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ABSTRACT 

 

This study explores the application of multibody modeling techniques in an attempt to 

capture the flexible behavior of biological tissues inside of a rigid body mechanics software.   To 

accomplish this, segmented multibody models of canine menisci were created and the 

parameters governing the interaction of adjacent segments were tuned to create an overall 

physiological meniscus behavior.  To this extent an experiment was designed to determine whole 

meniscus deformation under a semi-physiological loading.  Additionally, indentation testing of 

articular cartilage of the canine stifle was performed with the intent of calibrating a cartilage 

multibody model.  The meniscus testing included both sinusoidal and linear ramp loading 

profiles as well as two separate boundary conditions.  Design of Experiments was then used to 

minimize the error in the model relative to the sinusoidal trials and the ramp profiles were used 

for validation. While the method proved capable of representing the experimental behavior the 

optimized parameter sets did not correlate with each other as well as expected. 
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CHAPTER 1 

INTRODUCTION 

 

 Soft tissues in a synovial joint such as the knee provide load sharing, shock 

absorption, passive stability, and lubrication all of which are crucial for ensuring lasting joint 

health.  Models which include these soft tissue structures are able to better reproduce joint 

kinematics, loading, and analyze the impact of damage and pathological joint behavior (Guess et 

al. 2010).  Multibody (MB) mechanical modeling is a useful tool for the analysis of biological 

systems that offers an effective method for modeling body and limb level motions.  This 

methodology when combined with the rigid body assumption creates a very efficient simulation 

environment that has no difficulty in handling large displacements.   This assumption has two 

large drawbacks: it introduces errors by not allowing for deformation, and it removes the ability 

to calculate internal stress and strains.    To account for small scale deformation due to contact 

stress, many multibody modeling software permit the definition of a penalty function while 

allowing limited interpenetration of object geometries.  In biological systems this method can 

adequately describe the interaction of bone and cartilage contacts but the flexibility of many 

other soft tissue structures cannot be represented this way.  Tissues that fall into this category 

include the meniscus of the knee, ligaments, and tendons.  Previous work has demonstrated that 

a multibody model of a human meniscus consisting of a segmented geometry connected by 6 

axis spring-damper field elements can capture much of the flexible behavior and significant 

amounts of the meniscus function (Guess et al. 2010).  Previously the parameters governing the 

behavior of the 6 axis field elements were arranged to behave like a transverse isotropic material 

and the values were determined by using Design of Experiments (DOE) to tune the model’s 

error relative to a finite element (FE) model.   This work explores experimental methods for 
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determining parameters for modeling canine soft tissue and focuses on the field element 

parameters for canine menisci.   

1.1 Background of Materials 

The biological soft tissues examined in this work are canine stifle articular tibial cartilage 

and meniscus both of which are similar to all other mammalian knee tissue (Nigg and Herzog 

1999).   While the roles of these tissue are fairly well understood modeling is necessary to 

develop an understanding of the interactions in the joint and the mechanisms that may lead to 

joint degradation.   

The primary role of the meniscus is to improve tibiofemoral joint interaction and to 

increase contact area between the tibia and femur. Its anatomic and material properties allow it 

to accomplish this role through several functional mechanisms including: distributing loads to 

reduce contact pressure, joint stabilization through limited transmission of transverse loads, joint 

lubrication, and energy dissipation by absorbing shock due to its low relative compressive 

stiffness and visco/poroelastic behavior (Nigg and Herzog 1999; McCann et al. 2009).  The 

macroscopic shape and behavior of the meniscus is reinforced by the tissue level structure.  The 

wedge shape of the meniscus cross-section means that while under the typical physiological 

compressive axial load the meniscus experiences radial extrusion and enormous tensile hoop 

stresses.   This loading is supported at the tissue level by type I collagen fibers that are 

predominately orientated circumferentially (Fithian et al. 1990).  This directional sensitivity 

creates at the macroscopic level the commonly observed anisotropy of the meniscus, for the 

purpose of this work it will be treated as a transverse isotropic material(Chia and Hull 2008). 

Articular cartilage fulfills similar roles in the knee by further reducing contact stress but 

serves the additional purpose of lubricating the bearing surfaces(Sweigart et al. 2004).  While 

articular cartilage is a significantly firmer tissue then the meniscus it is only a fraction of the 
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stiffness of bone.  When healthy, two articular cartilage surfaces are near frictionless as both 

surfaces are extremely smooth and exude fluid to produce a lubricated interface.  

Microscopically this behavior is produced by the orientation and stratification of collagen fibers 

and proteoglycans inside of the tissue (Jurvelin et al. 2000).  All of the cartilage is porous and 

heavily hydrated but the superficial layer is predominantly type II collagen fibers oriented 

tangentially to the surface while the inner zones are less ordered and contain less collagen.  The 

deeper layers contain significant amounts hydrophilic proteoglycans which bind water and 

encourage reabsorption of water after the tissue has been compressed.  The overall structure of 

the cartilage is not unlike a cloth covered sponge bonded to the bone.  As it is compressed water 

is exuded through the durable outside and it can only fully return to its original state by regaining 

the lost fluid to its softer inside. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The importance of the health of biological soft tissues has been well established for 

many years.  The direct relationship of articular cartilage degradation to the extremely painful 

condition of osteoarthritis (OA), the correlation between anterior cruciate ligament (ACL) 

injuries and OA, and the relatively recent  connection of meniscus injury to initial OA symptoms 

have demonstrated that modeling these tissues is crucial to developing accurate limb level kinetic 

models (Fithian et al. 1990; Pozzi et al. 2010).  Computational models are necessary to improve 

the overall understanding of the knee by providing approximations of values that cannot be 

directly measured and giving insight to the relationships of internal joint structures.   

Previous modeling efforts have shown that it is important when constructing a knee 

model to represent the meniscus and it has been indicated that meniscus models should include 

representations of the anatomic constraints and the material nonlinearities and anisotropies.  

Typically the anisotropy of the meniscus is simplified to a cylindrical transversely isotropic 

representation with the circumferential stiffness being the dominate term. 

Knee models that benefit from including a meniscus fall into two major categories, finite 

element (FE), and rigid body models. FE models are governed by detailed geometries and 

constitutive relationships which can be solved to produce accurate reproductions of tissue and 

single organ behavior.  Adding the interactions of multiple bodies makes FE models become 

dramatically more complicated and increases the likelihood of encountering large displacements 

or deformations which FE models have difficulty handling.  Rigid body models are governed by 

constraints on bodies and if surface geometry interaction is relevant its effect is applied though 

simplified interpenetration penalty functions.  These models can easily and efficiently calculate 
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the behavior of multiple bodies that only undergo small deformations, but they are unable to 

determine behavior inside of a tissue. 

 Due to the known limitations of rigid body models few rigid multibody (MB) models 

have been created that incorporate a meniscus, the notable exception related to this work being 

the Guess et al. 2010 model which is the basis for much of the work described here (Guess et al. 

2010).  The Guess et al. 2010 model was created in MD.ADAMS 2010 and consisted of a rigid 

subject specific multibody skeleton (femur, patella, and tibia) and included deformable contacts, 

a flexible meniscus, and the major ligaments of the knee.  This model was kinetically driven and 

validated kinematically against experimentally reproduced walk cycle data from the cadaver the 

model was based on.  The addition of the meniscus to the model marginally improved 

kinematics and dramatically (32.6%) reduced the maximum contact force in the compartment 

with a healthy meniscus.    FE knee models that include a meniscus are a little more common 

due to the methods capability of capturing deformable tissue behavior.  Two examples of this 

are the models developed in Donahue et al. 2002 and Yao et al. 2006 both of these subject 

specific models were able to determine articular cartilage contact pressures and stresses while 

including the meniscus when subjecting their simulated knees to compression at fixed angles 

(Donahue et al. 2002; Yao et al. 2006).  The Donahue et al. 2002 model studied the importance 

of boundary conditions to the knee level model while the Yao et al. 2006 model used design of 

experiments (DOE) to study the effects of meniscus parameters on the deformation error of the 

meniscus.   

The meniscus models used by Donahue et al. 2002 and Yao et al. 2006 are very similar.  

Both models treated the meniscus as a transversely isotropic linearly elastic material with similar 

element size.  The Yao et al. 2006 model possessed a much more sophisticated method for 

constraining the meniscus as many of the deformation parameters that were studied were 
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dependent on the menisci’s attachments.  The Yao et al. 2006 results indicated that the meniscus 

deformation was most dependent on the ratio of the transverse to circumferential modulus, the 

modulus of the peripheral attachments and the initial strain in the horn attachments.  

Implementation of meniscus models in rigid multibody dynamic models is difficult but 

multibody tissue models have been developed and shown to perform adequately (Guess et al. 

2010).  This MB implementation consisted of a segmented meniscus model that was inserted 

into a larger previously developed knee model exhibiting multiscale modeling techniques that 

can be further expanded (Tawhai et al. 2009).  The previous model was created using human 

data and the parameters defining the effective material properties of the menisci were 

determined from comparison to a linear FE model.  The model developed in the current work is 

based off of canine data and the material properties have been determined experimentally.  The 

experiment to tune the model consisted of a unique usage of a uniaxial tester to determine whole 

meniscus deformation behavior.   

Articular cartilage of the knee/stifle is another biological soft tissue whose behavior can 

be difficult for rigid MB models.  The comparatively soft and deformable nature of the articular 

surface can be approximated using geometry based interpenetration penalty functions.  

Unfortunately the penalty function parameters cannot be directly matched to material properties, 

and a tuning procedure must be used to obtain reasonable values.  Experimental data was 

collected for this process using methods adapted from Shepherd & Seedhom 1997 and Jurvelin 

et al. 2000 (Shepherd and Seedhom 1997; Jurvelin et al. 2000).  Both experiments involve the 

small scale indentation of articular cartilage in an attempt to determine material properties. The 

Shepherd & Seedhom data was collected off of human cadavers and was performed with a 

1.5875mm radius spherical indenter. The Jurvelin data was collected on beagles (averaging 11.2 

kg) and was done in a microindentation apparatus with a plane ended 0.4mm indenter.  Both 
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models are modifications of contact theory to account for a soft material on a rigid substrate, the 

Shepherd & Seedhom model is empirically based and the Hayes et al. 1972 is physics based.  A 

limited attempt to determine the material properties of the cartilage indentation samples 

collected for this work was performed after examining the modeling methods used in Shepherd 

and Seedhom 1997 and Hayes et al. 1972.  The data collected here was unique in that it was 

canine based and performed on nearly intact articular surfaces 

Accurate modeling of biological structures to determine the structural behavior and 

environment of joint tissues is vital to the development of truly helpful knee medicine.   It has 

been demonstrated that components an individual's joint are composed of extremely specific 

geometry and material properties and that slight mismatches can produce radically unacceptable 

result.  This has been demonstrated in a canine study where meniscal allograft replacement 

operations produced end outcomes for joint health that were as severe as total menisectomies 

(Elliott et al. 2002).   With reliable modeling techniques to provide improved understanding of a 

patient's particular joint environment a healthier treatment may be determined. 
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CHAPTER 3 

METHODS 

 

3.1 Experimental Testing 

For this work an experiment was created for the tuning of rigid MB models.  This was an 

improvement over previous studies that relied on FE models that were known to exhibit some 

behavioral inaccuracies.  For the testing of the menisci a novel whole meniscus test was 

developed where the tissue experienced a semi-physiological loading, consisting of a principally 

circumferential tension and compressive loadings in other orientations.  For the cartilage the 

testing consisted of spherical indentation with an impervious indenter of 1 or 2 mm radius. 

