduced a core complex

architecture that enables deep supervision (as can be seen in Figure 2.3).

 5

Figure 2.3 A simplified illustration of U-Net++

The re-designed architecture aims at reducing the semantic gap between the

feature maps of the encoder and decoder sub-networks.

2.3 CNN-based Correction Network

For the dataset that is used in this work, the state-of-the-art work by Fu, Y. et.

Al. [9] uses a “CNN-based correction network”; also referred to as

“CNN+Correction Network” later in this thesis. Their proposed DL model

contains a voxel-wise label prediction CNN and a correction network which

consists of two sub-networks. The prediction CNN and sub-networks in the

correction network each have a similar architecture, although their

parameters are independent. The sub networks include a single deep “dense

block” that consists of twelve densely connected convolutional layers

The correction network was designed to improve the voxel-wise labeling

accuracy of a CNN by learning and enforcing implicit anatomical constraints

in the segmentation process. Figure 2.1 Shows the general architecture and

flow of data for CNN+Correction Network.

Figure 2.4 CNN+Correction Network architecture.

 6

Figure 2.5 shows the architecture of the “dense block” used in this work.

Figure 2.5 An example of a dense block of 4 layers.

Its sub-networks learn to fix the erroneous classification of its previous

network by taking as input both the original images and the Softmax

probability maps generated from its previous sub-network.

2.4 Attention and Gating Mechanisms

Attention idea in deep learning has been one of the most influential ideas in

the past years. The concept was originally developed for neural machine

translation applications [16], but it then spread to image processing

applications such as image analysis, natural language processing (NLP) for

image captioning [17], classification [18, 19], and semantic segmentation [20].

The integration of attention mechanisms in deep neural networks improved

the quality of semantic segmentation by enhancing the networks’

representational capabilities. Many advancements have been made for medical

images [20], as well as natural images [21].

2.5 Squeeze-and-Excitation Networks

As a way to enhance the quality of special encoding through the CNN feature

hierarchy, “Squeeze-and-Excitation” (SE) blocks [22] were first introduced in

 7

the literature in 2017. The channel-wise SE block introduced can be seen in

Figure 2.6.

Figure 2.6 Squeeze and Excite Block

The goal is to explicitly model interdependencies between channels, with the

aim to recalibrate channel-wise features in the feature maps. In a normal

convolutional layer scenario, each of the learned kernels operates with a local

receptive field, and therefore each pixel/voxel in the output feature map

represents only the contextual information inside the local region defined by

the kernel size. This issue is tackled by concurrently squeezing global special

information into a channel descriptor using average pooling. After which, a

gating mechanism with sigmoid activation is applied to the channel descriptor,

and finally, multiplied by the convolution output to rescale it (channel-wise).

SE has demonstrated its utility across multiple image processing tasks like

classification, object detection and scene classification.

Concurrent Spatial and Channel Squeeze-and-Excitation [23] introduced other

variants of SE to tackle the task of semantic segmentation in fully

convolutional neural networks. As an extension to channel-wise SE (cSE),

space-wise SE (sSE) was suggested along with concurrent spatial and channel

squeeze-and-excitation (scSE) as can be seen in Figure 2.7. This work drew

inspiration from previously mentioned SE to use the same concepts in spatial,

×

 8

as well as spatial + channel wise squeezing. This work was evaluated on brain

segmentation on MRI brain scans and organ segmentation on whole body CT

scans. This novel method showed a consistent improvement over the classic

architectures like DenseNet [24] and U-Net.

Figure 2.7 Concurrent Spatial and Channel Squeeze-and-Excite [23]

 9

Chapter 3: Methods
This chapter first describes the dataset [9] used to train and evaluate our

models. The deep learning models implemented and tested on this dataset are

then discussed in detail.

3.1 Dataset

3.1.1 Dataset description

Dataset used for this project is composed of 120 volumetric MRI images [9].

The in-plane resolution of the images was 1.5 × 1.5 mm2 and a slice thickness

of 3 mm. The organs were manually annotated by drawing an outline

(contouring) the liver, kidneys, stomach, duodenum, and bowel for a total of

five organs. The contours went through a thorough quality assurance by

multiple trained professionals in order to ensure a high quality. The contouring

process was highly time consuming but essential to achieve an accurate

segmentation, and eventually, to train a high-quality network.

The final volumetric images after preprocessing are 256 × 256 × 64 voxels. The

preprocessing essentially consisted of cropping to only keep the relevant region

containing the organs of interest.

Figure 3.1: Orthogonal views of a volumetric MRI image. A slice view along the z, y,

and x dimension is shown in (a), (b), and (c) respectively. The different organs/classes

are highlighted in different colors superposed on the greyscale MRI image.

 10

3.1.2 Training, validation, and testing

The dataset is split into subsets of 100, 10, and 10 images that were used for

training, validation, and testing respectively. The results on the testing data

is reported.

3.1.3 Dataset distribution

Given the different anatomical structures of the different abdominal organs

(size, shape, complexity…etc.), the final volumetric images contain an

unbalanced representation of the different classes as can be observed in Figure

3.2.

(a)

 11

(b)

Figure 3.2: Class (organ) representation in the dataset (measured by the number of

voxels belonging to which class). (a) Taking into consideration the background voxels.

(b) Disregarding the background class for a better comparison between organ sizes.

3.2 Spatial Normalization

The advantage there is to the used MRI dataset is the uniformity that it

provides; the relative positions and the general shape of the organs of interest

are always going to be similar for different data samples. This helps the

training process as the network can remember the general landmarks in the

abdominal MRI image. However, as can be seen in Figure 3.3, the acquired

dataset may have a slight shift in position or scale across samples.

