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ABSTRACT 

 
 

In this thesis, we embarked on a comprehensive study to develop a cutting-edge model for 

forecasting real-time electricity prices across 35 nodes within the PJM zone. The task at hand was 

particularly challenging, given the volatility of the day-ahead electricity market and the numerous 

factors that influence prices, such as load variations, weather conditions, and historical prices. Our 

objective was to devise a model that could provide more accurate day-ahead price forecasts than 

existing methods. To achieve this goal, we proposed an ensemble-based approach that leveraged the 

strengths of low-bias and high-variance machine learning models. To handle missing values, we 

employed K-Nearest Neighbors (KNN) imputation. To enhance the performance of the models, we 

employed Principal Component Analysis (PCA) and correlation feature selection techniques. We 

then employed a direct multi-output strategy to forecast real-time prices. Our ensemble incorporated 

a variety of models such as Support Vector Regression (SVR), Huber Regression, and deep neural 

networks such as Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), 

Bidirectional LSTM (BiLSTM), and Temporal Convolutional Network (TCN). Our results on test 

data from the first half of 2021 demonstrate that our proposed strategy outperforms any single model 

by 8.75% over all 35 nodes and beats the day-ahead prices. However, we noticed a decrease in 

testing accuracy in the latter half of 2021, indicating a need for a more dynamic ensemble fusion. In 

conclusion, our research provides valuable insights into electricity price forecasting and illustrates 
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the effectiveness of ensemble learning techniques, incremental learning, and deep neural networks 

for time series forecasting. Our proposed method can be utilized by energy traders, independent 

system operators, and policymakers to make more informed decisions in the uncertain and volatile 

energy market. 

Keywords: Electricity price forecasting, time series forecasting, ensemble learning techniques, 

incremental learning, deep neural networks, convolutional neural network, temporal convolutional 

network, machine learning 
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CHAPTER 1 

INTRODUCTION 

 
 

1.1 Motivation 
 

Owing to the progress in energy sectors, such as the integration of renewable energy sources, 

growth of distributed energy resources, and advancements in energy storage technologies, 

the energy markets got more volatile and complex and thus making it difficult for a trader to 

predict prices and earn profits. One such market is the day ahead market, where the energy 

traders submit their bids for the energy prices before the operating day. The day-ahead 

markets denote discontinuity, nonlinearity, and volatility, which makes it challenging to 

predict energy prices. In the US, non-profit Independent System Operators (ISO) such as 

MISO and PJM perform power balance operations and act as energy exchanges, allowing 

energy trading in various electricity markets. In order to maximize their profits, energy 

traders rely on accurate forecasting techniques to predict energy prices. However, the 

volatility and nonlinearity of the market make it difficult to predict prices with high accuracy. 

Furthermore, the market is affected by various factors such as load variations, historical 

prices, climate conditions, gas and oil prices, time of the day, and the season. Our research 

aims to develop an accurate forecasting framework, keeping in mind the volatility and 

nonlinearity of energy markets, with predictions that maximize the profits of a daily trader. 

We conduct a study proceeding from classical statistical methods, artificial neural networks, 

and hybrid modeling techniques and explore ways to improve the accuracy of energy price 

forecasting. Our study also involves investigating preprocessing steps feature scaling, data 
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imputation, and data transformation that can help in edging forecast performance. This 

thesis aims to donate to the literature on energy price forecasting by developing an accurate 

and efficient forecasting model for the day ahead energy market—various data preprocessing 

techniques are also studied to improve the models’ performance. The results of this research 

will be valuable for energy traders, independent system operators, and policymakers in 

making correct decisions in a fluctuating market. 

 
1.2 Research Objectives 

 
The problem addressed in this thesis is to develop an accurate and efficient forecasting 

model for energy prices in day-ahead energy markets. The volatility, discontinuity, and 

non-linearity of energy markets make it difficult to predict prices, particularly due to the fact 

that electricity is a perishable fungible asset that cannot be stored and must be consumed. 

The short-term price is usually controlled by several factors such as load variations, historical 

prices, climate conditions, gas and oil prices, time of the day, and the season. We aim to 

overcome the challenges of volatility and non-linearity by utilizing advanced time series 

models, such as classical statistical methods, artificial neural networks, and hybrid modeling 

techniques, to improve the accuracy of energy price forecasting. 

 
1.3 Organization 

 
The structure of this thesis is as follows: 

Chapter 1 presents an introduction to the problem statement and the motivation behind 

this research. It also provides an overview of the research methodology and the contributions 

of this thesis. Chapter 2 presents a comprehensive review of the related work in the domain 

of energy price forecasting. It covers both traditional and modern deep learning techniques 

and their applications in energy price forecasting. The chapter provides a critical analysis 

of the existing literature and identifies the research gaps that this thesis aims to address. 

Chapter 3 discusses the feature engineering process and data preprocessing techniques used 
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in this research. It proposes an efficient feature engineering pipeline that combines domain 

knowledge and machine learning techniques to extract meaningful features from the raw 

data. Chapter 4 focuses on the model development process and presents a detailed analysis 

of the machine learning and deep learning models used in this research. We also propose an 

ensembling technique that combines multiple models to improve the accuracy of the energy 

price forecasting. Additionally, this chapter introduces and implements models that have 

never been used before in energy price forecasting, as per our literature review. Chapter 5 

presents the experimental results and provides a comprehensive analysis of the performance 

of the proposed models. It discusses the strengths and limitations of the models and provides 

insights into the factors that impact the accuracy of the energy price forecasting. The chapter 

concludes with a discussion on the future directions of this research and potential areas 

for further exploration. Overall, this thesis aims to contribute to the field of energy price 

forecasting by proposing novel machine learning and deep learning models and an efficient 

feature engineering pipeline. The experimental results demonstrate the effectiveness of the 

proposed approach and provide insights into the factors that impact the accuracy of the 

energy price forecasting. 
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CHAPTER 2 

LITERATURE REVIEW 

 
In this chapter, we discuss the state-of-art research work related to energy price forecasting 

in different aspects. As mentioned in Chapter 1, this dissertation aims to build an accurate 

price forecasting system that can beat dayahead prices. Thus, this related work chapter is 

organized into three sections, in which each section discusses previous works done at a 

specific domain 

 
2.1 Traditional hybrid frameworks 

 
Research has shown that the hybrid frameworks perform better. A single model cannot 

identify all the patterns in a series—hybrid model, whereas combined models can do so 

and thus outperform single models [1]. Its been shown that using a wavelet transform to 

decompose and reconstruct the historical prices provides a smoothing effect. Coupled with a 

hybrid framework comprising ARIMA and Garch, the model functions better than previously 

available single models. Yet fusion methods have not been able to capture the complex 

features of electricity prices accurately. 

 
2.2 Machine learning models 

 
This calls for a better implementation of modern machine learning and fusion methods for 

energy market forecasting [2]. Among reported machine learning models, support vector 

regressors (SVR), random forest regressors (RFR), deep neural networks (DNN), and one- 

dimensional convolutional neural network (1D-CNN) have shown promising performance 
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efficacy on 2018-2021 Spanish and US energy datasets. With additional features, it’s been 

reported that DNN and SVR can outperform all other models. However, the test set used by 

the author of the study is only one week long [3]. 

 
2.3 Modern deep learning techniques 

 
In one study, a DNN and long short-term memory (LSTM) hybrid model, DLSTM, was 

trained for 325 weeks, validated for 50 weeks, and tested for one week. DLSTM could beat 

well-known forecasting methods such as Extreme Learning Machines (ELM), a Wavelet 

Transform (WT) hybrid, Self Adaptive Particle Swarm Optimization (SAPSO) and Kernel 

ELM (KELM) in terms of MAE [4]. Another proposed hybrid model, Deep Learning 

Extreme Value theory (DLEVT) has been shown to perform better than the standard deep 

learning (DL) models, showcasing the capability of hybrid frameworks. Such hybrid 

or multi-algorithmic fusions seem to capture data peaks more accurately when applied 

across several nodes [5]. Transformers-based architectures have also shown to beat LSTM, 

BI-LSTM, Gated Recurrent Units (GRU), BiGRU, Temporal Convolutional Neural network 

(TCN), and BILSTM on the ATHENA dataset of the PSEG zone, where that data spanned 

from January 2019 to October 2020. The test set included the last 20% of the dataset 

[6]. A framework comprising feature selection, feature extraction, cross-validation, and 

price prediction modules, used RFR and XG boost for feature selection and extraction 

and enhanced SVRs and CNNs for the prediction. Results show that feature selection can 

significantly improve price prediction and computation time and that the fusion of XG boost 

and Decision trees (DT) can provide more accurate results. The dataset used in this study 

was the ISO-NE from NYISO. Authors show that CNN and SVR outperform AB (AdaBoost), 

multi-layer perceptron (MLP), and RFR [7]. They show that a stack of heterogenous LSTMs 

outperforms traditional ML models such as SVR, classical neural networks, and gradient 

tree boosting (GTB), and overcomes model instability issues experienced with a single 

LSTM. The authors conclude that including a variety of features can improve accuracy. The 
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authors use data from the last weeks of March, June, September, and December of 2018 

as test set and the year 2017 as validation set. They also use ensemble empirical mode 

decomposition (EEMD) for signal reconstruction to reduce the non-linearity of their model 

[8]. Besides visual recognition and classification, CNNs can also provide good forecasting 

results. Authors in [9] integrate GA with CNN. Their dataset includes 21 nodal prices from 

the PJM for the December 2017 to November 2018 period. The last 20% is left for test set. 

The authors use a min-max scaling and reshape the input into 3D. their reported results 

show that GA-CNN is more accurate than LSTM, SVM, and MLP in terms of MAPE. The 

authors conclude that performance on the test set can improve by including temperature and 

other factors such as load variations. the study in [10] shows that combination models with 

two kinds of neural networks with singular-spectrum analysis (SSA) for preprocessing can 

combat data noise and increase accuracy [10]. Feature selection plays a vital role in reducing 

the forecasting error. Each feature selection technique influences the predictive models 

differently. Compared to the Pearson coefficient (PC), RFR-SVR models can capture more 

critical information. Autoencoders are also able to reduce dimensionality of data effectively, 

LSTM-LSTM autoencoders perform better than CNN-LSTM or ConvLSTM [11]. 

