THE PRESSURE, VOLUMF, TTMPERATURE, ANTM COMPOSITION PROPERTIES OF LIEUTD M-ATKANTE MIXTURES AT ETEVATED PRESSURES

A Dissertation Presented to the Faculty of the Graduate School University of Missouri

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy
by
Phillip Sidney Snyder
August 1969
Jack Winnick, Dissertation Supervisor

ACKNOHLEDGEMENT

The author wishes to express his sincere appreciation to Dr. Jack Winnick of the Chemical Engineering Department for his assistance during the course of this projoct. To Mro Joseph Trontor, and the men of the Science Instrument shop for construction of part of the experimental apparatus.

The author also wishes to express his gratitude to the University of Missouri Computer Research Center and the Engineering Computer Center for the use of their facilities, the National Science Foundation for financial support through grant NSF GK-1303, and the National Aeronautics and Space Administration for a NASA Traineeship.

Special thanks go to my devoted wife Linda and my twin sons Tom and John without whose understanding and patience this project might never have been completed.

TABLE OF CONTENTS

CHAPTERPAGE
I. INTRODUCTION 1
II. THEORIES TESTED 7
Prausnitz Partition Punction 8
Flory Partition Function 10
Scaled Particle Theory 12
Mixing Rules 14
Prausnitz Mixing Rules 14
Flory Mixing Rules 14
Scaled Particle Theory 15
III. LITERATURE DATA 16
Liquid P-V-T Data 17
Bridgman 17
Eduljee 17
Cutler and McMickle 18
Doolittle 18
Boclhouver 19
Shavers 19
Conclusions 20
IV. EQUIPMENT 21
$\mathrm{P}=\mathrm{V}-\mathrm{T}$ Coll 22
Measurins Bridge 30
Prossure Messurement 32
0-1500 psi Helsc Gauge 32
$0-50,000$ psi Heise Geuge 32
Mancanin Coll. 34
Pressure Applicotion 3^{4}
Temperature Control and Messurement 35
v. CALIbBATION 36
P-V-T Cell Calibrations 37
Bellows Cross Sectional Area Callbration 37
Capillary Tube Calibration 37
Apparatus 38
Procedure 38
Results 41
Bellows Calibration 41
Apparatus 4.7
Procedure 4.1.
Results 4.3
Slide Wire Unit Length 43
Apparatus 43
Procedure 4.5
Results 4.5
Manganin Cell Callbration 4.5
Apparatus 45
Proceduro 47
Results 4.7
N-Heptanc Consistency 4.7
VI. DATA REDUCTION AND RESULTS 4,9
Volume lleasurement Reduction 50
Bellows Chanco in Longth 50
Bellows' Cross Sectional Area 51
Equation VI-I With Crmoction 52
Pressure Measurement Reduction 53
Raw Relative Volume Data 53
VII. THEORIES TESTED 85
Tait Equation 86
Data Representation 86
Temperature Independence and Universality of J 103
The Prausnitz Partition Function 103
Prausnitz Method 107
Regression Analysis Method 107
Comparison of Methods 109
The Flory Partition Function 115
Flory Method 115
Regression Analysis Method 115
Comparison of Methods 120
Flory Mixing Rule 129
Scaled Particle 140
Joint Comparison 140
VIII. CCNCLUSIONS, SUMMARY AND RECOMMENDATIONS 152
Conclusions 152
Summary 153
Recommendations 154
NOMENCLATUPE 156
BIBLIOGRAPHY 161
APPENDICIES 166
Appendix A 167
Appendix B 175
Appendix C 186
Appendix D 204
Appendix E 208
Appendix F 224
Appendix G 255
ADDENDUM 258

LIST OF TIGURES

FIGURE PAGE

1. Bellows Detail 25
2. PVT Cell 26
3. Enlargement of Bellows Area 27
4. Schematic Diagram of the Bridge Gircuit 31
5. Experimental Apparatus 33
6. Capillary Calibration Appardtus 39
7. Hypothetical Mercury Thread 40
8. Bellows Calibration Apparatus 42
9. Slide Wire Calibration Apparatus 44
10. Manganin Cell Calibration Apparatus 46
11. Raw Compression Data Versus Pressure
n-Decane 88
12. Raw Compression Data Versus Pressure n-Dodecane 89
13. Raw Compression Data Versus Pressure
n-Tetradecane 90
14. Rav Compression Inta Versus Pressure
n-Hexadecane 91
15. Raw Compression Data Versus Pressure 0.5000 Mole Fraction n-Decane and n-Tetradecane 92
16. Rar Comprossion Date Vorsus Prossuro 0.5000
Nole Fraction n-Dorecane and n-Horadecane 93
17. Raw Compression Data Versus Pressure 0.6000
Mole Fiaction -Decane with 0.2000 Mole Fraction noTetradconc and n-Hoxadecenc . . 9k
18. Difference in Raw and Smooth Compression Data n-Dodecane $45.0^{\circ} \mathrm{C}$. 95
19. Difference in Raw and Smooth Compression Data n-Tetradecane $25.0^{\circ} \mathrm{C}$ 96
20. Difference in Raw and Smooth Compression Data 0.5000 Mole Fraction n-Dodecane and n-Hexadecane $25.0^{\circ} \mathrm{C}$ 97
21. Difference in Rav and Smooth Compression Data 0.5000 Mole Fraction n-Dodecane and n-Hexadecane $85.0^{\circ} \mathrm{C}$ 98
22. Tait Coefficient I, vs Temperature 100
23. Tait Coefficient J va Temperature. 101.
24. Tait Coefficient J for Universal J vs.Temperature 105
25. Conpression Plot with Universal J forn-Dodecane 106
26. Comparison Prausnitz Method and Best Fitn-Dodecane $25.0^{\circ} \mathrm{C}$. 111

FIGURE

28. Comparison Prausnitz Method and Best Fit n-Dodecane $65.0^{\circ} \mathrm{C}$. 113
29. Comparison Prausnita Mothod and Bost Fit

30. Flory's Charantenstic Temperature Vorsus Temperature 117
31. Flory's Characteristic Volume Versus Temperature 118
32. Flory's Characteristic Pressure Versus Temperature 122
33. Flory Best Fit Characteristic Temperature Versus Temperature 122
34. Flory Best Fit Characteristic Volume Versus
Temperature 123
35. Flory Best Fit Characteristic Pressure Versus Temperature 124
36. Comparison Flory's Method and Best Fit n-Dodecane $25.0^{\circ} \mathrm{C}$........... 125
37. Comparison Flory's Method and Best Fit n-Dodecane $45.0^{\circ} \mathrm{C}$............ 126

FIGURE PAGT
38. Comparison Flory's Mothod and Bost Flt n-Dodecano $65.0^{\circ} \mathrm{C} . \quad .27$
39. Comparison Flory's Method and Best Fit n-Dodecane $85.0^{\circ} \mathrm{C} \ldots .0 .0 .0 .0 .0$.
40. Comparison Floryis Mrinc Rutc on Flory ${ }^{\circ} \mathrm{S}$ Method and Best Fit 0. 5000 Molo Proction n-Decane and n-Tetradecrne $2500^{\circ} \mathrm{C}$..... 132
41. Comparison Flory*s Mixing Rule on Flory ${ }^{\text {s }}$ Method and Best Fit 0.5000 Mole Fraction n-Decane and $n-T e t r a d e c a n c 4500^{\circ} \mathrm{C}$. . . . 133
42. Comparison Flory's Mixing Rule on Flory's Method and Best Fit 0.5000 Mole Fraction n-Decane and $n-T e t r a d e c a n e ~ 65.0^{\circ} \mathrm{C}$. . . . 134
43. Comparison Flory's Mixing Rule on Flory's Method and Best Fit 0.5000 Mole Fraction n-Decane and n-Tetradecane $85 \cdot 0^{\circ} \mathrm{C}$. . . . 135
44. Comparison Flory's Mixing Rule on Flory's Method and Best Fit 0.6000 Mole Fraction n-Decane with 0.2000 Mole Fraction n-Tetradecane and n-Hexadecane $25.0^{\circ} \mathrm{C}$. 136
45. Comparison Flory's Mixing Rule on Flory's Method and Best Fit 0.6000 Mole Fraction n-Decane with 0.2000 Mole Fraction n-Tctradecane and n-Hexadecane $45.0^{\circ} \mathrm{C}$. 137
46. Comparison Flory's Mixing Rule on Flory ${ }^{\circ}$ s Method and Best Fit 0.6000 Mole Fraction n-Decane with 0.2000 Mole Fraction n-Tetra- decane and $n-H$ yadecane $65.0^{\circ} \mathrm{C}$. 138
47. Comparison Flory's Mring Rule on Flory'sMethod and Best Fit 0.6000 Molc Fractionn-Decane with 0.2000 Mole Fraction n-Tetra-decane and n -Hexadecane $85.0^{\circ} \mathrm{C}$. 139
48. Scaled Particle Effective Spherical Radius
Parameter versus Temperature 142
49. Comparison Scaled Particle and Experimental
Isothermal Compressibility n-Dodecane $25.0^{\circ} \mathrm{C}$ 143
50. Comparison Scaled Particle and ExperImental
Isothermal Compressiblility n-Dodecane $4.5 .0^{\circ} \mathrm{C}$ 144
51. Comparison Scaled Particle and Experimentsl Isothermal Compressibility n-Dodecanc $65.0^{\circ} \mathrm{C}$ 145
52. Comparison Scaled Particle and Experimental Isothermal Compressibility n-Dodecane $85.0^{\circ} \mathrm{C} \quad 146$
53. Joint Comparison n-Dodecane $25.0^{\circ} \mathrm{C}$ 14.7
54. Joint Comparison n-Dodecane $45.0{ }^{\circ} \mathrm{C}$ 148
55. Joint Comparison n-Dodecane $65.0^{\circ} \mathrm{C}$ 149
56. Joint Comparison n-Dodecane $85.0^{\circ} \mathrm{C}$ 150

FIGURE

PAGE
57. Bellows and Slide W're Arrangement 168
58. Capillary Calibration Apparatus 187
59. Injection System Detail 188
60. Hypothetical Mercury Thread 191
61. Bellows Calibration Apparatus 195
62. Bellows and Micrometor Section 196
63. Slide Wire Ca stotion Apporatus 199
64. Manganin Cell Calibration Apparatus 202
65. Experimental Apparatus 209
66. PVT Cell 210
67. Enlargement of Bellows Area 211
68. Schematic Diagram of Bridge Circuit 221
69. Sample Filling Apparatus 223

LIST OF TABLES

TABLE PAGE
I. Choice of Techniaue 23
II. Listing of Belloons 28
III. Raw Relative Volume Data 55
IV. Tait Coefficients J and L 98
V. Compound and M1xture Codo Eey 101
VI. Tait Coefficient L for Universel J 103
VII. Prausnitz Method Characteristic Parameters 107
VIII. Prausnitz Best Fit Charactoristic
Parameters 109
IX. Flory's Method Characteristic Parameters 116
X. Flory Best Fit Characteristic Parametors 121
XI. Mixture Characteristic Parameters From Best
Fit via Flory's Mixing Rule 130
XII. Mixture Characteristic Parametors From
Flory's Method via Flory ${ }^{\text {º }}$ s Mixing Rule 131
XIII. Scaled Particle Effective Spherical
Radius Parameter 140
XIV. Listing of Balloons 212
XV. Raw Resistance Versus Pressure Data 22.5

CHAPTER I

INTRODUCTION

Chemical engineers and chemists have long been in search of a general equation of state. Given the equation of state and appropriate thermodynamic relationships it is possible to accuraiely predict isothermal changes in heat capacity, enthalpy, entropy and fucacity, activity coefficients, latent heat of vaporization vapor pressure, and vapor-liquid equilibrium in mixtures. To date it has not been found.

One attempt to write a specific equation of state has been made for chlorodifluoromethene (36) for example, to densities up to 2.3 times the critical density. This equation of state has $4 l y$ constants making it impractical for general use and at very best cumbersome to work with.

A logical limitation on an equation of state would be to require that it be valid for one phase only This roquires a different equation for each of the gas. ligutd. and solid phases.

The gas phase is characterized by low density and molecular encounters that mainly occur between only two molecules at one time, has been described by simple
equations of state (1.0. tho ldcal cas law and first order corrections such as those of tho vall dor Halls equations of statc). This is the starilng point for pore detailed and accurate equations of state to describe the gas phase of real gases. Some of thosc are based upon Kinetic theory (9,44) and statistical thermodynamics (29). This has lead to highly successful equations of state such as the virial equation.

The solid phase with its high degree of spatial ordering and the small amplitudes of the thermal motions can also be described by an equation of statc. As in the case of the gas phase this allows a starting point for more detailed theories and accurate equations of state. Some are based, for example, upon the "integrated linear theory of finite strains" (39).

For the liquid phase there appears to be no obvious element of simplicity comparable to those for the gas and solid phases. In the iiquid state one is faced with lons range disorder and multi-molecular interactions.

The least restrictive liquid theory $1 s$ based on the radial distribution function $(18,25)$. The successful. Percus-Yevick equation of state falls into this catagory. There are other equations based on the radial distribution function theory. The major short coming of the radial distribution function type theories is thet they
require experimental x-ray scattering data from which the radial distribution function is determined. It is difficult if not impossible to interpret this data for polyatomic molecules without making major ascumptions.

Scaled particle theory. a new liquid theory, was proposed by Reiss (47) in 1959. To dato it has beon applied mainly to spherical molecules and liquid metals. It has met with sone success, b w has not as yot been tested for cases where pressure was allowod to vary.

More restrictive liquid theories assume oithor a solid-like or gas-like model. The more successful have been based on a lattice-like structure, as is used in the various lattice theories of the liquid state (4). This assumption of the liquid structure essentially means that the liquid is being considered as a superheated solid. This theory works best in the high pressure, high density and low temperature region of the liquid phase or near the freezing curve.

The other assumption is that the liquid is a super cooled gas (46). These theories work best at high temperature and low density. The major short coming of these two classes of liquid theories is that thoy are succossful only for spherical molecules with essentially central force fields such as Argon, Neon and, Methane for example.

The "Significent structure Theory" of Fyring (20) predicts liquid propertics to within 10% in many cases (34,35). IXisting liquid p-v-T data is sufficiently refined to test its $p-\nabla-T$ predictions completcly (61).

To be able to consider industriclly more interesting molecules, but still simple compared to those with hydrogen bonding and/or polar fields. it is neceseary to make even more restricive assumntions, such as those of the Corresponding States Principle (31). The bssic assumptions, detailed by Leland and Chappolear (32). exclude molecules with hydrogen bonding and molecules light enough for quentum effects to become important. The major problem with the Corresponding States Principle is that in some cases the predicted properties are nearly exact, but in others they may err as much as 10\%. There seems to be no method short of taling experimental data to determine the accuracy of the prediction using these correlations.

To obtain predictive methods of greater eccuracy than those listed above with the exception of scaled particle theory, as it has not been tested, it is necessary to restrict the theory to one type or class of compounds such as the normal paraffins. This has been done by Flory (21) and Prausnitz (42) in their liquid partition function models. Both of these theories require some experimental
dete to detormine what aro called charactoristice ore rem ducing paramotors. The Prausnitz thoory (4,2) wos found to work very well for simple liquids and over modoratc pressure ranges. The Flory theory was tested by sims and Winnick (58) for n-Decane. n-nodecane, n-Tetradecene, n-Hexadecane, and several binary mirtures and found to correlate their atmospheric density deta as a function of temperature to within experimenon error.

Thus there appear to be three possible method of predicting liquid p-v-T data with high accuracy. That is: the Scaled particle theory, the Prausnitz partition function theory, and the Flory partition function theory. One of the most stringent tests that can be applied to an equation of state is to determine the isothermal compressibility equation from it because the isothermal compressibility equation requires a derivative of the equation of state. Using the Prausnitz and Flory partition function theories for the isothermal compressibility this requires the second derivative of the partition function. Each of these theories requires some data to detcrmine the free parameters, the effective spherical radius in the Scaled particle theory and characteristic parameters in the Prausnitz and Flory theories. Once the parameters are
determined the cquations can be used to predict values of the isothermal compressibility, the isothormal changes in heat capacity, enthalpy, entropy and fugacity, activity coefficients, latent heat of vaporization, vapor pressure, and vapor-liquid equilibrium in mixtures.

To test the isothermal compressibility predictions very accurate experimental p-v-T data are necessary to test these predictions. To prone the most severe test the $p-\nabla-T$ data should be for the widest possible range of temperature and pressure. It is also desirable that the data be available for more than one compound and preferably for a homologous series.

CHAPTER II

THEORIES TESTED

The three liquid thoories to be tested and the mixing rules are consicterod in this chaptor. In the case of the Prausnitz partition function thcory the assumptions basic to the derivein are precontod. Thon the configurational partition function, the equation of state. and the isothermal compressibility equotion are presented. Following this the basic assumptions of the Flory configurational partition function theory is considered in the light of how its basic assumptions differ from those of the Prausnitz configurational partition function theory. Then the configurationsl partition function, the equation of state, and the isothermal compressibility equation are presentod. For the Scaled particle theory the essumptions basic to the derivetion are presented. Thon the equation of state and isothormal compressibility equetion are presented. In the lest section the mixing rulos are considerod.

I. PRAUSNITR, PARTITION TUNGRION

The Prausnitz configurational partition function, App is based on the cell theory of liquids. The functional form of ΨN and $\exp (-E / k T)$ are modified by assumptions to the standard cell theory conescurationn partition function (4);

$$
\begin{equation*}
Q=\Psi^{N} e \times r(-E / K T) \tag{IIII}
\end{equation*}
$$

The assumptions are:

1. Ψ^{N} can be written as the product of a function of volume only $f_{1}(\tilde{v})$ and a function of volume and temperature only $f_{2}(\tilde{V}, \widetilde{T})$ (60).
2. $f_{1}(\tilde{V})$ can be functionally written as $\left(\tilde{v} \frac{1}{3}-1\right.$.) $(1,19,23,45)$.
3. $f_{2}(\tilde{V}, \tilde{T})$ can be assumed to be $f_{2}(\tilde{T})$ due to the small variation in liquid density relative to the gas (53).
4. $f_{2}(\widetilde{T})$ can be written as $\left(\frac{0.4}{3 T^{2}}\right)$. This is based upon analysis of existing experimental heat capacity data.
5. That E in the $\exp (-E / k T)$ can be assumed to be a function of volume only (53). That is:

$$
\begin{equation*}
E=E(V)=P^{*} V^{*} \tilde{E}(\tilde{V})=\frac{P^{*} V^{*}}{\tilde{V}} . \tag{II-2}
\end{equation*}
$$

6. That the characteristic paranctors $\mathrm{P}^{*}, \mathrm{~V}^{*}, \mathrm{~T}^{3}$ aro temperature indopondont duo to tholer rolotionship to the molecular parameters (55).
7. In addition to the above assumptions made by Prausnitz, onc morc is adder here: that the partition function and all the assumptions apply to the normal paraffins.

The Prausnitz configurationn partition function, Q_{p}, developed using the above assumptions is given in equation II-3. Its development has been presented in the Iiterature $(43,52,53)$.

$$
Q_{p}=\left[V^{* \frac{1}{3}}\left(\tilde{V}^{\frac{1}{3}}-1 .\right) \exp \left(\frac{0.4}{3 \widetilde{T}^{2}}\right)\right]^{3 N=} \exp \left(\frac{P^{*} V^{*}}{k T} \frac{1}{\widetilde{V}}\right) .
$$

where: V^{*} is the characteristic volume, P^{*} is the characteristic pressure, T is the characteristic temperature, \tilde{V} is the reduced volume defined in equation II-4, \widetilde{P} is the reduced pressure defined in equation II-4, and \tilde{T} is the reduced temperature defined in equation II-4, c is a parameter related to the departure from spherical symmetry (that is, the departure from non-central force fields).

$$
\begin{align*}
& \tilde{V}=V / T^{4} \\
& \widetilde{P}=P / P^{4} \\
& \widetilde{T}=T / T^{4} \tag{II-4}
\end{align*}
$$

The equation of state based upon II-l is:
$\frac{\text { 10. } \tilde{P} \tilde{V}}{\tilde{T}}=\frac{\widetilde{V}^{\frac{1}{3}}}{\tilde{V}^{\frac{1}{3}}-1}-\frac{10 .}{\tilde{V} \widetilde{T}}$
and the isothermal compressibility is:

$$
\begin{equation*}
\widetilde{\beta}=\beta p^{*}=\frac{\tilde{V}^{1 / 3}-1 .}{\tilde{p}\left(\tilde{V}^{1 / 3}-2 / 3 .\right)-\tilde{V}^{-2}\left(\tilde{V}^{1 / 3}-4.3 .\right)} . \tag{II-6}
\end{equation*}
$$

II. FLORY PARTITION FUNCTION

The Flory configurational partition function is identical to the Prausnitz configurational partition function except for the term $\left(\exp \frac{0.4}{3 \hat{1}^{2}}\right)^{3 N c}$.

There are two basic differences in assumptions which lead to the difference in the configurational partition functions of Flory and Prausnitz. These are:

1. The Prausnitz assumption four is changed to: $f_{2}(T)=1$.
2. The Prausnitz assumption six is changed to: P*, V^{*}, T^{*} are not temperature independent due to their relationship to the segment parameters (21).

The first, assumption means that, the Flory conflgurational partition function, Qp, will divays give configurational heat capacities equal to zero. This limits its application to the $p-\nabla-T$ properties.

The second difference between these theories is that Prausnitz assumes that the characteristic parameters arc related to molecular contributions and molecular parameters and thus are temperature indepontonto Flory assumes that the characteristic parameters are related to segment contributions and segment parameters and that they are not temperature independent (21).

The Flory configurational partition function, Θ_{f}. developed using the above assumptions is given in equation II-7, and its development has been presented by flory (21,22).

$$
Q_{c}=\left[V^{* / 3}\left(\tilde{V}^{\frac{1}{3}}-1 .\right) \cdot 1 .\right]^{3 N_{c}} \exp \left(\frac{P^{* /} V^{* *}}{k T} \frac{1}{\widetilde{V}}\right)_{(I I-7)}
$$

Where c is the number of external degrees of freedom per segment.

The equation of state based upon equation II-7 is:
$\frac{\text { 10. } \tilde{P} \tilde{V}}{\tilde{T}}=\frac{\widetilde{V}^{1 / 3}}{\widetilde{V}^{1 / 3}-1} \quad-\frac{10 .}{\tilde{V} \tilde{T}}$
and the isothermal compressibility is

$$
\begin{equation*}
\widetilde{\beta}=\beta p^{*}=\frac{\tilde{V}^{1 / 3}-1}{\tilde{P}\left(\tilde{V}^{1 / 3}-2 \cdot / 3\right)-\tilde{V}^{-2}\left(\tilde{V}^{1 / 3}-4 \cdot / 3\right)} \tag{II-9}
\end{equation*}
$$

Since equations II-5 and II-8 are identical it becomes a matter of testing the second basic difference, discussed above. That is what significance is attached to the characteristic parameters and how they are evaluated.

III. SCALED PARTICLE THEORY

The assumptions involved in developins the Scaled particle theory equation of state are:

1. The particles are spherically symmetric with central force fields.
2. The particles interact with an effective rigid sphere potential.
3. The work, $H(r)$, required to produce the cavity can be approximated by $W(r)=k_{0}+K_{1} r+$ $K_{2} r^{2}+K_{3} r^{3}(50)$, where r is the cavity radius.
4. The effective hard sphere radius, A, is not a function of pressure.
5. The assumption that the equation of state given by II-l0 is valid for the n-paraffins has already been made by Mayer (37) and has been shown to be reasonably valid at atmospheric pressure.

The scaled particle theory equation of state developed using these assumptions 2 s given by equation II-10, end its development has been presented in the literature (4.0. 49,50).

$$
\begin{equation*}
\frac{\pi A^{3} P}{6 k T}=\frac{y\left(1+y+y^{2}\right)}{\left(1 .-y^{3}\right)} \tag{II-10}
\end{equation*}
$$

where: P is the pressure, k is the Boltzmann constant, T is the absolute temperature, A is the effective hard sphere radius, and y is a reduced volume defined in equation II-11.

$$
\begin{equation*}
y=\frac{\pi A^{3} N}{6 V} \tag{II-11}
\end{equation*}
$$

where: N is Avogardro's number, and V is the volume.
The isothermal compressibility is obtained from equation II-10:

$$
\begin{equation*}
\beta=\frac{V(1 .-y)^{4}}{R T(1+2 y)^{2}} \tag{x}
\end{equation*}
$$

IV. MIXING RUTES

Prausnity Mixing Rules

Prausnitz (42) proposed a set of mirins rules based upon a modification of the ceometric mean rule. These mixing rules require the socond viris? coofficients for the mixture to evaluatc the parameter his modification introduces. Since these data are not available for the mixtures studied in this work the Trausnita mixing rules will not be considered.

Flory Mixing Rules

Flory (22) proposes a mixing rule besed upon the assumption that any two mixtures or a mixture and a compound which have identical numbers of each type of segments present should have the same physical properties and thus the same characteristic parameters. In the case of the n-paraffins thore are two types of secments; and segments which are $-\mathrm{CE}_{3}$ groups and $-\mathrm{CH}_{2}-$ groups which are middle segments. As an illustrative example consider a 0.5 mole fraction mixture of n-Decane and n-Tetradecanc. n-Decane has two end segments and cicht central segments while n-Tetradecane has two end segments and twel.re central segments. For a 0.5 mole fraction mixture n-Decane contributes one end segment and four central segments while n-Tetradecane contributes one end segment and six
contral segmonten Thus the rosulting mixture has tivo and sogments and ton contral. sogmonts and would bo orpoctod to have the same physical proportios as n-Dodecane. Flory's mixing rulc is basically a segment fiaction mixing rule.

Scaled Particle Thoory
To date no mixing rules have been prosonted for scaled particle theory.

CHAPTER III

LITERATURE DATA

Accurate experimonte. daita for puro components and their mixtures are necoscory to tost tho obove liquid state theories and mixing rulc. To dorine more procisely what accuracy is required of the inta, consider the following: When a liquid normal paraffin is subjected to 50,000 psi at room temperature the maximum change in volume that occurs will be ebout 20\%. That is, the relative volume would be 0.80000 . If the relative volume is known to ± 0.001, then the change in relative volume would be known only to $\pm 0.5 \%$. At lower pressures the accuracy would be even lower. Sims (58) roported that at $65 .{ }^{\circ} \mathrm{C}$ for the system n -Decane and n -Hexadecane the maximum change in volume on mixing is $+0.5 \%$. Thus to be able to test the three liquid theories and the mixing rule the data must be accurate to ± 0.000 ? in the reletive volume. The data should be avallable over a broad range of temperature and pressure to provide the most stringent test. Data for the normal paraffins found in the literature are listed below.

I. LIEUID POTOT DATA

The deta cited belor are listed in chronolocical order. In addition to the compounds the fomporature and pressure range are also Eivon.

Bridgman

Bridgman (7) reported PVT data for n-pentane, $n-$ hexane, n-heptane, n-octane, and n-decanc at $0.0,50,0$, and $95^{\circ} \mathrm{C}$ up to the freezing pressure or $1.0,000 \mathrm{~kg} / \mathrm{cm}^{2}$. which ever came first on each isotherm. These data are reported to four significant digits, but considering calibration techniques available when the data were taken it is unlikely that the claimed absolute accuracy was obtained. It is nore likely that the data was precise to four significant digits, accurate to three.

