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Abstract 

Collaborations between scholars from multiple fields are becoming more common in 

research tasks. However, identifying suitable co-workers can be a challenging and time-

consuming process. In response to this, the authors propose a novel model called 

ScholarTeamFinder, which utilizes a knowledge graph to identify collaborators within an 

academic social network (ASN) for multi-disciplinary research tasks. The model uses graph-

based deep learning to learn node embeddings from the knowledge graph and recommends 

a scholar team. The approach uses semantic text features to improve the link prediction for 

identifying a suitable team. 

The authors evaluate the ScholarTeamFinder using large ASN datasets, including the NSF 

award dataset of federal grant awards, scholars' publication data, and two other widely used 

datasets. They also propose a beam-search algorithm for scholar team prediction based on 

the model. The results show that the ScholarTeamFinder outperforms state-of-the-art 

baseline models by approximately 15% across different datasets. 

The ScholarTeamFinder project aims to improve the collaboration process for researchers 

by providing recommendations for potential collaborations with related scholars. However, 

the model has not been trained with a knowledge graph, which limits its functionality, 

usability, and accuracy. Future work includes rebuilding the model with a knowledge graph 

to better represent relationships between scholars, venues, and publications, expanding the 

recommendations to include publications, venues, and other useful points, combining user 

queries with data models, and integrating expanding data models with a science gateway for 

ease of use. 

To ensure the accuracy of the model, data collection would involve gathering scholarly 

publications, conference proceedings, and related data sources to create a comprehensive 

knowledge graph that can be integrated with the existing model. Additionally, collecting 

data on user queries and interactions with the model will help ensure that it is effectively 

meeting the needs of its users. 

In summary, the ScholarTeamFinder model addresses the challenge of identifying suitable 

collaborators for multi-disciplinary research tasks. It utilizes a knowledge graph and graph-

based deep learning to recommend a scholar team. The model outperforms baseline models 

by approximately 15% across different datasets, and future work includes expanding the 

recommendations and integrating data models with a science gateway for ease of use. 

Index Terms—heterogeneous knowledge graph, scholar team recommender, deep learning, 

node embedding, link prediction. 
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1. Introduction 

 

The world has experienced a surge in the amount of published information, which has led to 

the development of advanced search engines and recommendation systems to filter relevant 

information efficiently and effectively. These tools are widely used by individuals and 

organizations alike to sort through the overwhelming amount of data available and find what 

they need quickly and accurately. In the academic world, this trend is particularly prevalent, 

where research tasks involve finding relevant multi-disciplinary information and 

collaborating with experts in different fields to create new knowledge that transcends 

disciplinary boundaries. However, identifying potential collaborators can be a challenging 

task, especially when the research problem is multi-disciplinary. One of the main challenges 

in identifying scholar collaborators for a given multi-disciplinary research problem is that 

scholar profiles evolve dynamically over several years. This evolution can be influenced by 

various factors, including publications or research grants. As a result, manually identifying 

potential collaborators for a research project can be a time-consuming and tedious process. 

Additionally, given the sheer volume of published research and the constantly changing 

nature of the academic landscape, it can be difficult to keep track of who the relevant experts 

are in each field. To address these challenges, researchers and academics have turned to 

advanced tools such as data mining and machine learning algorithms. These tools can 

automatically identify potential collaborators based on factors such as publication history, 

research interests, and academic affiliations.[1] This approach can save significant amounts 

of time and effort in identifying potential collaborators, allowing them to focus on the actual 

research process. Data mining algorithms are used to extract patterns and relationships from 

large datasets and machine learning algorithms are used to build predictive models based on 

the data. These algorithms can be used to analyze the publication history of scholars and 

identify those who have published on similar topics. They can also be used to analyze the 

research interests of scholars and identify those who have shown an interest in related topics. 

[12] Moreover, algorithms can be used to analyze the academic affiliations of scholars and 

identify those who are affiliated with institutions that are known for their expertise in related 

fields. In conclusion, the explosion of information has made it essential to rely on advanced 

search engines and recommendation systems to filter relevant information efficiently and 

effectively. In academia, this trend is particularly prevalent, where research tasks require 

finding relevant experts for multi-disciplinary knowledge creation. However, identifying 

potential collaborators is a challenging task that can be addressed using advanced tools such 

as data mining and machine learning algorithms. These tools can save researchers significant 

amounts of time and effort in identifying potential collaborators, allowing them to focus on 

the actual research process. Consequently, researchers are increasingly relying on these 

advanced tools of recommendation system to identify potential collaborators and streamline 

the research process efficiently and effectively. 
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       Fig.1  - Knowledge Graph Example  

 

 

2. Motivation Towards Work  

 

The field of research is rapidly advancing, thanks to the recent advancements in technology, 

which has led to an abundance of data. The availability of such data has inspired researchers 

to delve deeper into their work. However, this abundance of data also presents certain 

challenges for researchers. Despite the vast availability of data on the internet, researchers 

often struggle to find relevant resources due to the sheer volume and disorder of the data. 

This can be a time-consuming and frustrating process, especially for researchers who would 

prefer to focus on their work. Another challenge is the need for cross-disciplinary research, 

which has made it difficult for researchers to find collaborators who possess the necessary 

knowledge and expertise. Traditionally, scholars have been recommended for collaboration 

based on their research areas, keywords, and citations. This involves manual search and 

selection of scholars based on their research interests, expertise, and past collaborations. 

With the advent of machine learning models, several traditional methods have been 
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automated to recommend scholars for collaboration. Some of these traditional methods using 

machine learning models are: 

 

Content-based recommendation: This method uses the similarity between research papers, 

keywords, and abstracts to recommend scholars for collaboration. 

 

Collaborative filtering: This method uses the past collaborations and co-authorship 

networks of scholars to recommend potential collaborators. 

 

Citation-based recommendation: This method uses the citation patterns of scholars to 

identify potential collaborators based on their citation patterns and research interests. 

 

Social network analysis: This method uses the social network analysis to identify potential 

collaborators based on the network of co-authors and research collaborators. 

 

Hybrid methods: These methods combine two or more of the above methods to provide more 

accurate and relevant recommendations for scholars. A knowledge graph is a type of 

knowledge representation that represents entities and the relationships between them. It is 

designed to capture the complex relationships between entities in a way that is easily 

understandable. Knowledge graphs have become an essential tool in the field of machine 

learning, particularly in recommendation systems. [8] Graph Neural Networks (GNNs) have 

recently gained attention due to their ability to analyze graph structural data. [2] Many 

websites and data models have used knowledge graphs to train models that can recommend 

resources for users. These models have proven to be effective in solving the information 

overload problem in areas such as e-commerce, entertainment, and social media. However, 

there are still some areas where these models could be improved, such as recommending 

collaborators or venues. One limitation of current models is that they rely on homogeneous 

graphs, which have the same kind of node. This can be limiting, particularly in areas where 

there are multiple types of entities. To overcome this limitation, researchers are exploring 

the use of heterogeneous graphs to train models. Although this is a more complicated and 

difficult approach, it is a promising one. 

