# AN ANALYSIS OF FARM TYPE 

## CLASSIFICATION SYSTEMS

A Dissertation<br>Presented to the Faculty of the Graduate School University of Missouri

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy
by
Don Dale Pretzer
November 1971

The undersigned, appointed by the Dean of the Graduate Faculty, have examined a thesis entitled

## AN ANALYSIS OF FARM TYPE

 CLASSIFICATION SYSTEMSDon Dale Pretzer
a candidate for the degree of Doctor of Philosophy
and hereby certify that in their opinion it is worthy of acceptance.


# Department <br> of <br> Agricultural Economics <br> University of Missouri <br> Columbia 

CHAPTER ..... PAGE
I. INTRODUCTION ..... 1
Objectives ..... 4
Method ..... 6
II. A SELECTED REVIEW OF LITERATURE CONCERNING CLASSIFICATION SYSTEMS AND RELATED IMPLICATIONS ..... 8
Productive Man Work Units ..... 9
Value of Farm Produced Feed Fed to Livestock. ..... 10
Value of Production ..... 11
Hybrid ..... 11
Census ..... 13
III. THE APPLICATION OF TYPE CLASSIFICATION SYSTEMS TO THE BASIC SET OF 403 MISSOURI MAIL-IN RECORDS ..... 19
Kansas ..... 23
Iowa ..... 27
Illinois and Kentucky ..... 31
Census ..... 35
Michigan ..... 38
Wisconsin ..... 41
Nebraska. ..... 43
Chapter Summary ..... 46
IV. DEFINITIONAL DIFFERENCES FOR VALUE OF PRODUCTION
SYSTEMS ..... 47
CHAPTER ..... PAGE
Chapter Summary ..... 53
V. BUSINESS ANALYSIS FOR THE SUBSETS GENERATED BY THE
VARIOUS SYSTEMS OF CLASSIFICATION ..... 54
General Farms (Type 0). ..... 59
Grain Farms (Type 1). ..... 67
Hog Farms (Type 3). ..... 75
Beef Farms (Type 5) ..... 82
Dairy Farms (Type 7). ..... 88
Chapter Summary ..... 94
VI. SUMMARY ..... 95
SELECTED BIBLIOGRAPHY ..... 102
APPENDIXES ..... 106
APPENDIX I CRITERIA FOR TYPING THE BASIC SET ..... 107
Missouri (Productive Man Work Units) ..... 108
Kansas (Productive Man Work Units) ..... 109
Iowa (Feed Fed and Receipts). ..... 111
Illinois and Kentucky (Feed Fed) ..... 112
Census (Cash Receipts Method) ..... 113
Michigan (Value of Production Method) ..... 115
Wisconsin (Value of Production Method) ..... 117
Nebraska (Value of Production Method) ..... 119
APPENDIX II DETAILED DEFINITION OF SELECTED ANALYSIS TERMS USED IN THE 'YEAR-END' BUSINESS ANALYSIS. ..... 121

## LIST OF TABLES

## TABLE

PAGE
1 Numeric Reference for the Verbal Description of Farm Types (Subsets). ..... 20
2 Type Change for 403 Missouri, 1970 Mail-In Record, Farms Due to Various Systems of Classification. ..... 21
3 Productive Man Work Unit Differences Generated by Applying Productive Man Work Unit Factors to a Basic Set of 403 Farms ..... 24
4 Movement of Farms From Missouri Type Due to the Kansas System of Classification. ..... 25
5 Movement of Farms From Missouri Type Due to the Iowa System of Classification. ..... 28
6 Movement of Farms From Missouri Type Due to the Illinois System of Classification ..... 33
7 Movement of Farms From Missouri Type Due to the Census System of Classification. ..... 36
8 Movement of Farms From Missouri Type Due to the Michigan System of Classification. ..... 39
9 Movement of Farms From Missouri Type Due to the Wisconsin Sys tem of Classification ..... 42
10 Movement of Farms From Missouri Type Due to the Nebraska Sys tem of Classification ..... 44
11 Type Change For Those States Using "Value of Production" Criteria Due to Differing Definitions of Production ..... 48
TABLE ..... PAGE
12 Movement of Farms From Missouri Type Due to the Revised Michigan System of Classification . . . . . . . . . . . . 50
13 Movement of Farms From Missouri Type Due to the Revised Nebraska System of Classification ..... 51
14 Year End Business Summary for General Farms Typed by Various Systems of Classification ..... 60
15 Year End Business Summary for Grain Farms Typed by Various Systems of Classification ..... 68
16 Year End Business Summary for Hog Farms Typed by Various Systems of Classification ..... 76
17 Year End Business Summary for Beef Farms Typed by Various Systems of Classification ..... 83
18 Year End Business Summary for Dairy Farms Typed by Various Systems of Classification ..... 89

## ACKNOWLEDGEMENTS

The author wishes to express appreciation to Dr. Robert M. Finley, advisor, for his guidance and suggestions in the preparation of this dissertation. Appreciation is extended to the Department of Agricultural Economics and the University of Missouri for providing facilities and computer time for the study.

Thanks are in order to Dr. Carrol L. Kirtley and his assistants for their aid and suggestions in using the Missouri Mail-In Record Farm data.

Special recognition is due my wife, Carolyn, and my family for understanding and providing a happy environment during the preparation of this dissertation.

CHAPTER I

## INTRODUCTION

Several land grant universities have programs in operation to analyze farm records. The analysis results are used by farm firms as organizational guides and as a tool to locate strong and weak parts of the firm's business. Segregation of the records into similar groups provides the basis for explaining agricultural structure useful to legislators, administrators and farm leaders. Thus, the usefulness of the results of any program is a function of the system used for classifying the farms by type.

The criteria for typing farms vary greatly among university programs. Also, the method of grouping a set of farm records into subsets differs greatly. Additionally, criteria used by the U.S. Census for typing farms differs from the states' criteria. Complications exist when comparability is attempted among university criteria, Census criteria and U.S.D.A. programs such as "Costs and Returns on Commercial Farms". "Costs and Returns on Commercial Farms" are not actual farms but are farms constructed from: (1) the U.S. Census of Agriculture, (2) rural carrier and mailed questionnaire sent to farmers by the Agricultural Estimates Division, SRS, (3) enumerative field survey and (4) results of research and related data from state experiment stations and federal agencies when group data meet the specifications for
farms by types, size and location. 1 A closely related variation involves aggregate use of farm data in constructing national income accounts by the U.S. Department of Commerce.

Various systems of classifications attempt to stratify the sets of records into homogeneous subsets which are then analyzed. The stratification process consists of classifying the records by type, location and various notions of income or sales. Additionally, various schemes group farms by size, represented by sales, labor inputs, value added, acres or other indicators.

Almost 30 years ago Benedict and others pointed out the need for classification: ${ }^{2}$

> "What is particularly needed is a segregation of farms into a few simple, distinct and clearly recognizable classes, and a tabulation for each of these classes of data as are needed for recognizing and understanding the problems related to them. The classifications should be clear to both lay and technical users as well as farm leaders, legislators and administrators."

The criteria should reflect differences in interests, characteristics, and behavior under varying conditions. ${ }^{3}$ Clear cut lines do not exist between groups of farms. Standards for homogeneity of groups, then, must be chosen somewhat arbitrarily. Comparability of the results of farm record analysis from various land grant university programs becomes difficult, if not impossible. This situation arises due to nonuniform definitions, criteria and systems used to classify farms by type

[^0]and sort into similar groups or subsets from a larger sample or set. A similar situation exists when comparing subsets of farms typed by 'a' state system to those typed by Census criteria.

## OBJECTIVES

The situation described sets the stage for isolating certain facets of record programs which must be identified in order to determine the programs' effectiveness to firms and institutions. Specific objectives of the study were:

1. To identify and isolate the various criteria used in the North Central Region to classify farms by type. ${ }^{4}$
2. To determine the different systems used to group sets of farm records into subsets of a similar nature.
3. To demonstrate the divergence in the composition of the subsets due to the application of the various definitions, criteria, and systems identified in the North Central Region.
4. To analyze the results of a typical 'year-end' business analysis in order to enumerate forthcoming differences concerning firm and aggregate recommendations resulting from the analysis.
5. To point out strong and weak parts of the various systems.
6. To determine areas of future studies.
7. To suggest a method which segregates the farms into simple, distinct and recognizable types as well as provides identifying

[^1]measures for grouping the farms into recognizable subsets.

## METHOD

A basic set of 403 farm records from the Missouri Mail-In Record project for the 1970 year was utilized for the analysis. The Missouri program typed the individual farms and stratified the basic set into subsets according to type.

Computer programs were written to type each farm in the basic set and group the farms into subsets according to type for each of the representative systems other than the Missouri System. The unique criteria of each system provided subsets which varied from those produced by the Missouri System. Thus, the retyping provided the framework for enumerating the difference in the subsets due to varying criteria and definitions used by the different systems.

The subsets generated by the various systems provided the grouping necessary for a 'year-end' analysis. The analysis applied to the subsets was the computerized program currently used by the Missouri project. The analysis was completed for five types which were common to the systems included in the study. The 'year-end' analysis of the subsets provided the guidelines for presenting the differing implications, due to the varying criteria and definitions, being utilized by the state universities and the United States Census classification systems.

The remaining chapters refer to specific states to identify the systems used by the respective land grant universities. The basic set of farms are actual farm records from the Missouri Mail-In Record project. When the basic set is retyped by 'a' university system, it is denoted by the state name or alternately the state system. The retyping
accomplished by the Census system is denoted by Census or the Census system. Thus, the caveat is that the records were Missouri farms which utilized a system other than the Missouri system to classify the basic set by type and group into subsets by the respective systems.

## CHAPTER II

## A SELECTED REVIEW OF LITERATURE CONCERNING CLASSIFICATION SYSTEMS AND RELATED IMPLICATIONS

United States agriculture is exceedingly heterogeneous. The purpose of classifying farms by type is to show: the kinds of farms in various locations, variation in the use of resources, combinations of resources, production, and characteristics of organization. It is evident that an ideal approach would call for a great number of classes of farms. ${ }^{2}$ Some sort of compromise must be made between the highly detailed and the very broad classifications which are generally used. ${ }^{3}$

Production economists who focus their attention on agriculture are concerned with choice and decision-making in the use of capital, labor, land and management resources in the farming industry. ${ }^{4}$ The goals of production economics are twofold: (1) to provide guidance to individual farmers in using their resources most efficiently, and (2) to facilitate the most efficient use of resources from the standpoint of the consuming economy. ${ }^{5}$ Concerning efficiency, Johnson indicates

[^2]"the first step is to study the way in which resources in agriculture are employed." ${ }^{6}$ Stratification by type and possibly within types is necessary for meaningful economic research and adequate description. "All farm" averages without stratification prohibit analysis which is meaningful to the firms or to aggregate use in the framework suggested by Heady. Inroads have been made to achieve 'adequate' stratifications according to type by many land grant record programs. However, the following discussion of systems in use in the North Central Region and the Census system will point out the disparities in effective comparisons among systems. Possibly more important, farm management recommendations and policy implications will differ because the subsets for each type are composed of different farms due to the typing criteria. Systems used by land grant universities, in the North Central Region, to classify farm records by type fall into four general categories. ${ }^{7}$
(1) Productive Man Work Units

Missouri and Kansas use this general system of classification. However, the two states differ in at least two respects. First, the two states differ in the factors used to arrive at productive man work units. Productive man work units are defined as the amount of work required by a farm, assuming that usual farm tasks are performed and that average conditions prevail. A productive man work unit is the amount

[^3]of work a man will accomplish under average farm conditions at usual farm tasks in a ten-hour day. ${ }^{8}$ Thus, each enterprise has a physical measure such as number of acres or head multiplied by a factor which results in the time required to accomplish the enterprise for the productive period.

The second major difference results from different percentage requirements for a farm to be classified as a particular type. Specific livestock farms are an example. Missouri livestock farms are those farms having less than 33 percent of total farm productive man work units in grain and cash crops and 50 percent or more of productive man work units devoted to any one animal enterprise.

Kansas requirements entail less than 33 percent of total farm productive man work units in any enterprise other than the specific livestock type under question. More than 33 percent (rather than 50 percent) of the total productive man work units devoted to that enterprise are needed to type the farm a specific livestock farm. Other types than livestock have similar percentage differences when considering Missouri and Kansas systems.
(2) Value of Farm Produced Feed Fed to Livestock

Illinois is the state in the North Central Region using this system. The analysis investigated the Kentucky system since it is basically the same as Illinois. If more than one-half the value of crops produced is sold directly rather than marketed through livestock, the farm was classified a grain farm. Livestock farms are those feeding more than one-half the value of crops produced. Specific livestock types were determined

[^4]by the proportion of feed fed to a specific livestock class to the total feed fed.
(3) Value of Production

This system of classification is used by several states. It is closely related to the Census method. However, the Census uses cash sales rather than "value" produced. Michigan, Wisconsin and Nebraska systems are representative of this method of classification. These state systems were chosen because of disparities shown in definitions of terms and varying percentage requirements necessary for a farm to be a specific type. Definitions of Value of Production and Total Farm Production for each of the three states are presented in Appendix I. Chapter IV will be devoted to an analysis of the differences due to definitions alone. (That is, a standard percent was applied to all three states which resulted in differences in the subsets attributed to only the one variable.)
'Value added' is a concept often used to attempt to evaluate farm production. Thus, feed fed or feed purchased is a major adjustment used by the systems to arrive at value of production. The adjustment process is handled differently by the three systems. The implications of this adjustment will be emphasized in Chapter IV.
(4) Hybrid

For lack of a short descriptive name, the fourth general system of type classification will be labeled "hybrid". This is the criteria used by Iowa. Iowa classifies farms by type initially on percentage feed fed as discussed under number (2) to differentiate between livestock and grain farms.

