
SOCIO-CULTURAL COMMUNICATION SYSTEM – A COMMUNICATION

MECHANISM FOR MULTI-MEDIA INFORMATION ACCESS SYSTEM FOR NON-

LITERATE AND LINGUISTICALLY DIVERSE USERS

A THESIS IN

Computer Science

Presented to the Faculty of the University
of Missouri-Kansas City in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by

VENKATA RAMA KRISHNA JAMITHIREDDY

Bachelor of Technology, Andhra University, 2005

Kansas City, Missouri

2010

© 2010

VENKATA RAMA KRISHNA JAMITHIREDDY

ALL RIGHTS RESERVED

iii

SOCIO-CULTURAL COMMUNICATION SYSTEM – A COMMUNICATION MECHANISM

FOR MULTI-MEDIA INFORMATION ACCESS SYSTEM FOR NON-LITERATE AND

LINGUISTICALLY DIVERSE USERS

Venkata Rama Krishna Jamithireddy, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2010

ABSTRACT

Current Internet services are not optimal for the access of information for non-literate or

linguistically diverse users. Almost all Internet content is available only in written form and still

in a limited number of languages. However, there is a growing need to provide network services

to non-literate or linguistically diverse users. The Socio-cultural communication system (SoCCS)

is a communication mechanism for building an information access system that helps both literate

and non-literate users to access information in various media formats. SoCCS is designed using

client server architecture, isolating much of the logic from the client. This helps the client run on

a basic system of a very low end configuration with an application based on a web-browser. The

client will send the text/image/audio/video request to the request interpreter (RI) and it will then

process the request and respond with text, image, audio, or video link information. Audio/video

is streamed using a streaming server. This helps in reducing the play delay on the client side with

a low bandwidth. RI will handle the request in text/image/audio using text-to-text, text-to-speech

and speech-to-text translators. RI will also handle the client’s preference on the response i.e., the

client can choose to get the response in a text/image/audio/video format.

The SoCCS application protocol of the current design project is based on a request–

response mechanism without any limitations on the natural language, client software and

hardware requirements, and the type of request. SoCCS will accept a text or audio request and

iv

respond to the user with a text or an audio message. The unique SoCCS features are providing

the conversion from one language to another language, from one format to another format and

consider user preferences for displaying search results. In this thesis, a prototype implementation

of SoCCS is also discussed.

v

The undersigned, appointed by the Dean of School of Graduate Studies, have examined

the thesis titled “Socio-Cultural Communication System – A Communication Mechanism for

Multi-Media Information Access System for Non-literate and Linguistically Diverse Users,”

presented by Venkata Rama Krishna Jamithireddy, a candidate for the Master of Science degree,

and hereby certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Deepankar Medhi, Ph.D., Committee Chairperson

Department of Computer Science and Electrical Engineering

Kenneth Mitchell, Ph.D.

Department of Computer Science and Electrical Engineering

Yugyung Lee, Ph.D.

Department of Computer Sciences and Electrical Engineering

vi

CONTENTS

ABSTRACT ... iii

LIST OF ILLUSTRATIONS .. x

ACKNOWLEDGEMENTS ... ix

Chapter

1 BACKGROUND AND SIGNIFICANCE ... 1

1.1. Socio-Cultural Communication System ... 1

2 OVERVIEW .. 4

2.1. Requirements for SoCCS Design ... 4

2.1.1. Inclusive... 4

2.1.2. Dialectic ... 5

2.1.3. Adaptive... 5

2.1.4. Evolving... 5

2.1.5. People Sensitive ... 5

2.3. SoCCS and e-Governance .. 5

2.4. SoCCS and e-Systems .. 6

2.4.1. Population Factor ... 7

2.4.2. Mode of Access to Information ... 7

2.4.3. Priorities and Types of Information... 7

2.4.4. Content Type ... 7

3 ARCHITECTURAL AND DESIGN APPROACH... 8

vii

3.1. Architecture .. 8

3.1.1. User Agent (UA) ... 9

3.1.2. Request Interpreter .. 10

3.1.3. Translator ... 12

3.2. Possible Cases for Data Flow between Different Modules .. 13

3.2.1. Case1: Translator Responding for the User Request ... 13

3.2.2. Case2: Request Interpreter Handles the Translation Data ... 15

3.2.3. Case3: Request Interpreter Forwards the Data Handle to Translator 17

3.3. Design Algorithm ... 19

3.4. Communication between Modules ... 22

3.4.1. User Agent – Request Interpreter Communication ... 22

3.4.2. User Agent – Media Base Communication ... 24

3.4.3. Request Interpreter – Translator Communication ... 24

4 SEQUENCE DIAGRAMS FOR REQUEST HANDLING .. 26

4.1. No Translation for Request and Response ... 26

4.2. Request Translation .. 27

4.3. Response Translation ... 29

4.4. Request and Response Translation ... 30

4.5. Streaming Sequence Diagram .. 31

5 IMPLEMENTATION OF SoCCS FRAMEWORK .. 33

5.1. User Agent (UA) .. 34

viii

5.1.1. Web browser .. 34

5.1.2. Java Sonics ListenUp Applet ... 34

5.1.3. Google Virtual Keyboard .. 35

5.2. Request Interpreter (RI) ... 35

5.2.1. Web Server .. 36

5.3. Translator (TR) ... 36

5.3.1. Google Translate .. 36

5.3.2. eSpeak .. 37

5.3.3. Sphinx .. 37

5.3.4. SoX .. 37

5.4. Media Base (MB) ... 38

5.4.1. Streaming Server ... 38

5.4.1.1. Darwin Streaming Server .. 38

5.4.1.2. VideoLAN Server ... 39

5.4.1.3. Live Stream ... 39

5.4.1.4. YouTube ... 39

5.4.1.5. Unreal Media Streaming Server .. 39

6 EVALUATION.. 41

7 CONCLUSION .. 47

APPENDICES .. 49

REFERENCE LIST .. 53

ix

VITA ... 56

x

LIST OF ILLUSTRATIONS

Figure Page

1. SoCCS Block Diagram ...9

2. Translator responds to User Request ..14

3. Request Interpreter handles the Translation data..16

4. Request Interpreter forwards data handles to Translator ..18

5. SoCCS Design Work Flow Diagram ..21

6. No Request and Response Translation ...27

7. Request Translation ..28

8. Response Translation ..30

9. Request and Response Translation ...31

10. Streaming Server ..32

xi

ACKNOWLEDGEMENTS

I am indebted to Dr. Deep Medhi for his most generous assistance with this research

project. I highly appreciate his time and effort, especially for spending significant amount of time

while performing the research and documentation. I express my sincere thanks to Dr. William J

Dolla, Dr. Yugyung Lee, Prashant Sunkari, Chittibabu Ruddaraju for their assistance, time and

effort. I would also like to thank Pratima Jamithireddy, my wife, for her constant inspiration and

persistence. I would also like to acknowledge the support and guidance of my family and friends.