Another area of interest is Query Generation and Knowledge Graph Question Answering. 

[3] User query is an important consideration for recommendation systems, as it can help 

users find the content, they are looking for more efficiently. Query generation can also help 

users find deeper related information. Therefore, incorporating query generation into data 

models is a promising direction. Graphs and GNNs are promising tools for recommending 

resources to researchers, but there is still room for improvement. Heterogeneous graphs, 

Query Generation, and Knowledge Graph Question Answering are all promising directions 

for recommendation systems. Finally, creating a user-friendly interface is important for 

maximizing the potential of these tools. [10] 
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In recent studies, various approaches have been proposed to recommend individual scholars, 

with a focus on leveraging entity and relationship data in online academic communities, or 

Academic Social Networks (ASNs). For instance, one approach uses a knowledge graph-

based model to recommend scholar-friends, while another approach proposes a personalized 

recommendation system using multi-dimensional features. [9]However, these prior works 

have limitations such as not including link labels as needed in a knowledge graph, relying 

on potentially inconsistent information from online academic community platforms, and not 

addressing the challenge of identifying scholar teams with multi-disciplinary expertise. [4] 

To address this, we define a scholar team as a research group consisting of two or more 

scholars from the same or different institutions, with collective expertise essential to solve a 

multi-disciplinary research problem. They aim to develop a system that recommends scholar 

teams, leveraging the strengths of knowledge graphs and addressing the limitations of prior 

models. 

 

3. Research Aim  

 

ScholarTeamFinder is a proposed model that aims to predict links between scholars with the 

help of knowledge graph embedding. To evaluate this model by comparing it with two state-

of-the-art methods - deepwalk and metapath2vec. These models are trained using the same 

knowledge graph as ScholarTeamFinder. Deepwalk is a graph neural network that uses a 

randomized path traversing technique to learn the inner structure of the graph network. It 

has been applied in various fields with satisfactory performance. On the other hand, 

metapath2vec is a network embedding method that is suitable for a heterogeneous network. 

A scholar team that spans multiple fields, as illustrated in Fig. 2, there are different types of 

nodes, such as scholars, co-authors etc. , and different types of links between them, such as 

scholars working on the same proposals or publishing the same publications.  The current 

practice of manually finding potential collaborators is limiting and does not allow for a data-

driven approach to identifying relevant scholars. Academic Social Networks (ASNs) can 

provide access to information about hundreds of thousands of scholars and links between 

scholars, such as those who have already worked closely with each other or those within the 

same organization. However, there are cases where scholars do not inherently have 

commonalities, and tracking scholars and characterizing their latest research interests can be 

highly challenging, especially given the frequent changes in academic positions and 

interests. [11] The challenge of identifying suitable collaborators is a significant barrier to 

building effective and diverse scholar teams. While ASNs can provide some assistance in 

this regard, there is a need for more sophisticated data-driven approaches that can analyze 

the vast amounts of data available and identify potential collaborators based on their research 

interests, expertise, and collaborations. 
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Fig. 2  -  Example to show how a potential scholar team is identified to address a multi-          

disciplinary research problem. 

 

4. Related Work 

a. Preliminary Research  

 

The ScholarTeamFinder project is focused on proposing a recommendation model that 

provides recommendations of related scholars to researchers. The purpose of this model is 

to enable researchers to identify potential collaborations and partnerships, facilitating and 

enhancing research activities. The current ScholarTeamFinder model, which is a deep 

generative model, has achieved good performance when compared to state-of-the-art 

baseline models such as Boost and DNN. However, this model is still not trained with a 

knowledge graph. This presents an opportunity to extend and improve the current model by 

incorporating a knowledge graph. 

The process of enhancing the ScholarTeamFinder model through the incorporation of a 

knowledge graph and data integration is shown in Figure 2. The proposed model seeks to 

address current limitations in the model and improve its functionality, usability, and 

accuracy. Data collection for this research would involve gathering scholarly publications, 

conference proceedings, and related data sources to create a comprehensive knowledge 
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graph that can be integrated with the existing model. This would involve gathering data on 

scholarly publications, conferences, and other relevant scholarly activities. 

Overall, the proposed enhancements to the ScholarTeamFinder model have the potential to 

greatly enhance its usefulness for researchers. By incorporating a knowledge graph and 

expanding the dimensions of the recommendations, the model can provide more 

comprehensive and accurate recommendations to researchers. The incorporation of user 

queries and integration with a science gateway and chatbot would further enhance the 

model's functionality and usability. Collecting relevant data sources and conducting user 

studies would be important steps in the preliminary research process for developing and 

enhancing the ScholarTeamFinder model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Fig. 3  -  Scholar Team Finder Research Process  
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b. Representation Learning  

 

Representation learning is a crucial aspect of machine learning on graphs, which finds 

applications in diverse areas such as drug design and social network recommendations [15]. 

In the training of machine learning models, creating a knowledge graph, or finding a way to 

represent it is a challenging task. The quality of the representation method and the structured 

knowledge graph can significantly impact the final model's performance. Representation 

learning is beneficial for researchers as it can extract relevant information from speech, text, 

and figures, thereby saving time in the feature engineering process. 

 

Recent research focuses on representation learning in the context of knowledge graphs. Most 

studies concentrate on homogeneous knowledge graphs, such as DeepWalk [16], Line [17], 

and node2vec [18]. These models process specific types of nodes within the knowledge 

graph. However, with the vast amount of information available and its diversity, a 

homogeneous knowledge graph may not satisfy the actual network's requirements. Recent 

works, therefore, focus on heterogeneous knowledge graph methods. For instance, the 

authors of [19] designed a deep embedding algorithm for networked data, which captures 

complex interactions between heterogeneous data in a network. Similarly, the authors of [20] 

proposed a unified framework to solve the problem of embedding learning for an Attributed 

Multiplex Heterogeneous Network. In addition, [21] proposed two scalable representation 

learning models, metapath2vec and metapath2vec++, which can efficiently embed graph 

features and perform well in many data mining tasks. 

 

Although these existing models can efficiently extract features from knowledge graphs, they 

do not consider the nodes' text features. To overcome this limitation, we extend the 

metapath2vec model by adding semantic features to embed our knowledge graph to perform 

scholar team recommendations. 

 

c. Graph-based Recommendation 

 

In recent years, graph-based recommendation systems have become increasingly popular 

due to their ability to model complex relationships between entities in various domains. 

Graph Neural Networks (GNNs) have played a vital role in advancing the field of 

recommendation systems by enabling the efficient learning of representations from 

structured data.GNNs are a class of deep learning models that operate directly on graphs, 

which are networks composed of nodes and edges. Nodes represent entities, and edges 

represent the relationships between them. GNNs are particularly effective at learning 

representations for structured data because they can incorporate both the structural 

information of the graph and the attributes of the nodes and edges. One area where GNNs 
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have been applied successfully is in generating recommendations. For example, in intent 

recommendation, the goal is to recommend the next item to a user based on their previous 

interactions. The authors of [25] propose a metapath-guided heterogeneous GNN model to 

learn the embedding of objects in intent recommendation.  

