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EFFECTIVENESS OF SIMULATED DATA IN CLASSIFYING ALZHEIMER’S DISEASE

STATUS USING MRS PARAMETERS

Mary York

Dr. Melissa Terpstra, Thesis Supervisor

ABSTRACT

In vivo magnetic resonance spectroscopy, or MRS, has the potential to identify meaningful

differences in the neurochemical profiles of patients with Alzheimer’s disease (AD) relative to healthy

controls, especially at ultra-high field (7 Tesla). Classification algorithms applied to such data could,

theoretically, aid in disease diagnosis or act as an indicator of the effectiveness of a treatment. A

common limitation when applying classification algorithms to such data is sample size, which arises

from difficulty in recruitment of individuals with AD. Classification algorithms applied to small

datasets may benefit from additional training data simulated from Bayesian networks that are learned

via hill-climbing. Ultra-high field single voxel MRS and MRI data from Marjanska et al (2019) were

used to explore the effect that including simulated data in the training of classification algorithms

has on the ability to correctly classify AD status [2]. Three hill climbing methods, hill climbing

scored via the Bayesian information criterion (BIC), hill climbing scored via the Akaike information

criterion (AIC), and max-min hill climbing scored via BIC, were tested using the original data and

data in which each Alzheimer’s observation is doubled in search for the network that could produce

the highest posterior predictive correlation across ascorbate, percent grey matter, and signal to

noise ratio. The effect of including data simulated in the resulting manner was then characterized

across three classification algorithms (Extreme Gradient Boosting, random forest, and support vector

machine) and three data sets (original AD and control data from Marjanska et al (2019), Marjanska

et al (2019) data reflected as principal components, and Marjanska et al (2019) data with additional

controls from The Lifespan Human Connectome Project in Aging used in the training and simulation

process) [3]. Variables used to predict AD status were mostly from MRS derived data, consisting

of 14 water-referenced neurochemical concentrations, signal to noise ratio, and linewidth, with few

x



variables from MRI derived data, consisting of percent gray matter, percent white matter, percent

cerebro-spinal fluid relative to the volume of interest. The strongest findings regarding structure

learning arose from hill climbing scored via BIC using data in which every AD observation was

over-sampled. The inclusion of data simulated from Bayesian networks whose structures were derived

via this method did not widely lead to higher average sensitivity, specificity, or overall accuracy.
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Chapter 1

INTRODUCTION

Alzheimer’s disease is a neurological condition defined by the presence of amyloid B and tau in

the brain and is largely associated with cognitive decline [4]. It is also the leading cause of dementia

in the world [4]. With a growing elderly population, understanding the currently unknown etiology of

this disease is crucial. Biomarkers pave the way for discoveries regarding disease onset, progression,

prevention, diagnosis, and treatment. Commonly, diagnostic biomarkers for Alzheimer’s require the

use of neuroimaging techniques, like MRI and PET scans to observe atrophy, plaques, tangles, and

other factors [5].

Magnetic resonance spectroscopy is a noninvasive technique for quantifying biochemical

concentrations and changes in the brain. Generally speaking, MRS is feasible because distributions

of electrons in an atom cause the nuclei of different molecules to experience differing magnetic fields

[6]. Because hydrogen is the most abundant atom in living organisms, it is a clear candidate when

applying MRS clinically [7]. After excitation via MR technology, radiofrequency signals are created

which, after being decoded using Fourier transformation and subjected to spectral fitting, can be

used to quantify metabolic concentrations [8]. A relatively recent advancement in the field of MR

is the use of increasingly available 7 Tesla systems, which can more reliably detect, separate, and

facilitate quantification of a larger number of metabolites [8]. Previously, if one wanted to quantify

one of the harder to parse metabolites at a lower magnetic field, like ascorbate, they’d potentially

need to sacrifice some of the other metabolites to do so in a process called editing or use methods
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that are very sensitive to noise created if an individual moves, like the J-PRESS acquisition protocol

[9].

Alzheimer related MRS research is seemingly becoming a more popular lens to view the

disease. Most commonly, single voxel MRS is performed to quantify metabolite concentrations in

one or two brain regions affected by AD, such as the posterior-cingulate cortex or the hippocampus

[10]. Thus, differences or similarities in metabolite concentrations between Alzheimer’s participants

and controls can be observed and reported upon. The strongest risk factor of Alzheimer’s disease is

age, so controlling for age should be a relatively important aspect of this research [4]. Additionally,

age commonly influences what fitting method is used, so if age is similar there are less likely to be

differences due to changes in fit [8].

Currently, there are several MRS studies reporting on many brain region-specific differences

between Alzheimer’s participants and controls [10]. One study was able to report 88 percent sensitivity

and 97 percent specificity in classifying Alzheimer’s participants and controls with JMP’s bootstrap

forest method using 14 neurochemicals from 2 brain regions, the post-cingulate cortex (PCC) and the

occipital cortex (OCC), leading to 28 total variables [2]. The PCC data from this publication will be

used throughout this research. The PCC is a region well-documented to be impacted by Alzheimer’s

and is a part of the Default Mode Network, while the OCC is not known to experience substantial

Alzheimer’s or age-related changes [2]. It’s worth noting that it was acknowledged in this publication

that out of sample values would be lower than the reported results.

The paper mentioned above was able to compare means of chemicals reported on between

Alzheimer’s disease and controls and found a significant difference in average ascorbate in both the

PCC and OCC regions, with both regions suggesting an increased ascorbate concentration in those

with Alzheimer’s [2]. This finding was replicated with a higher ascorbate concentration found in

Alzheimer’s participants compared to controls in the posteromedial cortex, another component of the

default mode network, using J-PRESS acquisition at 3T [11]. In the PCC region, there have also

been significant findings comparing means of myo-inositol and total choline, both of which exhibiting

higher mean concentrations in Alzheimer’s participants compared to controls [2]. The PCC also
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has supporting documentation of differences between Alzheimer’s participants and controls for MRI

acquired parameters such as percent gray matter, percent white matter, and percent cerebral spinal

fluid, so it’s reasonable to conclude that combining MRI and MRS data may suit as a stronger

biomarker than both independently, though combining these parameters in the past haven’t influenced

the ability to distinguish the two groups [2].

Given the statistically supported differences in MRS acquired data between AD and controls,

there is potential to use this data in a classification algorithm which could support the use of MRS

parameters as a biomarker for the disease, particularly a diagnostic biomarker. In addition, it could

provide evidence to support research into when neurochemicals change in the disease course, which

may give rise to preventative therapies. Another natural extension is that it could be used to track

treatment response.

From a data science perspective, one of the most significant limitations of many MRS related

Alzheimer datasets is the limited data sizes, with studies listed above having 16 AD participants and

20 AD participants respectively [2, 11]. With limited data, many issues can arise in disease studies,

such as low probability of finding true effects, low positive predictive power, and an overly optimistic

quantification of effect size [12]. Low positive predictive power is particularly meaningful in the realm

of machine learning, as classification algorithms can struggle to find the variance between two groups,

and potentially favor the group with the higher n value in an imbalanced data set [13].

Simulation may be a useful tool to increase the predictive power of classification models when

it comes to determining one’s AD status in a small MRS data set. Simulation can account for

imbalance and increase gaussian variance of the dataset [14]. The increase of Gaussian variance can

be beneficial to classification algorithms that rely on variance and distribution of provided variables.

Classification models using simulated data can always be strengthened with new data, as well. Newly

acquired data can also be used to test if simulated data is accurately capturing the truth of the data.

For small sample sizes and simulation, it would probably be most telling if a classification method

works for a given dataset by first using the “leave out one” method, which is primarily used for cross

validation [15]. Essentially, all but one data point will be used for simulation and training to create a
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robust sample size, while the one that is left out is then tested on.

Bayesian networks provide a means of simulation. A Bayesian network is a probabilistic graph

model used to represent variables and their conditional dependencies [16]. In Bayesian networks, nodes

characterize a random variable and lines characterize conditional probability for the corresponding

random variable [16]. These relationships are of course determined using Bayes Theorem to integrate

these variables to create a corresponding hypothesis of the causal relationship of any variable [16]. A

benefit of using a Bayesian network for means of simulation is that there are no required assumptions

of relationships in the data. If relationships are known though, they can be used to optimize the

reliability of the network. Bayesian networks have previously been used in Alzheimer’s research to

characterize differences in default mode network connectivity for those at risk of the disease using

MRI parameters [17].

A comparison study has previously reported that gradient boosted decision trees and random

forest yield highest accuracy when compared to nine other classification models with results from

12 different data sets [18]. Random forest and GBDT are both non-linear classifiers, with a few

key differences including the way trees are built, and sensitivity to overfitting. Specifically, GBDT

are built sequentially, with each tree fitting to residuals from the previous tree, while in random

forest, trees are built in parallel [19, 20]. A benefit of random forest over GBDT is the resilience

to overfitting, despite the number of trees used in the model [20]. Other benefits to random forest

include the ability to explain results, and tuning simplicity [19, 20]. Random forest classifications

have resulted in the best accuracies in multiple imaging studies of neurological conditions, including

Alzheimer’s [21, 22].