 
2.4 Summary 

 
An incremental learning-based ensemble of low-bias and high-variance machine learning 

models for forecasting the real-time prices of 35 nodes distributed along the PJM zone. 

The proposed approach used load variations, weather, and historical prices as inputs and 

employed techniques such as K-Nearest Neighbors (KNN) imputation, Principal Component 

Analysis (PCA), and correlation feature selection to handle missing values and improve 

model performance. A direct multi-output strategy was also applied to forecast real-time 

prices. Results on test data from the first six months of 2021 indicate that the proposed 

ensemble model outperforms any single model by 8.75% over all 35 nodes. The model 

also observed a drop in testing accuracy over the last six months of 2021, indicating a need 
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for a more dynamic ensemble fusion. The proposed approach provides valuable insights 

for electricity price forecasting and demonstrates the effectiveness of ensemble learning 

techniques, incremental learning, and deep neural networks for time series forecasting. 
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CHAPTER 3 
 

DATA COLLECTION AND PREPROCESSING 
 
 
 

3.1 Datasets 
 

The study dataset was provided by Solea Energy, an electricity trading company specializing 

in wholesale markets across North America and one of the main sponsors of this research. 

The dataset covers 35 pricing nodes distributed across the eastern coastal region of the US. 

It includes hourly load variations, historical nodal prices, fuel prices, and weather conditions 

such as dew factor, humidity, and temperature. The dataset spans from January 1, 2018, 

to December 31, 2021. We used the period from January 1, 2018, to December 2020 for 

training except for the final 20%, which was used for validation. Most of the related studies 

in the literature use only a week or a month’s worth of data for testing. Here we use a test 

dataset comprised of the data from 2021, with results compiled under six-month periods. 

 
3.2 Pennsylvania-New Jersey-Maryland (PJM) Interconnection 

 
The PJM is a regional transmission organization (RTO) that manages the power grid, and 

wholesale energy marketing in 13 United States states, serving over 65 million customers. 

The market is complex and dynamic as it is subject to constant changes in demand, supply, 

and pricing conditions; however, it is restricted by a set of rules that enable reliable, efficient, 

and cost-effective electricity supply. At the core of the PJM energy market is the day 

Ahead market, which is the primary platform for market participants to submit their bids 

for electricity supply and demand. For the traders, the market clears daily at 12:000 PM 
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Figure 3.1: PJM: Market for electricity 
 

ET for the next day’s supply and demand. The day ahead market operates under Location 

Marginal Pricing (LMP), which prices electricity based on the marginal cost of the most 

expensive generator required to meet demand in each location. The LMP pricing mechanism 

incentivizes market participants to locate their generation facilities close to areas of high 

demand and low congestion. 

 
3.3 Methodology 

 
Our goal is to have our models learn the temporal relation between observations in the given 

time series, be it linear or non-linear, in a manner that is robust against the noise but can 

capture important price spikes. 

 
3.3.1 Restructuring the dataset 

 
We begin with restructuring our dataset to make it amenable to supervised machine learning 

by using a sliding time window. 

Four main strategies can be used: Direct Multi-step Forecast strategy, Recursive Multi- 

step Forecast strategy, Direct-Recursive Hybrid Multi-step Forecast strategy, and Multiple 

Output Forecast strategy. 
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Direct Multi-step Forecast strategy 
 

The Direct Multi-step Forecast strategy involves training a single model on historical data 

and then using that model to make predictions for multiple future time steps. This approach 

is relatively simple to implement and can handle external factors and long-term trends better 

than other methods. However, it may not always produce the most accurate results. The 

process is as show in figure 3.2. 

 

 

Figure 3.2: Visual representation of Direct Multi-step Forecast strategy 

 
 

Recursive Multi-step Forecast strategy 
 

The Recursive Multi-step Forecast strategy involves iteratively updating the model for each 

time step, using the predicted value from the previous step as input as show in figure 3.3. 

This approach can handle complex patterns and non-linear relationships in the data, but 

it can be computationally expensive and may require a large amount of data to produce 

accurate results. 
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Figure 3.3: Visual representation of Recursive Multi-step Forecast strategy 

 
Direct-Recursive Hybrid Multi-step Forecast strategy 

 
The Direct-Recursive Hybrid Multi-step Forecast strategy involves using a combination of 

the Direct and Recursive Multi-step Forecast strategies, where the model is updated using 

the predicted value from the previous step, but also incorporating external factors. This 

approach can handle both complex patterns and external factors, but it is more difficult to 

implement and may require more data than other methods. 

 
Multiple Output Forecast strategy 

 
The Multiple Output Forecast strategy trains multiple models, each with different output 

variables; model predictions are combined to come up with a final forecast. This approach 

can handle multiple output variables and complex relationships between them, but it can be 

computationally expensive and require a large amount of data to produce accurate results. 

It is important to note that the choice of forecasting strategy depends on the characteristics 

of the data, the specific problem being solved, and the resources available. Additionally, the 

best strategy is the one that produces the most accurate results for the specific problem at 

hand. 
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3.3.2 Optimizing Sliding Window Length for Multi-Step Time Series Forecasting 
 

We aimed to achieve the best possible forecast for a 24-hour sliding window length. The 

method involved taking the last 24 hours of the time series as input, with a gap of 16 hours 

to account for bidding submission delay. The output was the first-hour price of the next day, 

and so on. In order to determine the optimal sliding window length, three different window 

lengths were tested: 12 hours, 24 hours, and 48 hours. The results indicated that the 24-hour 

window length performed the best, followed by the 48-hour window, and finally the 12-hour 

window. 

 
3.3.3 Handling Missing Data in Time Series Forecasting 

 
To handle feature engineering tasks, variable characteristics and type either numerical, 

categorical, datetime or mixed needs to be determined. Variable characteristics include 

1. Missing Data 
 

2. Cardinality 
 

3. Category Frequency 
 

4. Distribution 
 

5. Outliers 
 

6. Magnitude 
 

We analyzed a dataset that contained a significant number of missing elements, all the 

variables are numerical variables with one being the datetime variable. The varaibles have 

more missing values are either related to power generation or weather. The missingness in 

this case is listed as missing at random (MAR), as sometimes their may be certain periods for 

maintenance or power failure. To address this issue of missing value, several MAR missing 

data imputation techniques were explored and tested, that will be mentioned below 
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Figure 3.4: Normal and skewed distribution 

 
3.3.4 Mean/ Median imputation 

 
Missing values are replaced with mean of the variable (if the distribution of variable is 

gaussian) or median if the distribution is skewed. In a guassian distribution the mean, median 

and mode are the same, thus either can be used, while in the case of non gaussian or skewed 

the mean is towards the values at the end of distribution. This imputation technique assumes 

that the data is MAR. But it has limitation that it distorts the original distribution of variable, 

if the the proportion of missing values is large. 

 
3.3.5 Complete case analysis 

 
This imputation also works when the data is MAR, it involves discarding the data that has 

missing values, this preserver the variable distribution, but there is a loss of informative data, 

which cannot be afforded if we intend to use deep neural networks. 

 
3.3.6 Multivariate imputation techniques and our approach 

 
In the case of KNN, the missing values are imputed as the average value from the closest, in 

this case the varaible original distribution is somewhat perserved depening on the selection 

of hyperparameter and there is no loss of data. However, one limitation is that the model train 

on cpu and is expensive to train. we employed a two-step approach to handle missing data. 

Firstly, variables that were missing more than 55% of their overall data entries, including 

load variations from different power plants, were discarded from the dataset. Secondly, 
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backward interpolation was applied for variables that were missing less than 5% of their 

data, including energy prices. On the other hand, for variables that were missing more than 

5% of their data, multivariate imputation techniques were used. These techniques include K 

nearest neighbors [12], Bayesian ridge regression, decision tree regression, and extra tree 

regression. After testing all these methods, K nearest neighbors provided the best results, 

resulting in variable distribution closest to the original distribution. 

 
3.3.7 Data Transformation for removal of skewness 

 
The distribution of energy prices tends to be highly skewed, which can have a significant 

impact on time series forecasting. Skewness can lead to inaccurate forecasted values, with 

positive skewness causing a bias toward higher values and negative skewness causing a 

bias toward lower values. Additionally, the variability of forecasted values can be affected, 

making it difficult to predict potential outcomes. Skewness can also negatively impact the 

efficiency and accuracy of statistical models, such as linear regression or neural networks, 

which assume a normal distribution of data. Overall, skewness in time series data can have 

detrimental effects on forecasting accuracy and statistical model performance. Therefore, it 

is essential to address skewness in the data using appropriate data transformation techniques 

such as log transformation, Box-Cox transformation, and Yeo-Johnson transformation. 

Yeo Johnson’s transformation shows lower skewness and somewhat shifts the distribution 

towards Gaussian [13]; Reducing skewness in the data can improve the performance of 

neural networks. Skewed data can cause slow convergence and poor generalization in 

neural networks [14]. By reducing skewness, the Yeo-Johnson transformation can speed up 

convergence and improve the overall performance of neural networks. The Yeo-Johnson 

transformation is a valuable method for reducing skewness in data and improving the 

performance of neural networks. It can be applied to both positive and negative numbers 
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and is a generalization of the Box-Cox transformation [13]. 
 


 (1+𝑦𝑦)𝜆𝜆−1 

 

 
if 𝜆𝜆 = 0 𝑦𝑦 >= 0 

𝜆𝜆  

𝑥𝑥 = 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦 + 1) if 𝜆𝜆 ≠ 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 < 0 

−𝑙𝑙𝑙𝑙𝑙𝑙(−𝑦𝑦 + 1) if 𝜆𝜆 = 2 𝑦𝑦 < 0 

(3.1) 

Yeo Johnson transformatio



n is an extension of Box-Cox suitable for data that is a mixture 

of both positive and negative numbers. Such values are shared in energy price datasets, the 

distribution plot of our moves towards normal with the application of this transformation. 

