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In view of some issues raised recently about the electronic structure and the nature of electronic con-
duction in simple cubic CsSnBr;, we have carried out a self-consistent density-functional calculation of
the electronic structure of this compound using the linear-muffin-tin-orbital (LMTO) method. While
previous (empirical tight-binding and pseudopotential) calculations have found this compound to be ei-
ther a semimetal or a zero-gap semiconductor, the present charge self-consistent calculation, based on
the local-density approximation (LDA) within the density-functional theory, shows that it is a narrow
gap semiconductor. Contrary to the previous suggestions, we show that the simple cubic symmetry does
not prohibit the appearance of an energy gap. We argue that this LDA gap, obtained with the scalar-
relativistic LMTO-ASA (atomic-sphere approximation) method, should decrease due to spin-orbit cou-
pling and an estimate of this is provided. It is also shown that a transition from simple cubic to tetrago-
nal phase should lower the gap, but not significantly. The results of the present calculation are con-
sistent with the experimental data available on this compound.

I. INTRODUCTION

The electronic structure of the simple cubic phase of
CsSnBr; was discussed recently in this journal.! The au-
thors used an empirical pseudopotential method to calcu-
late the electronic structure and found it to be a zero-gap
semiconductor. The calculated band structure showed
significant difference from an earlier empirical tight-
binding calculation,? which had found this compound to
be a semimetal. In view of the conflicting results ob-
tained in the two calculations, neither of which is self-
consistent, we have performed a scalar-relativistic linear-
muffin-tin-orbital (LMTO) (Refs. 3 and 4) calculation us-
ing the atomic-sphere approximation (ASA) and com-
bined corrections. This calculation, based on the local-
density approximation (LDA) (Ref. 5) within the
density-functional theory,® is charge self-consistent, un-
like the previous calculations. Thus the accuracy of the
present calculation is only limited by LDA. The band
structure we obtain is that of a narrow-gap semiconduc-
tor. It is different from the band structure of both the
previous calculations, although it is qualitatively closer to
the pseudopotential result of Ref. 1. Indeed the possibili-
ty of this compound being a narrow-gap semiconductor
was not ruled out in Ref. 1. We find that the cubic sym-
metry of the sompound does not prohibit the appearance
of an energy gap. Since LDA is known to underestimate

47

the energy gap in semiconductors, the actual theoretical
gap in perfectly simple cubic CsSnBr; may be larger than
obtained in the present scalar-relativistic LMTO calcula-
tion. However, both spin-orbit coupling and a distortion
from a cubic to a tetragonal phase are expected to lower
the gap. We present estimates of the gap reduction due
to such mechanisms.

II. ELECTRONIC STRUCTURE

Above 292 K CsSnBr; exists in a simple cubic
(perovskite) phase with a cubic lattice constant of 5.804
A. Below 292 K the structure is believed to be tetragonal
with a very small distortion in the z direction.” In calcu-
lating the electronic structure of the cubic phase using
the LMTO method in the ASA (Refs. 3 and 4) we have
used both atomic and empty spheres in packing the cubic
unit cell. Without the use of empty interstitial spheres
the overlap of the space-filling atomic spheres in the
perovskite structure would be too large to yield accurate
results within the ASA. In addition to the atomic
spheres, we used 12 empty spheres per cubic unit cell to
describe accurately the charge in the interstitial region.
Empty sphere positions were chosen keeping the symme-
try of the system intact. The positions and sizes of the
spheres used are shown in Table I. 56 k points in the ir-
reducible Brillouin zone were used to obtain self-
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TABLE 1. Positions and sizes of the spheres in the LMTO
calculation for simple cubic CsSnBr; with @ =5.804 A. Site in-
dices correspond to the notation in Ref. 12 for the space-group
Pm3m (No. 221). The letter E denotes empty spheres.

Sphere type No./unit cell Site index Sphere radius (A)
Cs 1 a 2.595
Sn 1 b 1.7
Br 3 c 1.6
E 12 Jj (p=0.15) 1.0

consistent charge density, while the one-electron density
of states was calculated with 155 k points. To reduce er-
rors due to the use of ASA, combined corrections>* were
included. The scalar-relativistic calculation employed an
s,p,d basis, but the p orbitals on Cs were downfolded®
and only s and p orbitals were considered for the empty
spheres.

