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Abstract 

 

Reconstruction of the 3D structure of protein dimers is a crucial and challenging task. Although 

inter-protein contacts have been found useful in the modeling process of protein complexes, a few 

methods have been introduced to tackle the challenging quaternary structure prediction problem 

utilizing inter-chain contacts. We propose an optimization method based on gradient descent 

algorithm, called GD, to reconstruct the quaternary structures of protein complexes from inter-

protein contacts. We test the performance of the GD method on both homodimers and heterodimers 

utilizing both true and predicted inter-protein contacts. GD has a superior performance than a 

Markov Chain Monte Carlo (MC), and a method based on Crystallography and NMR System 

(CNS). When native inter-chain contacts are provided as inputs, GD builds high quality models 

with TM-scores of more than 0.92 and interface RMSDs (I_RMSDs) of less than 1.64 Å for both 

homodimers and heterodimers. Receiving the predicted inter-chain contacts as restraints, GD is 

able to generate models with a mean TM-score of 0.76 for 115 homodimers. Besides, for nearly 

half of the homodimers, GD reconstructs high quality models with TM-scores more than 0.9 using 

just the predicted inter-chain contacts to guide the modeling process. 

We also develop a self-learning algorithm based on reinforcement learning, named DRLComplex, 

to reconstruct protein dimers from true/predicted inter-protein contacts. We evaluate 

DRLComplex on two standard datasets including CASP-CAPRI dataste (28 homodimers), and 

Std32 (32 heterodimers). If native inter-chain contacts are provided, DRLComplex generates 

models with mean TM-score of 0.9895 and mean I_RMSD of 0.2197 for CASP-CAPRI dataset, 

and models having average TM-score of 0.9881, and average I_RMSD of 0.92 for Std32. Using 

predicted inter-chain contacts as restraints, DRLComplex builds models with overall average TM-

scores of 0.73 and 0.76 for CASP-CvAPRI and Std32, successively. Moreover, utilizing predicted 

contacts, DRLComplex improves the mean I_RMSD of the reconstructed models for the Std32 

dataset by 0.29%, 1.01%, 13.47%, and 8.69% over GD, MC, CNS, and Equidock (an end-to-end 

quaternary structure prediction method), respectively. In addition, the mean I_RMSD of the 

models predicted by DRLComplex for CASP-CAPRI dataset utilizing predicted contacts is 0.04, 

3.94, and 4.07 lower than MC, CNS, and Equidock. 

Codes for GD, DRLComplex, and GD for multimers are available at https://github.com/jianlin-

cheng/DeepComplex2.git, https://github.com/jianlin-cheng/DRLComplex.git, and 

https://github.com/BioinfoMachineLearning/GD-multimer.git, respectively.

https://github.com/jianlin-cheng/DeepComplex2.git
https://github.com/jianlin-cheng/DeepComplex2.git
https://github.com/jianlin-cheng/DRLComplex.git
https://github.com/BioinfoMachineLearning/GD-multimer.git
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Introduction 

Proteins are essential in the day-to-day lives of humans; they form a fundamental part of the human 

body and have several vital roles for the normal functioning of the human body. Amino acids are 

the building blocks of proteins, they bond with each other, to form different types of proteins. 

There are 20 different amino acids which are combined to form different proteins. Every 

combination of these amino acids produces a different kind of protein. 

There are four types of protein structure, the primary structure, secondary structure, tertiary 

structure, and quaternary structure. The primary structure of a protein refers to the sequence of 

amino acids, held together by peptide bonds to form a polypeptide chain. The secondary structure 

refers to the local substructure on the polypeptide backbone chain. The tertiary structure is the 3D 

structure, created by a single protein molecule and the quaternary structure refers to the 3D 

structure formed by two or more proteins, operating together as one functional unit. The quaternary 

structure is also referred to as protein complex, where two or more complexes are known as 

multimer. 

The quaternary structure of proteins is very important since it is closely related to its function, 

cellular processes and also play significant roles in designing and discovering new drugs [1, 2]. 

There are few protein complexes known, and identifying them through biological experimentation 

is very expensive, however, there is numerous known amounts of protein data available on other 

protein structure, interactions within proteins and among proteins of similar amino acid 

combinations. Research has shown that the quaternary structure of proteins is related to the inter-

chain contacts between two or more proteins and also interactions between proteins is usually 

correlated especially when the involving proteins have similar primary structure or tertiary 

structure. This makes it necessary to explore the available data to create models that can be used 

to predict the quaternary of proteins as efficiently and accurately as possible.  

There are several computational methods developed that leverage on this available protein data [3-

11]. One of the most widely used approaches for modeling complex structures is Computational 

protein docking, the approach takes the tertiary structures of individual proteins as input to build 

the quaternary structure of the complex as output.  Docking methods can be largely divided into 

two categories including template-based modeling, in which known protein complex structures in 

the Protein Data Bank (PDB) are used as templates [10-17] to guide modeling, and template-free 

modeling (ab initio docking), which does not use any known structure as template, and instead 

searches through a large conformation space for relative orientations of protein chains with 

minimum binding energy. The binding energy is often roughly approximated by geometric and 

electrostatic complementarity, inter-chain hydrogen binding, hydrophobic interactions, and 

residue–residue contact potentials [18-23]. Another method widely used is the Ab initio docking, 

which is suitable for protein complexes that lack suitable templates. However, ab initio docking 

methods need to search through a huge conformation space, which is usually not feasible with 

limited time and computing resources [23-30]. 

Gradient descent optimization has become a popular method to build the tertiary structure of 

proteins using intra-protein (intra-chain) residue–residue contacts or distances and they have 

shown impressive results [31, 32].  

In this work, we present two methods for constructing the quaternary structure of proteins. The 

first method is a distance-based reconstruction from the inter-chain contacts, and the second is a 

reconstruction of quaternary structures using deep reinforcement learning. 



2 

 

In the first method, we use gradient descent optimization to build quaternary structures of protein 

dimers using the inter-chain contacts as contact/distant constraints. Our algorithm works by 

randomly initializing an arbitrary quaternary structure from tertiary structures of protein chains 

and combining with true inter-chain contacts to reconstruct high-quality quaternary structure. The 

approach is evaluated on several datasets of homodimer and heterodimers, and it performs better 

than simulated annealing and Markov chain monte Carlo simulation methods. 

The second method is an agent-based self-learning deep reinforcement learning method. Here, we 

use a reinforcement learning approach unlike the first one which uses stochastic gradient descent. 

We test this method on two standard datasets of homodimer and heterodimer (the CASP-CAPRI 

homodimer dataset and Std32 heterodimer dataset). 
 

Optimization Methods in Theory 

Cost Function & Gradient Descent 

Considering an input dataset , where  represents the features at time , and  

is the true labels at time . There is a function , it is this function that we seek to 

approximate through learning. The learning model gives a function , where  is the 

predicted labels of the model. We use a cost function  to determine the magnitude of 

difference between these two functions. 

The cost function tells us how well the model fits the data. We need to find a low cost, which 

indicates that the predicted function approximates the actual function well. Given the cost function 

as , our goal is to find , such that . We may not find the value of  for which 

, but may find a good estimate. Therefore, we seek to minimize the value of  as 

much as possible. 

Gradient descent is an optimization technique, used to find the parameters of a function that 

minimizes the cost function. Some functions are such that we can compute these parameters 

analytically or in one step. Gradient descent, however, is useful when analytical computation of 

these parameters is not feasible. We usually use gradient descent to minimize the cost function 

described above. 

Simply, gradient descent works as follows; initializing the parameters of the function and 

calculating the cost associated with them. The derivative of the cost is computed and used to update 

the parameters. The process is repeated until convergence, or the cost is close enough to zero. 

 

                                                               Equation 1 
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Figure 1. The above image shows the behavior of gradient descent for a 1-dimensional space. The intuition 

is that the sign of the gradient points us in the direction to move. From the diagram, moving down the slope, 

reduces the corresponding value for . If we the function is convex and we choose an appropriate step 

size, as well as move in the direction that reduces , then we are guaranteed that it will converge. The 

above scenario shows the behavior of gradient descent for dimensional space, which is easier to 

visualize. 

 

 

Gradient Descent & Taylor Series 

To explain further, consider the -order Taylor approximation of f at . 

               Equation 2 

 

The Taylor series tells us that, if we have a function , and we know the value of the function 

at a point , then we can estimate the value of the function at a new point , Where  

is very close to . 

From equation  above, the value of  depends on (first term) and (other terms). 

If  is such the sum of other terms is negative, then . That is an approximation 

of a point very close to  on the function, and also this new point reduces the value of . 

The gradient descent uses the first order derivative of the Taylor series and hence we have: 
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This means that if the move  reduces the loss then . 

In using gradient descent algorithm, if the function is convex, then we have a global minima, 

however if the function is not convex, then we may have several local minima. Depending on our 

choice of the learning rate and depending on how well conditioned the problem is, we may end up 

with one of many solutions. A very small learning rate will cause 𝛳 to be slowly updated and will 

require many iterations for a better solution. A very large learning rate will cause undesirable 

divergent behavior in the learning process. 

 

 

Gradient Descent Algorithm 

 

1.  choose initial point  

2.   
3. Repeat for  

4. Stop at some point. 

 

Stochastic Gradient Descent 

The gradient descent algorithm is computationally expensive. In stochastic gradient descent, a 

uniform sample of the data is used to update the parameters at each iteration. This reduces the 

computation enormously. 

As the algorithm sweeps through the training set, it performs the above update for each training 

sample. Several passes can be made over the training set until the algorithm converges.  

 

Stochastic gradient Descent Algorithm 

●  Choose an initial vector of parameters  and learning rate . 

● Repeat until an approximate minimum is obtained: 

a. Randomly shuffle samples in the training set. 

b. For  do: 

i.   
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Deep Reinforcement Learning 

Reinforcement learning is a machine learning training method based on rewarding desired 

behaviors and/or punishing undesired ones. In general, a reinforcement learning agent is able to 

perceive and interpret its environment, take actions and learn through trial and error. In summary, 

reinforcement learning is learning by trial-and-error, that is learning solely from rewards or 

punishments. We define some terms associated with reinforcement learning below: 

 

● Agent: The agent is responsible for taking actions. In this case, the agent is the algorithm. 

● Environment: The environment is the world or context through which the agent moves, 

and which gives feedback to the agent.  

● State: The state is the part of the environment or the situations which the agent finds can 

be in.  

● Action: An action refers to the steps or decisions the agent can take. 

● Reward: In reinforcement learning, the reward is the feedback which measures the success 

or failure of an agent's action at a given state. 

● Policy: The policy is the strategy which the agent employs to determine the next action 

based on the current state. It maps states to actions, the actions that promise the highest 

reward. 

● Value: The value is defined as the expected long-term reward. 
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Figure 2. Agent interacting with the environment. 

 

Neural networks are used to approximate functions, they are used to recognize underlying 

relationships in a set of data through learning. They are useful in reinforcement learning, especially 

when the state space or action space are too large to be completely known. 

Applying neural nets to reinforcement learning is known as deep reinforcement learning. Here, the 

agents construct and learn their own knowledge directly from raw inputs, such as vision, without 

any hand-engineered features or domain heuristics. Essentially, the neural network is used to 

approximate a value function, or a policy function. The neural network can be trained to learn a 

function which learns a mapping of states to values, or state-action pairs to Q values, eliminating 

the need for a lookup table, which stores, index and update of all possible states and their values. 

This is important because lookup tables may not be feasible for large problems. 

Neural networks learn parameters that approximate the function relating inputs to outputs, similar 

to every other neural network. 

 

 

 

Methods 

Developing robust optimization methods to reconstruct protein 

structures using residue-residue distances 

 

In 2015, [33] introduced a contact-based ab initio structure modeling approach named CONFOLD, 

which generates protein structures using predicted distance restraints and secondary structures. 

CONFOLD Transforms predicted contacts into Cb-Cb distance constraints and predicted secondary 

structures into distance and dihedral angle constraints. A spatial optimization algorithm then 

combines distance geometry information with simulated annealing to reconstruct three-

dimensional structure of proteins in a way that distance constraints are satisfied as best as possible. 

Unlike Crystallography and NMR systems (CNS) [34] which uses distance geometry constraints 

to generate 3D structure of proteins in one shot, CONFOLD has an extra stage of removing noisy, 

and physically unsatisfied constraints and creating new constraints (especially for beta-strands 

generated in the first step) to enhance strand pairings. Besides, CONFOLD augments its 

contact/distance constraints with the help of constraints extracted from predicted secondary 

structures. It must be noted that these additional constraints are not used by CNS; hence, 
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CONFOLD is able to reconstruct models of higher quality (with more accurate secondary 

structures) compared to CNS. Also, CONFOLD builds models from contacts that are much more 

accurate than template-based modeling tools such as Modeller [35]. 

Another modeling method is Rosetta, which is a fragment-assembly method for building protein 

structures. The main difference between CONFOLD and Rosetta [36] is that the former directly 

converts predicted contact restraints into 3D structure of the desired protein, thus, the restraints 

have a direct and major role in the ab initio modeling process, whereas the latter uses the contact 

restraints as part of its complex energy function to conduct the fragment-assembly of protein 

structures and therefore the contact restraints participate indirectly in modeling process. Fragment 

assembly utilizes additional fragment knowledge to guide the modeling process; however, the 

extra information is known to be more suitable for small proteins having uncomplicated structure. 

The process mostly relies on disconnected, random fragment assembly, as a result, most of the 

time, it fails to build a model close to the true structure, especially for large proteins having 

complex structure, even if the provided contact constraints are of high quality. 