Finally, I would also like to thank the University of Missouri-Kansas City for providing me with

the opportunity and the resources to accomplish my master’s research.

Venkata Jamithireddy

1

CHAPTER 1

BACKGROUND AND SIGNIFICANCE

1.1. Socio-Cultural Communication System

Most of the current information access systems are targeted toward literate users that

understand at least one natural language such as English. However, a billon of world’s

population is non-literate, and hence, left out of the information society due to the lack of any

command over natural languages. This culturally diverse and information starving community

may be harnessed by developing an information access system that does not require the

command of a structured language. Such an information access system targeted toward the

information poor, including non-literate and linguistically diverse community, is referred to as

the Socio-Cultural Communication System (SoCCS). In developed countries, the non-literate and

linguistically diverse peoples have less exposure to the online services [8]. They will have less

access to information on the web about employment, health, and governance processes. Design

and implementation of SoCCS prototype framework that provides interactive reading aids to

these potential users is discussed in this project. These SoCCS information systems provide

people with access to a variety of resources, including academic, e-commerce, health and

wellness, weather, civic, economic, and agricultural information. They also help the non-literate

users to be proactive in taking preventive measures rather than reactive or curative steps during

the times of epidemic break down.

In developed countries, the information access infrastructure for mass communication,

including news media and public announcement, has already been implemented with a certain

degree of success. This is due to the availability of financial resources and a relative

homogeneity of the population. However, development of such mass communication systems in

2

highly rudimentary in developing countries due to the limited availability of financial resources,

significant linguistic diversity, and low literacy rate. Therefore, the SoCCS information system

of the current research project is targeted toward geographic regions of high socio-economic

inequality, cultural diversity, and low literacy. Such diversity, prevalent in developing countries

such as India, presents unique challenges for the development of SoCCS information systems.

Chowdhury and Medhi [1] describes eSystem as “Demographic, economic, and linguistic

diversity, coupled with the lack of coordinated efforts, give rise to a situation where the

population has varying degrees of understanding of health-related issues due to varying literacy

levels and the associated information access facilities. This may give rise to a situation where the

access and use of any Information and Communication Technologies (ICT) enablement

concerning public health gets restricted only to the literate and privileged sections of the society.

Therefore, our interest is in working towards building a SoCCS application that will benefit the

underprivileged sections of the society”.

One of the significant efforts toward the development of an information retrieval system

targeted toward the common man is the Simputer [28], which is a proprietary, low cost, and

browser enabled hand-held PC. The Simputer provides information access to both literate and

non-literate users through a browser using Information Markup Language (IML). IML is the

variant of XML and supports in development of text free interface. However, this proprietary

system limits the user experience due to its limitations in software/hardware implementations

and upgrades. In addition, the Simputer lacks the ability to evolve on the highly-variable user

requirements and system upgrades.

Google voice and text search for local languages is one of the major advancement in

taking demographic or natural language into consideration for search criteria. These Google

3

applications are considering the search string a literal and they search for that string. Google

applications will display the results if there are any results for that particular string. As many of

the local languages do not have much of the content posted on web these searches often end up

with less information or no information. SoCCS application protocol overcomes this issue by

converting information from one language to another and from one format to other. SoCCS

protocol will also consider the user preference for query response, i.e., users can choose to hear

the query results. SoCCS framework helps the non literate users to interact with computers more

easily and access the information effectively.

Therefore, the current project aims at bridging the digital divide by developing a user-

friendly and highly economical information access system that can be accessed using various

user interfaces through text, image, audio and video. The SoCCS implementation aims to limit

the cost of buying a new device for information access while isolating the system changes and

upgrades to the server side.

The SoCCS information access system of the current project was developed using client-

server architecture and the concepts of E-Systems for public health [1]. The graphical user

interface on the client side is based on a variety of concepts published previously [8, 13, 15]. The

SoCCS application design is generic to accommodate various versions of frontend designs

depending on the user community. The SoCCS application design is based on the request–

response methodology not limited by the natural language, client software/hardware

requirements, and the type of request.

4

CHAPTER 2

OVERVIEW

2.1. Requirements for SoCCS Design

A SoCCS architectural framework can be considered that would help non literate and

linguistically diverse users to access information using text free interfaces. An e-System

approach will deal with information access for non literate and linguistically diverse users [1].

According to Garai and Shadrach [7], the Public Health and General information should include

the following:

� Websites for providing awareness about the diseases

� Online libraries which help easy access of information to common man

� Online market information to check and update the current market trends

� Online training to train NGOs and other village information officers

� Web learning tools for interactive reading and information access

� E-counseling of sexual diseases to protect the privacy of the user

� Knowledge base of latest information on medical information

By considering the key concepts for developing an information access system for a

diversified country like India, the SoCCS architectural framework implementation should have

the following qualities:

2.1.1. Inclusive

India has over 300 million non-literate people, who have little access to on-line

information such as public health. A text-free User Interface (UI) can cater to need of this

population segment. The SoCCS should cater the information about general issues to the

underprivileged sections of the society.

5

2.1.2. Dialectic

When people have opposing ideas, dialectic debate will consider all the available ideas

and arrives with an idea which is acceptable to all the people. The SoCCS needs to be developed

in a diversified county like India, SoCCS design should consider different approaches and build

an eSystem which will serve large domain of users [1].

2.1.3. Adaptive

SoCCS should have the ability to be adaptive to change, innovation and technology.

SoCCS architecture needs provisions and addresses the variety in the environment for a diverse

country like India. In Dooley’s words [3], “This should be designed in the line of a complex

adaptive system that can change and shape itself according to the demands of the environment,

so that control and order become emergent, rather than pre-determined”.

2.1.4. Evolving

SoCCS should be designed to evolve with the ever changing requirement of its users and

its social conditions. It should be able to accommodate different requirement that may raise in

future.

2.1.5. People Sensitive

SoCCS for a population with diversified languages and cultures will concentrate on local

languages, literacy rate of the users. SoCCS user interface should be designed for easy

navigation and understand of its users.

2.3. SoCCS and e-Governance

Kanungo [9] defines E-governance as “the application of information and communication

technologies to transform the efficiency, effectiveness, transparency and accountability of

6

informational and transactional exchanges within government, between government and

government agencies of national, state, municipal and local levels, citizen and businesses, and to

empower citizens through access and use of information”.

