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ABSTRACT 

This paper investigates the use of eye-tracking data as a predictor of student 

performance in an augmented reality (AR) learning environment. 33 undergraduate 

students enrolled in an ergonomics course at the University of Missouri-Columbia 

participated in an AR biomechanics lecture consisting of 14 modules. Following each 

module students answered learning comprehension questions to test their understanding 

of the lecture material. An additional dataset was recorded for each module in which the 

participant perfectly follows the virtual instructor throughout the learning space. This 

dataset, referred to as the baseline, can be used as a comparison tool to gauge how well 

students follows the lecture material. Two methods are proposed to quantify the student’s 

attention level for each module. The average difference method calculates the average 

distance between the student and baseline coordinates for each module. The distraction 

rate method expands upon the average difference method and aims to reduce the amount 

noise detected. This is done by incorporating a minimum distance threshold, a binary 

detection signal, and a moving average window. Both metrics are tested as factors in a set 

of logistic regression models to determine whether they can accurately predict student 

answer correctness. Average difference showed a correlation with student answer 

correctness, but with an underwhelming level of significance. Distraction rate 

outperformed average difference and proved to be a strong and statistically significant 

predictor of student answer correctness. Finally, two feedback systems are proposed 

which use distraction rate to detect when students have become distracted so that their 

attention can be regained through the use of module-based feedback or a real-time 

attention guidance system.
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Chapter 1 - Introduction 

1.1 Motivation 

Following the lockdown caused by the COVID-19 pandemic, academic 

institutions of all levels were forced to transition to virtual learning environments. One of 

the greatest challenges faced by instructors during this transition was replicating the 

hands-on learning experience previously provided by in-person teaching. Augmented 

Reality (AR) platforms provide a unique solution to this problem as they promote spatial 

imagination and thinking which can boost the student’s understanding of complex lecture 

material (Gurevych et al., 2021). If AR learning modules can be designed in a way that 

replicates the dynamic and engaging experience found in an in-person lab, it would 

significantly reduce gap between virtual and in-person learning experiences. 

One of the key challenges in providing a comprehensive AR learning experience 

is to ensure students are focusing on the correct objects within the 3-dimensional learning 

space. Recent studies have found that students in AR learning environments are prone to 

cognitive overload and distraction (Akçayır & Akçayır, 2017). During in-person lab 

sessions, instructors can monitor their students and intervene if students become confused 

or stop paying attention. This type of interaction is not accounted for in a pre-recorded 

lecture, which further contributes to the gap between virtual and in-person learning 

environments. If the student’s attention levels can be tracked and analyzed throughout the 

learning session, then feedback can be provided to them in real-time to attempt to regain 

their focus. Real-time feedback systems could be implemented to reduce premature 

termination of learning and potentially improve student performance. Research has 
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shown an association between eye-tracking measurements and learning performance 

(Alemdag & Cagiltay, 2018). Fortunately, eye-tracking capabilities are becoming a 

common feature on AR headsets. This makes eye-tracking data analysis a potentially 

powerful method for monitoring attention levels and predicting student performance in 

AR learning environments. 

1.2 Research Overview 

The data used in this research was collected from a group undergraduate students 

enrolled in an ergonomics course at the University of Missouri-Columbia in the Fall 

semester of 2022. Each of the students participated in a total of 14 AR lecture modules. 

Following each of the modules, students would answer a multiple-choice question related 

to the material covered in that module. The student’s eye-tracking data was recorded 

throughout the duration of the lectures. This data consisted of x and y-coordinate data 

along with corresponding timestamps. 

In order to analyze the student’s eye-tracking data, an additional dataset referred 

to as the baseline was collected. The coordinates of the baseline dataset closely follow the 

verbal instructions given by the virtual instructor and represent where the student’s 

attention is supposed to be directed throughout the lecture. The baseline dataset can be 

compared to the student’s coordinates to determine how well the student is following the 

lecture material. This comparison is done using two different attention monitoring 

metrics which have been developed. The first, referred to as average difference, is the 

average distance between the student and baseline coordinates throughout the module. 

The second metric, distraction rate, incorporates a minimum distance threshold, binary 

detection signal, and moving average window to reduce the amount of noise detected by 
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the metric. Statistical tests are then conducted to determine whether there is a correlation 

between these metrics and student answer correctness. Next, multiple logistic regression 

models are fitted to evaluate whether these metrics can be used to accurately predict 

student answer correctness. Finally, the threshold and moving average window 

parameters used in the distraction rate calculations are tested to determine which 

parameter values yield the highest significance levels in the aforementioned statistical 

tests. As a result of this research, a module-based feedback system and an attention 

guidance system are recommended. The proposed frameworks for both of these systems 

are provided as well. 

1.3 Objectives 

The main objective of this research is to develop an attention monitoring metric 

capable of predicting student performance. The most important part of this process is to 

validate the relationship between eye-tracking data and student performance. This will be 

accomplished through the use of statistical testing and logistic regression models. If the 

proposed metrics are capable of accurately predicting student performance, then they can 

be implemented as a part of a real-time attention monitoring system. This system will 

provide feedback to students with the intention of reducing the negative effects of 

cognitive overload and preventing premature termination of learning. 
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Chapter 2 - Literature Review 

2.1 Augmented Reality Applications 

In recent years, augmented reality has emerged as an effective alternative to 

standard teaching and training practices. School subjects including chemistry, astronomy, 

physics, biology, mathematics, and geometry have all found new ways to implement AR 

learning as part of their curriculum (K. Lee, 2012). One study found that STEM subjects 

have seen particularly positive results in the form of student feedback as well as 

improvements in academic performance. The collaborative, interactive, and immersive 

nature of AR learning environments enriches students’ learning experiences and thus 

contributes to their learning effectiveness (T. Lee et al., 2022). One potential reason for 

AR’s effectiveness in STEM subjects is its ability to promote spatial intelligence. Spatial 

intelligence can be defined as the mental ability to understand and solve real-world 

problems. AR allows students to visualize and interact with objects in three dimensions, 

which helps further their understanding of complex problems. Research findings have 

shown that AR technology has a positive effect on spatial intelligence in mathematics 

(Ban Hassan Majeed & ALRikabi, 2022). 

In one junior high school, experiments in AR-based applications, including a 

series of mathematics lessons on probability, found success as well. Results showed that 

mobile AR-based applications would be helpful for students’ learning gains on the topic 

of probability. Additionally, students displayed positive attitudes towards the AR 

applications in this series of lessons(Cai et al., 2020). Martin-Gutierrez and Meneses 

Fernández (2014) implemented an AR program to assist mechanical engineering students 
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in the subject of graphic engineering. They found that engineering students obtain better 

academic results and are more motivated when the new generation of technological tools 

are incorporated into the learning process. Another application of AR-based learning is in 

vocational higher education. Radosavljevic et al. (2020) compares the results of 

traditional learning and learning using AR in the part of the curriculum important for 

vocational skills. Results showed that AR helps to reduce the time of realizing a task as 

opposed to realizing it using printed materials. Kaur et al. (2022) developed an AR 

learning environment utilizing mobile and table-top design variants which was tested in a 

case study involving 60 undergraduate students of electronics and electrical engineering. 

Students who participated showed increased motivation and satisfaction. 