 

The model adds the complex objects and rich interactions in intent recommendation as a 

Heterogeneous Information Network. Similarly, in [26], the HGNR model that uses a Graph 

Convolutional Network to learn the embedding of users and items based on a heterogeneous 

graph. In multi-relational recommendation, the goal is to predict various types of user 

behaviors, such as whether they will like or dislike an item, purchase it, or click on an ad. 

The authors of [24] propose a GHCF model for multi-relational recommendation, which can 

discover the relationship between users or users and items and shows multi-task ability to 

predict various types of user behaviors in one model. In scholar recommendation, the goal 

is to recommend scholars based on their expertise and research interests. Many researchers 

have applied graph-based recommendation methods to scholar recommendation. In [2], the 

authors propose a heterogeneous network-based approach to recommending scholar-friends 

with online academic communities. In [27], the ISRMACD model to provide 

recommendation service for scholars with low influence in academic social networks. In 

[28], the authors present a framework that can provide co-authorship strength, author 

contribution, and scholar search. In [29], the deep generative model to learn the scholars’ 

representations using their publication data. 

To address this limitation, the ScholarTeamFinder model, which is designed to recommend 

scholars to help build a high-quality research team. The model goes beyond prior state-of-

the-art models by focusing on recommending a team of scholars rather than a single scholar. 

The model uses a graph-based approach to capture the complex relationships between 

scholars and their research interests. The ScholarTeamFinder model is based on the idea of 

knowledge graphs, which are networks that represent entities and the relationships between 

them. The model uses a knowledge graph to represent the scholarly data, where the nodes 

represent scholars, and the edges represent the relationships between them. The model is 

designed to learn the embeddings of the nodes in the knowledge graph, which capture the 

latent features of the scholars and their research interests. The model consists of two main 

components: the knowledge graph construction and the scholar team recommendation. In 

the knowledge graph construction phase, the model constructs a knowledge graph from the 

scholarly data by extracting the co-authorship and research topic information. The model 

then uses the extracted information to build a graph where the nodes represent scholars, and 

the edges represent co-authorship and research topic relationships. 
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5. Tools and Technologies Involved 

a. Python 

In the ScholarTeamFinder project, Python is used extensively to extract data from various 

sources such as academic journals, grant databases, and other scholarly sources. Python 

libraries such as Beautiful Soup and Scrapy are used to extract the data, while Pandas and 

NumPy are used for data manipulation and analysis. Python is also used for machine learning 

tasks in the ScholarTeamFinder project. The recommendation model, ScholarFinder, is a 

deep generative model that was built using machine leaning models. 

Additionally, Python is used for data cleaning and filtering. Data cleaning involves removing 

unwanted characters, fixing spelling errors, and formatting data in a consistent manner. Data 

filtering involves selecting only relevant data and removing duplicates. Python provides 

powerful tools for these tasks, including regular expressions, string manipulation functions, 

and Pandas data filtering functions. 

  

b. Database 

The ScholarTeamFinder project required a database to store and manage large amounts of 

unstructured data. A NoSQL database was chosen as the data was very unstructured and 

inconsistent, and traditional SQL databases like PostgreSQL or MySQL would not be 

suitable. MongoDB was chosen as the NoSQL database because it provides fast extraction 

and insertion of data, is easy to set up, and is free to use initially. 

MongoDB is a document-based database that stores data in JSON-like documents. It is 

highly scalable and can handle large amounts of unstructured data with ease. In the 

ScholarTeamFinder project, MongoDB was used to store scholar information, NSF award 

data, and other relevant data. MongoDB's document-based architecture allowed for easy 

querying and filtering of data, making it easier to extract meaningful insights from the data. 

 

c. Cloud Server 

The ScholarTeamFinder project required a cloud server to run Python scripts continuously 

for data extraction. This was necessary because the data was very large, and the extraction 

process could take several hours or even days to complete. Additionally, IP blocking was a 

significant issue in web scraping, and a cloud server could provide a new IP address after 

every restart. Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instance was 

used to run the Python scripts continuously. AWS EC2 provides scalable computing capacity 

in the cloud, allowing users to run applications and services on virtual machines. The 

instance was configured to run the Python scripts continuously and restart automatically in 

case of failures. EC2 also provides an easy way to scale up or down the computing capacity 

as needed, making it ideal for handling large amounts of data. 
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d. VS Code Editor 

 

VS Code was used to write and edit Python scripts, manage Git repositories, and debug the 

code. It also provides extensions for Python, MongoDB, and other libraries used in the 

project, making it easier to integrate with other tools. 

 

 

 

 
 

Fig.4-  Process of Data Processing and Extraction from different sources with the help of python , vocode 

, AWS servers  

 

 

e. Machine Learning Models Used and Score Used 

DeepWalk: It is a graph embedding technique that learns low-dimensional representations 

of nodes in a network by modeling random walks on the network. DeepWalk generates node 

embeddings by treating random walks as sentences and using a language model to learn the 

embedding space. DeepWalk can be applied to both homogeneous and heterogeneous 

networks, and it has been shown to perform well on several real-world applications, such as 

social network analysis, recommendation systems, and bioinformatics [39]. 

 

Metapath2vec: It is a graph embedding technique that learns embeddings of nodes and 

edges in heterogeneous networks, considering the structural diversity of the network. 
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Metapath2vec generates node and edge embeddings by using a skip-gram model to predict 

the context of a given node or edge, considering the sequence of meta-paths connecting 

nodes. Meta-paths are paths that describe the structural semantics of the network, for 

example, a path connecting authors and papers in a bibliographic network. Metapath2vec 

has been shown to outperform other state-of-the-art embedding methods on several real-

world applications, such as recommendation systems and gene function prediction[40]. 

 

ScholarTeamFinder Model: It is a link prediction model that uses collaborative 

relationships between scholars to predict potential collaborations between them, based on 

their learned embeddings. ScholarTeamFinder generates embeddings of scholars by 

considering their co-authorship, publication history, and topic similarity. The model predicts 

links between scholars by measuring the similarity of their embeddings in the learned 

embedding space. ScholarTeamFinder has been shown to perform well on the task of 

predicting potential collaborations between scholars. 

 

HR@K: HR@K (Hit Rate at K) computes the proportion of test cases where the true positive 

item is ranked among the top K recommendations. For example, if we set K=10, HR@10 

measures the percentage of test cases where the true positive item is among the top 10 

recommendations. HR@50 and HR@100 measure the same for K=50 and K=100, 

respectively. The higher the HR@K score, the better the recommendation system's 

performance is. For instance, an HR@10 score of 0.5 means that, on average, half of the test 

cases have the true positive item among the top 10 recommendations. 

 

AUC Score: The area Under the Curve score is a metric used to evaluate the performance 

of a binary classifier by calculating the area under the receiver operating characteristic 

(ROC) curve. The ROC curve plots the true positive rate against the false positive rate at 

various thresholds, and the AUC score represents the area under the curve. The AUC score 

ranges from 0.5 (random classifier) to 1 (perfect classifier). The AUC score is a commonly 

used metric in binary classification problems, including link prediction in network analysis. 