3.1.1 Sample Preparation 

Canine stifle sample were provided by the Comparative Orthopedics Laboratory at the 

University of Missouri-Columbia.  These samples were from the contralateral legs of 23-25 kg 

mongrel canines used in their research and were considered normal.  Samples consisted of the 

distal 2-3" of the femur, the menisci, the proximal 3" of the tibia which had been sagittally 

bisected along the intercondylar notch (Figure 1).  The stifles were fully disarticulated and 

wrapped in saline soaked gauze prior to freezing for shipping and storage.   
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Figure 1.  A disarticulated canine stifle.  Femur and tibia halves (left) and menisci (right) 

 

3.1.2 Experimental Meniscus Testing 

Design of the testing fixture. As the goal was to capture the behavior of the entire 

meniscus to produce one set of macroscopic parameters, an experiment was designed with the 

objective of loading a whole meniscus in a manner similar to its natural environment. As 

previously mentioned, in vivo the collagen fibers that make up the major structural component 

of the tissue are arranged circumferentially and are loaded in tension. Simulating this loading was 

the goal of the experimental portion of this study. To accomplish this each meniscus was 

stretched over a v-block that roughly conformed to the interior side (e.g. the medial side of the 

lateral meniscus) of the meniscus. This maintained the desired tension along the circumferential 

direction, and produced some compression in the radial and axial directions.   The fixtures to 

hold the sample in the uniaxial tester and the v-block were designed in SolidWorks (Dassault 

Systemes Solidworks Corp., Concord, Ma).  The V-block was a 6 or 12mm wide block with a 

"V" shaped channel removed from one surface (Figure 2).   The v-block’s channel was created 
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from a lofted shape comprised of a series of three triangles which was then cut from the surface 

along an elliptical path. The path and dimensions of the triangles were visually estimated from 

the comparison of 3 meniscus geometries so that the three triangles approximately corresponded 

to the anterior, central, and posterior portions of the menisci. Due to receiving an incomplete 

MRI the lateral v-blocks channel was only created from 2 geometries at the central portion. The 

final V-blocks were composed of ABSplus and were produced in a Dimension bst1200es 3D 

printer with a layer resolution of 0.1". 

 

 

Figure 2.  A 3D model of the lateral meniscus v-block 

 

6 mm and 12 mm width versions of the medial and lateral v-blocks were produced to 

provide a variable boundary condition.  The goal of this was to produce two separate but related 

datasets that could be used to create a robust set of meniscus parameters that would be 

insensitive to the specific loading behavior.   

Experimental procedure.  A Bose ELF-3300 electromechanical uniaxial tester was 

used to implement this procedure and the data was collected with the Wintest (Bose, Eden 

Prairie, MN) software. After being aligned in the v-block the menisci were clamped near the 



 

11 
 

horn attachments by metal vise plates lined with sandpaper and tightened by thumbscrews 

(Figure 3).  The samples were then subjected to two different loading scenarios: a 0.2Hz 

sinusoidal load for 20s and a 5s ramp.   The loading values varied from trial to trial based on our 

confidence in the ability of the vises to hold without slipping.  For the data used here load 

profiles consisting of 8N/s (0.1N preload) ramps and sinusoidal (0.2Hz 4N to 50N) waves were 

applied.   The third canine meniscus sample (stifle 2R) was tested on a Bose ELF-3200 due to a 

broken load cell rendering the ELF-3300 out of order.  During the course of the testing the 

tissue samples were regularly sprayed with a PBS solution. 

 

 

Figure 3. Meniscus testing apparatus (left) and cartilage indentation (right). 

 

Canine lateral 
meniscus 

Ram of 
uniaxial tester 

Contoured 
V-block 
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The ELF machine recorded the commanded profiles as well as the vertical position and 

force in the ram at a sample rate of 100Hz.  Stifle 14L was tested on October 1, 2009; stifle 11L, 

on July 22 2009;  stifle 2R,  on April 9, 2010.  

3.1.3 Experimental Cartilage Testing 

The tibia halves were potted in ABSplus semi-cylindrical cups using auto body filler 

(Bondo, 3M, St. Paul, MN) prior to being inserted into the testing platform.  This set up allowed 

complete axial rotation of the sample, and limited motion and rotation in 3 other degrees of 

freedom (Figure 4).  The objective of this test platform was to allow the positioning of the 

sample to achieve an indentation result that was normally oriented to the intact articular surface 

(Figure 3).  The indentation was performed in force control with the commanded force rising 

over 5s to a load of 9.45N for the 2mm indenter and to a load of 2.36N for the 1mm indenter.   

 

 

Figure 4. A schematic sketch of the indentation apparatus (with tibia half) 

 

This ELF machine also recorded the commanded profiles as well as the vertical position 

and force in the ram at a sample rate of 100Hz. 
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3.2 Model Creation 

The model creation process entailed herein is an adaptation of the process described in 

Guess et al. 2010.     

3.2.1 Geometry Creation 

Rough geometry generation.  MRI's of the intact canine stifles were taken in the 

sagittal and coronal planes prior to disarticulation. The MRI’s were then used in conjunction 

with the 3D Slicer (www.Slicer.org) software package to generate 3D geometry models of the 

canine menisci.  This is done by manually segmenting each image slice of the sagittal MRI into 

the desired tissues, in this case the femur, patella, tibia, tibial cartilage, sesamoids and the 

meniscus (Figure 5).  The accuracy of this process is limited by the MRI resolution (field 

strength 1.5T, TE  86, TR 44, 2.2 mm slice spacing,, pixel resolution of 0.391 x 0.391 

resolution), the machine operator's ability to produce a clear image with distinguishable 

differences in tissues, and the interpretation of the MRI. This method can produce very accurate 

geometries but unfortunately the MRI's resolution was mediocre for this type of work, 

particularly in the direction of slicing.  Once the segmentation of the tissues was complete 3D 

Slicer was used to generate coarse STL geometries of the tissues (Figure 6).  

 

Figure 5. 3D Slicer  sample window, showing a sagittal MRI with traces in all three planes 
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Figure 6. Course geometry for a canine tibia, cartilage and meniscus (incomplete) 

 

Smoothed geometry generation.  3D Slicer does have some capability to smooth the 

models as it produces them but this was utilized only slightly as geometry smoothing can be 

performed with much more control in Geomagic Studio 11 (Geomagic, inc. Research Triangle 

Park, NC ). The slight smoothing that was performed in Slicer was to take advantage of its 

internal routine to ensure the final geometries did not intersect.  In Geomagic, extensive use of 

the offset, reduce noise, clean, mesh doctor, hole fill, and decimate tools produced final 

geometries that were not excessively complex but still smooth in appearance (Figure 7).   The 

accuracy of the models after post proccessing were qualatatively confirmed by importing them 

to 3D Slicer and using the model intersection functionality.  This function calculates the outline 

of a geometry's intersection with the MRI's slice planes (Figure 8).  In some cases photo overlays 

were used to confirm meniscus geometries (Figure 9). 

 



 

15 
 

 

Figure 7.  Smoothed geometries after post processing in Geomagic Studio. 

 

 

Figure 8.  Post processed geometries intersected onto the MRIs for verification 

 

 

Figure 9. A photo overlay of the smoothed geometries (meniscus in blue, cartilage in yellow, and 
tibia in red) and the original sample. 
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3.2.2  Elastic Behavior Modeling 

Transverse isotropic elastic implementation for meniscus.  After the meniscus 

geometry is generated and radially segmented each segment is connected to its neighbor via an 

ADAMS field element.  The center of rotation for both the segmentation and the field element 

orientation is located 2 mm to the center of the knee from where the meniscus rests in vivo.  An 

ADAMS field element is a combination 6-axis spring damper, where the force displacement 

relationship is defined as (MD ADAMS 2010 help.): 

 

 

  Eq. 1 

 

 

where Fi,  Ti,  K, and C are forces, torques, stiffness matrix, and damping matrix  respectively 

and x, y, z are locations and a ,b ,c are orientations.  By stipulating that menisci exhibit a 

transverse isotropic behavior the K matrix can be simplified to: 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝐾𝜃 𝐾𝜃𝑟 𝐾𝜃𝑧 0 0 0
𝐾𝜃𝑟 𝐾𝑟 𝐾𝑟𝑧 0 0 0
𝐾𝜃𝑧 𝐾𝑟𝑧 𝐾𝑧 0 0 0

0 0 0 𝑇𝜃 0 0
0 0 0 0 𝑇𝑟 0
0 0 0 0 0 𝑇𝑧⎦

⎥
⎥
⎥
⎥
⎤

 Eq. 2 

Also for the purpose of simplicity the C matrix was calculated as a coefficient C 

multiplied by the K matrix.  The field elements were aligned so that the θ direction was 

circumferentially aligned, the r direction was radially aligned, and the z direction was along the 

superior/inferior axis.   
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Nonlinear implementation.  The principle load bearing component of menisci is 

collagen.  It has been shown that ligaments, another collagen heavy soft tissue, exhibit a 

reproducible and consistent nonlinearity.  This nonlinearity is explained by the presence of 

crimped collagen fibers that have to undergo some strain prior to being recruited to bear any 

significant load. Mathematically this has been represented repeatedly by a series of piecewise 

equations.  To represent this initial strain hardening the stiffness in tension is calculated as a 

parabola leading to a continuous straight line at a fixed strain.  For a ligament, which buckles 

under any compressive load, the mathematical representation produces zero force in 

compression.  In this work the Kθ component has been reformulated into a similar piecewise 

equation.   

 𝑓 =

⎩
⎪
⎨

⎪
⎧

1
4
𝑘𝑥2/𝑥𝑙        0 ≤ 𝑥 ≤ 2𝑥𝑙
𝑘(𝑥 − 𝑥 + 𝑙)     2𝑥𝑙 < 𝑥
− 1

4
𝑘𝑥2/𝑥𝑙       0 >≥ 2𝑥𝑙

   −𝑘(𝑥 − 𝑥 + 𝑙)     − 2𝑥𝑙 > 𝑥

� Eq.3 

Where k is a stiffness value, x is the θ displacement, and xl is half the length of the 

nonlinearity.  The principle differences between this formulation and that described for ligament 

behavior is that it is displacement not strain based and that the compression curve is a reflection 

of the tension curve rather than a 0 value.  A user defined library with the modified field element 

formulation was written in C++ and compiled for use in the ADAMS software. 

Contact function.  The second method of modeling deformable materials that is 

available in ADAMS consists of a penalty function describing interpenetration of geometries.  

This contact formulation is by default defined as: 

 𝐹 = 𝑘𝛿𝑒𝑥𝑝 + 𝐵(𝛿)𝛿̇ Eq.4 

Where F is the force produced, k is a contact stiffness, exp is an exponent greater than 1, 

B is a damping value and  𝛿 and 𝛿̇ are the interpentration depth and velocity.  For the thin layer 
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of cartilage this is the only mechanism available for reproducing its behavior and must be tuned 

to experimental data. For the meniscus it was decided to leave the contact values at an arbitrary 

constant value shown in Table 1.  These values were chosen for two separate reasons. The 

chosen values are stiff enough that whole meniscus flexion and translation dominate its behavior 

in compression; this was seen as a reasonable assumption due to the high water content of the 

meniscus which should limit transient and excessive localized deformation.  These conditions 

also simulated well as they produced low computation time and created a model with an 

insignificant chance of a geometry passing through the meniscus geometry. 