Although existing distanced-based 3D modeling methods (e.g., CONFOLD and Rosetta) achieved 

promising results for some proteins, they often fail to reach near native conformation if the 

provided contacts/distance restraints are noisy and inaccurate. Furthermore, using the whole 

restraints to build the entire structure at once will make the modeling process of large proteins so 

complicated. Apart from the complexity issue, conflicting restraints that cannot be satisfied 

simultaneously might puzzle and mislead the modeling process. Thus, it seems crucial to handle 

inaccurate restraints, the complicated modeling process, and contradictory restraints in order to be 

able to reconstruct protein structures when provided restraints are noisy and contain inconsistent 

information. 

To solve these problems, we implemented a robust gradient descent method, the most widely used 

optimization algorithm for deep neural networks, to build protein structures using distance 

constraints. Besides, to reduce the complexity of the modeling process and handle inaccurate and 

contradictory restraints, we carefully controlled the amount and order of the restraints passed to 

the optimization process. We believe that different proteins having different structural complexity 

must have different modeling process, hence, we designed three different approaches to feed 

distance restraints into the folding process: (1) passing the constraints from short to medium to 

long range; (2) adding distance information batch by batch in a stochastic way; (3) adding the 

whole distance restraints to the optimization process at once. Our simple gradient descent 

algorithm receives true residue-residue distances, and secondary structure information to adjust 

the position of x, y, and z coordinates of the conformation in a way that the error function is 

minimized. The error function (cost function), and its derivative with respect to the given distance 

are shown in the following: 

 

𝑝 =
1

𝜎√2𝜋
 𝑒𝑥𝑝 [−

1

2
(

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜎
)2]  
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𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  −𝑙𝑛 𝑝 =  −
1

2
(
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜎
)2  −  𝑙𝑛 

1

𝜎√2𝜋
 

 

 

𝑑 𝑒𝑟𝑟𝑜𝑟 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
= −

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜎
 

 

 

The folding process often fails to correctly model protein structures if all true restraints are used 

at once. This happens because the above cost function is nonconvex and therefore simultaneous 

optimization of all distance restraints may result in a bad local minima. As mentioned above, 

adding the distance restraints batch by batch or in a hierarchical way (from short to medium to 

long range) can help the optimization process to correctly reconstruct topologies of some proteins. 

However, the folding process still gets stuck into bad local minimums for some proteins having 

complicated topologies and a lot of restraints. In another attempt to tackle the local minima issue, 

we developed a repetitive gradient descent algorithm. Since the initial start affects the optimal 

solution, we separately started our optimization algorithm from 30 different random initial 

conformation. The algorithm outputs the conformation having the lowest energy function as the 

final model (see Figure 3). We believe that starting from different initial starts can help the 

optimization process to escape bad local minimas and generates higher quality conformations. 
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Figure 3. Repetitive gradient descent algorithm. 
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Designing optimization methods to build protein quaternary structures 

from residue-residue distances and contacts 

Gradient Descent Method:  

Gradient descent utilizes inter-chain contact/distance restraints to reconstruct quaternary structures 

of protein complexes. The cost function to examine if any two residues form a contact in order to 

guide the modeling process is shown in the following equation. 

 

 

 

 

𝑙𝑏 and 𝑢𝑏 are the lower bound and upper bound of the distance between any two residues supposed 

to form a contact. Two residues are said to be in contact if the distance between their heavy atoms 

is less than or equal to 6Å. However, for simplicity, we assume two residues are in contact if the 

distance between their 𝐶𝛽 atoms (𝐶𝛼 atoms for Glycine) is less than or equal to 6Å. Based on the 

cost function, if the distance between two residues is between lower bound (𝑙𝑏) and upper bound 

(𝑢𝑏), then the constraint is met, and consequently the error (cost) is 0. lower bound (𝑙𝑏) and upper 

bound (𝑢𝑏) are set to 0 and 6, respectively. 𝑠𝑑 (Standard deviation) is also set to 0.1. 

The costs of all the contacts participating in the modeling process are added up into an objective 

function, named contact energy. For the sake of simplicity, we give identical weights to all the 

restraints to let them equally participate in the process. The contact energy is differentiable with 

respect to residue-residue distances, and 𝑥, 𝑦, and 𝑧 coordinates of atoms, hence, it can be 

optimized with the help of a gradient descent-like algorithm (GD),e.g. Limited-memory Broyden–

Fletcher–Goldfarb–Shanno algorithm (L-BFGS).  

We use a stand-alone package, called PyRosetta, to implement GD. The total objective function to 

be optimized is the sum of the contact energy and talaris2013 potentials. Talaris2013 potentials 

have proven to be effective in improving the quality of the final model. The GD takes inter-protein 

contacts and an arbitrary initial conformation of a complex, assembled from the tertiary structures 

of protein partners, as its inputs. The tertiary structures might be native structures (in the bound 

state), or structures predicted by existing methods. Predicted monomer structures are assumed to 

be in the unbound state since they are mostly predicted without taking into account the other chain 

partners. To prepare the initial conformation, the monomer structures of the two protein partners 

undergo 40 random rotations and translations between 1° and 360°, and 1Å and 20Å, respectively. 
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More specifically, the protein partners are arbitrarily rotated and translated along their line of 

centers so as to face each other. 

The gradient descent algorithm (e.g., LBFGS) outputs the final model after 6000 iterations (for 

some protein dimers, the algorithm converges after only 1000 iterations). As discussed earlier, a 

good initial start is needed to prevent the optimization algorithm from getting stuck into bad local 

minimums. Therefore, we perform multiple optimizations starting from several random initial 

conformations (in the hope to avoid falling into bad local minimums), the model having the lowest 

energy function is chosen as the final structure.  

Markov Chain Monte Carlo Optimization:  

We use a Rosetta protocol based on Metropolis-Hashing sampling to perform a Markov Chain 

Monte Carlo (MC) optimization to build dimer structures based on Boltzman distribution. An 

initial random conformation of a protein complex is prepared just as the GD algorithm. Then, one 

chain of the initial conformation is rotated and translated relative to the other chain to build a new 

structure in the MC optimization. Afterwards, 500 Monte Carlo moves are made, among them 

some are accepted or rejected according to the standard Metropolis acceptance criterion. This 

process is called low-resolution search. 

Following the low-resolution search, a Newton optimization algorithm is used to further refine the 

conformation (e.g., back-bone and side chains); this process is named high-resolution refinement 

process, for which the conformation is rotated and translated along the direction of the gradients 

of the objective function, with the main purpose of detecting a conformation with the lowest energy 

function in the translation/rotation space. The high-resolution process is repeated several times 

until it finds a local minimum of the objective function that is as good as the global minimum. 

As shown in Figure 4, MC method utilizes low-resolution search and high-resolution refinements 

implemented in RosettaDock from Pyrosetta to minimize the same objective function as the GD 

algorithm. Low-resolution and high-resolution docking are performed using the DockingLowRes 

protocol and DockMCMProtocol, respectively. For each protein complex, MC method performs 

10
5
 to 10

7
 rounds of optimization using different random initial starts. Analogous to the GD 

algorithm, MC selects the model with the lowest energy function as the final model. 

 

Simulated Annealing Optimization Based on Crystallography and NMR 

System (CNS):  

This optimization approach, named Con_Complex in the DeepComplex package, utilizes a 

simulated annealing protocol from the Crystallography and NMR system (CNS) to reconstruct a 

protein complex by optimally satisfying given inter-protein contacts. The method receives the 

tertiary structures of protein chains of a protein multimer (e.g., homodimer, heterodimer) as well 

as true/predicted inter-chain contacts to build the multimer structure. It must be noted that the 

monomer structures remain unchanged throughout the process. Before starting the optimization, 
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CNS converts contact restraints into distance restraints. The model builds 100 structural models 

and outputs the top 5 models having the lowest energy value. The CNS method is able to build the 

quaternary structures of multimers, regardless of having identical or different chains. Using CNS, 

the quality of the reconstruction model highly relies on the quality of the given contact restraints, 

mainly because contacts are the main restraints to dictate whether or not a particular model is of 

high quality.  

 

 

 
 

Figure 4. MC algorithm. 

 

 

 

Deep Reinforcement Learning to Build Protein Complexes via Self-learning:  

Here, we utilize a deep reinforcement learning approach, named DRLComplex, to reconstruct the 

structures of protein complexes through an automatic self-learning process that adjusts the position 



13 

 

of one protein chain (ligand) relative to the other (receptor) to reach a native or near native 

conformation. More specifically, an artificial intelligence agent learns to interact with a modeling 

environment by selecting actions (from a set of legal actions) based on immediate reward and long-

term reward to modify the structure of a protein complex (state of the environment). The modeling 

environment is implemented in the Pyrosetta package.  

The state of the environment (S) is represented using the 3D structure (all atomic coordinates) of 

a given protein dimer as well as its 𝐶𝛼 − 𝐶𝛼 inter-protein distances (distance Map). The 3D 

coordinates of atoms are useful to build new conformations by applying the chosen action to it, 

whereas the distance map is used by a deep learning model to compute Q-values for all possible 

actions. The distance map is represented by a two-dimensional vector of size 𝐿1 × 𝐿2, where 𝐿1 

and 𝐿2 define the lengths of the ligand and the receptor in a protein complex, respectively. The 

distance map assigns each cell with the distance between 𝐶𝛼 atom of a residue in the ligand and 

𝐶𝛼 atom of a residue in the receptor. Possible actions for the agent to adjust the position of the 

ligand with respect to the receptor are as follow: three translations along x, y, and z-axes with a 

step size of 1Å, and three rotations about x, y, and z-axes of 1
∘
. The Q-function of the 

reinforcement learning is represented by a deep convolutional neural network. As shown in Figure 

5, a CNN takes a state S as input, and outputs the Q-values of six actions. At each time step, the 

agent calls this prediction network to compute Q-values corresponding to the six actions to 

determine the optimal action to modify the conformation (state) of a protein complex. 

The CNN network is trained using a sequence of state (𝑆), action (𝐴), reward (𝑅), and next state  

(𝑆 ′) gathered by the agent through a continuous interaction with the modeling environment to pick 

an action based on 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy to adjust the position of the ligand. Following the 𝜀 −

𝑔𝑟𝑒𝑒𝑑𝑦 policy, in each episode, the agent decides to pick the action recommended by the 

prediction network with a probability of 1 − 𝜀, otherwise, it randomly selects one of the six actions. 

After the selection of an action (𝐴), the environment (𝐸) applies 𝐴 to the 3D conformation of the 

current state (𝑆) to build a new 3D conformation of the next state (𝑆 ′). The value of the immediate 

reward (𝑅) is computed as the difference between the quality of the current state 𝑆 and next state 

𝑆 ′ respecting to the reference state 𝑆∗, which might be the native conformation of a protein 

complex, or the predicted inter-proteins contacts passed to the environment at the beginning of 

episdoes. The agent continues this process in order to generate a sequence of states, actions, 

rewards, and next states. As can be seen in Figure 6, the CNN model is trained using agent’s 

experiences (𝑆, 𝐴, 𝑅, 𝑆 ′) sequentially stored in a replay buffer over a number of time steps, such a 

process is called experience replay technique. 

Given a state 𝑆 and an action a, the reference Q-value, named Qreference(S, a), is generated using the 

immediate reward and the output of a network called target network (Qtarget). The reference Q-

values are used as labels to guide the training process of the CNN model. Every 𝑘 steps, the weights 

of the CNN model are assigned to the weights of the target network to calculate the Q-value of an 

action 𝑎′ from a next state 𝑆 ′ (𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′, 𝑎′)) utilized to estimate the action’s future value (see 

Figure 7). The reference Q-value for an arbitrary state 𝑠 and an action 𝑎 (i.e., 𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑠, 𝑎)) is 

calculated as follow: 𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾. 𝑚𝑎𝑥𝑎′ 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′, 𝑎′), where 𝑟(𝑠, 𝑎) is the 
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immediate reward, and 𝑚𝑎𝑥𝑎′ 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′, 𝑎′) is the highest Q-value computed by the target network 

for the next state 𝑠′, and any action 𝑎 from the set of legal actions. 𝛾 is also a discount factor set to 

0.99. 

 

 

 
Figure 5. The CNN network to predict the Q-values for every action from the inter-protein distance map 

of an input state 𝑆. The first convolutional layer contains 16 3 × 3 filters using a stride of 2. The second 

convolutional layer has 32 filters of size 5 × 5 with a stride of 2. The third convolutional layer also consists 

of 64 filters of size 3 × 3 using a stride of 2. All convolutional layers use a rectified linear unit (ReLU) 

activation function. The output of the third convolutional layer is flattened and passed to a dense layer (fully 

connected layer) with a linear activation function to output the Q-values of the individual actions. 

 

 

The loss function to optimize the deep CNN network is simply the expected squared error defined 

as (
1

𝑁
∑𝑆𝑖

(𝑄(𝑠, 𝑎) − 𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑠𝑖, 𝑎𝑖))2), where N represents the number of states. 
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The model is trained using stochastic gradient descent (minibatch sizes of 16, 32, and 64). During 

the training process, 𝜀 of the 𝜀-policy decays until it reaches 0.1, and then keeps fixed thereafter. 

 

 

 
Figure 6. Training procedure for a protein complex using the experience replay technique. Through 

continuous interaction with the environment, the agent collects a sequence of past experiences (states, 

actions, rewards, and next states), which are kept in a buffer. When the buffer gets full, some of the old 

experiences should get dropped to release its space for new experiences. To update the Q-function, the 

network is trained on 𝐾 experiences sampled from the replay buffer. The process continues until the agent 

meets a final state. 