(a)

(b)

(c)

Figure 3.3 illustrates how to manually and roughly estimate the distance (shown in

blue dotted lines) from the axial plane of the origin (the middle point between two

kidneys) to the top slice of the liver. The top of the liver is not visible in (a), the distance

is therefore roughly estimated. The bottom of the right kidney (at the left side) is not

visible in (c), therefore the origin point is estimated.

 12

In order to further exploit this property of the data, a spatial normalization

[25] procedure has been used. This process involves building a coordinate

system that ensures uniformity across data samples.

Spatial normalization across data samples involves:

1. Identifying the origin 𝑜𝑝, a reference point in each image volume that

are stable and can be easily identified for any patient 𝑝.

o We use the middle point of the two kidneys as the cross-patient

reference point.

𝑜𝑝⃗⃗⃗⃗ (

𝑜𝑥
𝑖

𝑜𝑦
𝑖

𝑜𝑧
𝑖

) =
𝑐1

𝑖⃗⃗ ⃗ + 𝑐2
𝑖⃗⃗ ⃗

2

where: 𝑐1
𝑖⃗⃗ ⃗, and 𝑐2

𝑖⃗⃗ ⃗ are the centroids of the first

and second kidneys. This is visually described in Figure 3.4.

o If the kidneys are defined, the origin coordinates can be

automatically calculated. However, for data samples with a single

kidney, the x component of the origin 𝑜𝑥
𝑖 is moved to the mean x

component of all healthy data samples (with both kidneys)

𝑜𝑥
𝑖 = mean

𝑗
(𝑜𝑥

𝑗
)

Where 𝑗 belongs to the list of indices indicating healthy data

samples.

2. Defining the patient body cavity size on the axial slice at the origin.

3. Defining the patient vertical size, from the patient origin to the top slice

of the liver.

 13

(a)

(b)

Figure 3.4 An illustration of the constructed coordinate system in a axial views of a

sample image. (a) highlight the x-y component of the coordinate system (kidneys are

highlighted for reference); whereas (b) highlights the x-z component (liver is

highlighted for reference)

Finally, for each image voxel (with intensity 𝑣𝑖,𝑗,𝑘), we compute the 𝑥𝑖,𝑗,𝑘, 𝑦𝑖,𝑗,𝑘

and 𝑧𝑖,𝑗,𝑘 coordinates, with 0 value at the origin, and values normalized to the

use height and body cavity size.

If we assume the slicing of a volume image 𝑋 = [𝑣1,1,1, 𝑣1,1,2, … , 𝑣𝑖,𝑗,𝑘 , … , 𝑣𝑊,𝐻,𝐷], a

normalized image 𝑍 ∈ ℝ𝑊×𝐻×𝐷×4 is an augmented version of 𝑋 where each

component is concatenated with the voxel’s position in the new coordinate

system:

𝑍 = [[

𝑣1,1,1

𝑥1,1,1

𝑦1,1,1

𝑧1,1,1

] , [

𝑣1,1,2

𝑥1,1,2

𝑦1,1,2

𝑧1,1,2

] , … , [

𝑣𝑊,𝐻,𝐷

𝑥𝑊,𝐻,𝐷

𝑦𝑊,𝐻,𝐷

𝑧𝑊,𝐻,𝐷

]]

3.3 U-Net

As a backbone architecture, we have used a U-Net architecture [14] that

consists of an encoder-decoder with skip connections as described in Figure 3.5.

In this research, exploring U-Net was favored over fully convolutional network

 14

architectures (FCNs) as it provides more spatial resolutions, thus, suggesting

a better multi-scale feature extraction.

The architecture provides five (5) spatial resolutions. The encoder part of the

network follows a traditional CNN; it is composed of five convolutional (dense)

blocks in five different resolutions. Each convolutional block consisting of two

densely connected convolutional layers as shown in Figure 3.6. After each

convolutional block of the encoder, the resolution of feature map is reduced by

factor of 2 in all dimensions (width, height and depth) using max-pooling {1,

1/2, 1/4, 1/8, 1/16}; whereas the feature channels count is doubled {16, 32, 64,

128, 256}.

Figure 3.5 U-Net Architecture for volumetric images. Boxes indicated with dotted lines

represent “convolutional blocks”. The output of each spatial level in the encoder is

concatenated to the input of the corresponding spatial scale in the decoder part.

In the decoder part of the network, the blocks are similar to the encoder part.

The difference being in doubling resolution after each block using a transpose

convolution of size 2 × 2 × 2. Additionally, as previously mentioned, the output

 15

of the encoder of the same spatial resolution is concatenated to the input of the

decoder convolutional block.

The transpose convolution used for up-sampling in the network is sometimes

replaced by simple up-sampling in other parts of this research in order to:

1. Decrease the number of learned parameters, and

2. Avoid the checkerboarding effect [26] at the output map that is usually

caused by the transpose convolution operations.

The output of the final convolutional block in this network is then fed into a

final convolution operation with a Softmax activation function to produce the

final segmentation output 𝑌. The final output of this network is a single

volumetric image of 6 channels, each channel representing an organ of interest:

{Background, Liver, Kidneys, Stomach, Duodenum, Large bowel}.

