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TRANSPORT CHARACTERISTICS OF AMORPHOUS SEMICONDUCTORS IN THE 

DILUTE CARRIER REGIME: A VARIABLE RANGE HOPPING TREATMENT 

 

Naseer Abdulhamid Dari, Candidate for the Master of Science Degree 

 

University of Missouri-Kansas City 

 

ABSTRACT 

 

We survey the analytical methods which are used to find the conductivity of amorphous 

solids as a function of temperature, specifically the work done by N. F. Mott and Apsley et al. 

and we point out the problems with deriving such a relationship. We then develop a self 

consistent numerical system for calculating the charge occupancy factors, and apply it to a 

specific case of amorphous boron carbide, where positional disorder is introduced by 

incorporating random shifts in the positions and orientations of icosahedral clusters of boron and 

carbon atoms in an initially pristine rhombohedral arrangement of icosahedra.  We find the 

transport characteristics to be most sensitive to the size of the icosahedral clusters relative to 

their mean separation, while it is robust with respect to disorder.  In particular, the transport 

characteristics are only mildly affected (i.e. slightly diminished) by random displacements in the 

icosahedral positions, while they do not appear to be discernibly changed in the presence of even 

significant orientational disorder. 
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CHAPTER 1 

OVERVIEW 

 

Introduction 

The physical properties of amorphous materials have been a subject that is rarely 

treated in solid state physics. The lack of long range structure in this class of materials 

is a large barrier to developing an analytical model which describes their behavior 

adequately. One of the most frequently studied physical properties of amorphous solids 

is their electrical carrier conduction behavior, specifically at low temperature ranges. 

Here, we shall review some of the more important works to arrive at an analytical 

relationship describing the conduction in amorphous solids as a function of 

Temperature. We will further show why such endeavors may not be fruitful, due to the 

character of the assumptions required to arrive at an analytical relationship, and due to 

the careless application of these relationships without careful consideration of the 

geometrical systems to which they are applied. Moreover we shall show how this 

analytical relationship leads to unreasonable results, even when they appear to match 

the experimental measured conductivity without such considerations. We then review 

an alternative method to solve this problem, and attempt to refine its methodology by 

applying the approach to a situation with strong disorder. 

In highly disordered amorphous materials, the wave functions of the various 

states within the system do not usually overlap. However, it is important to note here 

that due to the random nature of this system, it is possible that a few isolated clusters of 
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states where wave functions do overlap may appear in rare instances; however, such 

localized and isolated clusters do not alter the general behavior of the system when 

compared to the case where they do not arise. As such, we will consider a system where 

the states have a highly localized hydrogen-like wave function. In such a system, the 

conductivity will vanish at zero temperature due to the inexistence of extended states as 

they will allow non-zero conductivity at zero Kelvin due to not requiring thermal 

activation energy.  

Mott’s Model of Conductivity in Amorphous Materials 

One of the most widely known and applied models of conductivity in 

amorphous materials is one advanced by N.F. Mott [1]. In his original paper, Mott 

proposed that the conductivity in amorphous materials is proportional to the inverse of 

the fourth root of the temperature, in the low temperature regime for materials with high 

degree of disorder and localized states. The analytical relationship has been the topic of 

debate, and over the years the theoretical foundation of Mott’s derivation has been 

challenged and many attempts have been made to re-drive it more systematically. Some 

success has been made in this front. The mathematically elegant treatment of N. Apsley 

and P. Huges [2] has been among the most successful, as it avoids a particularly drastic 

assumption in Motts analysis: that the hopping energy is related inversely to the cube of 

distance hopped. Here we will have an overview of the theory developed by Mott to 

describe the conduction in doped semi-conductors vis a vis the refinements made by 

Apsley et al. and others. 
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Conductivity in amorphous solids at lower temperatures follows a form which is 

closely related to impurity conduction in doped and compensated semiconductors [1]. If 

our sites are highly localized, then the conduction occurs in an energy range between 

the valance band and conduction band. Let’s assume that there are N donor levels per 

unit volume in the region between the aforementioned bands. If no acceptors are 

present, then conduction only occurs when an electron is thermally excited into the 

conduction band. However if cN acceptors are present (with c <1), then a proportion c 

of the donors will lose their electrons to an acceptor; therefore electrons can tunnel 

between various occupied donors to empty ones (see Fig. 1). 

 

 

Figure 1. A schematic rendition of the hopping region in semi-conductors 

 

 At liquid helium temperature this is the dominant conduction mechanism, 

which requires some activation energy as pointed out by Miller and Abrahams [3]. The 

activation energy is generated from the thermal fluctuation within the structure of the 
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amorphous material. As such, as the temperature raises, the “thermally assisted 

hopping” form of conductivity increases, up to a certain limit (usually around room 

temperature) where this conductivity regime ceases, and gives way to other forms of 

conductivity such as trap-limited transport via intermittent excitation and to motion 

within extended states. The thermally assisted hopping process is in large measure 

mediated by the excitation of phonon modes (i.e. quantized lattice vibrations), which 

facilitate the charge transfer.  Since a detailed treatment of the phonons is materials 

specific and in principle rather complicated, we follow the custom in variable range 

hopping theoretical calculations, and operate in a generalized framework which does 

not address the hopping mechanism in a precise way. 