AR applications in learning are not limited to higher levels of education. Lindgren 

et al. (2016) conducted a study where middle school students learned about gravity and 

planetary motion in an immersive, whole-body interactive simulation. Results of the 

study indicated that enactive concepts and experiencing critical ideas in physics through 

the whole body leads to significant learning gains, higher levels of engagement, and more 

positive attitudes towards science. Another study by Dunleavy et al. (2009) conducted 

multiple qualitative case studies across two middle schools (6th and 7th grade) and one 

high school (10th grade). Teachers and students reported that the technology-mediated 

narrative and the interactive, situated, and collaborative problem-solving affordances of 

the AR simulation were highly engaging, especially among students who had previously 

presented behavioral and academic challenges for the teachers.  

Medical training is another field where AR can have a positive impact. The shift 

towards online learning caused by COVID-19 highlights this fact as medical personnel 
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were required to take added precautions to reduce exposure. In a review conducted by 

(Dhar et al., 2021), it was found that AR-based training provides a vast potential to 

prepare medical professionals effectively and efficiently for the real world of practice. 

AR can also be applied in business sectors such as tourism, museums, or gaming (K. Lee, 

2012). The AR game-based learning environment developed by Chen et al. (2015) 

received positive feedback from its pilot study participants. Industrial applications can 

also be especially useful for providing non-expert users with helpful information about 

the functionality of complex automated systems (Heinz et al., 2019). AR-based training 

can even be used for emergency protocol training. Stigall et al. (2018) proposed an 

architecture and describes the design and implementation of an AR application to 

leverage the Microsoft HoloLens for building evacuation purposes. Pilot studies of the 

system demonstrated the effectiveness of the application in an emergency evacuation. 

2.2 Assessment of Augmented Reality in Education 

The recent popularity of augmented reality in education has resulted in an 

abundance of literature discussing the advantages and challenges of implementing it. In a 

review by Alzahrani (2020), multiple studies indicated that one of the most fundamental 

advantages of AR in education lies in its ability to support kinesthetic learning. This 

stems from how AR creates an interactive learning system that allows students to 

understand and memorize content through 3D visualizations. One of AR’s most defining 

features is its ability to enhance the preexisting classroom environment. AR provides 

instructors with a way to strengthen students’ understanding in the classroom by 

augmenting physical props with virtual annotations and illustrations (Saidin et al., 2015). 

In AR, there is an intimate relationship between virtual and physical objects. The 
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physical objects can be enhanced in ways not normally possible such as providing 

dynamic information overlay, private and public data display, context sensitive visual 

appearance, and physically based interactions (Billinghurst, 2002). AR has also been 

shown to increase student attention levels. In an experiment conducted by Bos et al. 

(2019), user attention was monitored through an electroencephalography (EEG) sensor 

while performing an educational task using either AR or a traditional interface. An 

increase in student attention was identified during the interaction with the AR 

application, as opposed to its conventional counterpart. Other studies also report high 

levels of independent thinking, creativity, and critical analysis from students using AR 

compared to traditional learning (Bower et al., 2014). 

One of the most prominent challenges of AR is cognitive overload. Students in 

AR environments may find difficulties with the large amount of information they 

encounter, the multiple technological devices they are required to use, and the complex 

tasks they must complete (Wu et al., 2013). Another similar issue is attention tunneling. 

Students reportedly experience higher attentional demands from AR systems. This results 

in the students ignoring important parts of the experience or feeling unable to properly 

perform team tasks (Radu, 2012). Some other challenges include technical problems, 

design difficulties, expensive technology, and that AR is difficult for students to use 

(Akçayır & Akçayır, 2017). 

2.3 Eye-Tracking Data Analysis 

Across a variety of learning environments, eye-tracking data analysis has 

managed to overcome limitations in the study of cognitive processes linked to learning 

and performance (Rodrigues & Rosa, 2017). An experiment conducted by Wang et al. 
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(2016) utilized eye-tracking measures such as total reading time, total fixation duration, 

number of fixations, and inter-scanning count to predict learning outcomes. They found 

that on dynamic, multimedia webpages the inter-scanning count between text and video 

zones had a significant negative correlation with retention scores. The total number of 

fixations also had a significant positive correlation with retention scores. Li et al. (2020) 

utilized eye-tracking data to train a machine learning to predict the difficulty level of e-

learning problems. The results confirmed that eye movement, especially fixation 

duration, contains essential information on the difficulty of problems and is sufficient to 

build machine learning models to predict problem difficulty level. Mayer (2010) 

investigated the link between eye-fixation measures and learning outcomes. Out of six 

case studies, four concluded that there is evidence of a link between perceptual 

processing of relevant portions of graphic information and measures of cognitive 

performance on an intellectually demanding task. Chettaoui et al. (2023) applied 

predictive modeling to identify the synergies between eye-gaze features and students’ 

learning performance. The obtained results suggest that combining eye-gaze tracking 

with learning traces and behavior attributes may support an accurate prediction of 

students’ learning performance. 

In another study, eye movement data was recorded from 40 students who watched 

lecture videos. Using an artificial intelligence algorithm, researchers were able to predict 

student performance with an error of less than 5% (Sharma et al., 2020). Eye-tracking 

data can also measure how well students are paying attention to lecture material. Sharma 

et al. (2015) was able to detect the difference between students who engage with their 

teacher or collaborating partner through the interface/display and students who only 
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engage with the material. Eye-tracking data can also be analyzed alongside other 

cognitive sensor data to predict student performance. Khedher et al. (2019) used both 

eye-tracking and electroencephalography data to train a K-Nearest Neighbor 

classification algorithm to accurately discriminate between students who successfully 

resolved a problem-solving task and students who did not. 

In another method proposed by Buettner et al. (2018), eye-tracking based 

pupillometry was used to capture pupil diameter data and calculate user performance 

expectations via a Random Forest Algorithm. The results showed a good classification 

accuracy of user performance after only 40 seconds (5% of the mean total runtime). 

Peterson Joshua and Pardos (2015) also analyzed the predicting power of pupillometry in 

addition to over 40 other high-level gaze features. They found that certain gaze features 

are strong predictors of performance, but less so of learning gains, while pupil diameter is 

marginally predictive of learning gains, but not performance. 

Eye-tracking data has proven to be an effective indicator of attention levels within 

virtual reality (VR) learning environments as well. Asish et al. (2022) proposed an 

automated system based on machine learning to classify students based on their 

distraction level using eye gaze data. Results showed that a Random Forest algorithm was 

capable of classifying student attention as one of three levels (low, medium, high) with an 

accuracy of 98.88%. Eye-tracking data can also be used to visualize student eye gaze 

patterns in real-time, giving teachers useful insights on student attention levels. Rahman 

et al. (2020) proposed six gaze-visualization techniques for a VR-embedded teacher’s 

view and conducted a user study to compare them. The results suggested that a short 

particle trail representing eye-tracking trajectory is promising. 
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2.4 Analyzing Cognitive States in Augmented Reality 

Strictly within AR learning environments, eye-tracking hasn’t been extensively 

tested as an indicator of student performance or attention levels. Regardless, the studies 

on the subject have yielded promising results thus far. In a paper by Dzsotjan et al. 

(2021), they discuss their ongoing construction of an AI framework to quantify and 

predict the learning gain of the user, examining the predictive potential of gaze data 

collected during the app usage. Experimental results showed that a support vector 

machine yields the highest accuracy, and the K-Nearest Neighbor and Random Forest 

Classifiers found success as well. 