Specific livestock types are then determined by the value of the specific livestock enterprise as a percent of total value of all livestock
produced. Thus, the Iowa system is similar to parts of 'Feed Fed' and 'Value of Production'.

CENSUS

The Census system of classifying commercial farms appears similar to the Value of Production system. Terminology, however, warranted a special category. Livestock and grain farms are separated into their types by percent sales. Sales are cash receipts, except in some cases where the product is "on hand" and is expected to be marketed during the year in question. Expected receipts are then included in sales. The classification of Census farms, by type, was made on the basis of the relationship of the value of sales from one source, or a number of sources in the case of dairy and similar multiple related products, to the total value of all products sold from the farm. ${ }^{9}$ The value from a particular source must represent 50 percent or more to be classified a type.

Value of sales, as computed for the Census, does not represent the gross income of farm operators. The principle omissions are nonfarm income, government payments, rental income and changes in the values of farm inventories of crops, livestock, and equipment.

Commercial farms, comprise those farms (except abnormal farms) with: (1) a total value of sales of farm products of $\$ 2,500$ or more plus (2) those with a total value of sales of $\$ 50$ to $\$ 2,499$ provided the operator of the farm was under 65 years of age, and worked off the

[^5]farm less than 100 days during the year. ${ }^{10}$ The basic set of 403 farm records used in the study all qualified as commercial by value of sales over \$2,500.

Early classifications in the Census were by size, by tenure, by race, and by a few other categories, and were designed to present an overall picture of the nation's agriculture. "In these first efforts at classification, there was no very definite thought of adopting the data to specific end uses."11 The original purpose was a count of people for apportionment of Congressional representation. Further, it was pointed out that a discussion of classifications raises the question as to the 'basis' for classifications. ${ }^{12}$ Size is one approach.

Problems arise concerning the measures of size. Gross value of product has been widely used as one measure. In general, it reflects the physical resources and productivity of the farm. Limitations include: years of crop failure, expanding or contracting farms, farms on which a considerable part of the products sold is represented by purchased items, and varying farm prices. Any one of these limitations may cause a farm to be typed differently from one period of time to another.

Acres is one of many size measures. Acre limitations are obvious, due to the heterogeneous nature of products produced and the inherent productivity of land. For example, a 160 acre farm in Iowa represents

[^6]a vastly different situation from a 160 acre farm in western Kansas. ${ }^{13}$
In the south, the measure of farm operations frequently was the number of mules used. ${ }^{14}$

Single input factors are frequently used as number of mules or the number of cows. Labor input is used as a measure of size by either the number of workers or a calculation of Productive Man Work Units (PMWU). Total investment managed is another measure of size used to classify farms. "The true equivalent of size is capacity, and capacity is measured in inputs and not outputs. Output reflects efficiency as well as capacity." 15 A true measure of size calls for using all the inputs and reducing them to an annual-cost basis. ${ }^{16}$

A type-of-farming area can be defined as all the territory within which a particular product or combination of products is found on most of the farms; or within which the same systems or types of farming are intermingled. ${ }^{17}$ Applying the definition by Black and others to a single farm results in 'a type farm' as one within a group of farms producing similar products. Likewise a set of farms may be classified as a specific type if they produce similar products.

[^7]Bachman et al. suggest the purpose of a classification system is to "segregate groups of farms that are somewhat alike in their characteristics and have similar problems". Thus, some measure of size is relevant to classifying farms by type and this becomes apparent when considering system and criteria. Iowa, for example, has minimum head requirements for dairy farms. ${ }^{18}$ Michigan has specialized and general farms. ${ }^{19}$ The Kansas requirements for stock-ranches are five acres of grass to each acre of cropland. If the 'ideal', as suggested by several authors, of typing by inputs is to be achieved a synthesis of size indicators and enterprise identification becomes a necessity.

Types of farming may be defined in many ways, depending upon the contrast in mind. ${ }^{20}$ Warren pointed out that type may be defined as to its diversity or specialty and that source of income may be one way to arrive at type. Labor intensity may also be the point of emphasis.

From the preceding discussion, it can be seen that there are so many factors involved that consideration cannot be given to all the conflicting forces concerning type. ${ }^{21}$ The factors to be considered in
${ }^{18}$ E. G. Stoneberg, Costs and Returns on Iowa Farms - 1969, Report for the Iowa Agricultural Experiment Station, Proj. No. 111 (Ames, Iowa: Iowa State University of Science and Technology, Cooperative Extension Service, November, 1970), pp. 8-9. The percentages used were those used in Iowa for 1968. Iowa increased their percentage necessary for a farm to meet specific type classification in 1970 (for 1969 records) according to correspondence from E. G. Stoneberg, Extension Economist, Cooperative Extension Service, Iowa State University, Ames, Iowa, July 7, 1971.
${ }^{19}$ Ralph E. Hepp and L. H. Brown, Dairy - General Farming Today in Southern Michigan, 1969, Agricultural Economics Report, No. 176, August, 1970. TelFarm Business Analysis Summary for Southern Dairy General, 1969 (East Lansing, Mich.: Department of Agricultural Economics, Michigan State University, August, 1970), and letter from Myron P. Kelsey, Extension Specialist in Agricultural Economics, June 21, 1971.
${ }^{20}$ G. F. Warren, Farm Management (New York: The MacMillan Co., 1919), p. 43.
${ }^{21}$ Ibid., p. 101.
'modern' agriculture have increased since Warren's writings due, in part, to mechanization, technology and increased physical size.

Costs and Returns on Commercial Farms published by the Economic Research Service, U.S. Department of Agriculture, is a widely-used series concerning U.S. agriculture. The series began in 1930 for some farm types. ${ }^{22}$ As indicated earlier, this series should not be construed as actual farm data but is designed to represent typical farms within a type. However, the background data are of a real nature and types are constructed to reflect a major product in terms of income. ${ }^{23}$ Physical criteria concerning minimum acres and head are also considered. ${ }^{24}$ Specific requirements are not rigidly established concerning the percentage income from a major product for a farm to be included in a class. Typing large numbers of farm records by computer requires rigid specifications concerning the factors upon which the type is determined.

A concluding note on review of the literature concerns the magnitude of detail necessary to arrive at logical conclusions for individual farm firm organizations and adequate answers to aggregate farm policy problems.

To the question, "Is too much time spent in developing and refining input-output data for use in farm management?", the answer must be

[^8]a qualified yes. ${ }^{25}$ The question is somewhat different when considering classification of farms according to type. The question then relates to disparity in systems and criteria. Standardization of definitions and criteria are necessary to get comparable data for analysis. In this case, the time spent in developing and refining may not be 'too much'.

The problem of defining like-behaving groups of farms offers real challenges because the definition varies with the particular problem studies. Which farms belong in a specific group depends on the types of characteristics of the firm and kinds of economic forces which are important to the particular problem. ${ }^{26}$

This study emphasizes methods of stratifying basic data records into useful, homogeneous sets so recommendations and description of structure will not be averages of unlikes.

[^9]THE APPLICATION OF TYPE CLASSIFICATION SYSTEMS TO THE BASIC SET OF 403 MISSOURI MAIL-IN RECORDS

The objective stated in the Introduction forms the basis for a specific hypothesis applicable to the method of analysis discussed in this chapter. The specific hypothesis was:

Varying criteria will result in different subsets due to:
a) criteria alone and b) definitional differences even though the verbal criteria appear similar.

Criteria refer to different methods of typing, as discussed in Chapter II and presented in more detail in Appendix I. Thus, the concern is with dividing the basic set of farms into subsets, using percentages which differ. Additionally, the division utilizes feed fed, some form of value of production, or productive man work units according to which system is considered. Definitive differences refer to items which had the same verbalization but different meanings for the various sys tems.

As discussed in Chapter II, four general methods of typing farms were used by the states in the North Central Region in addition to the Census method. An examination of Appendix I shows that, in addition to the variations in the general methods, there were also differences among states using the same general method. The differences result from differing percentages used to make the divisions as well as differing methods of arriving at the basic factors for typing the basic set into subsets. Therefore, it was necessary to analyze seven systems in addition to the Missouri system in order to reflect the representative
systems in use in the North Central Region and the Census. Each of the 403 farms was typed by the Missouri program and grouped according to the respective types. Computer programs were written typing the farms according to the seven systems other than Missouri.

Table 1 will be used throughout the remainder of this study as a reference for the numeric indicator of farm type. The discussion will refer to General Farms as type 0, Grain Farms as type 1, etc. Types 1 through 9 were directly derived for each of the systems. Type 0 was a residual for those farms not meeting the criteria for other classifications.

TABLE 1

NUMERIC REFERENCE FOR THE VERBAL DESCRIPTION
OF FARM TYPES (SUBSETS)
Farm Types
(Subsets)
Numeric Reference
General Farms 0
Grain Farms 1
Grain-Hog Farms 2
Hog Farms 3
Grain-Beef Farms 4
Beef Farms 5
Grain-Dairy Farms 6
Dairy Farms 7
General Livestock Farms 8
Poultry Farms 9

The Missouri system of classification was the foundation for discussing the composition of the subsets generated by the other systems of classification. The procedure was to compare each system with the foundation set. The basic set of 403 farms showed dramatic movement from type to type when each system of classification was applied to the basic set. Table 2 validates the point that the subsets generated varies according