 
3.3.8 Scaling the features 

 
Feature scaling is an essential step in our process, as the input features in our dataset 

reside within varying ranges and scales, resulting in the domination of variables with 

large magnitudes [13]. Feature scaling tends to counter this issue and also improves the 

convergence of the gradient descent algorithm in neural network training. The support vector 

machine (SVM) algorithm may locate the support vectors faster [15]. 

Various scalers that we tested include: 
 

1. Standardization 
 

2. Mean normalization 
 

3. Min-Max scaling 
 

4. Max-Abs scaling 
 

5. Robust scaling 
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Standardization 
 

Standardization is a technique for transforming data to have zero mean and unit variance. 

The standardization is defined in equation (3.2) 
 

𝑥𝑥′ = 𝑥𝑥 − 𝜇𝜇 
𝜎𝜎 (3.2) 

 

Where 𝑥𝑥 is the original data, 𝑥𝑥′ is the transformed data, 𝜇𝜇 is the mean of the data and 𝜎𝜎 

is the standard deviation of the data. Standardization ensures that the transformed data has a 

standard normal distribution. This technique is particularly useful when working with data 

that has a normal distribution and when the goal is to compare the data to a standard normal 

distribution. 

 
Mean normalization 

 
Mean normalization outputs data that has zero mean; this involves subtracting the mean and 

then dividing by the range of data, as shown in equation (3.3). 
 

𝑥𝑥′ =  𝑥𝑥 − 𝜇𝜇  
𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑎𝑎 

(3.3) 

 

When dealing with non-Gaussian data and aiming to compare it to a Gaussian distribution, 

it is beneficial to use a technique that involves utilizing the original data represented by 𝑥𝑥, 

the transformed data represented by 𝑥𝑥′, the mean of the data represented by 𝜇𝜇, the maximum 

value of the data represented by 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥, and the minimum value of the data represented by 𝑥𝑥𝑚𝑚𝑚𝑚𝑎𝑎. 

This method ensures that no information is left out and can be very useful for professionals 

working in this field. 
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Min-Max scaling 
 

Min-Max scaling is another data transformation method that transforms data to have an exact 

range, usually between 0 and 1. The Min-Max scaling is defined in equation (3.4): 
 

𝑥𝑥′ =  𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑎𝑎  
𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑎𝑎 

(3.4) 

 

Where 𝑥𝑥 is the original data, 𝑥𝑥′ is the transformed data, 𝑥𝑥𝑚𝑚𝑚𝑚𝑎𝑎 is the lowest value of the 

data, and 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 is the highest value of the data. This scaling method is useful when working 

with data with a known range and mainly for data with a non-zero lowest value. 

 
Max-Abs scaling 

In Max-Abs scaling, we transform data by dividing the input features by their maximum 

value, which scales the data so that the maximum absolute value of the input features is 1. It 

is defined in equation (3.5) 
𝑥𝑥′ = 𝑥𝑥 

𝑚𝑚𝑎𝑎𝑥𝑥 (|𝑥𝑥|) 
(3.5) 

 
 
 

𝑥𝑥 is the original data and 𝑥𝑥′ is the transformed data. This scaling method is handy 

when working with sparse data or data with significant outliers, as it ensures that the most 

considerable value in the dataset does not dominate the model. 

 
Robust scaling 

 
Robust scaling is a technique for transforming data to be less sensitive to outliers. It scales 

the data based on the median and the interquartile range (IQR) as shown in equation (3.6) 
 

𝑥𝑥′ = 𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎(𝑥𝑥) 
𝐼𝐼𝐼𝐼𝐼𝐼 (3.6) 
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Where 𝑥𝑥 is the original data, 𝑥𝑥′ is the transformed data, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎(𝑥𝑥) is the median of the 

data, and 𝐼𝐼𝐼𝐼𝐼𝐼 is the interquartile range of the data. The interquartile range is the difference 

between the 75th and 25th percentiles of the data. Robust scaling is particularly useful when 

working with data that contains outliers, as it is less sensitive to the presence of such values. 

This scaling method is more robust to outliers than other methods such as Min-Max scaling 

or Standardization. 

Classical scaling techniques are prone to outliers and are biased towards greater magni- 

tudes, results show that robust scaling and min-max scaling provides the best result. 

 
3.3.9 Feature selection methods 

 
Correlation feature selection 

 
In our thesis, we used correlation feature selection as a method to select the most relevant 

features among load variations, weather, and historical prices, to forecast the real-time prices 

of 35 nodes distributed along the PJM zone. Correlation feature selection is a technique that 

selects features that are highly correlated with the target variable but are uncorrelated with 

each other. The correlation between a feature 𝑋𝑋𝑚𝑚 and the target variable 𝑦𝑦 can be measured 

using Pearson’s correlation coefficient, which is defined in equation (3.7) 
 

 
𝑟𝑟𝑋𝑋𝑚𝑚 ,𝑦𝑦 = cov( 𝑋𝑋𝑚𝑚, 𝑦𝑦) 

𝜎𝜎𝑋𝑋𝑚𝑚 𝜎𝜎𝑦𝑦 
(3.7) 

Where cov( 𝑋𝑋𝑚𝑚, 𝑦𝑦) is the covariance between feature 𝑋𝑋𝑚𝑚 and target variable 𝑦𝑦, and 𝜎𝜎𝑋𝑋𝑚𝑚 and 

𝜎𝜎𝑦𝑦 are the standard deviation of feature 𝑋𝑋𝑚𝑚 and target variable 𝑦𝑦 respectively. 

The features that have a correlation coefficient above a certain threshold were selected for 

the final dataset. This method helps to eliminate features that are not relevant to the target 

variable and may be causing overfitting or poor model performance. Additionally, it can 

also improve the interpretability of the model by highlighting the most important features 

that drive the target variable. However, it is important to note that it should not be used as 
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( ) 𝑁𝑁 
∑ 

( ( ) − ( 

)) 

the sole method of feature selection and it’s often used in combination with other feature 

selection techniques to achieve the best results. 

 
Embedded tree importance method 

 
In our thesis, we also utilized the embedded tree importance method for feature selection. 

This method is based on Random Forest algorithm which is a powerful ensemble method 

that builds multiple decision trees and averages their predictions to improve the overall 

accuracy of the model. The embedded tree importance method calculates the importance of 

each feature by measuring the average decrease in impurity across all trees in the forest. The 

feature importance is calculated as shown in the equation (3.8) 
 

  1  
𝑚𝑚𝑚𝑚 𝑝𝑝𝑙𝑙𝑟𝑟𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚 𝑋𝑋𝑚𝑚 = 

𝑝𝑝𝑟𝑟 𝑚𝑚𝑚𝑚 

𝑁𝑁𝑝𝑝𝑟𝑟 𝑚𝑚𝑚𝑚 

𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝 𝑦𝑦  𝑗𝑗 𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝 𝑦𝑦𝑋𝑋𝑚𝑚  𝑗𝑗 (3.8) 
𝑗𝑗 =1 

 

Where 𝑁𝑁𝑝𝑝𝑟𝑟𝑚𝑚𝑚𝑚 is the number of trees in the forest, 𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝 𝑦𝑦( 𝑗𝑗 ) is the impurity of the 𝑗𝑗 𝑝𝑝ℎ 

tree, and 𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝 𝑦𝑦𝑋𝑋𝑚𝑚 ( 𝑗𝑗 ) is the impurity of the 𝑗𝑗 𝑝𝑝ℎ tree after the feature 𝑋𝑋𝑚𝑚 is used. 

The embedded tree importance method utilizes random forest, which makes it prone to 

over-fitting and picking correlated features. Nonetheless, its results are easy to interpret [16]. 

It’s worth noting that there are several other feature selection techniques that have been 

proposed in the literature such as Lasso, Ridge, and Elastic Net regularization, Recursive 

Feature Elimination (RFE), and Mutual Information. Each of these methods has its 

own advantages and disadvantages, and the choice of the best method depends on the 

characteristics of the dataset and the problem at hand. 

Next, we present our results for feature selection and feature reduction, where the latter 

includes correlation feature selection and the embedded tree importance method, two of the 

most frequently used methods in energy markets. We tested principal component analysis 

(PCA) and autoencoders for the feature reduction techniques. 
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𝐶𝐶 =   1   ∑(𝑥𝑥 − 𝜇𝜇) (𝑥𝑥 − 𝜇𝜇)

 (3 9

 

3.3.10 Feature reduction methods 
 

PCA and autoencoders construct a compressed version of the dataset that, in most cases, can 

preserve the information content of the original dataset to a certain extent [17]. 

 
Principal Component Analysis (PCA) 

 
In this thesis, we used Principal Component Analysis (PCA) as a feature reduction technique. 

PCA is a statistical method that uses orthogonal transformation to convert a set of correlated 

variables into a set of uncorrelated variables, called principal components. The first principal 

component explains the largest variance in the dataset, the second principal component 

explains the second largest variance, and so on. 

The mathematical formulation of PCA can be described as follows: 
 

1. Data scaling: The input dataset is scaled to ensure that all variables are on the 

same scale. This is done to prevent variables with large values from dominating the 

computations. 

2. Computation of covariance matrix: The covariance matrix is calculated from the 

scaled data. This matrix is a measure of the linear correlation between the variables in 

the dataset. The covariance matrix is defined in (3.9) 
 

𝑎𝑎 
𝑇𝑇 

𝑚𝑚 𝑚𝑚 
𝑚𝑚=1 

 
where 𝑥𝑥𝑚𝑚 is a data point, 𝜇𝜇 is the mean of the data and 𝑎𝑎 is the number of data points. 

 
3. Eigenvector and value computation: Eigenvectors and eigenvalues are computed from 

the covariance matrix. Eigenvectors are the directions of the new coordinate system, 

and eigenvalues are the magnitudes of the new coordinate system. Eigenvectors and 

eigenvalues are calculated by solving the following eigenvalue problem as shown in 

𝑎𝑎 − 1 
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equation (3.10) 

𝐶𝐶v = 𝜆𝜆v (3.10) 
 

where v is the eigenvector and 𝜆𝜆 is the eigenvalue. 
 

4. Ordering the eigenvalues: The eigenvalues are ordered in descending order, and their 

respective eigenvectors are arranged accordingly. 