Besides eye-tracking, there are several other techniques which have been 

implemented in AR learning environments to monitor students’ cognitive states. Brain 

activity sensors such as EEG and functional near-infrared spectroscopy (fNIRS) have 

both been used to estimate attentional states in AR (Vortmann, 2019). Skin conductance 

(or electrodermal activity – EDA) is another indicator that can be monitored via skin 

biosensors. The data collected from these sensors has proven to be an effective way to 

track student engagement during AR lab activities (Soltis et al., 2020). 

As previously discussed, it is common for students to become overwhelmed in 

AR learning environments due to the large quantity and variety of content being 

presented to them. Attention guiding systems are an effective way to ensure users can 

efficiently find the desired information within the AR space. Biocca et al. (2006) 

conducted an experiment in which an attention funnel and other conventional AR 

attention directing techniques were implemented. Results showed a 65% increase in user 

search consistency, 22% increase in search speed, and an 18% decrease in mental 
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workload. Such systems have applications outside of education as well. Renner and 

Pfeiffer (2017) designed a smart glasses-based assistance system for a manual assembly 

station which incorporated several attention guiding techniques, some of which 

incorporated eye-tracking data. Considering how prominent the issue of cognitive 

overload is in AR learning environments, attention guiding systems should be considered 

to attempt to mitigate its negative effects on learning. 
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Chapter 3 - Augmented Reality Lab Design 

3.1 Equipment 

The experimental AR lectures took place in the ergonomics lab of the Industrial & 

Systems Engineering department at the University of Missouri-Columbia. The lab room 

consists of an open room with a single moveable desk where the student can write down 

calculations as they answer questions related to the lecture material. The AR headset used 

in this experiment is the Microsoft HoloLens. The HoloLens allows students the freedom 

to turn their head in any direction as they experience the AR lecture. It is also capable of 

recording eye-tracking coordinate data via the orientation of the headset. This is not the 

same as tracking pupil movements, but still indicates approximately where the student is 

looking at any given moment. 

 

Figure 3-1: Microsoft HoloLens. 

3.2 Participants 

The participants of this experiment were undergraduate students at the University 

of Missouri-Columbia enrolled in an ergonomics course in the Industrial & Systems 

Engineering department. There were 33 total participants with an average age of 21.75 
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(standard deviation of 4.27). Data collection took place over a three-week span during the 

Fall 2022 semester. 

3.3 Learning Content 

The lecture material covered in this lesson is on the subject of biomechanics.  

Biomechanics problems provide an excellent opportunity to take advantage of the AR 

learning environment with 3-dimensional animated figures. These figures aim to help the 

student visualize the problem context, which is sometimes difficult to represent in two 

dimensions. The scene arrangement for each of the modules consists of five panels where 

text, calculations, and data tables can be displayed. In front of the panels, the virtual 

instructor will move throughout the 3-dimensional space to guide the student’s attention 

towards the current point of interest. 

 

Figure 3-2: Scene arrangement. 

The learning content is split into two different lectures. Both lectures consist of 

seven modules, all of which are followed by a quiz question to assess the students’ 

comprehension of the material. The difficulty level of the learning content is increased in 

the second lecture. The first lecture focuses on basic biomechanics concepts. Lecture 2 
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expands upon the material from the first lecture with example problems which walk 

through complex calculations.  

3.4 Procedure 

The participant begins each lecture at station 1 with a moveable table for 

answering questions. As the participant progresses through the modules, they move 

across the room with the table which is attached to a Q-Track real-time positioning 

sensor. This sensor indicates the location of the table and initiates the next module 

whenever the student moves to the next location. Each time they complete a module, they 

are then given as much time as they need to complete the quiz question for that module. 

They are allowed to look around the virtual space during this time to view relevant tables 

and figures. 

 

Figure 3-3: Experimental layout. 
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Chapter 4 - Methods 

4.1 Data Preprocessing 

4.1.1 Output Data Problems 

There are several problems with the raw eye-tracking output data that prevent an 

effective analysis. The data must be preprocessed in order to address these issues. The 

most significant problem is that there is an inconsistent number of data points collected 

per second by the Microsoft HoloLens eye-tracking system. Some 1-second periods 

contain as many as 30 data points. Others contain few or even no data points at all. To 

compare different students with one another, the dataset needs to be structured, and 

therefore modifications must be made. 

Another issue that needs to be addressed are the periods of time without any data 

points. Missing data points occur when the student is not looking at any of the five 

content panels within the virtual space. Students who look down at the table to view the 

quiz questions during the module are one cause of this issue. Regardless of how they 

occurred, the missing data points need to be accounted for and filled in with a null value 

so that a continuous timeline exists. 

Finally, some additional columns are included in the output data that can be 

excluded for the purpose of this analysis. The distance between the student and the panel, 

the z coordinates (which is essentially the same as the distance), which panel the student 

is looking at, and the date will all be removed. The remaining columns are the x-

coordinates, y-coordinates, and time. Table 4-1 includes a description of each of the 

output dataset columns. 
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Table 4-1: Eye-tracking output data column descriptions. 

4.1.2 Importing & Cleaning Data 

The statistical analysis programming language R will be used to preprocess the 

data along with the integrated development environment RStudio. The raw data is 

imported into RStudio one module at a time. There were 33 participants who each 

completed 14 lecture modules, resulting in a total of 462 observations. An example of the 

raw data after it is imported into RStudio as a data frame is shown in Table 4-2. 

 

Table 4-2: Eye-tracking output data (student 1, lecture 1, module 7). 
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Once imported, each dataset is cleaned and restructured. The first step is to 

remove unnecessary columns and rename the significant ones. After this, the time column 

is restructured so that it begins from 0 and only includes seconds. Finally, the average x 

and y-coordinate for each 1-second period are calculated. These values will be used 

moving forward so that there are an equal number of data points for each second. For any 

second which does not have any data points, the “NA” value will be used as a 

placeholder. The final preprocessed data is organized by lecture so that each student has 

two preprocessed data files. Each file contains all 7 modules which are a part of the 

corresponding lecture. The data preprocessing R script file is shown in Figure 4-1 along 

with the preprocessed data for student 1 in Table 4-3.  

 

Figure 4-1: Data preprocessing R script file. 
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Table 4-3: Preprocessed student data (student 1, lecture 1). 

4.2 Student Data 

Before analyzing the eye-tracking data, the dataset must first be checked to 

determine whether there appears to be any trends within the data. Regression models 

were trained using eye-tracking data to predict whether students will be more or less 

likely to answer questions correctly. In order for this type of analysis to be effective, it is 

necessary to understand the different trends present in the answer correctness data so that 

they can be accounted for during the regression analysis. Figure 4-2 displays the 

proportion of correct versus incorrect answers for each individual student. Students 13 

and 32 both had missing answer data and are excluded from analysis. Students answered 

a majority of questions correctly with an overall accuracy of 87.4%. Four students 

answered every single question correctly. This is not ideal because in order to train a 

regression model there needs to be a sufficient amount of data with both possible outputs. 

Since a majority of students were correct, it is more difficult for a model to identify 

factors which accurately predict answer correctness. Besides the lack of answer disparity, 
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the answer data appears to be normal and there don’t seem to be any trends between 

students. 

 

Figure 4-2: Answer correctness by student. 

The next comparison is the effect of the different modules on student answer 

correctness. In Figure 4-3, each module is plotted in order versus the proportion of 

students who answered the follow-up quiz question correctly. Upon a visual analysis, it 

appears that there is a negative correlation between student answer correctness and the 

lecture modules. This correlation happens to be intentional as the difficulty level of the 

second lecture was increased with respect to the first. This trend needs to be accounted 

for in order to create a model that is capable of accurately predicting student answer 

correctness. 