| Change |  | 0 | TYPE CHANGE FOR 403 MISSOURI, 1970 MAIL-IN RECORD, FARMS DUE TO VARIOUS SYSTEMS OF CLASSIFICATION |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total |
| Missouri | Type |  | 100 | 78 | 39 | 29 | 31 | 21 | 0 | 99 | 4 | 2 | 403 |
| Kansas: | Enter <br> Leave <br> Type | $\begin{array}{r} 0 \\ 97 \\ 3 \\ \hline \end{array}$ | $\begin{array}{r} 55 \\ 6 \\ 127 \\ \hline \end{array}$ | $\begin{array}{r} 39 \\ 7 \\ 71 \\ \hline \end{array}$ | $\begin{array}{r} 34 \\ 5 \\ 58 \\ \hline \end{array}$ | $\begin{aligned} & 19 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1 \\ 17 \\ \hline \end{array}$ | $\begin{array}{r} 22 \\ 0 \\ 22 \end{array}$ | $\begin{array}{r} 1 \\ 18 \\ 82 \\ \hline \end{array}$ | $\begin{aligned} & 5 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$ | (0) (2) (0) | $\begin{array}{r} 176 \\ 176 \\ 403 \\ \hline \end{array}$ |
| Iowa: | Enter Leave Type | $\begin{aligned} & 24 \\ & 40 \\ & 84 \\ & \hline \end{aligned}$ | $\begin{aligned} & 32 \\ & 12 \\ & 98 \\ & \hline \end{aligned}$ | $\begin{array}{r} (0) \\ (39) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r} 55 \\ 1 \\ 83 \\ \hline \end{array}$ | $\begin{array}{r} \left(\begin{array}{r} 0 \\ (31) \\ (0) \\ \hline \end{array} \mathbf{r}\right. \end{array}$ | $\begin{array}{r}24 \\ 4 \\ 41 \\ \hline\end{array}$ | $\left(\begin{array}{l}0 \\ 0\end{array}\right.$ $(0)$ 0 | $\begin{array}{r}4 \\ 6 \\ 97 \\ \hline\end{array}$ | (0) (4) (0) | $(0)$ $(2)$ $(0)$ | $\begin{array}{r} 139 \\ 139 \\ 403 \\ \hline \end{array}$ |
| I11 \& Ky: | Enter Leave Type | $\begin{array}{r} 9 \\ 86 \\ 23 \\ \hline \end{array}$ | $\begin{aligned} & 27 \\ & 15 \\ & 90 \\ & \hline \end{aligned}$ | $\begin{array}{r} (0) \\ (39) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r} 98 \\ 1 \\ 126 \\ \hline \end{array}$ | $\begin{array}{r} (0) \\ (31) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r}43 \\ 5 \\ 59 \\ \hline\end{array}$ | $\left(\begin{array}{l}0 \\ 0\end{array}\right.$ $(0)$ 0 | $\begin{array}{r}3 \\ 3 \\ 99 \\ \hline\end{array}$ | $(0)$ $(4)$ (0) | $\begin{aligned} & 4 \\ & 0 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{array}{r} 184 \\ 184 \\ 403 \\ \hline \end{array}$ |
| Census: | Enter Leave Type | $\begin{array}{r} 0 \\ 100 \\ 0 \\ \hline \end{array}$ | $\begin{aligned} & 20 \\ & 22 \\ & 76 \\ & \hline \end{aligned}$ | $\begin{array}{r} (0) \\ (39) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r} 0 \\ 29 \\ 0 \\ \hline \end{array}$ | $\begin{array}{r} (0) \\ (31) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r}0 \\ 21 \\ 0 \\ \hline\end{array}$ | $\left(\begin{array}{l}0 \\ 0\end{array}\right.$ $(0)$ 0 | $\begin{array}{r}3 \\ 4 \\ 98 \\ \hline\end{array}$ | $\begin{array}{r} 223 \\ 0 \\ 227 \\ \hline \end{array}$ | $\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{array}{r} 247 \\ 247 \\ 403 \\ \hline \end{array}$ |
| Mich: | Enter Leave Type | $\begin{array}{r} 162 \\ 2 \\ 260 \\ \hline \end{array}$ | $\begin{array}{r} 1 \\ 70 \\ 9 \\ \hline \end{array}$ | $\begin{array}{r} (0) \\ (39) \\ (0) \\ \hline \end{array}$ | $\begin{aligned} & 16 \\ & 21 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{array}{r} (0) \\ (31) \\ (0) \\ \hline \end{array}$ | 34 <br> 14 <br> 41 | $\left(\begin{array}{l}0 \\ 0\end{array}\right.$ $(0)$ 0 | $\begin{array}{r} 0 \\ 30 \\ 69 \\ \hline \end{array}$ | $\begin{aligned} & (0) \\ & (4) \end{aligned}$ (0) | (0) <br> $(2)$ <br> (0) | $\begin{array}{r} 213 \\ 213 \\ 403 \\ \hline \end{array}$ |
| Wisc: | Enter Leave Type | $\begin{array}{r} 55 \\ 29 \\ 126 \\ \hline \end{array}$ | $\begin{aligned} & 25 \\ & 13 \\ & 90 \\ & \hline \end{aligned}$ | $\begin{array}{r} (0) \\ (39) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r} 35 \\ 2 \\ 62 \\ \hline \end{array}$ | $\begin{array}{r} (0) \\ (31) \\ (0) \\ \hline \end{array}$ | $\begin{array}{r}14 \\ 3 \\ 32 \\ \hline\end{array}$ | $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right.$ $(0)$ | $\begin{array}{r}1 \\ 7 \\ 93 \\ \hline\end{array}$ | (0) (4) (0) | (0) <br> $(2)$ <br> $(0)$ | $\begin{array}{r} 130 \\ 130 \\ 403 \\ \hline \end{array}$ |
| Neb: | Enter Leave Type | $\begin{array}{r} 41 \\ 35 \\ 106 \\ \hline \end{array}$ | 12 18 72 | $\begin{array}{r} (0) \\ (39) \\ (0) \\ \hline \end{array}$ | 54 0 83 | $\begin{array}{r} (0) \\ (31) \\ (0) \\ \hline \end{array}$ | 25 2 44 | $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$ | $\begin{array}{r}2 \\ 3 \\ 98 \\ \hline\end{array}$ | (0) (4) (0) | (0) (2) (0) | $\begin{array}{r} 134 \\ 134 \\ 403 \\ \hline \end{array}$ |

${ }^{\mathrm{a}}$ Type 0 is for those farms not meeting the criteria for other types.
Parenthesis ( ) indicates types not classified for systems other than Missouri.
to the criteria used by each system of classification.
The material in the remainder of this chapter deals with the reasons behind the shifts to the various subsets. Each system was considered individually and then viewed collectively.

## KANSAS

As noted in Table 2, 176 farms changed type within the basic set when Kansas criterion was applied to the basic set. The Kansas system was similar to the Missouri system in that verbal criterion (productive man work units) was the same. The movement of the 176 farms as shown in Table 2 was attributed to two causes. The first cause concerns the factor used by the states to generate the productive man work units. That is, each state uses a different factor to multiply by acres or head to arrive at the productive man work units. Table 3 illustrates these differences. Minnesota was not included in the overall analysis since Minnesota does not type farms by productive man work units. However, the factors used to arrive at productive man work units were available and presented in Table 3 to illustrate the different productive man work units generated by varying only the factors. The physical measurements of acres, crops and head of livestock were the same for Missouri, Kansas and Minnesota as the set of 403 farms were common to each.

The second underlying reason for different composition of the subsets generated by the Kansas and Missouri system was attributed to the percentages used to segregate the individual farms into the subsets. The percentage breakdown is detailed in the Appendix and a description of the method was contained in Chapter II. The major result of relaxing percentage requirements from Missouri to Kansas was the movement of farms into specific types such as grain, hogs, beef, dairy and the exit of general farms.

# PRODUCTIVE MAN WORK UiNIT DIFFERENCES GENERATED BY APPLYING VARYING PRODUCTIVE MAN WORK UNIT FACTORS TO A BASIC SET OF 403 FARMS ${ }^{\text {a }}$ 

Missouri Kansas Minnesota

| Li ves tock PMWU | 296 | 372 | 258 |
| :--- | :--- | :--- | :--- |
| Crop PMWU | 430 | 270 | 211 |
| Total PMWU | 726 | 642 | 469 |

[^10]Application methods used by the Kansas system have substantiated the hypothesis that the criteria used will result in different subsets of farms from an original basic set, such as the 403 Missouri Mail-In Record farms used in the study. Table 4 indicates the specific movement of the 176 farms into different subsets. As stated previously, the largest exodus from the Missouri classification was from general farm type with entry occurring in all types that were classified by the Kansas system. However, the largest entries were into types 1, 2 and 3. The results were somewhat surprising for the grain-beef farms, considering the less rigid percentage used by the Kansas system, as twenty of the thirty-one farms left the Missouri subset and moved into type 1 for the Kansas subset.

It was expected that the dairy farms might exhibit the most stability and this expectation was substantiated. However, eighteen of the ninety-nine Missouri dairy farms exited from type 7 when the Kansas system of classification was used. This can be explained by the factor used to arrive at productive man work days for dairy farms. The factor for calculating productive man work units used by the Missouri system

TABLE 4
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE KANSAS SYSTEM OF CLASSIFICATION

| Farm Type | Missouri | Change in Farm Type |  |  |  |  |  |  |  |  |  | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 |  |  | 5 |  | 7 | 8 | 9 |  |
| General 0 | 100 |  | 32 | 23 | 23 | 5 | 1 | 4 | 1 | 3 | - | 97 |
| Grain 1 | 78 | 0 |  | 6 | 0 | 0 | 0 | 0 | 0 | 0 | - | 6 |
| Grain Hog 2 | 39 | 0 | 0 |  | 7 | 0 | 0 | 0 | 0 | 0 | - | 7 |
| Hog 3 | 29 | 0 | 1 | 4 |  | 0 | 0 | 0 | 0 | 0 | - | 5 |
| Grain Beef 4 | 31 | 0 | 20 | 0 | 0 |  | 0 | 0 | 0 | 0 | - | 20 |
| Beef 5 | 21 | 0 | 1 | 0 | 0 | 14 |  | 0 | 0 | 2 | - | 17 |
| Grain Dairy 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | - | - |
| Dairy 7 | 99 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |  | 0 | - | 18 |
| Mixed <br> Livestock 8 | 4 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |  | - | 4 |
| Poultry* 9 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  | 2 |
| TOTAL ENTERING |  | 0 | 55 | 39 | 34 | 19 | 1 | 22 | 1 | 5 | - | $176$ |
| NO CHANGE |  | 3 | 72 | 32 | 24 | 11 | 4 | - | 81 | 0 |  | 227 |
| TOTAL BY KANSAS CRITER |  | 3 | 127 | 71 | 58 | 30 | 5 | 22 | 82 | 5 | 0 | 403 |

*Poultry farms were not typed by the Kansas System.
was considerably higher for dairy than the factor used by the Kansas system of classification. Missouri productive man work units for dairy were based on (head dairy cows) $X$ ( 10.0 days) plus (head other dairy) $X$ ( 1.5 days) while Kansas productive man work units were based on (mature dairy cows) X (9.0 days).

The type variations due to Missouri and Kansas systems result from factors used to generate productive man work units and varying percentage requirements when the productive man work units for an enterprise are compared to those for a particular farm. The implications of this part of the study did not suggest either system was wrong but did suggest a need for time and motion empirical studies to validate the factors used to generate the productive man work units for each enterprise.

The percentages used by each system are rather arbitrary and their rigidity may be limited by the number of farms in each state's basic set. That is, a state with 'many' farms in their record program may want more rigid requirements for a farm type than a state with only a 'few' farms in their program. However, this policy has not been followed by Missouri and Kansas; Missouri used more rigid requirements to classify 400 to 500 farm records than did Kansas with over 3,000 farm records.

## IOWA

The Iowa system of classification is completely different in both nomenclature and method than the Kansas or Missouri system. However, classification of the basic set by the Iowa system produced the smallest number of farms changing type. One hundred thirty-nine farms changed type as shown in Table 2 and detailed in Table 5.

A word of caution is in order concerning use of Table 5. The caveat concerns only comparing totals for Missouri and Iowa. Dairy is a case in point. Missouri's type classification resulted in ninetynine dairy farms and Iowa's system resulted in ninety-seven dairy farms. Closer examination of Table 5 shows that six dairy farms exited from the Missouri group and entered type 0 and type 1 while four farms entered type 7 when the Iowa system of classification was applied to the basic set.

The classification system used by Iowa initially separated the grain farms from the other farms in the basic set. Type 1 were those which had sales greater than one-half the value of feed produced. Compared with the productive man work unit system used by Missouri, the Iowa system resulted in the exit of twelve farms from the type 1 classification. However, thirty-two farms which had some livestock type connotation by the Missouri system entered as grain farms when using value of feed fed classification criteria.

The hypothesis is validated for the Iowa system as compared with the Missouri system for type 1 farms.

TABLE 5
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE IOWA SYSTEM OF CLASSIFICATION

| Farm Type | Missouri |  | $0 \quad 1 \quad 2^{*}$ |  | $\begin{gathered} \text { hang } \\ 3 \end{gathered}$ | In | Far 5 | T 6 |  |  | 9* | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General 0 | 100 |  | 8 | - | 20 | - | 8 | - | 4 | - | - | 40 |
| Grain 1 | 78 | 8 |  | - | 1 | - | 3 | - | 0 | - | - | 12 |
| Grain Hog* 2 | 39 | 2 | 4 |  | 33 | - | 0 | - | 0 | - | - | 39 |
| Hog 3 | 29 | 0 | 1 | - |  | - | 0 | - | 0 | - | - | 1 |
| Grain Beef* 4 | 31 | 4 | 14 | - | 0 |  | 13 | - | 0 | - | - | 31 |
| Beef 5 | 21 | 4 | 0 | - | 0 | - |  | - | 0 | - | - | 4 |
| Grain Dairy*6 | 0 | 0 | 0 | - | 0 | - | 0 |  | 0 | - | - | 0 |
| Dairy 7 | 99 | 2 | 4 | - | 0 | - | 0 | - |  | - | - | 6 |
| $\begin{aligned} & \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 3 | 0 | - | 1 | - | 0 | - | 0 |  | - | 4 |
| Poultry* 9 | 2 | 1 | 1 | - | 0 | - | 0 | - | 0 | - |  | 2 |
| TOTAL ENTERING |  | 24 | 32 | - | 55 | - | 24 | - | 4 | - | - | $139$ |
| NO CHANGE |  | 60 | 66 | - | 28 | - | 17 | - | 93 | - | - | 263 |
| TOTAL BY IOWA CRITERIA |  | 84 | 98 | - | 83 | - | 41 | - | 97 | - | - | 403 |

*Not typed by the Iowa System.

The Missouri and Kansas systems grouped farms into types 2, 4, and 6 according to grain-livestock enterprise combinations. Each system also generated type 8 composed of farms having livestock-livestock enterprise combinations. The Iowa system specified types composed of livestocklivestock combinations into classes other than type 8, rather than grainlivestock combinations. Therefore, the two systems were not directly compatible for types 2, 4, 6, and 8 which were omitted when the farms were typed according to Iowa criteria.

If types composed of livestock combinations were used, it might be expected that type 0 would have fewer farms. That is, some of the general farms would be classified as beef-hog, beef-dairy, dairy-hog or dairy-beef. Farms in types $2,4,6,8$, and 9 were obviously forced to exit from the Missouri classifications and entered into types $0,1,3$, 5 , or 7 with the application of the Iowa system to the basic set.

Even though type 0 was a residual, forty farms exited from the Missouri type 0 and twenty-four farms entered, resulting in eighty-four general farms by the Iowa system of classification versus 100 farms by the Missouri system of classification. This would seem contrary to the previous discussion which stated that some of the general farms could fall into livestock combinations. It appears that the results were due to the heterogeneous nature of several of the Missouri Mail-In Record farms reflecting the type of agriculture in much of the state. The Iowa percentage requirements for comparing an enterprise to the total farm operation were those used in 1968. Iowa has increased the percentage requirements for 1970 (see footnote 3, Appendix I). The new requirements reflect more specialization on a farm classified as a specific type. It is possible that the later reflections would result in fewer general farms.