5. Dataset transformation: The dataset is transformed by projecting it onto the top 

eigenvectors. This is done to retain a certain percentage of the variance, usually 95%. 

The transformed dataset is represented by the following equation (3.11) 

 
𝑋𝑋𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑋𝑋𝑋𝑋𝑘𝑘 (3.11) 

 

where 𝑋𝑋 is the original dataset, 𝑋𝑋𝑘𝑘 is a matrix containing the top 𝑘𝑘 eigenvectors and 

𝑋𝑋𝑝𝑝𝑝𝑝𝑎𝑎 is the transformed dataset. 

PCA can be useful in reducing the dimensionality of the dataset while preserving the 

most important information. It is particularly useful when dealing with datasets with 

high dimensionality and correlated features. 

 
Autoencoders 

 
An advanced way to reduce dimensionality and feature learning is using neural networks; 

such architecture is called autoencoders. An autoencoder consists of two blocks, an encoder, 

and a decoder. An encoder compresses input data to a lower dimension enough to capture the 

representation of input data, both linear and nonlinear. A decoder reconstructs the original 

data from this compressed version as shown in figure (3.5) 

The following steps can be used to implement an autoencoder: 
 

1. Define the architecture of the encoder and decoder 
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Figure 3.5: Visual representation of an Autencoder 
 

2. Preprocess the data by scaling it 
 

3. Train the autoencoder by minimizing the reconstruction error 
 

4. Extract the compressed representation of the data from the encoder 
 

Autoencoder compresses enough to capture the accurate representation of the actual data 

using the encoder block, called a bottlenecking layer. This layer prepares the feature sets for 

further analysis and modeling. 

What makes autoencoders different from other feature selection techniques, such as PCA, 

is their ability to capture nonlinear relationships in data. However, they have a limitation 

because they are actual neural networks that require a significant amount of data to give 

accurate results, which we need to improve. 

In mathematical terms, the encoder function can be represented by 𝑓𝑓 (𝑥𝑥; 𝜃𝜃) and the decoder 

function can be represented by 𝑙𝑙(𝑧𝑧; 𝜃𝜃), where 𝑥𝑥 is the input data, 𝜃𝜃 are the parameters of the 

model, and 𝑧𝑧 is the compressed representation. The reconstruction error can be defined as 

the following equation (3.12) 

 
𝐿𝐿 (𝑥𝑥, 𝑙𝑙( 𝑓𝑓 (𝑥𝑥; 𝜃𝜃); 𝜃𝜃)) (3.12) 

where L is a loss function such as mean squared error. 
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In conclusion, autoencoders are robust architecture that is effective when there is plenty 

of data and depends on the task at hand. 

 
Preferred feature selection technique 

 
Our analysis has determined that using the historical price data of a particular node as input 

for specific nodal results in an overall better result for that node, with a margin of 4% Mean 

Absolute Error (MAE) compared to alternative methods. Here we propose implementing 

a combination of Principal Component Analysis (PCA) and Correlation Feature Selection 

(CFS) for feature selection. PCA is used to decrease the dimensionality of the feature 

set while keeping a high level of variance explanation at 95%. CFS is then used for the 

remaining features, besides nodal prices, to eliminate any correlated features. CFS is also 

applied to the 35 nodal prices to remove any correlated features. 
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CHAPTER 4 

DATA MODELLING 

 
 

4.1 Model selection 
 

In the process of designing machine learning, selecting the appropriate model is a crucial step. 

As per the no free lunch theorem, no model can outperform all others under all circumstances. 

Thus, we explored several models, beginning with linear regression as the standard, but 

it performed poorly due to the dataset’s highly non-linear and outlier-ridden nature. To 

solve this issue, we evaluated the effectiveness of various non-linear models, including 

Support Vector Regression (SVR), Huber Regression, and Random Forest Regression. 

While these models performed better than linear regression, their performance still required 

improvement. After analyzing the outcomes, it was discovered that Huber Regression 

showed some improvement over linear regression, but more progress was necessary. 

 
4.1.1 Huber regression 

 
When calculating linear regression through the common least squares method, each data 

point is treated equally, including those with high residuals. Robust regression techniques 

such as Huber regression do better by giving lower weights to data points with high residuals. 

Huber regression has a tuning constant, ’k’, calculated from the residuals ’e’ variance. 

Weights are rationed based on the following rule: 
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𝑤𝑤𝑚𝑚 = 


1 |𝑚𝑚𝑚𝑚 | < 𝑘𝑘  

(4.1) 
 𝑘𝑘  |𝑚𝑚𝑚𝑚 | |𝑚𝑚𝑚𝑚 | ≥ 𝑘𝑘 

where 𝑤𝑤𝑚𝑚 is the weight assigned to t



he 𝑚𝑚𝑝𝑝ℎ sample, 𝑚𝑚𝑚𝑚 is the residual of the 𝑚𝑚𝑝𝑝ℎ sample, 

and 𝑘𝑘 is the tuning constant. If the absolute value of the residual is less than ’k’ we set the 

weight to 1, else the calculation mentioned in (4.1) is performed. The final estimate of the 

parameters is then computed as: 

 

𝛽𝛽ˆ = ( 𝑋𝑋𝑇𝑇𝑋𝑋 𝑋𝑋)−1 𝑋𝑋𝑇𝑇𝑋𝑋 𝑦𝑦 (4.2) 

Where 𝑋𝑋 is the design matrix, 𝑋𝑋 is the diagonal matrix of weights, and 𝑦𝑦 is the response 

variable. 

Huber regression is a more robust technique than linear regression as it allocates a lower 

weight to samples with a high residual and, therefore, would not be affected by outliers in 

the data. It is a good choice for datasets with a high degree of heteroscedasticity. 

Literature shows that non-parametric models such as SVR, random forest, and shallow 

or deep neural networks are efficacious in energy market predictions [16], which directed us 

to the next level of models. 

 
4.1.2 Support Vector Regression (SVR) 

 
Unlike linear regression, In SVR, the objective is to find the function that best fits the data 

within a certain margin, as shown in Fig. 4.1. This margin is defined by the 𝜖𝜖-tube, where 

the error between the predicted value and the actual value is contained within a certain 

threshold. 

As discussed above, SVR can deal with non-linear data; SVR has more than a couple 

of kernels that map data points to a higher dimension, and one such kernel is radial basis 

function or RBF as shown 4.3. This can calculate the euclidean distance between two feature 
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1 ||𝑤𝑤|| + 𝐶𝐶 
∑
(𝜁𝜁𝑚𝑚 + 𝜁𝜁𝑚𝑚) 

 

Figure 4.1: Visual representation of SVR 
 

vectors and thus maps them to a higher dimension using an exponential function. 

 
𝐾𝐾 (𝑥𝑥, 𝑥𝑥′ ) = 𝑚𝑚−𝛾𝛾||𝑥𝑥−𝑥𝑥

′ ||2 (4.3) 

 
The parameter 𝛾𝛾 in (4.3) controls the width of the RBF kernel. A more significant value of 

𝛾𝛾 causes a high variance model that performs poorly on test data, whereas smaller values 

result in a more biased model. We look for a balance between bias and variance. 

 
𝜖𝜖 − tube: 𝑦𝑦𝑚𝑚 − 𝑤𝑤𝑇𝑇 𝑥𝑥𝑚𝑚 − 𝑏𝑏 ≤ 𝜖𝜖 , −𝜖𝜖 − tube: 𝑦𝑦𝑚𝑚 − 𝑤𝑤𝑇𝑇 𝑥𝑥𝑚𝑚 − 𝑏𝑏 ≥ −𝜖𝜖 (4.4) 

 
 
 

𝑎𝑎 
Objective function: 2 (4.5) 2 

𝑚𝑚=1 

where 𝐶𝐶 is the regularization parameter, 𝜁𝜁𝑚𝑚 and 𝜁𝜁𝑚𝑚∗ are slack variables, 𝑤𝑤 is the weight 

vector, 𝑥𝑥𝑚𝑚 is the feature vector, 𝑦𝑦𝑚𝑚 is the target variable, 𝑏𝑏 is the bias term, and 𝜖𝜖 is the 

margin or threshold for the error represented in equation (4.4) The above equation (4.5) is 

the optimization goal for SVR. The 𝜖𝜖-tube includes the errors, and the objective function is 

the sum of the margin and the errors. The tradeoff between margin maximization and error 

decrement is controlled by a regularization pattern. As said earlier, the kernel is used for 

mapping the input to a higher dimensional, which allows the modeling of nonlinear data, the 
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𝑚𝑚
 

particular kernel used here is the Radial basis function or RBF, where the 𝛾𝛾 value is 0.01 

 
4.1.3 Tree based methods 

 
Different tree based were tested during the research-based study. They will be discussed 

below. 

 
Random Forest 

 
As the name suggests, the random forest is a collection of random trees, i.e., a decision 

tree, each of them trained on a different subset of data. Thus, it can be termed an ensemble 

learning method as shown in figure 4.6, a combination of multiple models; the models’ 

predictions are averaged, or a majority voting technique can be used. The prediction of 

random forest is as shown in equation (4.6). 
 

Figure 4.2: Visual representation of Random Forest Regression 
 

 
𝑇𝑇 

𝑦𝑦 = 𝑦𝑦ˆ (4.6) 𝑇𝑇 
𝑚𝑚=1 
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Where 𝑦𝑦ˆ𝑚𝑚 is the prediction of the i-th decision tree, and T is the number of trees in the 

forest. 

 
Gradient Boosting 

Although gradient boosting is also an ensemble learning tree method as shown in figure 4.7, 

it differs from the random forest. It has numerous trees, and each of them tries to correct or 

decrement the error that is made by the previous tree, it is mathematically shown in equation 

(4.7). 
𝑇𝑇 

𝑦𝑦ˆ = 𝑓𝑓0 𝑥𝑥 𝑓𝑓𝑚𝑚 𝑥𝑥 (4.7) 
𝑚𝑚=1 

Where 𝑓𝑓𝑚𝑚 (𝑥𝑥) is the prediction of the i-th decision tree, and T is the number of trees in the 

ensemble. 
 