The band structure obtained is shown in Fig. 1. For
the sake of comparison with previous calculations we
have reproduced in Figs. 2 and 3 the band structures of
Refs. 1 and 2, respectively. Both the LMTO band struc-
ture of Fig. 1 and the pseudopotential band structure of
Fig. 2 (Ref. 1) have basic qualitative differences with that
of the extended-Hiickel calculation of Fig. 3 (Ref. 2). The
levels M, and M. are degenerate in Fig. 3, but are
separated by approximately 1.9 eV both in Figs. 1 and 2.
The differences are pronounced at and near the Fermi
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FIG. 1. LMTO band structure of simple cubic (lattice con-
stant=5.804 A) CsSnBr;. Symmetries of the wave functions
considered around the Sn atom are labeled with BSW (Ref. 8)
notation. Dominant atomic and orbital character of various
bands is also shown.
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FIG. 2. Band structure of simple cubic CsSnBr; via the
empirical pseudopotential method, reproduced from Ref. 1.

level, indicating differences in the nature of electrical
conduction. The main difference between the band struc-
ture of our LMTO calculation (Fig. 1) and the empirical
pseudopotential band structure of Ref. 1 (Fig. 2) is the
appearance of an energy gap at the R point in the former.
The pseudopotential calculation shows no such gap.

In Fig. 1 we have labeled the symmetry of the wave
functions in the Bouckaert-Smoluchowski-Wigner (BSW)
(Ref. 8) notation, and indicated dominant atomic and or-
bital character of the wave functions in the various re-
gions of the energy bands. The point-group symmetry of
the cubic CsSnBrj is O,,. Since the point symmetry is the
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FIG. 3. Band structure of simple cubic CsSnBr; via the
extended-Hiickel method calculation (Ref. 2), reproduced from
Ref. 1.
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same about the Cs or the Sn atom, the electron states
may be classified according to their symmetry about ei-
ther of the two atoms.” The two symmetry representa-
tions are the same if the Bloch momentum k lies in the
interior of the Brillouin zone. They are different if the
Bloch momentum lies on the surface of the Brillouin
zone. We have chosen the Sn atom to classify the sym-
metries of the electron states as was done in earlier works
(Refs. 1 and 2). If symmetries about the Cs atom is
desired, they can be obtained following Ref. 9.

In Ref. 2 [empirical linear combination of atomic orbit-
als (LCAO) calculation] a semimetallic band structure
was found with the valence and conduction bands coin-
ciding along the symmetry direction M — R (Fig. 3). The
empirical pseudopotential calculation of Ref. 1 produced
the band structure of a zero-gap semiconductor with the
valence and conduction bands touching at the triply de-
generate R 5 level (Fig. 2). The threefold degeneracy of
the R 5 level is fixed by the cubic symmetry. A feature
common to both the pseudopotential and the LCAO cal-
culations was that one component of the triply degen-
erate R 5 states formed the highest branch of the valence
bands while the other two components formed the lower
part of the conduction bands. Based on this behavior, it
was argued in Ref. 2 that symmetry requirement ensured
some form of metallic behavior for CsSnBr;. However, a
more detailed examination of the symmetry characters
shows that this need not be the case. Lying close by in
energy near the R 5 states is the nondegenerate R state.
The R, state has similar symmetry characteristics as one
of the partners of the R 5 states. For example, according
to the compatibility relations, R ;s is compatible with
T,+Ts along the T(R — M) direction, while R, is com-
patible with T';. Similarly, along the A direction, R 5 is
compatible with A;+ A;, while R is compatible with A;.
In our calculation the upper branch with 7, — A, symme-
try merges to form one of the partners of the triply de-
generate R s states at the R point. The lower T, —A,;
branch splits off from the R ;5 to form the nondegenerate
R, state, producing, in the process, a semiconductor. It
is clear that with the arrangement of the bands as shown
in Fig. 1, an energy gap at the R point is not in conflict
with the simple cubic symmetry of the system.

One reason (the main reason is LDA) for the qualita-
tive difference between the band structure of Fig. 3 and
that of Figs. 1 and 2 is the complete omission of Cs atom-
ic orbitals from the basis used in the empirical tight-
binding calculation of Ref. 2. As shown in Fig. 1 Cs 5d
and 6s orbitals strongly influence the energy levels in the
upper conduction-band region. However, their presence
in the basis set affects the bands near the Fermi level as
well (see Table II). The interaction between Sn 5p and Br
4p orbitals seems to be large enough in our calculation to
open up a small gap at the symmetry point R. The ab-
sence of such a gap in the pseudopotential calculation
may possibly be linked to inadequate treatment of Sn
pseudopotential. As shown in Fig. 2 of Ref. 1, the pseu-
dopotential form factor for Sn is much deeper than that
of Cs or Br, and one possible source of inaccuracy might
be the insufficient number of plane waves used for Sn.
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TABLE II. Atomic and orbital character of the wave func-
tions with R, and R s symmetries at the gap region. The zero
of energy is chosen at the R, level. The letter E denotes empty
spheres.