The advantages of E-governance are [2]:

� Governance

• Transparency in public work

• Public participation in social and political processes

• Promotion of democratic society and its diversity

� Public Services

• Efficient governance

• Optimized services to people

• Public access and responsibility to information

• Government’s accountability for services and spending

� Management

• Managing voluminous information and data effectively

• Simplicity, efficiency, and accountability

• Online Information Services

• Secure communications

2.4. SoCCS and e-Systems

According to Chowdhury and Medhi 2010, we need to consider three different

dimensions for building an information access system for a diverse population like India.

7

2.4.1. Population Factor

We consider the primary users of SoCCS application protocol are non literates and

linguistically diverse users.

2.4.2. Mode of Access to Information

Mode of access is primarily using computers with basic configurations and handheld

devices. Web access is available in most of the places, including rural areas.

2.4.3. Types of Information

SoCCS framework will support different type of information in response to user’s

request. The types of media considered for SoCCS design are text, image, audio and video.

2.4.4. Content Type

Information is available in four formats: text, picture, audio, and video.

According to Chowdhury and Medhi [1]:

� Content: Content depending on the priority and frequency of usage

� Information type: Depending on the content we have text, image, audio and video

� Language: native languages

� Literacy: non-literate, linguistically diverse users

� User’s Interface mode: text-free, audio, video and handled device

Considering e-System for public Health and the architecture, we worked towards building a

working prototype for information access system which can serve the non-literate users and

people with linguistic diversity.

8

CHAPTER 3

ARCHITECTURAL AND DESIGN APPROACH

IN THIS CHAPTER WILL DISCUSS ABOUT THE ARCHITECTURAL AND

DESIGN OF SOCCS APPLICATION PROTOCOL.

3.1. Architecture

Considering a holistic systems approach, we took the conceptual architectural framework

of ePH system proposed by Chowdhury and Medhi [1]. SoCCS design concentrates on building

an information access system protocol that can accept requests from different user friendly text

free interfaces [8, 13, 15] and respond with the best available data.

The architectural framework has four primary functional components [1] are:

� User Agent

� Request Interpreter

� Translator

� Media base

9

3.1.1. User Agent (UA)

The User Agent is the starting point for SoCCS system. It can be a computer connected to

the web or a mobile phone. Users have the choice of entering a query (question) through a text

based interface or a voice based interface. User Agent may either have the intelligence to convert

a voice to text and send it to the Request Interpreter, or just blindly send a voice data to Request

Interpreter. The complete operational logic is isolated from UA, which helps running UA on a

10

basic computer with less processing speed and memory. It also helps isolating system

updates/upgrades from user agents which are installed in different geographic places.

The User Agent (UA) builds a request and forwards it to the Request Interpreter (RI). UA

will then receive a response from RI and depending on the content of the response; UA will

display the content or use the content to stream data from streaming server.

UA supports various MIME content types for displaying images, Unicode text etc. UA

should also support and understand user profiling like native language, preferred default content

type depending on user’s demographic location and user’s ability to read/write. UA is capable of

forwarding different content types like text, image, audio and video data to RI. These audio and

video data can sometimes be huge, so UA should be capable of doing chunked transfer. UA uses

the timeout mechanism to wait on a request sent to RI. It supports the streaming technology for

streaming audio and video data from streaming server (Media Base).It acts as a streaming client

and support these streaming protocols like http streaming, RTSP, RTMP, MMS, PNM etc.

For supporting various natural languages, UA handles Unicode data. UA displays the

natural language character strings received from RI as the response to a request sent from UA.

UA does the terminal negotiations with RI about the format it supports.

Communication between UA-RI is through HTTP 1.1 POST message. Clients which

implement HTTP Post can send data to RI and receive data from RI. The response from RI may

contain Unicode text or a streaming link for the resource. UA should be implemented to support

both decoding and displaying of content received from RI.

3.1.2. Request Interpreter

Request Interpreter serves as the broker for fetching the information requested by the

User Agent from Media Base. User agent sends request towards Request Interpreter. The

11

Request Interpreter contacts the Media Base for the requested resource. A user who can read and

write in his native language will send the request using his local language keyboard or using the

voice option. The Request Interpreter uses Translator module to convert the user request and

contacts the Media Base to provide the response to user agent. Request Interpreter is the decision

engine for providing best possible response to users when the requested information is not

present on the Media Base.

RI uses DOI to convert search requests to unique resource location. The Document

Object Identifier (DOI) System [18] is an ISO standard for identifying content objects with the

unique name assigned in the domain. DOI name will not change with time. The DOI System

provides a framework for persistent identification of the resource. When a request is received

from UA in text or audio format, RI will check if the request needs any translation. If request

needs translation then RI will pass the data to translator and receive the translated text in ASCII

format. RI will then pass the requested data to DOI for finding the data resource location. Using

Resource location it will try to get media from media base.

Incase RI does not find the exact mach for the requested resource; it will make a decision

depending on the availability of the requested message in other formats i.e., if a request is made

for a Spanish text file and the Spanish text is not present on the Media Base, RI will look for the

resource file in other language or format and try to build the Spanish version of the file using the

translator module. By doing this we can serve most of the native languages as we have good

resource for English language across the web.

RI will also try to build best possible response incase if a request resource is not present

in any of the supporting languages or formats i.e., If a request is made for video output and the

video resource is not present in the requested language, RI will try to play an audio file which is

12

having the same information. It helps in serving the communities where there are no much video

records about the diseases in their native language. By playing a alternative resource, SoCCS can

help in educating the local communities with high reliability and availability.

RI initiates the translation of data resource; RI will send the translation request with the

source file location, destination file location, destination language and resource type i.e., text or

audio. RI will receive the translation response from translator and build the response to UA using

the newly created or translated file as the resource. Translator uses the destination location for

saving the converted file.

RI will do the terminal capability negotiations with the client. If the client can only

support text data RI will send the text data instead of sending audio response. This will avoid

users getting no response if the response format is not supported by the client. RI will fall back to

the supporting formats when the requested format is not supported by the client.

3.1.3. Translator

Translator module will accept the request(s) from request interpreter for translating data

from one format to other and acknowledge the request after completing the translation.

Translator is capable of converting data from one format to other or from one language to other

language. Example: English text can be converted to Spanish, English audio can be converted to

English text and English text can be converted to English audio. Current translators can do most

of the text translations needs some more development efforts in audio to text conversion for

native languages in developing and under developed countries. RI will initiate the translation by

sending a request with the source file location, destination file location, destination language and

resource type i.e., text or audio. Up on receiving the translate request from RI, Translator will

fetch the data from media base and do the required translation. The translated data is push back

13

on to media base and a response is sent to RI with the updated resource location. RI will use this

translated resource location to build the response towards UA.