3.4 Dense Blocks

Let’s consider an input feature map of channel size C, or 𝑋 ∈ ℝ𝑊×𝐻×𝐷×𝐶. This

input is passed through a convolutional layer ℎ1 to produce the feature map

𝐻1 = ℎ1(𝑋) where 𝐻1 ∈ ℝ𝑊×𝐻×𝐷×2𝐶 . 𝐻1 is concatenated to the input again and

then passed through a second convolutional layer ℎ2 to produce a feature map

𝐻2 = ℎ2([𝑋, 𝐻1]). The final convolution takes the concatenation of 𝑋,𝐻1, and 𝐻2

as an input as pass it through a third convolutional layer ℎ3. The final output

is then:

 𝑋̂ = ℎ3([𝑋, 𝐻1, 𝐻2]) = ℎ3([𝑋, ℎ1(𝑋), ℎ2([𝑋, ℎ1(𝑋)])]) (1)

 16

Figure 3.6 Dense Convolutional Block: The input as well as the outputs of each
convolution operation is a tensor of rank 4 (𝑊 × 𝐻 × 𝐷 × 𝐶). For the sake of simplicity,

it is divided into C 3D tensors (cubes), distributed in a grid fashion and color coded for

clarity. The number of channels is displayed on top of each tensor. The name of each

tensor is annotated at the bottom.

Each convolution operation in the block is a 3D convolution 𝑊𝑖 of size

𝐶 × 3 × 3 × 3 × 2𝐶 and padding of 1 × 1 × 1 to match the input feature map size;

followed by a rectify linear unit (ReLU) [27] referred to mathematically as the

function 𝛿.

 ℎ𝑖(𝑋) = 𝛿(𝑊𝑖 ∗ 𝑋) (2)

The output of the dense block 𝑋̂ is feature map of double the input channel

count. 𝑋̂ ∈ ℝ𝑊×𝐻 ×𝐷×2𝐶. A visual representation of the dense block is shown in

Figure 3.6.

3.5 Squeeze and Excitation

3.5.1 Spatial Squeeze and Channel Excitation Block (cSE)

If we assume the slicing of the feature map 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝐶] where 𝑋𝑖 ∈

ℝ𝑊×𝐻×𝐷 is the volumetric map associated to the 𝑖𝑡ℎ channel. Spatial squeeze is

essentially performing a global average on each volumetric image 𝑋𝑖 for 𝑖 ∈

W
×

H
×

D
C 2C

3C 5C

H
1

h
1

h
2

h
3

H
2 X

X

2C 2C2CC C

Convolution layer

 17

{1, 2,… , 𝐶}. The output of this operation is a vector z = [𝑧1, 𝑧2, … , 𝑧𝐶] with each

component 𝑧𝑖 ∈ ℝ is calculated using the following formula:

 𝑧𝑖 =
1

𝑊 × 𝐻 × 𝐷
× ∑∑∑𝑋𝑖(𝑖, 𝑗, 𝑘)

𝐷

𝑘

𝐻

𝑗

𝑊

𝑖

 (3)

The vector z is then fed through a two-layer multiplayer perceptron (MLP) [28]

with sigmoid activation function 𝜎 applied after each layer. The output of the

MLP is calculated as follows:

 ẑ = 𝜎(𝑊2 • 𝛿(𝑊1 • z)) (4)

Where 𝑊1 ∈ ℝ𝐶×
𝐶

2 and 𝑊2 ∈ ℝ
𝐶

2
×𝐶

 are the weights associated with the MLP. The

vector ẑ ∈ ℝ encodes the channel-wise dependencies. Since the final activation

of the MLP is a sigmoid function, we ensure that the values 𝑧̂𝑖 are between 0

and 1. The encoded vector ẑ is then used to weigh the feature map 𝑋. The output

of the cSE block is calculated as follows:

 𝑋̂𝑐𝑆𝐸 = 𝑓𝑐𝑆𝐸(𝑋) = [𝑧̂1𝑋1, 𝑧̂2𝑋2, … , 𝑧̂𝐶𝑋𝐶] (5)

An illustration of the cSE block architecture is shown in detail in Figure 3.7.

Figure 3.7 Spatial squeeze and channel excitation block (cSE)

The network learns the activations ẑ adaptively to in order to give weights to

each channel of the feature map with respect to the channel’s importance.

 18

3.5.2 Channel Squeeze and Spatial Excitation (sSE)

The channel squeeze and spatial excitation channel (sSE) block squeezes the

feature map channel-wise, then excites spatially. If we consider again the same

slicing of the feature map 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝐶] where 𝑋𝑖 ∈ ℝ𝑊×𝐻×𝐷. The squeeze

operation produces a single channel feature map q through a convolutional

layer with sigmoid activation ℎ𝑠𝑞.

 q = ℎ𝑠𝑞 = 𝜎(𝑊𝑠𝑞 ∗ 𝑋) (6)

Where 𝑊𝑠𝑞 ∈ ℝ𝐶×3×3×3×1 is the learned convolution kernel. For the excitation

part of this operation, the feature map q is element-wise multiplied with each

channel of the input feature map 𝑋 as follows:

 𝑋̂𝑠𝑆𝐸 = 𝑓𝑠𝑆𝐸(𝑋) = [q ∘ 𝑋1, q ∘ 𝑋2, … ,q ∘ 𝑋𝐶] (7)

Channel squeeze and spatial excitation block (sSE) will learn during the

training to highlight the most relevant spatial locations in a feature map. An

illustration of the sSE block is shown in Figure 3.8.

Figure 3.8 Channel squeeze and spatial excitation block (sSE)

3.5.3 Spatial and Channel Squeeze and Excitation (scSE)

Finally, the full spatial and channel squeeze and excitation module is

illustrated in Figure 3.9. This block uses a combination of sSE and cSE block

by adding the output feature maps of both operations:

 19

 𝑋̂𝑠𝑐𝑆𝐸 = 𝑋̂𝑐𝑆𝐸 + 𝑋̂𝑠𝑆𝐸 (8)

Figure 3.9 Spatial and Channel Squeeze and Excitation (scSE)

A the activation of voxel in location (𝑖, 𝑗, 𝑘, 𝑐) of the input feature map 𝑋 is

higher when it gets high importance from both squeeze and excitation blocks.