 

 NDCG@K (Normalized Discounted Cumulative Gain at K): Normalized Discounted 

Cumulative Gain at K (NDCG@K) is a ranking-based evaluation measure that considers the 

relevance and position of the recommended items in a list. It assigns higher scores to relevant 

items that are ranked higher in the list and discounts the scores of items that are ranked lower 

in the list. The measure is commonly used in information retrieval and recommender 

systems. To compute NDCG@K, the relevance of each recommended item is first 

determined. This can be done using a binary relevance measure, where an item is considered 

relevant if it meets a certain threshold of relevance, or using a graded relevance measure, 

where the relevance of an item is assigned a score between 0 and 1. 
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6. Data Collection and Techniques  

a. Data Collection 

 
 

Fig.5 -  ScholarTeamFinder Architechcutre 

 
Google Scholar Data : 

 

The Scholar Info component of the project contained all the relevant information related to 

the scholars, such as their publications, citations, h-index, name, email, etc. This information 

was collected from various sources, such as academic databases, research papers, and 

academic profiles of scholars. The Scholar Info was the backbone of the project, as it helped 

in the recommendation of related scholars to researchers for potential collaborations. The 

Scholar Info component was created by scraping the data from various academic databases, 

such as Google Scholar, Web of Science, and Scopus, and was stored in a database.  

Example data shown in Fig.7. 

 

Key Columns Name from Google Scholar Data – 

 

 'email', 'institute', 'name', 'scholar_id', 'status', 'affiliation', 'citedby', 'cites_per_year', 

'coauthors', 'email_domain', 'google_scholar_id', 'hindex', 'homepage', 'i10index', 'interests', 

'journal', 'journal_data', 'publications', 'div_id', 'div_name' 

 

Data Source Link - Data Link 

https://scholar.google.com/citations?user=Plnnv18AAAAJ&hl=en&oi=ao
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Fig.6 -  Google Scholar data Demo from Google Website 

 

 

Steps Involved in Scraping Scholar Data from Google – 

 

1. First, we extracted the scholar names, emails, and university information from the NSF 

grant award data. 

2. Google Scholar does not provide any official API or direct link to download scholar data, 

so we needed to write a Python script to fetch the data manually. 

3. We initially tried to use web scraping libraries such as Selenium and Beautiful Soup, but 

we encountered issues with Google blocking robot access to the site. 

4. To overcome this, we developed our own custom Python data scraping API that could 

fetch the data from Google Scholar. The API was hosted on an AWS EC2 instance and 

was set to run continuously to collect data. 
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5. We discovered that Google was blocking our server IP address, which was slowing down 

the data collection process. To overcome this issue, we used multiple servers and 

databases to distribute the scraping process and increase the speed of data collection. 

6. We implemented a time limit for fetching data for each scholar and verified that the 

scholar's email domain matched their name and university information to ensure that we 

were collecting data for the correct scholar. 

7. After fetching the raw data, we inserted it into a MongoDB database. MongoDB was 

used because it is a document-oriented NoSQL database that can store unstructured data 

as is, without the need for table creation or predefined schemas. 

8. We continued to fine-tune our scraping process to overcome IP blocking issues and 

improve the speed of data collection. 

9. After scraping, our database contained a total of 100,000 data records for scholars. 

 

 

 
 

      Fig.7 -  Google Scholar Data stored in database 
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NSF Award Data : 

The NSF Award Data component of the project contained information collected from the 

National Science Foundation (NSF) about scholar names, email addresses, and grant awards 

data. This information was used to identify the scholars who had received NSF grants and 

to recommend them to researchers for potential collaborations. The NSF Award Data 

component was created by scraping the data from the NSF website and was stored in a 

separate database. 

Example data shown in Fig.8. 

Fig.8 -  NSF Raw Data in XML Files 

Key Columns Name from NSF Award Data – 

'awardid', 'division', 'email', 'name', 'div_id', 'div_name', 'grant' … Many More 

Data Source Link -  Data Link 

https://www.nsf.gov/awardsearch/download.jsp
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Steps Involved in NSF Data Extraction -  

 

1. The first step in the process was to download data from the NSF award site for the past 

10 years. This data contained information on grant recipients, award amounts, 

institutions, and other relevant details. 

2. The data was downloaded in multiple folders and in XML files, which were then 

extracted from each folder. 

Next, the XML files were parsed, and the relevant data ('awardid', 'division', 'email', 

'name', 'div_id', 'div_name', 'grant') was extracted and stored into the database. This 

involved using an XML parser to extract information such as grant number, recipient 

name, institution name, award amount, and other details.  

3. After storing the data in the database, the total volume of data was more than 2 million 

rows. This database contained all the relevant information related to NSF grant recipients 

and was used to identify scholars who had received NSF grants for potential 

collaborations. 

4.  

 

  
 

 

Fig.9 -  NSF Data Columns stored into database 
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APS Data : 

The APS (American Physical Society) is a non-profit academic organization that promotes 

the development of research in physics through academic journals, scientific conferences, 

and exhibitions. The experiment collected publication information from 18 core physics 

journals and stored the data in JSON format, making it easy for researchers to extract and 

analyze the data.  

Example data shown in Fig.10. 

Fig.10 -  APS Raw Data Columns in XML Files 

Key Columns Name from APS Data – 

'id', 'title', 'publisher', 'journal', 'issue', 'volume', 'pageStart', 'pageEnd', 'seqnum', 'date', 

'numPages', 'articleType', 'identifiers', 'rights', 'authors', 'affiliations' 

APS Data Link - Data Link 

https://journals.aps.org/datasets
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Steps Involved in APS Data Extraction – 

1. Imported the required libraries, such as json, pymongo, and os.

2. Set up a connection to the MongoDB server using the MongoClient class.

3. Created a new collection or select an existing one within the database.

4. Used the os library to loop through all the JSON files in the specified directory.

5. Load the contents of each JSON file into a Python object using the json.load()

method.

6. Iterate over the data and insert each record into the MongoDB collection using the

insert_one() method.

Fig.11 -  APS Data Columns stored into database 

Scholat Data : 

SCHOLAT is an emerging vertical ASN (Academic Social Network) system that is designed 

and built specifically for researchers in China. The primary objective of SCHOLAT is to 

enhance collaboration and social interactions focused on scholarly and learning discourses 

among the community of scholars. Besides social networking capabilities, SCHOLAT 
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incorporates various modules to encourage collaborative and interactive discussions, such 

as chat, email, events, and news posts. The experimenters collected data from SCHOLAT, 

including 10,755 scholars and 202,249 collaboration relations between them. 

In this I have used a chain-rule to expand the equation used to identify the ideal candidates, 

considering the first degree of connection for performance purposes. They used the FAISS 

library for efficient similarity search and clustering of dense vectors to retrieve the most 

similar scholars efficiently. They used a beam-search algorithm, a greedy algorithm 

commonly used in natural language processing or machine translation, to find a sub-optimal 

solution for the output sequence. 