The fundamental model we examine is a picture in which transport is mediated 

by hops from occupied to unoccupied sites where the probability of a jump to occur 

between two sites with the spatial separation r and energy separation w is assumed to 

have the form: 

 

Where α
-1 

is the attenuation length for a hydrogen-like localized wave-function, as 

consistent with our assumptions above. Now we can introduce the reduced variables 

r’ = 2αr,     w’ = w/kT 

so that 

. 



5 
 

Since in a highly amorphous material, the energy and the spatial locations of 

sites are taken to be completely uncorrelated, the spatial and the energy components of 

the probability (r’ and w’ respectively) can be combined into a single variable, the 

Range, denoted as R. therefore 

 

Here R represents the “location” of each site in the four dimensional space with three 

spatial coordinates and a single energy coordinate. The probability of success of a 

hopping attempt between two sites is therefore completely fixed by this range 

parameter, with the probability of a jump increasing monotonically with the decreasing 

range R. Conduction at a macroscopic scale is a result of many such hops, and as shorter 

hops are favored, the average nearest neighbor “distance” between the sites has a 

significant influence on the conductivity of the doped semi-conductor. 

On a heuristic basis, one might expect 

σ ~ exp [-Rnn] 

or 

ln(σ) = D( –Rnn)
 

Here Rnn is the “average nearest neighbor range” and D is a constant.  In Mott’s theory, 

the task of calculating the conduction is assumed to be reduced to the calculation of this 

quantity. In subsequent discussion we point out the serious flaws in making this 

assumption, however for now let us precede with the usual method with which this 

quantity is calculated analytically following Mott’s prescription. 
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The first task is to calculate N(R), the total number of states with the range R of 

some initial state at the Fermi level. This can be calculated by carrying out the integral: 

 

in the reduced coordinates. The low boundary for the energy difference between the 

sites is of course zero, and the maximum cannot be greater than the bandwidth gap 

between the valence and the conduction bands. The spatial integration is constrained 

between the minimum of 2αa where a is the nearest neighbor atomic spacing, and r’, 

the spatial part of the range we consider. 

We now define the number of states with ranges between R and R+dR to be 

ΔN(R) dR where 

 

Then the probability that a state with range R is the nearest neighbor in this four 

dimensional space is: 

. 

From this point on, these relationships can be applied to specific cases of 

interest, as was done by Apsley et al [2]. In that work, the treatment yields Mott’s 

relationship: 

 

without resorting to his simplifying (though fairly drastic) assumption 

The Problems Associated with Mott’s Relationship 
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Over the years, further attempts have been made to refine the derivation; 

however a few problems persist.  The majority of the problems with the analysis done 

by Mott has been pointed out in the work by J. M. Marshall and C. Main [4], and can be 

grouped in two categories: analytical problems and experimental discrepancies.  

Analytical Problems of Mott’s Treatment 

The analytical problems with Mott’s relationship lie in the very large number of 

assumptions necessary to simplify the physical situation into one which can be handled 

with a simple analytical treatment. Further, even with the simplified model, many 

anomalies arise, mainly due to the fact that Mott used a parameter, rmax , to denote the 

average hopping distance, and the radius of the sphere within which hopping occurs [4]. 

Although an effort was made by Mott to address this issue in [5], the revised 

analysis is however still incomplete; for instance it fails to account for the hops over 

various distances within the sphere [4].  

Another significant issue with the analytical solution is the consideration of the 

nearest neighbor hopping, whereas variable range hopping in principle occurs in a more 

extended scheme in which site more distant than merely the nearest neighbor may be 

accessed. It was shown in [6] that the consideration of only the nearest neighbor leads to 

inaccuracies when a computational method was attempted for the iso-energetic case. As 

the number of the nearest neighbors was increased, the accuracy of the generated data 

improved, due to the reduction in the frequency of incidence of a spurious phenomenon 

described as the “trapping of the electron”. For instance, if an electron jumps into a site 

which has a mutual nearest neighbor relationship with another, then the electron will 
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continuously jump between these two sites, and become essentially trapped, never 

straying beyond the two neighboring sites. The occurrence of this situation was 

estimated to be around 30 to 35% of the cases. While increasing the number of nearest 

neighbors does not fully eliminate this phenomenon, higher numbers reduce its 

possibility at an exponential rate. It was shown that the trapping happens at around 

about once in each 10,000 attempts when the nearest neighbor count reaches 8, which 

generates results that are very close to the experimental values. We argue that a 

theoretical model which describes conductivity must hold in iso-energetic cases and in 

cases where the energy of the sites differs. Therefore we believe that this is a further 

indication of the shortcoming of Mott’s analytical treatment as in all derivations either 

explicitly use the nearest neighbor, or implicitly lose all other neighbors in the 

averaging mechanisms which they employ. 

Experimental Discrepancies 

Significant discrepancies with empirical data can be readily seen in many 

experiments where the predicted conductivity is off by up to 20 orders of magnitude [4]. 