Another important feature of the answer data is that there are four modules (1-1, 

1-3, 1-7, and 2-1) in which all students answered questions correctly. This is an important 

fact to consider when conducting a logistic regression analysis to predict the likelihood of 

a correct vs incorrect answer. It can be very difficult for a regression model to account for 

factors which result in a 100% likelihood of a certain outcome. In some cases, it is 
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beneficial to treat such data as outliers and remove them from the dataset when training 

the model. 

 

Figure 4-3: Answer correctness by module. 

4.3 Baseline Data Collection 

Initially, the use of a machine learning algorithm was considered as a method of 

predicting student answer correctness. Unfortunately, due to the uneven split between 

student answer correctness, this type of model would be ineffective. Instead, the alternate 

approach chosen for this analysis begins with identifying the ideal eye-tracking 

coordinates throughout the lecture material. This set of ideal coordinates, referred to as 

the baseline dataset, closely follows the virtual instructor’s location and only deviates 

when specifically told to do so. In order to record this dataset, an additional participant 

was trained on where the different objects of interest can be found throughout each 

module. Multiple trial runs were recorded for each module until a satisfactory baseline 

dataset was collected. The baseline dataset can be used as a comparison tool to detect 

how closely each student followed the virtual instructor. It is hypothesized that students 
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who accurately follow the instructions of the virtual instructor will be more likely to 

discern key information and answer follow-up questions correctly. 

Before creating an algorithm to compare the student and baseline datasets, they 

can be compared using a coordinate plot to search for trends. Based on the hypothesis, 

students whose eye-tracking coordinates are closer to the baseline coordinates will 

answer questions correctly. In contrast, students whose eye-tracking coordinates do not 

match the baseline should answer incorrectly. An example of the first case is shown in 

Figures 4-4 and 4-5. These timeseries plots show the x and y-coordinates for student 2 

compared to the baseline coordinates in module 2-2. In both plots, the student appears to 

accurately follow the baseline coordinates, excluding a few brief deviations. In this case, 

the student answered the question correctly, which agrees with the proposed hypothesis 

that students who accurately follow the baseline dataset will have a greater likelihood of 

answering questions correctly. 

 

Figure 4-4: X-coordinates vs baseline (student 2, module 2-2). 
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Figure 4-5: Y-coordinates vs baseline (student 2, module 2-2). 

In Figures 4-6 and 4-7, the plots show the x and y-coordinates of student 2 

compared to the baseline for module 2-7. In this case, the student was not able to 

accurately follow the baseline and the student answered the question incorrectly. Once 

again, the proposed hypothesis was correct. These two examples are useful for 

visualizing the baseline comparisons, although they do not provide nearly enough 

evidence to draw any conclusions. The rest of the data will need to be analyzed as well in 

order to determine whether there is a meaningful relationship between how accurately the 

student follows the baseline dataset and the probability of a correct answer. Additionally, 

rather than visually analyzing the data for each individual module, comparison metrics 

will need to be developed to numerically represent how accurately the student follows the 

baseline. Two metrics are developed in order to accomplish this: average difference and 

distraction rate. The following sections describe how they are calculated and how they 

can be used to predict student performance. 
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Figure 4-6:  X-coordinates vs baseline (student 2, module 2-7). 

 

Figure 4-7: Y-coordinates vs baseline (student 2, module 2-7). 

4.4 Average Difference Method 

4.4.1 Methodology 

The average difference method is fairly straightforward. There will be one value 

calculated for each module which represents the students’ attention level. The first step is 

to calculate the difference between the student and baseline coordinates for each 1-second 
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interval. Next, add together the difference from each 1-second interval to get the total 

difference across the entire module. Finally, divide the sum by the total number of 

observations (equivalent to the runtime minus the number of missing values) to normalize 

the data. The resulting value is the average difference for that module. This metric should 

indicate how well the student followed the instructions of the virtual instructor 

throughout each module. The average x-coordinate difference will first be considered. 

The reason for this decision is that the virtual content within the AR learning 

environment covers a much greater horizontal distance since the five content panels are 

positioned side-to-side. Because of this, the x-coordinate data will provide a greater 

insight as to whether or not the student is focusing on the correct locations. 

 

Figure 4-8: Average x-coordinate difference vs module. 

The statistical analysis programming language R will once again be used to 

conduct this analysis through the integrated development environment RStudio. The first 

step will be to import the preprocessed student and baseline data files for each lecture. 

For each student, one module will be processed at a time and its average difference will 

be calculated. Since there are 33 students who each completed 14 modules, there will be 
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a total of 462 observations. The R script file which is used to calculate the average x-

coordinate difference for lecture 1 is shown in Figure 4-9. The resulting data is also 

plotted based on module in Figure 4-8. This chart helps visualize how difficult it was for 

students to follow the virtual instructor in each module. 

 

Figure 4-9: Average x-coordinate difference R script. 

4.4.2 Statistical Analysis 

The first statistical test conducted is a two-sample, one-sided, equal-variance, t-

test comparing the average x-coordinate difference from modules which students 

answered correctly to modules which students answered incorrectly. With a p-value of 

0.02226, the results from this test show that there is a significant increase in average x 

difference between the two populations. This indicates a correlation between average x-

coordinate difference and student answer correctness. The data is plotted in Figure 4-10, 

where it becomes apparent that there isn’t a substantial difference between the two 

populations despite the results of the t-test.  
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Figure 4-10: Average x-coordinate difference of modules with correct vs incorrect answers. 

For the next part of the statistical analysis, the average x-coordinate difference 

will be fitted as a predictor of student answer correctness in a simple logistic regression 

model. This model does not consider any other factors. In the resulting model, average x-

coordinate difference has a parameter estimate of -0.5745 with a p-value of 0.0463. 

Based on this analysis, average x-coordinate difference can be considered a significant 

predictor of student answer correctness. The negative parameter estimate also indicates 

that as the average x-coordinate difference increases, the probability of a correct answer 

decreases. In other words, if the student does not accurately follow the virtual instructor, 

then they will have a lower chance of correctly answering the question for that module. 

The resulting model is plotted in Figure 4-11. The plot also includes all observations of 

student answer correctness vs average x-coordinate difference. 



 

 

27 

 

Figure 4-11: Average x-coordinate difference simple logistic regression model. 

The final statistical test will be a mixed-effects logistic regression model. In this 

model, average x-coordinate difference will be considered as a factor in addition to 

module (fixed factor) and student (random factor). By including these factors in the 

model, the variation they cause within the dataset will be accounted for. This should 

result in a prediction model which is more accurate at predicting student answer 

correctness than the simple logistic regression model. Two different logistic regression 

functions will be used, the glmmPQL function and the glmer function. The glmmPQL 

function utilizes penalized quasi-likelihood, which is a flexible and widely implemented 

parameter estimation method. The glmer function instead uses the Laplace approximation 

method, which tends to be more accurate than PQL, but also slower and less flexible 

(Bolker et al., 2009). 

The glmmPQL model resulted in a parameter estimate of -0.8973 for average x-

coordinate difference. The parameter estimate has a p-value of 0.0393, which is 

significant. For the glmer model, average x-coordinate difference has a parameter 

estimate of -0.5906 and a p-value of 0.226. The algorithm also failed to converge, which 



 

 

28 

suggests that the prediction variables may not convey enough information to accurately 

predict the outcome variable. There could also be issues with the algorithm’s parameters 

which could potentially be adjusted to resolve this issue. Regardless, both algorithms 

resulted in negative parameter estimates and the glmmPQL parameter estimate was 

significant. When considering modules and students as sources of variation, average x-

coordinate difference appears to have a negative correlation with answer correctness, 

albeit without an overwhelming significance level. 