  

Table 1.  Contact parameters used for meniscus on v-block interaction 
Parameter Value 
Stiffness (N/mm) 5000 
Damping (N·s/m) 2.5 
Force Exponent 2.25 
Penetration Delta (mm) 0.001 

 
 

3.2.3  ADAMS Model Creation 

Meniscus segmentation.   After the creation of the final meniscus geometries in 

Geomagic Studio the STL files were converted to IGES files and imported into ADAMS and 

oriented with the global coordinate.  Segmentation was performed via an ADAMS command 

language macro that duplicated the geometry of a meniscus and then intersected it with a 

cylinder segment.  In this study the center of rotation about which the wedges were produced 

was 2mm away from the calculated center of mass of the meniscus.  Another macro was used to 

generate and align the field elements between the segments. 
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Figure 10.  Multibody meniscus under load. 

 

 3.3 Model Execution.  

Meniscus model Setup/Alignment.  After the meniscus had been segmented and the 

field elements were created they were moved as a group and aligned to a virtual reproduction of 

the experimental apparatus (Figure 10).  Alignment was done initially based on photos taken 

along the anterior/posterior axis of the meniscus.  The known geometries of the experimental 

apparatus were used to determine scaling coefficients and measurements to points on the 

experimental apparatus were used to determine rough position.  This allowed for reasonable 

alignment but did not resolve rotations about the v-block.  Additional alignment was then done 

by simulating springs attached to the horns of the meniscus. The meniscus was then moved 

down (less than 1 mm in .1 mm increments) far enough to ensure contact was made with the v-

block.  A sufficient amount of contact was deemed to have been achieved when a transient peak 

of at least 1N was produced in the springs that diminished to at least a 0.05 N at steady state.  

During this transient period (1 second was allowed) the multibody meniscus was allowed to 

conform to the v-block, the material parameters during this conformation were those listed as 

the initial parameter values in Tables 4, 5, 6, and 7.  These springs were then removed and 

40 N 

r 

θ 
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replaced with a spherical joint with a 0.3 coefficient of static friction and a 0.1 coefficient of 

dynamic friction.  This new position was assumed to be close to the starting position of the 

meniscus after it had been inserted into the v-block and the horns had been held by the vises. 

The variables that were examined in this experiment were the 9 distinct values in the K matrix, 

the damping ratio, DR, the nonlinear length variable, xl, and the initial displacement correction, 

iDisp.    The blind estimate of properties for these variables were estimated as the average of the 

lateral and medial meniscus values from Guess et al. 2010 and the Kθ value was increased by 20% 

to account for the softening effect of  modeling the nonlinear behavior. 

Model execution.  In the ADAMS model a vertical force was applied to the upper 

fixture/v-block assembly and the displacement was compared to the measured displacement.   

The first second of simulation time applied a variable displacement correction to the initial 

position of the meniscus.  This variable was to account for the unmeasured initial strain in the 

meniscus that was produced while placing the meniscus into the experimental apparatus.  The 

variable was optimized based on the logic that the error would be minimal when the distraction 

produced by this displacement most nearly matched that of the experiment.  The recorded data 

profiles from the experimental portion included time periods before and after the experimental 

loading profile.  Prior to importing the load and displacement profiles into ADAMS as splines 

some limited preprocessing is performed.  This preprocessing consisted of filtering the data in 

Matlab at 10Hz using a forwards and backwards 2nd order low-pass Butterworth filter and 

trimming the data.   The trimming process removes 20s of data starting at the point the 

deformation velocity reached 50 mm/s as determined by the Matlab gradient algorithm, a 

modified central difference method.   This criterion was used to determine the starting point of 

the loading profile as a means to remove an anomalous transient behavior that was consistently 
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observed at the beginning of each trial.  The meniscus models were run in ADAMS with a step 

size of 0.02Hz.   

It was rapidly noticed that the thinnest portion of the meniscus closest to the 

intercondylar notch produced unusual contact behavior against the v-block.  To mitigate this 

behavior the nadir of the v-block was eliminated by removing a 1mm thick slice from the v-

block. 

Cartilage Model.  This work is currently ongoing but presently the cartilage models 

consist of two stacked flat cylinders, the lower represents the bone and is 1mm tall; the upper is 

the thickness of the cartilage and represents the cartilage.  For the cartilage models it is assumed 

that the effects of curvature are not significant.  A cartilage thickness was estimated from the 

MRI’s and overhead photos of the indentation site.  An ADAMS macro is being used to 

segment the cartilage block into 0.5 mm square pieces, fix their position to the bone cylinder, 

and create contact parameters between the cartilage segments and a model of the indenter.    

The primary objective of this model is to establish baseline values for the contact parameters 

when modeling cartilage.  To this end some elastic moduli were calculated to ascertain the 

validity of the experimental data.  The moduli selected for this procedure were simple Hertzian 

contact of a sphere on an infinite half-space (Eq. 5), the Waters formulation correcting for a soft 

material of finite depth on a rigid surface (Eq. 6), and the Hayes formulation correcting for the 

same effect (Eq. 7).  

 𝐸 = 3P(1−ν)(1+ν)
8√Rδ3/2  Eq. 5 

 E2 = 9P
16√R

�1−e
−0.42h/�2Rδ−δ2

δ
� Eq. 6 

 E3 = P(1−ν)2

2aκδ
  where  χ =  a

2

δR
  Eq. 7 
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For these equations P is load, δ is penetration depth, R is indenter radius,  and ν is 

Poission's ratio equal to 0.5(Shepherd and Seedhom 1997) .  For the Hayes equation a is the 

radius of the contact patch and  χ and h are used in a lookup table to determine the correct a and 

κ values in an iterative process (Hayes et al. 1972).    

 

3.4 Design of Experiments.   

ADAMS/Insight was used for statistical calculation and optimization in the design of 

experiments portion of the study.  Initial values for the 9 stiffness and the damping ratio values 

were estimated and screened using a 32 run resolution IV 2-level fractional factorial design. 

These initial values came from the Guess 2010 parameters for human meniscus and 

experimentation with the incomplete lateral 11L geometry.  These still rough values were then 

optimized using a 155 run central composite design, minimizing the objective of the RMS. 

Another resolution IV design was preformed to screen the variables down to 4 significant terms 

(p<.05) and the damping ratio which were again optimized using a central composite design 

(CCD).   Additional CCD's were performed until the objective function produced less than a 5% 

reduction in error.   All optimization was performed on sinusoidal datasets which were expected 

to be more physiological.  As verification errors for ramp trials were calculated with the models 

using the optimum values as determined for the corresponding sinusoidal trials. 

 Unfortunately, for some of the models a memory build up error prevented the 

successful completion of a 155 run CCD.  In these instances multiple 5 and 6 level CCD's were 

performed with various combinations of the 12 variables.   
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CHAPTER 4 

RESULTS 

 

4.1 Experimental Testing 

4.1.1 Experimental Meniscus Testing 

As was earlier stated the loading values varied from trial to trial based on our confidence 

in the ability of the vises to hold without slipping.  Additionally, some of the experiments were 

performed on the Bose ELF 3300 and some on the ELF 3200, while these should have had near 

identical performance in this load-displacement range some discrepancy was observed.  This was 

probably caused by the PID control mechanism being tuned for the smaller loads seen in the 

cartilage testing.  The ramp trials from the ELF 3200 were only simulated until 95.02% of the 

max load as this corresponds to 3 time constants of decay in what appeared to be an 

exponentially decaying error; this keeps the simulations to similar time lengths.  The loading 

values for the various trials and samples are displayed in table 2.    As the trials were performed 

in force control the command profile shown in figures 14, 15, 16, and 17 should be proportional 

to the desired force.   
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Table 2.  List of valid meniscus test data. 

Knee File Name Side V-block 
Width 

Loading 
Pattern 

Load Max 
(approx) Modeled 

11L 11LMedNarrow1 Medial N Ramp 40 
 11L 11LMedNarrow2 Medial N Ramp 60 
 11L 11LMed1 Medial W Ramp 38 
 11L 11LMed2 Medial W Ramp 58 X 

11L 11LMedsine102 Medial W Sine 60 X 
14L 14Llateralw Lateral W Ramp 40 

 14L 14Llateralw3 Lateral W Ramp 58 
 14L 14Llateraln2 Lateral N Ramp 40 X 

14L 14Llateraln3 Lateral N Ramp 60 
 14L 14Llateraln4 Lateral N Ramp 80 
 14L 14Llateralnsine02 Lateral N Sine 50 X 

14L 14Llateralnsine2 Lateral N Sine 50 
 14L 14Lmedial Medial W Ramp 27 
 14L 14Lmedial2 Medial W Ramp 22 
 Blank Rubbertest Blank W Ramp* 20 
 2R 2RmedWdf Medial W Ramp* 12 
 2R 2RmedNdf Medial N Ramp* 20 
 2R 2RmedN2df Medial N Ramp* 45 
 2R 2RmedNsine Medial N Sine* 26 
 2R 2RLatN Lateral N Ramp* 40 X 

2R 2RLatNsine Lateral N Sine* 28 X 
2R 2RlatW Lateral W Ramp* 65 

 2R 2RLatWsine Lateral W Sine* 38 X 
2R 2rLatW2 Lateral W Ramp* 99 X 
2R 2RlatW3 Lateral W Ramp* 145 

 *Pertains to data collected on the ELF-3200 
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Figure 11. A representative ramp loading profile for 2R 

 

 

Figure 12. A representative sine loading profile for 2R 
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Figure 13. A representative ramp loading profile for 11L 

 

 

Figure 14. A representative sine loading profile for 11L 
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4.1.2 Experimental Cartilage Testing 

The tibia sample holder was designed with the objective of allowing for perpendicular 

indentation points to be taken.     This was observed to have been achieved with a high degree 

of success for 2 out of the 3 samples taken per tibia halve.  The loading values for the 

indentation trials in this study are shown in table 3. 

 

Table 3.  Indentation samples   

Knee Side Indenter Radius 
(mm) 

Loading 
Pattern 

11L Medial 2 Ramp 
11L Medial 1 Ramp 
11L Lateral 2 Ramp 
11L Lateral 1 Ramp 

 

Knee Side Indenter Radius 
(mm) 

Loading 
Pattern 

14L Medial 2 Ramp 
14L Medial 2 Ramp 
14L Medial 1 Ramp 
14L Lateral 1 Ramp 
14L Lateral 1 Ramp 
14L Lateral 2 Ramp 

 

Knee Side Indenter Radius 
(mm) 

Loading 
Pattern 

2R Medial 2 Ramp 
2R Medial 1 Ramp 
2R Medial 1 Ramp 
2R Lateral 1 Ramp 
2R Lateral 2 Ramp 
2R Lateral 2 Ramp 
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4.2 Model Results 

4.1.3  Elastic Behavior Modeling 

The ADAMS field element with a nonlinear circumferential stiffness was successfully 

created.  Figure 15 is a sample force-displacement graph with a stiffness of 5 N/mm (slope of 

the linear region) a nonlinear length parameter of 1mm (the toe region is 4 mm wide), and a 

damping ration of 0.05 (determines hysteresis width).   