A few farms left the Missouri types in each of the hog, beef and dairy categories. Type 7 was shown to be rather stable; however, startling differences occurred concerning the number entering type 3 and type 5 by the Iowa system. Both types 3 and 5 required a ratio of value of the specific livestock type to value of all livestock production greater than .7. Results of comparing the Iowa and Missouri systems of classification suggested a need to further study the relationship between the value of production and productive man work units required to produce specific levels of output within specific types. If it can be assumed that productive man work units are a proxy for all inputs, then part of the varying composition of types 3 and 5 could be explained by variation in 1970 livestock prices. If the assumption is not correct, then it could be assumed that productive man work units are not a correct proxy for other inputs or do not correctly reflect the value of production.

Implications for farm management recommendations at the firm level will vary depending upon which of the two systems is used. The recommendation for a farm with an excess of labor but little capital would be different than the recommendation for a farm with labor shortage and an excess of capital. This would be especially important for specific enterprise recommendations.

## ILLINOIS AND KENTUCKY

The initial break for typing the 403 farms under the Illinois and Kentucky systems of classification was similar to the Iowa system. The first division separated grain from other farms and was based on the ratio of the value of feed fed to the feed and grain returns from the farm under question. As noted, the Iowa system resulted in twelve grain farms leaving the seventy-eight classified under the Missouri system. Under the Illinois and Kentucky system, fifteen farms exited from the type 1 group of seventy-eight farms. This resulted from the Illinois and Kentucky system having an additional parameter (i.e., if more than one-sixth of the feed and grain returns were fed to dairy or poultry, the farm was excluded from type 1). The inclusion of poultry as a restriction for grain farm criteria precluded including type 9 in the classification analysis.

The discussion of type 7 will be considered first since it again demonstrates stability with only three farms leaving and three farms entering, resulting in ninety-nine dairy farms. After initially classifying the farms grain or nongrain, the nongrain farms were typed according to the value of feed fed. That is, the ratio value of feed fed to a specific livestock enterprise and the total feed fed was computed. If the ratio met specific percentage requirements, a specific type was determined. A similar comparison can be made concerning feed fed and productive man work units as was made with the results from the value of production and productive man work unit systems.

As shown in Table 6, few farms left from each type other than type 0; however, considerable instability was indicated for each type when entry was considered. Particularly surprising results were noted in type 3 where ninety-seven farms entered the hog classification, resulting in 125 farms being typed as hog farms with the value of feed fed criteria. Large numbers also entered types 1 and 5, resulting in each also having a larger number of farms than was shown by the productive man work unit system of classification. A trend appears to be developing for larger numbers in each of the specialized livestock types as different systems are applied to the basic set.

The farms' position before entering a specific livestock type can be determined from Table 6: Eighty-six general farms moved into specific livestock types; fifty-three of the eighty-six farms were typed 3 by the feed-fed criteria; thirty-five of the hog farms originated from the Missouri grain-hog farm classification. The feed-fed criteria with 184 farms changing type demonstrates the second highest instability with only Michigan's specialized farm criteria being higher with 213 farms changing type. ${ }^{1}$

The divergence of the Missouri system and the Illinois-Kentucky system could result from price variations of the feed input similar to prices affecting output for the Iowa system. The physical feed-fed input should be rather stable from year to year on average farms in each particular type. Price of the feed input would be the variable resulting in inter-system instability. The analysis suggests that studies are needed
$1_{\text {Before specifically discussing the value of production systems, }}$ a view of Table 2 shows that the trend to larger specialized subsets will hold for the methods of typing farms used by Michigan, Wisconsin and Nebraska when the percentage requirements are "low enough". Michigan requirements are rather rigid and the analysis resulted in only very specialized farms in a particular livestock type.

TABLE 6
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE ILLINOIS AND KENTUCKY SYSTEM OF CLASSIFICATION

| Farm Type | Missouri | 01 |  | $\begin{gathered} \text { C } \\ \text { 2* } \end{gathered}$ | $\begin{gathered} \text { hang } \\ 3 \end{gathered}$ |  |  | 6* |  | 8* | 9 | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General 0 | 100 |  | 8 | - | 53 | - | 21 | - | 2 | - | 2 | 86 |
| Grain 1 | 78 | 3 |  | - | 3 | - | 6 | - | 1 | - | 2 | 15 |
| Grain Hog* 2 | 39 | 0 | 4 |  | 35 | - | 0 | - | 0 | - | 0 | 39 |
| Hog 3 | 29 | 0 | 1 | - |  | - | 0 | - | 0 | - | 0 | 1 |
| Grain Beef* 4 | 31 | 1 | 14 | - | 1 |  | 15 | - | 0 | - | 0 | 31 |
| Beef 5 | 21 | 3 | 0 | - | 2 | - |  | - | 0 | - | 0 | 5 |
| Grain Dairy*6 | 0 | 0 | 0 | - | 0 | - | 0 |  | 0 | - | 0 | 0 |
| Dairy 7 | 99 | 2 | 1 | - | 0 | - | 0 | - |  | - | 0 | 3 |
| $\begin{aligned} & \hline \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 0 | 0 | - | 3 | - | 1 | - | 0 |  | 0 | 4 |
| Poultry 9 | 2 | 0 | 0 | - | 0 | - | 0 | - | 0 | - |  | 0 |
| TOTAL ENTERING |  | 9 | 28 | - | 97 | - | 43 | - | 3 | - | 4 | $184$ |
| NO CHANGE |  | 14 | 63 | - | 28 | - | 16 | - | 96 | - | 2 | 219 |
| TOTAL BY ILLI KENTUCKY CRIT | $\begin{aligned} & \text { OIS AND } \\ & \text { RIA } \end{aligned}$ | 23 | 91 | - | 125 | - | 59 | - | 99 | - | 6 | 403 |

*Not typed by the Illinois and Kentucky System.
to show the relationship between feed-fed as an input and productive man work units as a proxy for all inputs. If an index of prices were used, the remaining task to make the systems compatible would be to arrive at an adjustment factor for the various systems.

It should be apparent from the analysis that comparison between the types generated by the two systems would be rather difficult to undertake. This is particularly true when a descriptive measure concerning the structure of agriculture is considered. Implications concerning recommendations at the firm level or use of the analysis for aggregate work will be discussed in Chapter V.

## CENSUS

The Census system of classification was included in the study because of its wide use by agricultural researchers and policy makers concerning the structure of American agriculture. It is often used by land grant university researchers to compare with or expand upon university record programs where a broader description is found necessary. The Census system of classification types farms by income criteria. Income is cash sales or expected sales by Census standards. Adjustments are made for government payments and capital items sold. Sales of capital items are also eliminated from many of the state systems; however, government payments are usually included as part of gross income or gross sales in the state system. After the adjustment to income, the Census system divides the farms into grain farms and other farms similar to the last two systems discussed (i.e., grain farms being those with crop sales greater than one-half of the adjusted total farm sales).

Table 7 shows that the Census classification system resulted in several farms shifting from Missouri classification. There were seventyseven type 1 farms, but over 25 percent turnover. Note that types 2, 3, 4,5 and 6 were not typed by the Census system. This results from the Census system typing only grain, dairy, poultry and general farms with all other commercial livestock farms classified mixed-livestock. Type 8 included the specialized livestock farms which were separated into specific livestock types by the other systems of classification.

No general farms were generated by the Census system. As previously

TABLE 7
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE CENSUS SYSTEM OF CLASSIFICATION

*Not typed by the Census System.
used, general farms were those not meeting the criteria for some other type. Ninety of the 100 Missouri general farms moved into the mixedlivestock class. It can be noted from Table 7 that dairy was again rather stable. Types 3 and 5 were included in type 8 (mixed-livestock), due to the definition. This is indeed what happened with the hog and beef farms as they moved into mixed-livestock farms. The combination grainhog and grain-beef farms, as determined by the Missouri system, moved into either grain or mixed-livestock, showing that the Census criteria will result in varying types due to percentage requirements and the basic definitions used to arrive at the ratios for determining the specific types.

If government payments were not removed from total farm receipts, the denominator used to calculate the ratios would have been larger. Thus, for an enterprise to meet the 'one-half criteria' would have required the enterprise sales to be larger for a farm to be typed into a specific group.

Results from the Missouri and Census systems demonstrated the variance of the farm type compositions due to the criteria used and supports the hypothesis presented at the beginning of this chapter. The results further support the trend that dairy farms may be typed by various systems with similar results, therefore, exhibiting considerable stability when stratified into groups. However, the implications for farm and aggregate resource use for types other than dairy, as hypothesized, will differ greatly when aggregating farms into broad classes such as mixed-livestock (227 of the 403 Missouri Mail-In Record farms). The implications of this type hypothesis will be discussed in Chapter V.

## MICHIGAN

The Michigan system classified farms by type using 'value of production'. Total value of farm production is the total value of farm production to the operator less the cost of purchased feed and livestock. ${ }^{2}$ The basic notion is to generate ratios for the individual farm enterprises to accomplish typing.

The Michigan system illustrates a system which uses rigid percentage requirements for classification. As discussed earlier, the high number of records in the Michigan program allows this sort of rigidity and may not be feasible for states having fewer farm records to analyze.

As in the other systems, grain farms were the initial break; however, the ratio of crop value to value of farm production had to be greater than . 95 in order for a farm to be typed 1. Therefore, the seventy-eight grain farms under the Missouri system was reduced to nine when applying Michigan criteria (Table 8).

Results of type 3 indicate rigid ratios are a necessity for compatibility between the productive man work unit system and the value of production system when considering the total farms. An examination of Table 8 for type 3 farms indicates that twenty-one farms left the

[^11]TABLE 8
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE MICHIGAN SYSTEM OF CLASSIFICATION

| Farm Type | Missouri | Change In Farm Type |  |  |  |  |  |  |  |  |  | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General 0 | 100 |  | 0 | - | 0 | - | 2 | - | 0 | - | - | 2 |
| Grain 1 | 78 | 50 |  | - | 1 | - | 19 | - | 0 | - | - | 70 |
| Grain Hog* 2 | 39 | 23 | 1 |  | 15 | - | 0 | - | 0 | - | - | 39 |
| Hog 3 | 29 | 21 | 0 | - |  | - | 0 | - | 0 | - | - | 21 |
| Grain Beef* 4 | 31 | 18 | 0 | - | 0 |  | 13 | - | 0 | - | - | 31 |
| Beef 5 | 21 | 14 | 0 | - | 0 | - |  | - | 0 | - | - | 14 |
| Grain Dairy*6 | 0 | 0 | 0 | - | 0 | - | 0 |  | 0 | - | - | 0 |
| Dairy 7 | 99 | 30 | 0 | - | 0 | - | 0 | - |  | - | - | 30 |
| $\begin{aligned} & \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 4 | 0 | - | 0 | - | 0 | - | 0 |  | - | 4 |
| Poultry* 9 | 2 | 2 | 0 | - | 0 | - | 0 | - | 0 | - |  | 2 |
| $\begin{aligned} & \text { TOTAL } \\ & \text { ENTERING } \end{aligned}$ |  | 162 | 1 | - | 16 | - | 34 | - | 0 | - | - | $213$ |
| NO CHANGE |  | 98 | 8 | - | 8 | - | 7 | - | 69 | - | - | 190 |
| TOTAL BY MICHIGAN CRIT |  | 260 | 9 | - | 24 | - | 41 | - | 69 | - | - | 403 |

*Not typed by the Michigan System.

Missouri type 3 classification and sixteen different farms entered when the Michigan system was applied to the basic set. Similar patterns of entry and exit are shown for type 5. The trend to larger totals for types 3 and 5 than shown by the Missouri system continues.

The dairy farms showed stability when considering the rigid requirements of 95 percent of the value of farm production necessary from dairy to be typed as such. Type 0 was used to classify those farms not meeting other criteria; therefore, it was expected that a high number such as the 162 farms shown in Table 8 would enter the general farm classification.

The general implications resulting from the comparison of the movement of Missouri farms to different types when using Michigan criteria are comparable to those at the end of the discussion of each previous system. The analysis demonstrated that the 'value of production' system of classification generates 'subsets' different in composition from the Missouri subsets and the basic hypothesis is supported.

## WISCONSIN

The Wisconsin system is the second system using a 'value of production' criteria; however, value of farm production is arrived at differently, compared to the Michigan system.

Value of farm production as used by the Wisconsin system again is value of livestock production plus value of crops produced but the adjustment is minus value of home-grown feed fed. Note that the Michigan adjustment was made by subtracting the cost of purchased feed and livestock. The differences due to this type definition will be more clearly demonstrated in the next chapter. Continued support of the hypothesis is that varying criteria result in different subsets shown.