Moreover, in cases, where the predicted conductivity matches the experimental one, a 

more detailed analysis of the model leads to unreasonable density of states (DOS). For 

example in [7], values of DOS were calculated to be between 10
25

 and 10
28

 cm
-3

 eV
-1

 

for their various specimens of RF sputtered amorphous Group IV materials. The DOS is 

not expected to exceed 10
21

 cm
-3

 eV
-1

 as metallic conduction becomes the dominant 

form of conduction in regimes where the DOS is higher.  
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It is important to note here that we are not suggesting that the Mott’s treatment 

is wrong quantitatively. Rather we are suggesting that the issues with this model can be 

traced to its application without considering the general geometry of the amorphous 

material being studied. Further, some of the assumptions which turn out to be serious 

oversimplifications may be circumvented by using a computational method which we 

employ in our study of the transport characteristics of strongly disordered 

semiconductors. 

A salient advantage of our method is the avoidance of many of the drastic 

assumptions which plagued Mott’s treatment. All that is required here is that the Miller-

Abrahams expression to be the rate of carriers jumps between the sites. Our 

computational method is heavily reliant on the underlying geometry of the case in 

study; specifically, we will examine randomly positioned Icosahedra with random 

“radii” which are set in a tetrahedral lattice with a tunable lattice constant. The 

procedure follows in Chapter 2. 
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CHAPTER 2 

METHODOLOGY 

 

 

 

Analytical Derivation 

 

As noted above, in Apsley and Huges paper, the authors have used the average 

nearest neighbor range and used a heuristic argument about its relationship to the 

conductivity.  In what follows present and examine the implications of a derivation in 

which this assumption is not made. As we have discussed before, the range is partially 

due to the spatial variations in three dimensions, and in part due to the variation in the 

energy. Therefore we believe that considering only the average of this quantity is in 

direct conflict with the strongly disordered nature of amorphous materials and hence 

inappropriate as a method to approach this issue.  

It is important to note here that in the sections following the one dimensional 

case, we no longer attempt to derive the relationships analytically. Rather, we opt to 

arrive at the relationships which are pertinent to our implementation of the computer 

program. 

One Dimensional System 

We wish to first consider the iso-energetic, one dimensional case in the presence 

of an electric field, which will be fruitful in our later derivation. First let’s assume that 

all sites have a uniform separation, given by r (see Fig. 2). 
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Figure 2. Iso-energetic, 1-D system in the presence of an electric field. 

 

 

For this case, the probability of a jump from one site to another is given by  

                                                      P~                                                   

Where ([ℇ Δr]e) and  is the magnitude of the electric field and Δr is the special 

separation between the two sites. When w > 0 g(w)=   and g(w) = 1 when w < 0. 

Thus jumps opposite to the direction of the electric field are favored and hence the net 

current goes in the opposite direction of the electric field. If we consider the case where 

the sites have uniform separation r, then the net current in the favorable direction to the 

nearest neighbor is: 

 

Here the fi denotes the term in which we’ve packaged the chemical potential at the site i, 

and is given by: 
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 In the simplest case which we examine here, the f-factors of all sites is the same, 

thus we can write: 

 

We now want to examine the total current leaving a site to all other sites in the 

favorable direction. To do this, we must sum over all possible sites in that direction, so 

we have: 

 

Denoting as A=2αr, and noting that w  kT we can write 

 

 Using the geometric series, we can find the general expression of the above as: 

 

 

 

 

We shall only consider the terms which are no higher than first order in w, so 

now we have: 



13 
 

 

And finally we have: 

 

 Now we can relax the condition that all sites have an equal separation by 

introducing a random perturbation to the location of each site, which will induce a shift 

the chemical potential at each site. The f-factor is then given by: 

 

Where δμi represents the shift in the chemical potential in site i. As stated previously, 

we will now introduce a small perturbation to the location of each site, by letting it vary 

a small amount, given by ηi. The current in this case will be: 

 

 We can now work out the implications of charge conservation at each site, i.e. 

 

Where Φi is the flux at site i. if we consider only the nearest neighboring sites to i, we 

can write: 

] 

And 

] 

Equating the above two equations, and dividing out the e
-2αr

 we have: 
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]  = 

] 

 As before, we may simplify this expression by noting w , and substituting 

in the expression for fi we have: 

]  = 

] 

 We may further simplify this by dividing both sides by , using the same 

assumption as the one dimensional case with no disorder, which was that all sites have 

the same chemical potential. The result would be: 

]  = 

] 

 So now our task is to calculate the shifts in chemical potentials “ ”, “ ”, 

and “ ”. However, it is more convenient to solve for the  factors without 

seeking the shifts in chemical potentials directly. 

 To do this we shall make use of an iterative numerical method using a computer 

program which, given a good first choice, shall converge rapidly to the correct answer 

for the shift. An outline of the method follows. 