 

Figure 15.  Graphical example of nonlinear force length behavior 

 

 4.2.1 Meniscus Results 

The ADAMS results for the menisci provide the following errors when compared to the 

experimental data (Tables 4, 5, 6, 7, and 8). 
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Table 4.  Optimized parameters and errors for the medial 11L meniscus. 

 
Wide 

Parameters Initial Optimized 
Kθ ( N/mm) 408 1093 
Kθr (N/mm) 52.5 1.83 
Kθz (N/mm) 55 1.875 
Kr (N/mm) 282 103 
Krz (N/mm) 50.25 9.14 
Kz (N/mm) 330 96.4 
Tθ (Nmm/deg) 46.25 2.58 
Tr (Nmm/deg) 39.75 2.42 
Tz (Nmm/deg) 46.75 50* 
DR 0.4 0.225 
Xl (mm/FIE ) 0.01 0.0336 
iDisp -0.1 0.69 
Sine RMSE 0.777 0.107 
Ramp RMSE 0.772 0.067 

 
 

Table 5. Optimized parameters and errors for the lateral 2R meniscus. 

 
Wide 

Parameters Initial Optimized 
Kθ ( N/mm) 408 5780 
Kθr (N/mm) 52.5 2.25 
Kθz (N/mm) 55 2.5 
Kr (N/mm) 282 98.4 
Krz (N/mm) 50.25 7.5 
Kz (N/mm) 330 123 
Tθ (Nmm/deg) 46.25 33.8 
Tr (Nmm/deg) 39.75 9.17 
Tz (Nmm/deg) 46.75 31.2 
DR 0.4 0.330 
Xl (mm/FIE ) 0.01 0.00940 
iDisp -0.1 -0.833 
Sine RMSE 0.647 0.0523 
Ramp RMSE 0.818 0.167 
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Table 6. Optimized parameters and errors for the lateral 2R meniscus. 

 
Narrow 

Parameters Initial Optimized 
Kθ ( N/mm) 408 600 
Kθr (N/mm) 52.5 2.25 
Kθz (N/mm) 55 2.5 
Kr (N/mm) 282 55.6 
Krz (N/mm) 50.25 3.75 
Kz (N/mm) 330 167 
Tθ (Nmm/deg) 46.25 33.8 
Tr (Nmm/deg) 39.75 18.7 
Tz (Nmm/deg) 46.75 114 
DR 0.4 0.225 
Xl (mm/FIE ) 0.01 0.00675 
iDisp -0.1 0.05 
Sine RMSE 0.199 0.0584 
Ramp RMSE 0.288 0.170 

 

Table 7. Optimized parameters and errors for the lateral 14L meniscus. 

 
Narrow 

Parameters Initial Optimized 
Kθ ( N/mm) 408 307 
Kθr (N/mm) 52.5 2.25 
Kθz (N/mm) 55 2.5 
Kr (N/mm) 282 156 
Krz (N/mm) 50.25 7.5 
Kz (N/mm) 330 92.6 
Tθ (Nmm/deg) 46.25 5.63 
Tr (Nmm/deg) 39.75 4.67 
Tz (Nmm/deg) 46.75 33.6 
DR 0.4 0.211 
Xl (mm/FIE ) 0.01 0.0922 
iDisp -0.1 0.287 
Sine RMSE 1.75 0.328 
Ramp RMSE 0.409 0.910 
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Table 8.  Summary of errors 
Error per Meniscus 

  RMS (mm) Max Disp. (mm) NRMS 

11L Wide 
sine 0.107 2.00 0.0535 
ramp 0.067 1.87 0.0359 

2R Wide 
sine 0.0523 1.12 0.0465 
ramp 0.167 1.77 0.0946 

2R Narrow 
sine 0.0584 1.01 0.0576 
ramp 0.170 1.06 0.161 

14L Narrow 
sine 0.328 3.46 0.0947 
ramp 0.910 2.08 0.438 

Average   0.232 1.80 0.123 
 

Table 9. Collected parameters values for the MB canine meniscus. 
Nominal Values 

  Mean Median Average 
Kθ ( N/mm) 1945 847 1396 
Kθr (N/mm) 2.15 2.25 2.20 
Kθz (N/mm) 2.34 2.50 2.42 
Kr (N/mm) 103 101 102 
Krz (N/mm) 7.0 7.5 7.2 
Kz (N/mm) 120 110 115 
Tθ (Nmm/deg) 19.0 19.7 19.3 
Tr (Nmm/deg) 8.74 6.92 7.83 
Tz (Nmm/deg) 59.6 33.6 46.6 
DR 0.248 0.225 0.236 

 

Table 10. RMS errors for models when using nominal parameter values 
    Mean  Median  Average 

11L 
sine 1.53 0.926 0.126 
ramp 0.922 0.785 0.876 

2R  
Wide 

sine 1.02 1.11 1.04 
ramp 1.4 1.59 1.47 

2R 
Narrow 

sine 0.118 0.124 0.11 
ramp 0.119 0.198 0.139 

14L 
sine 1.14 0.765 0.997 
ramp 0.158 0.383 0.201 

Average   0.801 0.735 0.620 
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Figure 16.  MB meniscus results for 11L Medial–Wide 

 

 

Figure 17.  MB meniscus results for 2R Lateral-Wide 
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Figure 18.  MB meniscus results for 2R Lateral-Narrow 

 

 

Figure 19.  MB meniscus results for 14L Lateral-Narrow 
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Figure 20.  MB meniscus results for 11L Medial–Wide 

 

 

Figure 21.  MB meniscus results for 2R Lateral –Wide 
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Figure 22.  MB meniscus results for 2R Lateral-Narrow 

 

 

Figure 23.  MB meniscus results for 14L Lateral-Narrow 
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For the 2R meniscus samples during ramp loading the simulation times used were 5.92s 

and 5.21s for the wide and narrow boundary conditions respectively. 

4.2.2 Cartilage Model.   

Table 11.  Cartilage indentation modeled Moduli of Elasticity  

Depth 
(mm) 

G 
(N/mm2) 

R 
(mm) Side h 

(mm) 

E 
(N/mm2) 
(Hertz) 

E2 
(N/mm2) 
(Waters) 

E3 
(N/mm2) 
(Hayes) 

0.302 2.60 1 Lateral 2.54 7.79 5.31 6.03 
0.129 9.28 1 Lateral 2.34 27.85 22.39 23.39 
0.231 11.18 2 Lateral 2.18 33.53 16.57 22.70 
0.528 3.25 2 Medial 2.56 9.74 3.95 5.78 
0.157 6.84 1 Medial 2.19 20.53 15.21 16.66 
0.204 13.51 2 Medial 2.14 40.52 20.74 27.97 

   Avg  23.33 14.03 17.09 

   Avg'  30.61 18.73 22.68 
'  Denotes average excluding the two lowest values. 

 

4.2.3 Design of Experiments.    

There were usually 4 stiffness variables that were consistently significant along with the 

initial displacement.  The circumferential stiffness, Kθ, and the torsional stiffness about the Z 

axis, Tz, were always significant to a p<.01.   The radial stiffness, Kr, and the torsional stiffness, 

Tr, about the radial axis were usually significant to a p<.05.  The initial displacement correction 

was very significant if the error was more than 0.5 mm but was usually insensitive inside of that 

range.  Many of these terms had significant squared effects and interaction effects, but the 

damping ratios and the nonlinear length were consistently only significant in these effects.  This 

indicates a strange dependence that is particularly hard to capture as it is highly dependent on 

nonlinearities that have not been accounted for.   
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CHAPTER 5 

DISCUSSION 

 

5.1 Analysis of Experimental Results 

The experimental performance is hard to quantify but were generally acceptable with 

normalized errors for the optimized trials being under 0.1mm.  The goal of applying a semi-

physiological loading to an intact meniscus has been accomplished.  When looking at the 

experimental results by themselves the only noticeable area for improvements are in terms of 

consistency and repeatability.  The fact that the load limit varied depending on the grip 

performance and the use of a second machine for the test of the 2R menisci provide some 

possibly unwanted effects.  Not being able to attach the vises to the horn attachments made it so 

that some initial tension needed to be applied with forceps while the vices were tightened.   

 

5.2 Model Results 

5.2.1  Meniscus Performance 

DOE.  The DOE process greatly accelerated the optimization, particularly with the use 

of the integrated ADAMS/Insight package.  Insight does not provide a fine level of control over 

the setup of the experiment, but the automation it provides as well as the built in solver for 

finding extrema to objective functions makes it an extremely valuable tool.  Several of the DOE 

setups were analyzed in Minitab (Minitab, Inc.  State College, PA) as well and provided identical 

answers pertaining to the significance of the effects.   The process has several serious flaws 

relating to the multiplicity of near optimal solutions as well as the presence of local minima.  The 

possibility of getting stuck in one of the minima is somewhat mitigated by the numerous 

combinations of small DOE’s.  The presence of many near optimal solutions is well 
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demonstrated by the interplay of the Tz and the Kθ parameters.  In many of the models an 

increase of one of these two parameters can be balanced by a corresponding decrease in the 

other.  For example a doubling of one factor and corresponding reduction of the other 

parameter could produce model performance with error within 10% of the original solution.  

With additional optimization of some of the parameters this was seen to decrease to as little as 

5%.  This presents an extremely difficult situation for deciding on a reliable estimate for these 

two parameters.  Performing the tests with two different width v-blocks was intended to help 

isolate the effects of parameter. However, currently they do not appear to be isolated.  This is 

possible due to the presence of other variations between trials and there being enough difference 

between narrow and wide v-block values to confound any relationships. As mentioned, the iDisp 

value is another source of multiple minima. 

The optimal values for the presented models seem to indicate that the shear/cross 

product terms are nearly inconsequential to the overall behavior in this semi-physiological 

loading and that the torsional stiffness about the circumference and the radii is similarly 

unimportant.  This supports the theory that meniscus properties are heavily dominated by the 

collagen fiber orientation.  The crucial material terms are in order of typically observed 

significance was Kθ, Tz, Ky, DR, and Xl.  As the nonlinear length tended to be a nonzero number 

at the located optima, it is assumed that the inclusion of this parameter improved the overall 

model performance.  Compared to the results obtained for human meniscus from comparison 

to a linear FE by Guess et al. the values for the significant stiffnesses are 2-4 times as stiff and 

the less significant stiffness are close to two orders of magnitude lower.  Some contribution to 

this increased stiffness may be due to the introduction of the nonlinear Kθ but this is a much 

larger effect than anticipated.  There are two large differences that should account for the 

majority of the remaining discrepancy. First and foremost is the fact that a canine meniscus and 
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a human meniscus may differ to some extent chemically, morphologically, or in terms of 

composition.  Distribution of fibers, fiber sizes, and the distribution of chemical species would 

be expected to cause significant differences as these are the chief differences between bone, 

cartilage, and ligamentous tissue.  Supporting this is the fact that it has been demonstrated that 

the human and canine meniscus have significantly different aggregate modulus (Sweigart et al. 