The total farms changing from the Missouri system to the type classification using the Wisconsin system was 130 farms. The method used to determine specific type was initially determined by the separation of grain and other farms. Specific livestock farms were determined and farms not meeting specific types were assumed to be type 0 .

Table 9 illustrates that dairy totals did not differ greatly for Missouri and Wisconsin, but that each of the other types, including general farms, increased. This movement again demonstrated that even though each of the systems did not have as many specific classes as the Missouri and Kansas systems, the 'catchall' category of general farms was not the only type that increased in number. The trend continued for type 3 and 5 to increase the total with a large exit and entry in each of these classes.

TABLE 9
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE WISCONSIN SYSTEM OF CLASSIFICATION

| Farm Type | Missouri | 0 | 1 |  |  |  |  |  |  | 8* | 9* | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General 0 | 100 |  | 9 | - | 16 | - | 3 | - | 1 | - | - | 29 |
| Grain 1 | 78 | 12 |  | - | 0 | - | 1 | - | 0 | - | - | 13 |
| Grain Hog* 2 | 39 | 17 | 4 |  | 18 | - | 0 | - | 0 | - | - | 39 |
| Hog 3 | 29 | 2 | 0 | - |  | - | 0 | - | 0 | - | - | 2 |
| Grain Beef* 4 | 31 | 9 | 12 | - | 0 |  | 10 | - | 0 | - | - | 31 |
| Beef 5 | 21 | 3 | 0 | - | 0 | - |  | - | 0 | - | - | 3 |
| Grain Dairy*6 | 0 | 0 | 0 | - | 0 | - | 0 |  | 0 | - | - | 0 |
| Dairy 7 | 99 | 7 | 0 | - | 0 | - | 0 | - |  | - | - | 7 |
| $\begin{aligned} & \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 3 | 0 | - | 1 | - | 0 | - | 0 |  | - | 4 |
| Poultry* 9 | 2 | 2 | 0 | - | 0 | - | 0 | - | 0 | - |  | 2 |
| TOTAL ENTERING |  | 55 | 25 | - | 35 | - | 14 | - | 1 | - | - |  |
| NO CHANGE |  | 71 | 65 | - | 27 | - | 18 | - | 92 | - | - | 273 |
| TOTAL BY WISCONSIN CRI |  | 126 | 90 | - | 62 | - | 32 | - | 93 | - | - | 403 |

*Not typed by the Wisconsin System.

## NEBRASKA

Nebraska is the third system where an analysis was made based upon some notion of 'value of production'. One term used by the Nebraska system in arriving at the ratios for typing concerns gross production. Gross production is an estimate of all value added on the farm during the year. It is total net livestock production plus total value of all crop production on the farm. Net livestock production is the value added to all classes of livestock during the year accounting for: purchases, sales, inventory change and home use. Thus, net livestock production is computed by the 'accrual method'. The other component of gross production is total value of all crop production and is computed by multiplying acres by yield (total physical production) by a standard price.

Gross production thus calculated is an inflated production figure and is a function of the amount of feed fed to livestock. Thus, if all crop production on the farm is fed to livestock, the value is counted twice in arriving at gross production. Stated alternatively, the total value of all crop production is added to the livestock value of production when sold by feeding to livestock and is thus counted in net livestock production, as well as counted in value of crop production to derive gross production.

Typing the farms by the Nebraska system produced results similar to those presented for the Michigan system. Dairy farms exhibited considerable stability with a few leaving the type. Again a high percentage of the farms in specific types exited with new entries likewise noted.

TABLE 10
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE NEBRASKA SYSTEM OF CLASSIFICATION

| Farm Type | Missouri |  | 1 2* |  |  |  |  |  | 7 | 8* | 9* | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General 0 | 100 |  | 2 | - | 24 | - | 7 | - | 2 | - | - | 35 |
| Grain 1 | 78 | 14 |  | - | 0 | - | 4 | - | 0 | - | - | 18 |
| Grain Hog* 2 | 39 | 10 | 2 |  | 27 | - | 0 | - | 0 | - | - | 39 |
| Hog 3 | 29 | 0 | 0 | - |  | - | 0 | - | 0 | - | - | 0 |
| Grain Beef* 4 | 31 | 9 | 8 | - | 0 |  | 14 | - | 0 | - | - | 31 |
| Beef 5 | 21 | 2 | 0 | - | 0 | - |  | - | 0 | - | - | 2 |
| Grain Dairy*6 | 0 | 0 | 0 | - | 0 | - | 0 |  | 0 | - | - | 0 |
| Dairy 7 | 99 | 3 | 0 | - | 0 | - | 0 | - |  | - | - | 3 |
| $\begin{aligned} & \hline \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 1 | 0 | - | 3 | - | 0 | - | 0 |  | - | 4 |
| Poultry* 9 | 2 | 2 | 0 | - | 0 | - | 0 | - | 0 | - |  | 2 |
| TOTAL ENTERING |  | 41 | 12 | - | 54 | - | 25 | - | 2 | - | - |  |
| NO CHANGE |  | 65 | 60 | - | 29 | - | 19 | - | 96 | - | - | 269 |
| TOTAL BY NEBRASKA CRITER |  | 106 | 72 | - | 83 | - | 44 | - | 98 | - | - | 403 |

*Not typed by the Nebraska System.

The implications concerning the Nebraska system again are similar to those previously discussed. The effects of the fallacy of the system concerning double accounting of crop production cannot be isolated in this study; however, the ratios for grain farms should be smaller due to the larger denominator. The ratios for 'pure' livestock farms will vary according to the magnitude of the constant (value of crop production) added to both the numerator and the denominator when calculating the ratios for typing. This was validated in the study since the number of grain farms declined and the number of hog and beef farms increased. The differences due to definitions alone will be demonstrated in Chapter IV where a constant percentage was applied to arrive at the ratios for the value of production method used by Michigan, Wisconsin and Nebraska.

The method in Chapter IV will be to use a constant percentage to demonstrate the instability of farm types under the three systems. The variation of the subsets shown in Chapter IV will be due only to varying definitions.

## SUMMARY

The various systems of classification resulted in considerable type instability which can be attributed to eight different classification systems and criteria used. The analysis demonstrated that criteria alone, as defined at the beginning of the chapter, can create differences. Within the general framework, additional specific causal factors within a system can be isolated. 'Value of Production' systems (such as the last three discussed) raises questions concerning definitional differences. These differences are examined further in the next chapter.

The objective of this part of the study was to determine if different subsets would be generated by the different systems. The answer is clearly yes and part (a) of the hypothesis has been substantiated. If the results had not substantiated the hypothesis, the study would have ended at this point. Since the hypothesis was validated, the analysis continued for definitional differences (part (b) of the hypothesis) and 'year-end' business analysis for each of the subsets generated. The results of these two parts of the analysis will be reported in Chapters IV and V.

## CHAPTER IV

DEFINITIONAL DIFFERENCES FOR VALUE OF PRODUCTION SYSTEMS

The purpose of this part of the study was to isolate the definitional difference effect on the subsets generated by the value of production systems. Michigan, Wisconsin and Nebraska systems were utilized to type the basic set of 403 farms using a constant percent to make the division into the subsets. Thus, any change in number of farms in each subset was the result of definitions of the terms used to calculate the ratios for specific enterprise value of production/whole farm value of production. The general procedure and table format is the same as used in the preceding chapter. However, a brief review is in order on the procedure used. Table 11 indicates the basic set of 403 farms typed according to the Missouri system. The section for Wisconsin (own percent), Michigan (own percent), and Nebraska (own percent) is repeated from Table 2.

The different procedure used in this part of the study was to apply Wisconsin's percent to Nebraska and Michigan's systems. Michigan and Nebraska definitions were retained to derive their values of production. Wisconsin percentage was used as a constant to determine farm type because it was intermediate in value between those for Nebraska and Michigan. The three systems shown in Table 11 were discussed using their own total system of classification in the preceding chapter. Emphasis here will be upon the changes generated by using a constant percentage
TABLE 11
TYPE CHANGE FOR THOSE STATES USING "VALUE OF PRODUCTION"
CRITERIA DUE TO DIFFERING DEFINITIONS OF PRODUCTION

for all three states. 1
The most noticeable item when viewing the Michigan project concerns the movement from general farms into other types when the percentage requirements were relaxed. Thus, the revised Michigan system was less specialized with the relaxation of the specific type requirements. It would appear that the trend in movement to new types with the revised Michigan system was very similar to movements when the Wisconsin system was applied to the basic set. Notable exceptions were fewer general farms and a larger number of grain farms in the revised Michigan system compared to the Wisconsin system alone. Nebraska's own percentages were less restrictive than Wisconsin's, resulting in more farms moving into the general and grain classifications. It appears that the revised Nebraska system generated notable exceptions to the trends discussed in the previous chapter and the double-accounting of total value of farm production appears as a feasible explanation.

Movements from the foundation subsets typed by the Missouri system are presented for the revised Michigan system in Table 12. The fiftysix farms exiting from the general classification entered type 1 and type 3 with a few farms entering type 5. Sixty-one farms entered type 1 and were distributed rather broadly from all of the Missouri types.

Comparing Tables 12 and 13 emphasizes that the revised Nebraska system resulted in a somewhat different pattern than was attributed to the revised Michigan system. Only three farms entered type 5 rather than thirty-one and these moved from the grain-beef type 4 Missouri classification. The results presented in Table 13 are contrary to the trend established previously concerning the stability of type 7. Type 7

[^12]TABLE 12
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE REVISED MICHIGAN SYSTEM OF CLASSIFICATION

| Farm Type | Missouri | Change In Farm Type |  |  |  |  |  |  |  |  |  | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| General 0 | 100 |  | 19 | 0 | 28 | 0 | 8 | 0 | 1 | 0 | 0 | 56 |
| Grain 1 | 78 | 1 |  | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 9 |
| Grain Hog* 2 | 39 | 1 | 20 |  | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 39 |
| Hog 3 | 29 | 0 | 3 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Grain Beef* 4 | 31 | 0 | 15 | 0 | 1 |  | 15 | 0 | 0 | 0 | 0 | 31 |
| Beef 5 | 21 | 2 | 0 | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 3 |
| Grain Dairy*6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| Dairy 7 | 99 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 3 |
| $\begin{aligned} & \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 4 |
| Poultry* 9 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 2 |
| TOTAL ENTERING |  | 9 | 61 | 0 | 48 | 0 | 31 | 0 | 1 | 0 | 0 | $150$ |
| NO CHANGE |  | 44 | 69 | 0 | 26 | 0 | 18 | 0 | 96 | 0 | 0 | 253 |
| TOTAL |  | 53 | 130 | 0 | 74 | 0 | 49 | 0 | 97 | 0 | 0 | 403 |

*Not typed by the revised Michigan System.

TABLE 13
MOVEMENT OF FARMS FROM MISSOURI TYPE DUE TO THE REVISED NEBRASKA SYSTEM OF CLASSIFICATION

| Farm Type | Missouri | Change In Farm Type |  |  |  |  |  |  |  |  |  | Total Leaving |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2* |  |  | 5 |  | 7 | 8* | 9* |  |
| General 0 | 100 |  | 27 | - | 2 | - | 0 | - | 0 | - | - | 29 |
| Grain 1 | 78 | 5 |  | - | 7 | - | 0 | - | 0 | - | - | 5 |
| Grain Hog* 2 | 39 | 16 | 6 |  | 0 | - | 0 | - | 0 | - | - | 39 |
| Hog 3 | 29 | 7 | 0 | - |  | - | 0 | - | 0 | - | - | 7 |
| Grain Beef* 4 | 31 | 7 | 21 | - | 0 |  | 3 | - | 0 | - | - | 31 |
| Beef 5 | 21 | 15 | 2 | - | 0 | - |  | - | 0 | - | - | 17 |
| Grain Dairy*6 | 0 | 0 | 0 | - | 0 | - | 0 |  | 0 | - | - | 0 |
| Dairy 7 | 99 | 20 | 3 | - | 0 | - | 0 | - |  | - | - | 23 |
| $\begin{aligned} & \text { Mixed } \\ & \text { Livestock* } 8 \end{aligned}$ | 4 | 4 | 0 | - | 0 | - | 0 | - | 0 |  | - | 4 |
| Poultry* 9 | 2 | 2 | 0 | - | 0 | - | 0 | - | 0 | - |  | 2 |
| TOTAL ENTERING |  | 76 | 69 | - | 9 | - | 3 | - | 0 | - | - | $157$ |
| NO CHANGE |  | 71 | 73 | - | 22 | - | 4 | - | 76 | - | - | 246 |
| TOTAL |  | 147 | 142 | - | 31 | - | 7 | - | 76 | - | - | 403 |

*Not typed by the revised Nebraska System.
had twenty-three farms leaving and none entering, thus, reducing the Missouri dairy farms from ninety-nine to seventy-six. A possible explanation was the observation that the revised Nebraska system generated an inflated total farm value of production which became the denominator for the ratio used to classify a farm a specific type. The numerator (the enterprise value of production) remained constant. Therefore, the ratio was reduced below that necessary for a specific farm to be type 7 .