Energy Br Sn Cs E
Symmetry  (ev) s P d s p d s d total
R, 00 0* 0530° 0450* 0 0*0* 0.02
Rs 0.58 0.08 0* 0.17 0* 0.67 0* 0* 0.07 0.01

?Forbidden by symmetry.

Table II clearly shows that both Sn s and Sn p characters
are dominant in the wave functions of R 5 and R |, which
determine the states in the gap region. An accurate treat-
ment of Sn pseudopotential is therefore necessary for a
proper description of states near the gap. Since details of
the pseudopotential calculation are not available to us,
this comment is only speculative. Apart from the gap
there are only minor differences between our results (Fig.
1) and the (Fig. 2) pseudopotential results. The band
structure of Fig. 2 shows absence of any dispersion be-
tween the points R 5 and M5, whereas Fig. 1 shows some
dispersion between these points. The band related to the
Sn 5s orbital also shows difference at the I point.

The energy gap at the R point in our calculation is 0.58
eV. A better treatment of the exchange and correlation
effects than provided by the LDA is expected to yield a
larger gap. However, spin-orbit coupling should lower
the value of the gap. To estimate this change we consider
the atomic character of the wave functions near the Fer-
mi level. The dominant atomic character of the R
wave function with energy just above the Fermi level is
Sn 5p, as shown in detail in Table II. We estimate the
effect of spin-orbit coupling by assuming complete Sn p
character for R 5 and neglecting contributions from oth-
er atomic orbitals. The spin-orbit coupling interaction
should split the triply degenerate R ;s level into nonde-
generate R p and doubly degenerate R - levels. The en-

ergy difference between these two levels should be close
to the difference in the EZ and EJ levels for the Sn 5p or-
bital in the free atom. According to Herman and Skill-
man'® the values of of the E2 and E7 levels in the free
atom are —0.454 and —0.489 Ry, respectively. Thus,
the difference between the R, and R _ levels should be

0.48 eV. In Fig. 4 we show schematically the changes in
the band structure at the R point due to spin-orbit cou-
pling. In the LCAO calculation of Ref. 2, there was no
gap at the R point in the absence of the spin-orbit cou-
pling, and the authors had concluded that if the splitting
of the R, and R levels were large enough to prevent

overlap of the valence and conduction bands anywhere in
the Brillouin zone, an energy gap would arise due to
spin-orbit effects. What we have shown here is exactly
the opposite, i.e., the spin-orbit coupling reduces the gap
as opposed to opening the gap. As shown in Fig. 4 the
energy gap should be reduced as a result of spin-orbit
coupling to at least 0.26 eV. It is mentioned in Ref. 1
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FIG. 4. Schematic change in the bands at the R point (in the
gap region) due to spin-orbit coupling. The splitting of the lev-
els due to spin-orbit coupling is shown on the right (not to
scale).

that in the range 160-303 K CsSnBr; exhibits the behav-
ior of a semiconductor with a small band gap of about
0.34 eV. This is in excellent agreement with the value
0.26 eV, if we consider that the LDA gap is usually
smaller than the actual gap. Note also that our simple es-
timate of the spin-orbit effect may vary somewhat de-
pending on how we estimate it. For example, considering
the fact that only 67% of the R s wave function has Sn
5p character (Table II) we could estimate the R,- —R -

separation in Fig. 4 to be 0.32 eV (67% of the full Sn

value, 0.48 eV). This would yield an energy gap,
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FIG. 5. Difference in the bando structures between (a) the
tetragonal (c/a=1.02, a=5.7658 A), and (b) the simple cubic
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(@ =5.804 A) phases near the Fermi level.
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Re‘ ——R6+, equal to 0.37 eV, in purely coincidental but

almost exact agreement with the experimental value.
Consideration of the splitting of the Br d level should
change this number by a small amount.