Eduliee

Eduljee et al. (17) reported data for n-hexane, nheptane, and n-octane a.t $0.0,25.0,40.0$ and $60^{\circ} \mathrm{Cup}$ to the freezing pressure or 5000 atmospheres, which ever came first on each isotherm. They also reported Tait coefficients (59) for eight binary mixtures and two tornary mixtures but the experimental data are not included. A detailed error analysis of the experimental method (sec

Appendix G) indicatos the dntis are accurato to throo significant dielts mith ± 0.0004 precision. The date are reported to four significant digits.

Cutler and McMickle

Cutler and McMickle (10) reported data for n-dodecane, n-pentadecane, and n-octadconce at 37.8.60.0. 79.4. 98.9. $115.0,135.0^{\circ} \mathrm{C}$ up to the froczing pressurc on each 1sotherm. Cutler (11) ronorts the the slide wire used in their sylphon bellows piezometer was non-1incar by $\pm 2 \%$ 。 but the wire was considered to be uniform and thus the average resistance per unit length vas used. Δs can be seen from the error analysis in Appendix B an error of 2% in the linearity of the slide wire vould mean that at best the data could be accurate to three significant digits.

Doolittle

Doolittle (14) reported smoothed data for n-heptane, n-nonanc, n-undecene, n-tridecane, n-heptadecane, n eicosane, n-tricontane, and n-tetracontanc at 30.0. 50.0, 100.0, 150.0, 200.0, 250.0, and $300.0^{\circ} \mathrm{C}$ up to the freczing pressure or 3000 bars, which ever came first on each isotherm. It should be noted that the data reported are generated from a fit of the Fudeston equation to the rad data (13). It should also be noted that the technique was such that the initial weight of sample was not known to
bettor than 0.1\% (15). These factorn limht the absolute accuracy of the dote to theo siennement dients. To obtain the fourth digit Doolittic usod the inftial comple volume as an adjustable paranctor in the Hudlecton equation and back calculatod from the data the initial sample volume and thus its moicht (16).

Boelhouver

Boelhouwer (5) reported dnth for n-Hoptane, n-octane, n-nonane, n-dodecane, and n-hexadecane at 30.0 .60 .0 . $90.0,120.0^{\circ} \mathrm{C}$ up to the f:ccezing pressure or $1200 \mathrm{~kg} / \mathrm{cm}^{2}$ 。 which ever came first at a Eiven temperaturc. This data is reported to four significent digits. Boelhouwer reports his relative volume data is absooute to 0.04%. The pressure range is such that the minimum relative volume obtainable is 0.9000 nominal. Thus the change in volume is known to 0.4% As indicated above this is insufficient accuracy. Boelhouwer reports no mixture data.

Shavers

Shavers (57) reported PVT data for n-hexane at $50.0,75.0,100.0,125.0,150.0,175.0,200.0,225.0^{\circ} \mathrm{C}$ up to 1000 atmospheres. Shevers reports the experimental reproducibility, rather than the actual measure-
mont orrors, in hin volumo messuromonts. Using actunt measuromont empors his dato aro occurato to $\because 0.7 \%$ at the high temperature ond and $\pm 0.2 \%$ at the 1 ov tomperature end. The data arc reported to four significant digits.

II. CONCLUSIONS

All of the pure component deta roportod are of insufficient accuracy, or for toc infited a temperature range, has been smoothed via the Eudelston equetion or is over too small a pressure range to provide a valid test for the liquid theories considered in Chapter II.

The one set of mixture data reported is of insufficient accuracy to allow the study of mixtures. That is, the phenomena being observed is of the same magnitude as the experimental uncertainty.

Thus the only course left open is to conduct a high accuracy experimental investigation to determine the desired data using the best experimental techniques and apparatus available. The apparatus and techniạues used are described below.

GHAETER IV

EQUIPMENT

To compress a liquid by 20% requires about 50,000 psi pressure. This is an extreme pressure even then compared to those normally encountered in most high-pressure laboratories study:nc gas propr**es. To obtain useful Iiquid $p-\nabla \rightarrow T$ data such pressure and above must be obtained on a routine basis. The volume chances which occur must be accurately measured. Such operating conditions and measurements require specialized equipment. Yet in the field df high-pressure research there are almost as many experimental techniques as there are investigators. Each technique has its advantages and its weak points. To decide which techniaue or combinetion of techniques to use the following criteria wore established:

1. The technique must be applicable over a wide range of temperature and pressure.
2. The technique, with suitable calibration, must be capable of determining absolute values of the change in volume with pressure.
3. The tochnique, whth suitablo calibration, must bo copable of civing hich accuracy results.
4. The meaouring tochnique must bo rapid.

All of the techniguos rovierfed. 1.0. thoso used by the investigators in Chopton IJI (5.7.10.14.17.57) and others $(2,3,24,62)$, woro fount Incling in eit lanst one of the four requirments eivon above, sco Table I, with the exception of those of Bridecan, Winnicl, and Cutler and McMickle.

It was decided that with some modification of the technique and improved calibration procedures that a combination of these methods could provide the best technique to satisfy all four of the requirements listed above. The equipment and proceduros are described below. Appendix E should be consulted for details of the apparatus design.

> I. P-V-T CELL

In order to measure the change in volume as a function of pressure for the pure components and mixtures considered, the sylphon bellows techniaue originated by Bridgman (7) was chosen. In this study, the change in volume was determined by direct resistance difference measurements rather than potential differencos used by
TABLE I
CHOICE OF TECHNIQUE

Investigator and Reference	Requircments				$\begin{gathered} \text { Dorscionov } \\ \text { Solvaine } \end{gathered}$
	Wide Range	$\begin{gathered} \text { Absolute } \\ \text { Values } \end{gathered}$	Acouracy	Rapidity	
Briderman (7)	Yes	$Y_{\text {es }}$	Mediu	$\underline{Y}^{\text {es }}$	Yos
Eduljee (17)	No	Yes	Mediva	No	No
Cutler and McM1cric (10)	Yes	Yes	Medium	Yes	Y03
Doolittle (14)	Yes	Yes	Medium-Low	Yes	No
Boelhouver (5)	No	Yes	Hichovicdium	Yes	No
Shavers (57)	No	Yes	Modium	Y os	H3
Gibson (24)	No	Yes	Medium	No	I3O
Adams (2)	No	Yes	Modium	No	NTo
Δ magat (3)	No	Yes	Hich	Yes	27o
Winnick (62)	Yes	No	Hich	Yes	Y03

other intestigetors. The calibration tochnques vore improved as described in Chnptor 5 and Δ ppontix G.

The operation of the P-V-T cell can be descinbed mith the aid of Figure 1. The liquid sample is contained in the bellows, B, mounted scourcly to the rotolncr. R, at the point P. A piece of vory finc Karma mirc, S, whose resistance per length has been determined (sec Λ ppendix C). is attached to the bollows and no the bellows contracts with pressure it is drawn past the fixed contact, C, mounted on the fixed ring, T. Usins the calibrations described in Appendix C the change in volume of the bellows can be calculated from the change in resistance across E_{1}, E_{2}, and E_{3} 。

Figures 2 and 3 show the piezometer and the high pressure enclosure. Table II is the listing of the numbers in Figures 2 and 3.

The liquid sample is placed in the bellows, 7, and the bellows is sealed by an allen screw and ball bearing, 3. One end of the bellows is affixed to the rotainer. 5 . the other end is free. A short section of calibrated Karma wire, 9, is attached to the free end of the bellows, 8, by an allen screw, 24. The other end of the Karma vire is attached to two flexible lead wires which go out of

RIGURE 1. BEITOMS DETAIL

PVT CEILL
FIGURE 3. Enlangement of Bellows Area (Courtesy Hamood Engineering Comany)

MABLE II

LISTING OF BALLOONS

$$
\begin{aligned}
& \text { 1-Vesscl } \\
& \text { 2-Sleevo } \\
& 3 \text { - Cap scrodt } \\
& 4 \text { - Front bollows end plate } \\
& 5 \text { - Retaincr } \\
& 6 \text { - Set screus } \\
& 7 \text { - Suphon belloris } \\
& 8 \text { - Rear bellows end plate } \\
& 9 \text { - Karma mire } \\
& 10 \text { - Fired connection housins } \\
& \text { 11-Spring } \\
& 12 \text { - Tefion piston } \\
& 13 \text { - Electrical connection } \\
& 14 \text { - Toflon insulator } \\
& 15 \text { - Unsupported area seal } \\
& 16 \text { - Unsupported area soal } \\
& 17 \text { - O-ring } \\
& 18 \text { - Lead vasher } \\
& 19 \text { - Steel ring } \\
& \text { 20-Closuro } \\
& 21 \text { - Dirive plus } \\
& 22 \text { - Nut } \\
& \text { 23-Glosure bolt } \\
& \text { 24-Set screm } \\
& \text { 25-Fired contact } \\
& 26 \text { - Pired contact insulator } \\
& 27 \text { - Insulating spacer } \\
& 28 \text { - Insulating spaccr } \\
& 29 \text { - Insulatins spacer } \\
& 30 \text { - Electricel Ieads } \\
& 31 \text { - Electricol leads } \\
& 32 \text { - Ground } \\
& 33 \text { - Electrical lead } \\
& \text { 34-Electrical lead }
\end{aligned}
$$

the pressure vessel led through teflon insulators, 14. The Karma slide wire is held against the fired contact, 25, by a spring, 11 , and Teflon plunger, 12. One lead wire from the fixed contact was also led out of the cell. One of the two lead wires attached to the end of the Karma wire and the lead attached to the fixed contact form half of the measuring circuit for determination of the change in bellows length w! th increasing hydrostatic load. The other half consisted of the cell ground lead, 32, and the lead wire, 35 , which is attached to the retainer, 5. Using this measurement circuit it is possible to eliminate all contact and lead wire resistance, it resembles the circuit of a four lead platinum resistance thermometer.

The high pressure seals were of the Brideman unsupported area type (8). The seal was formed by the rubber, 17, lead. 18, and steel. 19, o-rings.

The cavity around the bellows, within the P-V-T cell, was filled with pressure transmitting fluid composed of five parts petroleum ether to two parts sAE 10 oil. This mixture was chosen because it would not freeze before any of the liquid samples. The oil also provided some lubrication to prolons the life of the valves and the piston intensifier. As pressure was applied to the
transmitting fluid the bellows contracted to equilibrate the pressure inside and out. The design of the bellows was such that the contraction was longitudinal along its axis (7). As the bellows contracted the Karma slide wire was pulled past the fixed contact changing the resistance between the fixed contact and either end of the slide wire. The change in volume was determined from the cross sectional area of the bellows and the unit length* of the Karma slide wire.

II. MEASURING BRIDGE

A Mueller G-2 bridge with a high-sensitivity lamp and scale type galvanometer were used to determine: the change in volume with increasing hydrostatic load via slide wire, the system pressure above $50,000 \mathrm{psi}$ via manganin cell, and the P-V-T cell temperature via platinum resistance thermometer. A four position mercury contact commutator allowed four different measurement circuits to be attached to the Mueller bridge mithout rewiring between measurements. A schematic of the bridge is shown in Figure 4. All measurement circuits were wired

[^0]

FIGURE 4. Schematic Diagram of the Bridge Circuit

In the manner of the four lead Platinum rosistance thermometer so that lead wire rosistancos worc oliminated by cancellation.

III. PRESSURE MEASUREMENT

The experimental pressure system is shown in Figure 5. There were three different pressure measuring devices employed. Each detico was used over a specific range. The three were: a 0-1500 psi Heise gauge a $0-50,000 \mathrm{psi}$ Heise gauge, and a Manganin cell. 0-1500 psi Heise Gauge

The 0-1500 psi Heise gauge was used to provide accurate pressure values in the low pressure range. This gauge is accurate to $\pm 0.1 \%$ of full scale, and has thermal compensation for ambient temperature variations of -25 . to $+125 .^{\circ} \mathrm{F}$.

0-50,000 psi Heise Gauge
The $0-50,000 \mathrm{psi}$ Heise Gauge was the primary pressure measuring device above 1500 psi and up to 50,000 psi. It is accurate to $\pm 0.1 \%$ of full scale. The gauge had a thermal compensator to allow for ambient temperature variations from -25 . to $+125 .{ }^{\circ} \mathrm{F}$.

FIGURE 5 . Experimental Apparatus

Manganin Cell

The Manganin cell was used for prossure measurements above 50,000 psi. It is designed for service up to 200,000 psi. The Manganin cell was maintained at 25.00 $\pm 0.01^{\circ} \mathrm{C}$ during calibration as described in Chaptor 5 and Appendix C, and during the measurements.

The cell resistance was first messured at atmospheric pressure P_{0} prior in the start of a run. The cell resistance was then measured at each pressure. The difference between these tio resistances at P and at P_{0} times the cell pressure cooffieicnt provided the system pressure.

IV. PRESSURE APPLICATION

The system pressure was provided by three hydraulic handjacks and the piston intensifier shown in Figure 5. The $0-10,000$ psi Blackhawk hand jack was used to provide system pressure up to 9000 psi. This handjack was also used to reverse the intensifier. Above 9000 psi and below 200,000 psi either the $0-20,000 \mathrm{psi}$ or the $0-40,000$ psi hand jack was used to drive the piston intensifier to provide the system pressure. The intensifier is of Harwood Engineering Company design and has an area ratio of 17:1.
V. TEMPEPATURT GONTROL AND MFASIRFMENT

The PaV-T coll tomporoture was controllocl by the Hallikainen constant temporature bath. Fleure 5, to within $\pm 0.002{ }^{\circ} \mathrm{C}$ on each 1 sotherm. The Follutainon beth had a nickel resistanco thermonotor wh a consitivity of $0.001^{\circ} \mathrm{C}$. A Hallivainon Thennotrol with three control modes: on-off, proportional, and intecral controlled the bath temperature. The integral pele provided the most accurate control in this epplication. The bath temperature was monitored by a Platinum resistance thermometer.

The Manganin cell wes maintained at $25.00 \pm 0.01{ }^{\circ} \mathrm{C}$ in the AMINCO bath shown in Figure 5. The bath controller sensing element was a Mercury contact thermometer. The bath was monitored with a five degree rance Philadelphia differential thermometer. At $25.00^{\circ} \mathrm{C}$ it read 2.37 .

CHAPTER V

CAI,TBRATION

To determine the absolute change in volume as a function of pressure; the riducial density. $\rho_{0 .}$. the sample weight w, the cross sectional area of the bellows $A_{p, t}$, and the chanse in length of the bellows with pressure ΔL_{B} are required for the basic data reduction equation:

$$
\begin{equation*}
\frac{\Delta V}{V_{0}}=\frac{\Delta L_{B} \cdot A_{P_{t} t} \cdot \rho_{0, t}}{W} \tag{V-1}
\end{equation*}
$$

Where $\Delta V / V_{0}$ is the compression or change in relative volume. The fiducial densities were determined by Harrison (27), Sims (58), and Lin (33). The sample weight was measured by differential weighing. The cross sectional area of the bellows was unknown but was calibrated to sufficient accuracy as described in Appendix B. The change in length of the bellows with pressure was determined by measuring the change in resistance (see Chapter IV). This change was converted to change in length by knowing the slide wire unit length. The slide wire unit length was given by the manufacturer, but not to sufficient accuracy.

The manganin cell prossure transducer was callbrated against a secondery pressurc standard in ordcr to obtain its pressure coefficient.

A consistency check using the normal Heptanc data of other investigators was mede. The results of this check are reported in the final section of this chapter.

I. P-V-T CELL CALIBRATIONS

Two calibrations were required for the P-V-T cell. Determination of the cross sectional area of the bellows was accomplished in a two step procedure, using a fluid displacement technique. The other was determination of the slide wire unit length.

Bellops Cross Sectional Area Calibration

The bellows calibration procedure adopted requires two steps. The fluid displacement technique used requires a capillary tube of very accurately known uniformity and cross sectional area. Thus prior to the calibration to determine the cross sectional area of the bellows it was necessary to calibrate a capillary tube.

Capillary Tube Calibration. The capillary tube radius and uniformity were determined so that the capillary tube cross sectional area could be calculated. The mercury thread weight technique was used (30).

Apparatus. The capillary calibration apparatus is shown in Figure 6. The capillary was maintained at $25.00 \pm 0.005^{\circ} \mathrm{C}$ during the course of the calibration by circulating distilled water in the flow loop indicated by arrows in Figure 6. One cathetometer was used to measure the mercury thread inside the capillary tube.

Procedure. Prior to actual calibration the most uniform of a group of ten capilfory tubes was chosen for calibration. Then the tube was cleaned with hot chromic acid and vacuum dried.

The calibration involved measuring the lengths $A-B$, $B-C$, and C-D shown in Figure 7 of a thread of mercury inside the capillary tube, with the tube mounted vertically. Once the measurements had been made at one position the mercury thread was moved up the tube and measured again. This was repeated until measurements had been taken at forty points spaced along the length of the tube at about two centimeter intervals. Following this the thread was removed and weighed.

The procedure was followed for two mercury threads, one that was one cm . length nominal and the other two cm . nominal.

FIGURE 6. Capillary Calibration Apparatus

FIGURE 7. Hypothetical Mercury Thread

Results. The one cm. mercury thread weighed 0.51263 gm . While the two cm . weighed 0.90526 gm . The density of mercury at $25.00^{\circ} \mathrm{C}$ was taken as 13.5336348 $\mathrm{gm} / \mathrm{cc}$ (40). Using the above two thread lengths the capillary tube radius was calculated to be 0.100320 $\pm 0.000035 \mathrm{~cm}$. The capillary tube was found to be uniform to within $\pm 0.000035 \mathrm{~cm}$. over its entire length. (See Appendices B orr (:).

Bellows Calibration. With the capillary tube cross sectional area and uniformity known it was then possible to determine the cross sectional area of the bellows and uniformity.

Apparatus. The apparatus used was essentially that used during the capillary calibration with the following changes: the bellows was attached to the capillary tube and driven by a precision micrometer. An additional cathetometer was used to measure the free end, of the bellows, displacements. The apparatus is shown in Figure 8.

Procedure. Prior to calibrating the bellows was filled with water. Then it was attached to the capillary tube and aligned so that the flat face on the bellows' free end was parallel to the flat face on the micrometer driver arrangement. Next initial readings were taken with the two cathetometers of the bellows' free end

position and the water meniseus in the capillary tube. Then a displacement of the bellows free end was made and a new set of readings taken. This procedure was repeated until a total displacement of 0.25 in. was made in the bellows' free end.

Results. With the capillary tube cross sectional area known, the bellows' free end displacement, and the liquid displacemoni; up the capillary tube caused by the bellows' free end displacements known the bellows cross sectional area can be calculated from:

$$
\begin{equation*}
A_{0,0}=A_{c} \frac{\Delta L_{c}}{\Delta L_{B}} \tag{V-I}
\end{equation*}
$$

The cross sectional area is $1.9815 \pm 0.0011 \mathrm{~cm}^{2}$. The uniformity was within $\pm 0.0011 \mathrm{~cm}^{2}$ 。

Slide Wire Unit Length. The determination of the slide wire unit length required only that the resistance of an accurately known length of slide wire be known. The error analysis in Appendix B set the accuracy required.

Apparatus. The apparatus for the unit length determination shown in Figure 9, consisted of an optically flat surface over which the wire was held in slight tension by two springs and an upper piece which served as a holder and spacer for two knife edges.

EIGURE 9. Slide Uire Calibration Apparatus

Procedure. The knife edges in Figure 9 were lowered onto the slide wire which was being held on the optically flat surface. Then in the manner used with a four lead Platinum resistance thermometer the resistance between the knife edges was measured with the Mueller G-2 bridge. Then the distance between the scratches, which the knife edges left on the slide wire, was measured with the cathetometer. Witin these two cuantities known the unit length of the slide wire was calculable.

Results. The slide wire unit length for three different sections of Karma wire, all cut from the same spool in a sequential manner, was found to be 3.87800 $\pm 0.00002 \mathrm{~cm} / \mathrm{ohm}$.

II. MANGANIN CELL CALIBRATION

The Manganin cell was calibrated against an AMINCO dead weight tester. The range of calibration was $0-100,000$ psig. It was used as the pressure measurement device above 50,000 psi.

Apparatus

The Manganin cell was attached to the AMINCO dead weight tester via $100,000 \mathrm{psi}$ test line. The Manganin cell was maintained at $25.00 \pm 0.01^{\circ} \mathrm{C}$ in an AMINCO temperature bath. The apparatus is shown in Figure 10.

PIGURE 10. Manganin Cell Calibration Apparatus

Procedure

The zero point resistance at atmospheric pressure was determinedwith the Muellor G-2 brideco Thon with a load applied to the dead weight tester the prossurc was increased until the piston fleated. At this point the unit was at a known pressure ± 50 psi。 Acain the resistance of the cell was determined. This procedure was repeated at 5000 pas intervals Lotween 10,000 and 100,000 psi.

Results

The Manganin cell pressure coefficient was found to be 58260. \pm 100. psilohm.

III. N-HEPTANE CONSISTENCY

With all calibrations complete it was decided to make a series of experimental runs on n-Heptane at $30.0,40.0$, $50.0,60.0^{\circ} \mathrm{C}$ to allow a check with other investicetors. At $30.0^{\circ} \mathrm{C}$ the data of Boelhouwer (5) and Doolittle (14) were combined and compared with the experimental values for n-Heptane. Similarly at $40.0^{\circ} \mathrm{C}$ the data of Eduljee (17), at $50.0^{\circ} \mathrm{C}$ the data of Doolittle, and at $60.0^{\circ} \mathrm{C}$ the data of Boelhouwer and Eduljee. In all cases the single and combined data sets were found to be within their
estimated experimental error of the data taken in this study. It should be noted that this wes done only as a consistancy check, since the celibrations describod above make all data taken in this study absolute.

DATA REDUCTION AND RESULTS

The primary quantities measured during the experimentation were: resistance of the slide wire segment between bellows and contact, and resistance of the manganin pressure tronsducer. Conversion of the ram change in resistance between the bellows and the fixed contact data to compression and relative volume data requires: the fiducial density, the sample weicht, the slide wire resistivity, and the bellows cross sectional area. The bellows change in length is determined from the change in resistance between the bellows and the fixed contact multiplied by the slide wire unit length. Detailed data reduction is covered in Appendix A. Raw change in resistance data is tabulated in Appendix F.

The second section covers conversion of Manganin cell reading to pressurc. The last section of this chopter contains a tabulation of the compression and relative volume versus pressure results.

I. VOLUME MEASUREMENT REDUCTION

Conversion of the resistance change data to compressions (56) is accomplished through the use of equation A-1:

$$
\frac{\Delta V}{V_{0}} \quad \frac{\Delta L_{R} \cdot A_{P, t} \cdot \rho_{0, t}}{W}
$$

The change in volume $\triangle V$ accounts for the product ΔL_{B}. Ap,t which is the bellows change in length multiplied by the bellows' cross sectional area. The initial volume, V_{0}, is the sample weight w divided by the fiducial density $\rho_{0, t}$ -

The two terms which make up the change in volume part of VI-1 are a composite of several terms which include temperature and pressure corrections. The terms which make up the initial volume part of VI-l are directly measured experimental quantities and require no corrections. The composite terms are considered below.

Bellows Change in Length. The change in bellows' length is calculated from the measured slide wire resistance change multiplied by the slide wire unit length:

$$
\Delta L_{B}=Q \cdot\left(R_{a, p}-R_{a, 0}\right)+C_{p} .
$$

Whero: A is the alide miro unit length (dofined in Chaptor V) o Pa,p - Pago 1 s change in blide mire resistanco betrion the bolloms and flyed contact mith pressuro and C_{p} is a symbolic ropresontation for the pressure correction. The pressure corroction $1 s$ due to the difference in compresolbility of the Keran slide wire and the Brass carrier to which the bellowe and fixed contact are attached. This arrancoment cen bo soen in Figure 1 . This correction is additivo and is detailed in Appendix A. The correction is:

$$
\begin{equation*}
C_{p}=L_{b r, p}-L_{k a, p} \tag{VI-3}
\end{equation*}
$$

Where: Lbr,p is the uncompressed length of the brass carrier which when compressed corresponds to the slide wire length between the fixed contact and bellors, and
$L_{k a, p}$ is the uncompressed length of Karma slide wire which when compressed corresponds to the slide wire length between the fixed contact and bellows. Bellows' Cross Sectional Arcs. The bellows cross sectional area at atmospheric prossure and $25.00^{\circ} \mathrm{C}$. Ao,o , is a calibration constant. There are tivo corrections that must be made to this quantity. One is due to thermal expansion at temperatures other than $25.00^{\circ} \mathrm{C}$ and one is due to its compression due to pressure.

The correction due to thermal orpanaton ls:

$$
A_{0, t}=A_{0,0}\left(1.0+2.0 a_{\text {br }}(t-25.00)\right)
$$

Where: Aogt is the new bellows cross sectional area at temperature t and $d_{\text {br }}$ is the linens coefficient of thermal expansion for brass. The value of don used is $19.1 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ (26).

The correction due to compression is:

$$
\begin{equation*}
A_{p, 0}=A_{0,0}\left(1.0-\frac{2.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right) \tag{VI-5}
\end{equation*}
$$

Where: Apo is the new bellows' cross sectional area at pressure P_{0} and $A_{b r}$ and $B_{b r}$ are best fit constants, as determined by Bridgman (7). for the relative compression of Brass.

Equation VI-1 With Correction. Equation VI-1, with the correction from above, can be written:

$$
\begin{align*}
& \frac{\Delta V}{V_{0}}=\Omega \cdot\left(R_{a, p}-R_{a, 0}\right)+\left(L_{b r, p}-L_{k_{a, p}}\right) \cdot A_{0,0} . \\
& \left(1.0+2.0 \alpha_{b r} \cdot(t-25.00) \cdot\left(1.0-\frac{2.0}{3.0}\left(A_{b r} \cdot P\right.\right.\right. \\
& \left.\left.-B_{b r} \cdot P^{2}\right)\right) \cdot e_{o s t} / w . \tag{VI-6}
\end{align*}
$$

IT. PRESSURE MEASUREMENT REDUCTION

For isotherms on which the pressure excecded 50.000 psi it ras necescary to uso the Mancanin cell. The procedure was to moasure the ccll's resistance, $R_{m n o}$, at one atmosphere prossure prior to starting the isotherm and then to measure the cellis resistance. Pungp ot the pressure in question. The difference in these two resistance values multiplied by thc Manganin cell pressure coefficient (see Chapter V) gives the system pressure, or

$$
P=\left(R_{m_{n}, p}-R_{m_{n}, 0}\right) \cdot 58260 \frac{\text { psi }}{\text { ohm }} .
$$

$$
(V I-7)
$$

III. RAV RELATIVE VOLUME DATA

The raw resistance data of Appendix F has been converted to relative volumes without smoothing. The relative volume is the compression determined by using equation VI-6 subtracted from 1.00000 .

The following table contains compression and relative volume data versus pressure for all of the systems and mixtures run. That is: isotherms of 25.00, 45.00 .65 .00 , and $85.00^{\circ} \mathrm{C}$ for pure n-Decane, n-Dodecanc,
n-Tetredecano, and n-Hexadecane; hinory mixtures of 0.5000 mole rraction nanceanc and naTctradecanc and of n-Dodecanc and nollexadecono: and a tomary mixturc of 0.6000 mole fraction n-Decenc with 0.2000 mole fraction each of n-Tetradcone and n-fexadecanc.