2004).  The second likely source for this discrepancy is differences that occur purely in the 

modeling format.  A good example of this is the scale of the model; the 14L lateral canine 

menisci measured 19.5 mm across the horns whereas a small human lateral meniscus measures 

27.5 mm.  The maximum distraction for the human FE model was about 5.4mm mm whereas 

the typical distraction of the canine experiments was less than 3mm.  It is unknown how 

reducing the scale of the model would affect its overall behavior, but it is known that shape is a 

significant source of nonlinearity in the model.    

 

General meniscus model performance. The overall performance of using a rigid MB 

model to represent a deformable tissue was excellent.  Visually the technique demonstrated the 

expected stretching, sliding, wrapping, and twisting behaviors. In general it can be seen that the 

model performance lagged slightly and did not recover as quickly to rapid decreases in load 

(Figures 16 through 23) .The errors for the sinusoidal profiles were in the 0.0523 to 0.328 mm 

range with an average of 0.136 mm.  This a considerable improvement over the values 

determined from the adaptation of Guess et al. 2010  which had a range of 0.199 to 1.75mm  

and an average of 0.843 mm.  Ramp performance did not exhibit as significant an improvement 

but still averaged 0.329mm with a range of 0.0670 to 0.910 mm, down from 0.572mm and 0.288 

to 0.818mm. This improvement indicates that these models perform adequately but there is 

room for further improvement in the technique and the collection of usable experimental data. 
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The acceptable modeling of the ramps validates the values selected for each meniscus model.  

The 14L lateral meniscus exhibits the worst RMS error but with two likely explanations.  The 

14L meniscus at times exhibited an artificial behavior where the edge of a meniscus section 

would catch on the corner of the v-block.  This is a purely artificial error as no organic shape 

would exhibit this shape.  Additionally the 14L meniscus exhibits the largest deformation and 

the 2R meniscus test the lowest.  As these menisci represent the highest and lowest RMS and K 

values this indicates some tendency of the material properties to vary depending the expected 

deformation range.  

The fact that several of the property values exhibit large standard of deviations (over 

100% of the mean) can likely be explained in several manners.  First it is important to note that 

with this small of a sample size none of the values are beyond 1.49 times the standard of 

deviation from the mean for a given parameter.  This makes it impractical to properly classify an 

outlier.  The 2R lateral wide meniscus values for DR and Kθ and the 2R lateral narrow value for 

KZ are the most suspect values.  The iDisp parameter exhibits a similar spread. This is expected 

as it reflects a compensation for human error in experimentation and not a material property. 

For this reason the iDisp variable is considered a per model parameter and no nominal value is 

given.  Similarly no nominal value for Xl is given as while it is a material property it is partially 

dependent on the number of meniscus segments. The most straight forward explanation for the 

spread in material properties is that the material properties will exhibit some variation between 

individuals. One would expect this particularly in a species as morphologically diverse as canines.  

Other possibilities include the uncertainty in the orientation of the meniscus about the v-block 

along the Z-axis.  Additional factors that could account for this discrepancy include 

complications with the DOE.  It should also be noted that the Xlr should be highly dependent 
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on the segmentation process as it is expected to depend on the number of segments within the 

flexible multibody tissue. 

Initially, the testing with two different sized V-blocks was intended to provide insight 

into this issue by providing two separate boundary conditions on the same meniscus.  

Unfortunately there was not enough information to align each of the two models separately and 

accurately so there are additional boundary related initial conditions that are unknown, this 

confounds the result and makes it impossible to determine the effect of just the v-block size.  

Additionally, this problem is exacerbated by the holes in the data due to trials involving slippage 

of the sample. Overall a nominal average value was determined and is displayed in Table 8.  The 

plain mean is likely the most distorted by the extreme outliers and is considered the most 

suspect.  The average of the mean and median and the median should be considered more 

robust values.  This is generally supported by rerunning all four meniscus models with the three 

parameter sets.   The 0.620 mm RMS value for the average of the mean and median values 

supports this statement.  If outliers could be determined with confidence it is possible the 

median values would produce the lowest errors. 

 

5.3 Improvements 

If this was to be redone the meniscus test would be done more easily with improvements 

to the experimental set up and to the modeling procedure.   

Experimentally the process would have been much more successful with better quality 

MRI's particularly with respect to decreasing the slice thickness.  When the joint was 

disarticulated it would have helped the procedure if more of the horn attachments had been left 

intact, this would have made it possible to clamp the vices to the horn attachments as originally 

intended instead of to the edges of the meniscus proper. This requires the addition of the horn 
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attachments to the MB model but would lend itself to improved consistence in loading that can 

be applied without slippage.  To provide more alignment information the vertical portion of the 

fixture could be made thinner to allow a photo along the Z-axis to show the anterior and 

posterior portions of the meniscus being tested.  This would allow for some alignment about the 

z axis of the menisci.    A further step to improve results would have been to perform all of the 

experiments in a saline bath to encourage full material recovery after the dynamic tests. 

A new field element library was written for this procedure to include a nonlinear 

circumferential tension.  This could be expanded to include other model improvements. One 

possibility would be to separate the damping ratios for the circumferential stiffness and the axial 

torsional stiffness.  This may be beneficial as the ratio was artificially limited to a 0.2 value to 

benefit the simulation process as there was a risk of instability below this.  It is quite likely that a 

lower ratio for the two dominate stiffnesses would have improved the error but not affected the 

simulation quality.  It may even be possible to replace the simplified viscous damping with a 

viscoelastic parameter that more accurately captures the biological tissues behavior.    This would 

be most easily done by implementing a Kelvin, Voigt, or Standard Viscoelastic model that is 

typically represented by a set of series or parallel springs and dashpots.  The contact parameters 

could benefit from similar improvements.  Some method of indentation or compression 

between platens could be used to produce an estimate of physiological contact parameters.  This 

could also be improved by customizing the ADAMS contact subroutine to include viscoelastic 

effects.  Other dramatic changes could be to implement segmentation in the radial direction as 

well. 
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CHAPTER 6 

CONCLUSION & FUTURE WORK 

  

The overall objective of this study to demonstrate the capability of the multibody 

method to capture the flexible behavior of soft biological tissue was accomplished with a 

reasonable level of success.  The largest qualifier to this statement is that the optimum 

parameters for different experimental trials vary significantly and that there is little agreement 

between separate meniscus tests.  The experimental portion of this study is partially to blame for 

this as it had too many unknowns in the initial conditions of the meniscus being tested.  An 

example of the unknown initial conditions would be the preload/strain that had been applied to 

each sample.  In the process the testing no known preload was applied; however, placing the 

meniscus in the v-blocks was difficult due to the small scale and confined space for placing the 

meniscus.  Additionally the meniscus horns were pulled into the holding vices using tweezers, 

while a significant force preload would be unexpected, it is possible that due to relaxation of the 

material, some prestrain was present after this operation. Unfortunately the modeling method 

can also be responsible for the wide parameter variation due to the complex interactions of 

some of the stiffness parameters and the multiple near optimal solutions.    To have confidence 

in the parameters determined from this procedure either a larger sample size allowing the 

identification of outliers, or a procedure that allows the initial conditions to be modeled more 

exactly is needed.   

Future work includes implementing the improvements mentioned in section 5.3 and 

finishing the development of the cartilage indentation data.  The improvements in the meniscus 

modeling focus on removing the unknown initial conditions of the experimental apparatus and 

improvements to the MB modeling technique as it applies to biological tissues.  The cartilage 
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indentation data is currently being explored as a calibration for a similar MB model.  The 

cartilage MB model consists of the segmented geometries bonded rigidly to a substrate and then 

the creation of contacts to the other articular surfaces.  The primitive modeling done here 

demonstrates the sensitivity of the behavior to the cartilage thickness (Table 11). As this is a 

parameter that currently does not affect the contact model a reasonable average value must be 

determined or a modified contact algorithm must be created.  Currently the experimental data 

and the MB model are being compared to a FE model in the attempts to create a surrogate 

model that can determine internal cartilage parameters based off of MB model inputs.   
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APPENDIX A 

The nonlinear field element formulation as written for compiling into an ADAMS dll: 

#include "slv_c_utils.h" 
#include <math.h> 
 
adams_c_Fiesub    Fiesub; 
 
void Fiesub(const struct sAdamsField* fie, double time, 
            double* disp, double* velo, int dflag ,int iflag, 
            double* field, double* dfddis, double* dfdvel) 
{ 
double Er = fie->PAR[9]; 
double Cr = fie->PAR[10]; 
double sign = 1; 
/* 
   fie    sAdamsField structure: 
               int ID    Identifier of calling FIELD statement 
               int Nfie->PAR  Number of passed fie->PARameters 
            double fie->PAR   Array of passed statement fie->PARameters 
               int I     Field I Marker 
               int J     Field I Marker 
   time     Current time 
   disp     Array of I with respect to J displacements  (X,Y,Z,a,b,c) 
   velo     Array of I with respect to J velocities 
   dflag    Differencing flag 
   iflag    Initialization pass flag 
   field    Array of field values  
   dfddis   displacement fie->PARtial derivatives 
   dfdvel   Velocity fie->PARtial derivatives  
   the PAR array consists of user inputed terms 
   The X direction corresponds to the circumferential (Theta) direction 
   The Y direction the radial (r), and the Z the axial (z) 
   PAR[0] is the [1,1] term of the stiffness matrix in N/mm, likewise: 
   PAR[1] is the [1,2] and [2,1] 
   PAR[2] is the [1,3] and [3,1] 
   PAR[3] is the [2,2] 
   PAR[4] is the [2,3] and [3,2] 
   PAR[5] is the [3,3] 
   PAR[6] is the [4,4] 
   PAR[7] is the [5,5] 
   PAR[8] is the [6,6] 
   PAR[9] is the nonlinear length in mm 
   PAR[10] is the damping ratio term 
*/ 
/* --- Calculate field component forces ----------------*/ 
/* Note: Velocity effects represented as Cr*(the stiffness 
parameters)*velocity */ 
/* X translation field force, piecewise formulation */ 
 
 if (disp[0] < 0) 
   sign = -1; 
 else 
  sign = 1; 
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 if  (fabs(disp[0]) < (2*Er)) 
 { 
   field[0] = - fie->PAR[0] * .25*sign* pow(fabs(disp[0]),2)/Er-
fie->PAR[0]*Cr*(velo[0]) 
     - fie->PAR[1] * disp[1]-fie-
>PAR[1]*Cr*(velo[1]) 
     - fie->PAR[2] * disp[2]-fie-
>PAR[2]*Cr*(velo[2]); 
 } 
  
 else 
 { 
  field[0] = - fie->PAR[0] *(disp[0] - sign* Er)-fie-
>PAR[0]*Cr*(velo[0]) 
     - fie->PAR[1] * disp[1]-fie-
>PAR[1]*Cr*(velo[1]) 
     - fie->PAR[2] * disp[2]-fie-
>PAR[2]*Cr*(velo[2]); 
 } 
/* Y translation field force */ 
 
 { 
  field[1] = - fie->PAR[3] *(disp[1])-fie->PAR[3]*Cr*(velo[1]) 
     - fie->PAR[1] * disp[0]-fie-
>PAR[1]*Cr*(velo[0]) 
     - fie->PAR[4] * disp[2]-fie-
>PAR[4]*Cr*(velo[2]); 
 } 
/* Z translation field force */ 
  