 From above we have: 
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And we can use the notation where the “k” superscript denotes the iteration 

number. So now we have: 

 

 Starting with an initial guess of  we can successively get a closer and 

closer approximation to the δμ. The spatial shifts, ηi, will be chosen from a normal 

distribution of width , centered about zero. This perturbation width was chosen for 

two reasons: first a shift of one tenth of a lattice constant is the Lindemann Criterion [8] 

for the shift from a lattice to an amorphous system. The second reason is that even 

though we can allow a variation of up to one half of the lattice constant without 

disturbing the order of our lattice, the larger variations will introduce instability in our 

numerical methods. Thus we chose the range between -  to  to be the range in 

which we generated our random numbers.  

Two Dimensional System: Triangular Lattice 

We can approximate the icosahedrons to spheres. In a tight packing, these 

spheres will arrange themselves in such a way, that if we were to draw lines between 

the centers of each sphere, we would see that the lines form a tetrahedral lattice. It is 

therefore of interest to visit the two and three dimensional tetrahedral lattice structures.   
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 Let us first look at the 2-D iso-energetic case, and at first, let’s not introduce any 

positional disorder in the system (see fig. 3). 

 

 

Figure 3. The 2-D Triangular Lattice. 

 

 Each site on the lattice has six nearest neighbors as well as six next nearest 

neighbors. The distance to the nearest neighbor is the lattice constant c, while the 

distance to the next nearest neighbor is . 

 As before, we attempt to calculate the current in the 2-D iso-energetic, 

unperturbed lattice when subjected to an electric field within the context of variable 

range hopping. From the symmetry of the lattice we can immediately infer that fi,j 

factors are identical at every site in the triangular lattice. Also, the symmetry of the 

lattice will enforce charge conservation automatically. Now consider an electric field 
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oriented somewhere between 0 and . Symmetry arguments tell us the magnitude of the 

current will show every possible angular variation within this  interval and repeat as 

one continues to extend the angle beyond  in the counterclockwise direction. 

 Let us examine the nearest neighbors, and see generally how to calculate the 

currents in the x and y directions. 

 where  

 

 Using the same method, one would be able to calculate the flux to each of the 

other nearest neighbors. However, we can make a much broader and more concise 

statement about the current fluxes. Consider the charge flux from a site labeled k to 

another labeled k’. The spatial hopping factor is simply  where dkk’ denotes the 

distance separating the two points. The electrical energy term is dkk’* E. if the shift in 

electric field is less than zero, then the electron is moving “downstream” and if it is 

greater than zero, then we are moving “upstream”. We shall consider each possibility in 

turn. 

 If  then 

 

Also if  then we also have: 
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Therefore we can see that, in general: 

 

Now we can find the current associated with this flux as 

 

To find the total current we must sum over each of the accessible sites, so 

therefore we have: 

 

 It is important to note here that this current is the current due to jumps to 

primary neighbors only. To find the full current one must add on the currents due to 

jump to the second and third nearest neighbors and so forth. We have done this, 

however, as the process and the results are very similar to the three dimensional case, 

we shall not review the two dimensional results here. Instead we shall visit the three 

dimensional case in greater detail. 

 As in the 1-D case, we now wish to introduce an element of disorder to the 

triangular 2-D lattice which will require a computer study. We introduce random shifts 

to the location of the sites in the triangular lattice which will result in changes to the 

charge factors fij. The machinery we develop here will be easy to generalize to more 

complicated lattices (e.g. the three dimensional FCC or tetrahedral lattice). 

 First let us calculate the current at each site assuming that the charge factors are 

known. In calculating the current, we must seek all neighbors within a specified range 
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which would typically be some multiple of the decay constant α
-1

. The charge which 

will flow between two sites will be determined first 

 Consider the site ij and i’j’. The current will be in this case 

 

Where A is a factor which will depend on fij , fi’j’ and the orientation and the strength of 

the electric field. 

 The key is to find the current relayed in each of the bonds, as we can then sum 

over these bonds for each site and divide by 2 to correct for the redundancies in the 

counting process. For example consider the bond connecting the sites ij and i’j’. 

Whether or not this move is “upstream” or “downstream” is an issue determined by the 

sign of the energy shift. We will examine both of these possibilities and obtain a 

corresponding result for the current in each case.  

 Recall that the energy shift between two sites is ([ℇ . Δr]e). First let’s consider 

the downstream case where: 

] 

] 

where  . The current is directed along the line connecting ij to i’j’ such that, for 

the downstream case we have: 

]  
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With  

 For the upstream case, the situation differs as the travel from ij to i’j’ will be 

suppressed by a thermal factor. For this case the work required for the movement of 

charge is positive. Then the expression for the current is: 

] 

So then 

]  

Where  

 We have used the Miller-Abrahams prescription to obtain these formulas for the 

upstream and downstream cases. Now we wish to find a convenient way to refer to the 

current in both cases. For the present we will deal with each case separately and our 

analysis will bifurcate accordingly. 

 Let us next record an expression for the mean current flowing through the 

system. It will be natural in the two dimensional case to operate in the terms of the 

surface current density. 

 Our system is broken up into many sites with discrete link currents. We need to 

translate this into a macroscopic result by implementing an appropriate sum. Consider 

two very narrow slices through the system. In this example, if we wish to calculate the 

total current in the x direction, say, then the slices will have to be perpendicular to the x-

axis. Due to charge conservation, the currents through each of these slices will be the 
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same or else the charge conservation is violated. We now wish to make these slices as 

narrow as possible to avoid encompassing any nodes within them. Moreover, if we 

include numerous (N) of these slices we will still obtain the same result due to current 

conservation principle, provided that we divide by the total number N of the slices. 