This recalibration encourages the network to learn more meaningful feature

maps, that are relevant both spatially and channel-wise.

3.6 U-Net++ and Deep Supervision

Similar to U-Net, U-Net++ is an encoder-decoder style architecture. However,

it is augmented with multiple nested convolutional blocks that are connected

as seen in Figure 3.10. The main encoder-decoder is referred to as the

“backbone”; instead of concatenating the output of each encoder to the input of

its equivalent decoder convolutional block, a number of intermediate

convolutional blocks are introduced.

 20

Figure 3.10 An overview of the used U-Net++ architecture. Each convolutional block is

represented by a circle. The input image X is fed to the first convolutional block 𝑋0,0;

𝑌̂𝑖 for 𝑖 ∈ {1, 2, 3, 4} are the outputs of this architecture.

The intermediate blocks take as input the output of encoder block of the same

spatial resolution, concatenated with the output of the previous intermediate

block, and the output of the next smaller spatial resolution (scaled-up). This

can be seen in Figure 3.11.

 21

Figure 3.11 Intermediate convolutional block in U-Net++

The total loss for this network is calculated through adding the losses

associated with each output. The total loss equation then becomes:

 ℒ = ∑ℒ𝑓(𝑌, 𝑌̂𝑖)

m

𝑖

 (9)

Where:

• ℒ𝑓: The loss function.

• 𝑌̂𝑖: The 𝑖𝑡ℎ output segmentation of the network.

• 𝑌: The ground truth segmentation.

3.7 GlobalSegNet: Dense U-Net++ with Squeeze and

Excitation

As a way to improve the accuracy of the high performing U-Net++, a Spatial

and Channel Squeeze and Excitation (scSE) module was added as an extra

layer to each convolutional block (except for the bottleneck) as can be seen in

Figure 3.12.

 22

Figure 3.12 Dense U-Net++ with Squeeze and Excitation (U-Net++ w/ scSE)

The conducted experiments – as well as other work on squeeze and excitation

mechanisms in the literature – pointed that a better training performance is

achieved by leaving the bottleneck without a scSE block. As previously

mentioned in U-Net++, this model is trained by minimizing the loss function

described in Equation (9).

3.8 Models’ Computational Complexity

3.8.1 Conv Block complexity

If we consider the convolutional block (shown in Figure 3.6). The number of

parameters for such block is calculated as follows:

 23

#P𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = (𝐶 + 1) × 3 × 3 × 3 × 2𝐶 + (3𝐶 + 1) × 3 × 3 × 3 × 2𝐶

+ (5𝐶 + 1) × 3 × 3 × 3 × 2𝐶
(10)

In the case of a decoder block, since the output of the corresponding encoder

block is also used as in input, the equation becomes:

#P𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = (𝟐𝑪 + 1) × 3 × 3 × 3 × 2𝐶 + (3𝐶 + 1) × 3 × 3 × 3 × 2𝐶

+ (5𝐶 + 1) × 3 × 3 × 3 × 2𝐶
(11)

3.8.2 scSE Block complexity

Let us consider the spatial squeeze and channel-wise excitation first (cSE). The

spatial squeeze is an average pooling process; therefore, no learned parameters

are associated with this operation. The equation for the number of parameters

of two-layer MLP in terms of the number of channels 𝐶 is given as follows:

 #P𝑐𝑆𝐸 = (𝐶 + 1) ×
𝐶

2
+ (

𝐶

2
+ 1) × 𝐶 (12)

Next, let us consider the channel-wise squeeze and spatial excitation (sSE).

The channel-wise squeeze is a (1 × 1 × 1) convolution operation with an output

channel size of 1. The kernel of this convolution operation is the only learnable

parameter of sSE block; therefore, the number of parameters association with

sSE block is given by the equation below:

 #P𝑠𝑆𝐸 = 𝐶 + 1 (13)

3.8.3 Architecture summaries of the used models

A comparison of the models used in this research in terms of the number of

parameters as well as the number of operations is described in Table 3.1.

 Model Model + scSE Blocks

#P FLOPs #P FLOPs

U-Net 8.82 × 106 234.13 × 109 8.93 × 106 234.22 × 109

U-Net++ 10.85 × 106 750.04 × 109 10,97 × 106 750.17 × 109

Table 3.1 A complexity comparison of the two main networks (U-Net and U-Net++)

with and without added scSE blocks. The table highlights the number of free

parameters (denoted #P) as well as the number of multiply-adds (FLOPS [29])

 24

It is apparent that adding scSE component to convolutional blocks does not

add a significant complexity to the neural network. However, while the

difference between U-Net and U-Net++ is relatively small in terms of the

number of parameters, the number of multiply-adds (FLOPS) is significantly

higher (more than thrice as many operations). Therefore, adding squeeze and

excitation components does not significantly add to the complexity of the

network as much as changing the architecture would.

3D convolution is often much more computationally expensive than 2D

convolution, however, it is undoubtedly better at capturing 3D context [30].

Given the architecture of U-Net++, the data needs to downscale by half in the

𝑥 and 𝑦-axis in order to preserve memory.

3.9 Local Refinement Network RefNet

The refinement network (RefNet) is a U-Net architecture that is designed

improve local segmentation accuracy. The inputs to this network is a 3D patch

𝑃 ∈ ℝ64×64×16×10 of the normalized image 𝑍 and the segmented organ

probability map 𝑌̂ from the initial segmentation network in the current patch.

The output is a locally refined organ segmentation 𝑌̂𝑃 contained in this 3D

patch.