 

 

We investigated two basically different strategies to examine the quality of a state (𝑆) to compute 

the immediate reward: (1) the root mean square deviation (RMSD) between the current 3D 

conformation of S and the native structure (𝑆∗), and (2) an energy function to measure the 

agreement between the contact map derived from the current 3D structure of 𝑆 and a predicted 

contact map passed to the system at the beginning of episodes. Since native structures are often 

not avaiable in real-world applications, our final set of experiments have been carried out using 

the latter strategy (contact energy). For the first strategy, the immediate reward (r (s, a)) is 

calculated according to the formula RMSDS - RMSDS’, where RMSDS represents the RMSD 

between the 3D structure of S and the reference structure 𝑆∗, and RMSDS defines the RMSD 

between the 3D structure of the next state 𝑆 ′ and the native structure 𝑆∗. If taking action 𝑎 improves 
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the quality of the state (i.e., RMSDS’ < RMSDS), then the agent receives a positive reward, 

otherwise, it is penalized with a negative reward. Figure 8 illustrates the accumulated reward and 

RMSD of the structure at each episode for a dimer. It is shown that the accumulated reward 

converges to a positive value, and the agent generates a high-quality structure (RMSD of 0.29 Å). 

 

 

 

    
Figure 7. The agent’s deep CNN network (𝑄) copies its weights to the target network (𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) every 

𝐾 steps. The Q-values predicted by the target network are used as reference Q-values to train 𝑄.   

 

 

For the second strategy, the immediate reward is defined as the difference between the contact 

energies of 𝑆 and 𝑆 ′. The contact energy function is the same as the energy function used by GD 

and MC. Here, the main goal of the agent is to pick actions, which maximize the satisfaction of 

the contact restraints within the 3D conformation of a given protein dimer. Figure 9 demonstrates 

the changes in the accumulated reward and the RMSD of the generated structure across the 

learning episodes when the contact energy is utilized to compute immediate rewards. As can be 

seen from Figure 9, the reward converged after 200 episodes. The self-training finished by 
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reconstructing a structure having a RMSD of 0.94 Å. The experiment proves that high-quality 

models can be reconstructed by the self-learning algorithm whose primary objective is to maximize 

the rewards based on a provided contact map. The deep CNN was trained for 100K steps, and the 

target network ‘s weights got updated every 500 steps.  

  

 

 

 
Figure 8. Deep network results for 1A2D dimer using the structural distance between the current 

conformation of the ligand and its true conformation measured by RMSD as the reward function. (A) The 

total reward at each episode averaged over three self-learning runs (games). The total reward converges 

after 100 episodes. (B) The RMSD of the structure at each episode. RMSD converges to a low value after 

about 100 episodes. 

 

 

 

 
Figure 9. Deep network results for 1A2D dimer using contact energy as the reward function. (A) The 

accumulated reward per episode. (B) the RMSD of the generated model at the end of each episode. 

                                                                                      

  

Gradient descent method to build protein complexes (multimers) from 

distance constraints:  

We create a new version of our GD method to directly take distance restraints of multiple chains 

instead of two chains as input to reconstruct the 3D structure of multimers. To improve the 

effectiveness and robustness of the optimization, we iteratively add distance restraints for 

optimization in a stochastic (randomly selecting a group of distance constraints) way. The 

objective of this gradient descent method is to minimize the sum of square distances between given 

input distances and the distances in the 3D model. The 3D model is initialized as a random model; 
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chains are randomly rotated and translated. The 𝑥, 𝑦, 𝑧 coordinates of 𝐶𝛼 or 𝐶𝛽 are adjusted based 

on the partial derivatives of the objective function with respect to each coordinate.  

When a small portion of constraints are randomly selected each time, our method is a kind of 

stochastic gradient descent optimization, mainly utilized for optimizing deep neural networks. In 

contrast to utilizing all the constraints at the same time that often gets stuck in bad local minimums, 

using a small batch of restraints helps the optimization method to escape bad local minimums and 

quickly converge to good local minimums that may have similar performance as global minimum. 

The optimization process continues until the RMSD between the models generated in the current 

and previous epochs is less than 0.1 Å. Figures 10-13 show high-quality models reconstructed by 

our method. 

 

 

 

 
Figure 10. Superposition of the native structure of H1060 and the model predicted by GD for multimers. 

The RMSD between the two structures is 1.23 Å. 
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Figure 11. Superposition of the true structure of H1066 and the model reconstructed by GD for 

multimers. The RMSD between the two structures is 1.18 Å. 
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Figure 12. Superposition of the true structure of H1097 and the model reconstructed by GD for 

multimers. The RMSD between the two structures is 1.29 Å. 
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Figure 13. Superposition of the true structure of H1060v4 and the model reconstructed by GD for 

multimers. The RMSD between the two structures is 0.32 Å. 

 

 

 

Results and Discussions of Gradient Descent Method 

Inter-protein contacts and protein complex datasets 

Two residues are said to be in contact if the distance between their 𝐶𝛽 atoms (𝐶𝛼 for Glycine) is 

less than or equal to 6Å [37, 38]. Native inter-chain contacts are extracted from known quaternary 

structures. 

For these experiments, we use several datasets of homodimers and heterodimers using both true 

and predicted inter-protein contacts. The first dataset has 44 homodimers (Homo44), randomly 

selected from Homo_Std [37]. The number of inter-chain contacts for dimers in Homo44 is 
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between 38 to 622. The second dataset, called Homo115, consists of 115 homodimers with at least 

21 predicted inter-chain contacts having a probability of greater or equal to 0.5. ResCon [39] is 

used to predict the inter-chain contacts for the dimers in Homo115. Based on the size of the 

interaction interface, Homo115 is grouped into three subsets, named Set A, Set B, and Set C. Set 

A consists of 40 proteins with 14 to 68 true inter-chain contacts (small interaction interface). Set 

B has 37 dimers with 69 to 129 true inter-chain contacts (medium interaction interface). Set C 

contains 38 dimers having 131 to 280 true inter-chain contacts (large interaction interface). The 

third dataset, called Hetero73 [39], has 73 heterodimers with 2 to 255 true inter-chain contacts. 

The last dataset is Std32, which has 32 heterodimers [39]. 

 

Generating protein dimers using true (native) contacts 

Firstly, we used GD, MC, and CNS to reconstruct the quaternary structures of protein 

dimers from native contacts for 44 homodimers (Homo44). To evaluate the quality of the 

generated models, we use five metrics including root-mean-square deviation (RMSD), TM-

score, the percentage of native contacts preserved in predicted models (f_nat), interface RMSD 

(I_RMSD), and Ligand RMSD (L_RMSD). 

Supplementary Table 1 (Table S1) represents the detailed results including RMSD, TM-score, 

f_nat, I_RMSD, and L_RMSD of the GD method for Homo44. As can be seen from Table S1, 

using true inter-protein contacts, GD reconstructs high-quality models for all the protein 

complexes (the TM-score of the predicted models all fall in the ranges of 0.936 to 0.999). Table 1 

summarizes the mean values of TM-score, RMSD, f_nat, I_RMSD, and L_RMSD for GD, MC, 

and CNS. GD achieves the best TM-score, RMSD, f_nat, I_RMSD, and L_RMSD. The average 

value of RMSD for GD is 0.63Å, lower than those of MC (0.76Å) and CNS (1.16Å). GD achieved 

an average TM-score of 0.99, 0.01 and 0.08 higher than MC and CNS, respectively. While GD 

preserves 92.19% of true contacts, 91.39% and 82.49% of native contacts exist in the predicted 

models by MC, and CNS, successively. Moreover, GD has an average I_RMSD of 0.77Å, lower 

than 1.35Å of MC and 12.46Å of CNS. Also, GD improved L_RMSD by 0.32 Å and 9.8 Å over 

the MC and CNS methods. The improvement of RMSD, I_RMSD, and L_RMSD over MC and 

CNS is more significant, which means GD pays more attention to the accurate reconstruction of 

atomic coordinates of the generated structure. Figure 14 shows high quality models generated by 

the three methods (GD, MC, and CNS) for a homodimer from Homo44 using true contacts. 

Table 1. Mean and standard deviation (std) of RMSD, TM-score, f_nat, I_RMSD, and L_RMSD of GD, 

MC, and CNS for Homo44 using true contacts as restraints. 

Evaluation Metric  GD MC CNS 
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RMSD (mean, std) 0.63+-0.3788 0.76+-0.361 1.16+-1.0043 

TM-score (mean, std) 0.99+-0.0132 0.98+-0.014 0.91+-0.0102 

f_nat (mean, std) 92.19+-8.64 91.39+-9.08 82.49+-22.02 

I_RMSD (mean, std) 0.77+-1.05 1.35+-3.98 12.46+-8.46 

L_RMSD (mean, std) 1.38+-0.8 1.7+-0.9 11.18+-14.51 

 

Figure 14. The superposition of the native structure of a homodimer (1XDI), and the models built by GD, 

MC, and CNS. Green and orange show the two chains of the true structure, whereas blue and red represent 

the two chains of the predicted models. (a) the model reconstructed by GD using true inter-protein contacts. 

The detailed results of the model in (a) are as follow: TM-score = 0.99, RMSD = 0.56Å, f_nat = 94.52%, 

I_RMSD = 0.24Å, and L_RMSD = 0.74Å. (b) the model built by MC utilizing true inter-chain contacts. 

The detailed results of the generated model in (b) are the following: TM-score = 0.99, RMSD = 0.61Å, 
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f_nat = 93.15%, I_RMSD = 0.45Å, and L_RMSD = 1.29Å. (c) The model reconstructed by CNS using true 

inter-chain contacts. The detailed results for the model in (c) are TM-score = 0.88, RMSD = 2.25Å, f_nat 

= 74.79%, I_RMSD = 1.49Å, and L_RMSD = 5.18Å. 

 

We further evaluated the performance of the three methods on a dataset of 77 heterodimers 

(Hetero77) when true inter-protein contacts are provided as constraints. Table 2 compares GD, 

MC, and CNS in terms of the metrics mentioned above. Detailed per complex results are also 

shown in Table S2. As shown in Table 2, GD outperforms the two other methods in terms of TM-

score, RMSD, f_nat, I_RMSD, and L_RMSD (GD achieves higher TM-score and f_nat, and lower 

RMSD, I_RMSD, and L_RMSD than MC and CNS). Overall, given inter-chain contacts as input, 

GD is able to build high quality models for heterodimers as the mean TM-score and RMSD of the 

reconstructed models are 0.92, and 1.23Å, respectively (see Table 2). However, compared to the 

models reconstructed for homodimers (see Table 1), the predicted models for heterodimers are of 

lower quality. One possible reason for this difference in the performance is that heterodimers often 

have lower inter-protein contact density (i.e., number of inter-protein contacts over the whole 

length of a protein complex), and consequently, fewer contact restraints provided for the 

optimization process. 

 

Table 2. Mean and standard deviation (std) of RMSD, TM-score, f_nat, I_RMSD, and L_RMSD results 

of GD, MC, and CNS for 77 heterodimers when true inter-chain contacts are given as input. 

 Evaluation Metric GD MC CNS 

RMSD (mean, std) 1.23+-1.91 4.76+-8.01 7.7+-12.99 

TM-score (mean, std) 0.92+-0.12 0.85+-0.16 0.79+-0.23 

F_nat (mean, std) 90.31+-16.77 82.59+-26.68 84.43+-23 

I_RMSD (mean, std) 0.72+-1.02 1.58+-1.7 1.65+-4.51 

L_RMSD (mean, std) 3.75+-6.15 7.78+-11.8 9.21+-14.05 
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Table 3. Mean RMSD, TM-score, f_nat, I_RMSD, and L_RMSD of the three methods for Std32 

containing 32 heterodimers. 

 Evaluation Metric GD MC CNS 

TM-score 0.96 0.95 0.82 

RMSD 1.95 2.9 10.04 

f_nat 92.78 92.43 69.13 

I_RMSD 1.64 1.99 3.71 

L_RMSD 4.65 7.16 14.9

9 

 

Furthermore, we evaluated the three methods on another dataset, named Std32, which has 32 

heterodimers. Detailed results of GD for this dataset using true inter-chain contacts are reported in 

Table S3. Mean values of RMSD, TM-score, f_nat, I_RMSD, and L_RMSD are also reported in 

Table 3. These results are consistent with the previous results as GD has the best performance 

among the three methods, and MC reconstructs higher accurate models than CNS.  

 

The effects of initial start, and contact density on the quality of the models 

built by GD using true inter-chain contacts as input 

 Initial conformation and inter-protein contact density impact the quality of the final reconstructed 

structure.  

Figure 15 demonstrates how the TM-score and RMSD of the generated structures change with 

respect to the initial conformations for a protein dimer. As can be seen in Figure 15, TM-scores of 

the generated structures fall in a range of 0.55 (a very poor score) to 1 (an almost perfect score), 

indicating that starting from a reasonable initial conformation, GD has the ability to converge to a 

local minimum with almost the same performance as the global minimum and, as a result, generate 

a high-quality model. By contrast, given a poor initial structure, GD might get stuck in a bad local 

minimum and return a low-quality model. It is therefore useful to repeat the optimization process 

with different initial starts. In fact, our experiments on Homo44 and Hetero77 show that repeating 
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the optimization process with 20 different initial starts helps the GD method to reconstructs high 

quality models having a TM-score of 0.99 and RMSD of less than 1Å when true inter-chain 

contacts are given as input (see Table S1 and Table S2). 

 

 

 

Figure 15. TM-score and RMSD of the GD method for several models starting from different initial 

conformations for a homodimer (PDB code: 1Z3A). X-axis shows different initial starts for the optimization 

process. Y-axis denotes the quality of the reconstructed models in terms of TM-score and RMSD.  

 

 



27 

 

 
Figure 16. Inter-protein contact density against the TM-score and RMSD of the generated models for 

Hetero77.  