 So the current in the x direction will appear as: 

 

where  is the width of a slice. This expression will introduce a weighting which 

will depend on the length of each bond parallel to the x-axis. The larger the magnitude 

of the bond between two sites, the larger it’s contribution to the current. 

 Thus, our sum giving the current in the x-direction may be summed over all the 

links, and it will have the form: 

 

Similarly, the y-component is given by: 

 

And in this way, we may glean the currents with relative ease. 

 The current will depend on the fij factors for each site, and we need to calculate 

them. We will use a self-consistent procedure where we initially assume that the charge 

factors are identical up to a pre-factor fo.  
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 For each site, we will insist that the net charge flux is zero. In this manner we 

satisfy the condition for steady-state which prevents the accumulation of charge in the 

site. The flux outward will be proportional to the fij factor which we are trying to 

determine. In particular: 

 

Where x and y here denote the nearest neighbor along the respective direction, and the 

thermal factor is as determined before, and it depends on whether one is moving up 

or downstream. 

 Let us now calculate the flux more explicitly, showing the distinct contributions 

for the upstream and downstream channels of charge transport. We have: 

 

Where the first set up summations is over the upstream neighbors, and the second set of 

summation is over the downstream neighbors. we may clean up the above expression by 

introducing a function, G[x] where G[x]=1 when x > 0  and G[x]=e
-x

 for x < 0. If we 

have x << 1, we may linearize and write G[x] = 1-x. using this formulation, and 

insisting on the steady-state condition of  

 

We can solve for fij using an iterative scheme similar to the one dimensional case as: 
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The currents and other quantities needed may be calculated after a suitable level of 

convergence has been achieved. To check for such condition we will calculate a 

residual quantity that would vanish in the event of convergence. This residual term 

which will use is: 

 

Here Ns is the total number of sites in the system. For the purposes of our calculation, 

we will insist that the residual term P has fallen below one part in 10
5
 in order to 

conclude that convergence has been accomplished. The calculations in the FORTRAN 

code shall continue until P < 10
-5

. 

 One final task remains before we can fully implement this program: the 

identification of the vector  which connects the sites ij and i’j’. As mentioned 

previously, the idea is to introduce small perturbations in the x and y locations of the 

sites on the triangular lattice. Our aim is to see what happens to the current as we 

disrupt the lattice, and we will examine the effects of changing the magnitude of the 

perturbations and while considering different values of α, the length scale of the decay 

of the wave function overlap. In this scheme which we consider, the perturbed 

coordinates for the sites in the two dimensional triangular lattice will be 
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 With this information we are able to determine the distance between two sites, 

where the distance would have the form: 

 

Systems with Three Dimensions: The Tetrahedral Lattice 

 Again, for this case we use the general formula: 

 

 Let us now calculate the contribution of the primary, secondary, and tertiary 

currents to the total current. We note here that . For the vector 

displacements corresponding to the sites in the Cartesian Coordinates we shall use: 

 

Using the above equation we can systematically write the position of the 12 primary 

nearest neighbors to a site [i,j,k] by only considering the vector shifts associated with 

the new site as shown below: 
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 Now, armed with these vectors (each of length a) we may write the current due 

to the jumps to the primary neighbors as: 
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This after some algebra finally simplifies to: 
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 To find the current flow to the secondary nearest neighbors, we find that in the 

3-D case we have six such neighbors, each separated from our site of interest by a 

distance . Using the same methodology as above, we can find the vector shifts 

corresponding to each site, and then calculate the net current flow to these sites. Our 

calculations show that this current is given by: 

 

 The next step would be to find the current produced from jumps to the 18 

tertiary nearest neighbors. As the reader can see, this is a very complex task. We have 

carrier this task, and believe no additional information can be seen from writing the 

process here. It is sufficient to note that the complexity of the task lends itself very well 

to being handled numerically using a computing device, which is what we have done. 

There is one final step to our calculation. We now wish to replace each site on the 

tetrahedral 3-D lattice by an icosahedron, at which point we may introduce random 

perturbation about the distances between the icosahedra, and also randomly produce 

deformity in the icosahedra themselves by removing vertices randomly. It is pertinent 

here to have a review of the geometry of icosahedrons. 

Icosahedral Geometry 
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 In some respects our initial treatment will be an idealization. On the other hand, 

we will also endeavor to give a rigorous treatment to the geometry of Icosahedrons. 

 An icosahedron stands among platonic solids in that all sides and faces are 

identical, or congruent. Icosahedrons have 12 vertices, 30 edges, and 20 triangular 

faces. A perspective of “exploded” icosahedral geometry is given in fig. 4, which shall 

be hereafter our method of cataloging the vertices and helps to further illustrate the 

geometrical relationships among the vertices.  