3.1.4. Media Base

Media base is the resource center for SoCCS application protocol. Data may be any

format i.e., text, pictures, audio and video. Media base can be viewed as a cluster of module

which can serve the requests coming from request interpreter. Media base consists of multiple

components like content provider, file system, database and www. Content providers can be

categorized based on media types such as text, image, audio, video for different languages. RI

will do the media lookup on the media base, which will respond with the content of the resource

if it is a response type is text otherwise media base will respond with the resource location.

3.2. Possible Cases for Data Flow between Different Modules

We first consider possibly difference ways for data flow and discuss their advantages and

disadvantages. We show UA interaction with streaming server as it is common in all the case

and we discuss its working sequence separately in different sequence diagrams.

3.2.1. Case1: Translator Responding for the User Request

Assumption: User requesting for data which needs translation at remote end (Request

Interpreter).

Request interpreter checks the media lookup response for any translations and if

translation is required, then Request Interpreter send the data to translator for translation.

Translator will do the necessary translation and sends the response directly to the User Agent as

shown in fig.3.3.

14

Pros:

� Service response time will be less.

Cons:

� Difficult to maintain the state of the request and response.

� If the same requests is made again then the process has to be repeated as the translated

data is not updated in the media source. For repeated requests it will consume lots of

process time for doing the same operations.

15

� Load on the translator will be increased because of the streaming/upload to the user

agent. (Translation is a tedious job).

3.2.2. Case2: Request Interpreter Handles the Translation Data

Request interpreter checks the media lookup response for any translations and if

translation is required, then RI sends the data to translator for translation. Translator will handle

the translation request received from RI and respond to the RI with the translated data, RI will

respond to the User agent with the translated data. In this case there is no connectivity between

Translator and Media Base as shown in fig. 3.4.

16

Pros:

� RI will have the complete state of the request at any instance.

Cons:

� In case of multimedia data the response will be delayed because of the data flow at

multiple stages i.e., Media Base to RI, from RI to Translator and from translator back to

RI.

17

� Translated data is not saved on the Media Base, which leads to translation for the every

query.

3.2.3. Case3: Request Interpreter Forwards the Data Handle to Translator

Request interpreter checks the media lookup response for any translations and if

translation is required, then RI sends the data Info to translator for translation. Translator will

connect to the Media Base and fetches the data and performs the necessary translation and writes

back the translated data back to Media Base with a new DOI and informs the RI about the new

handle. RI will respond to the UA with the newly created data handle. So, that UA can use this

handle to stream in data from the Media Base as shown in fig. 3. 5.

18

Pros:

� State of the request is maintained by RI at any instance.

� Writing translations back to Media Base will save the response time if the requests are

repeated and they need translation.

� The response time for any request will be minimized as the data flow is only in between

translator and Media Base.

19

Cons:

� RI has to wait till the translator writes back the translated data to Media Base and respond

to RI.

By considering above three cases for data flow between different modules in SoCCS

framework, we choose to implement Case3, which eliminates communication between User

Agent and Translator. By using Case3, we can handle repeated request efficiently. Request

Interpreter will have control over the state of the machine at any instance.

3.3. Design Algorithm

We now present the overall design algorithm; its flow diagram is shown in Figure 3.6.

1. User enters request information in local language or in audio format using the user

interface.

2. Request interpreter (RI) receives the request from user agent.

IF input_data_type equal to local language (Unicode)

 Then convert data using translator (text-to-text)

ELSE IF input_data_type equal to Audio

 Then convert data using translator (Speech-to-text)

ELSE

 No Translation needed.

END IF

3. Request interpreter passes the input text to Document Object Identifier module (DOI) for

resource location.

4. Check Terminal Capabilities.

20

IF Response_type NOTSUPPORT

 Response_type = fallback type;

ENDIF

5. RI queries Media base (MB) for the resource data.

IF Resource_Data

EXISTS

 IF Response_type equal to TEXT || IMAGE

 Get Resource Data from Media Base

 ELSE IF Response_type equal to AUDIO || VIDEO

 Get Resource Streaming URL

 END IF

NOT EXISTS

IF Resource_Data

EXISTS in any other language or format

Send Resource location and New DOI to translator (depending on translator capabilities,

best possible response data and type is returned). GO TO 5.1

NOT EXISTS in any other language or format

 DATA not found

ENDIF

ENDIF

6. Build response and send to User Agent

21

Receive User
input data

Need Input
Translation ?

Media Base

Save Profile

No

Query/Fetch

Translator Yes

Build
Response

Responsed to UA

Translator Yes

DOI & Decision
Engine(Term Cap)

Save
Translated

data to Media
Base

No

Need
Media

Translation

Check for Availble
data and Fall back

Build Text/
Image

response

Text/Image

Build Audio/
Video

response

Audio/Video

22

3.4. Communication between Modules

In this section we will discuss about the communication between different modules in

SoCCS.

Communication between UA – RI is based on HTTP/1.1 protocol. POST method is used

to send the data (text/Voice/Image) from UA to RI. RI will receive the request from UA and

responds back to UA with the requested data. RI is implemented as a customized Web server

which can handle data requests from UA. UA can send data request either as text or voice. Once

RI receives the request, RI will translate the request to text if the request is voice format. RI will

query Media Base for the corresponding data and if it finds the data then it will respond back to

UA with the data found in Media Base. If the requested data is not found on Media Base then RI

will send the translation request to Translator. Translator will translate the data present in Media

Base and assigns new DOI to the newly translated data and responds back to RI with the DOI. RI

will build the response and sends back to UA. Upon receiving response UA will start display text

or streaming with the streaming server using streaming protocols like RTSP.

3.4.1. User Agent – Request Interpreter Communication

We discuss about the features of HTTP 1.1 and how we are inclined towards using HTTP

1.1 for communication between User Agent and Request Interpreter in SoCCS framework.

HTTP is a stateless object-oriented and application-level protocol. The typing and

negotiation feature of HTTP can be used to negotiate user agent capabilities with request

interpreter. Client-server architecture is used between UA and RI.

HTTP uses the concept of channeling for multiple data streams. Each object holds its

own separate channel for communication purpose and all communications are done in “session

23

layer”. Channeling empowers the redirection of meta-information over same connection or

channel which plays major role when working with multimedia streaming technologies.

The User agent connects to the server and sends a user request on to the server. Data

typing and type negotiation features of HTTP can be used in SoCCS to provide the fallback data

response when the user agent does not support the response content. HTTP uses MIME Content-

Types which allows all media types and are widely accepted by most of the applications.