N－DECANE NT 25．OO DEGORO

DENSITY $=0.72508$ GMOAGOEO

COMPRESSION	RELATRVE
CC／CC	VOLUME
0.0	1.00000
0.00211	0.09789
0.00402	0.99598
0.00754	0.99246
0.01021	0.98979
0.01377	0.98623
0.02196	0.07904
0.02959	0.97041
0.03823	0.96177
0.04560	0.95440
0.05235	0.94765
0.05891	0.94109
0.06508	0.93492
0.07040	0.92960
0.07576	0.92424
0.08080	0.91920
0.08635	0.91365
0.09145	0.90855
0.09803	0.90197
0.10522	0.89478
0.11246	0.88754
0.11874	0.88126
0.12518	0.87482

SAMPLE HETGHT $=2.07530$ GM．
（PSI）
1407
292．07
52307
1006.7

1401．？
109407
30ヶ人7
452407
6094．7
7584。7
9024.7
10504.7

12064．？
13584。7
15034。？
16534.7

1801407
19994．？
22014.7
25104.7

27994．7
31014．7
$3395<.7$
（PATM）

$$
\begin{aligned}
& 1.0 \\
& 19.0 \\
& 3506 \\
& 60.5 \\
& 9506
\end{aligned}
$$

12507
217． 6
307.9

4） 1407
516.1

61601
71906
821.0

92604
1023．0
1125.1
1225.8 1360.6
1498.0

171406
1904。？
2110%
2310.5

N-DECANE AT 45.00 DEGOCO

DENSITV $=.71059$ GM。/C.C.

COMPRESSIIO	relative
CC/C.	volume
0.0	1.00000
0.00268	0.99732
0.00428	0.99572
0.00890	0.99110
0.01287	0.98713
0.01625	0.98375
0.02400	C. 0? 0.90
0.03392	0.96608
0.04242	0.95758
0.05142	0.94858
0.05852	0.94148
0.06599	0.93401
0.07200	0.92800
0.07822	0.921 .78
0.08427	0.91573
0.09002	0.90998
0.09437	0.90563
0.10343	0.89657
0.11214	0.88786
0.12033	0.87967
0.12721	0.87279
0.13340	0.86660
0.13987	0.86013
0.14495	0.85386
0.15051	0.84949
0.15535	0.84465
0.16085	0.83915
0.16291	0.83709
0.17068	0.822 .32

SAMPLE HEIGHT $=2.07530 \mathrm{GM}$ 。

P

(PATA)
(PSI)
1.0
20.5
31.3
69.7
100.3
137.1
207.2
312.0
407.2
518.1
616.8
725.?
821.6

92604
1028.5
1142.8
1229.2
1434.7
1634.1
1849.8
2045.8
224.9.2
2450.6
2654.8
2850.1
3061.7

32?4.0
3367.8
3701.0

N－DERANE AT 65．OO DFGO C．O

DENSITV $=.69512$ GM。／CoC。

COMPRESSION	relative
（ CC／CC ）	VOLUME
0.0	1.00000
0.00292	0.99708
0.00544	0.994 .50
0.01014	0.98986
0.01493	0.98507
0.01984	0.98016
0.02727	0.97273
0.03803	0.90197
0.04761	0.95239
0.05729	0.94271
0.06519	0.93481
0.07355	0.92645
0.07965	0.92035
0.08564	0.91436
0.09210	0.90790
0.09867	0.901 .33
0.10324	0.89676
0.11297	0.88703
0.12282	0.87718
0.13020	0.86980
0.13819	0.86181
0.14531	0.85469
0.15071	0.84929
0.15658	0.84214
0.16232	0.83768
0.16711	0.83289
0.17239	0.82761
0.17894	0.82106
0.18511	0.81489
0.18790	0.81210
0.19600	0.80400
0.20366	0.79634

SAMPLE HEIGHT $=2.07530 \mathrm{GM}$ ．
（PSI）

> 14.7
> $327 . ?$
> 492.7
> 1009.7
> 1444.7 2094.7
> 3010.7
> 4534.7
> 5994.7

7604．7
9084。7
10594.7

1211407
13474.7
15039.7

16794．7
17994．7
21004.7

24034． 7
2710407
3014407
3319407
36024。7
39204．7
4206% 。 7
45084.7
48014.7

5259405
56553．3
58781.7
64.661 .3

71077。8

p

（PATM）

$$
1.0
$$

22.3
33.5
68.7

98．3
142.5

209．9
308.6
407.9

517．5
618.2
726.4

024．4
916．9
1023．4
1142.8

1224．5
1429.3
1635.5

184404
2051．2
2250.8
2451.3
2667.7

2862． 3
3067.8

3267．2
3578.8

38く8。2
3999.8
4399.9
4836.5

N－DERANE AT B5．OO DEGO R．O

DENSITY $=.07945 \mathrm{GM.ACOC}$.

COMPRESSTO	RELATIVE
colcc	Vol．une
0.0	1.00000
0.00330	0.09670
0.00551	0.99489
0.01045	0.98955
0.01574	0.98426
0.01979	0.98021
0.03119	Crangil
0.03897	0.96103
0.04658	0.95342
0.05276	0.94724
0.05913	0.94087
0.06553	0.9344 .7
0.07702	0.92298
0.08175	0.91825
0.08624	0.91376
0.09166	0.90834
0.09574	0.90426
0.09969	0.90031.
0.10211	0.89789
0.10770	0.89230
0.11201	0.88799
0.11524	0.884 .76
0.11840	0.88160
0.12236	0.87730
0.12741	0.87259
0.13449	0.86551
0.13969	0.86031
0.14509	0.85491
0.15022	0.84978
0.15615	0.84385
0.15937	0.84063
0.16390	0.83610
0.16676	0.83324
0.17169	0.82831
0.17414	0.82506
0.17942	0.82144
0.18132	0.81868
0.18530	0.814 .70
0.18992	0.81008
0.19730	0.80270
0.20158	0.79842

SAMPLE WERGHT $=2.07530$ GH．
－P 0RsII

$140 ?$	1.0
301.7	20.5
520.7	36.0
90ヶ。？	67.7
1436.7	07.8
¢ $n \rightarrow 0$ ？	13507
	211．0
4024.7	2？309
$514 \leqslant 0$ ？	35001
6134．？	$4 \square_{\text {Po }}$
7054.0	480.0
8034．？	550.1
10184.7	693.0
11064．7	752．9

1204\％。7
$13044_{0} 7$
14134.7

15034．7
15664．7
17014.7
18134.7
19064.7
20134.7
21034.7

22934．7
25014．7 2724． 29054．7 312840 ？ 33014.7 351.64 .7 37014.7 38954．7 40984． 7 4314407 45064．？ 46934．7 49039.7 52798．8 57108.2 61031.4

POATMS
819.6 887.6 961.8 1023.0

1065．9
115708
1234.0

1297．3
1370．1．
1431.3
1560.6
1702.1
1853.9

1977．0
2128.8

2300．
2392．8
2518.7

2650．7
2708．8
2935．8
3066.5
3193.7
3336.9

3592．7
3886．0
4152.9

N-DEGANE AT 85.00 DEGO CO

COMPRESSIION	PEIATIVE	p	
1 CG/CC 1	vosune	(PSI)	(PATM)
0.20158	0.79842	61031.4	4152.9
0.21106	0.78894	68585.5	4666.9
0.21314	0.78686	68080.8	$469 \overbrace{0}$
0.21859	0.7814 .1	7401300	5036.3
0.21961.	0.78030	7571308	5152.0
0.23959	0.76041.	95120.!	6437301

N－DODEGANE AT 25.00 DEG。 C。

```
DENSITY = .74490 GM./C.C.
```

COMPRESSIO
CC／CC
0.0
0.00183
0.00399
0.00593
0.00916
0.01203
0.01819
0.02646
0.03403
0.04110
0.04786
0.05369
0.05975
0.06487
0.07020
0.07468
0.07958
0.08347
0.08860

RELATIVE VOLUME
1.00000
0.99817
0.99601
0.99407
0.99084
0.98797

C， 0 ค181
0.97354
0.96597
0.95890
0.95214
0.94631
0.94025
0.93513
0.92980
0.92532
0.92042
0.91653
0.91140

SAMPLE HEIGHT $=2.18552 \mathrm{GM}$ 。
（PSI）
14．7
252.7 17．2
425.729 .0
$999.7 \quad 68.0$
1462.7 99．5
$1974.7 \quad 134.4$
2014．7 205．1
$4528.7 \quad 307.9$
5984.7407 .2

7544．7 71304
9054．0 7 616．1
$10594.7 \quad 718.2$
$12034.7 \quad 818.9$
13614．7 926．4
$15024.7 \quad 1022.4$
16604.71129 .9

18024． $7 \quad 1226.5$
$19484.7 \quad 1325.9$
$21014.7 \quad 1430.0$
（PATM）
1.0

N-DODECANE AT 45.00 DEG。C。

N-IDODERANE AT RSOOO DEGO RO

DENSITV $=0$ T1563 GMn/CoCo

COMPRESSIIT	REIAEIVE
1 CC/GC	VOR UME
0.0	1.00000
0.00191	0.99809
0.00380	0.99620
0.00807	0.99193
0.01112	0.98988
0.01605	$0.0 ¢ .95$
0.02332	0.97668
0.03369	0.96631
0.04323	0.95677
0.05100	0.94900
0.05850	0.94150
0.06572	0.93428
0.07239	0.92761
0.07831	0.92169
0.08365	0.91635
0.08922	0.91078
0.09457	0.90543
0.10051	0.89949
0.10684	0.89316
0.11456	0.88544
0.12319	0.87681
0.12910	0.87090
0.13592	0.86408
0.14154	0.85777
0.14766	0.85234
0.15261	0.84739
0.15820	0.84180
0.16286	0.83714
0.16753	0.83247

SAMPIE HERGHT $=2010552$ GMO
n-DODECANE AT 85.00 DEG. C.

DENSITY $=.70082 \mathrm{GM}. / \mathrm{C}_{\mathrm{D}} \mathrm{C}$.
COMPRESSION
$($ CC/CC $)$

relative
 volume

SAMPLE WEIGHT $=2.18552$ GM.
0.0
0.00305
0.00596
0.01049
0.01464
0.01936
0.02844
0.03905
0.04851
0.05868
0.06595
0.07376
0.08087
0.08684
0.09374
0.10505
0.11113
0.11770
0.12622
0.13427
0.14097
0.14770
0.15340
0.16011
0.16473
0.17084
0.17520
0.18560
0.19228
1.00000
0.99695
0.99404
0.98951
0.08536
0.05064
0.97156
0.96095
0.95149
0.94132
0.93405
0.92624
0.91913
0.91316
0.90626
0.89495
0.88887
0.88230
0.87378
0.86573
0.85903
0.85230
0.84660
0.84214
0.83527
0.82916
0.82480
0.81440
0.80772

p

(PSI)
(PATM)

N-HEXADECANE AT 25.00 DEG. C.

DENSITY $=.75888$ GM./C.C.

COMPRESSION	relative
CC/CC)	VOLUME
0.0	1.00000
0.00048	0.99952
0.00238	0.09762
0.00342	0.99658
0.00630	0.99370
0.01003	0.98997
0.01212	0.98788
0.01591	0.98409
0.01779	0.98221
0.02182	0.97818
0.02291	0.97709
0.02630	0.97370
0.02740	0.97260
0.03087	0.96913
0.03187	0.96813
0.03565	0.96435
0.03694	0.96306
0.04010	0.95990
0.04092	0.95908
0.04436	0.95564
0.04904	0.95096

SAMPLE WEIGHT $=2.24803 \mathrm{GM}$.

p

(PSI)
1.4 .7
129.7
337.7
484.7
1030.7
1447.7
2054.7
2534. 7
3064.7
3564.7
4064.7
4450.7
504.4.7
5564.7
6074.7
6544.7
7044.7
74.74.7
7984.7
8584.7
9594.7
1.0
(PATM)
8. 8
23.0
33.0
70.1
98.5
139.8
172. 5
208.5
242.6
276.6
311.3
343.3
378.7
413.4
445.3
479.4
508.6
543.3
584.2
652.9

M-HEKADERANE NT <S.OOO DEGの C.

OENSITY $=0.74477$ GHOROCO
COMPRESSION REIATIVE
(CG/GC, VRLUME
0.0
0.00189
0.00266
0.00403
0.00774
0.01079
0.01411
0.01751
0.02037
0.02354
0.02601
0.02913
0.03090
0.04123
0.04580
0.05039
0.05490
0.05832
0.06299
0.06643
0.07011
0.07305
0.07713
0.07937
0.08330
0.08702
0.00955
0.09239

$$
0.09484
$$

$$
0.09762
$$

$$
0.10101
$$

SAMPEE WERGHT $=2.24803$ GMO

(PSI)

р

(PATMA
l台o?

$$
1.0
$$

$$
17607 \quad \operatorname{ling}
$$

$$
344.0 \quad 2305
$$

$$
561.7 \quad 3802
$$

$$
1096.7 \quad 7400
$$

$$
1429.7 \quad 97.2
$$

$$
205607 \quad 13908
$$

$$
2564.07 \quad 17405
$$

$$
3084.7 \quad 209.9
$$

$$
3624.07 \quad 246.6
$$

$$
404607 \quad 27502
$$

$$
4450.7 \quad 310.6
$$

$$
5024.7 \quad 34.1 .9
$$

$$
7084.7 \quad 482.1
$$

$$
796407 \quad 542.0
$$

$$
9154.7 \quad 62209
$$

$$
10014.7 \quad 681.5
$$

$$
1111407 \quad 756.3
$$

$$
1205407 \quad 820.3
$$

$$
1316407 \quad 895.8
$$

14004.7
953.0
1026.4
1000.

115404
122.7.2
1293.
1363.3

144506
1500 ? ?
156400
1638.0

N-HEXADECANE AT 65.00 DEG. C.

DENSITY $=.73057$ GM./C.C.

0.0
0.00137
0.00397
0.00829
0.01570
0.02235
0.02878
0.03402
0.03958
0.04574
0.05032
0.05574
0.05998
0.06438
0.06809
0.07224
0.07565
0.07992
0.08327
0.08689
0.08995
0.09302
0.09628
0.09924
0.10239
0.10459
0.10801
0.11038
0.11299
0.11464
0.11790
0.11967
0.12255
0.12389
0.12642
0.12864
0.13100
0.13295
0.13577
relative volume
1.00000
0.99863
0.99603
0.99171
0.98430
0.97765
0.97122
0.96598
0.96042
0.95426
0.94968
0.94426
0.94002
0.93562
0.93191
0.92776
0.92435
0.92008
0.91673
0.91311
0.91005
0.90698
0.90372
0.90074
0.89761
0.89541
0.89199
0.88962
0.88701
0.88536
0.88210
0.88033
0.87745
0.87611
0.87358
0.87196
0.86900
0.86705
0.86473

SAMPLE WEIGHT $=2.24803$ GM.

p

(PSI)
$\begin{array}{rr}14.7 & 1.0 \\ 199.7 & 13.6 \\ 507.7 & 34.5 \\ 1055.7 & 71.8\end{array}$
$2094.7 \quad 142.5$
$3104.7 \quad 211.3$
4034.7 274.5
$5074.7 \quad 341.9$
$6014.7 \quad 409.3$
$7134.7 \quad 485.5$
$7994.7 \quad 544.0$
$9058.7 \quad 622.9$
$10054.7 \quad 684.2$
$11044.7 \quad 751.5$
$12034.7 \quad 818.9$
$13094.7 \quad 891.0$
$\begin{array}{ll}14024.7 & 954.3\end{array}$
$15084.7 \quad 1026.4$
$16084.7 \quad 1094.5$
$17214.7 \quad 1171.4$
$18064.7 \quad 1229.2$
19154.7
20104.7
21154.7
22134.7
23034.7
24084.7
25084.7
26044.7
27114.7
28094.7
29114.7
30134.7
31124.7
32034.7
33084.7
34114.7
35064.7
36004.7
(PATM)
1303.4
1368.0
1439.5
1506.2
1567.4
1638.9
1706.9
1772.2
1845.0
1911.7
1981.1
2050.5
2117.9
2179.8
2251.3
2321.4
2386.0
2450.0

N－HEKADECANE AT 85.00 DEG。 C．

DENSITY $=.71625$ GM．／C．C．

COMPRESSION CC／CC	RELATIVE VOLUNE
0.0	
0.00112	1.00000
0.00543	0.99888
0.00914	0.99457
0.01343	0.99086
0.01738	0.98657
0.02620	0.98202
0.03214	0.97360
0.03908	0.96786
0.04483	0.95517
0.05577	0.94423
0.06112	0.09388
0.06650	0.93350
0.07083	0.92917
0.07538	0.92462
0.07902	0.92098
0.08307	0.91693
0.08691	0.91309
0.09103	0.90897
0.09433	0.90567
0.09804	0.90196
0.10154	0.89846
0.10452	0.89548
0.10772	0.89292
0.11219	0.88781
0.11923	0.00077
0.12370	0.87630
0.12992	0.87008
0.13425	0.86575
0.13005	0.86095
0.14240	0.85760
0.14724	0.85276
0.15038	0.84962
0.15507	0.84493
0.15848	0.84152
0.16379	0.03774
0.16355	0.83645
0.16040	0.83160
0.17090	0.82910
0.17475	0.82525

SAMPLE HEIGHT $=2.24803$ GM．
（PATM）

14.7	1.0
139.7	9.5
560.7	38.6
1005.7	68.4
1466.7	99.8
1994．7	135.7
3160？？	215.3
4039.7	274．9
506407	3乐乡06
6054．7	412.0
802 今ol	54600
9058.7	616.0
10114．7	680． 3
$1104 \leqslant 07$	752.5
1211.407	824．4
130140 ？	885.6
14154．7	963.2
15064	02

1025.1
$1614407 \quad 1090.6$
$1702407 \quad 1158.5$
$18114.7 \quad 1232.6$
$1908607 \quad 1290.6$
$2021407 \quad 137505$
$2107407 \quad 143400$
2317 人。 $\quad 157609$
2501407 1702． 1
2701s． 1838.2
291140？100201
$3121607 \quad 212 \mathrm{~S}_{0} 0$
3301．6．7 224605
35234．7 2397．6
$3701407 \quad 251807$
39039．7 2650．5
$4102407 \quad 2791.06$
$4315407 \quad 2936.5$
$4511407 \quad 306909$
$4710407 \quad 3205.3$
4904 e． 7 3337．3
$50709.3 \quad 3450.5$
$53192.9 \quad 3619.5$

N－TETRADECANE AT 25.00 DEG。C．

DENSITY $=.76968$ GM。／C．C．

COMPRESSION	relative
CC／CC ）	volume
0.0	1.00000
0.00139	0.99861
0.00185	0.99815
0.00252	0.99748
0.00350	0.99650
0.00359	0.20641
0.00414	0.99586
0.00496	0.99504
0.00478	0.99522
0.00608	0.99392
0.00592	0.99408
0.00705	0.99295
0.00717	0.99283
0.00904	0.99096
0.00818	0.99182
0.01059	0.98941
0.01028	0.98972
0.01333	0.98667
0.01292	0.98708
0.01609	0.98391
0.01811	0.98189
0.01762	0.98238
0.02101	0.97899
0.02346	0.97496

SAMPLE HEIGHT $=2.26350 \mathrm{GM}$ 。

	P
（PSI）	
	（PATM）
14.7	
91.7	1.0
164.7	6.2
244.7	11.2
312.7	16.7
395.7	21.3
470.7	26.9
646.7	32.0
688.7	44.0
770.7	46.9
871.7	52.4
934.2	59.3
1070.7	63.7
1230.7	72.9
1237.7	83.7
1516.7	84.2
1734.7	103.2
2084.7	118.0
2184.7	141.9
2564.7	148.7
2994.7	174.5
3194.7	203.8
3514.7	217.4
4064.7	239.2
	276.6

N－TETRADECANE AT 45．00 DEG。C．

```
DENSITY = .75586 GM./C.C.
```

COMPRESSIDN	RELATIVE
CC／CC	VOLUME
0.0	
0.00085	0.00000
0.00152	0.99915
0.00412	0.99848
0.00637	0.99363
0.01273	0.90727
0.01915	0.98085
0.02479	0.97521
0.02898	0.97102
0.03430	0.96570
0.03888	0.96112
0.04379	0.95621
0.04740	0.95260
0.05155	0.94845
0.05560	0.94440
0.05961	0.94039
0.06214	0.93786
0.06628	0.93372
0.06865	0.93135
0.07387	0.92613

SAMPLE HEIGHT $=2.26350 \mathrm{GM}$ 。

p

（PSI）
14.7
（PATM）
152.7
274.7
548.7

1034．7
1984．7
200ヶ．7
4044．7 5064．7 6024．7 7144.7 8034.7
9114.7
10014.7
11084.7
12084.7

1308\％．7
14094.7

15036．7
16014.7
1.0
10.4
18.7
37.3
70.4
135.1
210.6
275.2
344.06
410.0
486.2
548.8
620.2
681.5
754.3
822.3
890.4
959.1
1023.0
1089.7

N-TETRADECANE AT 65.00 DEG. C.

N-TETRADECANE AT 85.00 DEG. C.

DENSITY $=.72810$ GM./C.C.
 (CC/CC)
0.0
0.00076
0.00207
0.00467
0.00864
0.01652
0.02453
0.03268
0.03741
0.04251
0.04835
0.05296
0.05879
0.06247
0.06829
0.07080
0.07578
0.07890
0.08332
0.08798
0.09389
0.09973
0.10691
0.11163
0.11778
0.12161
0.12670
0.13221
0.13533
0.13990
0.14345
0.14770
0.15079
relative volume
1.00000
0.99924
0.99793
0.99533
0.99136
0.98348
0.97547
0.96732
0.96259
0.95749
0.95165
0.94704
0.94121
0.93753
0.93171
0.92920
0.92422
0.92110
0.91668
0.91202
0.90611
0.90027
0.89309
0.88902
0.88222
0.87839
0.87330
0.86779
0.86467
0.86010
0.85655
0.85230
0.84921

SAMPLE WEIGHT $=2.26350$ GM.

p

(PSI)
14.7
1.0
55.7
3.8
132.7
534.7
9.0
36.4
939.7
63.9
2084.7141 .9
$3094.7 \quad 210.6$
4504.7
5064.7
306.5
344.6
6074.7
413.4
7114.7
484.1
$8034.7 \quad 551.5$
9174.7
624.3
10094.7
11024.7
686.9
750.2
12114.7
824.4
13114.7
892.4
14114.7
15194.7
16584.7
18014.7
20094.7
22114.7
24164.7
26134.7
28114.7
30104.7
32154.7
34214.7
36194.7
38234.7
40094.7
42084.7
(PATM)
1033.9
1128.5
1225.8
1367.4
1504.8
1644.3
1778.4
1913.1
2048.5
2188.0
2328.2
2462.9
2601.7
2728.3
2863.7

```
    MIMTURE 0.5000 MOLE FRAGTION N-DEGANE AND N-TETRADECANE
    AT 25.00 DEG.G.
DENSITY = .74490 GM./C.C.。
    SAMPLE HEIGHT = 2.18239 GM.
```

COMPRESSION
(CC/CC)
0.0
0.00089
0.00223
0.00535
0.00840
0.01113
0.01495 0.01702 0.02018 0.02208 0.02604 0.03030 0.03637 0.03963 0.04494 0.04767 0.05286 0.05601
0.06017
0.06317
0.06755
0.07033
0.07425
0.07664
0.07979
relative volume
1.0nのno
0.99911
0.99717
0.99405
0.091 .60
C.00037
0.98505
0.98298
0.97982
0.97792
0.97396
0.96970
0.96363
0.96037
0.95506
0.95233
0.94714
0.94399
0.93983
0.93683
0.93245
0.92967
0.92575
0.924 .17
0.92021
(PSI)
p
(PATM)
14.07
1.0

25307
17.3

54507
37.1

10x6.7
70.5
14.50.7
99.1
137.1
176.6

259407
208. 5
3064.7
239.8
273.9

402407
312.6
377.3

44807
51401
585.5
646.1
71.7.5
786.9
852.3
921.0
991.1.
1058.4
1131.2
1183.0
1257.8

```
MIXTURE 0.5000 MOLE ERNSTION N-DEGAME AND M-TETRADECANE
    AT <5.00 DEG。C.
```

DENSITY $=.73030 \mathrm{GM} / \mathrm{CO} . \mathrm{C}$ 。

COMPRESSION

RELATIVE 1 CC/CC
0.0
0.00163
0.00400
0.00773
0.01137
0.01533
0.02182
0.02968
0.03883
0.04536
0.05335
0.05973
0.06615
0.07184
0.07680
0.08200
0.08736
0.09565
0.10406
0.11117
0.11952

VOLUME.
1.00000
0.99837
0.99600
0.99227
$0.000,3$
$0.906,77$
0.97818
0.97032
0.96117
0.95464
0.94665
0.94027
0.93385
0.92816
0.92320
0.91799
0.91264
0.90435
0.89594
0.88883
0.88048

SAMPLE HEIGHT $=2.18239 \mathrm{GH}$

p

(PSI)

1407
1.0
249.7
17.0
488.7
33.3
999.7
68.0
98.4
137.8
210.6 304.5 411.0 504.5 612.7 723.6 823.0 932. 5
1018.3
1130.6 1230.6 1431.3 1632. 7 1838.2 2047.8

MIXTURE 0.5000 MOLE CRACTION M-DECANE AND N-TETRADECANE AT 65.00 DEG。C.

DENSITY $=.71563$ GM。/C.C.

COMPRESSION	RELATIVE
CC/CC	VOLUME
0.0	$1.000 \cap 0$
0.00208	0.99792
0.00416	0.99584
0.00880	0.09790
0.01273	0.98727
0.01585	0.98415
0.02481	0.97519
0.03483	0.96517
0.05149	0.94851
0.05875	0.94125
0.06589	0.93411
0.07292	0.92708
0.07822	0.92178
0.08421	0.91579
0.08921	0.91079
0.09534	0.90466
0.10070	0.89930
0.10751	0.89249
0.11540	0.88460
0.12289	0.87711
0.12924	0.87076
0.13740	0.88260
0.14400	0.85600
0.14864	0.84996
0.15347	0.84653
0.15951	0.884049

SAMPLE HEIGHT = 2.18239 GM.
(PST)
(PATMD

14.7	1.0
263.7	17.9
479.7	32.6
1031.7	70.2
1400.7	101.4
1084.7	135.1
3144.7	214.0
4484.7	305.2
7624.7	518.8
9024.7	614.1
10614.7	722.3
12130.7	823.0
13634.7	927.8
15084.7	1026.4
16624.7	1131.2
18144.7	1234.7
21124.7	1437.4
22054.7	1500.7
25284.7	1720.5
27944.7	1901.5
31144.7	2119.3
34134.7	2322.7
37114.7	2525.5
40054.7	2725.6
43014.7	2927.0

MIXTURE 0.5000 MOLE FRACTION N－DEG．ANE AND N－TETRADEGANE

DENSITV $=.70082 \mathrm{GM} / \mathrm{C}$－ C.
COMPRESSION
$(C G / C C)$

0.0	1.00000
0.00099	0.99901
0.00161	0.99839
0.00239	0.99761
0.00251	0.99749
0.00386	0.89614
0.00488	0.99512
0.00634	0.99366
0.00738	0.99262
0.00818	0.99182
0.00972	0.99028
0.01016	0.98984
0.01046	0.98954
0.01302	0.98698
0.01503	0.98497
0.01872	0.90128
0.02737	0.97263
0.03806	0.96194
0.04955	0.95045
0.05897	0.94103
0.06524	0.93476
0.07324	0.92676
0.08029	0.91971
0.08666	0.91246
0.09305	0.90695
0.09706	0.90294
0.10357	0.89643
0.10995	0.89005
0.11736	0.88264
0.12161	0.87839
0.12798	0.87202
0.13507	0.86493
0.14266	0.85734
0.14814	0.85186
0.15607	0.84393
0.15989	0.84011
0.16777	0.83223
0.17043	0.82957
0.17685	0.82315
0.17981	0.82019
0.18529	0.81471

SAUPM GEIGHT $=2.18239$ GH．
relative VOlune
1.00000

p
（PSI）
1407
148.7
225．7
265.7
206.7

394． 7
$52 n \cdot 7$
616.7
717.7
818.7
938.7
1046.2
1042.7

1267．7
1490.7
2014.7

306\％．7
452 s． 7
6134.7

762心．7
9014.7

10704。7
1211408
1361407
1516407
16644． 7
18024．7
20184．7
22194．7
24034．7
26024．7
29244．7
32014。？
35094．7
3794． 0.7
41084.7

43994． 7
46954.7
$4991 \% 07$
52868．9
55989.7
（PATMD

$$
1.0
$$

$$
9.0
$$

$$
1504
$$

$$
18.1
$$

$$
20.9
$$

$$
26.9
$$

$$
350<
$$

$$
42.0
$$

$$
48.8
$$

$$
55.7
$$

$$
63.9
$$

$$
70.9
$$

$$
71.0
$$

86.3
101.4

137．1
208．5
307． 9
41.704
518.8
613.4
728.8

824．4
926.4

1031．9
1132.6
1226.5
1373.5

1510．3
1635.5
1770.9
1990.0
2178.5

2308．0
2502．0
2795.6

2993．7
31.9501
3396.5
3597.5

3809．9

MIXTURE 0.5000 MOLE FRAGTION N-DFGANE AND N-TETRADECANE AJ 85.00 DEG。C.