A non-tree based classification algorithm that has previously supported Alzheimer’s classifi-

cation tasks is SVM, or support vector machine [23]. Support vector machines aim to find the closest

data points between classes, and then seek to create a decision boundary between these points that

best separates them and is further used for classification [24]. Though interpretability suffers when

using non-linear SVM kernels, they may offer insight as to whether non-tree based methods are the

best fit for separating such data.
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Chapter 2

BACKGROUND

2.1 Sample Size Limitations

Small datasets are a frequent challenge in biomedical research where collecting many samples

is often logistically difficult or cost prohibitive. Sensitivity, or the ability to accurately detect a

true effect, is particularly limited in low sample size studies [12]. The focus of this project is to

understand the suitability in using simulation data to train models for better accuracy and sensitivity

in biomedical research where sample sizes are extremely limited using Alzheimer’s disease as a test

case.Specifically, the goal is to try to capture differences in neurochemistry between Alzheimer’s

individuals and healthy controls using low sample sizes (16 AD patients total). Thus, it is important

to be aware of statistical complications arising from similar studies, including lower chances of finding

true effects, low positive predictive power, an exaggerated estimate of the magnitude of the effect

when a true effect is distinguished, and false positive results [12].

A common method to counteract limitations that arise from low sample size in machine

learning is simulating data [25]. The goal of simulation models is to capture the underlying behavior

of the data, then this data can be used to offer more training data into machine learning models.
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2.2 Bayesian Networks

Bayesian Networks are a common means of simulation, that have several advantages over other

methods of simulations for biological systems as experimental data and prior knowledge can converge

to test specific hypotheses and map complex systems in a visually comprehensible manner [26, 27].

Bayesian networks are a probabilistic graphical structure displayed as a directed acyclic graph [26].

In these graphs, child nodes, or nodes with incoming edges, represent that there is a conditional

dependency between that child node and its parent node [28]. An example of a Bayesian network

can be found in 2.1 with the conditional dependencies of the Gaussian node ’H’ shown in Figure 2.2.

Worth noting, Bayesian networks can derive causal relationships from datasets containing continuous

and discrete data, whose relationships are generally not well captured by other means of simulation

and is of relevance for the data used in this research [28]. The structure of a Bayesian network

can be learned, supplied by a user, or a mixture of both methods [28]. While there are benefits to

supplying prior knowledge to Bayesian Networks in the form of probabilistic interactions, there are

recent publications supporting the use of automated learning of Bayesian networks [29, 30]. In the

scope of this research, heuristic structure learning is particularly useful as the causal relationships of

the distributions of the neurochemicals are not particularly well documented, leaning itself to an

automated process. Automated structure learning for Bayesian networks has been demonstrated

to work well on smaller datasets, such as the UCI heart disease dataset with 300 observations, as

well [28]. Despite their recent popularity in biological systems, historically, Bayesian networks have

not been widely explored in the field of neuroscience [31]. Limited previous work has explored the

functional connectivity between regions from MRI related data, paving way for potential use in MRS

[31]. Even if classification models strengthened by MRS data simulated from Bayesian networks

perform poorly, there is potential for discovering distinct interactions between available variables [31].

Bayesian networks are an incredibly computationally challenging problem (NP-hard), and

therefore heuristic alternatives have been designed to help overcome these challenges. One promising

and common approach to learning structure of a Bayesian network from the data is by using the

6



Figure 2.1: Bayesian network example in which nodes H,B,A, and C are root nodes (meaning they
are without parents). G is a leaf node, as it does not have any child nodes. [1]

Figure 2.2: Conditional distribution of node D are shown, which has two parent nodes, A and H. A
is a categorical variable (whose values are 0 and 1 in this example) while H is a Gaussian variable.
So, when fitting linear regressions from H to predict D, there is a linear regression fit per class of A.
Coefficients represent the values to be multiplied by the predictor, while intercepts are the constants
of the equation. Residuals describe the vertical distance between data points and the regression line.
[1]
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hill climbing algorithm, with previous research supporting good results [32, 33]. Hill climbing is a

score-based learning criteria, which seeks to attain the best structure in accordance with a supplied

function [34]. Common functions to use with the hill climbing algorithm include Bayesian Information

Criteria (BIC), Akaike’s Information Criteria (AIC), and Bayesian Dirichlet equivalence score (BDeu)

[35].

BIC has been demonstrated to perform better in the creation of network structure in comparison

to AIC and BDeu and has been applied to studies of medical significance [36, 35]. In one case,

networks derived from score-based hill-climbing approaches were compared to a predefined “gold

standard” network [36]. In the case of networks derived from the Cleaveland Heart Database dataset

and the Brest Cancer data set, BIC outperformed AIC by identifying correct edge placements and

directions [36]. BIC and AIC are computed using a log-likelihood and regularization (penalty)

component dependent on the resulting structure as well as the data [37]. In the bnlearn package in

R, which was used in the scope of this work, BIC and AIC scores are calculated by 1) constructing

contingency tables of data from nodes against configurations of data from parent nodes ,2) creating

a probability table for each node, 3) determining the number of parameters, and 4) deriving log

likelihood from the contingency table, which the penalty score is subtracted from [37]. The penalty

score for BIC is particularly influenced by model complexity with more edges and parent nodes being

deemed as more complex, meaning that networks with fewer edges and parent nodes will be penalized

the most, especially in small datasets where the log likelihood is less influential of BIC scoring as a

whole [38]. The penalty score for AIC does not increase with sample size and is less harsh of model

complexity, which may be beneficial, as there is a better chance of interactions being found and

utilized. In a study aimed to compare structure learning algorithms and scores used within them for

breast cancer networks, AIC outperformed BIC in both hill-climbing and tabu search [39].

Max-Min Hill-Climbing, or MMHC, incorporates constraint based local learning in the hill-

climbing algorithm [40]. First, the max-min parents and children algorithm is implemented, which

uses conditional independence testing to determine candidate parents and children for all given

variables in data, creating an underlying and undirected structure of a Bayesian network. [40]. After
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this, hill-climbing searches through the given space with the goal of minimizing a given score, such as

BIC or AIC [40]. The major difference between MMHC and standard hill-climbing, is that arcs are

only permitted to add edges that were found by the max-min parents and children algorithm [41].

MMHC has been demonstrated to perform well in small sample sizes, drawing meaningful conclusions

from a small-sample size prognosis evaluation of non-small-cell lung cancer [42]. Compared to MMHC,

search and score methods of simple hill-climbing can be slow to converge, and complexity may limit

ability to find an optimal structure [43].

Once a network structure is fitted via maximum likelihood, any number of rows can be

simulated using the network. In general, smaller sample sizes can lead to fewer reliable simulations

compared to larger sample sizes. Data for each row is populated sequentially, determined by its

position in the network. Specifically, parent nodes are randomly sampled from their unconditional

distribution, then their conditional child nodes are supplied via their conditional distributions from

their parent nodes [44]. The process is repeated until all values are supplied. Simulated data then

needs to be validated against original data, as doing so ensures that simulated data exhibits similar

behavior to the original data. Without validation, there is a risk that models built on the simulated

data will be capturing noise. There are many possible methods for validation, such as visualizations

of distributions and correlation analysis of features. Posterior predicative correlation is a Bayesian

network validation technique in which predictions are created from an arbitrary set of nodes using

likelihood weighting to get Bayesian posterior estimates [37]. If the Bayesian network fits the data

well, data generated from the models ought to be similar to observed data [45].

2.3 Classification Algorithms

A common machine learning mechanism for classification tasks related to bioinformatics is

random forest [20]. This machine learning model has many benefits, including but not limited to

the ability to overcome small sample sizes, handle imbalanced datasets, and ease of optimization

due to few tuning parameters, and results are simple to explain [46]. The data for the Alzheimer’s

model being used in this study is from a small and imbalanced data set. Choosing a model robust
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to challenges of the given data is a primary concern as over representation of a class often leads to

over prediction of that class [47]. Many random forest packages in R have built in arguments that

can automatically perform under sampling on the majority class to account for the imbalance or

provide balanced class weights to be used in sampling [48]. Synthetic oversampling of the minority

class has been demonstrated to support good accuracy in random forest models classifying cancer,

supporting the use simulated data in classification over methods like random minority oversampling,

in which random rows in the minority class are duplicated giving rise to issues of overftting [49].

Thus, simulated data may provide better results than random forests built in methods to address

imbalance.

Random forest (RF) performs bagging on training data. This involves taking bootstrap

samples of data (with replacement), fitting many decision trees in parallel, then aggregating the

results from all the trees [46]. Bagging allows for the use of many training sets, and sampling

with replacement allows a significant reduction in prediction variance [20]. Because sampling with

replacement offers lower variance, this technique can be used to combat noisy data. Another notable

ability of random forest is the capability to prevent overfitting when there are correlated variables,

which is demonstrated in data to be used in this research as shown in Figure 2.3 [2]. Random forest

relies on a specified or default (
√
p) mtry argument, which indicates the number of random variables

to be sampled at each split [20]. If mtry is low, highly correlated variables are less likely to be

sampled together for splits, reducing the negative impact of the correlations on the model, and

reported feature importance from the model [23]. Retaining correlated features is also expected to

aid in gathering a more complete picture of the mechanisms of the data [23].