HTTP provides a mechanism for the client to specify the server about which language

and character set are being acceptable by the user. HTTP/1.1 supports:

� Server-driven negotiation. The request interpreter receives language and character set

user preferences from the user agent (client) in the header part and server than matches

the user preferences.

� Agent-driven negotiation. The client opts from one of the available representations that

server sends. The client then resubmits the request either automatically or with user

intervention.

HTTP has no limitation for the body of messages. It can carry any body length which

helps us in transmitting large amounts of data during audio request. The recipient always expects

to know where the message ends and only after buffering the entire message server prefers to

respond in return. Sender specifies body length in Content-Length header.

With the idea of Chunked Transfer-coding, HTTP/1.1 resolved the issue with unlimited

message bodies. The message body from sender is divided into chunks and each chunk is pre-

pended with length of the chunk. It also appends a zero length chunk to the end and the sender

uses Transfer-Encoding mechanism to explain the use of chunking. Recipient receives an alert

24

from the sender with the existence of the trailer in the form of Trailer header, which lists the set

of headers deferred until the trailer.

To sync up with the future protocols, HTTP provides an Upgrade Request header in the

message body. This provides the client an opportunity to inform a server the set of protocols that

are being supported.

3.4.2. User Agent – Media Base Communication

Once the request interpreter responds with the URI, UA will start streaming the data

using one of the streaming technologies i.e., RTSP, RTMP, MMS etc. Streaming technology will

take of the long delays of response for large amounts of data like a video response. Streaming

technology balances the goal of bandwidth limitations over the Internet which makes it more

significant.

Advantages of streaming protocol are:

� Less response time

� Eliminating content piracy

� Viewer statistics

� Quality of service

User agent must have a player which supports streaming protocols like RTSP, RTMP,

and RTP etc.

3.4.3. Request Interpreter – Translator Communication

The communication between RI and translator is based on RESTFUL architecture.

In Fielding’s words [6], “Representational State Transfer (REST)’s client–server

separation of concerns simplifies component implementation, reduces the complexity

of connector semantics, improves the effectiveness of performance tuning, and increases the

25

scalability of pure server components. Layered system constraints allow intermediaries-

proxies, gateways, and firewalls-to be introduced at various points in the communication without

changing the interfaces between components, thus allowing them to assist in communication

translation or improve performance via large-scale, shared caching. REST enables intermediate

processing by constraining messages to be self-descriptive: interaction is stateless between

requests, standard methods and media types are used to indicate semantics and exchange

information, and responses explicitly indicate cache ability”.

REST architecture consists of states and functions on remote server and are considered as

resource, each resource is identified by a unique URI on the Translator module. REST provides

easy implementation and independence of the interface against added services such as proxies,

firewalls and gateways between Request Interpreter, Translator and Media Base. REST acts as a

single interface to browser and access a service, possibly distributed on multiple translation

servers. REST uses standard formats like HTML, XML and JSON ensures compatibility.

 RI will build a HTTP GET request to the translator’s URI. The result of a request to the

Translate API is a simple JSON object.

26

CHAPTER 4

SEQUENCE DIAGRAMS FOR REQUEST HANDLING

In this chapter we will discuss about different sequence diagrams that shows how

processes operate with one another and in what order. With the above mentioned design, we will

have four different scenarios for handling requests from the User agent:

� No Translation required for Request or Response

� Translation required for the Request

� Translation required for the Response

� Translation required for Request and Response.

� Streaming media (common sequence for all the above four sequences)

4.1. No Translation for Request and Response

Client sends a request to request interpreter as a HTTP post request. RI will check

whether request data needs any translation. In this scenario there is no request translation

required and RI will query the DOI module for the resource location. RI will check the response

type. If the response type is text/image then RI will fetch the data from Media Base and build the

response. If the response type is audio/video then RI will build the response with streaming link

and responds to client with the response. Figure 4.1 shows the flow of control between modules

with time. In this scenario we consider the requested resource is present on the media base and it

needs no translation to present it to user agent. Request Interpreter also checks for the user agent

capabilities before sending response. If the client supports only text format and requested a audio

file, then RI will do a fallback the format type and respond back with a user agent supporting

format.

27

4.2. Request Translation

Client sends the request in audio/ Unicode text as a HTTP post Request. RI will receive

the request and check the translation required. RI will forward the request data to translator for

translation to text. Translator will translate the data to English text and responds to RI. RI will

input the translated text to DOI and gets the data location for this request. RI will use the data

28

location to query data from media base and in this scenario we consider that an exact resource is

found in the media base (i.e., language resource and resource format). RI will check the response

format requested by client and builds the response considering user agent capabilities as shown

in fig. 4.2

I User Agent I Request Intemreter I Media Base I

Request

Response
~------------

User Req <Unicode/Audio>

User Resp <Text/Audio>
~------------------------ -

Translate Request

Translate Response
~------------------------ I

I
I
I
I
I

Media Query
I
I
I
I
I
I
I

Media Response
~------------------------~--------------------------

Figure 4.2. Request Translation

29

4.3. Response Translation

Client sends the request in ASCII text as a HTTP post request. RI will receive the request

from client and forward the request data to DOI. DOI will respond with the information location.

If the information needs any translation from language to language or text to speech then RI will

forward data to translator. Translator will generate a new data file with the translated data and

responds with the new location. RI will use this new data location to build the response

considering the terminal capabilities as shown in fig. 4.3.

30

4.4. Request and Response Translation

Client sends the request in Unicode or in audio format as a HTTP post request. RI will

receive the request from client and check the input for translation. RI will submit the input data

to translator. Translator will respond back to RI with the translated data. This data is passed to

DOI, DOI will respond back with the data location. If the data is not present in the requested

format; RI will submit the data to translator for converting to requested format. Translator will

create a new file with the translated data and respond to the RI. RI will use the new translated

data for building the response depending on the terminal capabilities as shown in fig. 4.4.

31

User Agent Request Interpreter Translator Media Base

Request

User Req <Unicode/Audio>

Media Query

User Resp <Text/URI>

Media Response

Response

Fetch Media

Media Response

Translate Request

Translate Response

Translate Query

Translate Response

Figure 4.4. Request and Response Translation

Update Media

Update Response

4.5. Streaming Sequence Diagram

User agent receives a metafile about the resource location of the requested data from RI.

User agent will use this resource location to initiate a streaming session with the streaming server

present on the media base. User agent can use any of the streaming technologies like HTTP,

32

MMS, RTSP, PNM and RTMP for establishing and control the streaming session with the media

server and followed by a RTP or proprietary transport protocol to receive the data stream.