COMPRESSION	rehative		
$($ CG/CC	volume	(BCT)	(PATM)
0.18529	0.814 .78	55989.7	3809.9
0.18913	0.81087	58787.6	4000.2
0.19365	0.80635	62301.	4.284808

MIXTURE 0.5000 MOLE FRAGTION M－DODECAME AND M－HEXADEGANE $\wedge 25.00$ DESA R．o

DENSITV $=0.75888$ GMOACOC．

COMPRESSION	
CGICC	RELATIVE
VOLUME	

SAMPLE HETGHT $=2.23855$ GM．
－P
（PSI）
（PATM）
14．7
1.0
$250.7 \quad 1706$
$50507 \quad 3404$
752．7 51．2．
$1066.7 \quad 72.6$
12：607 B4．7
1485．7 101．？
$190807 \quad 13507$
2584.0717509

3014．7 205．！
3514．7 239．2
3990．2
453407
5064．7
5584。？
$604<.7$
6564.7

706\％。7
7524。7
808ヶ。7

27101
308.6
344.06
300.0
411.3

44607
480.7
512.0
550.1

```
MIXTURE 0.5000 MDLE FRACTITON N-DODECANE AND N-HEXADEGANE \(A T 45.00\) DEG。G。
```


mixture 0.5000 mole fraction n-dodecane and n-hexadecane AT 65.00 DEG。C。

DENSITY $=.73057 \mathrm{GM} . / \mathrm{COC}$
SAMPLE WEIGHT $=2.23155 \mathrm{GM}$.

COMPRESSION	RELATIVE
CC/CC	VOLUME
0.0	
0.00157	0.00000
0.00405	0.99043
0.00787	0.99994
0.01097	0.98903
0.01491	0.98599
0.02251	0.97749
0.03150	0.96850
0.04027	0.95973
0.04817	0.95183
0.05572	0.94428
0.06164	0.93836
0.06788	0.93212
0.07390	0.92610
0.07902	0.92098
0.08512	0.91488
0.08975	0.91025
0.09631	0.90369
0.10171	0.89829
0.10726	0.89274
0.11171	0.88829
0.11952	0.88048
0.12632	0.87368

(PSI)

P
(PATM)

$$
\begin{array}{r}
1.0 \\
17.2 \\
35.0 \\
68.7 \\
9701 \\
13701 \\
208.5
\end{array}
$$

$$
307.9
$$

$$
409.3
$$

$$
50504
$$

$$
6 \pi 705
$$

$$
720.9
$$

$$
812.1
$$

$$
92404
$$

$$
1088.3
$$

1130.6
1221.?
1368.?
1408.0
1640.2
1753.2
1971.6
21.68.9

MIXTURE 0.5000 MOLE FRAC，TITON H－DODEGAME AND H－MEKADEGANE AT 35．00 DEG。G。

DENSITY $=.71625 \mathrm{GM} . / \mathrm{CO}_{0} \mathrm{G}$
COMPRESSION RELATIVE
1 CC／CC 1 VOLUME
0.0
0.00158
0.00492
0.00874
0.01269
0.01732
0.02488
0.03533
0.04427
0.05365
0.06152
0.06862
0.07552
0.08174
0.08684
0.09265
0.09779
0.10414
0.11012
0.11647
0.12147
0.12685
0.13122
0.13798
$0.14 \mathrm{C}_{3} 14$
0.15009
0.15518
0.16133
0.16584
1.00000
0.99842
0.99508
0.99126
0.98731
0.98268
0.03512
0.96467
0.95573
0.94635
0.93848
0.93138
0.924 领
0.91826
0.91316
0.90735
0.90221
0.89586
0.88988
0.88353
0.87853
0.87355
0.86878
0.86167
0.85586
0.84 .99 ！
0.84382
0.83867
0.83416

SAMPLE HETGHT $=2.23155 \mathrm{GH}$ ．
（PSI）
（PATMD

MIMTURE 0.6000 MOAE FRACTION M-DEEANE O D. 2000 MOLE
FRACTION M-TETRADEGANF AND H-HEKADENANE AT 25.00 DEGO C。

```
DENSITV = .74490 GM./C.C.
```

COMPRESSION RELATRVE
1 CC/CG VOLUME

SAMPAE HETGHT $=2.14 .735$ GH.
0.0
0.00188
0.00341
0.00726
0.00950
0.01305
0.01898
0.02507
0.03032
0.03554
0.03882
0.04486
0.04855
0.05318
0.05643
0.06088
0.06383
0.06769
0.07046
0.07337
0.07710
1.00000
0.99012
0.99659
0.99274
0.99050
0.08095
0.00202
0.97493
0.96968
0.96446
0.96118
0.95514
0.95145
0.94682
0.94357
0.93912
0.93617
0.93231
0.92954
0.92663
0.92290

p

(PSI)
IPATHI

$$
1407
$$

$$
1.0
$$

$$
24807
$$

513.7
16.7
1012.7
35.0
1473.7
68.9
100.3
2034.7

303407
40540 ?
5174.7
6034.7
6944.7
8034.7
9064.7
10114.7
11054.7
12054.7
13034.7
132. 1
206.5
275.9
352.1
480.6
472.6
550.8
616.8
680.3
752.2
82.0.3
887.0
14014.7
953.6
1025.8
1076.1
1154.4
MIXTURE 0.6000 MOLE FRACTROH N-DEC,ANE, D. 2000 MOLE FRACTION M-TETRADECANE MIND M-HEKADEGANE AT \&5.OO DEGO R.

DENSITV $=.73030 \mathrm{GM} / \mathrm{GOCO}$
SAMPLE HEIGHT $=2.14 .335 \mathrm{GM}$.

COMPRESSION	REL \(
) TIVE			
1 CG/CC 1	volume	(PSI)	(PATM)
0.0	1.00000	14.7	1.0
0.00201	0.00709	272.7	18.6
0.00519	0009488	54.407	37.1.
0.00042	0.99158	985.?	67.1
0.01127	0.90073	1 asko 7	97.5
0.01470	0.0050	202:-7	137.8
0.02176	0.97824	3094.7	210.6
0.03114	0.96886	4534.7	308.6
0.03774	0.96226	5924.7	403.2
0.04755	0.9524 .5	7614.7	51.0 .1
0.05389	0.94611	9084.7	618.8
0.06099	0.93901	10594.7	723.6
0.06628	0.93372	12014.7	817.5
0.07305	0.92695	1369\%。7	931.9
0.07747	0.92253	15014.7	1021.07
0.08341	0.91659	16614.7	1130.6
0.08728	0.91272	18014.7	1225.8
0.09496	0.90504	20194.7	1374.2
0.09959	0.90041	22034.7	1499.4
0.10526	0.894.74	24054.07	1636.8
0.10975	0.89025	26154.7	1770.7
0.11431	0.88569	27914.7	1899.5
0.11853	0.88147	30004.7	2041.7

MIXTURE 0.6000 MMAE FRARTIION M－DEGANE 0.2000 MOLE FRAGTION N－TETRADERANE AND N－HEKADECANE AT 65.00 DEGO GO

DENSITV $=0.71563 \mathrm{GHO} 1 \mathrm{OCO}$

COMPRESSION	RERATIVE
CG／CG	VOLUME
0.0	1.000000
0.00269	0.09731
0.00454	0.99546
0.00926	0.99074
0.01768	0.96932
0.02451	0.07549
0.03440	0.96560
0.04330	0.95670
0.05117	0.94883
0.05967	0.94033
0.06690	0.93310
0.07216	0.92784
0.07965	0.92035
0.08474	0.91526
0.09042	0.90958
0.09524	0.90476
0.10223	0.89777
0.10773	0.89227
0.11415	0.88585
0.11835	0.88165
0.12427	0.87573
0.12843	0.87157
0.13571	0.864299
0.14086	0.85777
0.14750	0.85250
0.15291	0.04709
0.15590	0.84410
0.15927	0.84073

SAMDE HETGHT $=2.04735 \mathrm{GH}$.

p

PPSI（INTMA

14.30	8.00
261． 7	17.8
463.7	31.06
1002.7	68.2 ？
2030．7	13701
205月， 7	201．01

534． 7
$604 \% .7$
7314.7
9054.7
$1054 \% 0$ ？
12130.7
13614.7
15014.7

1661407
17974．7
2017507
22004.7

24174．7
2591407
2821407
2997ヶ。？
3329407
36014．7
3913407
$4234 \% 07$
438140 ？
45944.7
308.0

41103 $4070 ?$ 68601 70．7．5 5 82\％．0 92606
102．0．？
1130.6
1223.1
1372.0
1407.3
1645.0

176306
1989.9
2039.6
2265.6
2450.6

266？．？
2001．
2909．4
312．603

MIKTURE 0.6000 MMNE FRAGTRON M-DECANE 0.2000 MOLE FRACTION M-TETRADEGAME AND M-HEXADECANE AT B5.OO DEGORO

DENSITV $=0.70002 \mathrm{GHO} / \mathrm{GOGO}$

COMPRESSION 1 CC/CE

0.0	1.00000
0.00250	0.99750
0.00589	0.99411
0.00983	0.99017
0.01422	0.98578
0.01863	0.9811
0.02678	0.97322
0.03964	0.96036
0.04861	0.95139
0.05804	0.94196
0.06649	0.93351
0.07394	0.02606
0.08078	0.91922
0.08682	0.91310
0.09273	0.90727
0.09891	0.90109
0.10403	0.89597
0.11038	0.88912
0.11709	0.88291
0.12314	0.87686
0.12829	0.87171
0.13648	0.86352
0.14312	0.85688
0.15004	0.84996
0.15531	0.84489
0.16141	0.83859
0.16647	0.83353
0.17156	0.02884
0.17627	0.82373
0.17992	0.82008
0.18505	0.814 .95
0.18618	0.81382
0.19249	0.80751

renative volume
1.00000
0.99750
0.90017
0.98578
0.981.
0.96036
0.95139
0.94196
0.02606
0.91922
0.90727
0.90109
0.88912
0.07606
0.86352
0.84996
0.83359
0.83353
0.82373
0.82008
0.81382
0.80751

SAMPLE HETGHT $=2.14 .235$ GMO
$\operatorname{CPS} 1$
18.7
251.7
593.7
006.76708
1.406 .7
2024.7
250.0.
4684.7
6034.?
7604.7

917407
10504.7

1211407
13614.7
15014.?
1.6594 .7

181140 ?
20114.7
22004.7

2416\%0?
26028.?
29266.7

3201407
351240 ?
3797407
480640 ?
43934.7
46836.7

4976407
52077.?

5596604
56734.4
61510.5
(PATM)

$$
\begin{array}{r}
1.0 \\
1.708 \\
80.8 \\
67.8 \\
9507
\end{array}
$$

$$
137.8
$$

$$
20 \pi . ?
$$

$$
31.8 .0
$$

$$
480.6
$$

$$
51.705
$$

$$
62402
$$

$$
120.0
$$

$$
82404
$$

$$
9260<
$$

$$
1021.7
$$

$$
1129.2
$$

$$
123206
$$

$$
1368.7
$$

$$
1502.0
$$

$$
168403
$$

$$
177009
$$

$$
1091.3
$$

$$
2178.5
$$

$$
2300.1
$$

$$
2584=0
$$

$$
279403
$$

$$
2980.6
$$

$$
3180.0
$$

$$
338603
$$

$$
356.307
$$

$$
3800.3
$$

3860.5
4185.5

CFAPTER VIT

THEORTES TESTED

Prior to the actual tosting of the thoosios considered in Chapter II titwo nocoseny to rind a nothod to analytically represent the data within oxporinontol orror. This was accomplishe? iy using the Tait equation (59).

The characteristic parametors for tho Praundte partition function were determined in the manner suçosted by Prausnitz and the charactoristic paranctors for the Flory partition function were detormined in the maner suggested by Flory. The characteristic paramotors were also determined in both cases usins the ascumptions civen in Chapter II concerning their temperaturc dopendenco. This determination was accomplished using the Toit equation and a least squares regrossion annlysis on the respective isothermal compressibility equations and equations of state.

The Flory mixing rule is considered and the rosults for the two binary mixtures and ono ternary mixture aro compared with the Flory mixing rule recults.

The next section considers the isothermal compress ibility predicted by the scaled particle theory vorsus that obtained vie the Teit equationo The Scalcd Particle effective spherical redius, A, used in the predictions was determined via regression analysis on the isothemal compressibility.

The last section contains a comparison of the threc liquid theories for a representative case, noDodecanc.

I. TATT ESUATION

The Tait equation which many othor investigators have used was found to fit the present data to within experimental error. The Tait coorficiont J could not be considered temperature indepondent nor a unlvorent constant for data of the accuracy of that takon in this study.

Data Ropresentation

To provide a smooth representation of the data with the Tait equation it was necessary to allow both a and I, to be functions of temperature and compound or composition, but independent of prossuro. The Toit equotion is

$$
\begin{equation*}
-\left(\frac{\partial V}{\partial P}\right)_{T_{,} N_{i}}=\frac{J}{P+L} \tag{VII-I}
\end{equation*}
$$

There is no theoretical relationship known between the equation of state for a liquid and the Tait coefficients J and L. The functional form of the equation is such that L is the pressure at which the isothermal compressibility goes to one-half of the zero point value.

Figures 11 thru 17 show the experimental compression data for all seven pures and mixtures as a function of temperature and prossure. The cxperimental points appear to be directly on the smoothed Tait curve for each system.

To see the difference in the smoothed curve and experimental data it is necessary to plot differences in compression versus pressure. Representative plots are shown in Figures 18 thru 21.

The values of J and L to be used for the twentyeight isotherms are listed in Table IV. Figures 22 and 23 are plots of L versus temperature and J versus temperature for the twenty-eight isotherms. Table V contains the key to the compound or mixture code used in this work. That is: A is used for n-Decane, B for n-Dodecane, C for n-Tetradecane, D for n-Hexadecane, FU for the n-Decane and n-Tetradecane binary mixture, IU for the n-Dodecane and n-Hexadecane binary mixture, and $T 1$ for the ternary mixture.

（・ココノ・ココ）NO［SS3ydWQJ NI ヨJN3y3コ」IO

PRESSURE（ATM．）
FIGURE 20
RAW AND SMOOTHED COMPRESSION DATA
VERSUS PRESSURE FOR
NI ヨコNヨyヨコ」IO
EG．C

5
4
0

$\stackrel{0}{\sim}$
$\stackrel{\sim}{a}$
$\stackrel{-}{a}$

an dododecane a
（・コJノ・ココ）NOISS3ydW0J NI 3JN3y3」」IO

TABLE IV

TAIT COEFFICIENIS J AND L

Compound or Mixture	$\begin{gathered} t \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\stackrel{L}{(\mathrm{~atm} .)}$	$\stackrel{\mathrm{J}}{(c c / c c)}$
n-Decane	25.0	824.	. 094226
	45.0	719.	. 094093
	65.0	617.	. 093828
	85.0	518.	. 092502
n-Dodecane	25.0	874.	. 091248
	45.0	775.	. 092041
	65.0	680.	. 092312
	85.0	589.	. 092774
n-Tetradecane	25.0	913.	. 089818
	45.0	822.	. 091570
	65.0	732.	. 092188
	85.0	645.	. 092742
n-Hexadecane	25.0	950.	. 084001
	45.0	868.	. 089023
	65.0	780.	.091520
	85.0	696.	. 092650
0.5000 mole fraction	25.0	885.	. 088416
n-Decane and	45.0	780.	. 091890
n-Tetradecane	65.0	687.	. 092751
	85.0	598.	. 092790
0.5000 mole fraction	25.0	921.	. 089205
n-Dodecane and	45.0	834.	. 091445
n-Hexadecane	65.0	740.	. 092454
	85.0	652.	. 092732
0.6000 mole fraction	25.0	870.	. 091479
n -Decane and 0.2000 mole	45.0	768.	. 092073
fraction n-Tetradecane and	65.0	674.	. 09281
n-Hexadecane	85.0	586.	. 092372

FIGURE 22
TAIT COEFFICIENT L VS. TEMPERATURE

TABLE V
 COMPOUND AND MIXTURE CODE KEY

Code	Compound or Mixture
A	n-Decane
B	n-Dodecane
C	n -Tetradecane
D	n-Hexadecane
FU	0.5000 mole fraction mixture of n-Decane and n-Tetradecane
IU	0.5000 mole fraction mixture of n-Dodecane and n-Hexadecane
TI	0.6000 mole fraction mixture of n-Decane with 0.2000 mole fraction $n-T e t r a d e c a n e$ and n-Hexadecane

Temperature Independence and Universality of J

The contention that the Tait coefficient J is a universal constant and independent of temperature has long been in the literature $(10,57)$. To test this contention all twenty-eight isotherms were analyzed by a least squares procedure which chose the "best" value of J, and the "best" L for each isotherm. This was a regression analysis of twenty-ninc variables. The value of J was found to be $0.093523 \mathrm{cc} / \mathrm{cc}$. The corresponding values of L are listed in Table VI and plotted in Figure 24. Figure 25 shows the difference between the Tait curve and the experimental data when J is assumed to be a constant.

II. THE PRAUSNITZ PARTITION FUNCTION

The characteristic parameters for the Prausnitz partition function were evaluated two ways. The first, as Prausnitz suggests (42). The second by least-square regression analysis on the data using the isothermal compressibility equation and the equation of state. The results of these two methods are compared.

TABLE VI

TAIT COEFFICIENT L FOR UNIVERSAL J
(Universal J $=0.093523 \mathrm{cc} / \mathrm{cc}$ for this studies' data)

Compound or Mixture	$\begin{gathered} t^{\circ} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\stackrel{L}{(\mathrm{~atm} .)}$
n-Decane	25.0	815.
	45.0	704.
	65.0	608.
	85.0	536.
n-Dodecane	25.0	924.
	45.0	793.
	65.0	710.
	85.0	594.
n-Tetradecane	25.0	963.
	45.0	851.
	65.0	760.
	85.0	662.
n-Hexadecane	25.0	827.
	45.0	927.
	65.0	814.
	85.0	711.
0.5000 mole fraction	25.0	995.
	45.0	796.
n-Tetradecane	65.0	700.
	85.0	606.
0.5000 mole fraction	25.0	963.
n -Dodecane and	45.0	847.
n -Hexadecane	65.0	762.
	85.0	666.
0.6000 mole fraction	25.0	898.
n-Decane and 0.2000 mole	45.0	785.
fraction n-Tetradecane	65.0	685.
and n-Hexadecane	85.0	601.

FIGURE 24
TAIT COEFFICIENT L FOR UNIVERSAL J VS. TEMPERATURE

Prausnitz Method

The method suggested by Prausnitz (42) is to determine the characteristic temperature and volume from the $p-\nabla-T$ properties along the vapor-liquid equilibrium curve at saturation. The characteristic pressure is determined from liquid heat capacity data. Computer programs to do this are available in Renon's dissertation (52).

This procedure was carried out only for the pure components as the required data do not exist for the mixtures studied. The results for the pure components are given in Table VII.

Regression Analysis Method

The regression analysis for the characteristic parameters was accomplished in two steps. The first was to least-square fit the Prausnitz isothermal compressibility equation to the Tait smoothed experimental isothermal compressibility data. The computer program BMDX85, described in Appendix D, was used to do this. This step provided the characteristic volume and pressure. The second step was to fit the Prausnitz equation of state to the experimental volume data. The computer program STEPIT, described in Appendix D, was used and this provided the characteristic temperature.

TABLE VII
 PRAUSNITZ METHOD CHARACTERISTIC PARAMEIERS

	Characteristic		
Compound	Temperature $\left({ }^{\circ} \mathrm{K}\right)$	Volume $(\mathrm{cc} / \mathrm{mole})$	Pressure (atm.)
n-Decane	529.	157.5	3200.
n-Dodecane	559.	187.0	3080.
n-Tetradecane	584.	216.5	3050.
n-Hexadecane	604.	246.0	3010.

Throughout the regression analysis for the Prausnitz characteristic parameters the assumptions of the Prausnitz partition function, given in Chapter II, were rigidly observed. The results for all seven pure components and mixtures are given in Table VIII.

Comparison of Methods

Figures 26 thru 29 show a representative temperature series for n-Dodecane. The volum is predicted from the equation of state and then the isothermal compressibility is calculated. The temperature series for n-Dodecane shows that the assumption of temperature independence of the characteristic parameters moves the best-fit curve away from the Tait smoothed experimental data curve in such a way as to minimize the overall error. This is also influenced by the pressure range and the number and distribution of data points. In terms of sum of the square residuals the best fit parameters are slightly better than those developed from the method suggested by Prausnitz.

TABLE VIII
 PRAUSNITZ BEST FIT CHARACTERISTIC PARAMETERS

Compound	Characteristic		
	Temperature (${ }^{\circ} \mathrm{K}$)	Volume (cc/mole)	Pressure (atm.)
n-Decane	354.	118.9	28890.
n-Dodecane	364.	144.3	24070.
n-Tetradecane	370.	168.5	22200.
n-Hexadecane	391.	200.1	16130.
0.5000 mole fraction n-Decane and n-Tetradecane	365.	143.4	24120.
0.5000 mole fraction n-Dodecane and n -Hexadecane	373.	170.3	20820.
0.6000 mole fraction n-Decane and 0.2000 mole fraction n-Tetradecane and n-Hexadecane	364.	144.3	24000.

0.00028
0.00024
0.00020

III. THE FLORY PARTITION FUNCTION

The characteristic parameters for the Flory partition function were evaluated in two ways. The first, as Flory suggests (21). The second by least-square regression analysis of the data using the isothermal compressibility equation and the equation of state. The results of these two methods aro compared.

Flory Method

Flory (21) suggested that the characteristic volume, temperature and pressure be determined using the initial volume, coefficient of thermal expansion at atmospheric pressure, and the isothermal compressibility at atmospheric pressure. The results of this analysis are given in Table IX and Figures 30 thru 32.

Regression Analysis Method

The regression analysis for the characteristic parameters was accomplished in two steps. Firstly the Flory isothermal compressibility equation was fitted to the Tait smoothed experimental isothermal compressibility data. The computer program BMDX85, described in Appendix D, was used to do this. This provided the characteristic volume and pressure. The second step was to fit the Flory equation of state to the experimental volume data. The

TABIE IX
FLORY'S MEIHOD CHARACIERISTIC PARANEIERS

			Characteristic				
$\begin{array}{l}\text { Compound or } \\ \text { mixture }\end{array}$	t.	Temperature	Volume				
(cc/mole)						$)$	Pressure
:---:							
(atm.)							

FLORY'S CHARACTERISTIC TEMPERATURE VERSUS TEMPERATURE

FLORY'S CHARACTERISTIC VOLUME VERSUS TEMPERATURE

FLORY'S CHARACTERISTIC PRESSURE VERSUS TEMPERATURE

Abstract

computer program STEPIT, described in Appendix D, was used and this provided the characteristic temperature. Throughout the regression analysis for the Flory characteristic parameters the assumptions of the Flory partition function, given in Chapter II, were rigidly observed. The results are given in Table X and plotted in Figures 33 thru 35.

Comparison of Tobles IX and X shows a marked difference between the Flory's method for evaluating the characteristic parameters and the "best fit" characteristic parameters. This is to be expected since the set of parameters evaluated at one end of the pressure range, as the Flory's method does, could not be expected to be the same as those which were evaluated over the extended pressure range of this study.

Comparison of Methods

Figures 36 thru 39 show a representative temperature series for n-Dodecane to allow comparison between theories. The procedure is to predict the volume from the equation of state and then to use this to calculate the isothermal compressibility.

The difference between Tait smoothed experimental isothermal compressibility and the best fit predicted values is well within experimental error. The Flory's

TABLE X
FLORY BEST FIT CHARACTERISTIC PARAMEIERS

Compound or mixture	$\begin{gathered} t \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Characteristic		
		Temperature ($\left.{ }^{\circ} \mathrm{K}\right)$	$\begin{aligned} & \text { Volume } \\ & \text { (cc/mole) } \end{aligned}$	$\begin{gathered} \text { Pressure } \\ \text { (atm.) } \end{gathered}$
n-Decane	25.0	330.3	123.1	22387.75
	45.0	341.0	121.2	25196.39
	65.0	351.9	119.2	28448.24
	85.0	363.7	117.3	32107.23
n-Dodecane	25.0	343.1	148.8	19444.62
	45.0	351.1	145.9	22301.04
	65.0	360.7	143.3	25323.78
	85.0	370.5	140.3	29109.26
n-Tetradecane	25.0	357.7	175.8	16574.66
	45.0	363.2	172.1	19121.36
	65.0	369.9	168.3	22401.30
	85.0	378.2	164.6	26078.91
n-Hexadecane	25.0	383.0	207.0	13705.03
	45.0	380.7	201.1	16113.16
	65.0	381.8	195.2	19438.79
	85.0	387.5	190.4	22987.42
0.5000 mole fraction	25.0	345.0	149.5	18663.25
	45.0	352.3	146.4	21816.86
n-Tetradecane	65.0	361.5	143.7	24857.41
	85.0	371.5	140.9	28394.67
0.5000 mole fraction	25.0	361.3	177.1	16023.18
n-Dodecane and	45.0	364.6	172.7	18946.87
n-Hexadecane	65.0	371.1	168.9	21951.52
	85.0	379.5	165.4	25380.27
0.6000 mole fraction	25.0	341.3	148.1	19945.14
n -Decane and 0.2000 mole	45.0	349.3	145.1	22999.39
fraction n-Tetradecane	65.0	358.9	142.4	26306.69
and n-Hexadecane	85.0	369.9	140.0	29653.07

FIGURE 33

FLORY BEST FIT CHARACTERISTIC TEMPERATURE VERSUS TEMPERATURE

FIGURE 35
FLORY BEST FIT CHARACTERISTIC PRESSURE VERSUS TEMPERATURE

（｀WL甘／U lL［7［日ISS3ydW0J 7甘WY3HLOS［
0.00028
0.00024
0.00020
0.00016
0.00008
0.00004

method characteristic parameters predict values of the isothermal compressibility which reproduce the experimental curve up to about 5000 psi in all cases. Above 5000 psi they predict to rapid a decrease in the isothermal compressibility.