 { 
  field[2] =  - fie->PAR[5] *(disp[2])-fie->PAR[5]*Cr*(velo[2]) 
     - fie->PAR[2] * disp[0]-fie-
>PAR[2]*Cr*(velo[0]) 
     - fie->PAR[4] * disp[1]-fie-
>PAR[4]*Cr*(velo[1]); 
 } 
 
/* --- Calculate field component torques --------------- */ 
/* X rotational field torque  (displacement a)*/ 
  
 field[3] =  - fie->PAR[6] *disp[3]-fie->PAR[6]*Cr*(velo[3]); 
 
/* Y rotational field torque (displacement b)*/ 
  
      field[4]  =  - fie->PAR[7] *disp[4]-fie->PAR[7]*Cr*(velo[4]); 
  
/* Z rotational field torque (displacement c) */ 
  
      field[5]  =  - fie->PAR[8] *disp[5]-fie->PAR[8]*Cr*(velo[5]); 
/*  
  --- Assign returned fie->PARtial derivatives with -------- 
      respect to disp if this is a differencing pass 
*/  
   if ( dflag ) { 
  
/* Initialize all derivatives to zero. */ 
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      int i,j; 
      for( j=0; j<6; j++){ 
         for( i=0; i<6; i++){ 
            dfddis[j*6+i] = 0.0; 
            dfdvel[j*6+i] = 0.0; 
         } 
      } 
/* Assign displacement partials for X force  dfddis[2*6+0] is partial of 
Fx with respect to disp Z */ 
 
    if  (fabs(disp[0]) < (2*Er)) 
    
   dfddis[0*6+0] =  - fie->PAR[0] * .5* fabs(disp[0])/Er; 
  
 else 
  dfddis[0*6+0] = - fie->PAR[0]; 
 
        dfddis[1*6+0] = - fie->PAR[1]; 
        dfddis[2*6+0] = - fie->PAR[2]; 
         
/* Assign displacement partials for Y force */ 
   
 dfddis[0*6+1] = - fie->PAR[1]; 
      dfddis[1*6+1] = - fie->PAR[3]; 
      dfddis[2*6+1] = - fie->PAR[4]; 
/* Assign displacement partials for Z force */ 
  
 dfddis[0*6+2] = - fie->PAR[2]; 
      dfddis[1*6+2] = - fie->PAR[4]; 
      dfddis[2*6+2] = - fie->PAR[5]; 
  
/* X torque displacement partial  */ 
  dfddis[3*6+3] = -fie->PAR[6]; 
/* Assign displacement partials for Y torque */ 
      dfddis[4*6+4] = -fie->PAR[7]; 
/* Z torque displacement partials  */ 
  dfddis[5*6+5] = -fie->PAR[8]; 
/* --- THe X force partial derivatives with respect to VELO --- */ 
  dfdvel[0*6+0]  = -fie->PAR[0]*Cr; 
  dfdvel[1*6+0] = - fie->PAR[1]*Cr; 
       dfdvel[2*6+0] = - fie->PAR[2]*Cr; 
/*  Y force velocity partials  */  
       dfdvel[0*6+1]  = -fie->PAR[1]*Cr;  
  dfdvel[1*6+1] = - fie->PAR[3]*Cr; 
       dfdvel[2*6+1] = - fie->PAR[4]*Cr;  
/* Assign velo partials for Z force */ 
    dfdvel[0*6+2]  = -fie->PAR[2]*Cr; 
   dfdvel[1*6+2] = - fie->PAR[4]*Cr; 
        dfdvel[2*6+2] = - fie->PAR[5]*Cr;  
 /* X torque displacement partials  */ 
  dfdvel[3*6+3] = -fie->PAR[6]*Cr; 
/* Assign displacement partials for Y torque */ 
     dfdvel[4*6+4] = -fie->PAR[7]*Cr; 
/* Assign displacement partials for z torque */ 
  dfdvel[5*6+5] = -fie->PAR[8]*Cr; 
   } 
} 
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APPENDIX B 

The scripts shown here were originally written by Mohammad Kia for the Guess et al. 2010 
project.  They have been modified here with his permission. The ADAMS macro used to 
generate the segmented meniscus geometries, the macro to connect the meniscus segments with 
field elements, and the macro to generate contacts between a MB meniscus and another 
geometry are included here.  

Macro_div2 

!$DICE_MOD:T=Model 
!$DICE_PAR:T=part 
!$DICE_GEO:T=geometry 
! 
! 
 !$CELLSIDE:T=Integer 
    
     !$RMAX:T=real 
    
      !$ZSTART:T=integer 
      !$ZEND:T=integer 
!$X_CENT:T=real 
!$Y_CENT:T=real 
!$INI_ANG:T=integer 
! 
! 
!!!! DICE_MOD,DICE_PAR, and DICE_GEO are the model, part and geometry 
names of the 
!!!! meniscus to be segemented.  CELLSIDE is the wedge angle desired for 
each  
!!!! segement.  RMAX, ZSTART, ZEND, define the size and Z position of the 
intersecting 
!!!! cylinder that generates the wedge.  X_CENT and Y_CENT are the 
cylinders X and Y 
!!!! position.  INI_ANG is the angle from the X axis that the first wedge 
will be  
!!!! generated from.  It is important to note that for proper operation 
the ADAMS 
!!!! models orientation must be set to body 313. 
variable create variable_name=$_self.r_cells integer_value=(360/$CELLSIDE) 
! 
! 
! 
variable create variable_name=$_self.marker_name 
string_Value=(UNIQUE_NAME("INT_MRK")) 
variable create variable_name=$_self.cylinder_name 
string_Value=(UNIQUE_NAME("INT_CYL"))     
variable create variable_name=$_self.part_name 
string_Value=(UNIQUE_NAME("INT_PAR")) 
variable create variable_name=$_self.geo_name 
string_Value=(UNIQUE_NAME("INT_GEO")) 
variable create variable_name=$_self.csg_name 
string_Value=(UNIQUE_NAME("CSG_CELL")) 
! 
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variable create variable_name=$_self.con_f_name 
string_Value=(UNIQUE_NAME("CON_F_ELE")) 
 variable create variable_name=$_self.gcon_name 
string_Value=(UNIQUE_NAME("GCON_FOR")) 
        
variable create variable_name=$_self.con_t_name 
string_Value=(UNIQUE_NAME("CON_T_ELE")) 
 variable create variable_name=$_self.gcon_t_name 
string_Value=(UNIQUE_NAME("GCON_T_FOR")) 
! 
variable create variable_name=$_self.color_flag integer_value=1 
variable create variable_name=$_self.color_row_flag integer_value=1 
! 
! 
for variable_name=$_self.r_count start_value=0 increment_value=1 
end_value=(EVAL($_self.r_cells-1)) 
! 
! Checkerboard colouring: The start colour for each row must alternate: 
      if condition=($_self.color_row_flag==1) 
         variable set variable_name=$_self.color_row_flag integer_value=0  
      else 
         variable set variable_name=$_self.color_row_flag integer_value=1  
      end ! if 
      variable set variable_name=$_self.color_flag 
integer_value=(EVAL($_self.color_row_flag)) 
! 
! 
! 
! Create  Cylinder : 
part create rigid_body name_and_position 
part_name=.($DICE_MOD).(EVAL($_self.part_name)) 
! 
marker create 
marker=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.marker_name)) &  
            location=($X_CENT),($Y_CENT),($ZSTART) &  
orientation=0,0,($INI_ANG+(EVAL($_self.r_count))*$CELLSIDE) 
geometry create shape cylinder& 
 
cylinder_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.cylinder_
name)) & 
length=(($ZEND)-($ZSTART)) &  
     radius=($RMAX)& 
      angle=($CELLSIDE)& 
      
center_marker=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.marker_na
me)) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
group modify group=SELECT_LIST obj=.($DICE_MOD).(EVAL($_self.part_name)) 
expand_groups=no 
!mdi modify_macro 
if condition = 1 
   part modify rigid mass_properties  & 
      part_name = .($DICE_MOD).(EVAL($_self.part_name)) & 
        & 
        & 
        & 
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        & 
        & 
        & 
        & 
        & 
       & 
      density = ($DICE_MOD.DV_Menisci_Density)  & 
       
end!if 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
!Create a new copy of the input geometry: 
         geometry copy geometry_name=$DICE_GEO 
new_geometry_name=(EVAL($_self.geo_name)) 
! 
! Intersect the copy of the input geometry, and the cylinder from the 
previous step: 
         geometry create shape csg 
csg_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.csg_name)) & 
            base_object=.(EVAL($_self.cylinder_name)) & 
            object=.(EVAL($_self.geo_name)) & 
            type=intersection 
! 
! Detect if the intersect operation failed (i.e. no geometry created). 
         if condition=(DB_EXISTS($_self.csg_name)==0) 
           ! If operation failed, delete the unused construction geometry: 
            part delete part_name=.($DICE_MOD).(EVAL($_self.part_name)) 
            geometry delete 
geometry_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.block_nam
e)) 
            geometry delete 
geometry_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.geo_name)
) 
            marker delete 
marker_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.marker_name
)) 
         end ! if 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!   Replace the CSG geometries with identical parasolid geometries    
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
         group modify group=SELECT_LIST 
obj=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.csg_name)) 
expand_groups=no         
        
         file parasolid write & 
         file_name = "ParS_Cell"  & 
         type = binary  & 
         & 
         & 
         & 
         part_name = .($DICE_MOD).(EVAL($_self.part_name)) 
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! 
         geometry delete 
geometry_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.csg_name)
) 
    
         file parasolid read & 
         file_name = "ParS_Cell.xmt_bin"  & 
         type = BINARY  & 
         & 
         part_name = .($DICE_MOD).(EVAL($_self.part_name)) & 
         & 
         orientation = 0.0, 0.0, 0.0 & 
         relative_to = .($DICE_MOD).(EVAL($_self.part_name)) & 
         explode_assemblies = no 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 
! 
! 
! Apply 'checkerboard' colour to cell: 
         if condition=($_self.color_flag==1) 
            variable set variable_name=$_self.color_flag integer_value=0 
            if condition=(DB_EXISTS($_self.csg_name))  
               geometry attributes 
geometry_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.csg_name)
) color=red 
            end ! if 
         else 
            variable set variable_name=$_self.color_flag integer_value=1 
            if condition=(DB_EXISTS($_self.csg_name))  
               geometry attributes 
geometry_name=.($DICE_MOD).(EVAL($_self.part_name)).(EVAL($_self.csg_name)
) color=blue 
            end ! if 
         end ! if 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 
! 
! 
! Update the object name strings to new unique values: 
  variable set variable_name=$_self.marker_name 
string_value=(UNIQUE_NAME("INT_MRK")) 
         variable set variable_name=$_self.cylinder_name 
string_value=(UNIQUE_NAME("INT_CYL")) 
         variable set variable_name=$_self.part_name 
string_Value=(UNIQUE_NAME("INT_PAR"))         
         variable set variable_name=$_self.geo_name 
string_Value=(UNIQUE_NAME("INT_GEO")) 
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         variable set variable_name=$_self.csg_name 
string_Value=(UNIQUE_NAME("CSG_CELL"))  
end ! for 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!! 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!! 
! 
Part delete part_name=$DICE_PAR 
! 
defaults attributes icon_visibility="off" 
view manage modify render=sshaded 
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Macro_lfie2 