Figure 4.3: Visual representation of Gradient Boosting 
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XGBoost 
 

When dealing with more extensive datasets and high dimensional data feature space, XG 

boost is used. It uses a technique called tree pruning that reduces the size of the decision tree, 

which makes the algorithm prone to overfitting; it is called an optimized version of gradient 

boosting due to its ability to deal with larger datasets, below in figure 4.4, it architecture is 

shown 
 

Figure 4.4: Visual representation of XG Boost 

 
 

LightGBM 
 

Another optimization strategy for gradient boosting is lightGBM, it reduces the size of 

the decision tree using a technique that is based on histograms. Likewise, this optimized 

implementation is prone to overfitting and is more efficient. 

 
4.1.4 Artifical neural networks 

 
Artificial neural networks (ANN) perform better than standard machine learning algorithms 

on larger datasets. However, their training is computationally more expensive, followed by 

numerous parameter tuning. ANNs can divide into feedforward and recurrent networks 

(RNNs). The former does not have feedback loop(s) but can act as a (memoryless) function 

approximator. An ANN composes of layers of interconnected artificial neurons, also called 

nodes. Each node in an ANN is connected to several other nodes and is responsible for 
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performing a simple computation. The output of each node passes as input to the next layer. 

There are several types of ANNs, but feedforward networks are the most common. In a 

feedforward network, information flows in only one direction, from the input layer to the 

output layer, without looping back. 

The main building block of an ANN is the artificial neuron, a mathematical model of a 

biological neuron. A single artificial neuron receives input from other neurons, processes the 

input, and produces an output. A mathematical function processes input called an activation 

function. Some examples of activation functions are sigmoid, ReLU, and tanh. 

When designing an ANN, one needs to decide 
 

• The architecture 
 

• Number of hidden layers, and the number of neurons per each layer 
 

• Type of activation function 
 

• Regularization 
 

• Loss function type 
 

• Performance metric 
 

Literature suggests that single and double-layered neurons are the most commonly used 

networks for price forecasting, and are results align with this fact by using the mean absolute 

error (MAE) as the evaluation metric. The results of the experiments showed that the 

double-layered network had a lower MSE and performed better than the single-layered 

network, highlighting the importance of using more complex and robust models for grid 

congestion price forecasting. 

Different activation functions, such as ELU, SELU, and Softplus, were also tested on the 

ANNs. The results showed that using these new activation functions improved the model’s 

performance. 
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ELU (Exponential Linear Unit) 

ELU (Exponential Linear Unit) is an activation function that is defined by the following 

equation (4.8): 
 

𝑓𝑓 (𝑥𝑥) = 


𝑥𝑥 (𝑥𝑥 > 0) 

𝛼𝛼 ∗ (𝑚𝑚𝑥𝑥 − 1) (𝑥𝑥 ≤ 0) 

 
(4.8) 

Where x is the input to the neuron


and 𝛼𝛼 is a hyperparameter. The value of 𝛼𝛼 is usually 

set to 1. The main advantage of the ELU activation function is that it helps to alleviate the 

vanishing gradient problem by allowing negative inputs to the activation function to take on 

negative values. 

 
SELU (Scaled Exponential Linear Unit) 

 
SELU (Scaled Exponential Linear Unit) is an activation function that is defined by the 

following equation (4.9) 
 

 
𝑓𝑓 (𝑥𝑥) = 


𝜆𝜆𝑥𝑥 (𝑥𝑥 > 0) 

𝜆𝜆𝛼𝛼 ∗ (𝑚𝑚𝑥𝑥 − 1) (𝑥𝑥 ≤ 0) 

 
(4.9) 

Where 𝑥𝑥 is the input to the neuron



, 𝛼𝛼 is a hyperparameter, and 𝜆𝜆 is a scaling factor. The 

value of 𝛼𝛼 is usually set to 1. The main advantage of the SELU activation function is that it 

helps to alleviate the vanishing gradient problem, and it also helps to maintain the mean 

and variance of the activation’s close to 0 and 1, respectively, which allows the network to 

maintain good performance even when it has a large number of layers. 

 
Softplus 

 
Softplus is an activation function that is defined by the following equation (4.10) 

 
𝑓𝑓 (𝑥𝑥) = 𝑙𝑙𝑎𝑎(1 + 𝑚𝑚𝑥𝑥) (4.10) 
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𝑝𝑝 

1 

2 

𝑚𝑚𝑝𝑝 

Where 𝑥𝑥 is the input to the neuron. The main advantage of the Softplus activation 

function is that it is smooth and differentiable, and it also has a positive output range, which 

makes it suitable for use in networks that output positive values. 

The research was carried out and we came across a few optimizers AdamW, Ranger, 

and Lookahead, that were tested to evaluate their effectiveness in training the ANNs. It 

was found that these optimizers improved the performance of the ANNs by providing better 

convergence and generalization as compared to Adam, RMSProp, and SGD. 

 
AdamW (Adam with Weight decay) 

 
AdamW (Adam with Weight decay) is an optimization algorithm that combines the Adam 

optimizer with weight decay. It is defined by the following equations (4.11), (4.12), (4.13), 

(4.14) and (4.15) 

 
𝑚𝑚𝑝𝑝 = 𝛽𝛽1𝑚𝑚𝑝𝑝−1 + (1 − 𝛽𝛽1)𝑙𝑙𝑝𝑝 (4.11) 

 
 

𝑣𝑣𝑝𝑝 = 𝛽𝛽2𝑣𝑣𝑝𝑝−1 + (1 − 𝛽𝛽2)𝑙𝑙2 (4.12) 
 
 

�̂�𝑚 𝑝𝑝 =   𝑚𝑚𝑝𝑝  
1 − 𝛽𝛽𝑝𝑝 

(4.13) 

 

 
𝑣𝑣ˆ𝑝𝑝 =   𝑣𝑣𝑝𝑝  

1 − 𝛽𝛽𝑝𝑝 

 
(4.14) 

 
ˆ 

𝑤𝑤𝑝𝑝 = 𝑤𝑤𝑝𝑝−1 − 𝛼𝛼√
𝑣𝑣 𝑝𝑝 + 𝜖𝜖 

− 𝜆𝜆𝑤𝑤𝑝𝑝 − 1 (4.15) 

Where 𝑙𝑙𝑝𝑝 is the gradient at time step t, 𝛽𝛽1 and 𝛽𝛽2 are the exponential decay rates for the 

first and second moments, 𝛼𝛼 is the learning rate, 𝜖𝜖 is a small constant, and 𝜆𝜆 is the weight 

decay coefficient. 
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𝑝𝑝 

1 

2 

+ 𝜖𝜖 
·  ̂ (4.20) 

Ranger 
 

Ranger is an optimizer that combines the RAdam, Lookahead and Gradient Centralization 

optimizers. It is defined by the following equations (4.16), (4.17), (4.18), (4.19) and (4.20) 

 
𝑚𝑚𝑝𝑝 = 𝛽𝛽1𝑚𝑚𝑝𝑝−1 + (1 − 𝛽𝛽1)𝑙𝑙𝑝𝑝 (4.16) 

 
 
 

𝑣𝑣𝑝𝑝 = 𝛽𝛽2𝑣𝑣𝑝𝑝−1 + (1 − 𝛽𝛽2)𝑙𝑙2 (4.17) 
 
 

�̂�𝑚 𝑝𝑝 =   𝑚𝑚𝑝𝑝  
1 − 𝛽𝛽𝑝𝑝 

(4.18) 

 

 
𝑣𝑣ˆ𝑝𝑝 =   𝑣𝑣𝑝𝑝  

1 − 𝛽𝛽𝑝𝑝 

 
(4.19) 

 

𝑤𝑤𝑝𝑝 = 𝑤𝑤𝑝𝑝−1 − √
𝑣𝑣ˆ

 

 
𝛼𝛼 

𝑚𝑚𝑝𝑝 
𝑝𝑝 

Where 𝑙𝑙𝑝𝑝 is the gradient at time step t, 𝛽𝛽1 and 𝛽𝛽2 are the exponential decay rates for the first 

and second moments, 𝛼𝛼 is the learning rate, 𝜖𝜖 is a small constant to avoid division by zero, 

and 𝜆𝜆 is the weight decay coefficient. 

 
Lookahead 

 
The lookahead optimizer deals weight as fast and slow weights. The hyperparameters of the 

optimizer determine these. During each iteration, the slow weights get updated by the value 

of fast weights, giving this optimizer a lookahead property that allowing to forsee and avoid 

getting stuck in local minima It is defined by the following equations (4.21) and (4.22) 

 
𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑝𝑝 − 𝛼𝛼∇𝐿𝐿(𝜃𝜃𝑝𝑝) (4.21) 
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𝛼𝛼 𝜃𝜃𝑠𝑠𝑙𝑙𝑙𝑙𝑤𝑤 = 𝜃𝜃𝑠𝑠𝑙𝑙𝑙𝑙𝑤𝑤 − 𝑘𝑘 (𝜃𝜃𝑝𝑝 − 𝜃𝜃𝑠𝑠𝑙𝑙𝑙𝑙𝑤𝑤) (4.22) 

Where 𝜃𝜃𝑝𝑝 is the fast weights, 𝜃𝜃𝑠𝑠𝑙𝑙𝑙𝑙𝑤𝑤 is the slow weights, 𝛼𝛼 is the learning rate, and 𝑘𝑘 is the 

number of steps to look ahead. 

Regularization techniques such as Dropout and L1/L2 were also applied to the model to 

prevent overfitting. The results of these experiments showed that the use of regularization 

techniques improved the generalization of the model. 

 
4.1.5 Sequential neural networks 

 
Recurrent neural networks 

 
Recurrent neural networks (RNNs) possess feedback pathways that create dynamic systems 

with long-term memory capabilities, contrasting to feed-forward neural networks, which 

cannot handle sequential data as they only consider current inputs. One type of RNN, known 

as time delay neural networks (TDNN), also can retain a history of sequential input by 

utilizing an input-tapped delay line and a sliding window. 