The training data will be the pairs of 3D patches (64 × 64 × 16) randomly

sampled around the neighborhoods of the segmented organ contours by

GlobalSegNet. 4000/400/400 of the training data patches, produced from the

cohort of 100 training samples will be used for training/validation/testing.

To apply the RefNet (after GlobalSegNet) on a new image, patches will be

selected in the same way but will be uniformly sampled with half overlapping

in order to ensure smooth transition between adjacent patches. The final

segmentation 𝑌̃ is formed by reconstructing the patches. For a voxel with

multiple overlapping patches, we take the mean value for that voxel across

patches. The refinement process is visually displayed in Figure 3.13.

 25

Figure 3.13 RefNet:

Comparing with the global auto-segmentation network GlobalSegNet, RefNet

1) focuses on a much smaller 3D region and 2) uses a voxel size = 1.5 mm3,

halving the voxel size (≈ 3.5×3.5×3 mm3) in GlobalSegNet. Thus, we expect

RefNet to improve the local segmentation accuracy.

3.10 Segmentation Pipelines

In this section we discuss a number of different pipelines for segmentation and

how they compare to each other as well as to simply using end-to-end

convolutional neural network architecture (U-Net and U-Net++).

Figure 3.14 shows the different pipelines implemented in this research; their

performance is then compared in Experimental Results chapter.

RefNet (U-Net)

256x256x64x10

Z

Y

64x64x16x10

P Y
P

64x64x16x6

256x256x64x6

Y

Extract patch
Reconst ruct

 26

Figure 3.14 Different pipelines used for segmentation. Pipelines (a) and (b) produce a

half resolution segmentation, whereas (c), (d), (e) produce full resolution output.

Pipelines (a) and (b) are applied to the half-resolution dataset in order to

compare with the original work [9] on this dataset. In (a) we simply use the

 27

GlobalSegNet model to make a half resolution segmentation. In pipeline (b),

we attempt to refine the segmentation using RefNet, and produce a

segmentation of the same size. For (c) and (d), we simply augment (a) and (b)

by adding an up-sampling step on the output probability maps. The final

pipeline (e) uses GlobalSegNet to make an initial segmentation on half

resolution, which is then upscaled and concatenated with the full resolution

spatially normalized data 𝑍. The 10-channel tensor is then processed with

RefNet to produce a final segmentation.

3.11 Implementation Configuration and Hardware

The networks discussed in this thesis are implemented using TensorFlow and

Keras [31] in Python. The networks were trained by minimizing the loss

function using Adam optimizer [32] with learning rate 𝛼 = 1 × 10−4. The

trained parameters of the networks were initialized randomly using Xavier

[33] uniform initializer. The training ran for a maximum of 1000 epochs, with

an early stopping condition in the case where loss does not improve for 50

epochs.

The training took advantage of GPU acceleration. An NVIDIA TITAN X with

11 Gb of RAM and

 28

Chapter 4: Experimental Results

and Discussion
In order to evaluate the quality of the models and pipelines used for this

segmentation task, we use the previously discussed Methods on the testing set

composed of 10 volume images.

The empirical performance of the different methods is the DICE coefficient [34]

as computed in the following equation:

 DICE(𝑌𝑖 , 𝑌𝑖̂) = 2 ×
|𝑌𝑖⋂𝑌̂𝑖|

|𝑌𝑖| + |𝑌̂𝑖|
 (14)

With 𝑌𝑖 being the ground truth 3D binary mask of organ 𝑖 and 𝑌̂𝑖 is the

segmentation output mask of the same organ.

The mean DICE coefficient is then calculated as the unweighted average of

DICE coefficient associated to each organ:

 DICE𝑚𝑒𝑎𝑛 = mean
𝑖∈{𝑜𝑟𝑔𝑎𝑛𝑠}

(DICE(𝑌𝑖 , 𝑌𝑖̂)) (15)

Both the DICE score of the individual organs, and the average DICE score of

all organs are summarized in Figure 4.1, Figure 4.4, and Figure 4.6.

In order to compare with the original work on this dataset [9], the evaluation

was performed on the half-resolution dataset (of 128×128×64 voxels).

Additionally, some methods took advantage of the full resolution dataset (of

256×256×64 voxels) produced a full resolution segmentation. Due to hardware

limitation, we were not able to use the full resolution data to train U-Net++.

4.1 CNN Architectures

We first evaluate the individual models directly on the dataset (original full

resolution as well as downsized half resolution)

 29

4.1.1 On half-resolution

In this part, we discuss the performance of the U-Net family of architectures

as well as the U-Net++ family on the down-sampled dataset (𝑋𝑆 ∈ ℝ128×128×64).

Figure 4.1 DICE Scores of different used CNN Architectures on half resolution data.

For the sake of comparison, a 2D variation of each network has been

implemented. The 2D networks use 3 × 3 × 1 kernels for all convolution

operations. This kind of convolution cuts on the computational cost of the

model; however, it comes with a slight sacrifice on the quality of segmentation

as it does not take advantage of the depth context. This can be directly seen in

 30

Figure 4.1. Another thing to note is that U-Net++ outperforms simple U-Net

in general.

Ground

Truth U-Net

U-Net

(2D)

U-Net

w/ scSE U-Net++

U-Net++

(2D)

U-Net++

w/ scSE

(a) (b) (c) (d) (e) (f) (g)

Figure 4.2 shows that the global quality of the segmentation is improved from

U-Net to U-Net++; additionally, scSE blocks seem to improve the segmentation

quality in a local level for U-Net++.

Ground

Truth U-Net

U-Net

(2D)

U-Net

w/ scSE U-Net++

U-Net++

(2D)

U-Net++

w/ scSE

(a) (b) (c) (d) (e) (f) (g)

Figure 4.2 Top axial view of a sample output volume image from the testing set.