!$DICE_MOD:T=Model 
!$CELLSIDE:T=Integer 
!$START_PAR:T=Integer 
!$LAST_PAR:T=Integer 
!$INI_ANG:T=Integer 
!$FIE_ANG:T=Integer 
!$X_CENT:T=real 
!$Y_CENT:T=real 
!$Z_CENT:T=real 
! 
!!!! DICE_MOD is the model name that contains a segemented meniscus that 
needs 
!!!! field element connections.  CELLSIDE is the wedge angle used for each  
!!!! segement.  As the Macro_div2 macro names the new parts consistently 
only the 
!!!! numerical suffix of the first and last part are needed (START_PAR, 
and LAST_PAR) 
!!!! X_CENT, Y_CENT, and Z_cent define the center of rotation for the 
field elements 
!!!! position.  INI_ANG is the angle from the X axis of the first wedge 
FIE_ANG is 
!!!! INI_ANG plus 90 degrees 
!!!! It is important to note that for proper operation the ADAMS 
!!!! models orientation must be set to body 313. 
 variable create variable_name=$_self.REF_name 
string_Value=(UNIQUE_NAME("REF_MAR"))   
! 
! 
variable create variable_name=$_self.r_field integer_value=(360/$CELLSIDE) 
! 
! 
variable create variable_name=$_self.field_marker_name 
string_Value=(UNIQUE_NAME("INT_FIE_MRK")) 
variable create variable_name=$_self.field_name 
string_Value=(UNIQUE_NAME("INT_FIE")) 
! 
! 
! 
variable create variable_name=ip integer_value=$START_PAR 
variable create variable_name=jp integer_value=($START_PAR+1) 
variable create variable_name=kp integer_value=1 
! 
! CREATE COORDINATE SYSTEM 
marker create marker=.($DICE_MOD).ground.(EVAL($_self.REF_name)) location 
= ($X_CENT),($Y_CENT),($Z_CENT) 
orientation=($INI_ANG+(EVAL(kp))*$CELLSIDE), 0.0, 0.0  
! 
! 
variable create variable_name=ra 
real_value=(((Eval(DM((EVAL("INT_PAR_"//ip).cm), 
(EVAL($_self.REF_name)))))+(Eval(DM((EVAL("INT_PAR_"//jp).cm), 
(EVAL($_self.REF_name))))))/2) 
variable create variable_name=hi 
real_value=(((Eval(DZ((EVAL("INT_PAR_"//ip).cm), 



 

54 
 

(EVAL($_self.REF_name)),(EVAL($_self.REF_name)))))+(Eval(DZ((EVAL("INT_PAR
_"//jp).cm), (EVAL($_self.REF_name)),(EVAL($_self.REF_name))))))/2) 
! 
for variable_name=$_self.f_count start_value=1 increment_value=1 
end_value=(EVAL($_self.r_field-1)) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
entity attributes & 
 entity_name     = (EVAL($_self.REF_name)) & 
 type_filter     = Marker & 
 visibility      = off & 
 name_visibility = off & 
  & 
 entity_scope    = all_color & 
 size            = 1 & 
  & 
 transparency    = 0 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
! 
! CREATE FIELD  
undo begin 
  
! 
  
marker create 
marker=.($DICE_MOD).(EVAL("INT_PAR_"//ip)).(EVAL($_self.field_marker_name)
) location 
=(LOC_RELATIVE_TO({(LOC_CYLINDRICAL((Eval(ra)),0,(Eval(hi))))},(EVAL($_sel
f.REF_name))))  
orientation=($FIE_ANG+(EVAL($_self.f_count))*$CELLSIDE),0.0,0.0 
marker create 
marker=.($DICE_MOD).(EVAL("INT_PAR_"//jp)).(EVAL($_self.field_marker_name)
) location 
=(LOC_RELATIVE_TO({(LOC_CYLINDRICAL((Eval(ra)),0,(Eval(hi))))},(EVAL($_sel
f.REF_name))))  
orientation=($FIE_ANG+(EVAL($_self.f_count))*$CELLSIDE),0.0,0.0 
  force create element_like field &    
 field_name=.($DICE_MOD).(EVAL($_self.field_name )) & 
      
i_marker_name=.($DICE_MOD).(EVAL("INT_PAR_"//ip)).(EVAL($_self.field_marke
r_name)) & 
      
j_marker_name=.($DICE_MOD).(EVAL("INT_PAR_"//jp)).(EVAL($_self.field_marke
r_name)) & 
!      stiffness_matrix= & 
 !     ($DICE_MOD.DV_LKXX),($DICE_MOD.DV_LKXY),($DICE_MOD.DV_LKXZ),0,0,0, 
& 
 !     ($DICE_MOD.DV_LKXY),($DICE_MOD.DV_LKYY),($DICE_MOD.DV_LKYZ),0,0,0, 
& 
!      ($DICE_MOD.DV_LKXZ),($DICE_MOD.DV_LKYZ),($DICE_MOD.DV_LKZZ),0,0,0, 
& 
!      0,0,0,($DICE_MOD.DV_LTXX),0,0, & 
!      0,0,0,0,($DICE_MOD.DV_LTYY),0, & 
!      0,0,0,0,0,($DICE_MOD.DV_LTZZ)  & 
!      damping_ratio = ($DICE_MOD.DV_DR)  & 
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       user_function = 
(DV_LKXX),(DV_LKXY),(DV_LKXZ),(DV_LKYY),(DV_LKYZ),(DV_LKZZ),(DV_LTXX),(DV_
LTYY),(DV_LTZZ),(DV_Er),(DV_DR)  & 
       routine = "fiesub_nlin64::" 
    !  comments="" 
mdi graphic_force object=.($DICE_MOD).(EVAL($_self.field_name )) type=1 
group modify group=SELECT_LIST object=.($DICE_MOD).(EVAL($_self.field_name 
)) 
undo end 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
entity attributes & 
 entity_name     = .($DICE_MOD).(EVAL($_self.field_name )) & 
 type_filter     = Field & 
 visibility      = no_opinion & 
 name_visibility = no_opinion & 
  & 
 entity_scope    = all_color & 
 size            = 1 & 
  & 
 transparency    = 0 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
variable modify variable_name=ip integer_value=(eval(ip+1)) 
variable modify variable_name=jp integer_value=(eval(jp+1)) 
variable modify variable_name=kp integer_value=(eval(kp+1)) 
! 
if condition=($LAST_PAR < jp) 
break 
end 
! 
! Update the object name strings to new unique values: 
  variable set variable_name=$_self.field_marker_name 
string_value=(UNIQUE_NAME("INT_FIE_MRK")) 
         variable set variable_name=$_self.field_name 
string_Value=(UNIQUE_NAME("INT_FIE")) 
         variable set variable_name=$_self.REF_name 
string_Value=(UNIQUE_NAME("REF_MAR"))  
! 
marker create marker=.($DICE_MOD).ground.(EVAL($_self.REF_name)) location 
= ($X_CENT),($Y_CENT),($Z_CENT) 
orientation=($INI_ANG+(EVAL(kp))*$CELLSIDE), 0.0, 0.0  
! 
variable modify variable_name=ra 
real_value=(((Eval(DM((EVAL("INT_PAR_"//ip).cm), 
(EVAL($_self.REF_name)))))+(Eval(DM((EVAL("INT_PAR_"//jp).cm), 
(EVAL($_self.REF_name))))))/2) 
variable modify variable_name=hi 
real_value=(((Eval(DZ((EVAL("INT_PAR_"//ip).cm), 
(EVAL($_self.REF_name)),(EVAL($_self.REF_name)))))+(Eval(DZ((EVAL("INT_PAR
_"//jp).cm), (EVAL($_self.REF_name)),(EVAL($_self.REF_name))))))/2) 
! 
! 
end ! for 
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Macro_contacts 

!$DICE_MOD:T=Model 
!$DICE_PAR:T=part 
!$DICE_GEO:T=geometry 
!$DICE_GEOS:T=string 
!$START_PAR:T=Integer 
!$LAST_PAR:T=Integer 
! 
!!! The DICE_MOD, DICE_PAR, DICE_GEO, and DICE_GEOS variables are the 
model, part  
!!! and geomtry name of the object to be connected to the multibody 
mensicus by  
!!! contact elements.  START_PAR and LAST_PAR are the meniscus part's 
numeric 
!!! suffixes corresponding to the first and last part in the range of 
parts to be 
!!! connected.  
! 
! 
! 
!!! note:the geos string should be the same as the geo variable 
variable create variable_name=ip integer_value=$START_PAR 
variable create variable_name=$_self.marker_name 
string_Value=(UNIQUE_NAME("INT_MRK")) 
variable create variable_name=$_self.cylinder_name 
string_Value=(UNIQUE_NAME("INT_CYL"))     
variable create variable_name=$_self.part_name 
string_Value=(UNIQUE_NAME("INT_PAR")) 
variable create variable_name=$_self.geo_name 
string_Value=(UNIQUE_NAME("INT_GEO")) 
variable create variable_name=$_self.csg_name 
string_Value=(UNIQUE_NAME("CSG_CELL")) 
! 
variable create variable_name=$_self.con_f_name 
string_Value=(UNIQUE_NAME("CON_F_ELE")) 
 variable create variable_name=$_self.gcon_name 
string_Value=(UNIQUE_NAME("GCON_FOR")) 
!        
variable create variable_name=$_self.con_t_name 
string_Value=(UNIQUE_NAME("CON_T_ELE")) 
 variable create variable_name=$_self.gcon_t_name 
string_Value=(UNIQUE_NAME("GCON_T_FOR")) 
! 
variable create variable_name=$_self.color_flag integer_value=1 
variable create variable_name=$_self.color_row_flag integer_value=1 
! 
!variable create variable_name=$_self.con_f_name 
string_Value=(UNIQUE_NAME("CON_F_ELE")) 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!! 
for variable_name=$_self.r_count start_value=($START_PAR) 
increment_value=1 end_value=($LAST_PAR) 
! 
! Checkerboard colouring: The start colour for each row must alternate: 
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      if condition=($_self.color_row_flag==1) 
         variable set variable_name=$_self.color_row_flag integer_value=0  
      else 
         variable set variable_name=$_self.color_row_flag integer_value=1  
      end ! if 
      variable set variable_name=$_self.color_flag 
integer_value=(EVAL($_self.color_row_flag)) 
! 
! 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!color objects 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 
! 
! Apply 'checkerboard' colour to cell: 
         if condition=($_self.color_flag==1) 
            variable set variable_name=$_self.color_flag integer_value=0 
            if condition=(DB_EXISTS(EVAL("CSG_CELL_"//ip)))  
               geometry attributes 
geometry_name=$DICE_MOD.(EVAL("INT_PAR_"//ip)).(EVAL("CSG_CELL_"//ip)) 
color=maize 
            end ! if 
         else 
            variable set variable_name=$_self.color_flag integer_value=1 
            if condition=(DB_EXISTS(EVAL("CSG_CELL_"//ip)))  
               geometry attributes 
geometry_name=$DICE_MOD.(EVAL("INT_PAR_"//ip)).(EVAL("CSG_CELL_"//ip)) 
color=Blue 
            end ! if 
         end ! if 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! 
! 
! The following is used to create a contact for each newly made element to 
the DICE_PART 
         contact create & 
         contact_name = .($DICE_MOD).(EVAL($_self.con_f_name))  & 
         & 
         & 
         i_geometry_name = $DICE_GEO  & 
         j_geometry_name = 
$DICE_MOD.(EVAL("INT_PAR_"//ip)).(EVAL("CSG_CELL_"//ip)) & 
         & 
         & 
         & 
         stiffness = ($DICE_MOD.DV_Contact_Stiffness) & 
      damping = ($DICE_MOD.DV_Contact_Damping) & 
      exponent =($DICE_MOD.DV_Force_Exponent) & 
      dmax =($DICE_MOD.DV_Contact_dmax) & 
       & 
        & 
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        & 
        & 
      coulomb_friction = on  & 
      mu_static = ($DICE_MOD.DV_Contact_MS) & 
      mu_dynamic = ($DICE_MOD.DV_Contact_MU)  & 
        & 
        & 
      stiction_transition_velocity = ($DICE_MOD.DV_Contact_ST_Vel)  & 
      friction_transition_velocity = ($DICE_MOD.DV_Contact_FT_Vel) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!! 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 
! Update the object name strings to new unique values: 
  variable set variable_name=$_self.marker_name 
string_value=(UNIQUE_NAME("INT_MRK")) 
         variable set variable_name=$_self.cylinder_name 
string_value=(UNIQUE_NAME("INT_CYL")) 
         variable set variable_name=$_self.part_name 
string_Value=(UNIQUE_NAME("INT_PAR"))         
         variable set variable_name=$_self.geo_name 
string_Value=(UNIQUE_NAME("INT_GEO")) 
         variable set variable_name=$_self.csg_name 
string_Value=(UNIQUE_NAME("CSG_CELL"))  
         variable modify variable_name=ip integer_value=(eval(ip+1)) 
         variable set variable_name=$_self.con_f_name 
string_Value=(UNIQUE_NAME("CON_F_ELE"))  
end ! for 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!! 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!! 
! 
defaults attributes icon_visibility="off" 
view manage modify render=sshaded 
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APPENDIX C 