 

Additionally, the quality of the final structural model is highly affected by the density of the 

provided inter-chain contact map. Figure 16 demonstrates the changes in the TM-score and RMSD 

of the generated models for different contact densities. Based on Figure 16, for protein dimers with 

a contact density of 0.25 or higher, GD reconstructs high quality models with TM-score of about 

1 and RMSD of less than 1Å. On the other hand, when the contact density is less than 0.25, GD 

fails to build good quality structures for some of the protein dimers in Hetero77. In general, the 

higher the contact density of a dimer, the higher the quality of the generated models (higher TM-

score and lower RMSD). 

Building protein homodimers from predicted inter-chain contacts 

We also evaluated the performance of GD, MC, and CNS on three sets of protein complexes, 

named Set A, Set B, and Set C, when predicted inter-protein contacts are provided as restraints. 

Set A has 40 protein complexes having a small interaction interface. Set B contains 37 complexes 

having medium interaction interface. Set C has 38 protein dimers with extensive interaction 

interface. Tables S4, S5, and S6 report the results of GD in terms of TM-score, RMSD, f_nat, 

I_RMSD, and L_RMSD, and also the quality of the provided, predicted contacts in terms of 

precision and recall. Precision and recall are calculated as 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >= 𝑝

#𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >= 𝑝
 and 

# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >= 𝑝

#𝑡𝑟𝑢𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠
, respectively, where 𝑝 is the cut-off probability, set to 0.5.  

 

Table 4. Mean values of TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of GD, MC, and CNS for Set 

A using predicted inter-chain contacts. 
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 Evaluation Metrics GD MC CNS 

TM-Score 0.68 0.66 0.58 

RMSD 10.81 11 17.48 

f_nat 22.47 18.38 14.67 

I_RMSD 9.93 10.03 12.37 

L_RMSD 25.46 27.81 30.3

5 

 

 

 

Table 5. Mean values of TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of GD, MC, and CNS for Set 

B using predicted inter-chain contacts. 

 Evaluation Metrics GD MC CNS 

TM-score 0.8 0.77 0.64 

RMSD 6.78 8.3 12.89 

f_nat 32.18 28.66 22.19 

I_RMSD 6 7.6 13.3 

L_RMSD 14.87 18.46 20.6

9 

 

Table 6. Mean values of TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of GD, MC, and CNS for Set 

C using predicted inter-chain contacts. 

 Evaluation Metrics GD MC CNS 
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TM-score 0.81 0.80 0.76 

RMSD 6.26 6.77 9.5 

f_nat 37.43 35.07 42.3 

I_RMSD 5.01 5.46 7.41 

L_RMSD 12.73 13.96 16.3 

      

The averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of the three methods are shown 

in Tables 4, 5, and 6. These results, which are consistent with previous results, indicate that GD 

performs better than MC, and CNS in terms of TM-score, RMSD, f_nat, I_RMSD, and L_RMSD. 

Furthermore, as the interaction interface extends, the quality of the reconstructed models also 

increases (i.e., quality of the models for Set C > quality of the models for Set B > quality of the 

models for Set A), indicating that it is much easier to build protein complexes having extensive 

interaction interface. As shown in Tables 4, 5, and 6, the averaged TM-score of GD for the models 

built for Set A, Set B, and Set C are 0.68, 0.80, and 0.81, respectively, superior to the other 

methods. The average TM-score of the GD method for all the protein complexes in Set A, Set B, 

and Set C (in total 115 protein complexes) is 0.76, showing that GD can reconstruct reasonable 

models for most of the given protein dimers. In addition, based on Tables S4, S5, and S6, GD was 

able to reconstruct high quality models (TM-score > 0.9) for about 46% of protein dimers. Figure 

17 shows a high-quality model built by GD for a protein complex (PDB code: 1C6X) using inter-

chain contacts with precision of 40.24% and recall of 49.28%. The model in Figure 17 has a TM-

score of 0.99 and f_nat of 84.61%. 
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Figure 17. The superposition of the true structure and the high-quality models built by GD, MC, and CNS. 

The two chains of the true structure are represented by green and orange, whereas the two chains of the 

reconstructed model are denoted by blue and red. (a) The high quality model built by GD with TM-

score=0.99, RMSD=0.4Å, f_nat=84.61%, I_RMSD=0.4Å, and L_RMSD=0.91Å. (b) The model built by 

MC with TM-score=0.98, RMSD=0.6Å, f_nat=78.84%, I_RMSD=0.6Å, and L_RMSD=1.6Å. (c) The 

model built by CNS with TM-score=0.86, RMSD=2.02Å, f_nat=41.6%, I_RMSD=2.14Å, and 

L_RMSD=5.68Å. 
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Figure 18. (a) TM-score of the models reconstructed by GD vs the precision of the inter-chain contacts 

for 115 complexes in Set A, Set B and Set C. (b) f_nat of the reconstructed models against the precision 

of the inter-chain contacts for 115 dimers in Sets A, B, and C. 

 

 

We also investigated two factors that affect the quality of the models built by GD: precision and 

recall of the predicted inter-chain contacts. Figure 18a illustrates how the TM-score of the 

reconstructed models change with respect to the precision of the predicted inter-chain contacts. 

The correlation between TM-score values and contact precisions is 0.78, indicating that the higher 

the precision the more accurate the models. According to Figure 18a, if the precision is higher than 

20%, then the majority of the models have TM-scores equal or more than 0.8. When the precision 

reaches to 40%, all the generated models are of high quality (TM-score > 0.8). Therefore, it seems 

that moderately accurate inter-chain contacts are quite sufficient to build high quality models for 

dimers. Besides, it indicates that the GD method is not sensitive to noise present in predicted 

contacts.    

 

Figure 18b also demonstrates that f_nat values of the reconstructed models are highly dependent on the 

precision of the predicted inter-chain contacts as the correlation between these two is 0.94. If the precision 

is higher than 40%, then f_nat values fall into 50% to 100%. 
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Figure 19. TM-score and f_nat values of the models reconstructed by GD for 115 complexes in Sets A, 

B, and C against the recall of the given predicted inter-chain contacts.  

Also, TM-score and f_nat values of the models built by GD are highly affected by the recall of 

predicted inter-chain contacts (see Figure 19). Based on Figure 19, TM-score and f_nat are highly 

correlated with the recall of the predicted contacts (correlation between TM-score and recall is 

0.78, and correlation between f_nat and recall is 0.93). It is evident from Figure 19a, similar to the 

previous findings, that a recall of 40% is enough to reconstruct high quality models having a TM-

score of more than 0.8 and f_nat of larger than 50%.  

 

Moreover, we investigated the relationship between the cut-off probability (used to exclude 

unwanted inter-chain contacts) and the quality of the generated models for 115 complexes in Set 

A, Set B, and Set C. Figure 20 reports the TM-score and RMSDs for cut-off probabilities from 0.3 

to 0.9 with a step size of 0.1. Based on Figure 20, the highest TM-score (0.77) and lowest RMSD 

(about 7Å) was achieved by using a cut-off probability of 0.5. However, it must be noted that the 

cut-off probability is a data-dependent parameter, hence, it seems there is no good way to pick the 

best value other than trying different cut-off probability and selecting the one that leads to the best 

performance. 
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Figure 20. The mean TM-score and RMSD of the model reconstructed by GD for 115 dimers in Sets A, 

B, and C against the cut-off threshold for discarding unwanted inter-chain contacts. 
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Results and Discussions of DRLComplex 

 

We evaluate the performance of our reinforcement learning approach and compare its 

effectiveness with other quaternary structure prediction methods including GD, MC, CNS, and 

Equidock [40]. We perform experiments on two standard datasets: CASP-CAPRI dataset of 28 

homodimers, and Std32 of 32 heterodimers. Specifically, we test two different scenarios, in the 

first scenario, named optimal scenario, native inter-protein contacts are utilized to guide the 

modeling process, whereas the second scenario (suboptimal scenario) uses predicted inter-protein 

contacts to build quaternary structures of protein dimers. As discussed earlier, two residues are 

said to form a contact if the distance between their heavy atoms is less than or equal to 6Å; 

however, for simplicity, we consider two residues to be in contact if the distance between their 𝐶𝛽 

(𝐶𝛼 for Glycine) is within 6Å. Predicted inter-chain contacts are provided by two different 

methods: DRCon [41] for homodimers, and Glinter [42] for heterodimer. It must be noted that one 

protein complex from Std32 (PDB code: 1IXRA_1IXRC) is excluded from the experiments as its 

ligand does not interact with its receptor (there are no contacts between the ligand and the 

receptor). We also perform a significantly more challenging experiment, called realistic scenario 

hereafter, by using both predicted monomer structures and predicted inter-chain contacts as the 

input to the algorithm. AlphaFold2 [43] is utilized to predict monomer structures. 

Evaluation Metrics 

We compare the performance of the methods in terms of TM-score, RMSD, f_nat, I_RMSD, and 

L_RMSD. TMalign and Ca-RMSD from Pyrosetta are used to compute TM-score and RMSD, 

respectively.  DockQ is also used to calculate f_nat, I_RMSD, and L_RMSD.  

 

Comparison and evaluation of five methods on 28 homodimers (CASP-

CAPRI dataset) 

Table 7, Table 8, and Table 9 report a comparative summary of the results of different methods 

for optimal scenario, suboptimal scenario, and realistic scenario, respectively, on 28 homodimers 
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from CASP-CAPRI dataset. Detailed results including TM-score, RMSD, f_nat, I_RMSD, and 

L_RMSD for each target are also reported in Tables S7, S8, and S9 in Supplementary materials. 

Using native inter-chain contacts and true monomer structure as inputs (optimal scenario), 

DRLComplex outperforms all the methods including GD, MC, and CNS in terms of TM-score, 

RMSD, f_nat, I_RMSD, and L_RMSD (see Table 7). Based on Table 7, GD also performs better 

than MC, and CNS. DRLComplex builds high quality models with a f_nat value close to 1 for 

about 36% of the targets (10 out of 28). The mean f_nat value of the models reconstructed by 

DRLComplex (shown in Table 7) is 99.05% for CASP-CAPRI dataset, proving that DRLComplex 

is able to generate models close to the native ones when native inter-protein contacts are provided. 

The Equidock method does not require any contact information to perform the modeling process, 

instead it learns how to rotate and translate the ligand with respect to the receptor, thus, we did not 

consider this method for the optimal scenario.  

When predicted inter-protein contacts are provided as input (suboptimal scenario), DRLComplex, 

GD, and MC give us relatively similar performance as their TM-scores are 0.73, 074, and 0.72, 

respectively (see Table 8 for other metrics). However, these three methods significantly 

outperform CNS and Equidock. According to Table 8, DRLComplex achieves an averaged f_nat 

of 33.21%, 4.89% and 26.7% higher than those of CNS and Equidock, successively.   

Moreover, when both predicted inter-chain contacts and monomer structures are used (realistic 

scenario), DRLComplex achieves superior performance than all the methods, except GD, whose 

performance is comparable to DRLComplex, even though GD is slightly better than 

DRLComplex. The averaged f_nat value of the models built by DRLComplex is 27.1%, higher 

than 16.81% of MC, 13.58% of CNS, and 22.27% of Equidock. In addition, the mean RMSD of 

the models reconstructed by DRLComplex is 0.6Å, 2.37Å, and 14.41Å lower than MC, CNS, and 

Equidock. DRLComplex has an averaged TM-score of 0.64, higher than those of MC (0.63), CNS 

(0.62), and Equidock (0.5). 

As shown in Table 7, and 8, using predicted inter-chain contacts, rather than the native contacts 

extracted from the native monomers, the mean TM-score of the models generated by 

DRLComplex decreases from 0.989 (almost a perfect score) to 0.73, indicating that the quality of 

the provided contacts affects the performance of the quaternary structure prediction methods (here 

DRLComplec, GD, MC, and CNS). 

 

Table 7. Averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of DRLComplex, GD, MC, and 

CNS using true inter-chain contacts for CASP-CAPRI dataset. Known tertiary structures are used as 

monomers. 
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Methods TM-score RMSD F_nat (%) I_RMSD L_RMSD 

DRLComplex 0.9895 0.3753 99.05 0.2197 0.8235 

GD 0.9895 0.3753 99.03 0.3468 0.8235 

MC 0.9631 1.2089 78.91 1.1611 2.8897 

CNS 0.9234 2.003 73.45 3.9234 4.6841 

 

Table 8. Averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of DRLComplex, GD, MC, 

Equidock, and CNS using predicted inter-chain contacts for CASP-CAPRI dataset. Known tertiary 

structures are used as monomers. 

Methods TM-score RMSD F_nat (%) I_RMSD L_RMSD 

DRLComplex 0.73 11.88 33.21 10.43 26.52 

GD 0.74 11.09 35.51 9.66 25.21 

MC 0.72 12.04 32.65 10.47 26.98 

CNS 0.62 14.55 28.32 14.37 36.25 

Equidock 0.56 18.57 6.51 14.5 35.24 

 

Table 9. Averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of DRLComplex, GD, MC, 

Equidock, and CNS using predicted inter-chain contacts for CASP-CAPRI dataset. Predicted tertiary 

structures by AlphaFold2 are used as monomers. 

Methods TM-score RMSD F_nat (%) I_RMSD L_RMSD 

DRLComplex 0.64 12.18 27.1 10.73 26.54 
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GD 0.69 12.15 28.05 10.69 26.50 

MC 0.63 12.78 26.81 11.89 28.92 

CNS 0.62 14.55 13.58 12.62 31.69 

Equidock 0.50 26.59 22.27 18.39 44.66 

 

Performance evaluation of five methods on 31 heterodimers from Std32 

Table 10, 11, and 13 compares the performance of the above-mentioned methods in terms of TM-

score, RMSD, f_nat, I_RMSD, and L_RMSD using both true and predicted inter-chain contacts 

and monomer structures for Std32. Per dimer detailed results are also reported in Tables S10, S11, 

and S12 in supplementary materials. As shown in Table 10, when native inter-protein contacts are 

provided as input, DRLComplex has superior performance than all the other methods in terms of 

all the metrics, except f_nt, for which GD performs better. While DRLComplex achieves a low 

RMSD of 0.88Å, the models built by GD, MC, and CNS have RMSDs of 2.9Å, 3.1Å, and 10.04Å, 

respectively. DRLComplex has I_RMSD, and L_RMSD of 0.92Å and 2.15Å, successively, 

significantly lower than those of the other methods. DRLComplex, GD, and MC perform alike 

with regard to TM-score.  