 

 

 

Figure 4. The “Exploded” Icosahedron with the labeled vertices 
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 It will be convenient to operate in the spherical coordinates, where each vertex 

sits on the surface of a circumscribing sphere of radius R. as such, when we refer to the 

“radius” of the icosahedrons, we are referring to the radius of this sphere. Among other 

things, we would like to calculate R in terms of the edge length S. in addition, we would 

like to identify each of the 12 vertices in spherical coordinates. If we operate in this 

manner it would be easier to perform rotations of the icosahedral shells. We will 

separately address the points on the upper hemisphere and those on the lower 

hemisphere.  

 The upper vertices include the absolute apex, given by label 1, and the 

surrounding five points in a pentagonal arrangement as illustrated below in fig. 5. 
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Figure 5. The Arrangement of the vertices on an Icosahedron. 

 

 The apical point has the position [0,0,R]. For the surrounding points, the 

azimuthal angle between adjacent vertices is given by 

 

 It is important to note here that this angle is only the difference between the 

angles azimuthally, and it is not the full angle between the vectors drawn from the 

icosahedrons center to the corresponding vertices. We will need to be very careful in 

calculating this angle which we denote by “θI”.  

 The coordinates of the upper hemisphere are thus: 
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 Looking at the lower hemisphere, we notice that the Nadir (point 12) is 

surrounded by five points where the angular separation from the Nadir is θI, in each 

case as may be seen through symmetry arguments. Again, appealing to the icosahedral 

symmetry, we see that the adjacent points differ by exactly the same  

relationship we used in the upper hemisphere. However, it is important to note that the 

vertex 7 is offset from its upper hemisphere counterpart vertex 2 by the angle . So 

now we have for the vertex positions: 
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 Now we have the task of calculating the angle θI. We will do so by referring to 

figure 5, and noting that the nearest neighbors of site 1 are {2,3,4,5,6}. On the other 

hand sites 2 and 3 are also mutual nearest neighbors. By equating the dot products 

between the vectors associated with vertices 1 and 2 and between 2 and 3 we can 

determine this angle. So: 

 

 

This, with some algebra gives 

 

 

 If we take the positive root, then we simply obtain unity for , so we must 

take the negative root. Therefore we finally have: 

 

 With the above relationship, we can now determine the length of the edge of an 

icosahedron in terms of the radius R of the circumscribing sphere. The distance between 

points 1 and 2 is given by 
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But 

 

And with the expression found for  we find that: 

 

 

This means that the edge length and the radius of the sphere are nearly the same. Now 

we are ready to tackle the full three dimensional problem. 

 We will follow the assumption that the charge-carriers move very rapidly among 

the sites on the same Icosahedron and the jumps from one Icosahedron to another is 

much less frequent. We shall center an s-orbital on each vertex of the Icosahedron. As 

such we will take  or  which leads to realm of the influence of each 

icosahedron extending another half radius beyond the circumscribing sphere. Now we 

place each icosahedron on the points of a three dimensional tetrahedral lattice. The task 

is now to calculate the overlap integral among two neighboring icosahedra as a function 

of the distance between them. 
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The Overlap Integrals of Neighboring Icosahedra 

 Consider two icosahedra separated by a distance d. we will designate one “cage” 

by i, and the other by the label j. The wave function on the icosahedron labeled i will be 

represented by the summation: 

 

 Following a similar convention to denote the wave function for the j cage, we 

can now define the product and consequently the overlap integral as: 

 

 

 We can see that many individual terms of the overlap integral will depend only 

on the distance dik-jk’ separating the vertices of the icosahedrons. To find this distance, 

first let us examine the case where there is no difference in the orientation among the 

two icosahedra, although there is a separation of distance d between them. Then: 

 

So that 

 

Then we have 
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We note here that  we see that we have finally: 

 

 As such we can calculate these quantities which are easily handled by a 

computer. Now we wish to calculate integrals of the form: 

 

 For this purpose we use and  where ri and rj are the 

respective distances of a point in space. We can make use of the inherent azimuthal 

symmetry of the problem. If we assume that the points i and j are along the z-axis, then 

we have: 

 

 

 And now, substituting back into the above integral we have a unique situation in 

which the integrand is constant (and attains its highest value) along the line connecting 

nuclei i and j. In the case that  we have . Now let us operate in the 

cylindrical coordinates and graph the contours of constant values in the integrand. We 
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seek curves with the requirement that  where  is the difference between 

the semi-major axis and . This condition, that , is necessary and 

sufficient to define and ellipse in the ρ-z plane. This ellipse, when rotated about the z-

axis is an ellipsoid, a prolate three dimensional figure with a major axis of length 2a and 

two minor axes each of length 2b. The volume of this ellipsoid is 

 

 We need to calculate the quantities a and b. in the ρ-z plane, the cross section of 

the prolate ellipsoid is a standard ellipse with semi-major axis a and the semi-minor axis 

b. to start the calculation, we begin with the condition  and noting the 

definitions for ri and rj we square both sides of our condition and therefore: 

 

 For later convenience we do not expand the right side immediately. However, 

we should isolate the 2rirj term and then square both sides again to remove the 

remaining radicals. This leads to: 

 

 

Substituting for the r’s and with a bit of algebra, we arrive at: 

 

Diving both sides by  leads to: 
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So we see that  and  . Therefore the volume of the prolate 

ellipsoid is given by: 

 

 Now our interest is in the differential volume shift δV which accompanies an 

infinitesimal variation δє in the parameter controlling the shape of the ellipse. We may 

calculate: 

 

 The contribution of the integral form of this shell of the ellipsoid will be given 

by the expression: 

 

This yields 

 

 The above result is the full overlap integral between the sites i and j. This result 

has been carefully checked using numerical Monte Carlo integration, finding agreement 

up to a part within 100,000 or so. We shall use this result to calculate the overlap 

between Icosahedral B4C cages.  