4.4.3 Remove Models with 100% Accuracy 

One of the main concerns noted earlier about the dataset is its lack of answer 

disparity. Students answered a majority of the questions correctly which makes it difficult 

for a logistic regression model to make accurate predictions. For this reason, the same 

statistical analysis will be repeated after removing all modules containing 100% answer 

correctness from the dataset (modules 1-1, 1-3, 1-7, and 2-1). This could potentially 

increase the significance of average x-coordinate difference as a predictor of answer 

correctness. It should also improve the accuracy of any predictive models. The updated 

average x-coordinate difference vs module chart is shown in Figure 4-12. 

 The results of the t-test showed a large increase in significance compared to the 

analysis which included the modules with 100% accuracy. The p-value increased from 

0.02226 to 0.0001757. This is a much more conclusive result, showing that modules in 

which students answered questions correctly have a significantly lower average 

difference than modules with incorrect answers. The average x-coordinate difference for 

modules with correct vs incorrect answer excluding modules with 100% accuracy is 

plotted in Figure 4-13. 
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Figure 4-12: Average x-coordinate difference vs module (excluding modules with 100% accuracy). 

 

Figure 4-13: Average x-coordinate difference of modules with correct vs incorrect answers (excluding 

modules with 100% accuracy). 

The simple logistic regression model saw a large increase in significance as well 

with the p-value increasing from 0.0463 to 0.000685. Additionally, the parameter 

estimate for average x-coordinate difference was -1.2209, which is more than double the 

magnitude of the original analysis (-0.5745). By removing the modules with 100% 

accuracy, the predictive power of the model has increased significantly. The model is 

plotted below in Figure 4-14. 
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Figure 4-14: Average x-coordinate difference simple logistic regression model (excluding modules with 

100% accuracy). 

After having removed the modules with 100% answer correctness, there appears 

to have been a negative effect on the mixed effects models. In the case of the glmmPQL 

model, the parameter estimate for average x difference was -0.6728 with a p-value of 

0.1487. This is a large decrease in significance from the model which included every 

module. The glmer model failed to converge as it did previously, but this time it 

produced a model that appears to be problematic as all parameter values have 

concerningly low p-values (2*10-16). For this reason, the results of this model will be 

ignored (see the appendix for model output). 

4.5 Average Euclidean Distance Method 

4.5.1 Methodology 

Rather than only including x-coordinate data, the x and y-coordinates can be 

considered simultaneously by calculating the Euclidean distance between the student and 

baseline coordinates for each 1-second interval. The process of computing the average 

Euclidean distance is similar to how the average x-coordinate difference was calculated. 

First, the difference of both the x and y-coordinates are calculated. Next, these two values 
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squared, combined, and then square rooted. At this point, the rest of the calculation is the 

same as before. The resulting metric is the average Euclidean distance between the 

student and baseline. The resulting data is plotted based on module in Figure 4-16. The R 

script file used to conduct these calculations for lecture 1 is shown in Figure 4-15. 

 

Figure 4-15: Average Euclidean difference vs module. 

 

Figure 4-16: Average Euclidean difference R script. 
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4.5.2 Statistical Analysis 

The same t-test used for the average x-coordinate difference can also be applied to 

the average Euclidean distance. In this case, the resulting p-value was 0.03226 which is 

significant, although slightly worse than the average x-coordinate difference. This test 

indicates that there is a potential correlation between average Euclidean distance and 

student answer correctness. The data is plotted in figure 4-17, where it is once again 

apparent that there isn’t a large difference between the two populations.  

 

Figure 4-17: Average Euclidean difference of modules with correct vs incorrect answers. 

Once again, a simple logistic regression model is fitted with average Euclidean 

distance as a predictor of student answer correctness. The resulting parameter estimate 

was -0.5431 with a p-value of 0.0663. This is not a significant p-value, although it is 

close. Also, the parameter estimate is negative, indicating a negative correlation between 

average Euclidean distance and student answer correctness. The model is plotted in 

Figure 4-18 with all observations of student answer correctness vs average Euclidean 

distance included as well. 
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Figure 4-18: Average Euclidean difference simple logistic regression model. 

The two mixed-effect logistic regression models will now be fitted to the average 

Euclidean difference data to determine whether it can be used as a significant predictor 

when considering modules and students as factors as well. The glmmPQL algorithm 

resulted in a parameter estimate of -0.8594 for average Euclidean distance with a p-value 

of 0.0518. The glmer algorithm produced a parameter estimate of -0.5604 with a p-value 

of 0.258. The glmer algorithm once again failed to converge. Neither of the parameter 

estimates were significant, although the glmmPQL model’s parameter estimate was quite 

close. Both parameter estimates were also negative, which is indicative of a negative 

correlation between average Euclidean distance and student answer correctness. 

4.5.3 Remove Modules with 100% Accuracy 

Modules with 100% answer correctness will now be removed from the dataset 

and the statistical analysis will be repeated. The updated average Euclidean difference vs 

module chart is shown in Figure 4-19. 
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Figure 4-19: Average Euclidean difference vs module (excluding modules with 100% accuracy). 

 The results of the t-test were once again improved after removing modules with 

100% accuracy. In this case, the p-value was decreased from 0.03226 to 0.0002757. The 

average Euclidean difference for modules with correct vs incorrect answer excluding 

modules with 100% accuracy is plotted in Figure 4-20.  

 

Figure 4-20: Average Euclidean difference of modules with correct vs incorrect answers (excluding 

modules with 100% accuracy). 

The simple logistic regression model increased in significance as well, with the p-

value decreasing from 0.0663 to 0.000993. The parameter estimates for average 
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difference also increased in magnitude, changing from -0.5431 to -1.2047. The simple 

logistic regression model is plotted in Figure 4-21. It is clear that in the case of average 

Euclidean distance, removing modules with 100% accuracy significantly increases the 

significance of answer correctness prediction models. 

 

Figure 4-21: Average Euclidean difference simple logistic regression model (excluding modules with 100% 

accuracy). 

The results of the mixed effects models were not significant. In the glmmPQL 

model, average Euclidean distance had a parameter estimate of -0.6355 with a p-value of 

0.1788. The glmer model results appeared to be inconclusive once again. The module 

produced a similar output to when the average x coordinate metric was tested after 

removing all modules with 100% accuracy. The results will once again be omitted since 

they do not appear to have any sort of significance (see appendix for model output). 

4.6 Distraction Rate Method 

4.6.1 Methodology 

The Average Difference method has shown a correlation with student answer 

correctness but lacks the desired effectiveness as a factor in prediction models. The 

reason for this is the significant number of false signals which are detected by the average 
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difference method. This is partially due to the nature of the Microsoft HoloLens eye-

tracking system. Rather than tracking pupil movements, the system only records the 

orientation of the headset. In theory, students could turn their eyes without reorienting 

their head which leads to a discrepancy between the eye-tracking coordinates and the 

student’s actual point of attention. For this reason, it can be reasonably assumed that if 

the baseline coordinates are within a certain range of the student’s coordinates, then the 

student is paying attention. 

Another noise factor which is not accounted for by the average difference method 

are deviations from the baseline which only last for a short amount of time. There are 

several reasons why students may need to briefly look away from the virtual instructor. 