Using predicted inter-chain contacts, DRLcomplex has higher TM-score and f_nat, and lower 

I_RMSD, and L_RMSD than GD, MC, CNS, and Equidock. GD achieves a slightly lower RMSD 

than DRLComplex (RMSD of DRLComplex = 13.93, RMSD of GD = 13.92). GD is able to 

reconstruct models of higher quality compared to MC, CNS, and Equidock. Equidock has the worst 

performance in terms of all the metrics.  

As can be seen in Table 12, for the realistic scenario, DRLComplex has the best performance 

regarding TM-score, RMSD, and f_nat, whereas GD achieves the best results for I_RMSD, and 

L_RMSD. CNS and Equidock have the poorest performance among all the methods. While 

DRLComplex, GD, and CNS achieved a mean TM-score of about 0.72, TM-scores of the models 

by CNS, and Equidock are 0.66, and 0.59, respectively. DRLComplex, GD, and MC have an 

average f_nat of 11.59%, whereas CNS, and Equidock yield an average f_nat of 3.66%.  
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Similar to the results for homodimers, using predicted inter-chain contacts instead of native inter-

chain contacts causes a decrease in the quality of the reconstructed models for heterodimers. Also, 

as shown in Figures 22, 23, and 24, the quality of the generated models relies on the quality of the 

predicted inter-chain contacts.  

 

Table 10. Averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of DRLComplex, GD, MC, and 

CNS using true inter-chain contacts for 31 protein dimers from Std32 dataset. Known tertiary structures 

are used as monomers. 

Methods TM-score RMSD F_nat (%) I_RMSD L_RMSD 

DRLComplex 0.98 0.88 90.03 0.92 2.15 

GD 0.95 2.9 92.43 1.99 7.16 

MC 0.94 3.1 92.24 2.2 7.18 

CNS 0.82 10.04 69.13 3.71 14.99 

 

 

Table 11. Averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of DRLComplex, GD, MC, 

Equidock, and CNS using predicted inter-chain contacts for 31 protein dimers from Std32 dataset. Known 

tertiary structures are used as monomers. 

 

  TM-score RMSD F_nat (%) I_RMSD L_RMSD 

DRLComplex 0.76 13.93 19.64 13.68 34.16 

GD 0.75 13.92 16.68 13.72 34.17 

MC 0.73 14.14 13.88 13.82 35.36 

CNS 0.68 17.09 17.26 15.81 43.12 

Equidock 0.61 18.53 4.95 14.98 36.11 
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Table 12. Averaged TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of DRLComplex, GD, MC, 

Equidock, and CNS using predicted inter-chain contacts for 31 protein dimers from Std32 dataset. 

predicted tertiary structures by AlphaFold2 are used as monomers. 

 

Methods TM-score RMSD F_nat (%) I_RMSD L_RMSD 

DRLComplex 0.74 14.53 11.80 13.86 36.18 

GD 0.73 14.54 11.71 13.85 36.17 

MC 0.7 15.06 11.25 14.60 36.66 

CNS 0.66 19.02 3.78 14.74 37.91 

Equidock 0.59 18.63 3.55 14.42 35.97 

 

 

 

 

 
Figure 21. The predicted structures of a heterodimer from Std32 (PDB code: 2WDQ chains C and D) are 

superimposed on the native structure for optimal, suboptimal, and realistic scenarios. Green and red 

represent the two chains of the native structure, whereas blue and magenta show the two chains of the 

predicted structure. (A) The model reconstructed by DRLComplex when native monomer structure and 

inter-chain contacts are provided as inputs. The detailed results of the generated model are as follow: TM-

score = 0.97, RMSD = 0.94Å, f_nat = 97.1%, I_RMSD = 0.95, and L_RMSD = 1.85Å. (B) The model built 

by DRLComplex using the native monomer structure and predicted inter-chain contacts. TM-score, RMSD, 

f_nat, I_RMSD, and L_RMSD are 0.99, 0.65Å, 92.1%, 0.58, and 1.12Å, successively. (C) DRLComplex 

receives predicted monomer structure and inter-protein contacts as inputs and reconstructs a model with 

TM-score of 0.75, RMSD of 6.03Å, f_nat of 1%, I_RMSD of 6.07, and L_RMSD of 10.6Å. 
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Figure 22. (a) TM-score of the reconstructed models by DRLComplex against the precision of the predicted 

inter-chain contacts. (b) f_nat values of the generated models versus the precision of the inter-protein 

contacts. As the precision increases, the quality of the models also increases. The experiment has been 

performed on the CASP-CAPRI dataset. 

 
Figure 23. (a) TM-score of the generated models vs the recall on the predicted inter-chain contacts. (b) 

f_nat of the reconstructed models against the recall of the predicted inter-protein contacts. The quality of 

the models regarding TM-score and f_nat is dependent on the quality of the predicted contacts. The 

experiment has been done on the CASP-CAPRI dataset. 
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Figure 24. (a) TM-score of the models built by DRLComplex vs the F1-score of the predicted inter-chain 

contacts. (b) f_nat values of the models reconstructed by DRLComplex vs the F1-score of the predicted 

inter-protein contacts. The experiment has been done on the CASP-CAPRI dataset. 

 

 

We also use GD to initialize the starting conformation for DRLComplex. The results for Std32 

using predicted inter-chain contacts and true monomers are shown in Table 13. Also, Figure 25 

shows the TM-score of the models generated by GD and those of DRLComplex initialized by GD. 

The average TM-score of the best models reconstructed by DRLComplex is 0.76, 0.1 higher than 

that of GD. It is worth noting that compared to GD, DRLComplex always satisfies a higher portion 

of restraints. However, since restraints are noisy and conflicting, a higher portion of satisfied 

constraints does not always lead to a higher quality model (see Figure 25).  

 

 

Table 13. Detailed results (TM-score, RMSD, F_nat, I_RMSD and L_RMSD) of DRLComplex for Std32 

using predicted inter-chain contacts and true monomers as inputs. The model reconstructed by GD is used 

as initial conformation for DRLComplex. 

Target TM-score RMSD F_nat IRMSD LRMSD 

1EFP,AB 0.85 3.02 25 3.16 7.69 

1EP3,AB 0.8 7.96 17 6.41 17.8 

1I1Q,AB 0.71 19.38 8 21.3 55.57 

1QOP,AB 0.63 20.43 4 23.73 51.2 
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1W85,AB 0.94 0.69 80 0.54 1.99 

1ZUN,AB 0.77 15.37 2 16.47 30.14 

2D1P,BC 0.56 14.72 0 14.07 34.28 

2NU9,AB 0.92 2.53 54 2.15 5.02 

2ONK,AC 0.5 27.56 2 25.44 65.55 

2VPZ,AB 0.84 34.43 6 32.18 92.48 

2WDQ,CD 1 0.66 92 0.64 1.16 

2Y69,AB 0.72 26 7 27.28 65.07 

2Y69,AC 0.72 25.52 6 25.12 59.67 

2Y69,BC 0.53 21.02 1 16.55 65.58 

3A0R,AB 0.67 17.59 2 20.53 43.79 

3G5O,AB 0.58 8.94 9 9.46 13.95 

3IP4,AB 0.52 25.54 6 20.57 57.88 

3IP4,AC 0.81 12.26 3 14.94 31.51 

3IP4,BC 1 0.76 74 0.56 2.23 

3MML,AB 0.88 2.78 23 2.47 5.71 

3OAA,HG 0.87 3.87 29 4.38 8 

3PNL,AB 0.78 6.85 16 6.2 17.01 

3RPF,AC 0.62 17.53 6 9.12 53.98 
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3RRL,AB 0.69 12.96 3 12.69 25.21 

4HR7,AB 0.96 8.33 15 9.68 23.35 

1B70,AB 0.74 16.81 7 20.74 34.83 

1BXR,AB 0.75 20.76 15 20.85 49.95 

1RM6,AB 0.68 26.2 9 26 59.24 

 

 

 

 
Figure 25. GD vs RL initialized by GD. For 15 out of 31, RL improved the TM-score of the 

reconstructed models by GD. 

 

 

The running time of the algorithms is shown in Table 14. As can be seen in Table 14, starting from 

the model reconstructed by GD reduced the running time of DRLComplex by 22 %. Based on the 

table, CNS is the slowest method to reconstruct quaternary structures. Although the least accurate 

method, Equidock is the fastest algorithm. 
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Table 14. Running time of the algorithms. GD, MC, and CNS generate 100 different models. 

Method Time/Sequence Length 

GD 30 mins / 1045 

DRLComplex 4.5 hours / 1045 

DRLComplex initialized with GD 2 hours / 1045 

MC 6 hours / 1045 

CNS 22 hours / 1045 

Equidock 2 mins / 1045 
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Conclusion 

 

We propose an optimization method based on gradient descent, called GD, to build protein 

complexes using inter-chain contacts as restraints. We compare the performance of GD with a 

Markov Chain Monte Carlo method (MC), and a method based on simulated annealing (CNS). 

GD has the best performance among the three methods for building protein dimers using true and 

predicted inter-protein contacts. Not only is GD able to build high quality models for nearly all 

homodimers and heterodimers when native inter-chain contacts are provided, but it also 

reconstructs good quality models for many protein complexes using only predicted contacts. 

We also introduce an agent-based reinforcement learning system (DRLComplex), which learns to 

reconstruct protein dimers from true/predicted contacts through a self-learning process. 

DRLComplex rotates and translates the ligand with respect to the receptor in the 

translation/rotation space using not only immediate rewards but also long-term rewards, with the 

main aim of detecting a conformation as close to the native structure as possible. Using native 

inter-protein contacts as restraints, DRLComplex generates high quality models for all the protein 

dimers. In addition, if predicted contacts are provided as inputs, DRLComplex builds models with 

mean TM-scores of 0.73, and 0.76 for CASP-CAPRI dataset (28 homodimers) and Std32 (32 

heterodimers), respectively, indicating that the method can generates models with reasonable 

quality utilizing only predicted contacts. Furthermore, DRLComplex’s performance is comparable 

to GD for homodimers; however, this self-learning method outperforms all the other methods for 

heterodimers. 
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Supplementary Data 

 

  

Figure S1. RMSD of GD, MC, and CNS on a dataset of 44 homodimers with known inter-protein 

contacts. The average RMSD of GD, MC, and CNS is 0.63, 0.76, and 1.16. 

  

  

Figure S2. TM-score of GD, MC, and CNS on a dataset of 44 protein complexes with known inter-

protein contacts. The average TM-score of GD, MC, and CNS is 0.99, 0.98, and 0.91. 
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Figure S3. The f_nat of GD, MC, and CNS on a dataset of 44 homodimers with known inter-protein 

contacts. The average f_nat of GD, MC, and CNS is 92.19, 91.39, and 82.49. 

  



48 

 

 

Figure S4. I_RMSD of GD, MC, and CNS on a dataset of 44 homodimers with known inter-protein 

contacts. The average I_RMSD of GD, MC, and CNS is 0.77, 1.35, and 12.46. 
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Figure S5. L_RMSD of GD, MC, and CNS on a dataset of 44 homodimers with known inter-protein 

contacts. The average L_RMSD of GD, MC, and CNS is 1.38, 1.7, and 11.18. 
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Figure S6. RMSD of GD, MC, and CNS on 73 heterodimers with known inter-protein contacts. The 

average RMSD of GD, MC, and CNS is 1.23, 4.76, and 7.7. 

 

 

 

 

 

 

 

 

Figure S7. TM-score of GD, MC, and CNS on 73 heterodimers with known inter-protein contacts. The 

average TM-score of GD, MC, and CNS is 0.92, 0.85, and 0.79. 
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Table S1. TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of the models that GD reconstructed for 

each of 44 homodimers from true inter-chain contacts. 