Extreme gradient boosting (XGBoost or XGB) is another ensemble learning algorithm that

classifies based on the congregation of outputs from single trees. XGB has been shown to perform

closely with random forest, sometimes outperforming it, such as when predicting risk of breast

cancer [50, 51].XGB has been applied to numerous classification tasks related to biological and

health research. For example, XGB classifiers have been used to distinguish Alzheimer’s status using

cognitive measures, age, and gender [52]. Additionally, XGB has been applied to MRS and PET
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Figure 2.3: Correlations present in AD and Control data used in this study as well as the previous
publication [2].
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data with the goal to provide biomarkers to predict remission in depression, leading to models with

92% specificity and 77% overall accuracy [47].

XGB, as the name implies, uses boosting. In boosting algorithms, trees are formed sequentially,

and aim to improve with each tree [53]. The model starts with the whole training set, and levels

that are misclassified are given more weight in the production of the next tree [53]. In doing so,

there’s a distinct reduction in bias compared to random forest, supported by recent publications [54].

There are limitations that come along with using a more complex algorithm such as this, though,

including harder to optimize hyperparameters as well as the risk of overfitting data, caused by the

lack of variability in the training data [53] . Overfitting can be overcome in XGB by supplying a

smaller number of columns to be tried at each split, reducing tree depth, among balancing other

hyperparameters [53].

SVM, in contrast to XGBoost and random forest, does not rely on decision trees. Rather, the

algorithm seeks to find a hyperplane that has the largest margin, or distance from the hyperplane to

the closest data points from either class [55]. When data is not linearly separable, a kernel function

is used to transform the data to become linearly separable in a feature space of high dimensions [55].

The radial basis kernel, or RBF kernel, has been demonstrated to be quite effective in maximizing

accuracy when classifying disease data compared to other kernels while being easy to tune, requiring

the selection of one added hyperparameter, gamma, as opposed to three with the polynomial kernel

[56]. The equation for the RBF kernel is shown in in Equation 2.1,where xi and xj represent vectors

in the input space and gamma determines how far the influence of training example reaches [57].

In detection of skin cancer, SVM models were able to outperform random forest and k-nearest

neighbors’ algorithms [58]. Additionally, SVM models are easily weighted, meaning penalties for

misclassifying minority class observations can be higher than that of the majority class [59]. This

is clearly applicable in biomedical data where class imbalance often arises. SVM classifiers have

demonstrated capabilities of high accuracy when handling MRS data, as well, specifically in the

classification of brain lesion using NAA, choline, myo-Inositol, creatine plus phosphocreatine, lipids,

and lactate [60].
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K(x, xi) = e−γ∥x−xi∥2

(2.1)

In machine learning, to really estimate the performance of the model, an unseen test set needs

to be applied. In the case of small sample sizes, this is costly, as the reduction of instances in training

data effect the model’s ability to distinguish the classes in the test set. A way to counteract this issue

is to employ leave-one-out cross validation (LOOCV). In this cross-validation method, one instance is

left out and treated as the test set, with the test instance changing each iteration until all observations

have been predicted [15]. This has a clear advantage over holding out a larger proportion of data for

testing, as the observations chosen in training can introduce bias. LOOCV thus gives a relatively

unbiased estimate as to the accuracy of the method [61]. LOOCV has been supported in many recent

publications of Alzheimer’s research in which small datasets are common [62, 63, 64]. A common

limitation is computational expense, which increases if steps like hyperparameter optimization need

to take place within the cross validation.
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Chapter 3

METHODS

3.1 Participants

3.1.1 AD and Control

Marjanska et al (2019) outlines recruitment for AD (Alzheimer’s disease) and control participants

[2]. In short, most AD participants were identified through a database of patients cared for at the

Geriatric Research, Education and Clinical Center (GRECC) Memory Loss Clinic at the Minneapolis

Veterans Affairs Medical Center. They were reviewed and diagnosed by a multidisciplinary panel

using the NINCDS-ADRDA criteria. Participants met criteria for possible or probable AD, and no

blood, cerebrospinal fluid (CSF) or brain amyloid biomarker was available for diagnosis of pathological

AD. One AD patient was recruited from a community dementia community and their AD status

was confirmed by the study neurologist. If an individual had a neurological diagnosis other than

AD that could affect cognition, or other conditions that were thought to potentially interfere with

the regions of interest in the brain, they were not recruited for the study. AD participants were

deemed to have a mild to moderate case of dementia according to the Montreal Cognitive Assessment

(MoCA) or Mini-Mental State Exam and also based on independence in basic activities of daily

living. Participants with AD were required to meet the same criteria as control participants, with

the exception of diagnosis of AD. Control participants were carefully screened to rule out presence of

cognitive impairment, neurological diagnosis that could affect cognition, brain lesion or injury, major
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psychiatric disorder, substance abuse, and serious systemic illness. Screening by a neuropsychologist

and neurologist was based on medical history, MoCA scores >= 24, and neurological examination.

Participants were excluded if they had conditions that could interfere with their ability to participate

in MRI, such as claustrophobia.

3.1.2 Healthy Participants From Human Connectome Project on Aging

The Lifespan Human Connectome Project in Aging aims at providing detailed multimodal MRI

and behavioral data from typically aging participants between the ages of 36-100+. Cognitively

healthy participants from one location of the study, the University of Minnesota, were selected for

the additional collection of MRS data to further understand biochemistry underlying aging. To

qualify for the MRS portion of the study, individuals who were over 60 years of age had to have

satisfactory scores in one to three tasks meant to gauge cognitive wellness: Montreal Cognitive

Assessment (MOCA), Trail Making, and the Rey Auditory Verbal Learning Test (RAVLT) [65, 66].

Total score for MoCA had to be above 19. If the total MoCA score was higher than 22, this was

all that was needed to deem someone cognitively healthy. If MoCa scores were above 19 but not

22 or higher, the participant’s Trail Making Part A and Part B scores and RAVLT Learning Over

Trials (LOT) score must have had a Z-score greater than -1.5, meaning the participants could not

have scores less than 1.5 standard deviations below average scores. If those who deemed participants

qualified had any hesitations of participants who passed these tests, the participants were further

screened by a neuropsychologist. All participants over age 60 were examined by the study neurologist

to rule out presence of cognitive impairment. Participants could not have a neurological diagnosis

that could affect cognition, brain lesion or injury, major psychiatric disorder, substance abuse, or

serious systemic illness. There are 61 healthy participants from the Lifespan Human Connectome

Project on aging used in this project as additional controls when noted.
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3.2 MR Acquisition

MR protocol for all participants used in this thesis is outlined in Marjanska et al [67]. Data

was acquired using a 7T whole-body Siemens Magnetom scanner and a custom-built head coil. 7 T

MRS allows for a larger number of neurochemicals to be detected reliably than is feasible at a lower

magnetic field. Magnetization-prepared rapid gradient-echo (MPRAGE) images were used to identify

the 8 mL regions of interest in the brain and quantify grey matter, white matter, and cerebrospinal

fluid content using Freesurfer. Magnetic field (B0) homogeneity was optimized using FAST(EST)MAP

[68]. Ultra-short echo time (8 ms) metabolite spectra (11 minute acquisition time) were processed in

Matlab, where Eddy Current effects were corrected and frequency and phases aligned. Spectra were

later fitted using LCModel,with the following neurochemicals recorded : Asc, aspartate (Asp), creatine

(Cr), γ-aminobutyric acid (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione

(GSH), glyc-erophosphorylcholine (GPC), lactate (Lac), mIns, NAA, NAAG, phosphocreatine (PCr),

phosphorylcholine (PCho), phosphorylethanolamine (PE), scyllo-inositol (sIns), and taurine (Tau).

Age specific macromolecules were used in the basis set as well [69]. Chemical quantification was

accomplished using water signals (acquired using the same MRS protocol except without water

suppression) corrected for gray matter, white matter, and cerebrospinal fluid content as an internal

reference as outlined in equation 2 of Gussew et. al 2012 [70]. Only neurochemical concentrations

that passed Cramer-Rao lower bound based quality control metrics were included in the models for

the overarching study.

In total, data used in this research contain twenty variables collected from the posterior

cingulate cortex (PCC) brain region : 14 neurochemical concentrations as mentioned above, percent

gray matter, percent white matter, percent cerebrospinal fluid, signal to noise ratio, linewidth, and

AD-status. It is challenging to recruit participants with AD for research, and even more challenging

to enroll a cohort that does not have other complicating diseases and is at a particular disease stage

(i.e., extant AD but not late stage). Thus, the sample size is small. With current focus on AD

research, future cohorts are likely to be small, and the best possible data science approaches will be
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needed to extract the largest possible extent of cohort characteristics. One limitation of the small n

is the difficulty in drawing inferences outside of the sampled cohort. In the case of the data used

here, the cohort was further limited to a specific geographic residence and care in a specific clinic.