IV. FLORY MIXING RULE

The Flory mixing rule (22) hos been applied to the best fit and Flory's method pure component characteristic parameters to predict the characteristic parameters for the three mixtures studied. The mixing rule characteristic parameters are given in Tables XI and XII. The mixing rule characteristic parameters were then used to predict the isothermal compressibility for the mixtures studied. A comparison of the predicted and experimental isothermal compressibilities is given in figures 40 thru 47. Only the plots for the binary mixture of 0.5000 mole fraction n-Decane and $n-T e t r a d e c a n e$ are shown as they are representative of the results for the two binary mixtures studied. Figures $4 l y$ thru 47 show the results for the ternary mixture of 0.6000 mole fraction n-Decane and 0.2000 mole fraction $n-T e t r a d e c a n e$ and $n-H e x a d e c a n e$.

TABLE XI

MIXTURE CHARACTERISTIC PARAMETERS FROM BEST FIT VIA FIORY'S MIXING RULE

Mixture	Characteristic			
	$\begin{gathered} t \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Temperature ($\left.{ }^{\circ} \mathrm{K}\right)$	Volume (cc/mole)	Pressure (atm.)
0.5000 mole fraction	25.0	347.6	153.5	18633.1
n-Decane and	45.0	356.0	150.6	21320.1
n-Tetradecane	65.0	365.6	147.5	24677.1
	85.0	376.2	144.6	28438.7
0.5000 mole fraction	25.0	363.9	181.8	15716.5
n-Dodecane and	45.0	367.1	177.2	18315.4
n -Hexadecane	65.0	373.8	172.7	21625.4
	85.0	382.1	168.7	25320.3
0.6000 mole fraction	25.0	350.4	157.2	18775.4
n -Decane and 0.2000 mole	45.0	355.8	153.8	21418.7
fraction n-Tetradecane	65.0	363.9	150.4	24696.4
and n -Hexadecane	85.0	373.3	147.3	28330.8

TABLE XII

MLXIURE CHARACTERISTIC PARAMEIERS FROM FLORY!S METHOD VIA FLORY!S MIXING RULE

Mixture	$\begin{gathered} t \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Characteristic		
		Temperature ($\left.{ }^{\circ} \mathrm{K}\right)$	Volume (cc/mole)	$\begin{gathered} \text { Pressure } \\ \text { (atm.) } \end{gathered}$
0.5000 mole fraction	25.0	543.4	186.7	4356.2
n-Decane and	45.0	552.1	187.5	4322.8
n-Tetradecane	65.0	559.9	188.3	4291.3
	85.0	566.5	189.0	4221.8
0.5000 mole fraction	25.0	559.0	217.7	4565.0
n-Dodecane and	45.0	568.3	219.0	4397.3
n-Hexadecane	65.0	576.4	220.1	4318.3
	85.0	583.7	221.1	4259.9
0.6000 mole fraction	25.0	531.2	191.2	4396.7
n -Decane and 0.2000 mole	45.0	540.2	192.2	4281.1
fraction n-Tetradecane	65.0	547.5	193.0	4225.2
and n-Hexadecane	85.0	553.6	193.8	4156.3

0.00028
0.00024
0.00020
0.00016
0.00012
0.00008
0.00004
(`WL甘/I) ALIาIgISS3ydWOU רUWY3HLOS[0.00028 ヵ2000 0 \(02000 \cdot 0\) 0.00016 0.00012 0.00008 0.00004 0.00000 1.0 10.0 PRESSURE（ATM．） \(1000.0 \quad 10000.0\) FIGURE smoothed experimental and predicted compressibility AT 45.0 DEG．\(C\). （｀WL甘／I）lL［า［日ISS3ydWQJ 7甘WYヨHLOS［ 0.00028 ћ2000 0 0.00020 0.00016 0.00012 0.00008 0.00004 0.00000 (`WL甘/I) lL[ר[8ISS3ydWOJ רUWY3HLOSI
（｀WL甘／リ lLIר［日ISS3ydW0J 7UWY3HLOS［
0.00028
0.00020
0.00016
0.00012
0.00008
0.00004
0.00000

0.00024
(‘WL甘/I) גLIT[8ISS3ydW0J 7甘WY3HLDS[
0.00028
0.00024
0.00020
0.00016
0.00012
0.00008
0.00004
0.00000 PRESSURE (ATM.)
FIGURE 45
 MIXTURE O.GOOO MOLE FRACTION N-DECANE, O. 2000 MOLE FRACTION 337

0.00028
0.00024
$02000 \cdot 0$
（WL甘／リ）
1LIาโ日ISS3ydW0J 7甘WY3HLOS［

Both the binary and ternary mixing rule results are very good considering that only pure component data was used in predicting the mixture properties.

V. SCALED PARTICLE

The Scaled particle theory isothermal compressibility equation was fit to the Tait smoothdisothermal compressibility data using regression anniyais to determine the effective spherical radius parameter A. The results of this work are shown in Table XIII and plotted in Figure 48.

The predicted isothermal compressibility and the Tait smoothed experimental isothermal compressibility are compared in Figures 49 thru 52. These are again the temperature series for n-Dodecane which again was found to be representative.

VI. JOINT COMPARISON

A joint comparison of the Prausnitz, Flory, and Scaled particle theories is presented in Figures 53 thru 56. These figures present the best fit results for each of the three theories for n-Dodecane.

The Flory theory provides the best representation of the data, but it requires three adjustable parameters, each of which is a function of temperature. The Scaled

TABLE XIII

SCALED PARTICLE EFFECIIVE SPHERICAL RADIUS PARANEIER

Compound or mixture	t $\left({ }^{\circ} \mathrm{C}\right)$	A, (X10 $\left.{ }^{+7}\right)$
n-Decane		
	25.0	0.6856
	45.0	0.6838
	65.0	0.6814
	85.0	0.6800
n-Dodecane	25.0	0.7320
	45.0	0.7300
	65.0	0.7283
	85.0	0.7247
	25.0	0.7725
n-Tetradecane	45.0	0.7713
	65.0	0.7708
	85.0	0.7682
n-Hexadecane		
	25.0	0.8112
	45.0	0.8102
	65.0	0.8083
	85.0	0.8066
0.5000 mole fraction	25.0	0.7328
n-Decane and	45.0	0.7298
n-Tetradecane	65.0	0.7277
	85.0	0.7229
0.5000 mole fraction	25.0	0.7728
n-Dodecane and	45.0	0.7716
n-Hexadecane	65.0	0.7697
	85.0	0.7679
0.6000 mole fraction	25.0	0.7315
n-Decane and 0.2000 mole	45.0	0.7299
fraction n-Tetradecane	65.0	0.7279
and n-Hexadecane	85.0	0.7256

SCALED PARTICLE EFFECTIVE SPHERICAL
RADIUS PARAMETER A VS. TEMPERATURE

0.00028
금
吕
$\dot{\circ}$

0.00028
0.00024
0.00020
0.00016
0.00012
0.00008
0.00004

0.00028
п2000 0
0.00024
("WIU/I) 11
0.00020
(

0.00028
0.00024

particle theory provides the second best overall representation of the data. It requires only one adJustable parameter which is a function of temperature. The Prausnitz assumption that the characteristic parameters are not a function of temperature proves to be too restrictive in this case.

CONCLUSIONS, SUMMARY AND RECOMMENDATIONS

I. CONCLUSIONS

Of the Prausnitz, Flory, and Scaled Particle theories only the Flory theory with three parameters per isotherm is flexible enough to allow it to be adjusted to reproduce the data. These parameters appear to vary uniformly (see Figures 33 thru 35). Thus one may assume that interpolation of the parameters would provide a good method of interpolating the experimental data. With data of the present accuracy it is not possible to determine if the Flory Theory can be adjusted to reproduce liquid behavior exactly.

The Scaled particle theory as used probably could be improved by intraducing more reaslistic interaction potentials in place of the rigid sphere potential now used. It shows a rather good reproduction of the data, considering it contains only one adjustable parameter, and should receive further work.

The assumptions used by Prausnitz are too restrictive to allow this partition function to fit the experimental data. To relax these assumptions would in effect turn it into the Flory theory.

The Flory theory mixing rule was found to provide a simple and reasonably accurate way of predicting liquid binary and ternary mixture data from pure component liquid data. Further experimental work with mixtures which are more dissimilar will be required to draw any further conclusions concerning the Flory mixing rule. Such a mixture might be 0.5000 mole fraction n-Octane and n-Tetradecane, for example.

II. SUMMARY

An experimental apparatus was built to measure accurate liquid p-v-T data using the sylphon bellows technique. Liquid p-v-T data were taken for n-Decane, n-Dodecane, n-Tetradecane, n-Hexadecane, 0.5000 mole fraction mixtures of n-Decane and $n-T e t r a d e c a n e$ and of n-Dodecane and n-Hexadecane, and a mixture of 0.6000 mole fraction n-Decane and 0.2000 mole fraction $n-T e t r a d e c a n e$ and n-Hexadecane at $25.00,45.00,65.00$, and $85.00^{\circ} \mathrm{C}$ from atmospheric pressure to the freezing pressure on each isotherm. It was found that the Tait equation represented the experimental data to within experimental error.

The data were used to test three liquid theories and the Flory mixing rule. It was found that the Flory Theory reproduced the experimental data to within experimental error. The Scaled particle theory reproduced the experimental data to within ten times the experimental error. The Prausnitz theory assumptions were found to be too restrictive to ropsesent the data over a wide range of temperature and prossure. The Flory mixing rule provides a reasonably accurate method of predicting binary and ternary liquid $\mathrm{p}-\mathrm{v}-\mathrm{T}$ data using only pure component data, but this procedure requires additional testing.

This study indicates that existing theories can be used to predict liquid properties with reasonable accuracy. Additional work will be required to obtain better predictive methods.

III. RECOMMENDATIONS

It is recommended that the work started in this study be extended in two ways:

1. To increase the temperature range for the samples studied up to the upper limit of the apparatus $\left(150^{\circ} \mathrm{C}\right)$.
2. To include n-Hexane and n-Octane for the pure components and to add mixtures of components with chain lengths as dissimilar as possible.

These extensions would allow a more stringent test of the Flory partition function theory and the Flory mixing rule.

NOMENCLATURE

NOMENCLATURE

A	Effective hard sphere radius (Scaled particle theory)
A	Cross sectional area of the dead weight tester
$A_{b r}$	Bridgman's best fit linear constant term for relative compression of Brass 1/psi.
A_{c}	Capillary tuho cross sectional area cm. ${ }^{2}$
$\mathrm{A}_{\mathbf{k a}}$	Bridgman's best fit linear constant term for relative compression of Karma 1/psi.
$A_{p, t}$	Bellows' cross sectional area at pressure P and temperature t
b	Dead weight tester's area correction term for pressure on the pistons cross sectional area /psi.
$B_{b r}$	Bridgman's best fit second order constant term for relative compression of Brass $\quad 1 / \mathrm{psi}^{2}$
$B_{k a}$	Bridgman's best fit second order constant term for relative compression of Karma 1/psi
c	Dead weight tester's area coefficient of thermal expansion
c	Prausnitz's parameter related to the departure from non-central force fields
c	Flory's parameter for the number of external degrees of freedom per segment
h	Height of the mercury thread in capillary calibration
J	Tait coefficient cc/cc.
k	Boltzman constant
L	Tait coefficient atm.

$L_{p, t}$	Length of slide wire at pressure P and temperature t between the bellows and fixed contact	cm.
Le ${ }_{p}^{\text {c }}$	Total length of the slide wire	cm.
ΔL_{B}	Bellows change in length with pressure	cm .
ΔL_{C}	Fluid displacement up the capillary tube in the bellows calibration	cm .
M_{A}	Mass of weights on the dead weight tester pan	1 bm .
N	Avagadros number	
P	Pressure	atm.
$\widetilde{\mathrm{P}}$	Prausnitz or Flory reduced pressure	
P*	Prausnitz of Flory characteristic pressure	atm.
Q_{f}	Flory configurational partition function	
Q_{p}	Prausnitz configurational partition function	
r	Scale particle theory cavity radius	cm.
r	Capillary tube radius in capillary tube calibration	
$\mathrm{B}_{\mathrm{a}, \mathrm{p}}$	Slide wire resistance between fixed contact and bellows at pressure P	ohms.
$\mathrm{B}_{M_{m, p}}$	Manganin cell's resistance at pressure P	ohms.
T	Temperature	OK
\widetilde{T}	Prausnitz or Flory reduced temperature	
T*	Prausnitz or Flory characteristic temperature	O_{K}
V	Relative volume	$\mathrm{cc} / \mathrm{cc}$
V	Prausnitz or Flory molar volume	cc/mole
$\widetilde{\nabla}$	Prausnitz of Flory reduced volume	

V*	Prausnitz of Flory characteristic volume	cc/mole
ΔV	Change in relative volume	$\mathrm{cc} / \mathrm{cc}$
$\frac{\Delta V}{V_{0}}$	Compression	$\mathrm{cc} / \mathrm{cc}$
W	Sample weight	gm.
W(r)	Scaled particle theory work required to produce the spherical cavity	
\#	Scaled particle theory reduced volume	
Greek Symbols		
$\alpha_{b r}$	Linear coefficient of thermal expansion for brass	$1 /{ }^{\circ} \mathrm{C}$
$\alpha_{k a}$	Linear coefficient of thermal expansion for karma	$1 /{ }^{\circ} \mathrm{C}$
B	Isothermal compressibility	1/atm.
$\tilde{\beta}$	Prausnitz of Flory reduced isothermal compressibility	
ψ^{N}	Energy of motion of the molecule in the cell	
Q	Slide wire unit length	cm/ohm.
ρ_{A}	Density of air at measurement conditions	$\mathrm{gm} / \mathrm{cc}$
ρ_{H}	Density of mercury	$\mathrm{gm} / \mathrm{cc}$
Poot	Fiducial sample density	gm/cc
pw	Dead weight tester's weights density	gm/cc

Superscripts

$\sim \quad$ Prausnitz or Flory reduced property
$* \quad$ Prausnitz of Flory characteristic property

Subscripts

B	Bellows
br	Brass
c	Capillary
ka	Karma
p	At pressure P
t	At temperature t

BIBLIOGRAPHY

1. Abe, A** Flory, P. J., J. Am. Chem. Soc., 87. 1838 (1965).
2. Adams, I. H., J. Am. Chem. Soc.: 53. 3769 (1931).
3. Amagat, E. H., Ann. Chem. et Phys*, 29, 68 (1893).
4. Barker, J. A*, Lattice Theories of the Liquid State, MacMillan Co., New York. 1963.
5. Boelhouwer, J. M. W.* Physica.* 26, 1021 (1960).
6. Bridgman, P. W * : Proc * Amer * Acad. . 58, 166-242
(1923)
7. Bridgman, P. W*, Proc. Amer. Acad., 66, 185-233
8. Bridgman, P. W., The Physics of High Pressure, G. Bell and Sons, London, 1949.
9. Chapman, S.: Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1964.
10. Cutler, W. G.. McMickle, R. H., Webb, W. Schiessler, R.W., J. Chem. Phys* 29, 727 (1958).
11. Cutler, W. G., Ph.D. Dissertation, Pennsylvania State University (1955).
12. Driver-Harris Bulletin FN 103, Driver-Harris, Inc*, Harrison, N.J.: p7 (1962).
13. Doolittle, A. K., Simon, I*, Cornish, R. M., A.I.Ch.E.J., 6, 160-162 (1960).
14. Ibid.. pp. 150*
15. Ib1d: $:$ pp. 151.
16. Ibid** pp. 153.
17. Edul jee, H. E., Newitt, D. M., Weale, K. E., J. Chem. Soc.. 3086 (1951).
18. Egelstaff, P. A.. An Introduction to the Liquid State, Academic Press. New Yorli, 1967.
19. Eyring, H*, Hirschfelder, J.. J. Phys. Chem, 4I, 249 (1937).
20. Eyring, H., Ree, T., Hirai, N., Proc. Naty. Acad. Sci. U.S.. 4h, 683 (1958).
21. Flory, P. J., Orwoll, R. A., Vrij, A., J. Am. Chem. Soc* 86, 3507-9 (1964).
22. Ibid., pp. 3515.
23. Flory, P. J., J. Am. Chem. Soc., 87, 1833 (1965).
24. Gibson, B. E., Loeffler, O. H., J. Am. Chem. Soc., 63, 2287 (1941).
25. Green, H. S., Molecular Theory of Fluids, NorthHolland Publishing Co., Amsterdam, 1952.
26. Handbook of Chemistry and Physios, Ed. Charles D. Hadgrman, Chemical Rubber Pub. Co.. 43 rd Ed., p 2276, (1961-62).
27. Harrison, C.. "Volume Change on Mixing of Binary Alkane Mixtures" (M.S. thesis, University of Missouri, 1966). of. also Harrison. C., and Winnick. J., J. Chem. Engr. Data, 12, 176-8 (1967).
28. Hartley, H. O., Technometrics, 3, 269 (1961).
29. Hill, T. L., Statistical Thermodynamics, AddisonWesley, Beading. 1962.
30. Hyun, K. S., Ph.D. Dissertation, University of Missouri, Columbia, Missouri, 1966.
31. Leland T. W., Chappelear, P. S*, Ind. Eng. Chem. 60 \#7. 15-43 (1968).
32. Ibid., pp. 16.
33. Lin, L. Y., private communication.
34. Ma, S. M., Eyring. H., J. Chem. Phys., 42, 1920 (1965).
35. Marchi, R., Liang, K., Eyring, H., Proc. Natl. Acad. Sci. U.S., 52, 1107 (1964).
36. Martin, J. J., Ind. Ens. Chem. . 59 \#12, 34-52 (1967).
37. Mayer, S. W., J. Chem. Phys., 28 \#8, 1803 (1963).
38. Mickley, H.S., Sherwood, T. K., Reed, C. E., Applied Mathematics in Chemical Engineering, 2nd. ed., HeGraw-Hill, 1 Hom York, 1957.
39. Murnaghan, F. D., Proc. Nat1. Acad. Sci., 30, 244
40. National Bureau of Standards Monograph No. 8.
41. National Bureau of Standards Monograph No. 65.
42. Prausnitz, J. M., Eckert, Renon, H., Ind. Eng. Chem. Fundamentals, 6 \#1, 58 (1967).
43. Prausnitz, J. M., OrConnell, J. P., Ind. Eng. Chem., 60 \#1, 44 (1968).
44. Present, B. D., Kinetic Theory of Gases, McGrawH111, New York, 1958.
45. Prigogine, I., Trappeniers, N., Mathot, V..; Discussions Faraday Soc., 15, 93 (1953).
46. Pryde, J. A., The Liquid State, Hutchison Publishers Ltd., London, 1966.
47. Reiss, H., Frisch, H. L., Lebowitz, J. L., I. Chem. Phys., 31, 369 (1959).
48. Reiss, H., Frisch, H. L., Helfand, E., Leboritz, J. L., J. Chem. Phys., 22 \#1, 119 (1960).
49. Reiss, H., Frisch, H. L., Helfand, E., Lebowitz, J. L., J. Chem. Phys., 21 \#2, 369 (1959).
50. Reiss, H., Advances in Chemical Physics, 2, I (1965).
51. Ibid., pp. 44.
52. Renon, H., Ph.D. Dissertation, University of Callfornia, Berkeley, 1966.
53. Renon, H., Eckert, C. A., Prausnitz, J. M., Ind. Eng. Chem. Fundamentals, 6 \#1, 52-67 (1967).
54. Ibid., pp. 53.
55. Ibid.. pp. 53-54
56. Bowlinson, J. S., Liquids and Liquid Mixtures,

Academic Press Inc., Nori York, 32-38, 1959.
57. Shavers, O. R., Ph.D. Dissertation, University of Houston (1965).
58. Sims, M. J., "Excess Volume of Binary Liquid

Mixtures of n-Paraffins" (M.S. Thesis, University of Missouri, 1968) c.f. also Sims, M. J., and Winnick, J.. J. Chem. Eng. Data, 14, $164-166$, (1969).
59. Tait, P. G., "The Voyage of H.M.S. Challenger", Vol. 2, Part 4. pp. 1-73, H.M.S.O., London, 1888.
60. Wertheim, M. S. I. J. Chem. Phys., 43, 1370 (1965).
61. Whalley, E., Holder, G. A., Trans. Faraday Soc., 58, 2095 (1962).
62. Winnick, J., Ph.D. Dissertation, The University of Oklahoma, Norman, Oklahoma, 1963.

APPENDICIES

APPENDIX A

DATA REDUCTION

The basic data reduction equation for the $p-\nabla-T$ data is:

$$
\begin{equation*}
\frac{\Delta V}{V_{0}}=\frac{\Delta L_{B} \cdot A_{P_{\Delta t}} \cdot Q_{0, t}}{W} \tag{A-1}
\end{equation*}
$$

where; $\frac{\Delta V}{V_{0}}$ is the relative volume change or compression in co/cc, ΔL_{B} is the change in length of the bellows, Ap,t is the crass sectional area of the bellows at the temperature and pressure of the measurement: $\rho_{\text {ost }}$ is the fiducial density $(27,33,58)$, and W is the weight of the sample contained within the bellows. All these values are obtained from experimental measurements.

The calculation of each of the terms in $\Delta V / V_{0}$ is described below.

1. Calculation of ΔL_{B}

To determine the chance in length of bellows B in Figure 57, ΔL_{B}, the resistance of the Karma slide wire, S, between the fixed contact C and bellows B was measured at each pressure, $R_{a, p}$. The change in resistance from the atmospheric pressure value, $R_{a, 0}$, times the

Bellows Area Section

Uncompressed Slide Wire Position

FIGURE 57. BELLOWS AND SLIDE WIRE ARRANGEMENT
number of $\mathrm{cm} / \mathrm{ohm}, Q$, gave the value of ΔL_{B} which is corrected for temperature, C_{t}, and pressure, C_{p}, effects.

$$
\begin{equation*}
\Delta L_{B}=Q \cdot\left(R_{a, p}-R_{a, 0}\right)+C_{p}+C_{t} \tag{A-2}
\end{equation*}
$$

The slide wire position before and after pressure application are shown in the second and third views of Figure 57.
a. Pressure Correction

The pressure correction is due to the difference in compressibility of the Brass carrier R and the Karma slide wire S in Figure 57. The measured length of the distance between the bellows B and contact C is given by:

$$
\begin{equation*}
L_{a, p}=R_{a, p}\left(\frac{L_{p}^{c}}{R_{0, t}}\right) \tag{A-3}
\end{equation*}
$$

where; L_{p}^{c} is the total length of slide wire S at system pressure, calculated from:

$$
\begin{equation*}
L_{P}^{c}=R_{0, t}\left(\frac{L_{0}}{R_{0, t}}\right)\left(1.0-\frac{1.0}{3.0}\left(A_{k a} \cdot P-B_{k 0} \cdot P^{2}\right)\right) \tag{A-4}
\end{equation*}
$$

where; P is the pressure in $p s i$, L_{O} is the length of slide wire S at atmospheric pressure, and $A_{k a}$ and $B_{k a}$ are best fit constants at $30.0^{\circ} \mathrm{C}$, as determined by Bridgman (6), for the relative compression of Karma. The values of $A_{k a}$ and $B_{k a}$ are

$$
\begin{aligned}
& 3.87 \times 10^{-8} / \mathrm{psi}, \text { and } \\
& 0.741 \times 10^{-14} / \mathrm{psi}^{2} \text { respectively. }
\end{aligned}
$$

The temperature effect on $A_{k a}$ and $B_{k a}$ was assumed to be linear over the experimental range, since the only other value reported was at $75.0^{\circ} \mathrm{C}$. The variation of $A_{k a}$ with temperature was $0.933 \times 10^{-11} / \mathrm{psi}{ }^{\circ} \mathrm{C}$ and for B_{ka} it was $0.0 / \mathrm{psi}^{2{ }^{2}} \mathrm{C}$.

The true length of the carrier over the slide wire section is related to the measured length at pressure P by:

$$
\begin{equation*}
L_{a, p}=L_{b r, p}\left(1.0-\frac{1.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right) \tag{A-5}
\end{equation*}
$$

where; $A_{b r}$ and $B_{b r}$ are the best fit constants, as determined by Bridgman (7), for the relative compression of Brass.

The values of $A_{b r}$ and $B_{b r}$ are $6.47 \times 10^{-8} / \mathrm{psi}$, and $3.17 \times 10^{-14} / \mathrm{psi}^{2}$ respectively at $30.0^{\circ} \mathrm{C}$. The temperature effect on $A_{b r}$ and $B_{b r}$ was assumed to be linear over the range used. The variation of A_{br} was $0.16 \times 10^{-10} / \mathrm{psi}{ }^{\circ} \mathrm{C}$ and on B_{br} it was $-0.688 \times 10^{-16} / \mathrm{psi}^{2}{ }^{\circ} \mathrm{C}$.

The true length of the slide wire is related to the measured length at pressure P by:

$$
\begin{equation*}
L_{a, p}=L_{k a, p}\left(1.0-\frac{1.0}{3.0}\left(A_{k a} \cdot P+B_{k a} \cdot P^{2}\right)\right) \tag{A-6}
\end{equation*}
$$

The correction due to the difference in compression is then:

$$
\begin{align*}
& L_{b r, p}-L_{k a, p}=R_{a, P}\left(\frac{L_{p}^{c}}{R_{0, t}}\right)\left(\frac{1.0}{\left.1.0-\frac{1.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right)}\right. \\
& \left.-\frac{1.0}{\left.1.0-\frac{1.0}{3.0}\left(A_{k O} \cdot P-B_{k a} \cdot P^{2}\right)\right)}\right) \tag{A-7}
\end{align*}
$$

This correction is additive since the greater compression of the Brass carrier caused the true compression of the same to be reduced by the difference in compression of the Brass carrier and the Karma Slide wire.
b. Temperature Corrections

There are two temperature corrections. The first is the change in total slide wire resistance with temperature. The second is the difference in the coefficient of thermal expansion for the Brass carrier and the Karma slide wire. These corrections were made as follows:
(i) Total Slide Wire Temperature Effect

The change in unit length, Ω, of the Karma slide wire due to the temperature change between isotherms was accounted for by using measured values of $R_{0, t} . R_{o, t}$ is the total slide wire resistance at the operating temperature.

(1i) Thermal Expansion Difference

The linear coefficient of thermal expansion for the Brass is $\alpha_{b r}=19.1 \times 10^{-6} /{ }^{\circ} \mathrm{C}(26)$ and for the Karma $\alpha_{k a}=13.3 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ (12). This correction was made by measuring a new zero point slide wire resistance $\mathrm{R}_{\mathrm{a}, 0}$, between the bellows and fixed contact, on each isotherm.

Thus equation A-2 may be written as:

$$
\begin{equation*}
\Delta L_{B}=Q \cdot\left(R_{a, p}-R_{a, 0}\right)+\left(L_{b r i p}-L_{k_{0}, p}\right) . \tag{A-8}
\end{equation*}
$$

2. Calculation of $A_{p, t}$

To determine the bellows cross sectional area $A_{p, t}$ at the operating temperature and pressure two corrections must be made. The first is the thermal expansion of the bellows. The second is the compression of the bellows material under hydrostatic load.
a. Temperature Correction

The temperature correction on the bellows cross sectional area is due to the temperature difference between the temperature at which the cross sectional area was determined (see Appendix C) and the temperature at which the experimental measurements were made. This correction can be written as:

$$
\begin{equation*}
A_{0, t}=A_{0,0}\left(1.0+2.0 \alpha_{b r} \cdot(t-25.0)\right) \tag{A-9}
\end{equation*}
$$

This correction will increase the cross sectional area as temperature increases.
b. Pressure Correction

As the pressure increased the cross sectional area of the bellows changes. This correction can be written as:

$$
\left.A_{p, 0}=A_{0,0}\left(1.0-\frac{2.0}{3.0} A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right)
$$

$$
(\mathrm{A}-10)
$$

This will reduce the cross sectional area as pressure increases.