The student could decide to check one of the data tables to see where a certain value 

came from, or they could be taking a look at one of the animated figures. These objects 

within the virtual space are the exact reason why AR learning environments have an 

advantage over in-person learning. Students should be encouraged to look at these virtual 

objects throughout the lecture, and it is certainly feasible that a student could take a quick 

look at one of them while still paying attention to the virtual instructor. 

In order to account for these two noise factors, modifications will need to be made 

to the average difference method to increase the significance of the metric. First, there 

will be a minimum distance threshold which will need to be surpassed for any data point 

to be considered a significant deviation from the baseline. Additionally, rather than 

recording the difference between the student and baseline dataset, a binary signal will be 

recorded. This is intended to remove any insignificant levels of deviation. Students who 

have become distracted are not any more or less distracted based on how far away from 
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the baseline they are. Instead, any observation of a student who is exhibiting signs of 

distraction should be counted equally. A value of 1 will indicate that the difference 

between the student and baseline dataset was larger than the threshold and a value of 0 

indicates that the difference between the student and the baseline was not larger than the 

threshold. In theory, this change should increase the significance of the metric since only 

large deviations from the baseline will be accounted for.  

Example plots which visualize these adjustments are shown in Figures 4-22 and 

4-23. These plots display the Euclidean difference between the student and baseline 

datasets for second throughout modules 2-2 and 2-7 for student 2. Both plots include a 

threshold line of 1.5. Any points above this line are considered positive signals (1), and 

any points below the line are negative (0). In module 2-2, there were 19 signals detected 

and in module 2-7, there were 108. 

 

Figure 4-22: Euclidean difference compared to signal threshold of 1.5 (student 2, module 2-2). 
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Figure 4-23: Euclidean difference compared to threshold of 1.5 (student 2, module 2-7). 

The final change that will be made is to consider the moving average difference 

rather than the difference at each individual second. In order to compute the moving 

average, the Euclidean distance from the current 1-second interval will be combined with 

the values from the 4 previous intervals and averaged. The total amount of data points 

included in the average is referred to as the moving average “window”. In this case, the 

window is 5 seconds long. By implementing this change, signals will only be detected 

when the student is looking away from the virtual instructor for a significant period of 

time. Prolonged deviations from the baseline should be a much stronger indicator of 

student distraction than short-term deviations. The moving average difference from the 

previous examples are plotted in Figures 4-24 and 4-25. In both cases, the number of 

signals detected was significantly reduced as there were only 2 signals detected in 

module 2-2 (previously 19) and 75 detected in module 2-7 (previously 108). 
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Figure 4-24: Moving average Euclidean difference compared to threshold of 1.5 (student 2, module 2-2). 

 

Figure 4-25: Moving average Euclidean difference compared to threshold of 1.5 (student 2, module 2-7). 

Now that the number of signals per module can be calculated, this value will need 

to be normalized in order to account for the variation in runtime between each module. 

This can be done by simply dividing the number of signals detected by the total number 

of observations (equivalent to the runtime minus the number of missing data points). The 

resulting value is the proportion of the module in which the student is not accurately 

following the baseline coordinates. This value can be referred to as the Distraction Rate. 
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The distraction rate vs module comparison chart can be found in Figure 4-26. The R 

script file used to compute this value for each module is also shown in Figure 4-27.  

 

Figure 4-26: Distraction rate vs module. 

 

Figure 4-27: Distraction rate R script 

4.6.2 Statistical Analysis 
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The same statistical tests which were used to analyze the average different metrics 

can also be used to gauge how well distraction rate can predict student performance. The 

first statistical test will be the t-test. Here, the distraction rate for modules that students 

answered correctly will be compared to the distraction rate for modules that were 

answered incorrectly. The resulting p-value from this test is 0.003508, which is more 

significant than the average difference metrics when modules with 100% accuracy are 

included. The distraction rates for modules with correct vs incorrect answers are plotted 

in Figure 4-28. 

 

Figure 4-28: Average distraction rate of modules with correct vs incorrect answers. 

 The simple logistic regression model can also be fitted using distraction rate as a 

predictor of answer correctness. The resulting parameter estimate is -1.8457, which has a 

greater magnitude than any of the previous models. The p-value for distraction rate is 

also 0.00794, which is significant. From these results, it is clear that distraction rate has 

excellent potential for predicting student answer correctness. The simple logistic 

regression model is plotted in Figure 4-29. 
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Figure 4-29: Distraction rate simple logistic regression model. 

For the mixed-factor logistic regression models, the distraction rate appears to 

have a much greater prediction power than either of the average difference method 

metrics. The glmmPQL algorithm resulted in a parameter estimate of -3.4822 and a p-

value of 0.0002. The parameter estimate for the glmer algorithm was -2.6767 with a p-

value of 0.0127. The glmer algorithm failed to converge once again, but other than that, 

the results from both analyses are consistent, and distraction rate can be considered an 

accurate predictor of answer correctness when the variability from modules and students 

are considered. Additionally, the magnitude the distraction rate parameter estimates in 

both models are much greater than the parameter estimates for average difference (none 

of which were greater than 1). 

4.6.3 Remove Modules with 100% Accuracy 

Now, the modules with 100% accuracy will be removed from the data set to see if 

it has a positive effect on the significance of distraction rate as a predictor of answer 

correctness. The distraction rate vs module chart can be found in Figure 4-30.  
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Figure 4-30: Distraction rate vs module (excluding modules with 100% accuracy). 

The t-test will be conducted first. In this case, the p-value is 8.881*10-6, which is 

more significant that the original p-value of 0.003508. Removing all modules with 100% 

accuracy has once again resulted in an increased significance. The comparison of 

distraction rates for modules with correct vs incorrect answers when excluding modules 

with 100% accuracy is shown in figure 4-31. 

 

Figure 4-31: Distraction rate of modules with correct vs incorrect answers (excluding modules with 100% 

accuracy). 
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Next, distraction rate will be used as a factor in a simple logistic regression 

model. In this case, distraction rate has a parameter estimate of -3.2943, which by far the 

largest magnitude for a parameter estimate thus far. Based on the plot in Figure 4-32, it is 

clear that distraction rate has a very large influence on the probability of a student 

answering a question correctly. Additionally, the p-value for distraction rate in this model 

is 6.64*10-5, which is significant. 

 

Figure 4-32: Distraction rate simple logistic regression model (excluding modules with 100% accuracy). 

 The results of the mixed effects linear regression models were not improved by 

the removal of modules with 100% accuracy. In the glmmPQL model, the parameter 

estimate for distraction rate was -2.8955 with a p-value of 0.0043. In the glmer model, 

the parameter estimate for distraction rate was -2.6684 with a p-value of 0.0248. Both of 

these significance values are lower than when the modules with 100% answer correctness 

were included. The parameter estimate decreased in the case of the glmmPQL model and 

remained relatively similar in the glmer model. 

4.6.4 Parameter Optimization 
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With the implementation of the moving average window and minimum distance 

threshold, there are now decisions which must be made regarding the levels of these 

parameters. Increasing or decreasing the size of the moving average window or the 

threshold distance could have a significant impact on how accurately distraction rate is 

able to predict student answer correctness. To determine the optimal parameters for the 

obtained dataset, a range of possible parameter settings will be tested. The initial 

parameters are a minimum distance threshold of 1.5 and a moving average window of 5 

seconds. The threshold will be adjusted between 1, 1.5, and 2 and the moving average 

window will be adjusted from 3 to 6 seconds. In total, there are 12 different combinations 

that will each be tested for significance. The t-test, simple logistic regression, and mixed-

effects logistic regression models will all be considered. For the t-test and simple logistic 

regression models, modules with 100% answer correctness will be removed. They will 

not be removed for the mixed-effects model due to the negative effect it has shown on the 

significance of the model. Only the glmmPQL algorithm will be used for this analysis 

since the glmer function failed to converge in several previous cases. The results of the 

analysis are presented in Table 4-4. 