Another factor that can cause a reduction in the band
gap is a distortion from a cubic to tetragonal phase. In
Fig. 5 we compare the LMTO band structures of the cu-
bic and tetragonal phases of CsSnBr; near the Fermi lev-
el. To examine the effect of tetragonal distortion on the
band structure near the Fermi level, we have considered a
2% increase in the z direction (c/a=1.02), and
a=5.7658 A to keep the volume per unit cell the same as
in the simple cubic phase. In the tetragonal phase the
equivalent of the R point is the symmetry point A4, where
the energy gap is 0.5 eV, i.e., about 0.1 eV less than the
energy gap (R ;s —R,) in the simple cubic phase. Experi-
mentally CsSnBrj is found to be tetragonal below 292 K.’
Powder x-ray-diffraction pattern at 285 K possibly
indexes as a tetragonal cell with ¢ =11.59 and ¢ =11.61
A.7 Thus the unit cell doubles in comparison with the
simple cubic phase. But the increase in the z direction is
only 0.2%, one-tenth of the increase considered by us.
Thus we estimate the gap reduction due to the actual
tetragonal distortion to be around 0.01 eV, which is negli-
gible. We suppose that the folding of the simple cubic
bands due to the doubling of the unit-cell size does not
produce appreciable change in the direct gap at R.

III. COMPARISON WITH EXPERIMENTS
AND SUMMARY

The electronic structure obtained by us is consistent
with the experimental data. Photoemission results are
available on this compound. In Fig. 6 we show the
valence-band density of states (DOS). The extremely
sharp peak, which appears in the DOS due to the almost
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FIG. 6. Valence-band DOS of simple cubic CsSnBr;. The
DOS corresponding to the Br 4s bands is not shown.
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flat bands related to the Br 4s orbitals, about 15.5 eV
below the Fermi level, has not been shown as it would ob-
scure the details in the rest of the DOS. The DOS calcu-
lated by Parry, Tricker, and Donaldson? had some seri-
ous discrepancies with the photoemission results. The
band structure of Lefebvre et al.! was in qualitative
agreement with the photoemission results, and so we ex-
pect a similar agreement. The photoemission spectra ex-
hibit five main peaks at about —27, —21, —18, —12, and
—5 eV relative to the experimentally determined Fermi
level. The peak around —5 eV can be linked to the part
of the DOS originating primarily from the Br 4p orbitals.
The DOS related to the Sn 4s orbitals should give a peak
around —8.5 eV, which is somewhat off the experimental
peak around — 12 eV. The peak at —18 eV can be linked
with the position of the Br 4s bands. The peaks at —21
and —27 eV are core-level emissions. We must mention
that the comparison of the DOS curve with photoemis-
sion results is not a simple matter. Matrix elements, exci-
tonic, and surface effects, as well as the experimental
difficulty in determining the Fermi level exactly, compli-
cate such a study.

As mentioned in Ref. 2, the optical absorption at room
temperature shows a threshold at 1.8 eV and the lumines-
cence curve shows a peak at 1.7 eV. Lefebvre er al.! re-
lated these two features with the M, — M transition,
and mentioned that optical transitions are forbidden at
the R,s point. In our calculation these two levels are
separated by 1.9 eV, and so their argument applies equal-
ly well in our case. We would, however, like to mention
that even if the optical transitions are forbidden at the R
point, they cannot be forbidden along the entire
T(R —M) symmetry direction. An estimate of the
threshold of optical transition is perhaps better obtained
by considering the difference in average energies along
the Rs—Ms and R;—M, bands at the Fermi level.
Considering that the R ;s— M band is almost flat and
the R, —M, band has a small dispersion in Fig. 1, we
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should expect the threshold to be only slightly lower than
My —M, (1.9 eV)in Fig. 1. Thus the agreement with the
experimental value of 1.8 or 1.7 eV is not bad.

Electrical conductivity measurements by Clark, Flint,
and Donaldson et al.'! indicate that CsSnBr; is a con-
ductor at room and lower temperature. The conductivity
increases up to 303 K and then decreases. This is con-
sistent with the substance having a small gap, in the pres-
ence of impurities.""!" The presence of impurities in the
samples was indeed confirmed in the experiments of
Clark, Flint, and Donaldson.

To summarize, we have presented the electronic struc-
ture of simple cubic CsSnBr; based on the first-principles
density-functional calculation. Our calculation shows
this compound to be a narrow-gap semiconductor. The
calculated electronic structure differs significantly from
the extended-Hiickel (empirical LCAO) method calcula-
tion of Parry, Tricker, and Donaldson,? and agrees better
with the empirical pseudopotential calculation of
Lefebvre et al.,! who found this compound to be a zero-
gap semiconductor. However, in terms of the arrange-
ment of the bands near the Fermi level, there are some
important differences between our results and both of the
two previous calculations. We have estimated the effects
of spin-orbit coupling and simple cubic to tetragonal dis-
tortion on the band gap. While the spin-orbit coupling
lowers the gap significantly, transition from the cubic to
the tetragonal phase has negligible effect on the size of
the gap.
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