3.3 Simulation via Bayesian Networks

3.3.1 Structure Learning

Structure learning refers to the process of learning the structure of a directed acyclic graph from

the data itself. To find an optimum structure learning method three hill climbing algorithms were

compared via the bnlearn package (version 4.8.1) within R programming (version 4.2.2): hill-climbing

scored with Alkaline Information Criterion (aic-cg), hill-climbing scored with Bayesian Information

Criterion (bic-cg), and max-min hill-climbing (mmhc), which employs the Max-Min Parents Children

algorithm in the constraint phase to determine an undirected skeleton of structure to later be oriented

via hill climbing scored with Bayesian Information Criterion [71, 1, 40] . Because models are to be

fit via maximum likelihood estimation, both AIC and BIC offer appropriate scoring, as they are

both based on log-likelihood and complexity as seen in Equations 3.1 and 3.2 [72, 73]. For training

sets greater than or equal to seven observations, BIC will enforce a greater penalty for large models.

While some past research has found AIC to perform better, particularly in small sample sizes where

BIC can suffer due to the increased penalty for complexity, other studies have found that BIC scoring

consistently outperforms AIC scoring in discovering underlying Bayesian structures [36, 74].

AIC = log L (X1, . . . , Xv)− d (3.1)

BIC = log L (X1, . . . , Xv)−
d

2
log n (3.2)
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3.3.2 Fitting

Once structure is determined via the optimal method from the above section, parameters of local

distributions were estimated via the bn.fit function from bnlearn (version 4.8.1) [1]. Fitting was

completed via the mle-cg method, which employs a maximum likelihood estimator for conditional

probabilities when fitting discrete nodes, and a maximum likelihood estimator for least squares

regression models for Gaussian nodes to create a conditional Gaussian Bayesian network. For

continuous data, parameters take the form of regression coefficients while parameters for discrete

nodes take the form of conditional probability tables. Distributions of continuous nodes are linearly

dependent on continuous parents with parameters conditioned upon values from discrete parents.

This method of fitting does not allow discrete nodes to have Gaussian parents, which allows the use

of least squares regression to efficiently obtain maximum likelihood estimates for continuous nodes.

Therefore for this study, AD status was a root node in every case of simulation, and probability of

AD-status when simulating will be reflective of the class proportions in the observed data.

3.3.3 Generating Simulated Data

Simulated data was generated via forward sampling using the fitted network within the rbn function

in bnlearn (version 4.8.1) [1]. Forward sampling is a stochastic process that occurs topologically,

with root nodes being sampled first from their unconditional distributions [75]. This is followed by

the sampling their child nodes by conditioning the child node’s conditional probability distributions

to values sampled from the parent node(s). This is repeated until each node has been sampled. The

number of simulated observations is held constant throughout the experiment at 1,000 samples to

ensure that simulated data characterize the original data well, and to limit computational expense

when subsequently fitting classification models.
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3.4 Comparing Model Performance With and Without Simu-

lated Training Data

3.4.1 Generalized Workflow

The effect of including 1,000 rows of simulated data in the training of random forest, XGBoost

and SVM, on predictive performance were evaluated using three derivations of data; original AD

and control data, AD and control data reflected by principal components via the prcomp function

in the stats package of R (version 4 4.2.2), and AD and control data with additional healthy non-

AD participants from the Human Connectome Project on Aging acting as additional controls in

training and simulation. Predictive performance was evaluated using training and testing subsets,

encompassing 65 percent and 35 percent of the data respectively. Additionally, predictive performance

was evaluated using leave-one-out cross-validation to prevent sampling bias from impacting model

performance. Models were evaluated for accuracy, sensitivity, and specificity.

When models were evaluated using train-test splits, prior to splitting the data, seed state was

set to ensure the same test sets are being used for predictions when using simulated enhanced data

and original data in training. After splitting the data, hyperparameters were grid searched using

three fold cross-validation, where all hyperparameter combinations are tested and the combination

that results in the model that minimizes classification error is determined optimal. The optimal

model was then used for classification on the test set. These steps were then repeated, with the

exception of creating simulated data from the training data using methods mentioned above and

appending it to the training data prior to grid searching. This process was repeated 100 times, and

predictive performance on the test set from models that utilized simulated data were compared to

models only utilizing original training data using the paired t-test.

The process was very similar for leave-one-out cross-validation, with the exception of training

data consisting of all but one row of data. Given the 49 original AD and control data samples, there

are 49 models used per run when utilizing LOOCV, thus the process was only repeated 10 times to
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limit computational expense. These processes are outlined in Figure 3.1.

Figure 3.1: Generalized Workflow Flowcharts

3.4.2 Random Forest

Random forest has been applied to the same AD and control data in past publications, though

using two brain regions rather than solely the post-cingulate cortex [2]. To create random forest

models in this experiment, the randomForest package (version 4.7-1.1) in R (version 4.2.2) was

utilized [71, 76]. In the past publication (Terpstra, 2019), Bootstrap Forest was implemented in JMP

Pro ,though the impressive results have not proven to be reproducible using other implementations

of random forest. Balanced class weights in training data were computed and supplied to the model,

which provide prior probabilities and aid in the training of models with imbalanced data by allowing

observations of the minority class a higher likelihood of being selected in bootstrap samples. The

number of trees (ntree), number of randomly sampled columns to be used as candidates per split

(mtry), and minimum size of terminal nodes (nodesize) were grid searched to find optimum values

for these parameters via 3-fold cross validation for these parameters using the tune function from

the e1071 package (version 1.7-12) in R (version 4.2.2) [77]. Possible values for ntree were 400 and
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1000, with 1,000 trees being used for forests in the previously performed analysis of the AD and

Control data. Using a higher number of trees can be related to better predictive performance, though

this benefit can plateau at a given number of trees [13]. Using fewer trees is primarily beneficial to

computation efficiency, especially when trying to find optimum values for other hyperparameters.

Possible values for mtry were 3,4,5. Lastly, possible values for nodesize were 3,5, and 7, with higher

nodesize resulting in better computational efficiency by creating shallow trees, which may lead to

needing more trees. Classification error was used to deem the optimum model by 3-fold cross validated

grid searching, which was then fitted using all the data and used to predict testing data. Variable

importance was extracted from each model using varImportance in the randomForest package to

offer model explainability via mean decrease of the Gini coefficient.

3.4.3 Support Vector Machines (SVM)

Support vector machines were executed via the svm function from the e1071 package (version

1.7-12) in R (version 4.2.2) [77]. A non-linear kernel, radial basis function, was used throughout SVM

models in the experiment due to its demonstrated performance in classification tasks [78]. Training

data are scaled with the scale argument within the svm function to ensure that all values have the

same influence on the distance metric from the kernel matrix. Additionally, balanced class weights

were supplied to the svm function, which offered higher penalty costs to the minority class (AD) to

combat imbalance. SVM models were tuned via three fold cross validation grid search using tune.svm

in the e1071 package [77]. Possible values for epsilon, or the insensitive loss function, were .1 and .01,

with a smaller value implying steeper penalty for misclassification and therefore less support vectors.

Possible values for cost of constraint violation, or cost, were 1,10,100, and 1000. The default cost

value in the package used is 1, though low cost values may contribute to underfitting, while high cost

can impose a high penalty for inseparable points and lead to overly complex models and overfitting.

Possible values for gamma were .001,.01, and .1. Simply put, gamma represents how far influence

from an observation reaches, with values that are too low creating support vectors that are unable to

capture the shape of the data [79]. Inversely, when gamma values are too high, support vectors are

21



at risk of overfitting, as the influence of the support vectors only includes the vectors themselves [79].

Gamma and cost are often optimized together, as the negative effects of one being too high or low

can often be overcome by the inverse of the other [79] . The best performing model from the cross

validation based on classification error was trained on all of the training data and further used on

the testing data.