 

Table 4-4: Distraction rate parameter optimization test results. 
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Based on the parameter optimization analysis results, the initial parameter settings 

(window size of 5 seconds and a threshold of 1.5) appear to be the optimal choice. The 

initial settings have the best possible significance (p-value) across all tests. They also 

result in the mixed effects model parameter estimate with the greatest magnitude (-

3.482155). The only category in which the initial settings are not optimal is the simple 

logistic regression parameter estimate. Even in that case, the difference between the 

initial settings and the best possible combination of parameters is only 0.2503 (which is 

only a 7.06% decrease in magnitude). 
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Chapter 5 - Results 

5.1 Results Summary 

The results of the various statistical tests can be compared, and it becomes clear 

that distraction rate is the best performing metric in all categories. For the t-test, 

distraction rate was clear of both average difference metrics when including and 

excluding modules with 100% answer correctness. The outcome was the same with the 

simple logistic regression model, where not only did distraction rate outperform in 

significance, but the magnitude of its parameter estimate was much larger. The greater 

magnitude indicates a much stronger relationship between distraction rate and answer 

correctness. Finally, in the case of the two mixed effects logistic regression models, 

distraction rate was also superior. Distraction rate had lower p-values than either average 

difference metric. Distraction rate’s parameter estimates were much greater in magnitude 

as well. The complete list of statistical test results can be found in Table 5-1. 

 

Table 5-1: Results summary. 
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Next, the results from before and after removing modules with 100% answer 

correctness can be compared. In the case of the t-test and simple logistic regression 

models, all attention monitoring metrics saw improvements in significance and parameter 

estimate magnitude. The mixed effects models, however, did not improve in the same 

manor. In fact, all parameter estimates decreased in magnitude in addition to becoming 

less significant. The glmer model was also not able to successfully produce a model for 

either of the average difference methods.  

The comparison between the average x-coordinate difference and average 

Euclidean difference is worth noting as well. There did not seem to be a noticeable 

difference between the two metrics. Average x-coordinate difference performed slightly 

better in all tests, although the difference was miniscule compared to the gap between 

them and distraction rate. 

5.2 Discussion of Results 

The distinguishing factor which caused distraction rate to outperform average 

difference is its ability to filter out false signals. These false signals stem from how the 

Microsoft HoloLens tracks headset orientation rather than pupil movements. Students are 

capable of focusing on the virtual instructor even if their headset isn’t perfectly aligned 

with the baseline. These small to medium sized deviations are insignificant but are still 

accounted for by the average difference method. The minimum distance threshold is a 

simple change which disregards any deviations which aren’t large enough to provide 

insight as to whether the student is paying attention or not. The average difference 

method also lends itself to the issue of unintentionally weighted signals. When a student 

has become distracted, the extent to which their vision deviates from the baseline is 
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irrelevant. The only information that needs to be recorded is whether or not the student is 

distracted. The binary detection signal address this issue by evenly weighting each 

observation which is beyond the minimum distance threshold. 

Another source of false signals which distraction rate is able to filter out are short-

term deviations from the baseline. Tables and figures are included within the AR space 

which provide students with supplementary information as they follow along the 

problem-solving process. Animated 3-dimensional figures also help students visualize 

complex problems and are one of most significant benefits of AR learning environments. 

When students glance at these objects during a lecture, it is not an indication of 

distraction unless they ignore the virtual instructor for an extended period of time. The 

moving average window which is included in the distraction rate calculation reduces the 

influence of brief deviations from the baseline. Instead, only prolonged differences in 

eye-tracking coordinates are detected. This further increases the significance of 

distraction rate and makes it a much stronger predictor of student answer correctness. 

Another aspect of the results which needs to be considered is the effect of 

removing modules with 100% answer correctness. The justification for removing these 

modules is that the lack of an even split between correct and incorrect answers could lead 

to problems when fitting regression models. Removing the four modules with 100% 

answer correctness (1-1, 1-3, 1-7, and 2-1) could help alleviate this issue while still 

providing the algorithm with enough information to accurately predict answer 

correctness. In the case of the t-test and simple logistic regression model, an 

improvement in significance was found as expected. The mixed effects models, however, 

resulted in a much lower significance. This is likely because modules are included as 
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factors in this model, and when specific modules are removed, the information which 

they provide to the model is lost. This could potentially skew the estimated effects of the 

different modules and take away from the overall predictive power of the model. 

5.3 Applications 

5.3.1 Module-Based Feedback System 

The distraction rate attention monitoring method has the potential to increase the 

learning gains of students if it can be effectively utilized in a real-time feedback system. 

The current method calculates the distraction rate by analyzing the data from one full 

module at a time and must wait until the complete dataset is available before calculations 

can occur. Therefore, if the current system is to be implemented, then it will only be able 

to provide results after the module has been completed. This wouldn’t require the 

program to be modified in any way, the only addition that would need to be made is a 

program that can upload the eye-tracking data to the analysis software immediately 

following the completion of each module. After the resulting distraction rate is 

calculated, then it could be used to provide the student with feedback. 

The feedback that will be provided to students will be based on a set of three 

different attention level categories: low, medium, and high. Students whose distraction 

rate is below the minimum threshold will be given positive feedback and encouraged to 

maintain their current attention levels. If the student is between the minimum and 

maximum thresholds, then they will be allowed to continue to on with the next lecture but 

will also be reminded to follow the virtual instructor. For students whose distraction rate 

is above the maximum threshold, they will be asked to repeat the previous module as well 

as being reminded to follow the virtual instructor. Table 5-2 provides a list of the three 



 

 

51 

categories along with the corresponding recommended distraction rate thresholds and 

feedback messages. For reference, the distraction rate distribution is also provided in 

Figure 5-1. 

 

Table 5-2: Module-based feedback system attention levels. 

 

Figure 5-1: Distraction rate distribution. 

5.3.2 Attention Guidance System 

Rather than provide feedback after the module has already been completed, the 

system could also attempt to guide the student’s attention in real-time whenever they 
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become distracted. In order to achieve this, there are a few changes that would need to be 

made to the distraction rate calculation method in order to make it capable of providing 

feedback in real-time. First and foremost, the HoloLens eye-tracking data would need to 

be continuously uploaded into the analysis software throughout the duration of the AR 

lecture. This process would need to occur with little or no delay between when the 

students’ eye-tracking data is recorded and when it is uploaded to the analysis software. 

If this can be done, then the data analysis would be similar to the current distraction rate 

calculation process. First, the live data would be compared to the baseline dataset by 

calculating the Euclidean distance between the student and the baseline. Next, it will be 

converted to a moving average just as before. Then, the moving average difference can be 

monitored in real-time. 

Once the eye-tracking monitoring system is in place, the feedback system will 

need to be set up. Whenever the moving average difference surpasses the designated 

threshold, the student will be given a signal to redirect their attention to the virtual 

instructor. The signal system will need to be implemented as a part of the AR interface. 