Rows represent the slice used in the z-axis whereas the columns represent the

different architectures attempted.

 31

Some artifacts can be observed for the segmentations produced by U-Net

architecture (both with and without the squeeze and excitation blocks). These

artifacts represented in columns (b) and (d) in

Ground

Truth U-Net

U-Net

(2D)

U-Net

w/ scSE U-Net++

U-Net++

(2D)

U-Net++

w/ scSE

(a) (b) (c) (d) (e) (f) (g)

Figure 4.2 where it shows empty areas misclassified as Liver (red).

Artifacts appear on a smaller scale for other U-Net / U-Net++ architectures.

This is one of the reasons why we introduced RefNet and the different pipelines

(which are discussed in “Pipelines”). The aim is to capture those artifacts and

eliminate them to finally produce a cleaner segmentation.

In order to visualize the 3D structure of the output segmentations. We have

implemented a Vis3D, a tool built with the python library Mayavi [35].

(a) (b)

 32

(c) (d)

Figure 4.3 3D view of the segmentation output of GlobalSegNet (using the developed

tool Vol3D).

4.1.2 On full resolution

In this part, we discuss the performance of the U-Net architectures on the full

resolution dataset (𝑋 ∈ ℝ256×256×64).

Similarly to applying these networks on the down-sampled images, we can see

from Figure 4.5.d that the U-Net architecture augmented with squeeze and

excitation blocks (scSE) introduces artifacts to the segmentation. However, the

quality of segmentation appears to be superior than U-Net and U-Net 2D. This

time, the empty area on the bottom of the axial view is misclassified as “large

bowel” this time.

Figure 4.4 DICE Scores of different used CNN Architectures on full resolution data.

 33

Even though the segmentation produced by U-Net w/ scSE appears the closest

to the ground truth (according to Figure 4.5), the network’s overall dice score

is the lowest of the U-Net family when trained on full resolution. This is due

to the previously mentioned artifacts. Artifacts appear on

Ground Truth U-Net 2D U-Net U-Net w/ scSE

(a) (b) (c) (d)

Figure 4.5 Top axial view of a sample output volume image from the testing set.

4.2 Pipelines

To evaluate the performance of the different used pipelines, we first evaluate

the dice score of the produced segmentations from each pipeline. DICE scores

are summarized in Figure 4.6. (a), and (b) are pipelines that produce half

resolution segmentation; whereas (d), (e), and (f) produce full resolution

segmentation.

In general, it is easier to achieve a better average DICE score in low resolution.

This is true for end-to-end networks, but also for the pipelines used.

 34

 (a) (b)

(c) (d) (f)

Figure 4.6 DICE Scores of different used pipelines

Figure 4.6 shows that up-scaling the low-resolution output to produce a full

resolution segmentation leads to a lower DICE score. This is due to the fact

that up-scaling causes a blocky low-detail segmentation (as shown in Figure

4.8.

Additionally, it is noted that applying refinement network before up-scaling

reduces the DICE score; however, it generates a more robust segmentation.

This can be explained by (c) and (d) in Figure 4.6; up-scaling the output of

 35

GlobalSegNet leads to a lower DICE score than up-scaling

GlobalSegNet+RefNet output.

 Ground Truth GlobalSegNet GlobalSegNet + RefNet

 (a) (b) (c)
Figure 4.7 A qualitative comparison of the different pipelines with a half resolution

output.

 36

 Ground Truth

GlobalSegNet output

upscaled

GlobalSegNet +

RefNet output

upscaled

Upscaled

GlobalSegNet Scaled

+ RefNet

Figure 4.8 A comparison of the different pipelines with a full resolution output. (a), (b)

and (c) shows a zoomed-in patch for clarity on the difference in detail.

From Figure 4.8, it is noticed that the segmentation made by the final pipeline

provides the highest resolution; wheras up-scaling a low resolution output

causes a blocky and low-detailed segmentation.

 37

(a) (b)

(c) (d)

Figure 4.9 3D view of the segmentation of the final pipeline. (a) shows a 3D view, (b)

shows a front view, (c) shows a side view, and (d) shows a top view.

4.3 Results Summary

To summarize our experimental results, we report the accuracy of each method

as well as its execution time as our computational complexity efficiency

measure. In order to compare our results with the state-of-the-art methods, we

compare our work to CNN+Correction Network explained in Related Work.

In order to evaluate CNN+Correction Network, the model has been retrained

and tested without any added post-processing steps in order to compare the

deep learning networks. The results reported in the original work are

summarized in

Organ Liver Kidneys Stomach Duodenum Bowel Mean

DICE Score 95.3 93.1 85.0 86.6 65.5 85.1
Table 4.1 DICE score table for CNN+Correction Network as reported in the original

paper [9].

 38

4.3.1 Accuracy

The three first rows of Table 3.1 show the mean DICE scores associated with

the output of the testing data. We report the DICE scores for individual organs

as well as a mean score across organs.

 DICE Scores

 Liver Kidneys Stomach Duodenum Bowel Mean

CNN+Correction

Network
93.9 79.1 82.4 52.8 75.5 76.74

GlobalSegNet 93.74 82.28 83.14 53.30 75.63 77.63

GlobalSegNet +

RefNet 93.87 79.54 83.29 51.83 75.27 76.76

GlobalSegNet +

Upscale
92.02 77.04 80.42 51.48 69.64 74.12

GlobalSegNet +

RefNet + Upscale
92.02 80.11 81.34 52.53 70.02 75.20

GlobalSegNet +

Upscale + RefNet
93.14 81.14 82.25 51.47 74.36 76.47

Table 4.2 Summary table of the accuracy of the different used methods

4.3.2 Computational Complexity

In order to evaluate our methods from a computational complexity perspective,

we measure the inference time of each method. The inference time is computed

through sequentially inputting 100 images and measuring the mean inference

time. Similar to the accuracy table, the first three rows of Table 4.3 show the

inference time on half resolution; whereas the last four rows on full resolution.