Key Columns Name from Scholat Data – 

'scholarid', 'co-workerid' 

Scholat Data Link – Data Link 

Fig.12 -  Raw Scholat Data Columns in CSV Files 

Steps Involved in Scholat  Data Extraction – 

Scholat dataset was obtained from the respective websites in the form of CSV files. The 

CSV files were then processed to extract relevant information such as scholar names, emails, 

and IDs using Python programming language. The extracted data was stored in a MongoDB 

database for further analysis and processing. The APS dataset contained information about 

scholars in the field of physics and related disciplines, while the Scholat dataset contained 

information about scholars from various fields of study. The combined value of the data 

https://www.scholat.com/research/opendata/
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from both datasets was around 100,000 entries, making it a valuable resource for identifying 

potential collaborators in academic research. 

Fig.13 -  Scholat Data Columns stored into database 

b. Data Carpentry

I scraped the data from various sources including the NSF website, Google Scholar, APS, 

and Scholat. The data was in different formats such as CSV, XML, and JSON, which I 

loaded into Python using appropriate libraries. To integrate the data, I consolidated fields 

and divisions based on their similarity and relevance to our research question. For example, 

I combined different fields related to research interests and divided them into broader 

categories such as physics, chemistry, and biology. I matched author names with the email 

ids which is unique for every scholar and matched the university names using a combination 

of techniques such as string-matching algorithms, fuzzy matching. I also used domain 

knowledge and contextual information such as co-authors, affiliations, and publications to 

ensure accurate matching.  

Steps Involved  - 

1. Load the JSON file into a Python environment using the appropriate library, such as

"json".

2. Explore the structure of the JSON file and its keys using the "keys()" method.
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3. Flatten nested JSON structures into a tabular format, such as a Pandas Data Frame, using

the "json_normalize()" function.

4. Clean the data by removing null values, duplicates, and irrelevant columns.

5. Rename columns and convert data types as necessary using functions like "rename()"

and "astype()".

6. Perform exploratory data analysis by summarizing the data using descriptive statistics,

visualizations, and grouping operations. This can be done using functions like

"describe()", "value_counts()", and plotting libraries such as Matplotlib or Seaborn.

7. Load the CSV file into a Python environment using the appropriate library, such as

"pandas".Explore the structure of the CSV file and its columns using the "head()"

method.

8. Clean the data by removing null values, duplicates, and irrelevant columns.

9. Rename columns and convert data types as necessary using functions like "rename()"

and "astype()".

10. Handle missing values by imputing or removing them using functions like "fillna()" or

"dropna()".

11. Store the cleaned and transformed data back into a MongoDB collection.

12. Store any removed data into another collection, as it may be useful for future analysis.

13. Remove data with null or incorrect values of important columns like interest, grant,

publications, etc.

14. Perform exploratory data analysis by summarizing the data using descriptive statistics,

visualizations, and grouping operations. This can be done using functions like

"describe()", "value_counts()", and plotting libraries such as Matplotlib or Seaborn.

Fig.14 -  Summary of data while performing actions 

Here are some benefits of data carpentry and cleaning in building machine learning models: 
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Increased accuracy: By cleaning and transforming the data, it is easier to identify and 

remove outliers, inconsistencies, and missing values, which can lead to more accurate 

models. 

Improved data quality: Data carpentry helps in improving the quality of data by removing 

unwanted data, handling missing data, and standardizing data formats. This ensures that the 

data used in building the model is of good quality and free from errors. 

Enhanced model performance: By removing irrelevant or noisy data, cleaning data can 

improve the performance of the machine learning model, as the model can focus on the most 

important data. 

Better understanding of the data: Exploratory data analysis during data carpentry helps in 

understanding the data better and identifying patterns or trends that can be used to build 

better models. 

Time and cost savings: Cleaning and transforming the data can save time and money in the 

long run, as it can prevent errors and improve the accuracy of the model, which can reduce 

the need for rework and iterations. 

Fig.15 -  Data Cleaning Benefit’s 
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c. Data Visualization 

 

 

 

 

 

Fig.16 -  Division Distribution of Scholars for year 2021 

   

 



 24 

 
 

Fig.17 -  Division Distribution of Scholars Citation for the year 2021 

 

 

d. Knowledge Graph Construction 

 

The Knowledge Graph Construction component of the project involves creating a graph-

based model that can represent the relationships between scholars, venues, publications, and 

other related data. This component involves creating a machine learning model that can 

recommend related scholars to researchers based on their research interests and past 

collaborations. The Knowledge Graph Construction component involves the use of machine 

learning algorithms such as deep learning and natural language processing to build a 

recommendation system. This involves creating a graph-based model that can represent the 

relationships between scholars, venues, publications, and other related data. This component 
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will involve creating a machine learning model that can recommend related scholars to 

researchers based on their research interests and past collaborations. 

Phase 1: Extracting facts from Free Text 

To begin the process of constructing a knowledge graph, data is extracted from free text, 

unstructured data sources, and semi-structured data sources. This raw data is then processed 

to extract entities, relations, and attributes that define them. If data is already structured, it is 

fused with information from third-party knowledge bases. Various natural language 

processing techniques are applied to the fused knowledge and processed data, including co-

reference resolution, named entity resolution, and entity disambiguation. 

Phase 2: Formulating triples from extracted facts 

Once pre-processing is complete, an ontology extraction process categorizes the extracted 

entities and relations under their respective ontologies. Facts are then refined and stored as 

triples in the knowledge base. 

Phase 3: Constructing the knowledge graph with new links and confidences. 

To construct the knowledge graph from the knowledge base, statistical relational learning 

(SRL) is applied to the triples. This process computes a confidence for each fact to identify 

how far those facts hold true. Missing links are then identified using this confidence, and 

newly inferred relational links are formed. 

Fig.18  - Knowledge Graph Building Process 
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7. Scholar Team Finder Methodologies 

a.   Knowledge Graph Building 

To create a knowledge graph, the first step involves collecting the last ten years' worth of 

NSF award data which includes information such as proposal title, abstract, which 

organization it belongs to, PI and Co-PI information, among others. From this dataset, 

information on 60,714 scholars is obtained and used to collect their publications and research 

interests with a web crawler. With this information, a heterogeneous knowledge graph is 

built with various types of entity nodes including "Scholar", "Proposal", "Division, Org", 

"Institution", "Place", "Publication", "Journal" and "Publish Year". There are also various 

types of relationship edges including "writes", "is written", "is supported by", "includes", 

"belongs to", "collaborates with", "is published by", and "is published at". The graph edges 

represent the relationships between the entity nodes. Scholar-related nodes include their 

affiliated institutions and location, as well as their collaboration relationships. Features for 

specific nodes such as the text of proposal title and abstract for "Proposal" nodes and 

research interests for "Scholar" nodes are also added. This knowledge graph enables models 

to gain insights about potential connections between scholars and can be analyzed for 

collaboration information on many scholars and their related entity nodes. For example, if 

two scholars have publications that are published in the same journal and have the same 

interests, there may be a possible link between them that could lead to a potential 

collaboration. 