Here, the input layer is represented by ’x,’ the hidden layer is represented by ’h,’ and 

the output layer is represented by ’y’. At the time ’t,’ the present input is the combination 

of ’x(t)’ and ’x(t-1)’. However, RNNs can face challenges such as the vanishing gradient 

problem, leading to poor performance. 

 
Long short-term memory networks (LSTM) 

 
Long short-term memory (LSTM) is a type of memory that is capable of storing information 

for long periods and learning complex temporal relationships. This is achieved through the 

use of memory units known as ”cell states,” which can store and transmit information across 

multiple time steps. 

An LSTM model incorporates three types of input at each time step, including the current 
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Figure 4.5: Working of RNN 
 

Figure 4.6: Structure of an LSTM 
 

input sequence, short-term input from the previously hidden state, and long-term input from 

the previous cell state. 

These inputs are processed by three gates, namely the forget gate, the input gate, and 

the output gate, all of which utilize a sigmoid layer. The forget gate determines which 

information should be kept or discarded from the previous cell state, while the input gate 

controls the amount of information stored in the cell state. Lastly, the output gate generates 

the output based on the current cell state. 

The output of an LSTM can be expressed as (4.23), where ht represents the output of 

the LSTM at time step t, 𝑥𝑥𝑝𝑝 is the input at time step 𝑝𝑝, ℎ𝑝𝑝−1 and 𝑝𝑝𝑝𝑝−1 are the short-term and 

long-term inputs, respectively, and w are the weights of the network. 

 
ℎ𝑝𝑝 = 𝐿𝐿𝐿𝐿𝑇𝑇 𝑀𝑀 (𝑥𝑥𝑝𝑝, ℎ𝑝𝑝−1, 𝑝𝑝𝑝𝑝−1, 𝑤𝑤) (4.23) 
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Stacked LSTM 
 

A stacked LSTM consists of multiple LSTM layers stacked over each other. This unique 

variant of a traditional LSTM allows us to learn and capture more complex temporal 

dependencies that may be present in the data sequence. The stacked LSTM learning goes as 

follows, within it, each LSTM layer receives input from the previous layer and learns a more 

abstract representation of the input sequence. The first layer captures low-level, and the 

proceeding layers capture complex abstractions. The reason for creating such networks is 

due to the limitation of traditional LSTM that appears to fail when dealing with longer input 

sequences leading to gradient vanishing issues. The stacked LSTM handle this issue by 

making learning more levels of abstraction, causing them to be robust to longer sequences. 

 
Convolutional neural network (CNN) 

 
The literature review suggests convolution neural networks (CNN) are highly effective 

in energy markets. The idea behind using CNN for time series forecasting is to use 

historical time steps 𝑋𝑋𝑝𝑝 as input and forecast multiple future steps or outputs represented as 

𝑌𝑌𝑝𝑝+1, 𝑌𝑌𝑝𝑝+2, ..., 𝑌𝑌𝑝𝑝+ℎ, where h is the number of steps ahead we want to forecast. The architecture 

of a convolutional neural network includes multiple convolutional 𝑓𝑓𝑝𝑝𝑙𝑙𝑎𝑎𝑣𝑣 and pooling layers 

𝑓𝑓𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙. This is followed by a fully connected or flattened layer 𝑓𝑓 𝑓𝑓 𝑝𝑝. The convolutional layers 

can capture and learn hierarchies of features from the input data. In the case of time series 

data, such layers enable the model to extract essential patterns and features from the data. 

On the other hand, the pooling layers perform dimensional reduction by extracting crucial 

elements from the convolution layer. The study uses both 1D and 2D CNNs for energy 

price forecasting. For the 1D CNN, the raw time series energy price data represented by 

𝑋𝑋𝑝𝑝 was used as input to the model. The 1D CNN architecture consisted of multiple layers 

of 1D convolutional and pooling layers, represented by 𝑓𝑓𝑝𝑝𝑙𝑙𝑎𝑎𝑣𝑣 and 𝑓𝑓𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙, followed by fully 

connected layers represented by 𝑓𝑓 𝑓𝑓 𝑝𝑝. The study used both 1D and 2D CNNs for energy 

price forecasting. For the 1D CNN, the raw time series energy price data represented by 𝑋𝑋𝑝𝑝 
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is used as input to the model. There are multiple layers of 1D convolutional and pooling 

layers, denoted by 𝑓𝑓[𝑝𝑝𝑙𝑙𝑎𝑎𝑣𝑣] and 𝑓𝑓[ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙], respectively, followed by a fully connected layer, 

designated by 𝑓𝑓[ 𝑓𝑓 𝑝𝑝]: this is the architecture of the 1D CNN. In 1D CNN, a window cycles 

over the input sequence and produces an output. It works well for univariate modeling. 

Although its performance decreases when more features are included, this can be avoided by 

changing the input to a 2D convolution window. 

The data was transformed into a 2D format for the 2D CNN by generating a grid of past 

prices. The columns represented different time lags, while the rows represented different 

prices. This allowed the analysis of patterns and correlations in the data across different time 

lags. The 2D CNN architecture also consisted of multiple layers of 2D convolutional and 

pooling layers, represented by 𝑓𝑓𝑝𝑝𝑙𝑙𝑎𝑎𝑣𝑣 and 𝑓𝑓𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 , followed by fully connected layers represented 

by 𝑓𝑓 𝑓𝑓 𝑝𝑝. The convolution layers were used to learn spatial hierarchies of features from the 

input data. The pooling layers were used to reduce the dimensionality of the data and extract 

the most significant features. 

After training both models on historical data, performance was evaluated on unseen data, 

represented by 𝑋𝑋𝑝𝑝+1 and 𝑌𝑌𝑝𝑝+1. It was found that 2D CNN performed better than 1D CNN, as 

it was able to capture the temporal correlations across different time lags represented by 

𝑓𝑓 𝑓𝑓 𝑝𝑝 ( 𝑓𝑓𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝑓𝑓𝑝𝑝𝑙𝑙𝑎𝑎𝑣𝑣 ( 𝑋𝑋𝑝𝑝 ))). 

Using both 1D and 2D CNNs allows for analyzing energy price data from different 

perspectives and generating more accurate predictions. 

 
ConvLSTM 

 
ConvLSTM combines multiple convolutional layers followed by one or more LSMT layers. 

In our case, we have used one LSTM layer and a couple of convolutional layers. It goes as 

follows, first, the convolutional layers take in the input data stream, which develops a feature 

map representing the local features in the data. This map feeds into LSTM layers with a gate 

control system to control and preserve important features over time. 
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Figure 4.7: Working of CNN 1D 
 

With layers of LSTM, a convolutional layer addition helps extract spatial features from 

the input data quite effectively. 

Concerning energy price forecasting, the proposed ConvLSTM architecture works to 

model the temporal dependencies in energy price data. The convolutional layer extracts 

spatial connections and weather patterns between nodes. The overall architecture can is 

trained using historical energy price data and makes accurate predictions of future energy 

prices. 

 
Temporal convolutional neural network (TCNN) 

 
Recent work [18] shows that CNN is more accurate on time-series datasets than other dynamic 

models such as RNN and LSTM, as CNN holds an effective weight-sharing technique that 

helps it capture non-linear features during training. As one of our contributions, a modification 

of CNN, called temporal convolutional neural network (TCNN) [19], was also tested during 

our work. Similar to LSTMs, the length of the output sequence for TCNN is the same. They 

use causal convolutions to preserve the temporal sequence and avoid data leakage from 

the future into the past. TCNNs can have a more extended memory by utilizing a larger 

receptive field through one-dimensional dilated convolutions. This convolutional operation 
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𝑙𝑙 

𝑙𝑙 

 

Figure 4.8: Working of used TCNN 
 

is given in (4.8)  
 
 

𝑥𝑥𝑝𝑝 = 𝑙𝑙 
 
𝐾𝐾∑−1 

𝑤𝑤𝑘𝑘 𝑥𝑥(𝑝𝑝−(𝑘𝑘×𝑎𝑎)) + 𝑏𝑏𝑙𝑙 
!
 

 
 
 

(4.24) 
𝑙𝑙 

𝑘𝑘=0 
𝑙𝑙  (𝑙𝑙−1) 

Here 𝑥𝑥𝑝𝑝 is the output of the neuron at position (t) in the 𝑙𝑙 − 𝑝𝑝 ℎ layer; 𝐾𝐾 is the width of the 

convolutional kernel; 𝑤𝑤𝑘𝑘 stands for the weight of position 𝑘𝑘; 𝑎𝑎 is the dilation factor of the 

convolution; and 𝑏𝑏𝑙𝑙 is the bias term. Different models are effective in learning different data 

patterns, and thus some perform better than other models fail to perform. 

 
N-beats 

 
N-BEATS is an advanced neural network architecture that can be used for direct multi-step 

energy price forecasting. It is a hybrid model that combines the strengths of both traditional 

statistical methods and neural networks. 

The architecture of N-BEATS consists of two parts: the backcast module and the forecast 

module. The backcast module is responsible for analyzing the past data to extract relevant 

features and patterns, while the forecast module uses these features to make predictions for 

the future. 

The N-BEATS model is trained using a combination of historical energy price data and 

external factors such as weather, day of the week, and holidays. The model uses the past 

data to learn patterns and relationships, and then uses these patterns to make predictions for 
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Figure 4.9: Inside N-beats 
 

the future. 

 
Attention mechanism in neural networks 

 
Attentions layers are added to sequential models to get an edge in performance. Considering 

our aim is to forecast energy prices. The attention mechanism can be mathematically 

represented as follows. Consider a time series of energy prices as sequence of input vectors 

X = [x1,x2,..,xt], where xt is the input vector at time t. Each input vector contains relevant 

features that were discussed in previous sections such has historical prices, weather data 

etc. The neural networks takes in the sequence of input vectors as X and generates hidden 

states H = [h1,h2, .., ht], ht is the hidden state at time t The hidden state summarizes the 

information from input sequence up to time t. 