SUMMARY

The hypothesis in Chapter III stated: Varying criteria will result in different subsets due to a) criteria alone and b) definitional differences even though the verbal criterion appear similar. Chapter III discussed and validated the (a) part of the hypothesis. Chapter IV presented results from the analysis of definitional differences which validated the (b) part of the hypothesis. The analysis indicated that instability of subsets can be attributed to the definitions especially for a basic set from an area of diversified agriculture. Conclusions concerning the effects of the varying composition of the subsets will be deferred until the business analysis is discussed in the next chapter.

## CHAPTER V

## BUSINESS ANALYSIS FOR THE SUBSETS GENERATED BY THE

 VARIOUS SYSTEMS OF CLASSIFICATIONResults of the study to this point have demonstrated that different subsets will be generated by the various systems of classification. The task remains to determine if the different composition of the subsets will affect the output from 'a' year-end business analysis for each subset.

A year-end farm business analysis, as used by the Missouri program, was completed for types $0,1,3,5$, and 7 generated by the eight systems of classification. The general objectives presented in the Introduction and applicable to this chapter can be summarized in a specific hypothesis:

Different subsets generated by the various systems of classification will result in varying farm management recommendations for individual firms and differing policy recommendations concerning aggregate use of the analysis results.

The year-end analysis was accomplished on the $360-65$ computer at the University of Missouri. The program utilized by the Missouri Mail-In Record project was used for each of the five types by the eight systems.
"An organized farm record and record analysis program, as an activity of the Missouri Extension Service, started in 1955 under Paul Bebermeyer's leadership. Farmers kept their own records in the Missouri loose-leaf record book. Students were employed by the Agricultural Economics Department to analyze the records manually. In 1960, a pilot program of mail-in records was set up in eight counties. In 1961, it was decided to offer the farmers of Missouri a mail-in record program which would be mechanized."
${ }^{1}$ Carrol L. Kirtley, "The Missouri Farm Business Record Analysis Program," IBM Agricultural Symposium (Endicott, N.Y., May 10-13, 1965), p. 315.

The Missouri computer accounting program has had at least four objectives according to Thomas G. Brown: ${ }^{2}$
(1) To provide current benchmark information about Missouri farms.
(2) To provide a source of information to be used in research in the Department of Agricultural Economics.
(3) To provide a training activity for field agents conducting educational programs in farm management.
(4) To provide an accounting and analysis program to service farmers enrolled in farm management educational programs conducted by the Extension field staff.

These objectives are an example of the type information expected from a record program and its associated analysis as discussed in this chapter. Finley aptly ties together the need for adequate data in his appraisal of EDP and its relationship to the decision-making process in farm management. ${ }^{3}$
"The entire problem of using records as a base for decision making cannot be dismissed. Nevertheless, forward planning and record analysis has been far too independent in the past. It should be recognized that the two processes have different intermediate objectives--forward planning as basically a prescriptive implement while records are a diagnostic device. But both are necessary ingredients for successful and meaningful farm management. It can hardly be overemphasized that a wide gap between the data-gathering and the forward planning processes must be narrowed. If they are not made more complimentary, neither is likely to
${ }^{2}$ Thomas G. Brown, "Missouri's Experience in the Application of EDP in Farm Management Educational Programs," Proceedings of a Workshop: Computer Use in Farm Management Analys is and Production Decisions, Novenber 20-22, 1968 (Washington, D.C.: U.S. Department of Agriculture, August, 1969), p. 12
${ }^{3}$ Robert M. Finely, An Appraisal of EDP and Its Relationship to the Decision Making Process in Farm Management, Agricultural Economics Paper \#1966-3 (Federal Extension Service USDA, Washington, D.C. and Department of Agricultural Economics, University of Missouri, Columbia, Mo.), pp. 24-25.
be very meaningful. Furthermore, the data-orientated processes, as we now know them, will not and should not survive unless their contribution to the decision-making process is substantially increased. On the other hand, without a satisfactory data base, the succession of 'fashionable' planning techniques will continue with each one having its 'day in the sun' only to be discarded in favor of another tool without ever being subjected to a real test."

The format of the output generated by the computer analysis program is basically the format presented in the 1969 Missouri Farm Business Summary publication. ${ }^{4}$ Over 700 items for each farm are available on tape as well as the same number of items for each subset of farms. The selection of items presented in this chapter is considerably fewer than 700, but the items are those thought to effectively demonstrate connotations for description and prescription.

One basic change was made in the analysis format from the year-end business summary format reported by Missouri. The items reported are average of all farms in a subset except in the cases of specific production where items such as number of pigs per litter or milk per cow was more meaningful than an average of all farms in the particular group. The basic change allows totals to represent a sum of the items contributing to said total.

The analysis was completed for five types of farms. The basis for choosing the five types was twofold: (1) the five types represented those used in each system studied except the Census system and (2) the types represented specialized livestock farms, specialized grain farms and general farms, which are often used in published year-end analyses. The results of the analysis for general grain, hog, beef and dairy farm types are reported in Tables 14 through 18. Each table is four pages

[^13]and contains the results for each of the eight systems included in the study. In each set of tables, 139 items pertaining to a particular group of farms is presented. It was not the intent of this study to explicitly discuss each of the items contained in the tables; however, they were included in order to view inter-relationships of particular interest or significance which occurred. A description of selected items, from the 139 reported in Tables 14 through 18, is found in Appendix II. For a more complete description, reference is made to the Missouri Farm Business Summary, 1969. ${ }^{5}$

A word is in order concerning the approach used in the Missouri Year-End Analysis. Total cash expenses include total new investments expenses. It should be noted that the total investment expenses are the costs of the items under consideration even though many capital items may be purchased over a period of time or with borrowed funds. Receipts include sales from all sources including government payments, miscellaneous income, custom work, and sale of capital items. Cash balance, then, is the difference between total cash receipts and total expenses. Depreciation is reflected in the change of inventories when arriving at the various returns. All items reported are for the business unit which includes the landlord's and/or partner's share in the business.

The remainder of this chapter will explore the year-end analysis of the five types in terms of various measures of size, selected expense items, returns and several efficiency measures followed by the overall implications of the relationship of the findings to the statedhypothesis. Each subset generated by the eight systems for the general farm type will be referred to as 'The Missouri group' or only as 'Missouri'. The subset

[^14]generated by the Illinois and Kentucky system will be referred to as
Illinois. Lastly, the terms 'subset', 'group', and 'the farms' will be used interchangeably to vary the dialogue flow. ${ }^{6}$

[^15]
## GENERAL FARMS (TYPE 0)

The discussion for the year-end business analysis concerning the general farms is based on information in Table 14. The Kansas and Census systems of classification did not generate any general farms. The remaining systems produced subsets ranging from a low of ten to a high of 261 farms by the Michigan system.

The measures of size, reported in the business analysis, varied for the six systems which generated general farms. Illinois, with twentytwo farms, was low in terms of acres while Wisconsin was high in terms of acres with the difference being 12 percent. However, measures of size using capital were high in Illinois, indicating more intensive capital use on fewer acres. As could be expected, land and improvement capital managed was low due to the low acres but the components of total capital managed for livestock, feed, seed and supplies, and machinery and equipment were all high for the twenty-two farms included in the Illinois general farm type. The same groups of farms were largest in terms of man years of labor used as well as crop productive man work units and livestock productive man work units. While the number of head per farm was not high for each class of livestock in the Illinois group, several of the farms had livestock requiring high productive man work units.

The group of general farms producing the low measures of size did not tend to one system as was true for the high group. When viewing which group had the lowest indicator of capital managed, size was rather randomly distributed among the groups. This was also true for the year-


| 1970 GENERAL FARMS |  | MISSOURI |  | KANSAS | IOWA | ILLINOIS \& KENTUCKY |  |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (100) | (0) |  | (84) |  | $(22$ | (0) |  | (261) |  | (126) |  | (105) |
| Total Iivestock Expense | 100 | 16380 | 100 |  | 17083 | 84 | 16329 | 22 |  | 15853 | 261 | 16220 | 126 | 12344 | 105 |
| Feed | 110 | 15033 | 100 |  | 15899 | 84 | 14620 | 22 |  | 14374 | 261 | 14907 | 126 | 11300 | 105 |
| Other | XXX | 1347 | 100 |  | 1184 | 84 | 1709 | 22 |  | 1479 | 261 | 1213 | 126 | 1044 | 105 |
| Total Machinery \& Eq. Expense | 200 | 5589 | 100 |  | 5490 | 84 | 7156 | 22 |  | 6037 | 261 | 6140 | 126 | 5770 | 105 |
| Auto | 210 | 445 | 89 |  | 382 | 76 | 437 | 20 |  | 383 | 233 | 419 | 118 | 421 | 96 |
| Gas and Oil | 220 | 1204 | 99 |  | 1223 | 83 | 1624 | 22 |  | 1379 | 260 | 1340 | 125 | 1268 | 105 |
| Tractor | 230 | 592 | 98 |  | 654 | 83 | 710 | 22 |  | 707 | 257 | 769 | 124 | 658 | 105 |
| Truck | 240 | 747 | 98 |  | 708 | 83 | 666 | 21 |  | 807 | 260 | 900 | 125 | 804 | 103 |
| Other Machinery | 250 | 1273 | 100 |  | 1142 | 84 | 1321 | 22 |  | 1441 | 250 | 1394 | 126 | 1311 | 105 |
| Machine Hire | 260 | 1328 | 97 |  | 1382 | 82 | 2397 | 21 |  | 1321 | 255 | 1318 | 124 | 1307 | 103 |
| Total Crop Expense | 300 | 6782 | 100 |  | 6999 | 84 | 8591 | 22 |  | 7639 | 261 | 7618 | 126 | 7584 | 105 |
| Lime | 310 | 339 | 64 |  | 352 | 54 | 287 | 13 |  | 398 | 180 | 354 | 81 | 301 | 68 |
| Phosphate | 320 | 75 | 15 |  | 110 | 21 | 111 | 3 |  | 66 | 39 | 77 | 22 | 89 | 16 |
| Other Fertilizer | XXX | 3831 | 99 |  | 3958 | 84 | 4974 | 22 |  | 4258 | 260 | 4239 | 125 | 4273 | 104 |
| Chemicals | 350 | 1228 | 94 |  | 1239 | 80 | 1949 | 22 |  | 1529 | 244 | 1515 | 120 | 1463 | 101 |
| Miscellaneous | 370 | 1309 | 99 |  | 1340 | 83 | 1270 | 22 |  | 1388 | 259 | 1433 | 125 | 1458 | 104 |
| Total Labor Expense | 400 | 2129 | 93 |  | 2087 | 81 | 1926 | 20 |  | 2275 | 246 | 2176 | 121 | 2008 | 99 |
| Wages | 410 | 1941 | 92 |  | 1906 | 81 | 1803 | 20 |  | 2057 | 245 | 1950 | 121 | 1822 | 99 |
| Other Labor | XXX | 188 | 89 |  | 181 | 76 | 123 | 18 |  | 218 | 235 | 226 | 117 | 186 | 89 |
| Total Miscellaneous Expense | 500 | 8458 | 100 |  | 8363 | 84 | 11302 | 22 |  | 8850 | 261 | 9064 | 126 | 8360 | 105 |
| Real Estate Main. \& Repairs | 510 | 1414 | 100 |  | 1422 | 84 | 1777 | 22 |  | 1375 | 260 | 1445 | 126 | 1294 | 105 |
| Utilities | XXX | 716 | 100 |  | 671 | 84 | 659 | 22 |  | 727 | 261 | 710 | 126 | 653 | 105 |
| Taxes | 550 | 1542 | 99 |  | 1504 | 84 | 1450 | 22 |  | 1583 | 259 | 1617 | 125 | 1674 | 105 |
| Insurance | 560 | 503 | 100 |  | 443 | 84 | 541 | 22 |  | 521 | 260 | 542 | 126 | 503 | 105 |
| Interest | 570 | 3044 | 95 |  | 3172 | 78 | 5224 | 22 |  | 3456 | 240 | 3573 | 117 | 3128 | 96 |
| Cash Rent | 580 | 963 | 49 |  | 888 | 41 | 1329 | 15 |  | 896 | 136 | 892 | 69 | 842 | 52 |
| Miscellaneous Overhead | 590 | 276 | 98 |  | 263 | 83 | 322 | 21 |  | 292 | 258 | 285 | 125 | 266 | 105 |
| Total Operating Expense | XXX | 39338 |  |  | 40022 |  | 45304 |  |  | 40554 |  | 41218 |  | 36066 |  |
| Breeding Livestock | 610 | 3103 | 91 |  | 2586 | 72 | 3252 | 20 |  | 2336 | 210 | 2720 | 106 | 2330 | 88 |
| Stocker \& Feeding Livestock | 620 | 11856 | 69 |  | 14517 | 60 | 32447 | 16 |  | 11519 | 172 | 12108 | 87 | 10490 | 68 |
| Mach. and Equipment | 630 | 4332 | 90 |  | 4337 | 75 | 5495 | 19 |  | 4761 | 235 | 5111 | 115 | 5197 | 98 |
| Buildings \& Feed Lots | 640 | 2856 | 48 |  | 2239 | 33 | 1904 | 7 |  | 2090 | 103 | 2237 | 54 | 2467 | 42 |
| Field Improvements (land clea ing, fences, terraces, etc.) | - 650 | 533 | 46 |  | 273 | 40 | 456 | 11 |  | 489 | 121 | 296 | 63 | 609 | 56 |
| Total New Investment | XXX | 22680 |  |  | 23942 |  | 43554 |  |  | 21195 |  | 22472 |  | 21093 |  |
| Total Cash Expense |  | 62016 |  |  | 63964 |  | 88856 |  |  | 61849 |  | 63690 |  | 57159 |  |
| Resale ( $A+B$ ) |  | 490 |  |  | 728 |  | 225 |  |  | 775 |  | 721 |  | 544 |  |