We consider using Real Time Streaming Protocol (RTSP) as a default network streaming

control protocol. RTSP uses TCP for communication between user agent and the request

interpreter. Real-time Transport Protocol (RTP) is used for transmission of media. Figure 4.5

shows the sequence of RTSP and RTP messages.

33

CHAPTER 5

IMPLEMENTATION OF SOCCS FRAMEWORK

This chapter discusses the implementation of SoCCS application using e-Systems

architectural framework. For building SoCCS application various open source applications are

used in different module.

We implemented SoCCS application using the SoCCS application protocol as discussed

in chapter 3 and 4. Implemented SoCCS application can be viewed as a web application which

can be accessed from any computer with web browser, micro phone, sound speakers and the

supporting software for handling audio and video devices. Client can access information by

entering text or speaking in his native language. SoCCS server which is RI will receive the

request using HTTP 1.1 and does the translation if required and pass query text to DOI for

resource location. RI will use the resource location to get the information from media base. If the

media resource is available in the format requested by SoCCS client, then RI will build the

response use text/ URI and send it to client. Otherwise RI will forward the translate request to

translator and gets the translated resource location, which is used in building the response

towards SoCCS client. Translator, up on receiving request from RI will fetch data from media

base using the resource location provided by RI and does the translation using the text to text,

text to speech or speech to text translators. Media base can be viewed as cluster of data resources

like web, content providers, data bases, SAN etc. Media is the cluster of data sources mentioned

above and viewed as a one logical entity which will serve the information requests from RI and

translator.

SoCCS server is implemented to read the changes to system using configuration file

(soccs.conf). Configuration parameters are explained in Appendix B. SoCCS supports the

34

languages supported by translation module. For the list of supported languages and there

corresponding language codes refer appendix A.

In the following sections we will discuss in detail about the four functional modules in

SoCCS application and how they were implemented using various other modules and how they

handle process inputs and generate outputs.

5.1. User Agent (UA)

UA is implemented as a web application running on a web browser. UA is capable of

displaying ASCII text, display Unicode text, display images, play audio and video. UA supports

the java applets (javasonic ListenUP [24]) and have the media player installed for playing audio

and video data. Google virtual keyboard [23] is used to input search request in local languages.

By implementing UA as a web client we isolated all the functional logic from end user. User

agent used the text free web interface concepts proposed by [8, 13, 15], which helps a non-

literate or linguistically diverse user to use SoCCS client for information access.

Applications Used for building UA are:

5.1.1. Web browser

Web browser is used to build request and display response from the server (i.e RI). Web

browser supports the HTML 5.0, java script and has plug-in(s) installed for playing audio and

video content. Ex: Google Chrome, IE, Firefox

5.1.2. Java Sonics ListenUp Applet

ListenUp [24] provides java applet for voice recording on web pages. Using ListenUp,

web users can record audio, upload and playback the audio files to the server for further

processing. It supports various compression technologies like Speex, ADPCM and ulaw .

35

5.1.3. Google Virtual Keyboard

Virtual keyboards [23] helps in entering search text in local languages. It is helpful for

users of non-Latin script-based languages. People are comfortable typing in their native local

language and virtual keyboard needs no installation. Special characters shown on the on-screen

keyboard can be entered by pressing the virtual keyboard's Alt+Ctrl and "up arrow" keys.

5.2. Request Interpreter (RI)

RI is a web server side script developed using PHP scripting language. RI is capable of

receiving the request data from UA using HTTP 1.1 and responds to UA with the requested data.

RI will check the received search request for any translations. If the search request needs

translation then RI will send the translation request to translator and uses the translated text, else

it uses the received text to forward data to DOI. DOI will read the search text and builds the

unique resource location, where the requested media can be found on the media base. RI will use

resource location to fetch the media. If the resource is available, then response is built using the

resource, else RI will get the resource location for available formats and uses these available

resource locations to generate a translated media to serve the user request. RI will forward the

available resource location and where the translated media should be placed on media base. RI

will build the user response depending on the user requested format (Default is text-free). If user

requested for a text response then resource media is used to build the response, else resource URI

is used to build the Meta data into the response. RI will also consider the user agent terminal

capabilities for building the response data. If a user requests for video data and has no video

plug-in installed on client, to decode video data, then RI builds the response as audio or image.

Application used for building RI is:

36

5.2.1. Web Server

Web Server handles requests from web browsers and responds with the requested data.

Web servers will be integrated with the PHP server and can generate the HTML code upon

execution of the PHP server script. Web server will log all the requests coming to the server in a

access log file and errors into apache_error log file. Ex: Apache web server

5.3. Translator (TR)

TR is a module which can translate data from one language to another or from one format

to another format. TR includes modules for,

� Text to Text (Google Translate), which converts text from one language to another

� Text to Speech (eSpeak), which converts text to voice

� Speech to Text (Sphinx), which converts voice to text and

� Sox to convert audio files from one format to another format.

Applications used for building TR are:

5.3.1. Google Translate

Google Translate [22] is a tool that automatically translates text from one language to

another language (e.g., Hindi to English). Google Translate, can translate text in web pages or

applications. The response from the Translate API is a JSON object. You can translate text from

one language to another language by sending an HTTP GET request to an URI on server. The

server responds with a 200 OK HTTP status code and the JSON object data.

37

5.3.2. eSpeak

eSpeak [20] is a speech synthesizer for various languages. It uses a "formant synthesis"

method, which helps in building small size language source files. eSpeak can accept input from a

file or from command prompt. It provides a shared library to make calls from other programs.

eSpeak can produce WAV file as a speech output, supports Speech Synthesis Markup

Language (SSML), and also HTML. It will translate text into phoneme codes and helps in

producing and tuning phoneme data.

5.3.3. Sphinx

Sphinx [17] is a speech recognizer, which is capable of recognizing both discrete and

continuous speech.

“Sphinx includes pluggable implementations of pre-emphasis, Hamming window, FFT,

Mel frequency filter bank, discrete cosine transform, cepstral mean normalization, and feature

extraction of cepstra, delta cepstra, double delta cepstra features. It also includes pluggable

language model support for ASCII and binary versions of unigram, bigram, trigram, Java Speech

API Grammar Format (JSGF), and ARPA-format FST grammars”.

Sphinx provides utilities like confidence scores, generating lattices and embedding

ECMA Script into JSGF tags.

Appendix C shows how to build a sample grammar using JSGF.

5.3.4. SoX

SoX [27] is an application which can convert audio files from one format to other format.

38

5.4. Media Base (MB)

MB is the storage module for SoCCS application. Media Base can be viewed as a

multiple servers performing different functionalities on each server. We implemented as a file

system which contents media categorized on language bases. Streaming server (Unreal media

server) which supports RTMP, MMS, HTTP, TCP/IP and RTP, is installed to support streaming

requests from user agent.