Thus the cross sectional area at the conditions of the measurement can be written as:

$$
\begin{align*}
& A_{P_{s, t}}=A_{0,0}\left(1.0+2.0 \alpha_{b r}(t-25.0)\right) \\
& \quad\left(1.0-\frac{2.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right) \tag{A-11}
\end{align*}
$$

3. Final Form Equation A-1

The final form of equation $A-1$ is obtained by substituting equations $A-8$, and $A-11$ into equation $A-1$.

$$
\begin{aligned}
& \frac{\Delta V}{V_{0}}=\left(Q\left(R_{0, p}-R_{a, 0}\right)+\left(L_{b r, p}-L_{k a, p}\right)\right. \\
& \left.-\left(L_{k a, t}-L_{b r, t}\right)\right) A_{0,0}\left(1.0+2.0 \alpha_{b r}(t-25.0)\right) \\
& \left(1.0-\frac{2.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right) P_{0, t} / W
\end{aligned}
$$

Equation A-12 was used to obtain the compression measuremints (56).

APPENDIX B

ERROR ANALYSIS

The error analysis technique used was that of the National Bureau of Standards type as detailed by Mickley (38).

1. $\mathrm{p}-\mathrm{v-T}$ Measuremonto

An error analysis was performed on equation A-1 to determine the absolute accuracy of the measurements of

$$
\frac{\Delta v}{v_{0}} .
$$

$$
\delta\left(\frac{\Delta V}{V_{0}}\right)=\frac{\Delta L_{B} \cdot A_{P, t} \cdot P_{0, t}}{W} \quad\left[\frac{\delta \Delta L_{B}}{\Delta L_{B}}+\right.
$$

$$
\begin{equation*}
\left.\frac{\delta A_{P, t}}{A_{P, t}}+\frac{\delta \rho_{0, t}}{\rho_{0, t}}+\frac{\delta w}{w}\right] \tag{B-1}
\end{equation*}
$$

where: ΔL_{B} is the change in length of the bellows and $\delta \Delta L_{B}$ is the experimental uncertainty in this measured quantity, $A_{p, t}$ is the cross sectional area of the bellows at temperature t and pressure P and $\delta A_{p, t}$ is the experimental uncertainty in this quantity, $\rho_{0, t}$ is the fiducial point density and $\delta \rho_{0, t}$ is the experimental uncertainty in this measured quantity, W is the weight of the liquid sample which is undergoing compression and $S w$ is the experimental uncertainty in this measured quantity.

Each term in the brackets on the right hand side of equation $B-1$ will be considered below.
a. Liquid Sample Weight

The absolute uncertainty, δw, can be estimated from the balance. The accuracy of the analytical balance was ± 0.00005 gms. The average hydrocarbon sample weighed approximately 2.25 gms. Thus $\delta W / \mathrm{N}$ is estimated to be 2.2×10^{-5}.
b. Fiducial Point Density

The term $\delta \rho_{0, t} / \rho_{0, t}$ is due to the uncertainty of the fiducial point density. The error, $\delta \rho_{0, t}$, in the density determinations of Sims (58), Harrison (27), and Lin (33) is $\pm 0.00005 \mathrm{gms} / \mathrm{cc}$. The average sample density was approximately $0.70 \mathrm{gms} / \mathrm{cc}$ and $\delta \rho_{0, t} / \rho_{o g t}$ was assigned the value 7.1×10^{-5}.
c. Change in Bellows Length

The term $\delta \Delta L_{B} / \Delta L_{B}$ is due to the uncertainty in the measured change in bellows length, from A-8:
$\delta \Delta L_{B}=\delta\left(\Omega\left(R_{a, p}-R_{a}, 0\right)+\left(L_{b r, p}-L_{k a, p}\right)\right)$.
The first term on the right side of B-2:

$$
\delta\left(\Omega\left(R_{a, p}-R_{a, 0}\right)\right)=\left(R_{a, p}-R_{a, 0}\right) \delta \Omega+
$$

$$
\begin{equation*}
\varrho\left(S R_{a, p}+S R_{a, 0}\right) \tag{B-3}
\end{equation*}
$$

The value of Ω was experimentally determined to be $3.8780 \pm 0.000024 \mathrm{~cm} /$ ohm. This is detailed in a later section of this Appendix. For a compression of .36 cm . the value of $R_{a, p}-I_{o, 0}$ is apnon-imately 0.09 ohm. The uncertainty in resistance measurements was ± 0.00001 ohms. Substituting these values into B-3 we obtain

$$
\begin{aligned}
& \delta\left(Q\left(R_{a, p}-R_{a, 0}\right)\right)=0.09(0.000024) \\
& \quad+(4.0)(0.00001)
\end{aligned}
$$

or,

$$
\delta\left(Q\left(R_{a, p}-R_{a, 0}\right)\right)= \pm 0.00004 \mathrm{~cm}
$$

The second term on the right hand side of $B-2$ is
evaluated from $A-7$ and $A-4$

$$
\begin{align*}
& \delta\left(L_{b r, p}-L_{k a, p}\right)=\delta\left(R _ { a , p } (\frac { L _ { 0 } } { R _ { 0 , t } }) \left(1.0-\frac{1.0}{3.0}(\right.\right. \\
& \left.\left.A_{k a} P-B_{k a} \cdot P^{2}\right)\right)\left(\frac{1.0}{\left(1.0-\frac{1.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right)}\right. \\
& \left.-\frac{1.0}{\left(1.0-\frac{1.0}{3.0}\left(A_{k a} \cdot P-B_{k a} P^{2}\right)\right)}\right) \tag{B-4}
\end{align*}
$$

For ease in discussion, certain terms will be assigned names as follows:

$$
\begin{aligned}
& C_{k a}=1.0-\frac{1.0}{3.0}\left(A_{k a} \cdot P-B_{k a} \cdot P^{2}\right) \\
& C_{b r}=1.0-\frac{1.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)
\end{aligned}
$$

Recalling that $0=\left(L_{0} / R_{0, t}\right)$, then $B-4$ can be rewritten
as:

$$
\begin{aligned}
& \delta\left(L_{b r, p}-L_{k a, p}\right)=\delta\left(\left(R_{a, p} \cdot \Omega \cdot C_{k_{a}}\right)\right. \\
& \left.\left(\frac{1.0}{C_{b r}}-\frac{1.0}{C_{k a}}\right)\right),
\end{aligned}
$$

or

$$
\begin{align*}
& \delta\left(L_{b r, p}-L_{k a, p}\right)=R_{a, p} \cdot Q \cdot C_{k a}\left(\frac{\delta R_{a, p}}{R_{a, p}}+\frac{\delta O}{\Omega}\right. \\
& \left.+\frac{\delta C_{k a}}{C_{k a}}+\frac{\delta C_{b r}}{C_{b r}}\right)+R_{a, p} \cdot \Omega\left(\frac{\delta R_{a, p}}{R_{a, p}}+\frac{\delta \Omega}{\Omega}\right)_{(B-5} \tag{B-5}
\end{align*}
$$

When $\left(R_{a, p}-R_{a, 0}\right)=0.09$ ohm the value of $R_{a, p}$ is approximately 0.36 ohm. Since $\delta_{R_{a, p}}= \pm 0.00001 \mathrm{ohm}$, $\delta R_{a, p} / R_{a, p}= \pm 0.00003$. With $\delta \Omega / \Omega= \pm 0.000006$, and the uncertainty in $C_{k a}$ is,

$$
\begin{equation*}
\delta C_{k a}=\frac{1.0}{3.0}\left(\delta A_{k a} \cdot P+\delta B_{k a} \cdot P^{2}\right) \tag{B-6}
\end{equation*}
$$

Bridgman (6) determined $\delta A_{k a}$ to be $\pm 0.02 \times 10^{-8} / \mathrm{psi}$ and $\delta B_{k a}$ to bet $0.01 \times 10^{-1 / 4} / \mathrm{psi}^{2}$. When $\left(\mathrm{R}_{\mathrm{a}, \mathrm{p}}-\mathrm{R}_{\mathrm{a}, 0}\right)=$ 0.09 ohm the pressure is approximately 95,000 psi. Substituting into $\mathrm{B}-6$ we obtain :

$$
\begin{aligned}
& \delta C_{k a}=\frac{1.0}{3.0}\left(0.02 \times 10^{-8} \cdot 0.95 \times 10^{+5}+\right. \\
&\left.0.01 \times 10^{-14} \cdot\left(0.95 \times 10^{5}\right)^{2}\right),
\end{aligned}
$$

or

$$
\delta c_{k a}= \pm 0.0000063
$$

and $C_{k a}$ has a value of 0.998779 .
Similarly using the values of $\delta A_{b r}=0.04 \times 10^{-8} /$ psi and $\delta B_{b r}=0.02 \times 10^{-4} / \mathrm{psi}^{2}$ as reported by Bridgman (7) we obtain $\delta C_{b r}= \pm 0.000011$ and $C_{b r}$ has a value of 0.998005 . Thus substituting into $B-5$ we obtain:

$$
\begin{aligned}
& \delta\left(L_{b r, p}-L_{k a, p}\right)=\frac{0.36 \cdot 4.0 \cdot 0.998729}{0.99005}(0.00003+ \\
&0.000006+0.0000063+0.000011)+0.36 . \\
& 4.0 \cdot(0.00003+.000011)
\end{aligned}
$$

or

$$
\delta\left(L_{\mathrm{br}, \mathrm{p}}-\mathrm{L}_{\mathrm{ka}, \mathrm{p}}\right)= \pm 0.00012 \mathrm{~cm} .
$$

With all the terms in equation B-2 known it is possible to evaluate $\delta \Delta L_{B}$:
$\delta \Delta L_{B}=0.00004+.00012 \mathrm{~cm}$
or

$$
\delta \Delta L_{B}=0.00016 \mathrm{~cm} .
$$

d. Cross Sectional Area

The term $A_{p, t} / A_{p, t}$ is due to the uncertainty in the bellows cross sectional area. $\delta A_{p, t}$ is evaluated from equation $A-11$:

$$
\begin{align*}
& \delta A_{p, t}=\delta\left(A_{0,0}\left(1.0+2.0 d_{b r}(t-25.0)\right)\right. \\
& \left.\quad\left(1.0-\frac{2.0}{3.0}\left(A_{b r} \cdot P-B_{b r} \cdot P^{2}\right)\right)\right) . \tag{B-7}
\end{align*}
$$

The $\delta\left(A_{0,0}\right)$ was found to be ± 0.0012 as described in a later section of this Appendix. The value of $A_{0,0}$ was experimentally determined to be $1.9815 \mathrm{~cm}^{2}$. The uncertainty in $\left(1.0-\frac{2.0}{3.0}\left(A_{b r} P-B_{b r} \cdot P^{2}\right)\right)$ is twice that of $\delta C_{k a}$ as determined from equation $B-6$. Thus $2 S_{\text {ka }}=$ ± 0.0000126 and the term ($1.0-\frac{2.0}{3.0}\left(A_{b r} P-B_{b r} \cdot P^{2}\right)$), in $B-7$, has a value of 0.99601 when the pressure is 95,000 psi.

The error in $\left(1.0+2.0 \cdot \alpha_{b r} \cdot(t-25.0)\right)$ is due to the uncertainty in $\alpha_{b r}$ which is assumed to be one in the last significant digit reported (26), or $\pm 0.1 \times$ $10^{-6} /{ }^{\circ} \mathrm{C}$ for $\alpha_{b r}=19.1 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. Then the error in $\left(1.0+2.0 \cdot \alpha_{b r} \cdot(t-25.0)\right)$, at $85.0^{\circ} \mathrm{C}$, is $\pm 0.2 \mathrm{x}$
$10^{-6} /{ }^{\circ} \mathrm{C}$ and it has a value of .99760.
Thus substituting into $B-7$:

$$
\begin{aligned}
\delta A_{p, t}= & (1.9820) \cdot(0.99601) \cdot(0.99760) \\
& \left(\frac{0.0012}{1.9820}+\frac{0.000002}{0.99601}+\frac{0.000013}{0.99760}\right)
\end{aligned}
$$

or

$$
\delta A_{p, t}=0.0012 \mathrm{~cm}^{2} .
$$

e. Evaluation of $\delta \Delta V N_{0}$

With all terms in equation $B-1$ known it is possible to determine $S \Delta V N_{0}$. Substituting into equation $B-1$ yields:

$$
\begin{aligned}
\delta \frac{\Delta V}{V_{0}}= & \frac{0.36 \cdot 1.98 \cdot 0.7}{2.25}\left[\frac{0.00016}{0.36}+\right. \\
& \left.\frac{0.0012}{1.98}+0.000022+0.00005\right] .
\end{aligned}
$$

or

$$
\delta \frac{\Delta V}{V_{0}}=0.0002 \mathrm{cc} / \mathrm{cc}
$$

It should be noted that this experimental uncertainty in $\Delta V / V_{0}$ is for the worst possible set of conditions, the case where the largest corrections were required and largest experimental errors occurred.
2. Slide Wire Unit Length

The apparatus for determination of Q, the unit length of the slide wire, is discussed in Appendix C.

The equation for determinating the uncertainty is:

$$
\begin{equation*}
\delta(\Omega)=\frac{L}{R}\left(\frac{\delta L}{L}+\frac{\delta R}{R}\right) \tag{B-8}
\end{equation*}
$$

The length of wire was approximely $10 . \mathrm{cm}$ and the uncertainty in this length was $\pm 0.00005 \mathrm{~cm}$. Thus $\delta L / L$ was found to be $\pm 5 . \times 10^{-6}$. The measured resistance was approximately 2.5 ohms and the uncertainty in the resistance was ± 0.00001. ohms, or $S R / R w a s$. $\times 10^{-6}$. Substituting into equation B-8 we obtain:

$$
\delta(Q)=4 .\left(6 . \times 10^{-6}\right) \mathrm{cm} / \mathrm{ohm}
$$

or

$$
\delta(Q)=0.000024 \mathrm{~cm} / \mathrm{ohm}
$$

3. Capillary Radius

Before determining $\delta A_{0,0}$ it is necessary to determine the uncertainty in the radius of the capillary tube used to calibrate the bellows. The mercury thread weight technique was used as described in Appendix C. The equation used to determine the capillary radius was:

where: r is the capillary tube radius; $W_{H g}$ is the weight of the Mercury thread; Plog is the density of the Mercury; and h is the height of the Mercury thread. The uncertainty in the radius, δr, is given by:
$\delta r=\frac{\frac{1}{2} \delta w_{H g}}{\rho^{\frac{1}{2}} \pi w^{\frac{1}{2}} h^{\frac{1}{2}}}+\frac{\frac{1}{2} \cdot w_{H g}^{\frac{1}{2}} \delta \rho}{e^{\frac{3}{2}} \pi h^{\frac{1}{2}}}+\frac{\frac{1}{2}}{\rho_{H g}^{1 / 2} \pi h^{\frac{1}{2} / 2} \delta h}$.

The uncertainty in the weight of the Mercury thread was taken ± 0.00005 grams for the analytical balance and nominal weight was 0.84 gms . The uncertainty in the density of the Mercury was taken as ± 0.00005 grams/cc (40) and the density as 13.6 grams/cc nominal. The uncertainty in the height of Mercury thread was taken as $\pm 0.00005 \mathrm{~cm}$, based upon reproducibility of the cathetometer reading, and the average lensth of Mercury was 1.0 cm . Substituting these values into $B-10$ we obtain:

$$
\begin{aligned}
\text { Sr }= & \frac{0.00005(0.5)}{(3.14)(0.7)(1 .)(3.6)}+\frac{(0.5)(0.7)(0.00005)}{(50 .)(3.14)-(1.0)}+ \\
& \frac{(0.5)(0.00005)(0.7)}{(3.6)(3.14)(1.0)}, \text { or }
\end{aligned}
$$

Sr $= \pm 0.000049 \mathrm{~cm} \simeq \pm 0.00005 \mathrm{~cm}$.
4. Bellows Cross Sectional Area

The calibration technique used to determine the cross sectional area of the bellows is described in Appendix C. The equation used to determine the bellows cross sectional area is:

$$
\begin{equation*}
A_{0,0}=\left(\frac{\Delta V}{\Delta L}\right)_{B}=A_{c} \frac{\Delta L_{c}}{\Delta L_{B}} \tag{B-11}
\end{equation*}
$$

where: $\Delta L C$ is the change in liquid level in the capillary tube; ΔL_{B} is the change in bellows length required to produce a liquid displacement of ΔL_{c} within the capillary tube; A_{c} is the capillary tube cross sectional area; and $A_{0,0}$ is the $25.0^{\circ} \mathrm{C}$ and 1 atm . Value of the bellows cross sectional area. Thus the uncertainty in $A_{0,0}$ is given by:
$\delta A_{0 j 0}=A_{C} \frac{\Delta L_{c}}{\Delta L_{B}}\left(\frac{\delta A_{c}}{A_{C}}+\frac{\delta \Delta L_{C}}{\Delta L_{C}}+\frac{\delta \Delta L_{B}}{\Delta L_{B}}\right)$.

For the 0.2 cm I.D. capillary tube A_{c} is $0.032 \mathrm{~cm}^{2}$ and the uncertainty is given by:

$$
\begin{equation*}
\delta A_{c}=\delta\left(\pi r^{2}\right)=2 \pi r \delta r . \tag{B-13}
\end{equation*}
$$

Since the uncertainty in the radius of the capillary tube was $\pm 0.00005 \mathrm{~cm}, \delta A_{c}=2.0 \cdot 3.14 \cdot 0.1 \cdot 0.00005 \mathrm{~cm}^{2}$, or $\delta A_{c}= \pm 0.000032 \mathrm{~cm}^{2}$. For a compression of 0.25 cm , ΔL_{B}, on the bellows the change in liquid level in the capillary tube will be $15.5 \mathrm{~cm}, \Delta L_{C}$. Both ΔL_{B} and ΔL_{c} were measured with cathotometers and the $\delta\left(\Delta L_{0}\right)=$ $\delta\left(\Delta L_{c}\right)= \pm 0.00005 \mathrm{~cm}$. Thus substitution into B-12 yields the uncertalnty $\delta A_{0,0}$ as:

$$
\delta A_{0.0}=0.032 \frac{15.5}{0.25}\left(\frac{0.000032}{0.032}+\frac{0.00005}{15.5}+\frac{0.00005}{0.25}\right),
$$

or
$\delta A_{0,0}= \pm 0.0012 \mathrm{cc}$.

APPENDIX C

EQUIPMENT CALIBRATION

During the course of this work it was found necessary to make a total of four equipment calibrations to determine: the capillary tube radius for use in determining the bellows cross sontional area, the bellows cross sectional area, the slide wire unit length, and the manganin cell pressure coefficient.

1. Capillary Tube Radius

The capillary tube radius and its uniformity were determined so that the cross sectional area of the bellows could be determinor. using the capillary tube liquid displacement method. (See section on bellows calibration below.) The mercury thread weight technique was used (30) to calibrate the capillary tube。
a. Apparatus

The capillary calibration apparatus is shown in Figure 59 and a detailed section of the injection system is shown in Figure 59. The temperature bath B in Figure 58 was used as a source of constant temperature fluid and

was maintained at $25.00 \pm 0.005^{\circ} \mathrm{C}$ during the course of the measurements. The bath fluid, distilled water, was continuously circulated in the flow loop indicated by arrows in Figure 58 by centrifugal pump P. The fluid flow rate was sufficiently high, that when a Philadelphia differential thermometer was inserted into the calibration $j 1 g \mathrm{~J}$ at points Sl and S 2 it read 2.37 in both cases. This was also its roorling when placed in bath B. Room temperature was monitored via an A.S.T.M. 90C thermometer and maintained at $25.0 \pm 0.1^{\circ} \mathrm{C}$ during the course of measurements.

b. Procedure

Prior to calibrating a capillary tube a group of ten precision bore tubes, made of borosilicate glass, were inspected and the one with the most uniform bore was chosen for calibration. Then the capillary was cleaned in hot chromic acid, flushed with distilled water and vacuum dried.

The capillary tube was then mounted in calibration jig J in Figure 58. It was vertically aligned and it was also allgned to be parallel to the travel of cathetometer C.

To make a measurement, three threads of Mercury were introduced into the capillary tube. The central thread was the thread to be measured. The upper and lower
threads were used to protect the central thread. These threads were driven up the capillary tube by water injected into the capillary with a syringe S and valve V in Figure 50.

It was observed that the position and measurements of the central thread were not affected by time up to 24 hours as long as temperature control was maintained. Since water was used to drive tho mercury measurements could be made only in the upwards direction. Once the walls of the tube were wetted with water it was impossible to obtain a reproducible reading at that point without cleaning and drying the tube.
c. Results and Method

Two different lengths of mercury threads were measured. One of one cm and the other of two cm nominal length. The two cm thread weight was 0.90526 gm and the one cm thread weight was 0.51263 gm . The density of Mercury used (40) was $13.5336348 \mathrm{gm} / \mathrm{cc}$ at $25.0^{\circ} \mathrm{C}$.

The mercury thread contained in a capillary tube of uniform bore may be assumed to be right circular cylinder capped at each end by a volume element which has a volume larger than that of a paraboloid and smaller than that of a spherical segment Figure 60.

FIGURE 60. HYPOTHETICAL MERCURY THREAD

With B-C being the height of the right circular cylinder with $A-B$ and $C-D$ the height of the caps with R the radius of the capillary tube

Thus:

$$
\begin{align*}
& V_{\text {Hemi }}=\pi R^{2}(B-C)+1 / 6 \pi(A-B)\left((A-B)^{2}+3 R^{2}+\right. \\
& 1 / 6 \pi(C-D)\left((C-D)^{2}+3 R^{2}\right) \tag{C-1}\\
& V_{\text {para. }}=\pi R^{2}(B-C)+\frac{1}{2} \pi R^{2}(A-B)+\frac{1}{2} \pi R^{2}(C-D) \tag{C-2}
\end{align*}
$$

If the weight of the mercury thread is known and the density at the temperature that A, B, C, D are measured in the capillary tube the real volume of the thread can be computed. This may be used for $V_{\text {Hemi }}$ or $V_{\text {Para. in }}$ equations $C-1$ or $C-2$ and then the only unknown is radius.

Rearranging equations $C-1$ and $C-2$ to solve for the radius:

$$
\begin{align*}
& R_{\text {Hemi }}=\left(\left(\frac{w t .}{\rho \pi}-\frac{1}{6}\left((A-B)^{3}+(C-D)^{3}\right)\right)\right. \\
&\left.\left((B-C)+\frac{1}{2}((A-B)+(C-D))\right)\right)^{\frac{1}{2}} \tag{c-3}\\
& R_{\text {para. }}=\left(\frac{w t}{\rho \pi} /\left((B-C)+\frac{1}{2}((A-B)\right.\right. \\
&+(C-D))))^{\frac{1}{2}} \tag{c-4}
\end{align*}
$$

By measuring two threads of mercury of different lengths the values of $\mathrm{R}_{\text {Hemi }}$ and $\mathrm{R}_{\text {Para }}$. calculated from equations C-3 and C-4 should be different for the two threads if the cap volume is not exactly described by a paraboloid or spherical segment. This was done for a thread 1 cm . in length and one 2 cm . in length. It was noted that the radius calculated with equations C-3 increases as the thront length increases. (Thus the postulated cap volumes are too small.) The value of the radius calculated with equation $C-4$ also decreases with thread length. Thus a correction of the cap volumes must be made. To do this equations C-3 and C-4 were modified;

$$
\begin{align*}
R_{\text {Hemi }} & =\left(\left(\frac{w t}{\rho \pi}-\frac{1}{6}\left((A-B)^{3}+(C-D)^{3}\right)\right) /(C B-C)+\right. \\
\quad x \cdot & ((A-B)+(C-D))))^{1 / 2} \tag{C-5}\\
R_{\text {Para. }} & =\left(\frac{w t}{\rho \pi} /((B-C)+Y((A-B)+\right. \\
& C-D))))^{\frac{1}{2}} \tag{c-6}
\end{align*}
$$

Then the values of X and Y were found such that the value of the radius for the 1 cm . and 2 cm . thread were the same. It was noted that the average value of $\mathrm{R}_{\mathrm{Hemi}}$ varies from that of $\mathrm{R}_{\text {Para. }}$ by .000002 cm . The average of these two will be used. Then $R=.100320 \pm .000035 \mathrm{~cm}$. and the capillary cross sectional area is $0.0316167 \mathrm{~cm}^{2}$.

From these measurements, the uniformity of the capillary tube bore was found to be better than that required by error analysis ($\pm 0.00005 \mathrm{~cm}$.) so no correction with position is required.

This calibrated precision bore Borosilicate glass capillary tube made it possible to determine the cross sectional area of the sylphon bellows.

2. Bellows Cross Sectional Area

This section deals with the determination of the bellows cross sectional area via the liquid displacement method.
a. Apparatus

The bellows calibration apparatus is shown in Figure 61 and a detailed section of the bellows and micrometer section are shown in Figure 62. The apparatus used in the bellows calibration was essentially the same as that used in the capillary calibration with the exception that the fluid displaced into the capillary tube was held in the sylphon bellows and the bellows was driven by a precision micrometer. One additional cathetometer was required to determine bellows displacement.

FIGURE 62. BELIOWS AND MICROMETER SECTION

b. Procedure

The temperature bath T in Figure 61 was used as a source of constant temperature fluid. It was maintained at $25.00 \pm 0.005^{\circ} \mathrm{C}$ during the course of the measurements. The bath fluid, distilled water, was continuously circulated in the flow loop, indicated by arrows in Figure 61. by centrifugal pump P. As before, the temperature in calibration jig J was nonitored at $S 1$ and $S 2$ and found to read 2.37 on the Philadelphia differential thermometer. Room temperature was maintained at $25.0 \pm 0.1^{\circ} \mathrm{C}$ during the course of measurements.

Prior to filling of calibration $j i g ~ J$ and bath T with fluid it was necessary to fill the bellows B with water, to mount and to align it in jig J, Figure 61. The bellows was filled by using the sample filling apparatus described in Appendix E. Alignment consisted of adjusting the flat face of the bellows and the face of driver N, Figure 62, until they were parallel using the two cathetometers. Then as in the capillary tube calibration above, the capillary tube and cathetometer travel were aligned to each other. The flow system was then filled.

Micrometer M, Figure 61 and 62, was advanced, driving the column of distilled water up the capillary tube. Cathetometers Cl and C2 were used to measure bellows and meniscus displacements respectively.
c. Results and Method

The bellows cross sectional area can be calculated from equation $B-11:$

$$
\begin{equation*}
A_{0,0}=A_{c} \frac{\Delta L_{c}}{\Delta L_{B}} \tag{C-7}
\end{equation*}
$$

Where $A_{0,0}$ is the bellows cross sectional area at $25.00^{\circ} \mathrm{C}$ and one atmosphere. A_{c} is the cross sectional area of the capillary tube determined above, ΔL_{c} is the water meniscus displacement within the capillary tube caused by the bellows displacement ΔL_{B}. The average value for all measurements is $1.9815 \pm 0.0011 \mathrm{~cm}^{2}$. The maximum deviation in $A_{0,0}$ is slightly less than that required by the error analysis in Appendix $\mathrm{B}_{\text {. }}$
3. Slide Wire Unit Length

The slide wire unit length was determined by measuring the resistance over an accurately known distance.

a. Apparatus

The slide wire calibration apparatus is shown in Figure 63. The lower assembly is used to hold and position the wire for which the resistivity is being determined.

FIGURE 63. SLIDE WIRE CALIBRATION APPARATUS

The upper assembly is a spacer for the knife edge contacts R.
b. Procedure

The upper section in Figure 63 is lowered onto the lower section so that the knife edges R contact the slide wire S. The resistance between the knife edges is measured using the Mueller G-2 bridge.