Network
Inference

time (seconds)

Table 4.3 Summary

table of the inference

time of the different used

methods

The most efficient

methods for half

resolution output (top

three rows) as well as

full resolution output

(bottom four rows) are

highlighted in bold.

CNN+Correction Network 6.333

GlobalSegNet 0.466

GlobalSegNet + RefNet 1.888

CNN+Correction Network + Up-scale 6.545

GlobalSegNet + Up-scale 0.517

GlobalSegNet + RefNet + Up-scale 2.077

GlobalSegNet + Upscale + RefNet 9.118

 39

Conclusion
In this work, we explored different segmentation deep learning networks and

methods to segment liver, kidneys, stomach, bowel and duodenum on MRI

volumes. We have leveraged recent deep learning methods like deep

supervision and squeeze and excitation mechanisms into the fully

convolutional network; GlobalSegNet. Deep-learning-based segmentation

pipelines have also been implemented through introducing up-scaling, spatial

normalization components, as well as patch-based local refinement step

(RefNet). We have evaluated our methods and pipelines against the state-of-

the-art work on the MRI dataset. We have achieved comparable results to the

original work while significantly improving the inference time and work

around GPU memory limitation in order to create full resolution

segmentations.

Future Work
While it is challenging to improve segmentation quality on this dataset, there

is always room for improvement in terms of performance.

“2.5D” Convolution to improve computational cost: Due to current

hardware limitations, 3D convolution is significantly more expensive than 2D

convolution. However, using 2D convolution for a 3D dataset makes the

network ignore important depth information. A workaround worth exploring

is to use 2.5D convolution [36], in order to take full advantage of 3D geometry

relations whilst still keeping computational cost low.

Semi-automated workflows: Including deep-learning-powered semi-

automatic procedures that use user interactive contour correction will improve

the accuracy of segmentation while adding an insignificant amount of work to

physicians.

 40

References

[1] B. Ginneken, C. Schaefer-Prokop and M. Prokop, "Computer-aided

diagnosis: how to move from the laboratory to the clinic.," PubMed, vol.

216 (3), pp. 719-732, 2011.

[2] L. Henke, R. Kashani, C. Robinson, A. Curcuru, T. DeWees, J. Bradley,

O. Green, J. Michalski, S. Mutic, P. Parikh and O. J3., "Phase I trial of

stereotactic MR-guided online adaptive radiation therapy (SMART) for

the treatment of oligometastatic or unresectable primary malignancies of

the abdomen.," Radiotherapy and oncology, pp. 519-526, 2017.

[3] S. Rudra, N. Jiang, S. Rosenberg, J. Olsen, P. Parikh, M. Bassetti and P.

Lee, "High Dose Adaptive MRI Guided Radiation Therapy Improves

Overall Survival of Inoperable Pancreatic Cancer," International Journal

of Radiation Oncology • Biology • Physics, vol. 99, no. 2, 2017.

[4] J. M. Lamb, M. Cao, A. U. Kishan, N. Agazaryan, D. H. Thomas, N.

Shaverdian, Y. Yang, S. Ray, D. A. Low, A. C. Raldow, M. L. Steinberg

and P. P. Lee, "Online Adaptive Radiation Therapy: Implementation of a

New Process of Care," Cureus, vol. 9, 2017.

[5] C. Hao, Q. Dou, L. Yu, J. Qin and P.-A. Heng., "VoxResNet: Deep

voxelwise residual networks for brain segmentation from 3D MR images,"

NeuroImage, pp. 446-455, 2018.

[6] P. Hu, F. Wu, J. Peng, P. Liang and D. Kong, "Automatic 3D liver

segmentation based on deep learning and globally optimized surface

evolution.," Physics in medicine and biology, vol. 61, no. 24, 2016.

 41

[7] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. de Vries, M. J. N. L.

Benders and I. Isgum, "Automatic Segmentation of MR Brain Images

With a Convolutional Neural Network," IEEE Transactions on Medical

Imaging, vol. 35, no. 5, p. 1252–1261, 2016.

[8] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P.

Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. D’Anastasi and e. al,

"Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully

Convolutional Neural Networks and 3D Conditional Random Fields,"

Lecture Notes in Computer Science, p. 415–423, 2016.

[9] Y. Fu, T. R. Mazur and X. Wu, "A novel MRI segmentation method using

CNN-based correction network for MRI-guided adaptive radiotherapy,"

Medical Physics, pp. 5129-5137, 2018.

[10] Y. Guo and A. S. Ashour, "Neutrosophic Set in Medical Image Analysis,"

in Handbook of Medical Imaging, 2019, pp. 229-243.

[11] T. Heimann and H.-P. Meinzer, "Statistical shape models for 3D medical

image segmentation: A review," Medical Image Analysis, vol. 13, no. 4,

pp. 543-563, 2009.

[12] T. Zhou, S. Ruan and Stéphane Canu, "A review: Deep learning for

medical image segmentation using multi-modality fusion," Array, Vols. 3-

4, 2019.

[13] J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for

semantic segmentation," IEEE Conference on Computer Vision and

Pattern Recognition, p. 3431–3440, 2015.

[14] O. Ronneberger, P. Fischer and T. Brox, "U-net: Convolutional networks

for biomedical image segmentation".

 42

[15] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh and J. Liang, "Unet++: A

nested u-net architecture for medical image segmentation.," Deep

Learning in Medical Image Analysis and Multimodal Learning for

Clinical Decision Support, pp. 3-11, 2018.