Applications Used for building MB are:

5.4.1. Streaming Server

Streaming server is used for streaming data onto UA. For the purpose of implementing a

streaming server in house, we tried different streaming servers and listed there advantages and

disadvantages.

� Darwin streaming server

� Video LAN server

� Live stream

� YouTube

� Unreal media streaming server

5.4.1.1. Darwin Streaming Server

Darwin Streaming Server [16], allows streaming media towards clients across the

network using the RTP and RTSP protocols. Darwin Streaming Server supports customization to

provide better response time in different networks.

39

5.4.1.2. VideoLAN Server

VLS (VideoLAN Server) and VLC (Video LAN Client) are the streaming server and

client applications which can stream MPEG-1/2/4 files, DVDs, satellite/television channels and

live videos on the network.

5.4.1.3. Live Stream

The "LIVE555 Media Server" is a streaming server which uses RTSP for streaming data

to clients. It supports media file formats like MPEG, MPEG-1 or 2, MPEG-4, DV, WAV, AMR

and AAC. The server supports multicast streaming, which enables clients to stream media

concurrently. The Live stream server will transmit its streams as RTP/UDP or RTP/TCP(and

RTCP) packets.

VLC media player, QuickTime, Amino set-top box and openRTSP are the RTSP/RTP

media clients available.

 5.4.1.4. YouTube

YouTube is an online video streaming service. Users can broadcast there videos to all the

users in YouTube. YouTube can be easily embedded to the websites.

5.4.1.5. Unreal Media Streaming Server

Unreal Media Server [29] is a media streaming server. Unreal Media Server uses TCP/IP

for streaming media towards streaming client. The server supports various media files formats.

Flash player uses RTMP protocol to stream data from media server and also supports TCP-

unicast streaming, RTP Multicast streaming and HTTP(S) unicast streaming.

 With multiple data sources available at media base, an effective catalog service helps in

identifying and fetching the data from the resource. These catalog services acts as a directory for

40

the resource mapping. By using a sophisticated catalog user requests can be serviced with most

relevant data available at different media servers available.

41

CHAPTER 6

EVALUATION

Screen shots of SoCCS application protocol implementation are shown below.

User preference Page:

42

Search Options:

Text Search:

43

Voice Search:

Text Response:

44

Audio Response:

Video Response:

45

Image Response:

SOCCS Application Performance Metrics:

SOCCS application is tested using both text and voice request interfaces against different

media formats. The average resource response time for each case is listed in Table 1 and the

number of interactions for each case is 50.

46

Table 1. -- SOCCS application performance for different types of requests.

Request Interface Test Case Process Average Response

Time (Sec)

Local Language Text
Interface (Unicode)

Requesting for
resource which is
available on the
media base in the
requested format

Input search string
conversion +

Resource search on
Media base +

Resource fetching

1.285

Local Language Text
Interface (Unicode)

Requesting for
resource which is
NOT available on the
media base in the
requested format

Input search string
conversion +

Resource search on
media base +

Available resource
location + Media

language or format
conversion +

Resource fetch

15.201

Local Language Voice
Interface

Requesting for
resource which is
available on the
media base in the
requested format

Voice to Text
conversion + Search

string Identification +
search string

conversion + Media
search + Resource

fetching

6.611

Local Language Voice
Interface

Requesting for
resource which is
NOT available on the
media base in the
requested format

Voice to Text
conversion + Search

string Identification +
Search String

conversion + Media
search on Media base
+ Available resource

location + Media
language or format

conversion +
Resource fetch

21.322

47

CHAPTER 7

CONCLUSION

Socio Cultural Communication System is an architectural design for information access

system that helps non-literates and linguistically diverse users to access information. SoCCS

application protocol is designed and implemented using e-systems architectural design

framework proposed by Chowdhury and Medhi [1].

Clients can be programmed as web applications or standalone windows applications.

 Clients communicate with server using HTTP 1.1 and use POST to transfer information from

client to server. Server will receive the query data from client and process the query. Server will

accept both text and audio requests. Server supports all MIME content types. After receiving

data request from the client, server will process the input query data using translators. Translator

module is used to convert data from one format to the other and from one language to the other

language. By converting from one format to the other, i.e., from test to audio or audio to text we

can server both literate and non-literate users. By converting text from one language to other

helps in processing the data request from a local demographic user by using the generic data

(Media Base) with the translations. Server will respond to the client or user in any of the format

i.e., text or audio. SoCCS default setting is for the non-literate users. Therefore, responses are

presented in audio format when output format is not specified. Server uses data handler module

to generate unique file address or location for a request. Using this unique address, the SoCCS

application will find the corresponding data and provides a response in the format desired by the

user. Multiple word grammar to match complex requests can be written using the advanced data

handler systems proposed in the design. Server uses this unique data address information and

finds the location of the resource and uses this data/data location and responds to the user request

48

using text messages. Additional audio or video responses will be sent using streaming

technology at user's request. Streaming link and protocol will be embedded in the response to

stream audio or video data. Client will start streaming the data using any of the default media

players using the streaming protocol specified in the response and the location of the streaming

data. Streaming server is used to serve the streaming requests from the client browser. Streaming

servers can handle multiple streaming requests at a time and allow clients to stream data from the

streaming servers. Streaming server can support different streaming protocols and serve the

client streaming request using the protocol requested by the client. SoCCS server architecture is

designed for future scale up using complex information retrieval algorithms for information

specific applications. Therefore, SoCCS application protocol developed by accomplishing this

research project will help literates, non-literates and linguistically diverse users to access useful

information that enables them to make informed choices.

Some of the challenges for designing SOCCS project

� Designing the system for a user who do not have any prior knowledge on accessing

information through computers or handheld devices.

� Communication protocols between modules should be capable of transporting large

amounts of data.

� Building a prototype with the above discussed SOCCS design using available translator

components.

49

APPENDIX A

List of all supported languages for SoCCS application

Language Language-Code

Albanian sq

Catalan ca

Croatian hr

Czech cs

Dutch nl

English en

Finnish fi

French fr

German de

Greek el

Hindi hi

Hungarian hu

Icelandic is

50

Indonesian id

Italian it

Latvian lv

Macedonian mk

Norwegian no

Polish pl

Portuguese pt

Romanian ro

Russian ru

Slovak sk

Spanish es

Swedish sv

Turkish tr

Vietnamese vi

51

APPENDIX B

SoCCS Configuration File (soccs.conf)

soccs.conf is the configuration file for SoCCS application protocol implementation.

soccs.conf can be used to retrieve language specific information by SoCCS application. Lines

which starts with ‘;;’ represents commented lines. Each section start with a language tag

embedded in [] i.e., [<language tag>]. All the available language tags is listed in Appendix A.