The lower section was mounted vertically in front of the cathetometer and aligned to be paralled to the cathetometer travel as in the case of the capillary tube calibration. The distance between the scratches the knife edges make on the wire was measured.
c. Results and Method

With the resistance for a given length of slide wire, and that length known, the length per resistance is determined. Thus the unit length, Ω, is $3.8780 \pm$ $0.00002 \mathrm{~cm} /$ ohm. Three different sections of wire were measured to obtain Q. The manufacture, Driver-Harris (12) . claims a linearity of $\pm 0.008 \%$ for their Karma wire. 4. Manganin Cell Pressure Coefficient

The manganin cell calibration against the $100,000 \mathrm{psi}$ Aminco dead weight tester is described below.
a. Apparatus

The general apparatus is shown in Figure 64. The manganin cell was maintained at $25.00 \pm 0.01^{\circ} \mathrm{C}$ during the course of the calibration and subsequent $p-\nabla-T$ measurements. Room temperature was maintained at $19.5 \pm 0.1^{\circ} \mathrm{C}$ during calibration. This was done to minimize the temperature correction for the dead weight tester piston area.

b. Procedure

The zero point resistance was determined for the manganin cell. The time during which the dead weight gauge piston was floating varied from 2 minutes at $100,000 \mathrm{psi}$ to over 60 minutes at 10,000 psi. Only the center of the piston floating time was used in the calibration for making resistance readings. Readings were taken every 5000 psi between $10,000 \mathrm{psi}$ and $100,000 \mathrm{psi}$.

c. Results and Method

The pressure was calculated using the piston gauge pressure equation given in N.B.S. Monograph 65 (41).

$$
\begin{equation*}
P=\frac{M_{A}\left(\frac{g_{L}}{g_{s}}\right)\left(1.0-\frac{P_{A}}{P_{w}}\right)}{A(1.0-c \Delta t)(1.0+b P)} \tag{C-7}
\end{equation*}
$$

Where P is the system pressure. M_{A} is the mass of the weights, g_{L} is the local gravity. g_{s} is the gravity at the point the weights were calibrated, ℓ_{A} is the density of air at measurement conditions, ρ_{w} is the density of the weights, A is the cross sectional area of the piston as determined at $20.0^{\circ} \mathrm{C}$ and atmospheric pressure, c is the coefficient of thermal expansion of the piston, and b represents the fractional chance in area as a result of elastic distortion.

The average cell factor for the manganin coil was found to be 58263. psi/ohm change.

APPENDIX D

COMPUTER PROGRAMS

The computer programs used are discussed in this appendix. The programs are: the initial data reduction program INDAN; the Tait equation program for J and L called TAITMN; the fitting program to determine characteristic volumes and pressures for the Flory or the Prausnitz liquid model called BMDX 85; the fitting program to determine characteristic temperatures for the Flory or the Prausnitz liquid model called STEPIT; and the fitting program for the Scaled Particle liquid model called SCLPRT.

1. Program INDRN

a. Use

This program converts raw resistance versus pressure readings into compression versus pressure data via equation A-12. It also punches out a data set of relative volume versus pressure.
2. Program TAITMN
a. Use

To determine the Tait coefficients J and L for a
given data set.
b. Method

A least-squares regression analysis was written using the Tait equation and the relative volume:

$$
\begin{equation*}
\psi=\sum_{i=1}^{N}\left(V_{i}-\left(V_{0}-J \ln \left(\frac{P_{i}+L}{P_{0}+L}\right)\right)\right)^{2} . \tag{D-I}
\end{equation*}
$$

In $D-1 V_{i}$ is the experimental relative volume at pressure P_{i} and V_{0} is the initial volume at the initial pressure P_{0}. The partial derivatives with respect to J and L of D-1 were taken, set equal to zero, and J was eliminated from the set of equations thus leaving one equation in one unknown. This equation is solved via the Newton-Raphson method of root finding. The program is double precision and it is in Fortran IV.
3. Program BMDX 85
a. Acknowledgement

The MAIN program and two subroutines MINIZ and STEP were obtained from the Health Sciences Computing Facility at the University of California at Los Angeles. This program is part of the Biomedical Package available from the Health Sciences Computing Facility.
b. Use

To determine characteristic volumes and pressures for either the Prausnitz or Flory partition function via regression analysis on the isothermal compressibility. c. Method

A stepwise Gauss-Newton (28) iteration procedure is used. All parameters, in this case character volumes and pressures, are adjusted at each step. The program is double precision and written in Fortran IV.
4. Program STEPIT
a. Acknowledgement

The subroutine STEPIT was obtained from the Quantum Chemistry Program Exchange at Indiana University, Bloomington, Indiana. The programmer and copyrighter is Dr . J. P. Chandler of the Physics Department at Indiana. b. Use

To determine characteristic temperatures for either the Flory or Prausnitz partition function via regression analysis on the molar volume of the liquid.
c. Method

The method is one of direct search until the root has been bracketed, then parabolic interpolation is used. The program is double precision and in Fortran IV.
5. Program SCLPRT
a. Use

To determine the scaled particle theory parameter A via regression analysis on the experimental isothermal compressibility.
b. Method

The method is one of direct search until the root has been bracketed, then parabolic interpolation is used. The program is double precision and in Fortran IV.

APPENDIX E

DETAILED APPARATUS AND SPECIFICATIONS

This appendix deals with the detailed description of all of the equipment used. It includes working arrangements and equipment specifications.

Figure 65 presents a schematic diagram of the apparatus used during the $P-V-T$ messurements.

1. P-V-T Cell

Detailed views of the P-V-T cell, P-V-T C, in Figure 65 are shown in Figures 66 and 67. A detailed listing of the balloons in Figures 66 and 67 is given in Table XIV. The P-V-T cell design is that of Harwood Engineering, design number El619.
a. Specifications

Cell Diameter: 6"
Cell Body Length: 10"
Temperature Range: Ambient to $300^{\circ} \mathrm{F}$
Pressure Range: 0 to 200,000 PSIG
Pressure Fittings: Harwood 12H

FIGURE 65. EXPERIMENTAL APPARATUS
210

FIGURE 67. PVT CELL DETAIL (Courtesy of Harwood Engineering Company)

TABLE XIV

LTSIING OF BALTOONS

```
    1 - Vessel.
    2..Sleeve
    3-Cap screw
    4 - Front bellows end plate
    5-Retainer
    6-Set screws
    7 - Syphon bellows
    8-Rear bellows end plate
    9 - Kamma wixe
10 - Fixed comection housing
11 - Spring
12 - Teflon piston
13-Electrical connection
14 .. Tefion inswletor
15 - Unsupported area scel
16 -- Unsupponted asea seal
17 - O-rine
18-Lead washer
19-Steel ring
20-Closure
21 - Drive plug
22 -.Nut
23-closure bolt
24 .. Set screw
25 - Fixed contact
26-Flxed contact insulator
27 - Insulating spacer
28 - Insulating spacer
29 - Insulatins spacer
30 - Electrical leads
31 - Meetrocal leads
32 - Oround
33 - 2lectrical lead
34 - Electrical lead
```

2. Hallikainen Temperature Bath

The Hallikainen temperature bath, HTB Figure 65, was used to control the temperature of the $\mathrm{P}-\mathrm{V}-\mathrm{T}$ cell.
a. Specifications

Model Number: 1128C
Serial Number: 13841
Temperature Controller: Thormotrol 1253A
Serial Number: 13720
Resistance Thermometer: 1281D
Serial Number: 13735
Sensitivity:
$0.001^{\circ} \mathrm{C}$
Tank Diameter: $\quad 12^{\prime \prime}$
Tank Depth: 18"
Tank Capacity: 8 1/2 gal.
Obtainable Control: $\quad \pm 0.002^{\circ} \mathrm{C}$
3. Platinum Resistance Thermometer

The Leeds and Northrup platinum resistance thermometer, PRT, was used to set and monitor the temperature in the Hallikainen bath.
a. Specifications

Model Number:	$8163-\mathrm{C}$
Serial Number:	1662272
Calibration Reference:	N.B.S. Test No. 180710
$\mathrm{R}_{\mathrm{O}}:$	25.5630 ohms absolute
$\alpha:$	$0.00392667 /{ }^{\circ} \mathrm{C}$
$\delta:$	$1.491 /{ }^{\circ} \mathrm{C}$
Minimum Immersion:	$7^{\prime \prime}$
Measurement Current:	$2 \mathrm{ma}$.

4. AMINCO Bath

The American Instrument Company bath, ATB, was of the Mercury contact thermometer type. It was used to control the temperature of the Manganin cell and was always set at $25.00^{\circ} \mathrm{C}$.
a. Specifications

Model Number :	$\mathrm{R} 4-1588$
Tank Diameter:	$20^{\prime \prime}$
Tank Depth :	$20^{\prime \prime}$
Capacity :	20 gals.
Sensitivity :	$\pm 0.005^{\circ} \mathrm{C}$
Obtainable Control: $\pm 0.01^{\circ} \mathrm{C}$	

5. Philadelphia Differential Thermometer

The Philadelphia differential thermometer, PDT, was used to monitor the temperature in the Aminco bath.
a. Specifications

Serial Number : T46091
Range : $\quad 5^{\circ} \mathrm{C}$
Divisions : $\quad 1 / 100^{\circ} \mathrm{C}$
$25.00^{\circ} \mathrm{C}$ Reading: 2.37
6. Manganin Cell

The Manganin cell, MNC, is a resistance type pressure transducer. The design was that of Harwood Engineering Co., number D1723.
a. Specifications

Pressure Range: 0 to 200,000 PSIG
Temperature Coefficient Zero Point: $25.0^{\circ} \mathrm{C}$
7. High Pressure Valves

Three Harwood high pressure valves were used in the high pressure side of the system. Two were of the D-2286, VN, type and one of the D-1545, VO type. The D-2286 being a newer design with improved characteristics.
a. Specifications

Model : D2286

Pressure Range Closed: 0 to 200,000 PSIG
Pressure Range Open : 0 to 200,000 PSIG
Maximum Closing Pressure: 200,000 PSIG
Model : D-545
Pressure Range Closed: 0 to 200,000 PSIG
Pressure Ranc: Open: 0 to 40,000 PSIG
Maximum Closing Pressure: 40,000 PSIG
8. Low Pressure Valves

All of the low pressure valves, LV, were from American Instrument Company.
a. Specifications

Model Number : 44-16106
Pressure Range: 0 to 60,000 PSIG
9. Piston Intensifier

The piston intensifier, PI, was of Harwood Engineering design number El796.
a. Specifications

Area Ratio Low side/High side: 17:1
Maximum High Side Pressure: 200,000 PSIG
10. Heise 0-50,000 PSIG Gauge

The 0-50,000 PSIG gauge, H50, was used as the primary pressure measuring device for all runs up to 50,000 psi.
a. Specifications

Serial Number :
H43373
Pressure Range :
0-50,000 PSIG
Accuracy :
$\pm 0.1 \%$ Full Scale
Maximum Hysteresis :
$\pm 0.1 \%$ Full Scale
Thermal Compensation Range: $-25^{\circ} \mathrm{F}$ to $125^{\circ} \mathrm{F}$
11. Heise 0-1500 PSIG Gauge

The 0-1500 PSIG gauge: H15, was used to obtain high accuracy pressures for the low pressure points taken.
a. Specifications

Serial Number :	C-51067R
Pressure Range :	$0-1500$ PSIG
Accuracy :	$\pm 0.1 \%$ Full Scale
Maximum Hysteresis :	$\pm 0.1 \%$ Full Scale
Thermal Compensation Range:	$-25^{\circ} \mathrm{F}$ to $125^{\circ} \mathrm{F}$

12. AMINCO 0-15,000 PSIG Gauge

The $0-15,000$ psi gauge, A15, was used on the low pressure system to indicate system pressure while the intensifier was being reversed and also when the reversal process had been accomplished.
a. Specifications

Model Number: 47-18305
Accuracy: $\quad 1 \%$ Full Scale
13. AMINCO 0-40,000 PSIG Gauge

The $0-40,000$ psi gauge, A.40, was used on the low pressure side of the piston intensifier to indicate the pressure driving the intensifier and when it had reached the end or its stroke.
a. Specifications

Pressure Range: $0-40,000$ PSIG
Model Number : 47-18340
Accuracy : \quad. 0% Full Scale
14. AMINCO 0-20,000 PSI Pump

The Aminco 0-20,000 psi pump, P20, was used to drive the piston intensifier forward. Its capacity was such that it required approximately six strokes per 1000 psi of system pressure increase.
a. Specifications

Model Number : 46-12155
Serial Number : GG-0664
Displacement per stroke: $\quad 1.6 \mathrm{cc}$ at $20,000 \mathrm{psi}$
Maximum Discharge Pressure: 20,000 psi
15. Blackhawk 0-10,000 PSI Pump

The Blackhawk $0-10,000$ psi pump, Pl0, was used to reverse the piston intensifier.
a. Specifications

Model Number :
P39
Serial Number : 003J440
Displacement per stroke: 0.096 cu. in.
Maximum Discharge Pressure: 10,000 psi
16. Blackhawk $0-40,000$ PSI Pump

The Blackhawk $0-40,000$ psi pump, 440 , was used when the reversal pressure on the piston intensifier exceeded 10,000 psi.
a. Specifications

Model Number : P228
Serial Number :
FC3Y 684
Displacement per stroke : 0.024 cu . in.
Maximum Discharge Pressure : 40,000 psi
17. Mueller G-2 Bridge

Figure 68 is a schematic diagram of the Mueller G-2 bridge used in the measurement; of slide wire total resistance, bellows to fixed contact resistance, $\mathrm{P}-\mathrm{V}-\mathrm{T}$ cell temperature via Platinum resistance thermometer, and system pressure via Manganin cell (above 50,000 psi). The four different measurements were made through use of a Leeds and Northrup Special Commutaior.
a. Specifications

Range :	0 to 111.1111 ohms
Setability :	0.001 ohms
Absolute Accuracy:	$\pm 0.002 \%$

18. Sartorius Balance

The Sartorius balance was used for all weight determinations.
a. Specifications

Model Number : 2603
Capacity : $\quad 150$ grams
Optical Range : 1000 milligrams
Sensitivity : 0.1 milligram
Readability : 0.1 milligram
Reproducibility : 0.05 milligrams

19. Cathetometer 2.5 CM Travel

This unit was used for the majority of the optical distance measurements with the exception of those requiring a large travel.
a. Specifications

Model Number :	$\mathrm{M}-300 \mathrm{P}$
Serial Number :	$3337-\mathrm{P}$
Range :	2.5 cm.
Direct Reading to : 0.0001 cm.	

20. Cathetometer 10.0 CM Travel
a. Specifications

Model Number : M-303P
Serial Number : 2705-P
Range : $\quad 10.0 \mathrm{~cm}$.
Direct Reading to : 0.0001 cm .
21. Sample Filling Apparatus

The sample filling apparatus is shown in Figure 69 . It was used to charge the liquid samples into the bellows. The three-way tee valve is arranged so that is is possible to evacuate the bellows, then close the system off and open the evacuated bellows to the liquid sample chamber. Thus allowing the bellows to be filled essentially in vacuum.

FIGURE 69. SAMPLE FILLING APPARATUS

APPENDIX F

RAW DATA

The raw resistance versus pressure data is listed in Table XV. Also listed are the manganin cell zero point and high pressure resistances in the cases where the data range extended beyond $50,000 \mathrm{psi}$. The table is ordered by compound or mixture and then by temperature for the compound or mixture, lowest first. The table order is: n-Decane, n-Dodecane, $n-T e t r a d e c a n e, ~ n-H e x a d e c a n e, ~$ misture of 0.5000 mole fraction n-Decane and $n-T e t r a d e c a n e$, mixture of 0.5000 mole fraction n-Dodecane and n-Hexadecane, and a mixture of 0.6000 mole fraction n-Decane and 0.2000 mole fraction n-Tetradecane and n-Hexadecane.

N-DECANE AT 25.00 DEG. C.

$\begin{gathered} \text { RA } \\ \text { (OHMNS) } \end{gathered}$	$\begin{aligned} & \text { RMN } \\ & \text { (OHMNS) } \end{aligned}$	(PSI)	(PATM)
0.26800	104.38005	14.7	1.0
0.26879	0.0	292.7	19.9
0.26950	0.0	523.7	35.6
0.27081	0.0	1006.7	68.5
0.27180	0.0	1401.7	95.4
0.27313	0.0	1994.7	135.7
0.27618	0.0	3194.7	217.4
0.27902	0.0	4524.7	307.9
0.28224	0.0	6094.7	414.7
0.28498	0.0	7584.7	516.1
0.28750	0.0	9024.7	614.1
0.28994	0.0	10574.7	719.6
0.29224	0.0	12064.7	821.0
0.29423	0.0	13584.7	924.4
0.29623	0.0	15034.7	1023.0
0.29811	0.0	16534.7	1125.1
0.30018	0.0	18014.7	1225.8
0.30208	0.0	19994.7	1360.6
0.30454	0.0	22014.7	1498.0
0.30723	0.0	25194.7	1714.4
0.30993	0.0	27994.7	1904.9
0.31228	0.0	31014.7	2110.4
0.31469	0.0	33954.7	2310.5

N－DECANE AT 45．00 DEG。C．

DENSITY $=.71059$ GM．／C．C．

RA （OHMNS）	RMN （OHMNS）
0.26001	104.37925
0.26103	0.0
0.26164	0.0
0.26339	0.0
0.26490	0.0
0.26619	0.0
0.26913	0.0
0.27290	0.0
0.27613	0.0
0.27956	0.0
0.28226	0.0
0.28510	0.0
0.28739	0.0
0.28975	0.0
0.29206	0.0
0.29425	0.0
0.29590	0.0
0.29936	0.0
0.30268	0.0
0.30580	0.0
0.30843	0.0
0.31079	0.0
0.31326	0.0
0.31521	0.0
0.31733	0.0
0.31919	0.0
0.32129	0.0
0.32208	105.22900
0.32506	105.31290

SAMPLE WEIGHT $=2.07530 \mathrm{GM}$ ．
（PSI）
14.7
300.7
$460.7 \quad 31.3$
1024．7
1474.7
2014.7

30人口。 7
4584.7

5984． 7
7614.7

9064．7
10664．7
12074．7
13614.7
15114.7

16794．7
18064.7
21084.7
24014.7
27184.7
30064.7
33054.7

36014．7
39014.7

41884．7
44994． 7
48114.7
49492.6
54389.7
（PATM）
1.0
20.5

P
69.7
100.3

137．1
207．2
312．0
407.2
518.1
616.8
725.7
821.6
926.4
1028.5
1142.8
1229.2
1434.7
1634.1
1849.8

2045．8
2249．2
2450.6
2654.8

2850．1
3061.7

3274．0
3367.8

3701．0

N-DECANE AT 65.00 DEG。C.

DENSITY $=.6951$	GM. /C.C.	SAMPLE WE	2.0753
RA	RMN		
(OHMNS)	(OHMNS)	(PSI)	(PATM)
0.25175	104.37840	14.7	1.0
0.25288	0.0	327.7	22.3
0.25386	0.0	492.7	33.5
0.25568	0.0	1009.7	68.7
0.25754	0.0	1444.7	98.3
0.25945	0.0	2004.7	142.5
0.26233	0.0	3084.?	209.9
0.26651	0.0	4534.7	308.6
0.27023	0.0	5994.7	407.9
0.27399	0.0	7604.7	517.5
0.27706	0.0	9084.7	618.2
0.28031	0.0	10674.7	726.4
0.28268	0.0	12114.7	824.4
0.28501	0.0	13474.7	916.9
0.28752	0.0	15039.7	1023.4
0.29007	0.0	16794.7	1142.8
0.29185	0.0	17994.7	1224.5
0.29564	0.0	21004.7	1429.3
0.29947	0.0	24034.7	1635.5
0.30235	0.0	27104.7	1844.4
0.30547	0.0	301.44 .7	2051.2
0.30824	0.0	33194.7	2258.8
0.31035	0.0	36024.7	2451.3
0.31265	0.0	39204.7	2667.7
0.31489	0.0	42064.7	2862.3
0.31676	0.0	45084.7	3067.8
0.31883	0.0	48014.7	3267.2
0.32140	105.28130	52594.5	3578.8
0.32381	105.34910	56553.3	3848.2
0.32491	105.38725	58781.7	3999.8
0.32809	105.48785	64661.3	4399.9
0.33110	105.59755	71077.8	4836.5

N-DECANE AT 85.00 DEG. C.

DENSITY $=.67945$ GM./C.C.

RA (OHMNS)

0.24359
0.24490
0.24577
0.24773
0.24983
0.25144
0.25596
0.25904
0.26207
0.26452
0.26705
0.26959
0.27416
0.27604
0.27782
0.27997
0.28159
0.28316
0.28413
0.28635
0.28806
0.28935
0.29061
0.29218
0.29419
0.29701
0.29909
0.30124
0.30328
0.30565
0.30693
0.30874
0.30989
0.31185
0.31284
0.31460
0.31570
0.31730
0.31915
0.32210
0.32383

RMN
(OHMNS)
104.37705
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
105.28345
105.35725
105.42440

SAMPLE WEIGHT $=2.07530$ GM.
(PSI)
14.7
301.7
529.7
994.7
1436.7
1994.7
2114.7
4024.7
5144.7
6134.7
7054.7
8084.7
10184.7
11064.7
12044.7
13044.7
14134.7
15034.7
15664.7
17014.7
18134.7
19064.7
20134.7
21034.7
22934.7
25014.7
27244.7
29054.7
31284.7
33814.7
35164.7
37014.7
38954.7
40984.7
43144.7
45064.7
46934.7
49039.7
52798.8
57108.2
61031.4
(PATM)
1.0
20.5
36.0
67.7
97.8
135.7
211.9
273.9
350.1
417.4
480.0
550.1
693.0
752.9
819.6
887.6
961.8
1023.0
1065.9
1157.8
1234.0
1297.3
1370.1
1431.3
1560.6
1702.1
1853.9
1977.0
2128.8
2300.9
2392. 8
2518.7
2650.7
2788.8
2935.8
3066.5
3193.7
3336.9
3592.7
3886.0
4152.9

TABLE XV (COntinued)

N-DECANE AT 85.00 DEG. G。

| RA
 (OHMNS) | RMN
 (OHMNS) | (PSI) | P |
| :---: | :---: | :---: | :---: | :---: |
| 0.32383 | 105.42440 | 61031.4 | 4152.9 |
| 0.32764 | 105.55360 | 68585.5 | 4666.9 |
| 0.32846 | 105.56050 | 68989.1 | 4694.4 |
| 0.33066 | 105.64635 | 74013.1 | 5036.3 |
| 0.33107 | 105.67540 | 75713.8 | 5152.0 |
| 0.33913 | 106.00655 | 95128.2 | 6473.1 |

N-DODECANE AT 25.00 DEG. C。

DENSITY $=.74490$	GM./C.C.	SAMPLE WEIGHT $=2.18552$ GM.	
RA	RMN		
(OHMNS)	(OHMNS)	(PSI)	(PATM)
0.25938	0.0		
0.26008	0.0	14.7	1.0
0.26091	0.0	252.7	17.2
0.26165	0.0	425.7	29.0
0.26288	0.0	999.7	68.0
0.26398	0.0	1462.7	99.5
0.26633	0.0	1974.7	134.4
0.26949	0.0	3016.7	205.1
0.27239	0.0	4524.7	307.9
0.27509	0.0	5984.7	407.2
0.27767	0.0	7544.7	513.4
0.27990	0.0	9054.7	616.1
0.28222	0.0	10554.7	718.2
0.28418	0.0	12034.7	818.9
0.28622	0.0	13614.7	926.4
0.28794	0.0	15024.7	1022.4
0.28981	0.0	16604.7	1129.9
0.29130	0.0	18024.7	1226.5
0.29327	0.0	19484.7	1325.9
	21014.7	1430.0	

N-DODECANE AT 45.00 DEG. C.

N-DODECANE AT 65.00 DEG. C.

N-DODECANE AT 85.00 DEG. C.

DENSITY $=.70082$ GM./C.C.
RA
(OHMNS)

0.23521	104.38145
0.23645	0.0
0.23763	0.0
0.23946	0.0
0.24114	0.0
0.24305	0.0
0.24673	0.0
0.25103	0.0
0.25487	0.0
0.25899	0.0
0.26194	0.0
0.26510	0.0
0.26799	0.0
0.27041	0.0
0.27321	0.0
0.27780	0.0
0.28027	0.0
0.28294	0.0
0.28641	0.0
0.28968	0.0
0.29241	0.0
0.29515	0.0
0.29747	0.0
0.30021	0.0
0.30209	0.0
0.30459	0.0
0.30637	0.0
0.31062	105.34615
0.31335	105.41905

RMN
(OHMNS)
104.38145
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
105.34615
105.41905

SAMPLE WEIGHT $=2.18552$ GM.
(PATM)

14.7	1.0
311.7	21.2
548.7	37.3

548.7
$1037.7 \quad 70.6$
$1459.7 \quad 99.3$
2034.7138 .5
$3114.7 \quad 211.9$
$4544.7 \quad 309.2$
$5964.7 \quad 405.9$
$7544.7 \quad 513.4$
9034.7 614.8
$10554.7 \quad 718.2$
12064.7821 .0
$13464.7 \quad 916.2$
$15064.7 \quad 1025.1$
$18134.7 \quad 1234.0$
$20134.7 \quad 1370.1$
$21994.7 \quad 1496.6$
$25144.7 \quad 1711.0$
$28114.7 \quad 1913.1$
$31144.7 \quad 2119.3$
$33924.7 \quad 2308.4$
37094.7 2524. 1
39934.7 2717.4
$42994.7 \quad 2925.6$
$46034.7 \quad 3132.5$
$48974.7 \quad 3332.5$
56202.9
60461.6

N-HEXADECANE AT 25.00 DEG. C.

N-HEXADECANE AT 45.00 DEG. C.

DENSITY $=.74477$ GM./C.C.		SAMPLE WEIGHT $=2.2480$	
RA	RMN		
(OHMNS)	(OHMNS)	(PSI)	(PATM)
0.24535	0.0	14.7	1.0
0.24609	0.0	174.7	11.9
0.24639	0.0	344.7	23.5
0.24693	0.0	561.7	38.2
0.24839	0.0	1096.7	74.6
0.24959	0.0	1429.7	97.3
0.25089	0.0	205今。7	139.8
0.25222	0.0	2564.07	174.5
0.25335	0.0	3084.7	209.9
0.25459	0.0	3624.7	246.6
0.25556	0.0	4044.7	275.2
0.25679	0.0	4564.7	310.6
0.25748	0.0	5024.7	341.9
0.26154	0.0	7084.7	482.1
0.26334	0.0	7964.7	542.0
0.26515	0.0	9154.7	622.9
0.26692	0.0	10014.7	681.5
0.26826	0.0	11114.7	756.3
0.27010	0.0	12054.7	820.3
0.27145	0.0	13164.7	895.8
0.27290	0.0	14004.7	953.0
0.27406	0.0	15084.7	1026.4
0.27566	0.0	15994.7	1088.4
0.27654	0.0	16964.7	1154.4
0.27809	0.0	18034.7	1227.2
0.27955	0.0	19014.7	1293.9
0.28055	0.0	20034.7	1363.3
0.28167	0.0	21244.7	1445.6
0.28264	0.0	22054.7	1500.7
0.28373	0.0	22984.7	1564.0
0.28506	0.0	24084.7	1638.9

N-HEXADECANE AT 65.00 DEG。C.

DENSITY $=.73057$ GM。/C.C.