3.4.4 XGBoost

XGBoost models were employed from the caret package (version 6.0-93) within R, with the

method of the train function in this package defined as xgbTree [53, 80]. To limit computational

expense, the number of trees per model was kept at the default of 500. To prevent overfitting, 70

percent of the training data was randomly sampled before growing trees, denoted by the subsample

argument in the model. Additionally, the proportions of columns sampled by each tree was held

constant at 70 percent. Balanced class weights from the training data were supplied to the model to

prevent the effects of class imbalance by imposing a higher cost to misclassifications of the minority

class. Similarly to random forest and SVM models, a three fold cross validation was performed to

determine the best hyperparameter combination in a grid based on classification accuracy. Possible

values for maximum depth of tree were 5,6, and 7, with a larger value creating complex models that

are at risk of overfitting [53]. Possible values for eta, which denotes learning rate, were .2,.3, and

.4, with the package default being 3 [53]. A higher eta value creates a more conservative algorithm

that is less likely to overfit by shrinking feature weights after each boosting step, with lower values

causing underfitting. Possible values for gamma, which is the minimum loss required to make a

further partition on a leaf node, were 0 and .1, with a default of 0 and a higher value denoting a

more conservative model. The best model resulting from the cross validation in terms of accuracy

was used to perform predictions on the test set. Additionally, variable importance in the form of

mean gain were kept from the XGBoost models in order to contribute to model explainability.
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Chapter 4

RESULTS

4.1 Simulation via Bayesian Networks

10 fold cross validation, which was repeated 10 times, was used to find the best method of

structure learning determined by average posterior predictive correlation for ascorbate, percent white

matter, and signal to noise. The structure learning method that resulted in the highest posterior

predictive correlation for ascorbate was hill climbing scored via BIC derived from data that contains

over-sampled AD observations with a value of 0.8234, and was respectively followed by hill climbing

scored via AIC created from over-sampled data (0.8097), max-min hill climbing using over-sampled

AD data (0.7909), max-min hill climbing (0.7525), hill climbing scored via BIC (0.7116), then hill

climbing scored via AIC (0.6678). The structure learning method that resulted in the highest posterior

predictive correlation for percent white matter was also hill climbing scored via BIC derived from

data that contained over-sampled AD observation with a value of .9996 and was followed respectively

by max-min hill climbing using over-sampled AD data (0.9995), AIC scored hill climbing using

over-sampled AD data (0.9992), hill climbing scored via BIC (0.9971), max-min hill climbing (0.9962),

then hill climbing scored via AIC (0.9951). The structure learning method that resulted in the

highest posterior predictive correlation for signal to noise ratio (SN) was again, hill climbing scored

via BIC using data with over-sampled AD observations with a value of 0.5511, followed respectively

by AIC scored hill climbing using over-sampled data (0.5126), hill climbing scored by BIC (0.3916),
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hill climbing scored via AIC (0.3285), max-min hill climbing using over-sampled data (0.0573), then

max-min hill climbing (-0.01904). Comparison of posterior predictive correlation across hill climbing

variations for all variables can be found in Figure 4.3.

Figure 4.1: Hill climbing performance: posterior predictive correlation of ascorbate, percent white
matter, and singal to noise ratio

Given the superior performance of Bayesian networks scored via BIC and fitted with over-

sampled AD data, this was the method utilized for structure learning throughout the study. An

example of a Bayesian network structure derived from hill climbing with BIC scoring using oversampled

AD data can be found in Figure 4.2. Arc strength for the strongest half of arcs from this network are

shown in Table 4.1, in which score refers to the change in score of the network (BIC) when that arc

is removed, with a more negative score implying a stronger arc. The arc from percent gray matter to

percent cerebrospinal fluid and the arc from percent white matter to percent cerebrospinal fluid are
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the strongest arcs in the given network.

Distributions of simulated data for ascorbate, percent white matter, and SN can be found in

Figure 4.3. Mean values and standard deviations for real and simulated values for all variables are

shown in Table 4.2. Variables like ascorbate, glutamine, and GABA seem to be characterized well by

simulated data, while variables like tau are poorly captured.
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Figure 4.2: Bayesian Network dervied from Hill-Climbing scored via BIC and using AD and control
data in which every AD case is doubled
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Figure 4.3: Distributions of real and simulated data for ascorbate, percent white matter, and SN
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From To Strength
percent GM percent CSF -457.63
percent WM percent CSF -448.73

Cohort SN -113.98
sIns SN -113.07

Cr PCr SN -77.63
NAA SN -77.34
Tau SN -71.68

GABA SN -69.4
percent CSF SN -61.62
percent GM SN -61.57
percent WM SN -61.54

Glu NAA -58.47
GABA GSH -56.85
GSH SN -53.63
Ins SN -53.55

Cohort GSH -46.4
Glu SN -43.59
Tau GSH -38.66
Asc Ins -33.77
Ins GPC PCho -31.05
Ins Cr PCr -25.95
Glu GSH -23.97

GPC PCho SN -23.06
Asp SN -21.4

Cohort NAAG -20.17
GPC PCho GSH -19.93

Asp NAAG -16.47
NAAG GSH -15.29

Table 4.1: Arc strength, represented by change of BN score (BIC) after removal of defined arc

4.2 Model Evaluation: AD and Control Data

4.2.1 Random Forest

Train-Test Performance

Using a paired t-test, average differences of sensitivity, specificity, and accuracy for random

forest models that do and do not use additional simulated training data are shown in Table 4.3.

Average difference of specificity and accuracy did significantly differ in favor of modes that did not use

simulated data under the Bonferroni corrected threshold for significance (p-value < 0.0028). Average

difference of sensitivity between models that did not use simulated data and ones that did was 0.02

(p-value = 0.4). Mean difference of specificity was 0.06 (p-value = 8.42E-06). Mean difference of
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Variable Real AD Simulated AD Real Control Simulated Control
percent GM 42.02 σ 6.46 41.63 σ 6.73 46.75 σ 6.77 46.58 σ 6.71
percent WM 26.65 σ 7.7 26.74 σ 7.68 23.88 σ 3.36 23.89 σ 3.28
percent CSF 31.33 σ 7.75 31.62 σ 9.84 29.37 σ 8.15 29.53 σ 7.19
Asc 1.52 σ 0.23 1.53 σ 0.24 1.25 σ 0.17 1.25 σ 0.17
Asp 2.12 σ 0.36 2.08 σ 0.34 2.01 σ 0.35 2.02 σ 0.35
GABA 0.78 σ 0.24 0.81 σ 0.19 0.88 σ 0.16 0.87 σ 0.2
Gln 3.52 σ 0.56 3.53 σ 0.64 3.36 σ 0.39 3.36 σ 0.37
Glu 9.83 σ 1.12 9.92 σ 1.38 10.13 σ 0.89 10.1 σ 0.99
GSH 1.21 σ 0.14 1.21 σ 0.16 1.12 σ 0.14 1.12 σ 0.13
Ins 8.93 σ 1.72 9.01 σ 2.05 7.65 σ 0.82 7.61 σ 0.82
NAA 10.49 σ 1.19 10.69 σ 1.44 10.79 σ 0.99 10.73 σ 1.1
NAAG 1.02 σ 0.22 1.01 σ 0.21 0.99 σ 0.17 1 σ 0.19
PE 0.97 σ 0.22 1 σ 0.27 1.13 σ 0.24 1.11 σ 0.22
sIns 0.41 σ 0.18 0.43 σ 0.22 0.44 σ 0.25 0.43 σ 0.22
Tau 1.71 σ 0.31 1.84 σ 0.36 1.84 σ 0.3 1.77 σ 0.3
GPC PCho 1.65 σ 0.24 1.65 σ 0.3 1.46 σ 0.16 1.46 σ 0.17
Cr PCr 9.85 σ 1.22 9.98 σ 1.53 9.66 σ 0.93 9.57 σ 0.95
linewidth 8.43 σ 1.04 8.53 σ 1.09 8.49 σ 1.07 8.46 σ 1.07
SN 41.81 σ 7.53 43.11 σ 7.79 47.61 σ 6.13 46.84 σ 6.92

Table 4.2: Mean and standard deviation of real and simulated data grouped by AD status

overall accuracy was 0.05 (p-value = 8.67E-06).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity 0.02 0.36
Specificity 0.06 8.42E-06
Accuracy 0.05 8.67E-06

Table 4.3: AD and Control data RF train-test average performance comparison (paired t-test)

LOOCV Performance

Average sensitivity, specificity, and accuracy across random forest LOOCV runs that utilized

simulated data and not are shown in Table 4.4 with p-values reported from t-tests. Average specificity

and accuracy did significantly differ (p-value < 0.0028) in favor of models that did not utilize

simulated data. Average sensitivity for LOOCV runs that did and did not use additional simulated

training data were 0.58 and 0.53 respectively (p-value = 0.08).Average specificity for LOOCV runs

that do and do not use additional simulated training data were 0.76 and 0.90 respectively (p-value =

9.28E-07). Lastly, average accuracy for runs that did and did not use additional simulated training

data were 0.70 and 0.78 respectively (p-value = 1.60E-4 ). Distributions of these performance metrics
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are shown in Figure 4.4. Highest overall accuracy was found in LOOCV runs that did not utilize

simulated data.

Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.53 0.58 0.08
Specificity 0.90 0.76 9.28E-07
Accuracy 0.78 0.7 1.60E-04

Table 4.4: AD and Control data RF LOOCV average performance comparison (t-test)

Figure 4.4: AD and Control data RF distributions of performance

Variable importance, represented by mean decrease in Gini coefficient, was recorded for each

variable used in models within LOOCV runs. A comparison of average variable importance across

runs that do and do not use additional simulated data in training are shown in Figure 4.5 . In order

to make this comparison, values of mean decrease in Gini values were scaled for each model, as

the value is partially dependent on the number of observations in the data. Ascorbate (Asc) and

myo-Inositol (Ins) were the most important variables in both models utilizing simulated data and not.