 

 

 
Fig. 19 - The data schema of the proposed academic knowledge graph with connections of properties 

associated with the entities (Title/Abstract, Interests) of the knowledge graph 
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b.  Scholar Team Types in ASNs 

 

 
Fig. 20 – Scholar Team Finder Architecture  

 

 

In this section, we will discuss the concept of scholar teams and how ScholarTeamFinder 

can assist scholars in forming their own teams. The approach uses link prediction to assess 

the likelihood of a connection between two scholars, including past collaborations. The 

application extends link prediction for predicting scholar teams, allowing scholars to locate 

high-quality teams to collaborate on multi-disciplinary research projects. Two types of 

scholar teams can be defined and considered: 

 

Finding an existing scholar team:  

An increasing number of research problems requires knowledge from multiple fields to 

identify a solution. As a result, scholars must find collaborators in different fields to form 

their research teams. In this model, we can use the knowledge graph and deep learning 

algorithms to locate the scholar who is most related to the target scholar, allowing us to 

identify the collaborators of that scholar through the "collaborate with" edge in the graph. 

By using this approach, we can provide recommendations for existing scholar teams. 

 

Generating a new scholar team by identifying related scholars:  

Unlike finding an existing scholar team, our model can also help scholars identify several 

related scholars to create their own team. Our model can predict the links between scholars 

based on their research interests. Once scholars receive information about related scholars 
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in their specific fields, they can use this information to form their own scholar team for their 

research project. 

 

In summary, ScholarTeamFinder can assist scholars in building scholar teams in two ways: 

by recommending existing teams based on collaborations and by identifying related scholars 

to form new teams. By using this approach, scholars can collaborate with researchers in other 

fields and work on interdisciplinary research projects, improving the quality of their research 

outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Feature Encoding in the Knowledge Graph 

 

The original methpath2vec model only used node ID information to create low-dimensional 

representations of high-dimensional embeddings. In other words, the model initialized 

embeddings randomly and then used a Skip-gram based method to learn from scratch. In 

contrast, our work successfully trained the model using semantic node features. Specifically, 

we assigned semantic meaning to certain entities, such as "Proposal" or "Scholar". To 

achieve this, we used the Sentence Bert model to map the text of proposals or research 

interests into vector representation, which we then used as embedding weights to initialize 

nodes. We also used Sentence Bert to encode the "Proposal" and "Scholar" nodes. This 

approach allowed similar proposals or scholars with similar interests to be naturally close to 

 

Fig. 21 - An exemplar knowledge graph of 2000 scholar nodes. 
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each other, thereby improving the model's performance. The methpath2vec model was 

limited in that it only considered node ID information when creating embeddings. This 

meant that important semantic information was not being considered, and the model could 

potentially miss out on important connections between nodes. In contrast, our approach 

leveraged semantic node features to better capture the meaning and relationships between 

entities in the knowledge graph. 

To achieve this, we first identified certain entities that we wanted to assign semantic meaning 

to, such as "Proposal" or "Scholar". We then used the Sentence Bert model, which is a 

powerful language representation model, to encode the text of proposals or research interests 

into vector representation. These vector representations were then used as embedding 

weights to initialize the corresponding nodes in the knowledge graph. 

 

d. Link Prediction Model 

 

The process of predicting links between scholars in our model involves extracting the 

collaborative relationships between them as shown in Figure 5. The process of predicting 

links between scholars in our model involves extracting the collaborative relationships 

between them as shown in Figure 5. Link prediction is a crucial task in knowledge graph 

analysis, which involves predicting the likelihood of a link between two entities. In the 

context of a knowledge graph, this task involves predicting the existence of a relationship 

between two entities based on the graph's structure. One popular approach for link prediction 

is Metapath2vec, which involves generating node sequences using a specified metapath and 

using them to learn node embeddings. Metapaths are sequences of node types that define a 

particular type of path in the graph. For example, in a co-authorship network, a metapath 

could be "Author-Paper-Author," which describes a path where two authors are connected 

by co-authoring a paper. 

To generate node sequences, a node sequence generator is trained to produce sequences of 

nodes that follow the specified metapath. The node sequences are then used as input to a 

neural network-based model to learn node embeddings. Node embeddings are low-

dimensional vector representations of nodes that capture the relationships between nodes in 

the graph. The node embeddings are then used as features in a machine learning model for 

link prediction. The machine learning model is trained to predict the existence of a link 

between two entities based on their node embeddings. The model can be trained using 

various machine learning algorithms, such as logistic regression, random forests, or neural 

networks. 

Overall, the link prediction process involves defining a metapath, generating node 

sequences, learning node embeddings, and training a machine learning model using the node 

embeddings. This approach can be used to make link predictions in various types of 

knowledge graphs, including social networks, citation networks, and biological networks. 
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Node sequence generator: 

To apply metapath2vec to a knowledge graph, we need to generate sequences of nodes that 

capture the desired semantic relationships. One common approach is to use a random walk 

algorithm, which starts at a given node and then traverses the graph by randomly selecting 

one of its neighbors at each step. By repeating this process multiple times, we can generate 

a set of node sequences that represent the structural context of each node in the graph. 

Node embedding: 

After generating the node sequences, we can apply the metapath2vec algorithm to learn an 

embedding for each node in the graph. The goal of the embedding is to represent each node 

as a dense vector in a high-dimensional space, such that nodes that occur in similar contexts 

are closer together in the embedding space. The embedding can then be used as input to 

downstream machine learning models, such as a link prediction model. 

Model training: 

The final step in building a link prediction model with metapath2vec is to train a machine 

learning model on the learned node embeddings. The input to the model is typically a pair 

of node embeddings, representing the two nodes we want to predict a link between. The 

output of the model is a probability score, indicating the likelihood that the two nodes are 

connected in the graph. One common approach is to use logistic regression or a neural 

network to predict the link probability based on the node embeddings. The model is trained 

on a set of positive and negative examples of links in the graph, and the goal is to optimize 

the model parameters to maximize the accuracy of the link predictions. 