To incorporate attention layer, attention weights A = [a1,a2,a3, ..,at], where 𝑎𝑎𝑚𝑚 is the 

attention weight for the input vector 𝑥𝑥𝑚𝑚. The attention weights are computed using a query 

vector, that is a learned representation of hidden states. The attention weights are computed 

as equation 4.25 

𝑎𝑎𝑚𝑚 = 𝑠𝑠𝑙𝑙 𝑓𝑓 𝑝𝑝𝑚𝑚𝑎𝑎𝑥𝑥 (𝑞𝑞.𝑇𝑇 ∗ 𝑋𝑋 ∗ 𝑥𝑥𝑚𝑚) (4.25) 

These attention weights are used to compute the weighted sum of input sequence, which 
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∑ 

is a summary vector using equation (4.26) 
 

𝑝𝑝 

𝑝𝑝 = 𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚 (4.26) 
𝑚𝑚=1 

 
The summary vector further combines with the current hidden state ℎ𝑝𝑝 to generate the 

final output, which is as follows in equation (4.27) 

 
𝑂𝑂𝑝𝑝 = 𝑙𝑙(𝑋𝑋𝑙𝑙 ·

 
𝑝𝑝 ℎ𝑝𝑝

 
) (4.27) 

Where 𝑋𝑋𝑙𝑙 is the learned weight matrix, 𝑙𝑙 is an activation function and [𝑝𝑝:ℎ𝑝𝑝] is the 

concatenation of summary vector 𝑝𝑝 and current hidden state ℎ𝑝𝑝. This output 𝑂𝑂𝑝𝑝 is used to 

predict the future prices. 

 
4.1.6 Transformers 

 
Modern literature suggest transformers to be effective in energy price forecasting. These 

models are also sequential deep learning models. The main idea behind transformer models 

is to create self attention mechanism that allows the model to obtain contextual importance 

of each element. Mentioned below are the key components of a transformer model 

 
Input Data Representation 

 
Input data is transformed such that the model can understand with techniques such as 

normalization, scaling and encoding 

 
Positional Encoding 

 
This allows model to understand the position of each element in the sequence, this give the 

model the position of an element relative to others. It can be expressed as shown in equation 

(4.28) and equation (4.29) 
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= 
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 ) 

100002𝑚𝑚/𝑎𝑎 

 
 

Figure 4.10: Transformer architecture 
 

 

PE( 𝑝𝑝𝑙𝑙𝑠𝑠,2𝑚𝑚) 

 
PE 

sin  𝑝𝑝𝑙𝑙𝑠𝑠  (4.28) 
100002𝑚𝑚/𝑎𝑎 

 

= cos 
{ 
 𝑝𝑝𝑙𝑙𝑠𝑠 

) 
(4.29) 

 

where 𝑝𝑝𝑙𝑙𝑠𝑠 is the position in the sequence and 𝑚𝑚 is the dimension. 

 
Self Attention Mechanism 

 
As told in the previous section, the self attention mechanism allows the model to inference 

the importance of each element with respect to other elements in the sequence, resulting in 

the capture of long term dependencies and relationship in the sequence. 

 
Encoder-Decoder Architecture 

 
The transformers have encoder and decoder setup, the input is fed to encoder from which 

a latent representation is given as input to a decoder which generates the output sequence. 

Mathematically it can be expressed as in equation (4.30) for encoder and equation (4.31) for 

( 𝑝𝑝𝑙𝑙𝑠𝑠,2𝑚𝑚+1) 
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where head𝑚𝑚 = Attention 
(
𝑥𝑥𝑋𝑋𝐼𝐼, 𝑥𝑥𝑋𝑋 𝐾𝐾 , 𝑥𝑥𝑋𝑋𝑉𝑉 

) 
and 𝑋𝑋𝐼𝐼, 𝑋𝑋𝐾𝐾 , and 𝑋𝑋𝑉𝑉 are learnable weight 

decoder 

 
Encoder(𝑥𝑥) = MultiHeadAttention (LayerNorm (𝑥𝑥 + PositionalEncoding(𝑥𝑥))) (4.30) 

where 𝑥𝑥 is the input sequence. 

Decoder(𝑥𝑥, 𝑧𝑧) = MultiHeadAttention (LayerNorm (𝑥𝑥 + PositionalEncoding(𝑥𝑥)) , 𝑧𝑧) 

(4.31) 

where 𝑥𝑥 is the input sequence and 𝑧𝑧 is the output of the encoder. 

 
Multi Head Attention 

 
This allows model to capture different complex relationships and patterns in data and can be 

define as follows in equation (4.32) 

 
MultiHeadAttention(𝑥𝑥) = Concat (head1, . . . , headℎ) 𝑋𝑋𝑂𝑂 (4.32) 

 
 
 

matrices. 

 
4.2 Ensemble learning 

𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 

 

In the context of energy price forecasting, ensemble learning is a powerful technique that 

can improve the performance of predictive systems by combining the predictions of multiple 

models. There are several types of ensemble learning techniques that can be applied to 

energy price forecasting, including: 

 
4.2.1 Bagging (Bootstrap Aggregating) 

 
This method involves training multiple models independently on different random subsets of 

the historical energy price data, and then combining their predictions to make a final forecast. 
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𝑀𝑀 
2
. Mathematically, it can be represented as: 𝐸𝐸ˆ𝑝𝑝 =  1 𝑀𝑀 
𝑚𝑚=1 𝐸𝐸𝑝𝑝ˆ,𝑚𝑚 

Where 𝐸𝐸ˆ𝑝𝑝 is the final predicted energy price at time step t, 𝑀𝑀 is the number of models in 

the ensemble and 𝐸𝐸𝑝𝑝ˆ,𝑚𝑚 is the predicted energy price of the m-th model at time step t. 

 
4.2.2 Boosting 

 
This method involves training multiple models sequentially, with each model focusing on 

the mistakes made by the previous model. 

 
4.2.3 Stacking 

 
This method involves training multiple models independently on the historical energy price 

data, and then using their predictions as input features for a final model that makes the final 

prediction. The benefits of ensemble learning in energy price forecasting include: 

 
4.2.4 Improved predictive performance 

 
By combining the predictions of multiple models, ensemble learning can often achieve 

better performance than any individual model in forecasting the energy prices. Reduced 

variance: Ensemble methods can help to reduce the variance of a model, which can make it 

more robust to overfitting and make better predictions. Increased interpretability: Ensemble 

methods can provide insight into which features are important for a given problem, and 

how different models are performing, which can be useful to improve the forecast models. 

Ensemble learning works by leveraging the strengths of multiple models and reducing their 

weaknesses. By combining the predictions of multiple models, the overall system is able to 

make more accurate predictions and generalize better to new data. This is particularly useful 

in cases where there is a high degree of uncertainty or where the problem is complex and 

there is no single model that performs well in forecasting the energy prices. 

Through experimentation, we found the following ensemble building method to yield 

better results: taking the minimum of stack generalization and model averaging (sum rule) 
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as the final output, as shown in Fig. 4.11 
 

Figure 4.11: Ensemble technique work flow 

 
 

4.3 Incremental learning 
 

Incremental learning is a machine learning technique that allows a model to learn new 

information without forgetting previously acquired knowledge. This is particularly useful 

in situations where data is continuously streaming and updating, such as in energy price 

forecasting. The traditional approach in machine learning is to retrain the model on the entire 

dataset whenever new data becomes available. However, this approach can be computationally 

expensive and can lead to the model forgetting previously acquired knowledge. 

Incremental learning addresses this problem by allowing the model to update its 

parameters incrementally with new data, rather than retraining on the entire dataset. This 

can be done in a number of ways, such as by fine-tuning a pre-trained model, or by using 

techniques such as elastic weight consolidation or online learning. 

In the context of energy price forecasting, incremental learning can be used to continuously 

update the model with new data, such as new prices and weather conditions. This allows 

the model to adapt to changing market conditions and improve its forecasting accuracy over 

time. Additionally, using incremental learning can also help to reduce the computational 

cost of retraining the model, which is especially important for real-time applications. 

One important thing to consider when using incremental learning is to ensure that the new 

data is representative of the underlying distribution. If the new data is significantly different 
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from the original data, it may be necessary to use techniques such as data augmentation or 

domain adaptation to ensure that the model can generalize well to the new data. 

Stack generalization combines the predictions of several models using another learner, 

known as the meta learner, which in our case is a simple two-layer neural network. In model 

averaging, the predictions of several models are averaged and used as the final forecast. 

We also found the use of incremental or online learning beneficial. Incremental learning 

improved our results, and reduced concept drift as market patterns change, helping with 

unlearning some old patterns. Our final model predicts the first six months of 2021 using 

incremental learning. Our incremental learning proceeds as follows: we predict the first 

month, then include the first month in training, predict the second month, and so on. 

 
4.3.1 Model Optimization 

 
To trickle down the performance from our models, we use a combination of optimization 

methods; Grid search and random search for parameter tuning. The grid search searches for 

the best parameters in a given parameter space, while the random search pulls out samples 

of random parameter values from a predefined distribution, making it expensive to deploy 

compared to the grid search. After evaluating various machine learning models, we found 

that the Random Forest model performed the best on our energy price forecasting task. 

Specifically, we used the following equation (4.33) to determine the best set of parameters 

for the Random Forest model: 

 
Best Parameters = arg max Score 𝑓𝑓𝜃𝜃, 𝐷𝐷 (4.33) 

𝜃𝜃∈Θ 

Where 𝜃𝜃 represents the model’s parameters, Θ represents the set of all possible parameter 

values, 𝑓𝑓𝜃𝜃 represents the Random Forest model with parameters 𝜃𝜃, and 𝐷𝐷 represents the 

dataset used for evaluation. The results of our experiments showed that the combination of 

Grid Search and Random Search is a powerful technique for parameter tuning and can lead 

to improved performance on energy price forecasting tasks. 
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𝑚𝑚, 𝑗𝑗 𝑚𝑚, 𝑗𝑗 𝑚𝑚, 𝑗𝑗 𝑚𝑚, 𝑗𝑗 𝑇𝑇 𝑁𝑁 𝑇𝑇 𝑁𝑁 

 
 
 

CHAPTER 5 

EXPERIMENTAL RESULTS 

 
 

5.1 Experimental results 
 

We implemented a direct multi-step forecast strategy (developing a separate model for each 

hour, i.e., creating 24 models). A Multi-output strategy would require a significant amount of 

data and could be harder to train. As mentioned earlier, we started with the more traditional 

techniques such as linear regression, Huber regression, SVR, and random forest regression, 

followed by shallow neural networks and deep neural networks such as LSTM, BiLSTM, 

TCNN, and 2D CNN to forecast a real-time price that is closer to the actual real-time price 

than day-ahead mark predictions in terms of mean absolute error (MAE) over 35 nodes in 

our study dataset. 