“Desc” parameter describes the language tag.

“Path” parameter describes the resource location for the language.

Example:

[en]

Desc = ENGLISH

Path = “Resource Location”

To add a language supported by SoCCS application, add the above three lines in configuration

file (soccs.conf) with the corresponding language tag and description values listed in Appendix

A.

Search section helps in configuring supported voice commands and their mapping with content.

Example:

[search]

one = fever

two = malaria

eight = flu

52

APPENDIX C

Sphinx Grammar

Sphinx-4 uses the Java Speech API Grammar Format (JSGF) to perform speech

recognition using a BNF-style grammar. It is used by the Java Speech API (JSAPI)

Example 1: "Hello World" grammar in JSGF

 #JSGF V1.0

 public <helloWorld> = Hello World;

Example 2: General Command request Grammar in JSGF

Grammar for commands like "malaria symptoms", "information about malaria" and "malaria

information".

 #JSGF V1.0

 public <diseaseInfo> = <startTags> <disease> <endTags>;

 <disease> = malaria | cholera;

 <startTags> = (symptoms | information) [about | of];

 <endTags> = [symptoms | information];

53

REFERENCE LIST

1. Chowdhury, R and Medhi, D.,. E-System for Public Health in India: Towards an

Architectural Framework Incorporating Illiteracy and Linguistic Diversity, in Systems

Thinking and e-Participation: ICT in the Governance of Society, edited by J. Cordoba-

Pachon and A. Ochoa-Arias, IGI Global, pp. 69--91, 2010.

2. Das, S.R. and Chandrashekhar, R. (2006). Capacity Building for E-Governance in India.

UNDP Asia-Pacific Development Information Programme. Available from

http://www.apdip.net/projects/e-government/capblg/casestudies/India-Chandrashekhar.pdf;

accessed 2 August 2009

3. Dooley, K. (1997). A complex adaptive systems model of organizational change. In

Nonlinear Dynamics, Psychology and Life Science (pp.69-97). Vol.1, No.1.

4. Eemeren, F. H. v. (2003). Anyone who has a view: theoretical contributions to the study of

argumentation. Argumentation library, v. 8. Dordrecht: Kluwer Academic. Page 92.

5. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee, T.

Hypertext Transfer Protocol -- HTTP/1.1. Available from

http://www.w3.org/Protocols/rfc2616/rfc2616.html (1999); accessed 5 August 2009.

6. Fielding, R. T. Architectural Styles and the Design of Network-based Software

Architectures. Available from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.9164&rep=rep1&type=pdf

(2000); accessed 20 June 2010.

7. Garai, A. and Shadrach, B. (2006). Processes and Appropriation of ICT in Human

Development. In Rural India: Bridging the Research and Practice Gaps. Available from

54

http://www.dgroups.org/groups/oneworld/OneWorldSA/docs/TICTEIV_pdf.pdf; accessed

August 25th 2009.

8. Goetze, M., Strothotte, T. (2001) An Approach to Help Functionally Illiterate People with

Graphical Reading Aids. Available from

http://www.dfki.de/~krueger/sg2001/schedule/goetze.pdf; accessed September 14th 2009.

9. Kanungo, V. (2004). Citizen Centric e-Governance in India: Strategies for Today, Vision for

Future. New Delhi: Society for Promotion of E-Governance. Languages of India. Available

from http://en.wikipedia.org/wiki/Languages_of_India; accessed 25 August 2009.

10. Krishnamurthy, B., Mogul, C.J., and Kristol., M.D. Key Differences

between HTTP/1.0 and HTTP/1.1. Available from http://www8.org/w8-papers/5c-

protocols/key/key.html (1999; accessed 10 January 2010

11. McTaggart, J. M. E. (1964). A commentary on Hegel's logic. New York: Russell and Russell.

12. Medhi, I., Pitti B., and Toyama K. (2005). Text-Free UI for Employment Search. In

Proceedings of Asian Applied Computing Conference. Nepal

13. Medhi, I. and R. Kuriyan, R. (2007). Text-Free UI: Prospects for

Social Inclusion. In Proceedings of International Conference on Social

Implications of Computers in Developing countries. Brazil.

14. Stump, E. (1989). Dialectic and its place in the development of medieval logic. Ithaca, N.Y.:

Cornell University Press.

15. Sunkari, P. INFOKIOSK: An Information Kiosk with Text-Free User Interface, MS Thesis,

University of Missouri-Kansas City, December 2010.

16. Advantages of Streaming Technology, Available from

http://www.videodesk.net/Streaming.aspx; accessed 20 November 2009.

55

17. CMU Sphinx - speech synthesizer, Available from http://cmusphinx.sourceforge.net/

18. [DOI] The Document Object Identifier System, http://www.doi.org/

19. Dhvani Indian language text to speech Engine, Available from

http://fci.wikia.com/wiki/Dhvani; accessed 20 August 2010

20. e-Speak, Available from http://espeak.sourceforge.net/

21. [Handle] Handle System Architecture, Corporation for National Research Initiatives,

http://www.handle.net/overviews/architecture.html

22. Google Translator, Available from http://translate.google.com/#

23. Google Virtual Keyboard, Available from

http://www.google.com/ig/directory?hl=en&num=24&url=www.gate2home.com/gate2home.

xml

24. [ListenUP] Javasonic, URL: http://www.javasonics.com/

25. LumenVox – Speech Recognition Software, Available from http://www.lumenvox.com/

26. [PHP] Wamp server. Available from http://www.wampserver.com/en/; accessed 3 November

2009.

27. Sox – Sound eXchange, Available from http://sox.sourceforge.net/

28. Simputer, Available from http://www.simputer.org/; accessed 20 August 2010

29. Unreal media server and player, Available from http://www.umediaserver.net/

30. [Unicode] Unicode Consortium, http://www.unicode.org/

56

VITA

Venkata Rama Krishna Jamithireddy was born on August 1, 1984, in Hyderabad, India.

He was graduated from Andhra University in 2005, with a Bachelors of Technology degree in

Computer Sciences.

After working as a Software Developer for Bharti Telesoft, India (2005 to 2008), he

began his Master’s program in University of Missouri, Kansas City. He was awarded Dean’s

International Computing and Engineering Award in his Master’s program. With Open Methods

scholarship he worked as a Software Intern during his Master’s program.

He is now working as a Systems Engineer for Charter Communications, St. Louis. His

experience with software design and implementation inspired him to develop SoCCS framework.