TABLE 14 (continued)
YEAR END BUSINESS SUMMARY FOR GENERAL FARMS TYPED BY VARIOUS SYSTEMS OF CLASSIFICATION

| 1970 GENERAL FARMS |  | MISSOURI |  | KANSAS | IOWA | ILLINOIS \& KENTUCKY |  |  | CENSUS | MICHI GAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (100) | (0) |  | (84) |  | (22) | (0) |  | (261) |  | (126) |  | (10) |
| Total Livestock Receipts | 700 | 55046 | 100 |  | 58360 | 84 | 78962 | 22 |  | 53221 | 261 | 55160 | 126 | 49368 | 10! |
| Beef Cattle | 720 | 26275 | 100 |  | 29852 | 83 | 51376 | 21 |  | 24197 | 240 | 27412 | 120 | 25134 | 103 |
| Dairy Cattle | 730 | 242 | 15 |  | 176 | 13 | 863 | 9 |  | 974 | 56 | 764 | 24 | 280 | $1 f$ |
| Hogs | 740 | 26544 | 97 |  | 26650 | 81 | 20439 | 19 |  | 22975 | 240 | 22645 | 118 | 20943 | 9 9 |
| Sheep | 750 | 2 | 1 |  | 2 | 1 | 0 | 0 |  | 6 | 12 | 2 | 3 | 8 | ¢ |
| Milk | 786 | 1285 | 11 |  | 359 | 11 | 5541 | 8 |  | 4111 | 50 | 2591 | 20 | 1188 | 1. |
| Poultry | 790 | 11 | 5 |  | 445 | 6 | 9 | 1 |  | 540 | 13 | 1112 | 6 | 1331 |  |
| Eggs | xxx | 687 | 5 |  | 876 | 6 | 732 | 1 |  | 418 | 13 | 634 | 6 | 484 |  |
| Total Crop Receipts | 800 | 13199 | 98 |  | 11427 | 82 | 8287 | 21 |  | 17300 | 256 | 14601 | 124 | 16542 | $10:$ |
| Forage Crops | 810 | 466 | 42 |  | 455 | 32 | 251 | 7 |  | 341 | 90 | 379 | 47 | 452 | $4!$ |
| Fruits, Nuts | - 820 | . 08 | 1 |  | 0.10 | 1 | 0 | 0 |  | 2 | 3 | 0.49 | 1 | 0 | ( |
| Corn | 833 | 2279 | 55 |  | 2231 | 42 | 2559 | 13 |  | 4931 | 161 | 3319 | 75 | 3895 | 6 ! |
| Grain Sorghum | 836 | 121 | 8 |  | 160 | 5 | 235 | 3 |  | 298 | 32 | 309 | 16 | 276 |  |
| Soybeans | 837 | 4450 | 76 |  | 3758 | 57 | 3596 | 15 |  | 6116 | 187 | 5476 | 95 | 5153 | $8:$ |
| Soybean Seed | 847 | 884 | 16 |  | 627 | 10 | 0 | 0 |  | 820 | 38 | 801 | 20 | 1123 | 21 |
| Wheat | 838 | 312 | 32 |  | 179 | 25 | 95 | 5 |  | 493 | 93 | 461 | 47 | 504 | 4. |
| Wheat Seed | 848 | 24 | 1 |  | 0.17 | 1 | 0 | 0 |  | 53 | 10 | 15 | 2 | 72 |  |
| Grain Sorghum | 850 | 146 | 27 |  | 213 | 23 | -1.49 | 4 |  | 107 | 47 | 106 | 29 | 176 | $2 ¢$ |
| Legume Seeds | 860 | 22 | 10 |  | 47 | 8 | 41 | 3 |  | 55 | 17 | 38 | 12 | 25 | $1:$ |
| Truck Crops | 870 | 0.33 | 1 |  | 0 | 0 | 0 | 0 |  | 9 | 2 | 0.26 | 1 | 0.31 |  |
| Government Payments | 899 | 3733 | 85 |  | 3158 | 68 | 1382 | 12 |  | 3648 | 212 | 3354 | 106 | 4197 | $9 ?$ |
| Total Miscellaneous Income | 900 | 2976 | 98 |  | 3014 | 84 | 3593 | 22 |  | 2962 | 258 | 3185 | 126 | 3056 | 10: |
| Custom Work | 910 | 639 | 60 |  | 750 | 48 | 1319 | 16 |  | 840 | 167 | 934 | 81 | 863 | $6 ¢$ |
| Ins. from Machines, Bldg. | XXX | 430 | 43 |  | 509 | 15 | 53 | 5 |  | 349 | 42 | 536 | 24 | 508 | 2? |
| Government Payments | 960 | 104 | 43 |  | 97 | 33 | 77 | O |  | 90 | 103 | 95 | 52 | 103 | $4!$ |
| All Other Farm Receipts | y yx | 1794 | 92 |  | 1658 | 78 | 2144 | 20 |  | 1583 | 243 | 1620 | 11.6 | 1582 | 9 9 |
| Total Cash Receipts |  | 71221 |  |  | 72801 |  | 90842 |  |  | 73483 |  | 72946 |  | 68965 |  |
| Cash Balance (Bus) | 40011 | 8715 | 100 |  | 8109 | 84 | 1751 | 22 |  | 10859 | 261 | 8535 | 126 | 11263 | 10: |
| Interest (Bus) | 40012 | 3044 | 95 |  | 3173 | 78 | 5224 | 22 |  | 3456 | 240 | 3573 | 117 | 3128 | 9 |
| Home Used products | 40013 | 433 | 87 |  | 393 | 72 | E54 | 19 |  | 422 | 225 | 403 | 112 | 4.94 | $9:$ |
| Net Change of Inventory | 40014 | 2164 | 100 |  | -219 | 84 | 1929 | 22 |  | 1510 | 261 | 2229 | 126 | 1353 | 10: |
| Total Business Unit and Family Earnings | 40019 | 14355 | 100 |  | 11456 | 84 | 9528 | 22 |  | 16248 | 261 | 14745 | 26 | 16148 | 10 |
| Interest Allow. on Total Cap. | 40021 | 12257 | 100 |  | 12011 | 84 | 13361 | 22 |  | 12563 | 261 | 12529 | 126 | 12802 | 10 |
| Jalue of Family Labor | 40022 | 1062 | 56 |  | 869 | 43 | 1324 | 14 |  | 1065 | 159 | 1062 | 74 | 781 | 6 |
| value of Operator's Labor | 40023 | E543 | 100 |  | 5661 | 84 | 4916 | 22 |  | 5434 | 261 | 5529 | 126 | 5555 | 10 |
| Return to Mgt: Business Unit | 40024 | -4:05 | 100 |  | -7085 | 34 | -10013 | 22 |  | -2814 | 261 | -4375 | 125 | 2990 | 10: |
| Return to Labor is Management | 40026 | 1038 | 100 |  | -1424 | 84 | -5097 | 22 |  | 2620 | 261 | 1154 | 126 | 2565 | 10 |
| Return to Labor \& Mgt/Man | 40027 | -41 | 100 |  | -1978 | 84 | -4717 | 22 |  | 1371 | 261 | -471 | 125 | 2017 | 10: |

table 14 (continued)
YEAR END BUSINESS SUMMARY FOR GENERAL FARMS TYPED BY VARIOUS SYSTEMS OF CLASSIFICATION

| 1970 GENERAL FARMS | MISSOURI |  |  | KANSAS | IOWA <br> KENTUCKY |  |  |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code | MIS | (100) | (0) |  | (84) |  | (22) | (0) |  | (261) |  | (126) |  | (10 |
| Return to Capital \& Mgt. Business Unit | 40028 40029 | 7752 2.78 | 100 |  | 4926 1.75 |  |  | 22 22 |  |  | 261 261 | $\begin{aligned} & 8154 \\ & 3.24 \end{aligned}$ | 126 | 9812 3.68 | 10 10 |
| Percent Return: Business Unit Net Earnings per $\$ 100$ Charged | 40029 40030 | 2.78 77 | 100 100 |  | 1.75 64 | 84 84 | 1.16 57 | 22 22 |  | 3.23 82 | 261 261 | 3.24 77 | 126 126 | 3.68 84 | 10 10 |
| Total Acres in Business Unit | 41010 | 741 | 100 |  | 740 | 84 | 667 | 22 |  | 714 | 261 | 759 | 126 | 755 | 10 |
| Acres of Cropland | 41012 | 455 | 100 |  | 446 | 84 | 491 | 22 |  | 472 | 261 | 489 | 126 | 513 | 10 |
| Total Capital Managed | 41020 | 245141 | 100 |  | 240228 | 84 | 266022 | 22 |  | 251259 | 261 | 250576 | 126 | 256037 | 10 |
| Land \& Improvements | 41021 | 169521 | 100 |  | 161827 | 84 | 164693 | 22 |  | 176908 | 261 | 173507 | 126 | 181176 | 10. |
| Livestock | 41022 | 41917 | 100 |  | 44687 | 84 | 59089 | 22 |  | 37685 | 261 | 40598 | 126 | 37872 | 10 |
| Feed, Seed \& Supplies | 41023 | 15024 | 100 |  | 15002 | 84 | 18331 | 22 |  | 16154 | 261 | 14785 | 126 | 16401 | 10! |
| Machinery and Equipment | 41024 | 18681 | 100 |  | 18711 | 84 | 23908 | 22 |  | 20515 | 261 | 20689 | 126 | 20590 | 10 ! |
| Total Value of Production | 41030 | 38357 | 100 |  | 35290 | 84 | 37164 | 22 |  | 41497 | 261 | 40505 | 126 | 40688 | 10 : |
| Per Acre of Open Land | 41031 | 63.97 | 100 |  | 61.78 | 84 | 70.20 | 22 |  | 75.58 | 261 | 69.45 | 126 | 67.89 | 10 |
| Productive Man Work Units | 41040 | 726 | 100 |  | 727 | 84 | 908 | 22 |  | 733 | 261 | 756 | 126 | 716 | 10 |
| Per Man | 41041 | 373 | 100 |  | 363 | 84 | 433 | 22 |  | 373 | 261 | 393 | 126 | 380 | 10 |
| Man Years of Labor | 41050 | 2.01 | 100 |  | 2.03 | 84 | 2.15 | 22 |  | 2 | 261 | 2 | 126 | 1.92 | 10 |
| Crop Productive Man Work |  |  |  |  |  |  |  |  |  |  |  | 320 | 126 |  |  |
| Units ${ }^{\text {Value }}$ crops Harvested | 411210 |  |  |  | 19908 |  |  |  |  |  |  |  |  |  | 10. |
| Value of Crops Harvested Value of All production on | 41210 | 21185 | 100 |  | 19908 | 84 | 24736 | 22 |  | 24055 | 260 |  |  |  |  |
| Value of All Production on Cropland |  |  |  |  | 24368 | 84 | 27732 | 22 |  | 29041 | 261 | 28040 | 126 | 30536 | 10! |
| Cropland Acre of Cropland | 41221 | 58.84 | 100 |  | 57.75 | 84 | 61.94 | 22 |  | 60.23 | 261 | 59.23 | 126 | 60.61 | $10^{\prime}$ |