For nodal price prediction benchmarking, we compare the MAE of the expected cost 

vs. the real-time congestion cost to the day-ahead vs. real-time congestion cost at each 

node. Let 𝑁𝑁 be the number of nodes provided and 𝑦𝑦𝑚𝑚, 𝑗𝑗 , 𝑦𝑦 �̂�𝑚, 𝑗𝑗 , 𝑦𝑦 �̄�𝑚, 𝑗𝑗 be the real-time cost of 

congestion, cost from the model prediction, and the day-ahead cost in the 𝑚𝑚𝑝𝑝ℎ hour for 𝑗𝑗 𝑝𝑝ℎthe 

node, respectively. Thus the final results from a model were calculated using (5.1) 
 

𝑇𝑇 𝑁𝑁 𝑇𝑇 𝑁𝑁 
 1  ∑ ∑ 

𝑦𝑦 − 𝑦𝑦ˆ 
 2 <    1   ∑ ∑  

𝑦𝑦 − 𝑦𝑦¯ 
 2

 (5.1) 
    

Through our research, we found that scaling methods like robust and Min-Max scaling 

were effective in improving our results. Specifically, the Min-Max scaler produced the most 

𝑗𝑗 =1 𝑚𝑚=1 𝑗𝑗 =1 𝑚𝑚=1 
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significant improvement, reducing the MAE by an average of 11% across all nodes. In 
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24 Hours 

1 ∑( 𝑚𝑚 − 𝑚𝑚) 

1 ∑ 
| 𝑚𝑚 − 𝑚𝑚 | 

terms of feature selection techniques, PCA and autoencoders were the most successful. PCA 

resulted in an overall 5% reduction in MAE, while autoencoders improved it by 8%. By 

combining PCA and correlation feature selection, we were able to achieve an impressive 

13% improvement in the MAE forecast. 

Our findings indicate that SVR was the most successful model when considering all 

nodes’ results, as demonstrated in Table II. This aligns with similar observations [20] made 

in financial market time series forecasting. Furthermore, when training data is limited, SVR 

outperforms deep neural networks [21]. To account for data complexity, we developed 24 

models per node, with some hours proving more challenging to predict than others. In such 

situations, deep neural networks such as TCNN, CNN, and Bilstm outperformed SVR. The 

day-ahead market MAE was 10.35 in our dataset. We could beat that figure using stack 

generalization and model averaging and taking the minimum of the two, leading to our 

forecast MAE of 9.48, better than any single model, as seen in Table 1. 

Table 5.1: Model ensemble evaluation on test set (first six months, 2021) 
 

Input Size Model type MAE 
 Ensemble 9.482  

 Dayahead market prediction 10.35  
 

In our energy price prediction task, we applied several loss functions to evaluate the 

performance of our machine learning models. The loss functions used in our experiments 

include: 

Mean Squared Error (MSE): 
 

𝑎𝑎 
MSE = 𝑦𝑦 𝑦𝑦  2 (5.2) 𝑎𝑎 

𝑚𝑚=1 
 

Where n is the number of samples, 𝑦𝑦𝑚𝑚 is the true value, and 𝑦𝑦ˆ𝑚𝑚 is the predicted value. 

Mean Absolute Error (MAE): 
 

𝑎𝑎 
MAE = 𝑦𝑦 𝑦𝑦ˆ (5.3) 𝑎𝑎 

𝑚𝑚=1 
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𝑎𝑎 

1 ∑( ( + 𝑚𝑚) − ( + 𝑚𝑚)) 

2 

𝛿𝛿
 

𝑎𝑎 𝑦𝑦𝑚𝑚 

Mean Absolute Percentage Error (MAPE): 
 

MAPE = 100 ∑ |𝑦𝑦𝑚𝑚 − �̂�𝑦𝑚𝑚| 
 

 
(5.4) 

 

Mean Squared Logarithmic Error (MSLE): 
 

𝑎𝑎 
MSLE = 𝑙𝑙𝑙𝑙𝑙𝑙 1 𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 1 𝑦𝑦ˆ 2 (5.5) 𝑎𝑎 

 
Huber Loss: 

 
 
 

Huber Loss = 

𝑚𝑚=1 
 


 1 (𝑦𝑦𝑚𝑚 − 𝑦𝑦ˆ𝑚𝑚)2 for |𝑦𝑦𝑚𝑚 − 𝑦𝑦 𝑚𝑚 | ≤ 𝛿𝛿 

 
 
 

(5.6) 
|𝑦𝑦𝑚𝑚 − 𝑦𝑦 𝑚𝑚 | − 2 for |𝑦𝑦𝑚𝑚 − 𝑦𝑦ˆ𝑚𝑚 | > 𝛿𝛿 

In our experiments, we found th


at MAE provided the best results for our energy price 

prediction task. This is likely due to the presence of many outliers in our dataset. The Huber 

loss function, which calculates the quadratic loss up to a certain threshold and switches 

to MAE, was the second-best performing loss function. On the other hand, MSE did not 

perform well as it punishes significant errors, which is detrimental in cases such as ours with 

price spikes and significant errors. In conclusion, MAE proved to be the most suitable loss 

function for our energy price prediction task. 

 
5.2 Conclusion and Future direction 

 
In this study, we aimed to improve electricity price forecasting by investigating various 

machine learning methodologies. Our approach consisted of four stages: data imputa- 

tion, feature scaling, feature selection, and model training and selection. We found that 

improvements in any of these stages resulted in an overall improvement in forecast accuracy. 

We tested different techniques for each stage and found that Min-Max scaling and our 

proposed feature selection strategy, coupled with an ensemble of low bias high variance 

models with an input window size of 24 hours, provided the best results. In general, we 

𝑚𝑚=1 
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observed that an average SVR could outperform deep networks in certain cases, but deep 

networks performed better when SVRs faced difficulties. Additionally, we found that Yeo 

Johnson’s transformation and outlier engineering on historical prices resulted in a decrease 

in performance. These outliers are important price spikes that are critical to energy price 

forecasts. 

In the course of the thesis, various optimizers including Ranger, AdamW, and Lookahead 

were evaluated for their effectiveness in forecasting tasks. The results showed that Ranger 

outperformed the others by a small margin. Ranger is unique in that it adjusts the learning 

rate automatically during training, eliminating the need for separate learning rate scheduling. 

This makes Ranger an efficient and accurate option for training neural networks in forecasting 

tasks. 

Furthermore, we discovered that removing weekends and flagging work hours between 9 

am and 5 pm resulted in an overall improvement in forecast accuracy. However, we noted 

that the quality of the forecast decreased in 2021, with the first six months being easier to 

forecast compared to the last six months. 

Following the constructive feedback received during the thesis defense, the forthcoming 

direction of this research will concentrate on advancing the precision of the energy price 

prediction model by introducing a broader spectrum of variables, widening the dataset, and 

enhancing the machine learning methodologies employed. 

 
5.2.1 Refining the Model with Comprehensive Variables 

 
Future research will incorporate a more comprehensive set of factors into the energy price 

prediction model to increase its accuracy. These factors include event influences, and the 

impact of external events such as geopolitical tensions, natural disasters, policy changes, 

and macroeconomic fluctuations. A comparative analysis of energy prices across different 

geographical regions, urban and rural locales, and various climates will further augment the 

sophistication of the model. 
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5.2.2 Data Source Diversification 
 

The future trajectory of this research will involve diversifying the data sources used to 

enrich the prediction model. These sources will include social media data, Google Trends 

analytics, news articles, industry reports, investor behaviour, and market sentiment indicators. 

Moreover, the energy types and location-specific data will be broadened to encapsulate a 

more comprehensive understanding of the energy market dynamics. 

 
5.2.3 Machine Learning Optimization 

 
Subsequent studies will focus on refining the application of machine learning methodologies 

employed for prediction. This refinement will encompass the use of temporal time series 

prediction techniques such as Holt-Winters and Facebook Prophet. Additionally, advanced 

techniques like Graph neural networks, clustering and segmentation of the energy market, 

and deep reinforcement learning will be investigated. 

 
5.2.4 Data Preprocessing and Cybersecurity Enhancement 

 
The future scope of this research will also involve enhancing data preprocessing techniques. 

This enhancement will include noise reduction methods, strategies for handling missing or 

inconsistent data, and data augmentation using Generative Adversarial Networks (GANs). 

In parallel, the research will acknowledge the criticality of cybersecurity, incorporating 

strategies for detecting and mitigating threats to data integrity and model robustness. 

By pursuing these directives, the future trajectory of this thesis aims to refine the 

robustness and accuracy of the energy price prediction model. This pursuit is expected 

to yield a more comprehensive and dependable tool for energy price forecasting, thereby 

significantly contributing to decision-making and optimization in the energy market. 

Also in future work, we plan to investigate very short-term price forecasts. This research 

was funded by Solea Energy through CBL, an NSF IUCRC. The lead researcher, Dr. 

Derakhshani, is also a consultant for Jumio. 
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Input size Model type Average MAE over 35 Nodes 

 

 
Table 5.2: Model evaluation on the test set (first six months, 2021) 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

BiLSTM 12.031 

48 Hours 
CNN2D 11.38 

LSTM 11.92 

TCN 11.21 

NN (2-layered) 10.47 

HR 10.36 

RFR 11.13 

SVR 10.15 
BiLSTM 10.243 

24 Hours 
CNN2D 11.318 

LSTM 10.85 

TCN 10.37 

NN (2-layered) 10.479 

HR 10.26 

RFR 10.94 

SVR 10.01 
BiLSTM 11.487 

12 Hours 
CNN2D 11.756 

LSTM 12.07 

TCN 11.623 

NN (2-layered) 11.7 

HR 12.26 

RFR 11.92 

SVR 10.2 
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