RA (OHMNS)	RMN (OHMNS)
0.23847	0.0
0.23902	0.0
0.24006	0.0
0.24179	0.0
0.24475	0.0
0.24741	0.0
0.24999	0.0
0.25208	0.0
0.25431	0.0
0.25677	0.0
0.25861	0.0
0.26078	0.0
0.26247	0.0
0.26424	0.0
0.26572	0.0
0.26739	0.0
0.26875	0.0
0.27046	0.0
0.27181	0.0
0.27326	0.0
0.27449	0.0
0.27572	0.0
0.27703	0.0
0.27821	0.0
0.27948	0.0
0.28036	0.0
0.28173	0.0
0.28268	0.0
0.28373	0.0
0.28440	0.0
0.28571	0.0
0.28642	0.0
0.28757	0.0
0.28811	0.0
0.28913	0.0
0.28978	0.0
0.29097	0.0
0.29175	0.0
0.29269	0.0

SAMPLE WEIGHT $=2.24803 \mathrm{GM}$.
(PATM)
1.0
13.6
34.5
71.8
142.5
211.3
274.5
341.9
409.3
485.5
544.0
622.9
684.2
751.5
818.9
891.0
954.3
1026.4
1094.5
1171.4
1229.2
1303.4
1368.0
1439.5
1506.2
1567.4
1638.9
1706.9
1772.2
1845.0
1911.7
1981.1
2050.5
$2117 . ?$
2179.8
2251.3
2321.4
2386.0
2450.0

N-HEXADECANE AT 85.00 DEG. C.

DENSITY $=.71625$ GM./C.C.
RA
(OHMNS)

RMN (OHMNS)
104.37510
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.25920
0.26106
0.26255
0.26420
0.26577
0.26745
0.26880
0.27032
0.27175
0.27297
0.27428
0.27611
0.27899
0.28082
0.28336
0.28513
0.28710
0.28847
0.29046
0.29175
0.29367
0.29507
0.29663
0.29716
0.29915
0.30018
0.30176
(PSI)
14.7
139.7
566.7
1005.7
1466.7
1994.7
31.64.7
4039.7
5064.7
6054. 7
8024.7
9064.7
10114.7
11044.7
12114.7
13014.7
14154.7
15064.7
16144.7
17024.7
18114.7
19084.7
20214.7
21074.7
23174.7
25014.7
27014.7
29114.7
31214.7
33014.7
35234. 7
37014.7
39039.7
41024.7
43154.7
45114.7

47104。7
49044.7
50709.3
53192.9
1.0
p
(PATM)
9.5
38.6
68.4
99.8
135.7
215.3
274.9
344.0 6
412.0
546.0
616.8
688.3
751.5
824.4
885.6
963.2
1025.1
1098.6
1158.5
1232.6
1298.6
1375.5
1434.0
1576.9
1702.1
1838.2
1981.1
2124.0
$22<6.5$
2397.6
2518.7
2656.5
2791.6
2936.5
3069.9
3205.3
3337.3
3450.5
3619.5

N-TETRADECANE AT 25.00 DEG. C.

N-TETRADECANE AT 45.00 DEG. C.

N-TETRADECANE AT 65.00 DEG. C.

DENSITY $=.74202$ GM./C.C.
RA
(OHMNS)
0.23953
0.23990
0.24018
0.24120
0.24243
0.24526
0.24799
0.25030
0.25229
0.25465
0.25655
0.25878
0.26032
0.26207
0.26381
0.26519
0.26645
0.26844
0.26980
0.27112
0.27347
0.27644
0.27844
0.28062
0.28255
0.28452
0.28632

RMN
(OHMNS)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

SAMPLE WEIGHT $=2.26350$ GM.

P

(PSI)
14.7
108.7
215.7
484.7
1005.7
2034.7

3月14? ?
4014.?
5034.7
6014.7
7114.7
8064.7
9114.7
10034.7
11194.7
12034.7
13044. 7
14044. 7
15134.07
16014.7
18134.7
20124.7
22184.7
24064.7
26254.7
28024.7
30064.7
1.0
(PATM)
7.4
14.7
33.0
68.4
138.5
211.9
273.2
342.6
409.3
484. 1
548.8
620.2
682.8
761.8
818.9
887.6
955.7
1029.9
1089.7
1234.0
1369.4
1509.6
1637.5
1786.5
1907.0
2045.8

N-TETRADECANE AT 85.00 DEG. C.

DENSITY $=.72810$	GM. /C.C.	SAMPLE WE	HT	2.26350 GM.
$\begin{gathered} \text { RA } \\ (\text { OHMNS }) \end{gathered}$	$\begin{aligned} & \text { RMN } \\ & \text { (OHMNS) } \end{aligned}$	(PSI)		(PATM)
0.23184	0.0	14.7		1.0
0.23215	0.0	55.7		3.8
0.23268	0.0	132.7		9.0
0.23372	0.0	534.7		36.4
0.23533	0.0	939.7		63.9
0.23851	0.0	2084.7		141.9
0.24175	0.0	3094.7		210.6
0.24504	0.0	450<. 7		306.5
0.24695	0.0	5064.7		344.6
0.24901	0.0	6074.7		413.4
0.25137	0.0	7114.7		484.1
0.25323	0.0	8104.7		551.5
0.25559	0.0	9174.7		624.3
0.25708	0.0	10094.7		686.9
0.25943	0.0	11024.7		750.2
0.26045	0.0	12114.7		824.4
0.26246	0.0	13114.7		892.4
0.26372	0.0	14114.7		960.4
0.26551	0.0	15194.7		1033.9
0.26740	0.0	16584.7		1128.5
0.26979	0.0	18014.7		1225.8
0.27215	0.0	20094.7		1367.4
0.27506	0.0	22114.7		1504.8
0.27697	0.0	24164.7		1644.3
0.27947	0.0	26134.7		1778.4
0.28102	0.0	28114.7		1913.1
0.28308	0.0	30104.7		2048.5
0.28532	0.0	32154.7		2188.0
0.28659	0.0	34214.7		2328.2
0.28844	0.0	36194.7		2462.9
0.28989	0.0	38234.7		2601.7
0.29161	0.0	40094.7		2728.3
0.29287	0.0	42084.7		2863.7

MIXTURE 0.5000 MOLE FRACTION N-DECANE AND N-TETRADECANE AT 25.00 DEG. C.

DENSITY $=.74490$ GM./C.C.

0.25833
0.25867
0.25918
0.26037
0.26154
0.26258
0.26404
0.26483
0.26603
0.26676
0.26827
0.26989
0.27221
0.27346
0.27548
0.27653
0.27851
0.27971
0.28130
0.28245
0.28412
0.28518
0.28668
0.28760
0.28880

RMN (OHMNS)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

SAMPLE WEIGHT $=2.18239$ GM.
(PATM)
1.0
17.3
37.1
70.5
99.1
137.1
176.6
208.5
239.8
273.9
312.6
377.3
448.7
514.1
585.5
646.1
717.5
786.9
852.3
921.0
991.1
1058.4
1131.2
1183.0
1257.8

MIXTURE 0.5000 MOLE FRACTION N-DECANE AND N-TETRADECANE AT 45.00 DEG. C.

```
DENSITY =.73030 GM./C.C. SAMPLE WEIGHT = 2.18239 GM.
\begin{tabular}{|c|c|c|c|}
\hline RA & RMN & \multicolumn{2}{|c|}{P} \\
\hline (OHMNS) & (OHMNS) & (PSI) & (PATM) \\
\hline 0.25031 & 0.0 & 14.7 & 1.0 \\
\hline 0.25095 & 0.0 & 249.7 & 17.0 \\
\hline 0.25187 & 0.0 & 488.7 & 33.3 \\
\hline 0.25332 & 0.0 & 999.7 & 68.0 \\
\hline 0.25473 & 0.0 & 1445.7 & 98.4 \\
\hline 0.25627 & 0.0 & 2034.7 & 137.8 \\
\hline 0.25880 & 0.0 & 3096.7 & 210.6 \\
\hline 0.26185 & 0.0 & 4474.7 & 304.5 \\
\hline 0.26541 & 0.0 & 6044.7 & 411.3 \\
\hline 0.26795 & 0.0 & 7414.7 & 504.5 \\
\hline 0.27106 & 0.0 & 9004.7 & 612.7 \\
\hline 0.27355 & 0.0 & 10634.7 & 723.6 \\
\hline 0.27605 & 0.0 & 12094.7 & 823.0 \\
\hline 0.27826 & 0.0 & 13704.7 & 932.5 \\
\hline 0.28019 & 0.0 & 14964.7 & 1018.3 \\
\hline 0.28222 & 0.0 & 16614.7 & 1130.6 \\
\hline 0.28431 & 0.0 & 18084.7 & 1230.6 \\
\hline 0.28754 & 0.0 & 21034.7 & 1431.3 \\
\hline 0.29082 & 0.0 & 23994.7 & 1632.7 \\
\hline 0.29360 & 0.0 & 27014.7 & 1838.2 \\
\hline 0.29686 & 0.0 & 30094.7 & 2047.8 \\
\hline
\end{tabular}
```

MIXTURE 0.5000 MOLE FRACTION N-DECANE AND N-TETRADECANE AT 65.00 DEG. C.

MIXTURE 0.5000 MOLE FRACTION N-DECANE AND N-TETRADECANE AT 85.00 DEG. C.

DENSITY $=.70082$ GM./C.C.

RA (OHMNS)

0.23427	104.38270
0.23467	0.0
0.23492	0.0
0.23523	0.0
0.23528	0.0
0.23583	0.0
0.23624	0.0
0.23683	0.0
0.23725	0.0
0.23758	0.0
0.23820	0.0
0.23838	0.0
0.23850	0.0
0.23953	0.0
0.24035	0.0
0.24184	0.0
0.24534	0.0
0.24966	0.0
0.25431	0.0
0.25813	0.0
0.26067	0.0
0.26391	0.0
0.26676	0.0
0.26934	0.0
0.27193	0.0
0.27356	0.0
0.27620	0.0
0.27879	0.0
0.28179	0.0
0.28352	0.0
0.28610	0.0
0.28899	0.0
0.29207	0.0
0.29430	0.0
0.29752	0.0
0.29908	0.0
0.30229	0.0
0.30338	0.0
0.30599	0.0
0.30721	105.29030
0.30944	105.34375
	0

SAMPLE WEIGHT $=2.18239 \mathrm{GM}$.
p
(PSI)

14.7	1.0
144.7	9.8
225.7	15.4
265.7	18.1
306.7	20.9
394.7	26.9
520.7	35.4
616.7	42.0
717.7	48.8
818.7	55.7
938.7	63.9
1041.7	70.9
1042.7	71.0
1267.7	86.3
1490.7	101.4
2014.7	137.1
3064.7	208.5
4524.7	307.9
6134.7	417.4
7624.7	518.8
9014.7	613.4
10704.7	728.4
12114.7	824.4
13614.7	926.4
15164.7	1031.9
16644.7	1132.6
18024.7	1226.5
20184.7	1373.5
22194.7	1510.3
24034.7	1635.5
26024.7	1770.9
29244.7	1990.0
32014.7	2178.5
35094.7	2388.0
37944.7	2582.0
41084.7	2795.6
43994.7	2993.7
46954.7	3195.1
49914.7	3396.5
52868.9	3597.5
55989.7	3809.9

table XV (Continued)

MIXTURE 0.5000 MOLE FRACTION N-DODECANE AND N-HEXADECANE AT 25.00 DEG。C.

MIXTURE 0.5000	$\begin{aligned} & \text { MOLE FRACTION } \\ & \text { AT } 45.00 \end{aligned}$	N-DODECANE AND DEG. C.	N-HEXADECANE
DENSITY $=.74477$	GM./C.C.	SAMPLE WEIGHT	$=2.23155 \mathrm{GM}$.
RA	RMN	P	
(OHMNS)	(OHMNS)	(PSI)	(PATM)
0.25500	0.0	14.7	1.0
0.25595	0.0	265.7	18.1
0.25674	0.0	513.7	35.0
0.25860	0.0	1262.7	85.9
0.25905	0.0	1450.7	98.7
0.26056	0.0	1984.7	135.1
0.26345	0.0	3139_{0}	213.3
0.26499	0.0	4044.7	275.2
0.26700	0.0	4984.7	339.2
0.26924	0.0	6024.7	410.0
0.27155	0.0	7114.7	484.1
0.27300	0.0	8064.7	548.8
0.27476	0.0	9094.7	618.9
0.27648	0.0	10064.7	684.9
0.27797	0.0	11084.7	754.3
0.27960	0.0	12084.7	822.3
0.28092	0.0	13064.7	889.0
0.28237	0.0	14084.7	958.4
0.28360	0.0	14984.7	1019.6
0.28478	0.0	15914.7	1082.9
0.28615	0.0	17044.7	1159.8
0.28732	0.0	18014.7	1225.8

MIXTURE 0.5000	$\begin{aligned} & \text { MOLE FRACTION } \\ & \text { AT } 65.00 \end{aligned}$	N-DODECANE AND DEG. C.	N-hexadecane
DENSITY $=.73057$	GM. /C.C.	SAMPLE WEIGHT	$=2.23155 \mathrm{GM}$.
RA	RMN	p	
(OHMNS)	(OHMNS)	(PSI)	(PATM)
0.24782	0.0	14.7	1.0
0.24844	0.0	252.7	17.2
0.24943	0.0	514.7	35.0
0.25094	0.0	1009.7	68.7
0.25217	0.0	1426.7	97.1
0.25374	0.0	2014.7	137.1
0.25676	0.0	3064.7	208.5
0.26033	0.0	4524.7	307.9
0.26381	0.0	6014.7	409.3
0.26695	0.0	7574.7	515.4
0.26995	0.0	9074.7	617.5
0.27231	0.0	10594.7	720.9
0.27479	0.0	11934.7	812.1
0.27718	0.0	13584.7	924.4
0.27922	0.0	14964.7	1018.3
0.28165	0.0	16614.7	1130.6
0.28349	0.0	17954.7	1221.7
0.28610	0.0	20114.7	1368.7
0.28825	0.0	22014.7	1498.0
0.29046	0.0	24104.7	1640.?
0.29224	0.0	25764.7	1753.2
0.29535	0.0	28974.7	1971.6
0.29806	0.0	31874.7	2168.9

MIXTURE 0.5000 moLE FRACTION N-DODECANE AND N-HEXADECANE AT 85.00 DEG。C.

MIXTURE 0.6000 MOLE FRACTION N-DECANE, 0.2000 MOLE FRACTION N-TETRADECANE AND N-HEXADECANE AT 25.00 DEG. C. DENSITY $=.74490$ GM./C.C. SAMPLE WEIGHT $=2.14735$ GM.

RA (OHMNS)	RMN (OHMNS)	(PSI)	P
0.26695	0.0		(PATM)
0.26765	0.0	244.7	1.0
0.26823	0.0	513.7	16.7
0.26967	0.0	1012.7	35.0
0.27051	0.0	1473.7	68.9
0.27185	0.0	2014.7	100.3
0.27407	0.0	3034.7	137.1
0.27636	0.0	4054.7	206.5
0.27833	0.0	5174.7	275.9
0.28029	0.0	6034.7	352.1
0.28152	0.0	6944.7	410.6
0.28379	0.0	8094.7	472.6
0.28518	0.0	9064.7	550.8
0.28692	0.0	10114.7	616.8
0.28814	0.0	11054.7	688.3
0.28981	0.0	12054.7	752.2
0.29092	0.0	13034.7	820.3
0.29237	0.0	14014.7	887.0
0.29342	0.0	15074.7	953.6
0.29451	0.0	15814.7	1025.8
0.29591	0.0	16964.7	1076.1
			1154.4

MI XTURE 0.6000 MOLE FRACTION N-DECANE, 0.2000 MOLE FRACTION N-TETRADECANE AND N-HEXADECANE AT 45.00 DEG. C.

DENSITY $=.73030 \mathrm{GM./C.C}$.		SAMPLE WEIGHT $=2.1473$	
RA	RMN		
(OHMNS)	(OHMNS)	(PSI)	(PATM)
0.25938	0.0	14.7	1.0
0.26015	0.0	272.7	18.6
0.26136	0.0	544.7	37.1
0.26260	0.0	985.7	67.1
0.26369	0.0	1432.7	97.5
0.26500	0.0	2024.7	137.8
0.26770	0.0	3094.7	210.6
0.27129	0.0	4534.7	308.6
0.27382	0.0	5924.7	403.2
0.27757	0.0	7614.7	518.1
0.28000	0.0	9084.7	618.2
0.28272	0.0	10634.7	723.6
0.28475	0.0	12014.7	817.5
0.28734	0.0	13694.7	931.9
0.28904	0.0	15014.7	1021.7
0.29131	0.0	16614.7	1130.6
0.29280	0.0	18014.7	1225.8
0.29574	0.0	20194.7	1374.2
0.29752	0.0	22034.7	1499.4
0.29970	0.0	24054.7	1636.8
0.30142	0.0	26154.7	1779.7
0.30317	0.0	27914.7	1899.5
0.30480	0.0	30004.7	2041.7

MIXTURE 0.6000 MOLE FRACTION N-DECANE, 0.2000 MOLE FRACTION N-TETRADECANE AND N-HEXADECANE AT 65.00 DEG. G.

DENSITY $=.71563$ GM./C.C.

RA (OHMNS)
0.25167
0.25272
0.25344
0.25528
0.25857
0.26123
0.26509
0.26857
0.27164
0.27496
0.27778
0.27984
0.28276
0.28475
0.28697
0.28886
0.29159
0.29374
0.29626
0.29790
0.30022
0.30185
0.30471
0.30673
0.30933
0.31146
0.31263
0.31396

RMN (OHMNS)

SAMPLE WEIGHT $=2.14735 \mathrm{GM}$ 。

- P
(PSI)
(PATM)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14.7
261.7
463.7
1002.7
2014.7

205ィ.7
4029.n 7
6044.7
7314.7
9054.7
10544.7
12064.7
13614.7
15014.7
16614.7
17974.7
20174.7
22004.7
24174.7
25914.7
28214.7
29974.7
33294.7
36014.7
39134.7
42344.7
43814.7
45944.7
1.0
17.8
31.6
68.2
137.1
201.1
308.6
411.3
497.7
616.1
717.5
821.0
926.4
1021.7
1130.6
1223.1
1372.8
1497.3
1645.0
1763.4
1919.9
2039.6
2265.6
2450.6
2662.9
2881.4
2981.4
3126.3

MIXTURE 0.6000 MOLE FRACTION N-DECANE, 0.2000 MOLE FRACTION N-TETRADECANE AND N-HEXADECANE AT 85.00 DEG. C. DENSITY $=.70082$ GM./C.C. SAMPLE WEIGHT $=2.14735 \mathrm{GM}$.
RA
(OHMNS)

0.24358	104.38525
0.24458	0.0
0.24593	0.0
0.24749	0.0
0.24924	0.0
0.25100	0.0
0.25424	0.0
0.25936	0.0
0.26293	0.0
0.26669	0.0
0.27006	0.0
0.27302	0.0
0.27575	0.0
0.27816	0.0
0.28052	0.0
0.28298	0.0
0.28502	0.0
0.28776	0.0
0.29024	0.0
0.29265	0.0
0.29471	0.0
0.29799	0.0
0.30064	0.0
0.30341	0.0
0.30552	0.0
0.30797	0.0
0.31000	0.0
0.31204	0.0
0.31393	0.0
0.31539	105.27930
0.31746	105.34590
0.31791	105.35905
0.32045	105.44080

p

(PSI)
14.7
251.7
593.7
996.7
1406.7
2024.7

2064。7
4684.7
6034.7
7604.7
9174.7
10594.7
12114.7
13614.7
15014.7
16594.7
18114.7
20114.7
22084.7
24164.7
26024.7
29264.7
32014.7
35124.7
37974.7
41064.7
43934. 7
46834. 7
49764.7
52077.9
55966.4
56734.4
61510.5
(PATM)

$$
\begin{array}{r}
1.0 \\
17.1 \\
40.4 \\
67.8 \\
95.7 \\
137.8 \\
201.7
\end{array}
$$

$$
318.8
$$

$$
410.6
$$

$$
517.5
$$

$$
624.3
$$

$$
720.9
$$

$$
824.4
$$

$$
926.4
$$

$$
1021.7
$$

$$
1129.2
$$

$$
1232.6
$$

$$
1368.7
$$

$$
1502.8
$$

$$
1644.3
$$

$$
1770.9
$$

$$
1991.3
$$

$$
2178.5
$$

$$
2390.1
$$

$$
2584.0
$$

$$
2794.3
$$

$$
2989.6
$$

$$
3186.9
$$

$$
3386.3
$$

$$
3543.7
$$

$$
3808.3
$$

$$
3860.5
$$

$$
4185.5
$$

APPENDIX G

EDULJEE ERROR ANALYSIS

Described below is a detailed error analysis on the experimental method of Eduljee (17). Several experimental uncertainties are not reported by Eduljee. These have been estimated and arc based upon accuracies obtainable at present and thus should be conservative. It will also be assumed that all errors due to temperature and pressure effects, introduced no error into the final results.

1. Error Analysis

The apparatus used was of the mercury contact displacement type. Writing the data reduction equation:

$$
\begin{equation*}
\frac{\Delta V}{V_{0}}=\frac{A_{0} \cdot \Delta L \cdot \rho_{0}}{W} \tag{G-1}
\end{equation*}
$$

Where: $\frac{\Delta V}{V_{0}}$ is the compression, A_{0} is the cross sectional area of the capillary tube containing the contacts, W is the sample weight, C_{0} is the fiducial density, and ΔL is the distance between contacts in the capillary tube.

Thus the error in the compression is:
$\delta\left(\frac{\Delta V}{V_{0}}\right)=\frac{A_{0} \cdot \Delta L \cdot \rho_{0}}{W}\left[\frac{\delta A_{0}}{A_{0}}+\frac{\delta \Delta L}{\Delta L}+\frac{\delta \rho_{0}}{\rho_{0}}+\frac{\delta W}{W}\right]$

Each of the four quantities on the right hand side of Gal will be considered separately.
a. Sample Weight

The reported sample weight is 1.67 grams. Assume an error of ± 0.0001 grams in the sample weight.
b. Sample Desnity

The reported fiducial densities are $0.67 \mathrm{gm} / \mathrm{cc}$ nominal. Assume an error of $\pm 0.0001 \mathrm{gm} / \mathrm{cc}$ in the fiducial density. c. Distance Between Contacts

The reported distance between contacts is 1.13 cm .
Assume the contact make to break error on the mercury contact is $\pm 0.001 \mathrm{~cm}$.
d. Capillary Cross Sectional Area

The capillary tube had a diameter of 4 mm . Thus its area was $0.126 \mathrm{~cm}^{2}$. The uncertainty in the cross sectional area was determined via a mercury weight technique. The equation for A_{o} is:

$$
\begin{equation*}
A_{0}=\frac{W}{\rho_{H_{g}} \cdot \Delta L} \tag{G-3}
\end{equation*}
$$

The error in A_{o} is:
$\delta A_{0}=\frac{W}{\rho_{H_{g}} \Delta L} \cdot\left[\frac{\delta w}{w}+\frac{\delta \Delta L}{\Delta L}\right]$.

The error in $\rho_{H g}$ was assumed to be 0.0. The volume between contacts was approximately 0.143 cc . Thus the mercury weight was $W=0.143 \mathrm{cc} \cdot 13.6 \mathrm{gm} / \mathrm{cc}=1.95 \mathrm{gm}$. Assume an error of $\pm 0.0001 \mathrm{gm}$ an the wetghing. Then

$$
\begin{aligned}
& \delta A_{0}=.126\left[\frac{10^{-4}}{1.95}+\frac{10^{-3}}{1.13}\right], \text { or } \\
& \delta A_{0}=1.16 \times 10^{-4} \mathrm{~cm} .
\end{aligned}
$$

e. Evaluating the Error in Compression

Substitution into equation G-2 yields:

$$
\begin{gathered}
\delta\left(\frac{\Delta v}{v_{0}}\right)=\frac{(0.126)(1.13)(.67)}{1.67}\left[\frac{1.16 \times 10^{-4}}{.126}+\frac{1 . \times 10^{-3}}{1.13}\right. \\
\left.+\frac{1 . \times 10^{-4}}{.67}+\frac{1 . \times 10^{-4}}{1.67}\right]
\end{gathered}
$$

or

$$
\delta\left(\frac{\Delta v}{v_{0}}\right)= \pm 1.35 \times 10^{-3} \mathrm{cc} / \mathrm{cc}
$$

2. Conclusion

From the above it appears the Eduljee reported experimental reproducibility not actual absolute error. His data is absolute to ± 0.001 compression or relative volume.

ADDENDUM

The buoyancy correction was omitted in the weighing of the mercury for the capillary tube radius determination. This changes the capillary tube radius from 0.100319 cm , which was rounded to 0.100320 cm , to 0.100317 cm which is rounded to 0.100320 cm .

The buoyancy correction was also omitted in the differential weighing to determine the amount of sample contained within the bellows. This correction amounts to about 0.15% of the sample weight. The corrected sample weights are tabulated below. The compression data $\left(\Delta V / V_{0}\right)$ maybe corrected by multiplying by the uncorrected weight and dividing by the corrected weight.

Compound or Mixture	Old Weight (gm.)	Corrected Weight (gm.)
A	2.07530	2.07833
B	2.18552	2.18559
C	2.24803	2.25111
D	2.26350	2.26656
FU	2.18239	2.18546
IU	2.23155	2.23466
TI	2.14735	2.15037

In the case of n-Decane at $85.00^{\circ} \mathrm{C}$ and 6473 atmospheres this changes the compression from $0.2396 \mathrm{cc} / \mathrm{cc}$ to $0.2392 \mathrm{cc} / \mathrm{cc}$. This is maximum correction. The correction in turn changes the Tait coefficient J by about 0.15%. This correction is small enough that it is within the experimental error on the isothermal compressibility and cannot be seen on the plots. The tabulated Prausnitz, Flory, and Scaled particle parameters are all slightly in err due to this and should be redetermined as covered above.

The undersigned, appointed by the Dean of the Graduate Faculty, have examined a thesis entitled

The Pressure, Volume, Temperature, and Composition Properties of Liquid n-Alkane Mixtures at Elevated Pressures.
presented by Phillip Sidney Snycler
a candidate for the degree of Doctor of Philosophy
and hereby certify that in their opinion it is worthy of acceptance.

VITA

The author was born on November 10, 1941 in Melrose Park, Illinois. He obtained an A.A. degree from Fullerton Junior College in Fullerton, California in 1962. He married Linda Ruth Brown in August of 1963. He obtained a B.S. degree from the University of California at Berkeley in 1965. In 1965 he enrolled in the Ph.D. program at the University of Missouri at Columbia. In July of 1965 he became the father of twin sons, Thomas and John.

University Libraries
University of Missouri

Digitization Information Page

Local identifier Snyder1969

Source information

Format
 Content type

Source ID
Notes

Capture information

Date captured
Scanner manufacturer
Scanner model
Scanning system software
Optical resolution
Color settings
File types
Notes

Derivatives - Access copy

Compression
Editing software
Resolution
Color
File types
Notes

April 2023
Fujitsu
fi-7460
ScandAll Pro v. 2.1.5 Premium
600 dpi
8 bit grayscale
tiff

Tiff: LZW compression
Adobe Photoshop
600 dpi
grayscale
tiff/pdf
Images cropped, straightened, brightened

[^0]: NNote: The term unit length is defined here to mean the number of centimeters of slide wire that are required to obtain a resistance of one ohm absolute at $25.0^{\circ} \mathrm{C}$ ($1 . \mathrm{e} . \mathrm{cm} / \mathrm{ohm}$). The symbol Ω will be used for unit length.