Target Number 

of true 

contacts 

Length 

of chain 

A 

Length 

of chain 

B 

TM-

score 

RMSD f_nat 

(%) 

I_RMS

D 

L_RMSD 

2QMA 621 444 440 0.999 0.31 90.2 
0.325 0.619 

2E4U 52 512 514 0.948 2.576 100 
1.85 5.314 

5DCK 53 71 72 0.965 0.846 100 
0.754 1.674 

5CRY 59 348 348 0.995 0.652 100 
0.682 2.315 

5IW9 67 123 122 0.979 0.853 84.6 
0.842 1.727 

4GHT 77 181 181 0.997 0.407 95 
0.41 1.128 

3SDP 78 186 186 0.988 0.764 81.8 
0.813 1.438 

5V3U 83 131 123 0.965 1.135 90.9 
1.12 2.64 

5DYW 84 527 525 0.998 0.532 92.9 
0.62 1.682 

5AFR 88 327 325 0.994 0.696 69.19 
0.681 1.349 

4YWQ 89 147 146 0.977 0.979 88.9 
0.847 2.19 

3FN3 94 215 211 0.99 0.748 92.3 
0.84 1.737 

2Y4J 99 377 377 0.998 0.391 100 
0.398 0.788 

5H9M 103 190 189 0.99 0.696 94.1 
0.642 1.312 

3D8U 107 260 266 0.997 0.471 96 
0.719 1.39 
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3LF6 110 154 157 0.992 0.588 87.5 
0.526 0.949 

1UWJ 111 264 263 0.99 0.802 90.9 
0.564 1.247 

1JCZ 116 260 260 0.993 0.683 92.9 
0.833 1.603 

3NR1 130 178 178 0.989 0.717 88.9 
0.674 1.43 

3MJM 132 343 342 0.993 0.773 95.7 
0.748 1.512 

4GLL 139 307 306 0.995 0.625 97.5 
0.657 2.08 

5ELL 142 231 235 0.996 0.499 100 
0.558 1.423 

1PS6 144 328 328 0.998 0.348 97.7 
0.438 1.108 

4ZST 146 328 328 0.996 0.56 89.7 
0.281 0.999 

2HKU 152 188 182 0.994 0.534 97.2 
0.569 1.358 

2F2P 155 169 169 0.985 0.827 72.39 
0.603 1.047 

4MAE 161 577 577 0.998 0.522 100 
0.924 1.598 

1U7I 164 130 129 0.994 0.48 87.2 
0.601 1.219 

1SOX 167 463 458 0.998 0.452 100 
0.492 0.975 

2QPV 169 128 128 0.996 0.375 89.4 
0.46 0.964 

1VZI 174 125 125 0.996 0.355 100 
0.417 0.729 

1UIR 179 309 313 0.998 0.376 97.6 
0.373 0.717 

2PYW 197 417 411 0.998 0.448 95.6 
0.377 0.763 
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2BZS 207 230 228 0.993 0.419 97.3 
0.45 0.949 

2D1L 236 240 222 0.997 0.447 98.5 
0.441 0.859 

1D3Y 250 289 290 0.995 0.597 93.3 
0.423 0.914 

3VZ1 273 452 452 0.998 0.417 90.0 
0.671 1.341 

5MJH 320 368 368 0.996 0.593 100 
0.418 0.844 

4XSB 323 340 343 0.998 0.39 91.9 
0.65 1.261 

5BJ4 340 366 366 0.997 0.524 90 
0.403 0.784 

2WBA 347 489 489 0.999 0.313 98 
0.535 1.049 

1XDI 352 459 459 0.997 0.562 94.5 
0.249 0.747 

2AJ9 364 334 334 0.999 0.228 99.1 
0.48 1.225 

4AE1 398 501 501 0.997 0.531 97.5 
0.204 0.446 

5HW7 39 122 119 0.936 1.515 62.5 0.419 1.061 

 

 

 

 

Table S2. TM-score, RMSD, f_nat, I_RMSD, and L_RMSD of structural models reconstructed by GD 

for 73 heterodimers in the Hetero73 dataset using true/native inter-chain contacts as input.  
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Target Chains Length 

of 

chain 1 

Length 

of 

chain 2 

Number 

of true 

contacts 

TM-

score 

RMS

D 

f_nat I_RMS

D 

L_RMS

D 

1AVY A, B 68 54 19 0.74 1.47 92.9 0 6.91 

1IS7 A, K 194 84 10 0.9 0 85.7 1.61 4.97 

1TVX A, B 64 71 86 0.99 0.33 100 0.35 0.66 

1VCH B, E 170 152 19 0.82 3.33 42.9 1.76 9.22 

1VHL B, C 208 183 22 0.95 1.65 72.7 1.53 4.04 

1WMX A, B 173 195 61 0.99 0.74 96.89 0.49 1.75 

1WSU C, D 102 121 49 0.99 0.39 100 0.38 1.21 

1XBW A, B 99 96 149 1 0.26 97.7 0.25 0.63 

2ABZ C, D 62 46 13 0.78 1.74 54.5 2 5.06 

2E6X C, D 56 66 23 0.77 2.64 85.7 0 5.38 

2FQM A, D 65 72 21 0.95 0.84 100 0.76 3.57 

2IS5 A, D 156 143 43 0.91 2.01 61.9 1.88 4.04 

2J28 1, 3 54 64 11 0.85 1.82 83.3 0.93 6.05 

2JG8 A, B 132 129 119 0.98 0.32 98.6 0.32 0.67 

2LD7 A, B 94 75 153 1 0.18 95.7 0.18 0.34 
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2MJF A, B 40 95 132 1 0 97.8 0.16 0.3 

2ODG A, C 89 47 30 0.96 0.07 78.6 0 1.65 

2P7M A, B 127 122 199 1 0.33 97 0.33 0.65 

2QL2 A, B 56 59 79 1 0.25 94.69 0.23 0.58 

2ROZ A, B 32 136 101 1 0 100 0.21 0.46 

2VN6 A, B 151 64 80 1 0.27 100 0.3 0.61 

2W80 A, D 123 244 145 1 0.39 100 0.42 0.87 

2WX4 B, C 41 43 61 0.99 0.3 100 0.3 0.6 

2XCM C, E 92 74 57 0.99 0.4 100 0.37 0.81 

2XNY M, N 37 36 77 0.98 0.44 83.6 0.43 0.87 

2ZP9 E, I 49 39 4 0.6 4.17 100 3.06 16.47 

3B5N B, C 69 70 149 1 0.23 100 0.23 0.45 

3CI9 A, B 44 45 20 0.88 1.28 100 0.54 4.62 

3CUE B, Q 167 188 5 0.67 5.6 50 0.98 23.58 

3DBO A, B 34 126 171 1 0 98.1 0.1 0.44 

3ERM D, E 63 56 16 0.81 2.14 81.8 0.43 6.61 

3EW2 C, F 124 119 10 0.63 5.36 85.7 2.06 20.79 

3HE4 A, B 45 44 90 0.99 0.28 100 0.25 0.53 
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3HIA B, C 83 74 38 0.97 0.8 88.5 0.69 1.72 

3IWC A, B 58 61 255 1 0.18 96.89 0.18 0.36 

3LKX A, B 65 53 123 1 0.28 100 0.28 0.54 

3LPH A, B 62 55 65 0.99 0.44 100 0.44 0.97 

3M9D A, G 186 31 29 0.99 0 90.9 0.71 1.55 

3MAY A, C 86 97 6 0.59 7.39 83.3 2.78 15.12 

3NYB A, B 323 64 173 1 0 99.2 0.27 0.57 

3ONA A, B 158 66 61 0.99 0 97.1 0.46 1.22 

3SWN R, S 76 72 98 1 0.32 100 0.32 0.66 

3TKQ A, E 191 166 5 0.76 3.8 50 4.74 10.04 

3UC2 B, D 125 109 43 0.97 0.98 88.5 0.76 2.63 

3UI3 A, B 142 102 177 1 0.17 99.1 0.17 0.39 

4BJJ A, B 106 85 192 1 0.28 96.5 0.29 0.56 

4C3H J, L 69 45 18 0.75 2.26 90 0 7.34 

4DEX A, B 289 45 93 1 0 96.2 0.38 1.03 

4DQ9 A, B 149 141 66 0.99 0.51 98 0.49 1.02 

4GDK A, B 88 267 71 0.99 0 95.8 0.37 1.96 

4GEQ B, C 58 90 6 0.73 2.61 50 1.57 15.37 
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4K12 A, B 64 82 57 0.98 0.5 100 0.45 1.71 

4KGG D, A 163 141 66 0.99 0.57 96.2 0.56 1.16 

4M3L A, D 60 53 59 0.99 0.28 100 0.3 0.67 

4M6H A, B 190 162 66 0.99 0.84 97.1 0.59 2.14 

4M77 H, J 85 72 23 0.92 1.46 100 0.56 3.81 

4N7V A, C 222 33 98 1 0 100 0.2 0.76 

4OZN A, B 116 104 124 1 0.28 98.8 0.29 0.68 

4PQP A, D 102 97 17 0.79 2.89 64.3 1.24 8.39 

4QFQ A, B 101 35 250 1 0 98.4 0 0.29 

4TMA I, J 47 57 42 0.96 0.6 93.5 0.57 1.83 

4U3Q A, B 93 99 17 0.97 0.94 81.8 0.94 2.62 

4UA2 A, H 115 103 27 0.97 0.95 94.1 0.59 2.08 

4V4N T, W 215 135 107 1 0.31 100 0.35 0.85 

4V8P K, M 108 143 65 1 0.28 100 0.28 0.95 

4WZJ L, M 79 79 98 0.99 0.34 98.1 0.32 0.64 

4XGQ A, B 132 30 90 1 0 98.5 0.36 0.77 

4Y2O A, B 211 142 170 1 0.19 98 0.2 0.44 

4YYP A, B 87 32 86 0.99 0.3 100 0.33 0.71 
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5FIJ S, T 167 174 7 0.59 8.68 11.4 0 36.13 

5XTC B, V 124 111 64 0.99 0.17 97.1 0.44 0.61 

5YR0 A, B 48 44 75 0.99 0.3 100 0.29 0.58 

6UMM D, I 81 61 23 0.99 0.11 100 0.48 0.68 

 

Table S3. Average TM-score, RMSD, f_nat, I_RMSD, and L_RMSD) of GD on 32 heterodimers in the 

Std32 dataset using true contacts as input.  

Target Length 

of 

chain 1 

Length 

of 

chain 2 

Chain

s 

Number 

of true 

contacts 

TM-

score 

RMSD f_nat I_RMS

D 

L_RMS

D 

1W85 358 324 A, B 185 1 0.11 100 0.1 0.22 

1EFP 307 246 A, B 317 1 0.07 97.8 0.08 0.18 

1I1Q 512 186 A, B 153 1 0.08 100 0.08 0.18 

2Y69 227 259 B, C 2 0.54 13.88 50 10 11.01 

3MML 285 207 A, B 146 1 0.12 96.3 0.12 0.38 

2VPZ 734 193 A, B 188 1 0.19 94.1 0.24 0.58 

1TYG 65 242 B, A 114 1 0.05 98.7 0.08 0.26 

3RPF 143 72 A, C 5 0.82 3.49 100 1.15 7.44 

1EP3 311 261 A, B 133 1 0.05 100 0.04 0.12 
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2NU9 285 385 A, B 190 1 0.11 98.6 0.11 0.21 

3RRL 227 197 A, B 194 1 0.14 99.3 0.14 0.45 

3IP4 485 482 A, B 183 1 0.12 98.3 0.02 0.24 

1RM6 761 323 A, B 129 1 0.18 100 0.1 0.28 

2D1P 119 95 B, C 60 1 0.12 97.3 0.1 0.33 

4HR7 443 80 A, B 36 0.99 0.78 100 0.35 2.2 

2ONK 240 252 A, C 92 1 0.32 92.6 0 0.9 

3A0R 334 113 A, B 60 1 0.28 100 0.06 0.71 

1B70 265 775 A, B 414 1 0.07 95.7 0.08 0.23 

1QOP 265 390 A, B 157 1 0.15 99 0.15 0.32 

2WDQ 121 105 C, D 77 1 0.12 100 0.12 0.27 

1BXR 1073 379 A, B 258 1 0.07 98.7 0.07 0.17 

3G5O 92 81 A, B 143 1 0.05 97.8 0.05 0.08 

3OAA 138 284 H, G 240 1 0.11 98.3 0.11 0.33 

3PNL 356 211 A, B 148 1 0.2 100 0.19 0.55 

1ZUN 196 382 A, B 251 1 0.14 100 0.15 0.45 

1IXR 135 308 A, C 0 0.69 29.9 0 29 92.99 

1W85 358 324 A, B 185 1 0.11 100 0.1 0.22 
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1EFP 307 246 A, B 317 1 0.07 97.8 0.08 0.18 

1I1Q 512 186 A, B 153 1 0.08 100 0.08 0.18 

2Y69 227 259 B, C 2 0.54 13.88 50 10 11.01 

3MML 285 207 A, B 146 1 0.12 96.3 0.12 0.38 

2VPZ 734 193 A, B 188 1 0.19 94.1 0.24 0.58 

 

 

 

 

Table S4. Detailed results of GD on Set A with predicted inter-chain contacts as input. 