The variable with the largest difference of variable importance between models utilizing simulated

data and not was percent white matter (percent-WM), which received a higher variable importance,

on average, in models using simulated data.
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Figure 4.5: AD and Control data RF average variable importance (mean decrease Gini) across
LOOCV runs

4.2.2 SVM

Train-Test Performance

Using a paired t-test, average differences of sensitivity, specificity, and accuracy for SVM models

that do and do not use additional simulated training data are shown in Table 4.5. Average differences

of specificity and accuracy were deemed significant (p-value < 0.0027) in favor of LOOCV runs

that did not utilize simulated data. Mean difference of sensitivity between models that did not use

simulated data and ones that did was 8.88E-18 (p-value = 1). Mean difference of specificity was 0.09

(p-value = 4.77E-09). Mean difference of overall accuracy was 0.06 (p-value = 2.52E-4).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity 8.88E-18 1
Specificity 0.09 4.77E-09
Accuracy 0.06 6.09E-08

Table 4.5: AD and Control data SVM train-test average performance comparison (paired t-test)
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LOOCV Performance

Average sensitivity, specificity, and accuracy across SVM LOOCV runs that did and did not

utilize simulated training data are shown in Table 4.6, with corresponding p-values from t-tests.

Average specificity was the only metric to significantly differ (p-value < 0.0028) and favored runs

that did not use simulated data. Average sensitivity for LOOCV runs that do and do not use

additional simulated training data were 0.49 and 0.44 respectively (p-value = 0.3). Average specificity

for LOOCV runs that did and did not use additional simulated training data were 0.78 and 0.92

respectively (p-value = 1.69E-4). Lastly, average accuracy for runs that did and did not use additional

simulated training data were 0.69 and 0.76 (p = 5.52E-3). Distributions of these metrics are shown

in Figure 4.6. Highest accuracy was recorded in a LOOCV run that did not utilize simulated data.

Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.44 0.49 0.34
Specificity 0.92 0.78 1.69E-04
Accuracy 0.76 0.69 0.01

Table 4.6: AD and Control data SVM LOOCV average performance comparison (t-test)

Figure 4.6: AD and Control data SVM distributions of performance
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4.2.3 XGBoost

Train-Test Performance

Using a paired t-test, average difference of sensitivity, specificity, and accuracy for XGBoost

models that do and do not use additional simulated training data are shown in Table 4.7. Average

differences of specificity and accuracy were deemed significant in favor of models that did utilize

simulated data (p-value < 0.0028). Mean difference of sensitivity between models that did not use

simulated data and ones that did was -0.02 (p-value = 2). Mean difference of specificity was .06

(p-value = 1.11E-06). Mean difference of overall accuracy was .04 (p-value = 8.96E-4).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity -0.02 0.24
Specificity 0.06 1.11E-06
Accuracy 0.04 8.96E-04

Table 4.7: AD and Control data XGBoost train-test average performance comparison (paired t-test)

LOOCV Performance

Average sensitivity, specificity, and accuracy across XGboost LOOCV runs that did and did

not utilize simulated training data are shown in Table 4.8, with corresponding p-values from t-tests.

Average sensitivity, specificity, and accuracy did not significantly differ (p-value > 0.0028). Average

sensitivity for LOOCV runs that did and did not use additional simulated training data were .58 and

.55 respectively (p-value = 0.2). Average specificity for LOOCV runs that did and did not utilize

additional simulated training data were 0.79 and 0.82 respectively (p-value = 0.1). Average accuracy

for runs that did and did not use additional simulated training data were 0.72 and 0.73 respectively

(p-value =0.5). Distributions of these metrics are shown in Figure 4.7. Highest overall accuracy was

achieved in a run that did not utilize simulated data.

Variable importance, represented by mean gain, was recorded for each variable used in models

within XGBoost LOOCV runs. Gain represents the average gain of splits that use the variable. A

comparison of average variable importance across runs that do and do not use additional simulated
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Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.55 0.58 0.18
Specificity 0.82 0.79 0.13
Accuracy 0.73 0.72 0.50

Table 4.8: AD and Control data XGBoost LOOCV average performance comparison (t-test)

Figure 4.7: AD and Control data XGBoost distributions of performance

data in training are shown in Figure 4.8. Similar to random forest results, ascorbate (Asc) and

myo-Inositol (Ins) were the most important variables in both models that utilized simulated data

and not, with percent white-matter exhibiting the largest difference between the groups.
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Figure 4.8: AD and control data XGBoost average variable importance (mean Gain) across LOOCV
runs

4.3 Model Evaluation: Principal Component Data

4.3.1 Principal Component Data

Data were transformed to principal components via the “prcomp” function from the stats package

in R. Principal components were able to capture 95 percent of the total variance in the AD and

control data within 12 variables. These 12 variables were further used for simulation and modeling.

Loadings, or the weight that each variable contributes to a principal component, of these 12 principal

components are reflected in the Table 4.10.

4.3.2 Random Forest

Train-Test Performance

Using a paired t-test, average differences of sensitivity, specificity, and accuracy for random

forest models that do and do not use additional simulated training data are shown in Table 4.9.

Mean difference of specificity and accuracy did significantly differ for these groups (p-value > .0028),

favoring models that did not utilize simulated data. Average difference of sensitivity between models
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that did not use simulated data and ones that did was -0.01 (p-value = 0.7) . Mean difference of

specificity was 0.13 (p-value = 6.86E-14). Mean difference of overall accuracy was 0.08 (p-value =

3.34E-10).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity -0.01 0.73
Specificity 0.13 6.86E-14
Accuracy 0.08 3.34E-10

Table 4.9: PC data RF train-test average performance comparison (paired t-test)
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LOOCV Performance

Average sensitivity, specificity, and accuracy across random forest LOOCV runs that did and

did not utilize simulated training data are shown in Table 4.11 with corresponding p-values from

t-tests. Average specificity, and accuracy did significantly differ, in favor of models that did not

utilize simulated data (p-value < 0.0028). Average sensitivity for LOOCV runs that do and do

not use additional simulated training data were 0.6 and 0.53 respectively (p-value = .03). Average

specificity for LOOCV runs that do and do not use additional simulated training data were 0.9

and 0.78 respectively (p-value of 4.50E-06) . Lastly, average accuracy for runs that did and did

not use additional simulated training data were 0.80 and 0.70 respectively (p-value = 2.11E-07).

Distributions of these metrics are shown in Figure 4.9. Highest value for accuracy was found in

LOOCV runs that did not utilize simulated data.

Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.6 0.53 0.03
Specificity 0.9 0.78 4.50E-06
Accuracy 0.80 0.70 2.11E-07

Table 4.11: PC data RF LOOCV average performance comparison (t-test)

Figure 4.9: PC data RF distributions of performance

Variable importance, represented by mean decrease of the Gini coefficient, was recorded for
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each variable used in random forest models within LOOCV runs. A comparison of average variable

importance across runs that do and do not use additional simulated data in training are shown

in Figure 4.10. PC2 was the most important variable in models utilizing simulated data and not.

Variable weights for PC2 can be found in Table 4.10, which shows that ascorbate (Asc) had the highest

contributing weight, followed respectively by GABA, glutamate (Glu), phosphorylethanolamine (PE)

, and N-acetylaspartate (NAA).

Figure 4.10: PC data RF average variable importance (mean decrease Gini) across LOOCV runs

4.3.3 SVM

Train-Test Performance

Using a paired t-test, average differences of sensitivity, specificity, and accuracy for SVM models

that do and do not use additional simulated training data are shown in Table 4.12. Mean difference

for specificity and accuracy did significantly differ for these groups (p < 0.0028), favoring models

that do not utilize simulated data. Average difference of sensitivity between models that did not use

simulated data and ones that did was 0.004 (p-value of 0.9) . Mean difference of specificity was 0.06

(p-value = 2.51E-3). Mean difference of overall accuracy was 0.04 (p-value = 2.52E-4).
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Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity 0.004 0.91
Specificity 0.059 2.50E-03
Accuracy 0.042 2.52E-04

Table 4.12: PC data SVM train-test average performance comparison (paired t-test)

LOOCV Performance

Average sensitivity, specificity, and accuracy across SVM LOOCV runs that did and did not

utilize additional simulated training data are recorded in Table 4.13, with corresponding p-values

from t-tests. Average sensitivity, specificity, and accuracy did not significantly differ ( p-value >

0.0028). Average sensitivity for LOOCV runs that did and did not use additional simulated training

data were 0.41 and 0.36 respectively (p-value = 0.3). Average specificity for LOOCV runs that did

and did not use additional simulated training data were 0.81 and 0.82 respectively (p-value = 0.8) .

Average accuracy for runs that did and did not use additional simulated training data were 0.68 and

0.67 respectively (p-value = 0.8). Distributions of these performance metrics are shown in Figure 4.11.

Highest value of overall accuracy was found in a LOOCV run that did utilize simulated data.

Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.37 0.41 0.34
Specificity 0.82 0.81 0.79
Accuracy 0.67 0.68 0.78

Table 4.13: PC data SVM LOOCV average performance comparison (t-test)

4.3.4 XGBoost

Train-Test Performance

Using a paired t-test, average differences of sensitivity, specificity, and accuracy for XGBoost

models that did and did not use additional simulated training data are shown in Table 4.14. Mean

difference for sensitivity, specificity, and accuracy did not significantly differ (p < 0.0028). Average

difference of sensitivity between models that did not use simulated data and ones that did was 0.02

(p-value = 0.28) . Mean difference of specificity was 0.03 (p-value = 0.04). Mean difference of overall
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Figure 4.11: PC data SVM distributions of performance

accuracy was 0.03 (p-value = 0.01).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity 0.02 0.28
Specificity 0.03 0.04
Accuracy 0.03 0.01

Table 4.14: PC data XGBoost train-test average performance comparison (paired t-test)

LOOCV Performance

Average sensitivity, specificity, and accuracy across XGBoost LOOCV runs that did and did not

utilize simulated data in model training are shown in Table 4.15 with corresponding p-values from

t-tests. Average sensitivity, specificity, and accuracy did not significantly differ (p-value > 0.0028).

Average sensitivity for LOOCV runs that did and did not use additional simulated training data

were 0.56 and 0.61 respectively (p-value = 0.27). Average specificity for LOOCV runs that did and

did not use additional simulated training data were 0.77 and 0.82 respectively (p-value = 0.04) .

Lastly, average accuracy for runs that did and did not use additional simulated training data were

0.72 and 0.75 respectively (p-value = 0.02). Distributions of these performance metrics are shown

in Figure 4.12. Highest value of overall accuracy was found in LOOCV runs that did not utilize
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simulated data.

Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.61 0.56 0.27
Specificity 0.82 0.77 0.04
Accuracy 0.75 0.72 0.02

Table 4.15: PC data XGBoost LOOCV average performance comparison (t-test)

Figure 4.12: PC data XGBoost distributions of performance
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Variable importance, represented by mean gain, was recorded for each variable used in

XGBoost models within LOOCV runs. A comparison of average variable importance across runs

that do and do not use additional simulated data in training are shown in Figure 4.13. Similar to

random forest models trained and tested with principal component data, PC2 was the variable with

highest average variable importance. There was a relatively large increase in variable importance of

PC11, which is heavily influenced by phosphorylethanolamine (PE), Tau, and signal to noise ratio

(SN), when utilizing simulated data.

Figure 4.13: PC data XGBoost average variable importance (mean Gain) across LOOCV runs

4.4 Model Evaluation: AD and Control Data with Added

Controls in Training and Simulation

4.4.1 Random Forest

Train-Test Performance

A Bayesian network that’s structure was derived from AD and control data with additional

controls from the Human Connectome Project-Aging is reported in Figure 4.14. This network

contained more arcs that the network derived from AD and control data only, and is thus more
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complex. Using a paired t-test, average differences of sensitivity, specificity, and accuracy for random

forest models that did and did not use additional simulated training data are shown in Table 4.16.

Mean difference sensitivity, specificity, and accuracy did significantly differ for these groups, with

specificity and accuracy in favor of models that did not utilize simulated data. Average difference

of sensitivity between models that did not use simulated data and ones that did was -0.20 (p-value

=3.30E-13) . Mean difference of specificity was 0.19 (p-value = 1.64E-18). Mean difference of overall

accuracy was 0.07 (p-value = 2.22E-06).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity -0.20 3.30E-13
Specificity 0.19 1.64E-18
Accuracy 0.07 2.22E-06

Table 4.16: AD and Control Data With additional controls for training and/or simulation from
HCPA random forest performance comparison on test set (paired t-tests)

LOOCV Performance

Average sensitivity, specificity, and accuracy across random forest LOOCV runs that did and

did not utilize simulated data in model training are shown in Table 4.17 with corresponding p-values

from t-tests. Average sensitivity and specificity did significantly differ, in favor of models not utilizing

simualted data (p-value < 0.0028). Average sensitivity for LOOCV runs that did and did not use

additional simulated training data were 0.61 and 0.43 respectively (p-value = 2.3E-4). Average

specificity for LOOCV runs that did and did not use additional simulated training data were 0.73

and 0.89 respectively (p-value = 5.96E-05) . Lastly, average accuracy for runs that did and did not

use additional simulated training data were 0.69 and 0.74 respectively (p-value = 0.03). Distributions

of these performance metrics are shown in Figure 4.15. Models not utilizing simulated data had

noticeably smaller distributions for sensitivity, specificity, and accuracy. Highest overall accuracy

was achieved by a model utilizing simulated training data.

Variable importance, represented by mean decrease in the Gini impurity index, was recorded

for each variable used in random forest models within LOOCV runs. A comparison of average variable

importance across runs is shown in Figure 4.16. Linewidth notably displayed higher importance in
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Figure 4.14: Bayesian Network derived from AD and Control Data with additional controls from
HCPA
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Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.43 0.61 2.25E-04
Specificity 0.90 0.73 5.96E-05
Accuracy 0.74 0.69 0.03

Table 4.17: AD and Control data with additional HCPA controls RF LOOCV average performance
comparison (t-test)

Figure 4.15: Random forest LOOCV Performance for AD and Control Data with additional controls
from HCPA

models used in LOOCV using AD and control data with additional controls from HCPA compared

to random forest only utilizing AD and control data. High variable importance was also observed in

phosphorylethanolamine (PE), and the three MRI derived parameters.
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Figure 4.16: AD and Control data with additional HCPA controls RF average variable importance
(mean decrease Gini) across LOOCV runs

4.4.2 SVM

Train-Test Performance

Using a paired t-test, average differences of sensitivity, specificity, and accuracy for SVM models

that do and do not use additional simulated training data are shown in Table 4.18. Mean difference for

specificity and accuracy did not significantly differ for these groups (p > 0.0028). Average difference

for sensitivity between models that did not use simulated data and ones that did was 0.05 (p-value

of 0.06) . Mean difference of specificity was 0.02 (p-value = .1). Mean difference of overall accuracy

was 0.03 (p-value = 4.1E-3).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity 0.05 0.06
Specificity 0.02 0.10
Accuracy 0.03 4.13E-03

Table 4.18: AD and Control data with additional HCPA controls SVM train-test average performance
comparison (paired t-test)
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LOOCV Performance

Average sensitivity, specificity, and accuracy across SVM LOOCV runs that did and did not

utilize simulated data in model training are shown in Table 4.19 with corresponding p-values

from t-tests. Average specificity and accuracy did significantly differ (p-value < 0.0028). Average

sensitivity for LOOCV runs that did and did not use additional simulated training data were 0.41

and 0.44 respectively (p-value = 0.5). Average specificity for LOOCV runs that did and did not use

additional simulated training data were 0.81 and 0.92 respectively (p-value = 3.02E-06) . Lastly,

average accuracy for runs that did and did not use additional simulated training data were 0.68

and 0.76 respectively (p-value = 3.55E-4). Distributions of these metrics are shown in Figure 4.17.

Distributions of sensitivity between LOOCV runs utilizing similar data and not are quite similar.

Highest overall accuracy was achieved by a model that did not use simulated data.

Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.44 0.41 0.57
Specificity 0.92 0.81 3.02E-06
Accuracy 0.76 0.68 3.55E-04

Table 4.19: AD and Control data with additional HCPA controls SVM LOOCV average performance
comparison (t-test)

Figure 4.17: AD and Control data with additional HCPA controls SVM distributions of performance
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4.4.3 XGBoost

Train-Test Performance

Using a paired t-test, average difference of sensitivity, specificity, and accuracy for XGBoost

models that do and do not use additional simulated training data are shown in Table 4.20. Mean

difference for specificity and accuracy did significantly differ for these groups (p < 0.0027). Average

difference of sensitivity between models utilizing simulated data and not was -0.17 (p-value =

1.85E-14) . Mean difference of specificity was 0.20 (p-value = 3.65E-25). Mean difference of overall

accuracy was .08 (p-value = 2.21E-11).

Metric Mean Difference ( Model Not Using Simulated Data - Model
Using Simulated Data)

p value

Sensitivity -0.17 1.85E-14
Specificity 0.20 3.65E-25
Accuracy 0.09 2.21E-11

Table 4.20: AD and Control data with additional HCPA controls XGBoost train-test average
performance comparison (paired t-test)

LOOCV Performance

Average sensitivity, specificity, and accuracy across XGBoost LOOCV runs that did and did

not utilize simulated data in model training are shown in Table 4.21 with corresponding p-values

from t-tests. Average specificity, and accuracy did significantly differ (p-value < 0.0028). Average

sensitivity for LOOCV runs that did and did not use additional simulated training data were 0.74

and 0.53 respectively (p-value = 1.86E-05). Average specificity for LOOCV runs that did and did not

use additional simulated training data were 0.63 and 0.86 respectively (p-value = 3.03E-07). Average

accuracy for runs that did and did not use additional simulated training data were 0.67 and 0.75

respectively (p-value = 5.37E-4). Distributions of these metrics are shown in Figure 4.18. LOOCV

sensitivity for runs that utilized additional simulated training data performed with higher sensitivity,

but lower specificity compared to runs that did not use simulated data. Highest overall accuracy was

achieved by a model not utilizing simulated data.