On the following pages are drawing for the fixtures used in this study.  They drawings have been 
resized and are no longer to scale.  The first three drawings are of the indentation apparatus and 
the second three are of the meniscus tester.  Not included are drawings of the indenters, v-
blocks and the vice plates.



 

60 
 

 

, ., 
.. (of 

~/ 

Cup Holder 

+ ,-

",.~~ 

" ... 11 . 

~:D 
I 21· I • • 

Indentor Brocket 

I ~ 
""""Of l 



 

61 
 

 

 

" 11 0 

, 
-

f , 
t , 

r 0 
B 

-U-bradet Fixture 

~~- I ~ 
SCAlE U """" Of l 

I -
,-

-I 

:~ -

IT-I 
- ~ '" -~ • 4 • 

"- ,-, , 

I( ,\ [.:. - ..;... 

\ -~_./j 

-
U-8mcket 

~~- I ~ 

~" SHB ,Ofl 



 

62 
 

 

  

,·.of~ 
o.~ 

c+==i + "" c, 
~~ I 

~~ 

~. 

~. , 
L. , 

~.I'I" 
, , 
}c --

! -
. I ,~ I . 

L-Brac~et 

~~. I ~ 
SCAlE u """"Of ' 



 

63 
 

REFERENCE LIST 

 
"MD ADAMS 2010 help." Adams/Solver>C++ Statements>Field. 
 
Chia, H. N. and M. L. Hull (2008). "Compressive Moduli of the Human Medial Meniscus in the 

Axial and Radial Direction at Equillibrium and at a Physiological Strain Rate." Journal of 
Orthopedic Research: 951-956. 

 
Donahue, T. L., M. L. Hull, M. M. Rashid and C. R. Jacobs (2002). "A finite element model of 

the human knee joint for the study of tibio-femoral contact." J Biomech Eng 124(3): 
273-80. 

 
Elliott, D. M., R. Jones, 3rd, L. A. Setton, S. P. Scully, T. P. Vail and F. Guilak (2002). "Joint 

degeneration following meniscal allograft transplantation in a canine model: mechanical 
properties and semiquantitative histology of articular cartilage." Knee Surg Sports 
Traumatol Arthrosc 10(2): 109-18. 

 
Fithian, D. C., M. K. Kelly and V. C. Mow (1990). "Material Properties and structure-function 

realtionships in the menisci." Clinical Orthopedics and Related Research: 19-31. 
 
Guess, T. M., G. Thiagarajan, M. Kia and M. Mishra (2010). "A subject specific multibody 

model of the knee with menisci." Medical Engineering & Physics: 505–515. 
 
Hayes, W. C., L. M. Keer, G. Herrmann and L. F. Mockros (1972). "A mathematical analysis for 

indentation tests of articular cartilage." J Biomech 5(5): 541-51. 
 
Jurvelin, J. S., J. P. Arokoski, E. B. Hunziker and H. J. Helminen (2000). "Topographical 

variation of the elastic properties of articular cartilage in the canine knee." J Biomech 
33(6): 669-75. 

 
McCann, L., E. Ingham, Z. Jin and J. Fisher (2009). "Influence of the meniscus on friction and 

degradation of cartilage in the natural knee joint." Osteoarthritis Cartilage 17(8): 995-
1000. 

 
Nigg, B. M. and W. Herzog (1999). Biomechanics of the Musculo-skeletal System. West Sussex, 

John Wiley & Sons Ltd. 
 
Pozzi, A., C. A. Tonks and H. Y. Ling (2010). "Femorotibial contact mechanics and meniscal 

strain after serial meniscectomy." Vet Surg 39(4): 482-8. 
 
Shepherd, D. E. and B. B. Seedhom (1997). "A technique for measuring the compressive 

modulus of articular cartilage under physiological loading rates with preliminary results." 
Proc Inst Mech Eng H 211(2): 155-65. 

 
Sweigart, M. A., C. F. Zhu, D. M. Burt, P. D. DeHoll, C. M. Agrawal, T. O. Clanton and K. A. 

Athanasiou (2004). "Intraspecies and interspecies comparison of the compressive 
properties of the medial meniscus." Ann Biomed Eng 32(11): 1569-79. 



 

64 
 

 
Tawhai, M., J. Bischoff, D. Einstein, A. Erdemir, T. Guess and J. Reinbolt (2009). "Multiscale 

modeling in computational biomechanics." IEEE Eng Med Biol Mag 28(3): 41-9. 
 
Yao, J., J. Snibbe, M. Maloney and A. L. Lerner (2006). "Stresses and strains in the medial 

meniscus of an ACL deficient knee under anterior loading: a finite element analysis with 
image-based experimental validation." J Biomech Eng 128(1): 135-41. 

 
 
 

 



 

65 
 

VITA 

 

Gavin Carson Paiva was born on November 27, 1985, in Rocheport, Missouri.  After 

moving to the Kansas City metropolitan area at an early age he attended public schools and 

graduated from Shawnee Mission East High School in 2004.  He was a repeated state medalist in 

Kansas Science Olympiad competitions.   

After receiving academic scholarships to the University of Missouri-Kansas City he 

began studying mechanical engineering.    As an undergraduate he competed as a member of the 

Human Powered Vehicle Design Team.  He also participated in the Missouri Space Grant 

Consortium and presented on thermodynamic properties of food.  He graduated cum laude in 

2008 with a Bachelor of Science Degree in Mechanical Engineering and minors in physics and 

chemistry. 

In fall of 2008 he enrolled in the University of Missouri-Kansas City Graduate School 

and began work as a graduate research assistant in the Musculoskeletal Biomechanics Research 

Laboratory.  He has worked on cooperative projects with the Human Motion Laboratory and 

the Computational Intelligence and Bio-Identification Technologies Laboratory at UMKC.  

Upon completion of the requirements for a Master of Science in Mechanical Engineering, Gavin 

intends to pursue further education in the field.   


	ABSTRACT
	CONTENTS
	ILLUSTRATIONS
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1
	INTRODUCTION
	1.1 Background of Materials

	CHAPTER 2
	LITERATURE REVIEW
	CHAPTER 3
	METHODS
	3.1 Experimental Testing
	3.1.1 Sample Preparation
	Figure 1.  A disarticulated canine stifle.  Femur and tibia halves (left) and menisci (right)

	3.1.2 Experimental Meniscus Testing
	Figure 2.  A 3D model of the lateral meniscus v-block
	Figure 3. Meniscus testing apparatus (left) and cartilage indentation (right).

	3.1.3 Experimental Cartilage Testing
	Figure 4. A schematic sketch of the indentation apparatus (with tibia half)


	3.2 Model Creation
	3.2.1 Geometry Creation
	Figure 5. 3D Slicer  sample window, showing a sagittal MRI with traces in all three planes
	Figure 6. Course geometry for a canine tibia, cartilage and meniscus (incomplete)
	Figure 7.  Smoothed geometries after post processing in Geomagic Studio.
	Figure 8.  Post processed geometries intersected onto the MRIs for verification
	/
	Figure 9. A photo overlay of the smoothed geometries (meniscus in blue, cartilage in yellow, and tibia in red) and the original sample.

	3.2.2  Elastic Behavior Modeling
	Table 1.  Contact parameters used for meniscus on v-block interaction

	3.2.3  ADAMS Model Creation
	Figure 10.  Multibody meniscus under load.


	3.3 Model Execution.
	3.4 Design of Experiments.

	CHAPTER 4
	RESULTS
	4.1 Experimental Testing
	4.1.1 Experimental Meniscus Testing
	Table 2.  List of valid meniscus test data.
	Figure 11. A representative ramp loading profile for 2R
	Figure 12. A representative sine loading profile for 2R
	Figure 13. A representative ramp loading profile for 11L
	Figure 14. A representative sine loading profile for 11L

	4.1.2 Experimental Cartilage Testing
	Table 3.  Indentation samples


	4.2 Model Results
	4.1.3  Elastic Behavior Modeling
	Figure 15.  Graphical example of nonlinear force length behavior

	4.2.1 Meniscus Results
	Table 4.  Optimized parameters and errors for the medial 11L meniscus.
	Table 5. Optimized parameters and errors for the lateral 2R meniscus.
	Table 6. Optimized parameters and errors for the lateral 2R meniscus.
	Table 7. Optimized parameters and errors for the lateral 14L meniscus.
	Table 8.  Summary of errors
	Table 9. Collected parameters values for the MB canine meniscus.
	Table 10. RMS errors for models when using nominal parameter values
	Figure 16.  MB meniscus results for 11L Medial–Wide
	/
	Figure 17.  MB meniscus results for 2R Lateral-Wide
	Figure 18.  MB meniscus results for 2R Lateral-Narrow
	Figure 19.  MB meniscus results for 14L Lateral-Narrow
	/
	Figure 20.  MB meniscus results for 11L Medial–Wide
	/
	Figure 21.  MB meniscus results for 2R Lateral –Wide
	Figure 22.  MB meniscus results for 2R Lateral-Narrow
	Figure 23.  MB meniscus results for 14L Lateral-Narrow

	4.2.2 Cartilage Model.
	Table 11.  Cartilage indentation modeled Moduli of Elasticity

	4.2.3 Design of Experiments.


	CHAPTER 5
	DISCUSSION
	5.1 Analysis of Experimental Results
	5.2 Model Results
	5.2.1  Meniscus Performance

	5.3 Improvements

	CHAPTER 6
	CONCLUSION & FUTURE WORK
	APPENDIX A
	APPENDIX B
	APPENDIX C
	REFERENCE LIST