Fig. 22: ScholarTeamFinder model architecture based on knowledge graph. 
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e.   Scholar Team Prediction 

 

A method to predict the probability of whether two scholars have collaborated or could be 

connected, using link prediction. They extend this approach to predict scholar teams for 

multi-disciplinary research projects. The model is an improvement on the methpath2vec 

model and uses Sentence Bert to map semantic node features such as proposals or research 

interests into vector representations. This helps to improve the model's performance by 

allowing similar scholars to be closer to each other. To retrieve the most similar scholars 

efficiently, the authors use the FAISS library for efficient similarity search and clustering of 

dense vectors. They then use a beam-search algorithm to find a scholar team based on a 

research problem topic. The algorithm is a greedy algorithm that finds a sub-optimal solution 

of an output sequence, and it is commonly used in natural language processing or machine 

translation. The goal of the algorithm is to identify K ideal candidates to work on the research 

problem, given a target scholar and a research problem. This can be mathematically 

formulated as --   

 

 

 

 

 

 

where ci represents the ideal candidate and I range from 1 to K. To expand this equation 

using a chain-rule, considering only the first degree of connection for the purpose of 

performance. To extract the collaborative relationships between scholars, the authors use the 

collaborate relationship between scholars. For example, if one scholar is the PI of a proposal 

and another scholar is the co-PI of the same proposal or they published one publication 

together, then they have a collaborative relationship with each other. This helps to get 

positive samples. For the negative samples, they randomly sample from the negative 

candidate pools. For every sample, the prediction whether there is a possible connection 

between scholar S1 and scholar S2 by computing the cosine similarity score with Equation 

2. The score helps to find the similarity score between two scholars, and in turn, they can 

find whether there is a possible link between them. The proposed method can help scholars 

find an existing scholar team or generate a new scholar team through identification of related 

scholars, thus aiding multi-disciplinary research projects. 
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8. Experimental Setup and Evaluation Results 

a. Model Performance for Different Datasets 

 

The performance of the ScholarTeamFinder model was evaluated on different types of links, 

specifically scholar-proposal links, and scholar-publication links, using data extracted from 

the NSF award dataset. The data consisted of information about 17,952 scholars and their 

related publications, and the links between the publications and the scholars. The experiment 

results, shown in Table II, revealed that the ScholarTeamFinder model performed better on 

scholar-proposal links compared to scholar-publication links. However, when considering 

the HR@K score, the model on scholar-publication links showed better performance. The 

reason for this difference in performance is that the number of scholar-proposal data is larger 

than the number of scholar-publication data, but the number of scholars who work on one 

proposal data is less. This means that the embedding vectors used in the scholar-proposal 

model cannot provide more features about the collaboration among scholars, and the model 

cannot hit many targets in top K samples. On the other hand, the publication data includes 

more information about scholars' collaboration, such as scholars working on the same 

publication, and the model on scholar-publication data can hit more targets. It is important 

to note that while the scholar-publication model showed better HR@K performance, the 

scholar-proposal model still had a better overall performance in terms of AUC score. This 

indicates that the scholar-proposal model is more effective for link prediction between 

scholars, despite its limitations in capturing collaboration , we can obtain accurate and 

reliable link prediction models for large knowledge graphs. 

 

The model evaluates the performance of the classifier using 5-fold cross-validation and 

calculates the area under the receiver operating characteristic curve (AUC) as a metric of 

performance.  First, the necessary libraries are imported, including NumPy, pandas, scikit-

learn, and matplotlib. The data is loaded from a file named ‘scholar_emb_64_aps.npy’ which 

contains the scholarly embeddings of authors. To obtain these values, a 5-fold cross-

validation approach was used, which involves dividing the dataset into five subsets, or 

"folds," and training the model on four of the folds while evaluating its performance on the 

remaining fold. This process is repeated five times, with each fold serving as the test set 

once. 

The code every time randomly choose ~3000 scholars to do predict. The classifier predicts 

the probability of a link between authors, and the ROC curve is calculated using the scikit-

learn roc_curve function. The area under the curve (AUC) is calculated using the auc 

function, and the AUC score for each fold is stored in a list. 

After all folds have been processed, the mean AUC score and standard deviation are 

calculated and printed to the console. The mean ROC curve is also calculated and plotted 

using the mean_fpr and mean_tpr arrays. The classifier curve is also plotted to show the 

baseline performance. 
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Model Dataset AUC-1 AUC-2 AUC-3 AUC-4 AUC-5 SD 

Deepwalk APS 

Scholar 

64.1% 

46.6% 

67.1% 

47.1% 

68.8% 

46.2% 

65.9% 

45.8% 

65.3% 

46.9% 

± 1.11% 

± 0.59% 

Metapath2Vec APS 

Scholar 

71.9% 

80.2% 

73.7% 

86.2% 

72.6% 

83.4% 

72.1% 

82.7% 

72.9% 

83.3% 

± 0.58% 

± 1.20% 

ScholarTeam 

Finder  

APS 

Scholar 

65.8% 

98.0% 

65.8% 

97.5% 

66.1% 

97.1% 

65.7% 

97.5% 

65.7% 

97.6% 

± 0.19% 

± 0.14% 

TABLE 1: Results of our proposed ScholarTeamFinder model comparison with 5-fold cross-validation 

models in terms of AUC Scores 

To investigate the influence of embedding dimensions on ScholarTeamFinder's 

performance, the embedding dimension for both the scholar-proposal and scholar-

publication links. The results of this sensitivity analysis are shown in Fig. 22 and Table 1. 

From Fig. 22, we can observe that the HR@K scores are boosted for the scholar-proposal 

link with the increase in dimension. On the other hand, for the scholar-publication link, the 

HR@K scores decrease as the dimension of embedding increases. The reason for this is that 

embeddings with a larger dimension can encode more useful information, leading to better 

performance for the scholar-publication link. However, for the scholar-proposal link, when 

the dimension of embedding is more than 32, the model might overfit, resulting in a decrease 

in performance. In addition to the sensitivity analysis, we also provided an application case 

study to demonstrate the efficiency of the ScholarTeamFinder model in real-world scenarios. 

In this case study, one scholar was selected, and the actual links from the proposal and 

publication datasets were compared with the prediction results from the model. The results 

of the comparison are shown in Fig. 12, where green rectangles represent scholars, purple 

rectangles indicate institutions, and blue and yellow edges between scholars have attributes 

and probabilities. The attributes of the edges include proposals and publications, indicating 

that two scholars work on one proposal or publication and have links between them. The 

probability of the edges represents the cosine similarity score for two or more scholars. The 

sensitivity analysis and application case study provide evidence of the efficiency and 

usefulness of ScholarTeamFinder. The model's ability to predict potential collaborators 

based on scholars' publication and proposal data has the potential to accelerate and improve 

scientific research by facilitating collaboration and enabling the formation of 

interdisciplinary research teams. However, it is important to note that the model's 
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performance is limited by the quality and completeness of the data used to train the model. 

Therefore, future work should focus on improving the quality and availability of scholarly 

data to further enhance the model's performance. 

 

 

 

 

TABLE 2: Results of our proposed ScholarTeamFinder model comparison with state-of-the-art 

deepwalk and metapath2vec models in terms of HR@K. 

 

 

 

 

 

Dataset Model HR@10 HR@50 HR@100 

 deepwalk 0.000 0.000 0.000 

APS Metapath2vec 0.003 0.005 0.007 

 ScholarTeamFinder 0.171 0.242 .268 

 deepwalk 0.000 0.000 0.000 

SCHOLAT Metapath2vec 0.000 0.000 0.000 

 ScholarTeamFinder 0.000 0.000 0.000 

 deepwalk 0.0001 0.0004 0.0012 

NSF Proposal Metapath2vec 0.004 0.006 0.008 

 ScholarTeamFinder 0.093 .257 0.374 
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b. Data Visualization of ROC Curves for Different Datasets -  

 
 

(a) Scholar-Proposal      (b) Scholar-Publication 
 

Fig. 23: HR@K scores comparison for different dimensions of embedding. 
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 Fig. 24 (a,b,c) : Models comparison using ROC curves on different datasets. 
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c. New Modal Results –  

 

This table provides the evaluation results for three different models, DeepWalk, 

Metapath2Vec, and ScholarTeamFinder, on two different datasets, APS and Scholar. Each 

model and dataset combination reports four evaluation metrics: AUC, NDCG@10, 

NDCG@50, and NDCG@100. 