The Rotations of the Icosahedra 
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 Finally, we must introduce a random shift in the orientation of the Icosahedra. 

To do this, we consider a set of vectors centered at the origin. We wish to rotate this 

system by an angle θ about an axis which we will label Vo.  We may break up the 

rotating vectors in two components: a parallel component which will not change 

through this rotation and a perpendicular component which will experience the rotation 

about Vo. now we wish to define for each vector a set or orthogonal axes so that: 

 

 Now we need a 3
rd

 vector which will be perpendicular to both  and . We 

can find this vector using the cross product; however we first must define  explicitly. 

Here, we can use the dot product to calculate the component of Vi parallel to Vo and 

subtract this piece from Vi. if we normalize this vector, then we would have the sought 

after component. This leads to: 

 

 Now let us consider that Vo to be the  unit vector and the  is the  unit 

vector. Then using the right hand rule to produce the correct  vector we have . 

Finally, the rotation which occurs in the  - (  plane by the angle θ produces a 

new vector given by: 
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 Using this method we can determine the new vectors under any rotations about a 

certain axis with a certain angle. This method is very easy, and can be very simply 

implemented within a program. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

Implementation of the Program 

Armed with the information in the previous chapter, we are now ready to 

proceed with implementing our code, for which we used the FORTRAN programming 

language as it is the language that the authors are most familiar with. The ultimate goal 

of this program is to be self consistent. That is to say, we would start with very few 

assumptions, and implement them in the most basic situation. We will then study the 

behavior of the results of this simple case, and successively apply it to more complex 

cases, and so on. To this end, we will start by looking at the 2-dimensional code first 

(the results of the 1-dimensional case are trivial, and do not shed much light at the 

situation).  

The Determination of an Acceptable Size of the System 

The first task is to determine the size of the system. The importance of this step 

is twofold; first, due to the periodic boundary conditions we employ, we need to make 

sure that the system is large enough such that the condition for the material to be 

amorphous is met (i.e. the lack of long range order in the structure). Second, due to the 

nature of the complex calculations in the program, we would like the system to be as 

small as possible to meet the first condition, yet not too large as to make the 

calculations extremely time consuming. 
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To this end, we looked at the convergence of the residual fluxes, which is the 

measure for the error in our system, for various system sizes, which we present in 

Graph 1. 

 

 

 

Graph1. The convergence of the residual flux for 2-D systems of various sizes. 

 

 As expected, as the number of sites increases, so too does the number of 

iterations required to achieve conservation of current. The important implication here is 

that our code achieves this conservation of current for all systems ranging from 20X20 

and up to 100X100. Therefore we need not consider very large systems for the 3-

dimentional case. Instead, we opt to test this condition for systems which range from 
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10X10X10 and up to 40X40X40 in the 3-dimensional case, the results of which are 

presented in Graph 2. 

 

 

 

Graph 2. The convergence of the residual flux for 3-D systems of various sizes 

 

 It is worth mentioning that the convergence in the 3-dimensional case happens 

faster, and sooner. This is due to the fact that our program loses some accuracy with the 

addition of the 3
rd

 dimension. Nevertheless, the residual flux converges at 10
-12

 which is 

to a good approximation equal to zero. 

The Effects of the Electric Field 

 For our study, we would like to see how the electric field would affect the flux 

of charge carriers at each point. To do this, we must find the steady state flux where no 

field is applied, and subtract this from the total flux in the presence of an electric field. 

Thus we can isolate the behavior of our system due to the electric field only. In Figure 6 
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we first have a snapshot of the jumps, or the net flux, at each point without the presence 

of the electric field: 

 

 

Figure 6. The Net flux at each site without the presence of an electric field. 
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Now, we subtract this result from the total net flux in the presence of an electric field. 

The result is shown in Figure 7. 

 

 

 

Figure 7. The net flux due to the electric field minus the flux of the steady state case. 

 



44 
 

 This is the flux-vector due purely to the electric field. The very nearly parallel 

orientation of the flux-vectors is strikingly evident in the graph, and we are now able to 

address the problem of only considering the nearest neighbor when considering the hops 

of each site. 

Consideration of the Nearest Neighbors 

 For the purpose of the determination of the effects of considering varying 

nearest neighbors, we suppress the perturbations to the orientation and to the radii of the 

icosahedrons. Thus we look at the effect of the change in the flux at each site due to 

perturbations to the lattice constant in while considering jumps to only the nearest 

neighbor, and then up to the second nearest neighbor, and so on. 