[16] D. Bahdana, K. Ch and Y. Bengio, "Neural Machine Translation by

Jointly Learning to Align and Translate," arXive, vol. 7, 2014.

[17] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould and L.

Zhang, "Bottom-Up and Top-Down Attention for Image Captioning and

Visual Question Answering," CVPR, vol. 3, 2017.

[18] S. Jetley, N. A. Lord, N. Lee and P. H. S. Torr, "Learn To Pay Attention,"

International Conference on Learning Representations 2018, vol. 2, 2018.

[19] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang and X.

Tang, "Residual Attention Network for Image Classification," CVPR

2017, vol. 1, 2017.

[20] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K.

Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker and D.

Rueckert, "Attention U-Net: Learning Where to Look for the Pancreas,"

MIDL, vol. 3, 2017.

[21] Z. Zhong, Z. Q. Lin, R. Bidart, X. Hu, I. B. Daya, Z. Li, W.-S. Zheng, J. Li

and A. Wong, "Squeeze-and-Attention Networks for Semantic

Segmentation," arXive, 2019.

[22] J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, "Squeeze-and-Excitation

Networks," Computer Vision and Pattern Recognition, vol. 4, 2017.

 43

[23] A. G. Roy, N. Navab and C. Wachinger, "Concurrent Spatial and Channel

Squeeze & Excitation in Fully Convolutional Networks," Computer Vision

and Pattern Recognition, vol. 2, 2018.

[24] G. Huang, Z. Liu, L. v. d. Maaten and K. Q. Weinberger, "Densely

Connected Convolutional Networks," Computer Vision and Pattern

Recognition, vol. 5, 2016.

[25] J.-F. Mangin, J. Lebenberg, S. Lefranc, N. Labra, G. Auzias, M. Labit, M.

Guevara, H. Mohlberg, P. Roca, P. Guevara, J. Dubois, F. Leroy, G.

Dehaene-Lambertz, A. Cachia, T. Dickscheid, O. Coulon, C. Poupon, D.

Rivière, K. Amunts and Z. Sun, "Spatial normalization of brain images

and beyond," Medical Image Analysis, vol. 33, 2016.

[26] A. Odena, V. Dumoulin and C. Olah, "Deconvolution and Checkerboard

Artifacts," Distill, 17 October 2016. [Online]. Available:

http://distill.pub/2016/deconv-checkerboard. [Accessed 23 3 2020].

[27] V. Nair and G. E. Hinton, "Rectified Linear Units Improve Restricted

Boltzmann Machines," International Conference on Machine Learning

(ICML-10), pp. 807-814, 2010.

[28] C. M. Bishop, Pattern Recognition and Machine Learning.

[29] X. Zhang, X. Zhou, M. Lin and J. Sun, "ShuffleNet: An Extremely

Efficient Convolutional Neural Network for Mobile Devices," arXive, vol.

2, 2017.

[30] J. Yang, X. Huang, B. Ni, J. Xu, C. Yang and G. Xu, "Reinventing 2D

Convolutions for 3D Images," arXiv, vol. 2, 2019.

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.

 44

Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia and L, TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems, 2015.

[32] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization,"

arXiv, 2-14.

[33] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep

feedforward neural networks," International Conference on Artificial

Intelligence and Statistics, vol. 9, pp. 249-256, 2010.

[34] C. E. Noel, F. Zhu, Lee, r. Y, H. Yanle and P. J. Parikh, "Segmentation

precision of abdominal anatomy for MRI-based radiotherapy," Medical

Dosimetry, vol. 39, pp. 212-217, 2014.

[35] P. Ramachandran and G. Varoquaux, "Mayavi: 3D Visualization of

Scientific Data," IEEE Computing in Science & Engineering, vol. 2, no.

13, pp. 40-51, 2011.

[36] Y. Xing, J. Wang, X. Chen and G. Zeng, "2.5D Convolution for RGB-D

Semantic Segmentation," IEEE International Conference on Image

Processing (ICIP), pp. 1410-1414, 2019.

	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	1.1 Problem Statement
	1.2 Contribution of the Thesis

	Chapter 2: Related Work
	2.1 Medical Image Segmentation
	2.2 Convolutional Neural Networks for Semantic Segmentation
	2.3 CNN-based Correction Network
	2.4 Attention and Gating Mechanisms
	2.5 Squeeze-and-Excitation Networks

	Chapter 3: Methods
	3.1 Dataset
	3.1.1 Dataset description
	3.1.2 Training, validation, and testing
	3.1.3 Dataset distribution

	3.2 Spatial Normalization
	3.3 U-Net
	3.4 Dense Blocks
	3.5 Squeeze and Excitation
	3.5.1 Spatial Squeeze and Channel Excitation Block (cSE)
	3.5.2 Channel Squeeze and Spatial Excitation (sSE)
	3.5.3 Spatial and Channel Squeeze and Excitation (scSE)

	3.6 U-Net++ and Deep Supervision
	3.7 GlobalSegNet: Dense U-Net++ with Squeeze and Excitation
	3.8 Models’ Computational Complexity
	3.8.1 Conv Block complexity
	3.8.2 scSE Block complexity
	3.8.3 Architecture summaries of the used models

	3.9 Local Refinement Network RefNet
	3.10 Segmentation Pipelines
	3.11 Implementation Configuration and Hardware

	Chapter 4: Experimental Results and Discussion
	4.1 CNN Architectures
	4.1.1 On half-resolution
	4.1.2 On full resolution

	4.2 Pipelines
	4.3 Results Summary
	4.3.1 Accuracy
	4.3.2 Computational Complexity

	Conclusion
	Future Work
	References