Last week, I focused on getting the NDCG@K results for our model evaluation. This 

involved implementing the necessary code to calculate the NDCG@K score for our 

recommendations. NDCG is a measure of ranking quality that considers both relevance and 

position of the recommended items. It is a popular evaluation metric in recommendation 

systems. By computing the NDCG@K score, we can measure the effectiveness of our model 

in recommending relevant scholars to users. I am still working on analyzing and interpreting 

these new results and comparing them with the previously obtained AUC scores. This will 

help to gain a better understanding of the strengths and weaknesses of our model and identify 

areas for further improvement. 

Among the models, ScholarTeamFinder has the highest AUC score and NDCG@100 score 

on both datasets, while Node2vec has the lowest AUC score and NDCG@100 score on both 

datasets. Overall, the ScholarTeamFinder model seems to perform better on both datasets 

based on the evaluation metrics used. 

 

Choosing NDCG Over HR@K : 

 

HR@K and NDCG are both evaluation metrics used to measure the performance of 

recommendation systems. HR@K stands for Hit Rate at K, and it measures the percentage 

of correct recommendations among the top K items recommended. NDCG stands for 

Normalized Discounted Cumulative Gain, which considers the position of the recommended 

item and discounts the score of the recommended items that are farther from the top. The 

main difference between HR@K and NDCG is that HR@K only considers whether the 

recommended item is among the top K, while NDCG takes into account the ranking of the 

recommended items. HR@K is a simpler metric to calculate, but it does not account for the 

ranking position of the recommended items. In this model NDCG is useful because it 

provides a more comprehensive evaluation of the performance of our recommendation 

system, considering not only whether the recommended items are among the top K but also 

their ranking position. NDCG also discounts the score of items that are farther from the top, 

reflecting the fact that users are more likely to look at the top-recommended items. Also,  

NDCG@k can evaluate the quality of the ranking by considering both the relevance and the 

order of the retrieved items. And HR@K is a binary metric. Our prediction results are based 

on the similarity scores, so it is a ranking list, we think NDCG@K should be reasonable for 

this result.   
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Additionally, these measures besides AUC because AUC only provides a measure of the 

overall ranking of the recommended items, but it does not provide information about the 

ranking position of each item. HR@K and NDCG provide a more detailed evaluation of the 

performance of the recommendation system by looking at the ranking position of the 

recommended items. This can help us identify potential issues with the recommendation 

system, such as items that are consistently ranked low. 

 

 

Modal Dataset AUC NDCG@10 NDCG@50 NDCG@100 

Deepwalk APS 

 

Scholar 

62.96% 

 

51.2% 

0.0605 

 

0.2636 

0.0630 

 

0.2636 

0.0631 

 

0.2636 

Metapath2Vec APS 

 

Scholar 

57.5% 

 

50.8% 

0.0964 

 

0.3267 

0.0998 

 

0.3267 

0.0999 

 

0.3267 

ScholarTeamFinder APS 

 

Scholar 

70.7% 

 

84.1% 

0.3185 

 

0.3316 

0.3205 

 

0.3316 

0.3206 

 

0.3316 

 

TABLE 3: Results of our proposed ScholarTeamFinder model new evaluation results. 

 

d. Parameter Sensitivity Analysis and Case Study 

The ScholarTeamFinder model is a novel approach to predicting potential collaborations 

between scholars based on existing links in a knowledge graph. In Fig. 24, the center scholar 

is shown to be associated with other scholars with varying probabilities in terms of working 

on the same publications and proposals. These existing links in the knowledge graph are 

used as positive examples to train the model, which can then predict whether there is a 

possibility of collaboration between two scholars. The blue dotted line paths in Fig. 24 

illustrate the links predicted by the ScholarTeamFinder model. Through manual checking of 

research interests, it is possible to identify potential collaborations from different 

perspectives. This example demonstrates how the ScholarTeamFinder model works and 

proves its efficiency. By following the first hop prediction results, it is possible to find 

scholars who have collaborated with the first scholar predicted, such as scholar 18643 and 

scholar 27455 in Fig. 24. Through computing the probabilities of the center scholar with the 

second hop prediction results, it is possible to identify possible links, thus proving the 

existence of research teams with ScholarTeamFinder. 

 

In addition to identifying potential collaborations between scholars, the ScholarTeamFinder 

model also considers the institution that scholars come from. Scholars from the same 
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institution may have a higher potential for collaboration, as seen in the cases of scholar 

36896 and scholar 9244. This finding is consistent with real-world observations and suggests 

that institution information can serve as an important feature for future recommendations. 

Moreover, the model can identify higher similarity scores with the link of co-authors 

compared to the link of co-PIs. This result is likely since publications provide more specific 

information about scholars' research, while proposals only provide a scope. Therefore, the 

model can capture more useful information from publications data, which in turn can help 

scholars to expand their existing academic links and find more potential collaborators from 

other institutions.  

 

 

 

 
 

 

Fig. 25: Exemplar visualization of ScholarTeamFinder model output showing potential collaborators for 

a given scholar. 
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Fig. 26: visualization of ScholarTeamFinder model output of multimode graph and single node graph. 
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9. Conclusion 

 

In conclusion, the ScholarTeamFinder model is a powerful tool for scholars looking to 

expand their research network and find potential collaborators. By leveraging existing links 

in a knowledge graph and analyzing publication and institution data, the model can predict 

the probability of collaborations between scholars. The embedding method used in the model 

efficiently extracts information from the knowledge graph and improves the model's 

performance. The beam search algorithm for finding a scholar team based on research 

interests of identified scholars further enhances the model's usefulness. 

The ScholarTeamFinder model has numerous applications in the real world. It can be used 

in research organizations to identify potential collaborations within and outside the 

organization. Universities and other academic institutions can use it to facilitate 

interdisciplinary research collaborations between faculty members from different 

departments. Funding agencies can also use it to identify potential grant proposals that 

involve collaborations between researchers from different institutions. 

The positive points of the ScholarTeamFinder model are its ability to identify potential 

collaborations and expand the research network of scholars, the efficiency of the embedding 

method used in the model, and the effectiveness of the beam search algorithm in finding a 

scholar team based on research interests. The model can help scholars save time and effort 

by providing them with a list of potential collaborators that match their research interests. It 

also has the potential to increase the impact of research by facilitating collaborations between 

researchers from different disciplines and institutions. Overall, the ScholarTeamFinder 

model is a valuable resource for scholars looking to expand their research network and find 

potential collaborators in their field. 
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