Variable importance, represented by mean gain, was recorded for each variable used in
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Metric Mean Across LOOCV Runs
Not Using Simulated Data

Mean Across LOOCV Runs
Using Simulated Data

p value

Sensitivity 0.53 0.74 1.86E-05
Specificity 0.86 0.63 3.03E-07
Accuracy 0.75 0.67 5.37E-04

Table 4.21: AD and Control data with additional HCPA controls XGBoost LOOCV average perfor-
mance comparison (t-test)

Figure 4.18: AD and Control data with additional HCPA controls XGBoost distributions of perfor-
mance

XGBoost models within LOOCV runs. A comparison of average variable importance across runs that

do and do not use additional simulated data in training are shown in Figure 4.19. Similar to random

forest models trained and tested with AD and control data with additional controls for training

and simulation from HCPA, high variable importance was found in MRI derived parameters and

phosphorylethanolamine (PE).
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Figure 4.19: AD and Control with additional HCPA controls data XGBoost average variable
importance (mean Gain) across LOOCV runs

4.5 Summary Figures

To provide a means of uncovering overall trends, figures are provided. Figure 4.20 shows average

sensitivity across LOOCV runs that did and did not utilize simulated training data across every

model type and data combination. Figure 4.21 shows average specificity across LOOCV runs that did

and did not utilize simulated training data across every model type and data combination. Figure

4.22 shows average accuracy across LOOCV runs that did and did not utilize simulated training data

across every model type and data combination. Figure 4.23 shows average difference of sensitivity,

specificity, and accuracy from models that did not utilize simulated data and ones that did. In Figure

4.23 the test sets encompassed 35% of training data.
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Figure 4.20: Average sensitivity of LOOCV runs that did and did not utilize simulated data for each
model and data combination. Significance of these differences are recorded in the corresponding area
of this chapter. AD = AD and control data, ADPCS = AD and control data reflected as principal
components, ADCHCPA = AD and control with additional controls from HCPA in training and
simulation
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Figure 4.21: Average specificity of LOOCV runs that did and did not utilize simulated data for each
model type and data combination. Significance of these differences are recorded in the corresponding
area of this chapter. AD = AD and control data, ADPCS = AD and control data reflected as
principal components, ADCHCPA = AD and control with additional controls from HCPA in training
and simulation
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Figure 4.22: Average specificity of LOOCV runs that did and did not utilize simulated data for each
model type and data combination. Significance of these differences are recorded in the corresponding
area of this chapter.AD = AD and control data, ADPCS = AD and control data reflected as principal
components, ADCHCPA = AD and control with additional controls from HCPA in training and
simulation
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Chapter 5

DISCUSSION

The purpose of this research was to determine a hill-climbing approach the performs best in

forming a Bayesian network of MRS and MRI derived parameters, and to determine if simulated

data increased performance of classification models in uncovering AD status.

Using data in which each AD observation is doubled, thus combating class imbalance, hill

climbing scored via BIC was the best performing hill climbing algorithm in terms of posterior

predictive correlation of ascorbate, signal to noise, and percent white matter from the resulting

network after fitting. Values for posterior predictive correlation did not widely differ between AIC

and BIC scored networks when utilizing data in which each AD observation was over-sampled. Arcs

for Bayesian networks created in this fashion show conditional dependencies of cohort (one’s AD

status) for each variable used to compare posterior predictive correlation. While these variables may

therefore be important in classification models to distinguish AD status, it may be wise to revisit

this analysis and compare performance with more variables including ones assumed to appear deeper

within network structure. One of the benefits of simulating via Bayesian networks is the ability to

use domain knowledge to manually require or disallow arcs between variables. Networks may benefit

from establishing such known or assumed dependencies in Bayesian networks with assistance from

domain experts. Additionally, structure learning throughout the whole project was determined by

network performance on one data set ,AD and control data, when the process could be repeated for

principal component data and the AD and control data with additional controls from the Human
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Connectome Project in Aging used in training and simulation to ensure the best method of structure

learning is being utilized in each case. Lastly, in future projects, highly correlated variables should be

removed prior to fitting Bayesian networks,as the inclusion of highly correlated variables can increase

false positive associations [81].

It was widely demonstrated that the inclusion of additional training data simulated from

Bayesian networks created in the fashion outlined above did not lead to improved performance of

classification models across random forest, support vector machines, and XGBoost models. It was

also demonstrated that specificity was more widely and negatively affected than sensitivity when

using simulated data in training. Of 18 total comparisons (3 models x 3 datasets evaluated in 2

ways) average specificity was significantly and negatively affected in 13 comparisons. Sensitivity

only significantly differed in 4 comparisons, all of which favored the use of simulated data. This

may suggest that Bayesian networks in this research are better able to characterize conditional

dependencies of AD status for AD observations over controls. A direction of future work may then

be to only simulate AD observations and see the resulting effect on specificity.

Random Forest and XGBoost models created using additional control data from The Human

Connectome Project in Aging performed with better sensitivity when simulated data was utilized,

though with lower average specificity. When simulating control observations, conditional dependencies

likely more closely reflected data from the Human Connectome project in Aging, a study in which

ages range from 36-100+ years, as the number of age matched controls were outnumbered by

this group. Models trained on this simulated data could have then relied more on age-related

changes in neurochemistry, gray matter, white matter, and cerebrospinal fluid when classifying

control participants as such. This could have theoretically lead to the age matched controls being

misclassified at a higher rate. This theory is partially supported by variable importance from models

trained with AD and control data with additional controls. Phosphorylethanolamine (PE) notably

received higher variable importance in these models compared to models trained only using AD

and control data, a neurochemical previously demonstrated to exhibit age-related changes in the

post-cingulate cortex region [67]. Percent cerebrospinal fluid, percent white matter, percent gray
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matter,and linewidth were also given higher variable importance comparatively, all of which have

demonstrated age-related changes [82, 83]. SVM models, not being a tree based method, were less

impacted by these age related changes. A overarching limitation of incorporating this data includes

fitting used for MRS, which is age dependant. Spectra fit with young macromolecules in HCPA

data may not exhibit the same relationships found only in AD and control data. This should be

investigated further.

Variable importance from random forest and XGBoost models that did and did not utilize

additional simulated data for AD and control data suggest a strong use of ascorbate (Asc) and

myo-inositol (Ins), consistent with previous findings [2]. When simulated data was utilized, there was

a large uptick in variable importance for percent white matter in both random forest and XGboost

models. This suggests that percent white matter is being utilized more in these models when training.

Posterior predictive correlation for white matter using Bayesian Networks suggest a high reliability

when simulating, which may explain why it was being used more in models that used simulated data.

Splits in these tree based algorithms regarding percent white matter may not be applicable to test

data, causing a decrease in specificity. Variable importance resulting from models that did not utilize

simulated data can provide variables that should be most prioritized when evaluating fit of Bayesian

Networks to be used for simulation. Additionally, variable importance could be utilized in future

projects as a means of feature selection to reduce computation time, increase interpretability, and

reduce noise. In particular, feature selection could be very influential for SVM performance, and the

task should be revisited with this step included.

Though not a goal of this research, results can also be used to provide insight as to which models

and data allowed for the best performance, depending on the goal of the algorithm’s application. The

model and data combination that resulted in the highest average sensitivity, 73.75%, was XGBoost

applied to the AD and Control data with additional control from the Human Connectome project on

aging and simulated training data. A possible cause for this increased sensitivity is outlined above.

SVM models applied to AD and Control data with additional control from the Human Connectome

project on aging without simulated training data gave rise to the highest average specificity, 91.81%.
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Highest overall accuracy, 80.20%, was achieved via random forest applied to the principal component

data. These findings should be further supported with statistical comparisons and effect size analysis.

While improving classification was largely not achieved, Bayesian networks may have other

applications in MRS research. Biologically defended associations can be evaluated for strength via

coefficients of fit of Gaussian network variables, for example. New insights may be able to be had if

there is a strong association uncovered that has yet to be well documented. Additionally, it could be

used to give rise to understanding how methods of fitting spectra influence relationships in the data.

In conclusion, hill-climbing score via BIC was deemed the best method of a structure learning

by posterior predictive correlation of ascorbate, SN, and percent white matter, though more variables

should likely be used in this decision process. Additional simulated training data did not lead to

widespread significant increases in performance of random forest, support vector machines, and

XGBoost classification models. Variable importance of random forest and XGBoost models may

provide insights that can be used in defining features to be prioritized in Bayesian networks and

feature selection for models, which may influence the effectiveness of additional simulated training

data.
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