Target 

name 

Lengt

h of 

chain 

A 

Lengt

h of 

chain 

B 

Number 

of 

predicte

d 

intercha

in 

contacts 

Precisio

n of 

predicte

d 

intercha

in 

contacts 

(%) 

Recall 

of 

predicte

d inter-

chain 

contacts 

(%) 

TM

-

scor

e 

RMS

D 

f_na

t 

I_RMS

D 

L_RMS

D 

2XBQ 105 105 26 0.0 0.0 0.5 14.74 0.0 14.544 43.547 

1Z9Z 60 60 32 0.0 0.0 0.55 11.27 0.0 13.191 20.364 

1A19 89 89 26 0.0 0.0 0.5 14.96 0.0 14.706 39.503 

1YH8 266 266 54 0.0 0.0 0.5 18.47 0.0 17.312 58.735 

3N8E 159 159 53 0.0 0.0 0.51 21.39 0.0 22.79 44.298 
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5LLJ 57 57 41 3.12 8.0 0.53 13.20 0.0 9.685 22.742 

2FU4 81 81 29 0.0 0.0 0.5 17.39 0.0 11.888 38.914 

2PL7 67 67 25 1.85 3.33 0.51 10.19 0.0 9.634 28.831 

4E83 31 31 41 5.08 9.68 0.55 9.36 12.5 6.373 13.754 

5UZX 231 231 48 0.0 0.0 0.5 22.67 0.0 24.152 66.521 

1A2D 130 130 53 2.35 5.88 0.67 6.44 10 6.57 11.312 

1RRG 177 177 62 0.0 0.0 0.64 8.71 0.0 7.635 16.947 

3JSL 308 308 29 0.0 0.0 0.5 23.37 0.0 24.824 55.067 

3LO2 30 30 43 37.5 50 0.86 1.1 75 1.048 2.201 

4Q1R 130 130 24 46.34 52.78 0.98 0.62 84.6 0.614 1.78 

1VH9 138 138 82 3.48 10.81 0.5 13.97 16.7 13.865 35.895 

1D8U 165 165 48 8.86 18.42 0.6 7.48 0.0 7.45 17.776 

4GA9 134 134 58 54.69 85.37 0.9 2.06 57.1 2.083 3.787 

1IU8 206 206 38 8.97 14.89 0.61 18.85 0.0 16.81 26.005 

2R74 142 142 61 0.0 0.0 0.5 15.99 0.0 15.796 45.492 

5C39 51 51 90 34.67 52 0.99 0.26 92.3 0.196 0.518 

1F86 115 115 82 32.67 63.46 0.99 0.36 100 0.397 0.724 

2ZWM 120 120 21 1.39 1.92 0.62 11.58 0.0 11.444 18.365 
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1M0U 203 203 94 46.08 85.45 0.99 0.7 100 0.766 1.427 

1PD3 54 54 28 1.22 1.82 0.94 0.94 20.8 1.2 1.98 

2D4G 165 165 98 2.68 7.27 0.6 19.53 0.0 12.094 28.873 

3F08 135 135 113 0.58 1.67 0.53 16.71 0.0 17.982 32.181 

2CC3 144 144 28 2.3 3.28 0.62 9.01 0.0 7.978 15.46 

1GNW 210 210 34 28 33.87 0.99 0.54 60.9 0.562 1.046 

2CCY 127 127 53 11.65 19.35 0.64 17.74 0.0 19.329 25.58 

5F5X 333 333 30 13.41 17.46 0.7 5.38 0.0 5.183 11.139 

5JYB 344 344 37 14.77 20.31 0.97 1.61 11.8 1.668 4.962 

1EOG 208 208 99 51.85 86.15 0.99 0.29 96.2 0.311 0.629 

1MK4 157 157 24 0.0 0.0 0.6 12.29 0.0 12.115 20.927 

1HNB 217 217 58 40.45 53.73 0.99 0.61 81 0.526 1.348 

2CVI 83 83 40 5.94 8.96 0.62 6.19 0.0 6.193 11.909 

1V8F 276 276 35 17.05 22.06 0.5 26.92 0.0 21.932 56.044 

1YQ1 198 198 51 36.78 47.06 1 0.11 95.7 0.118 0.214 

3BBH 204 204 22 8.43 10.29 0.92 2.11 29.4 2.423 4.107 

3RHU 141 141 49 0.0 0.0 0.5 21.20 0.0 
22.02 57.47 
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Table S5. Detailed results of GD on Set B with predicted inter-chain contacts as input. 

Target 

name 

Lengt

h of 

chain 

A 

Lengt

h of 

chain 

B 

Number 

of 

predicte

d 

intercha

in 

contacts 

Precisio

n of 

predicte

d 

intercha

in 

contacts 

(%) 

Recall 

of 

predicte

d inter-

chain 

contacts 

(%) 

TM-

score 

RMS

D 

f_nat I_RMS

D 

L_RMS

D 

1LBK 208 208 94 52.34 81.16 0.99 0.26 96.6 
0.27 0.56 

2YYB 242 242 31 3.06 4.29 0.5 25.28 0.0 
23.48 53.45 

1T92 108 108 29 3.06 4.17 0.64 5.97 0.0 
5.58 14.56 

2QY6 244 244 28 0.0 0.0 0.5 25.84 0.0 
21.64 72.11 

1ML6 219 219 72 51.04 67.12 1 0.1 96.6 
0.12 0.22 

5AIF 124 124 22 6.52 7.89 0.94 1.36 24 
1.38 2.80 

2YR1 257 257 26 8.42 10.39 0.96 1.51 22.2 
1.59 4.12 

1B48 221 221 68 55.32 66.67 0.99 0.24 100 
0.26 0.5 

3F1V 366 366 39 27.17 32.05 0.99 0.77 56 
0.76 2.47 

3KXO 198 198 86 47.75 67.95 0.99 0.28 100 
0.29 0.53 

1ECS 120 120 94 25.38 44.3 0.97 0.91 71.4 
0.80 1.90 

3EE2 198 198 90 46.69 68.35 0.99 0.33 92 
0.37 0.74 

3WVA 163 163 24 1.92 2.44 0.92 1.98 13.6 
1.99 4.58 

4Q97 108 108 39 3.42 4.88 0.64 19.77 0.0 
6.71 25.11 
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4DBH 269 269 26 7.92 9.64 0.75 5.51 0.0 
6.13 12.03 

2FHE 216 216 84 47.46 62.22 0.99 0.51 93.8 
0.58 1.1 

1DUG 234 234 35 35.11 35.87 0.98 0.83 61.3 
0.83 1.93 

3SW1 134 134 57 0.0 0.0 0.57 12.93 0.0 
13.37 21.55 

3MMH 167 166 26 2.5 3.09 0.57 13.97 0.0 13.47 22.6 

4RAZ 134 134 52 26.27 31.96 0.59 9.55 5 
7.02 21.66 

3GW7 215 215 23 0.0 0.0 0.5 24.05 0.0 
24.7 55.64 

1VRW 289 289 25 2.4 2.91 0.58 12.4 0.0 
12.98 31.98 

4EC7 108 108 22 0.81 0.97 0.54 12.89 2.9 
12.4 23.7 

2C2X 280 280 40 6.62 8.57 0.97 1.22 22.2 
1.34 2.41 

1VJ2 114 114 27 3.85 4.63 0.98 0.65 15.2 
0.67 1.32 

4EP4 166 166 27 5.47 6.48 0.56 15.9 0.0 
14.81 29.29 

1Z3A 156 156 23 7.32 8.26 0.92 1.84 11.4 
1.91 3.7 

4ZBD 219 219 84 20.61 24.55 0.98 1.06 42.6 
0.76 2.2 

1PM7 199 199 105 30.95 45.22 0.98 0.91 55.9 
0.78 1.87 

2JL4 212 212 71 30.14 36.97 0.97 1.1 65.7 
1.17 2.44 

3NYG 93 93 99 40.4 51.26 0.99 0.51 69.8 
0.53 1.03 

2HIQ 96 96 29 2 2.42 0.58 16.31 0 
11.67 22.65 
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1Q7G 358 358 43 7.64 9.52 0.97 1.51 12.5 
1.61 2.97 

1ITU 369 369 27 5.48 6.3 0.74 6.33 1.9 
6.15 14.41 

3ZJL 191 191 28 6.16 7.09 0.84 3.28 2 
3.05 7.66 

1DC4 323 323 38 5.7 6.98 0.51 22.53 0.0 
20.69 56.98 

1SW7 245 245 154 42.21 65.12 0.99 0.31 88.4 
0.31 0.68 

 

 

 

 

Table S6. Detailed results of GD on Set C with predicted inter-chain contacts as input. 

Target 

name 

Lengt

h of 

chain 

A 

Lengt

h of 

chain 

B 

Numbe

r of 

predict

ed 

interch

ain 

contact

s 

Precisi

on of 

predict

ed 

interch

ain 

contact

s (%) 

Recall 

of 

predict

ed 

interch

ain 

contact

s (%) 

TM-

score 

RMSD f_nat I_RM

SD 

L_RM

SD 

3KRS 249 249 88 37.74 45.8 0.975 1.287 56 
1.325 2.726 

1WYI 248 248 141 46.28 64.93 1 0.159 88.9 
0.166 0.375 

3OGQ 112 112 21 5.37 5.88 0.525 14.553 0 
12.173 31.829 

1C6X 99 99 151 40.24 49.28 0.994 0.403 84.6 
0.4 0.915 

2BTM 250 250 121 38.5 52.17 0.998 0.392 67.3 
0.433 0.825 

4LUL 189 189 60 22.84 26.62 0.981 0.975 37.8 
1.026 2.47 

2YPI 247 247 107 40.34 50.71 0.995 0.569 65.9 
0.595 1.174 
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3MWS 99 99 140 38.95 47.86 0.994 0.392 76.8 
0.375 1.021 

2FDE 99 99 157 38.73 47.52 0.993 0.435 77.8 
0.418 0.896 

3EM6 99 99 149 39.31 47.89 0.995 0.39 80.4 
0.376 0.913 

3LZU 99 99 157 40.46 48.61 0.991 0.492 84.5 
0.466 0.94 

3S45 99 99 147 45.51 52.78 0.991 0.501 84 
0.439 1.014 

4M8Y 100 100 142 39.43 47.92 0.991 0.492 87.5 
0.439 1.056 

2AOG 99 99 150 41.04 48.97 0.993 0.44 77.4 
0.392 0.956 

4M8X 99 99 161 40.8 48.63 0.993 0.446 86.2 
0.391 0.974 

3U7S 99 99 166 37.43 45.58 0.991 0.504 82.7 
0.426 1.112 

4YMZ 250 250 104 40 48.65 0.988 0.876 78.9 
0.881 2.044 

2FDD 99 99 160 40.11 47.65 0.99 0.538 81.8 
0.492 1.27 

4COB 206 206 38 5.98 7.01 0.602 16.347 0 
11.312 24.4 

3SK2 132 132 44 16.2 17.68 0.587 18.453 0 
11.871 27.072 

3DSB 146 146 34 3.11 3.64 0.557 11.259 1.9 
11.62 25.167 

1KPB 113 113 48 16.22 17.96 0.728 4.262 1.6 
4.578 7.736 

5CPG 155 155 97 2.33 3.59 0.616 21.865 0 
15.814 29.212 

2E8Q 265 265 81 21.74 26.32 0.959 1.705 32.8 
0.729 3.307 

1A05 357 357 24 10.73 11.05 0.59 11.663 4.3 
9.941 25.136 
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2E8S 265 265 77 21.84 25.86 0.961 1.655 34.4 
0.77 3.184 

1LQO 134 134 60 15.11 17.09 0.621 7.869 0 
7.883 15.129 

1XSE 274 274 70 19.21 21.67 0.985 1.02 29.3 
1.06 2.13 

1EQU 284 284 21 7.58 7.77 0.963 1.639 9.1 
1.603 3.361 

3I3G 143 143 69 18.03 20.39 0.54 7.959 0 
8.721 19.465 

1V5Z 217 217 23 7.44 7.69 0.579 14.496 0 
15.796 28.149 

3X22 217 217 52 9.7 11.06 0.59 12.986 3 
13.98 25.484 

3TY2 245 245 57 3.41 4.17 0.584 13.647 0 
11.13 26.812 

3BM4 197 197 60 3.53 4.29 0.591 19.674 0 
7.361 28.718 

4R5M 369 369 29 5.22 5.53 0.58 11.061 4.5 
8.494 25.924 

1MB4 369 369 29 5.07 5.36 0.659 10.764 2.3 
6.349 18.931 

1QIN 176 176 46 12.32 12.82 0.54 11.6 0 
9.482 23.708 

4TTB 189 189 33 6.46 6.79 0.591 14.135 0.9 
10.907 25.925 
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Table S7. The RMSD, TM-score, f_nat, I_RMSD and L_RMSD of DRLComplex for individual targets in 

the CASP-CAPRI dataset using true contacts and true tertiary structure as inputs. From the table, it can be 

seen that the RMSDs range from 0.12 to 3.57, with a mean of 0.375 and median of 0.235.The TM-Score, 

has values ranging from  0.768 to 0.999, with an average of 0.989. For the f_nat metric, values range from 

0.96 to 1 with an average of 0.99. I_RMSD has a minimum value of 0.125, a maximum value of 2.979, an 

average value of 0.326 and a median value of 0.241 and lastly, the L_RMSD has values ranging from 0.261 

to 7.106 with an average of 0.8 and median score of 0.533. 

 

Target RMSD TM-score F_nat (%) I_RMSD L_RMSD 

T0759 0.22 0.9980 100.0 0.224 0.527 

T0764 0.18 0.9995 100.0 0.193 0.391 

T0770 0.26 0.9992 98.4 0.262 0.562 

T0776 0.19 0.9992 100.0 0.200 0.475 

T0780 0.15 0.9995 97.8 0.157    0.324 

T0792 0.56 0.9851 97.7 0.434    1.393 

T0801 0.22 0.9993 99.3 0.256    0.535 

T0805 0.16 0.9994 97.4 0.167    0.338 

T0811 0.23 0.9991 98.5 0.230    0.516 

T0813 0.12 0.9998 98.6  0.125    0.261 

T0815 3.57 0.7680 100.0 2.979    7.106 

T0819 0.20 0.9994 99.2 0.209    0.424 

T0825 0.37 0.9967 100.0 0.326    0.922 

T0843 0.24 0.9993 99.4 0.252    0.532 
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T0847 0.21 0.9989 100.0 0.218    0.468 

T0849 0.25 0.9988 99.2 0.264    0.537 

T0851 0.22 0.9995 99.0 0.222    0.450 

T0852 0.26 0.9991 98.6 0.279    0.636 

T0893 0.38 0.9852 99.0 0.278    0.890 

T0965 0.38 0.9980 100.0 0.350    0.804 

T0966 0.24 0.9994 100.0 0.272    0.633 

T0976 0.23 0.9991 100.0 0.209    0.492 

T0984 0.29 0.9993 99.1  0.227    0.663 

T0999D1 0.38 0.9983 98.1 0.370    0.863 

T0999D4 0.28 0.9986 100.0 0.265    0.749 

T1003 0.18 0.9996 98.8 0.189    0.393 

T1006 0.34 0.9941 96.8 0.347    0.742 

T1032 0.20 0.9990 98.2 0.208   0.433 

Mean 0.3753 0.9895 99.05 0.2197 0.8235 

 

 

Table S8. Detailed results (RMSD, TM-score, f_nat, I_RMSD, L_RMSD) of reinforcement learning for 

CAPS-CAPRI dataset using predicted interchain contacts and true tertiary structure. The TM-score values 

range from 0.50 to 0.99, with an average value of 0.73. 