There are two potential types of signals which could be provided to the student. The first 

would be a simple message which appears on the screen telling the student to return their 

attention to the virtual instructor. The other signal could be an arrow which appears on 

the screen which guides the student back to the baseline coordinates. In order to 

determine the direction of the arrow, the difference between the student and baseline 

coordinates could be used. Since positive x-coordinate values correspond to the right side 

of the virtual environment and negative x-coordinate values correspond to the left, the 

sign of the x-coordinate difference would indicate which direction the student needs to 
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turn to find the target coordinates. For example, if the student’s x-coordinate is 3 and the 

baseline x-coordinate is -1, the difference between the student and baseline coordinates 

would be (3-(-1)) = 4. Since this value is positive, it indicates that the student is currently 

looking to the right of the target coordinates and that a signal should be provided which 

directs the student’s attention to the left. If these simple attention guidance signals could 

be implemented in real-time, students would be much less likely to miss out on important 

information during the lecture. Figure 5-2 provides the framework diagram for the 

attention guidance system. 

 

Figure 5-2: Attention guidance system diagram. 
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Chapter 6 - Conclusions 

6.1 Conclusions 

Based on the results of this research, student eye-tracking data appears to have a 

significant correlation with student answer correctness in AR learning environments. The 

use of a baseline dataset has proven to be an excellent foundation for eye-tracking data 

analysis methods. The baseline dataset is also an essential part of the proposed attention 

guidance system. The average difference method has the potential to be an effective 

predictor of student performance, although it hardly compares to the effectiveness of the 

distraction rate method. The simplicity of the average difference method does make it a 

useful comparison tool for assessing the effectiveness of other eye-tracking data analysis 

methods. For this reason, even if it is not used as the primary eye-tracking data analysis 

method, average difference should be considered in future experiments. 

The distraction rate method has established itself as the most effective predictor of 

student answer correctness in AR learning environments. It outperformed average 

difference in every statistical test and predictive model. It can also be used to monitor 

student attention levels in real-time as a part of the proposed attention guidance system. 

The optimal distraction rate parameters in this application are a distance threshold of 1.5 

and a moving average window of 5 seconds. These parameters may not be optimal in 

other AR learning environments but would still be an adequate starting point. 

6.2 Limitations 

One of the most significant limitations of this experiment has to do with the 

student answer data. The split between correct and incorrect answers was heavily skewed 
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with an overall accuracy of 87.4%. This was the main reason why machine learning 

algorithms were not considered as a method for predicting student performance. If 

possible, the difficult of the lecture material should be increased in order to result in an 

even split between student answer correctness. Additionally, free response questions 

should be used rather than multiple choice questions so that partial credit may be given. 

This would provide more information regarding the students’ learning comprehension 

than only knowing if the answer was correct or incorrect. 

Another problem encountered during this experiment was that students were able 

to view questions during the module. The first problem this causes is that it will simply 

distract the students. They will look away from the virtual instructor to read the question 

and then look around to search for the answer rather than focusing on the lecture. This 

leads to more sporadic eye movements which reduces level of insight provided by the 

data. The other problem with students looking at the question during the module is that 

the Microsoft HoloLens does not record eye-tracking data when the students are not 

looking at one of the five content panels. Therefore, any time a student looks down at 

their desk to read the question, it causes a gap in the data. These gaps are unaccounted for 

in the analysis even though they could be used indicate that a student is distracted. 

In any future experiments involving AR learning environments, the lab design is 

undoubtedly the most important element to consider. The limitations of the AR system 

and the eye-tracking data collection system must be accounted for when designing the 

layout of the room as well as the virtual learning content. In the case of the Microsoft 

HoloLens, there must not be anything within the lab which would remove the students’ 

attention from the virtual learning content. The questions being available to the student in 
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this experiment were an example of this which led to missing data and most likely 

lowered the significance in the resulting prediction models. 

6.3 Future Studies 

The average difference and distraction rate methods are not the only two ways to 

compare student eye-tracking data to a baseline dataset. Further studies should be 

conducted which investigate alternative methods and assess their ability to predict student 

performance. Additionally, the use of machine learning modules would most likely be 

effective in this type of application. Many previous studies have utilized machine 

learning algorithms to analyze eye-tracking data and found success (Dzsotjan et al., 2021; 

Vortmann, 2019). Unfortunately, this experiment didn’t yield enough data or a large 

enough split between student answer correctness to warrant the application of machine 

learning algorithms. Future experiments should be conducted which compare the 

effectiveness of the average difference and distraction rate methods to machine learning 

algorithms. 

Once the most effective attention monitoring method has been identified, it should 

be implemented as a part of a real-time feedback system. The module-based feedback 

system and the attention guidance system should prevent students from missing out on 

important information during AR learning modules. Previous studies have found success 

with similar attention monitoring methods but have not incorporated the use of a baseline 

dataset to help redirect student attention (Biocca et al., 2006; Vortmann, 2019). These 

systems should be tested to determine if they can have a positive effect on learning 

outcomes. Students should also be surveyed to find out whether they prefer a continuous 

attention monitoring system or a module-based feedback system. 
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APPENDIX 

Average X Difference Statistical Test Output 

T-test comparing the average x-coordinate difference of modules which students answered correctly with 

modules which students answered incorrectly: 

 

Simple logistic regression model output for average x-coordinate difference: 

 

glmmPQL mixed-effects logistic regression model output for average x-coordinate difference: 
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glmer mixed-effects logistic regression model output for average x-coordinate difference: 

 

T-test comparing the average x-coordinate difference of modules which students answered correctly with 

modules which students answered incorrectly (excluding modules with 100% accuracy): 

 

Simple logistic regression model output for average x-coordinate difference (excluding modules with 100% 

accuracy): 
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glmmPQL mixed-effects logistic regression model output for average x-coordinate difference (excluding 

modules with 100% accuracy): 

 

glmer mixed-effects logistic regression model output for average x-coordinate difference (excluding 

modules with 100% accuracy): 
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Average Euclidean Difference Statistical Test Output 

T-test comparing the average Euclidean difference of modules which students answered correctly with 

modules which students answered incorrectly: 

 

Simple logistic regression model output for average Euclidean difference: 

 

glmmPQL mixed-effects logistic regression model output for average Euclidean difference: 
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glmer mixed-effects logistic regression model output for average Euclidean difference: 

 

T-test comparing the average Euclidean difference of modules which students answered correctly with 

modules which students answered incorrectly (excluding modules with 100% accuracy): 

 

Simple logistic regression model output for average Euclidean difference (excluding modules with 100% 

accuracy): 
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glmmPQL mixed-effects logistic regression model output for average Euclidean difference (excluding 

modules with 100% accuracy): 

 

glmer mixed-effects logistic regression model output for average Euclidean difference (excluding modules 

with 100% accuracy): 

 



 

 

67 

Distraction Rate Statistical Test Output 

T-test comparing the distraction rate of modules which students answered correctly with modules which 

students answered incorrect: 

 

Simple logistic regression model output for distraction rate: 

 

glmmPQL mixed-effects logistic regression model output for distraction rate: 
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glmer mixed-effects logistic regression model output for distraction rate: 

 

T-test comparing the distraction rate of modules which students answered correctly with modules which 

students answered incorrectly (excluding modules with 100% accuracy): 

 

Simple logistic regression model output for distraction rate (excluding modules with 100% accuracy): 

 



 

 

69 

glmmPQL mixed-effects logistic regression model output for distraction rate (excluding modules with 

100% accuracy): 

 

glmer mixed-effects logistic regression model output for distraction rate (excluding modules with 100% 

accuracy): 
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