  

 

Graph 3. Perturbing the range while considering only the 1
st
 nearest neighbor. 
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Graph 4. Perturbing the range while considering up to the 2
nd

 nearest neighbor. 

 

 

 



46 
 

Graph 5. Perturbing the range while considering up to the 3
rd

 nearest neighbor. 

 From the above graphs we can see that increasing the number of nearest 

neighbors has a noticeable effect on the magnitude of the flux, which is to be expected. 

Another facet of increasing the number of nearest neighbors is that it decreases the 

sensitivity to perturbing the lattice constant. 

 Finally, we need to check the statistical integrity of our program. The code we 

used utilizes a random number generator called Mersenne twister, which has been 

regarded for a very long time as the best pseudo-random number generator (PRNG) 

available. This PRNG uses a seed value allocated by the user, and generates a sequence 

of random numbers which are the same for a given seed. This allows us to test for the 

statistical integrity of our code by running the same version of the code with different 

seeds. 

For this, we have chosen to suppress the variations in the radii and the lattice 

perturbations, and only perturb the orientation of the Icosahedra.  
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Graph 6. The test of different seed values for the PRNG. 

 As seen in graph 6, the behavior of our system is independent of the seed value 

allocated. We are now ready to run the code while considering perturbations to the 

orientation, the radii, and the lattice constant simultaneously. 

Results of the Full Icosahedral Code 

 For this part, we used a system size of 30
3
 sites, with the decay constant set to be 

equal to 1 lattice constant. Due to the extremely long time required to run this code, we 

opted to consider only the first nearest neighbor, and examine the behavior of our 

system. This constraint can be relaxed given a more powerful computing device, or 

when parallel computing is accessible. The perturbations to the lattice constant and the 

radii ranged from 0 to 0.5a, and the orientations were perturbed by a range from 0 to π.  
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Graph 7. Perturbations to the lattice constant and the radius at 0.62rad orientation shift. 

 

Graph 8. Perturbations to the lattice constant and the radius at 1.25rad orientation shift. 

 

 

 

Graph 9. Perturbations to the lattice constant and the radius at 1.88rad orientation shift. 
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Graph 10. Perturbations to the lattice constant and the radius at 2.51rad orientation shift. 

 

 

 

Graph 11. Perturbations to the lattice constant and the radius at 3.14rad orientation shift. 
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 From the previous graphs it is immediately apparent that the perturbations to the 

orientation have no effect on the magnitude of the flux. This result allows us to 

eliminate the perturbations to the orientation, and our task becomes that of varying two 

variables: the range and the radius. For this we have used the exact same system while 

suppressing the perturbation to the orientation.  

 First, we vary the radii of the icosahedrons for a given range, given in graph 12, 

and then we did the reverse, i.e. varying the range perturbation for a given radius, in 

graph 13. 

 

 

 

Graph 12. Varying the radii for a given perturbation to the lattice constant. 
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 From graph 12 we can see that the increase in the radius corresponds to an 

increase in the magnitude of the flux. This is due to the fact that larger Icosahedra are 

closer together, and therefore the possibility of a jump between two neighboring 

icosahedra increases proportionally.  

Furthermore, this effect is more pronounced with larger perturbations to the 

lattice constant. This is due to the greater possibility of larger icosahedra to intrude into 

the critical radius within which the hops are more probable. 

Now we turn our attention to the reverse case, shown in graph 13. 

  

 

 

Graph 13. Varying the perturbation to the lattice constant given a radius. 
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 The effects of the range follow the same pattern for each specified radius, 

although each value of the radius shifts the magnitude of the flux up, due to the larger 

possibility of a hop to occur with the larger icosahedra. 

 From the comparison of graphs 12 and 13 it is apparent that the jumps between 

the icosahedral cages are determined by the smallest distance between the vertices of 

neighboring icosahedra. This essentially combines the perturbations to the range and the 

radii into a single parameter which determines the conductivity behavior within this 

system. 
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CHAPTER 4 

CONCLUSION 

 

Summary 

 From the above work, we believe that we have correctly developed a numerical 

method with which to tackle the issue of conductivity in amorphous materials. We have 

applied this method to a specific system, a random collection of Icosahedral cages, and 

determined that to a large extent, the conductivity is mostly dependent on the spatial 

distance between the Icosahedral vertices of neighboring sites and is completely 

independent of the perturbations to the orientations of the cages. We find weak 

sensitivity (a slight decrease in the charge flux magnitude on the order of a few percent) 

to the translational disorder, in which the positions of the icosahedral clusters are 

perturbed.  Hence, transport characteristics appear to be largely robust with respect to 

disorder in the context of our iso-energetic variable range hopping treatment. 

Future Works 

 In the future, we wish to relax one more assumption inherent in our study above; 

which is the Iso-energetic assumption. That is, to consider a system where the energy of 

the sites vary by an integer multiple of kT.  

 Furthermore, we would also like to consider the effects of the Coulomb force on 

the hops. We suspect that this effect will play a larger role in highly populated systems, 

and may drastically change the analysis. 
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 Finally, as noted previously we believe that a simple analytical solution for this 

system exists. We wish to derive it with the full consideration of the Coulomb force. 
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