 

Target RMSD TM-score F_nat (%) I_RMSD L_RMSD 

T0976 18.69 0.54 0 17.8 36 

T0776 4.65 0.77 7.6 5.706 13.31 

T0813 0.98 0.99 90.1 0.925 2.366 

T0852 29.34 0.57 0 21.71 48.98 

T0966 27.26 0.53 0 12.55 62.44 
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T1003 0.89 0.99 91.3 0.833 1.719 

T0819 0.62 1 84.3 0.631 1.211 

T0965 16.28 0.59 4.3 13.86 28.57 

T0792 14.57 0.5 0 14.93 40.23 

T0851 1.3 0.98 80.2 0.858 1.819 

T0815 10.52 0.51 0 11.9 32.47 

T0770 24.99 0.54 0 23.16 50.39 

T1032 18.13 0.54 0.9 17.07 29.24 

T0999D1 14.42 0.64 0 12.66 27.34 

T0805 1.07 0.98 78.4 1.08 2.326 

T0780 22.7 0.55 0 21.52 55.84 

T1006 16.05 0.5 0 19.34 50.87 

T0843 0.92 0.99 91.4 0.942 1.466 

T0893 0.85 0.98 94.8 0.92 1.94 

T0811 1.08 0.98 86.3 0.901 3.675 

T0984 39.94 0.56 1.8 31.43 72.91 

T0849 1.07 0.98 71.2 1.086 3.437 

T0764 13.7 0.56 3.2 12.97 33.29 
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T0759 14.09 0.51 0 12.38 38.39 

T0999D4 2.48 0.91 71.1 1.661 10.3 

T0825 17.39 0.57 7.8 14.91 32.18 

T0847 17.08 0.6 0 16.69 55.77 

T0801 1.67 0.97 65.24 1.72 3.98 

Mean 11.8832 0.73 33.2121 10.4336 26.5163 

 

 

Table S9. Detailed results (RMSD, TM-score, f_nat, I_RMSD, L_RMSD and TM-score of monomer) of 

reinforcement learning for CAPS-CAPRI dataset using predicted interchain contacts and predicted tertiary 

structures. The TM-score values range from 0.36 to 0.97, with an average value of 0.64. The average TM-

score of the monomers predicted by Alphafold2 is 0.95. 

 

Target TM-score RMSD F_nat (%) I_RMSD L_RMSD TM-score 

of the 

monomer 

T1003 0.92 0.58 78 0.51 0.8 0.9964 

T0984 0.48 33.57 2 27.17 57.5 0.9805 

T0792 0.49 12.7 7 12.16 30.47 0.9585 

T0805 0.94 1.83 75 1.85 2.39 0.9675 

T0851 0.93 2.03 73 1.68 3.01 0.9687 

T0999D1 0.51 16.52 2 13.24 34.22 0.9708 

T0815 0.49 14.7 1 11.29 47.88 0.9789 
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T0759 0.4 15.62 7 12.42 35.6 0.7475 

T0893 0.36 20.09 32 15.39 54.24 0.7178 

T0825 0.49 18.23 0 15.64 30.46 0.9655 

T0819 0.88 1.94 47 2.28 2.22 0.9705 

T1006 0.47 11.39 0 11.93 33.96 0.9859 

T0966 0.48 32.4 9 30.28 76.42 0.9529 

T0770 0.53 11.7 8 13.61 28.94 0.9777 

T0843 0.95 1.04 63 0.9 1.72 0.988 

T0999D4 0.59 7.03 0 8.09 17.99 0.9767 

T0780 0.46 22.17 4 21.1 56.72 0.9599 

T0976 0.52 18.16 3 16.99 34.17 0.9777 

T0811 0.96 0.88 77 0.87 2.24 0.993 

T0852 0.45 33.26 6 21.91 52.15 0.9334 

T1032 0.6 6.25 45 5.6 8.49 0.7 

T0776 0.75 4.8 26 3.57 18.46 0.9765 

T0801 0.88 2.12 57 2.3 4.11 0.9648 

T0813 0.97 1.14 69 1.34 1.2 0.9818 

T0764 0.55 15.14 1 16.74 27.8 0.9882 
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T0849 0.88 1.38 64 1.14 1.79 0.9727 

T0965 0.57 15.64 1 13.24 27.57 0.9851 

T0847 0.52 18.81 2 17.41 50.72 0.9901 

Mean 0.64 12.18 27.1 10.74 26.54 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S10.  Detailed results (RMSD, TM-score, F_nat, I_RMSD and L_RMSD) of DRLComplex on 

Std_32 with true interchain contacts and true tertiary structures as inputs. The average TM-score is 0.987 

with a min of 0.97 and a max of 0.99. 

 

Target RMSD TM-score F_nat (%) I_RMSD L_RMSD 

3RRLA_3RRLB 0.93 0.98 98.2 0.902 2.441 

2NU9A_2NU9B 0.95 0.99 96.1 0.995 1.678 

1EP3A_1EP3B 0.84 0.99 99.3 1.044 1.541 

2Y69B_2Y69C 0.74 0.99 84.1 0.756 2.28 

3RPFA_3RPFC 0.93 0.97 50 0.864 2.475 

1TYGB_1TYGA 0.81 0.99 99.2 0.927 1.986 
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3MMLA_3MMLB 0.96 0.99 94.8 0.932 2.063 

2VPZA_2VPZB 0.91 0.99 93.8 1.172 2.305 

2Y69A_2Y69C 0.86 0.99 82.6 0.916 2.123 

1I1QA_1I1QB 0.87 0.99 98.8 0.906 2.069 

2Y69A_2Y69B 0.75 0.99 86.3 0.842 1.96 

1EFPA_1EFPB 0.97 0.99 97.5 1.04 3.152 

1W85A_1W85B 0.77 0.99 99.3 0.76 2.263 

1ZUNA_1ZUNB 0.93 0.99 98.11 0.954 1.761 

3PNLA_3PNLB 0.87 0.99 99.4 0.782 2.077 

3OAAH_3OAAG 0.9 0.99 93.8 1.008 1.851 

3G5OA_3G5OB 0.86 0.97 90.2 0.839 1.685 

2WDQC_2WDQD 0.94 0.97 97.1 0.95 1.853 

1BXRA_1BXRB 0.96 0.99 97.6 1.14 3.119 

1RM6A_1RM6B 0.79 0.99 96.5 0.604 1.892 

1QOPA_1QOPB 0.78 0.99 97.2 0.761 1.625 

1B70A_1B70B 0.96 0.99 92.4 1.123 2.165 

3A0RA_3A0RB 0.8 0.99 98.1 0.699 2.017 

2ONKA_2ONKC 0.9 0.99 96.4 0.535 1.932 
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2D1PB_2D1PC 0.92 0.97 83.7 0.935 2.325 

4HR7A_4HR7B 0.93 0.99 82.6 1.03 2.472 

1RM6A_1RM6C 0.95 0.99 74.5 1.323 2.434 

3IP4B_3IP4C 0.93 0.99 79.7 0.946 2.628 

3IP4A_3IP4C 0.97 0.99 74.3 1.158 2.77 

1RM6B_1RM6C 0.81 0.99 69.3 0.9 1.696 

Mean 0.88 0.987 90.03 0.92 2.15 

 

 

Table S11. The table shows the RMSD, TM-Score, f_nat, I_RMSD, and L_RMSD of 31 hetero dimers  

in Std_32 for  predicted contacts. The true monomers are used in this experiment. Also, targets which do 

not have any interchain contacts are discarded.  

 

Target TM-score RMSD F_nat(%) I_RMSD L_RMSD 

1EFPA_1EFPB 0.87 3.19 15 3.24 7.82 

1EP3A_1EP3B 0.67 8.08 11 6.45 17.9 

1I1QA_1I1QB 0.76 19.29 5 21.2 55.52 

1QOPA_1QOPB 0.62 20.38 5 23.72 51.28 

1W85A_1W85B 1 0.73 80 0.48 2.02 

1ZUNA_1ZUNB 0.65 15.48 8 16.54 30.22 

2D1PB_2D1PC 0.49 14.89 4 14.17 34.35 
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2NU9A_2NU9B 0.89 2.63 48 2.23 5.17 

2ONKA_2ONKC 0.52 27.47 2 25.26 65.44 

2VPZA_2VPZB 0.84 34.39 2 32.21 92.48 

2WDQC_2WDQD 1 0.65 92 0.58 1.12 

2Y69A_2Y69B 0.68 26.1 8 27.41 65.18 

2Y69A_2Y69C 0.61 25.66 6 25.21 59.85 

2Y69B_2Y69C 0.53 20.94 10 16.56 65.58 

3A0RA_3A0RB 0.82 17.56 7 20.38 43.67 

3G5OA_3G5OB 0.66 8.85 4 9.41 13.83 

3IP4A_3IP4B 0.5 25.71 8 20.64 57.94 

3IP4A_3IP4C 0.87 12.22 7 14.91 31.5 

3IP4B_3IP4C 1 0.67 89 0.44 2.16 

3MMLA_3MMLB 0.9 2.64 27 2.36 5.62 

3OAAH_3OAAG 0.93 3.79 35 4.22 7.93 

3PNLA_3PNLB 0.7 6.95 6 6.29 17.11 

3RPFA_3RPFC 0.73 17.47 7 9.07 53.93 

3RRLA_3RRLB 0.62 12.91 5 12.63 25.17 

4HR7A_4HR7B 0.95 8.35 12 9.6 23.34 
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1B70A_1B70B 0.82 16.77 2 20.58 34.72 

1BXRA_1BXRB 0.81 20.79 6 20.82 49.85 

1RM6A_1RM6B 0.74 26.13 6 25.87 59.09 

1RM6A_1RM6C 0.74 17.4 9 18.68 48.44 

1RM6B_1RM6C 0.65 13.13 4 12.86 29.88 

1TYGB_1TYGA 0.91 0.53 79 0.34 0.87 

Mean 0.7574 13.9274 19.6451 13.689 34.1606 

 

 

Table S12.  Detailed results (RMSD, TM-score, F_nat, I_RMSD, L_RMSD, TM-score of ligand, and 

TM-score of receptor) of DRLComplex on Std_32 with predicted interchain contacts and predicted 

tertiary structures as inputs. The average TM-score is 0.74 with a min of 0.5 and a max of 1. 

 

Target RMSD TM-

score 

F_nat I_RMSD L_RMSD TM-

score 

of 

Ligand 

TM-

score of 

Receptor 

1EFPA_1EFPB 2.83 0.89 25 3.21 6.08 0.98 0.96 

1EP3A_1EP3B 5.07 0.86 16 4.48 11.12 0.97 0.98 

1I1QA_1I1QB 20.79 0.67 5 21.52 62.06 0.97 0.97 

1QOPA_1QOPB 20.22 0.64 7 23.35 50.21 0.97 0.99 

1W85A_1W85B 4.64 0.82 11 3.33 5.88 0.99 0.99 

1ZUNA_1ZUNB 16.22 0.67 3 17.45 27.81 0.93 0.95 
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2D1PB_2D1PC 10.61 0.61 0 10.77 28.47 0.99 0.99 

2NU9A_2NU9B 1.92 1 52 1.83 3.41 0.99 0.97 

2VPZA_2VPZB 32.16 0.81 1 30.17 89.68 0.98 0.94 

2WDQC_2WDQ

D 6.03 0.75 1 6.07 10.6 0.96 0.98 

2Y69A_2Y69B 24.2 0.77 9 23.51 58.93 0.99 0.98 

2Y69A_2Y69C 19.97 0.79 1 21.49 40.44 0.99 0.99 

2Y69B_2Y69C 18.91 0.56 3 7.11 58 0.98 0.99 

3A0RA_3A0RB 21.38 0.6 0 20.33 53.29 0.77 0.90 

3G5OA_3G5OB 14.11 0.54 3 14.14 26.31 0.90 0.96 

3IP4A_3IP4B 20.31 0.51 4 14.58 81.33 0.99 0.88 

3IP4A_3IP4C 11.57 0.82 1 14.83 29.61 0.99 0.92 

3IP4B_3IP4C 5.01 0.95 34 2.18 6.99 0.88 0.92 

3MMLA_3MML

B 3.83 0.81 40 3.2 9.24 0.99 0.97 

3OAAH_3OAA

G 14.53 0.81 26 17.55 26.62 0.59 0.97 

3PNLA_3PNLB 7.07 0.69 1 6.59 18.67 0.98 0.99 

3RPFA_3RPFC 16.36 0.64 10 7.73 54.69 0.97 0.96 

3RRLA_3RRLB 7.66 0.73 9 8.03 12.29 0.99 0.93 

4HR7A_4HR7B 19.39 0.73 6 20.02 57.84 0.90 0.96 
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1B70A_1B70B 17.59 0.83 2 21.32 36.1 0.97 0.95 

1BXRA_1BXRB 20.93 0.79 2 20.99 50.06 0.99 0.99 

1RM6A_1RM6B 26.29 0.6 4 25.94 59.11 0.99 0.99 

1RM6A_1RM6C 17.74 0.85 0 18.84 49.08 0.99 0.98 

1RM6B_1RM6C 13.9 0.63 5 12.95 29.93 0.99 0.98 

1TYGB_1TYGA 0.4 0.97 81 0.41 0.82 0.90 0.96 

2ONKA_2ONKC 28.65 0.5 4 25.68 66.83 0.97 0.93 

Mean 14.525 

0.736

7 11.806 13.858 36.177 0.950 0.962 

 

 

Supplementary Video 

To elucidate how reinforcement learning works, we added a video showing the reconstruction of the target 

1A2D using true interchain contacts to guide them. 
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