## TABLE 14 (continued)



| 1970 GENERAL FARMS | MISSOURI |  |  | KANSAS | IOWA | ILLINOIS \& KENTUCKY |  |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | code |  | (100) | (0) |  | (84) |  | (22) | (0) |  | (261) |  | (126) |  | 1105 |
| Livestock Productive Man Work Units | 41501 | 420 | 100 |  | 416 | 84 | 512 | 22 |  | 404 | 261 | 413 | 126 | 366 | 105 |
| Value of All Livestock prod. | 41502 | 39472 | 100 |  | 39732 | 84 | 43937 | 22 |  | 48262 | 261 | 39340 | 126 | 34255 | 105 |
| Feed Fed to Livestock | 41503 | 29794 | 100 |  | 31519 | 84 | 47632 | 22 |  | 28093 | 261 | 29473 | 126 | 26678 | 105 |
| Livestock Returns Above Feed Costs | 41504 | 9678 | 100 |  | 8213 | 84 | 6305 | 22 |  | 10169 | 261 | 9867 | 126 | 7577 | 105 |
| Livestock Returns Per $\$ 100$ Feed Fed | 41505 | 135 | 100 |  | 130 | 84 | 119 | 22 |  | 142 | 261 | 138 | 126 | 133 | 105 |
| Livestock Returns for Labor and Housing | 41506 | 1482 | 100 |  | 203 | 84 | -3472 | 22 |  | 2109 | 261 | 1788 | 126 | 321 | 105 |
| Feed Purchased | 41509 | 9080 | 100 |  | 10129 | 84 | 8578 | 22 |  | 9086 | 261 | 9576 | 126 | 7727 | 105 |
| Average No. of Dairy Cows | 41511 | 18 | 14 |  | 8 | 12 | 26 | 8 |  | 38 | 51 | 31 | 20 | 17 | 15 |
| Milk Per Cow | 41513 | 8137 | 12 |  | 6488 | 11 | 10715 | 8 |  | 9019 | 47 | 1336 | 19 | 8186 | 13 |
| Value of Dairy production | 41514 | 3847 | 40 |  | 1745 | 27 | 13132 | 11 |  | 12653 | 102 | 3139 | 41 | 4964 | 30 |
| Number of Beef Cows | 41521 | 91 | 86 |  | 81 | 70 | 66 | 16 |  | 64 | 194 | 60 | 102 | 75 | 87 |
| Number of Stocker \& Feeders | 41522 | 119 | 100 |  | 133 | 83 | 190 | 22 |  | 108 | 247 | 116 | 121 | 113 | 102 |
| Value of All Beef Production | 41525 | 16666 | 100 |  | 18464 | 83 | 21949 | 22 |  | 15298 | 248 | 17226 | 122 | 15936 | 102 |
| Litters of pigs Farrowed | 41531 | 76 | 91 |  | 71 | 71 | 61 | 16 |  | 74 | 202 | 70 | 105 | 64 | 86 |
| Value of All Pork Production | 41535 | 21310 | 97 |  | 19554 | 81 | 17025 | 19 |  | 17958 | 242 | 18650 | 118 | 15753 | 98 |
| Pigs Per Litter | 41536 | 8 | 91 |  | 8 | 70 | 8 | 16 |  | 8 | 201 | 8 | 104 | 8 | 85 |
| Value of Poultry production | 41557 | 388 | 21 |  | 4341 | 16 | 746 | 5 |  | 648 | 50 | 6382 | 25 | 8709 | 17 |
| Total Labor Charge | 41610 | 9064 | 100 |  | 8963 | 84 | 8756 | 22 |  | 9104 | 261 | 9096 | 126 | 8672 | 105 |
| Per \$100 production | 41611 | 28.89 | 100 |  | 30.65 | 84 | 27.50 | 22 |  | 27.36 | 261 | 24.46 | 126 | 25.31 | 105 |
| Per Man | 41612 | 4540 | 100 |  | 4397 | 84 | 4129 | 22 |  | 4520 | 261 | 4652 | 126 | 4568 | 105 |
| Total Mach. \& Equip. Cost | 41700 | 10328 | 100 |  | 10198 | 84 | 12439 | 22 |  | 11222 | 261 | 11317 | 126 | 11045 | 105 |
| Fixed Mach. \& Equip. Cost | 41710 | 5697 | 100 |  | 5761 | 84 | 7093 | 22 |  | 6319 | 261 | 6368 | 126 | 6405 | 105 |
| Fixed Mach. \& Equip. Cost: Lvst | 41711 | 2091 | 100 |  | 2068 | 84 | 2616 | 22 |  | 2085 | 261 | 2137 | 126 | 2050 | 105 |
| Variable Machine Cost: Total | 41720 | 4630 | 100 |  | 4437 | 84 | 5346 | 22 |  | 4903 | 261 | 4950 | 126 | 4640 | 105 |
| Variable Machine Cost: Lvst. | 41721 | 1573 | 100 |  | 1476 | 84 | 1644 | 22 |  | 1508 | 261 | 1482 | 126 | 1329 | 105 |
| Machine \& Equip. Cost/\$100 |  |  |  |  |  |  |  |  |  | 31.18 |  |  | 126 |  |  |
| Production Machine \& Equipment Investment | 41730 41740 | 18681 | 100 |  | 18711 | 84 | 23908 | 22 |  | 20515 | 261 | 20689 | 126 | 20590 | 105 |
| Machine and Equip. Invest/Man | 41741 | 9425 | 100 |  | 9420 | 84 | 11340 | 22 |  | 10511 | 261 | 11050 | 126 | 11016 | 105 |
| Mach. \& Equip. Invest./\$100 Production | 41742 | 52.97 | 100 |  | 58.05 | 84 | 65.77 | 22 |  | 56.34 | 261 | 54.61 | 126 | 56.97 | 105 |
| Combined Labor \& Machinery and Equip. Charge/\$100 Production | 41800 | 58.73 | 100 |  | 63 | 84 | 62 | 22 |  | 58.55 | 261 | 57 | 126 | 56.28 | 105 |

end business analysis when considering size indicators other than capital managed.

A significant result concerning general farm size, from the yearend analysis, was the difference in physical size. This implied that the different systems generated varying capital intensity and structure implications.

Total cash expenses for type 0 varied by 36 percent from the group generated by the Nebraska system to the Illinois group. Two-thirds of the difference was attributed to total new investment expense. The component of total new investment expense which made the Illinois group high was the sixteen farms with $\$ 32,447$ stocker and feeding livestock expense.

Total operating expense showed a 20 percent difference from Illinois to Nebraska. Interest expense can be used as a proxy for indebtedness and was highest for the Illinois group ( $\$ 5,224$ ) and lowest for the Missouri group ( $\$ 3,044$ ). At 6 percent, the difference from the high to the low group represents $\$ 36,333$ indebtedness.

The high Illinois machinery investment was reflected in the unit cost with total crop cost per acre, variable cost and fixed machine cost per acre being highest for the Illinois group. The low costs per unit were random among the other groups of farms within the general farm type.

Total cash receipts were considerably higher for the twenty-two farms in the Illinois group than the other five groups. The main contribution to the high receipts was livestock with beef the major contributor to total livestock receipts.

Only the Nebraska general farm type showed a positive return to management for the business unit. The high cash receipt group (Illinois) showed a negative return to management of approximately $\$ 10,000$. All
subsets of general farms indicated negative returns to management except Nebraska, which showed $\$ 2,990$ positive return.

The Illinois and Iowa general farms had negative returns to labor and management while the other four groups did have a positive return when labor and management were combined. The percent return to the business unit was high for the Nebraska group with 3.68 and low for the Illinois group with 1.16. ${ }^{7}$

The subsets generated by the various systems of classification resulted in varying year-end business analysis results. The implications should be that the structure of the general farms portrayed by the yearend analysis varied according to the composition of the farms in each of the general farm type groups. Size indicators and other items discussed above were fairly consistent for the largest farms which made up the Illinois group. However, a description of the group most adequately describing general farms of the 403 farms used for the basic set is difficult, if not impossible, to determine since the indicators were widely distributed among the five types discussed. ${ }^{8}$

Some questions relative to this class are: do the general farms in Missouri require 261 productive man work days for livestock or 512 days? Are the returns per $\$ 100$ feed fed $\$ 142$ or $\$ 119$ ? Are the livestock returns for labor and housing negative or positive? Is the capital required for livestock $\$ 59,000$ or $\$ 37,000$ for general farms? Are crop costs per acre $\$ 29$ or $\$ 38$ ? Is the cost for management to the operator negative $\$ 10,000$ or is the operator receiving a positive $\$ 3,000$ return for his management input to the business unit?

[^16]The above questions are only a sample of those which are raised from viewing the year-end analysis for the groups of farms produced by the various systems of classification concerning general farm types. Affirmative or negative answers cannot be given to any of the questions. If a trend were observed in the items, a case could be made for one type classification system over the other concerning the general farms. However, the only trend observed was the physical size measurement being highest for the Illinois group of farms. The implications from the physical measurements being largest are contrary to expected higher returns from larger physical units. Resources, according to the analysis, were not combined in the most productive manner or diseconomies of scale resulted in lower returns for the larger size farms. Therefore, the questions raised will go unanswered until the grain, hog, beef, and dairy farm results are viewed to see if more pointed and logical trends develop under the classification systems for each of the said types.

GRAIN FARMS (TYPE 1)

The composition of the grain type initially was composed of seventyeight farms by the Missouri system. Michigan's rigid requirements for the high percentage value of production necessary for a farm to be classified type 1 resulted in only nine grain farms by the Michigan system. All eight classifications generated a group of grain farms ranging from nine in Michigan to 128 in Kansas. It would be expected that types composed of a similar number of farms would produce similar results in the yearend business analysis. However, it should be remembered that even though the totals may be similar, the composition of the farms making up the totals vary significantly with exit and entry of completely different farms.

The specialized grain farms making up the Michigan group were larger in terms of physical measurements. In terms of total acres, the average for these nine farms was 1,182 compared with a low in the Iowa group of 785. Total capital managed was also highest for the Michigan group since the large acreage caused land and improvements to be the 'big' contributor to the high total capital managed. Machinery and equipment investment was also larger for the Michigan farms even though the number of acres (694) was not greatly larger than the other groups. Man years of labor of 2.43 appeared significantly higher for Michigan than the low of 1.79 for the Illinois group. The number of crop productive man work days was highest for the Missouri group which was explained by the acres of each crop grown, (i.e., Missouri farms had more
YEAR END BUSINESS SUMMARY FOR GRAIN FARMS TYPED BY VARIOUS SYSTEMS OF CLASSIFICATION

table 15 (continued)


table 15 (continued)


| 1970 GRAIN FARMS |  | MISSOURI |  | KANSAS |  | IOWA |  | ILLINOIS \& KENTUCKY |  | CENSUS |  | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Code | Value | (78) |  | (128) |  | (98) |  | (90) |  | (77) |  | (9) |  | (90) |  | (73) |
| Return to Capital \& Mgt. Business Unit <br> Percent Return: Business Unit | 40028 40029 | 19421 5.77 | 78 78 | 15442 4.84 | 128 128 | 18991 6.26 | 98 98 | 19218 6.08 | 90 90 | $\begin{array}{r} 19603 \\ 6.13 \end{array}$ | 77 77 | $\begin{aligned} & 9340 \\ & 3.62 \end{aligned}$ | 9 | $\begin{array}{r} 19104 \\ 6.01 \end{array}$ | $\begin{aligned} & 90 \\ & 90 \end{aligned}$ | $\begin{array}{r} 19558 \\ 6.07 \end{array}$ | $\begin{aligned} & 73 \\ & 73 \end{aligned}$ |
| Percent Return: Business Unit Net Earnings Per $\$ 100$ Charged for Land, Labor \& Capital | 40029 40030 | 5.77 110 | 78 | 4.84 99 | 128 | 6.26 115 | 98 98 | 6.08 115 | 90 | 114 | 77 | 9.62 98 | - | 113 | 90 | 113 | 73 |
| Total Acres in Business Unit Acres of Cropland | $\begin{aligned} & 41010 \\ & 41012 \end{aligned}$ | $\begin{array}{r} 829 \\ 665 \end{array}$ | $\begin{aligned} & 78 \\ & 78 \end{aligned}$ | $\begin{aligned} & 842 \\ & 620 \end{aligned}$ | $\begin{aligned} & 128 \\ & 128 \end{aligned}$ | $\begin{aligned} & 785 \\ & 616 \end{aligned}$ | $\begin{aligned} & 98 \\ & 98 \end{aligned}$ | $\begin{aligned} & 787 \\ & 617 \end{aligned}$ | $\begin{aligned} & 90 \\ & 90 \end{aligned}$ | $\begin{aligned} & 798 \\ & 632 \end{aligned}$ | $\begin{aligned} & 77 \\ & 77 \end{aligned}$ | $\begin{array}{r} 1182 \\ 694 \end{array}$ | $\begin{aligned} & 9 \\ & 9 \end{aligned}$ | $\begin{aligned} & 798 \\ & 628 \end{aligned}$ | $\begin{aligned} & 90 \\ & 90 \end{aligned}$ | $\begin{aligned} & 792 \\ & 630 \end{aligned}$ | $\begin{aligned} & 73 \\ & 73 \end{aligned}$ |
| Total Capital Managed | 41020 | 317692 | 78 | 314819 | 128 | 301120 | 98 | 305218 | 90 | 304525 | 77 | 360039 | 9 | 305027 | 90 | 306595 | 73 |
| Land \& Improvements | 41021 | 249825 | 78 | 237370 | 128 | 236300 | 98 | 239384 | 90 | 245183 | 77 | 293561 | 9 | 239943 | 90 | 243401 | 73 |
| Livestock | 41022 | 18373 | 77 | 30845 | 127 | 20058 | 97 | 20116 | 89 | 15819 | 76 | 12063 | 8 | 19796 | 89 | 16587 | 72 |
| Feed, Seed, \& Supplies | 41023 | 22387 | 78 | 21550 | 128 | 20418 | 98 | 21260 | 90 | 19693 | 77 | 20677 | 9 | 20736 | 90 | 12027 | 73 |
| Machinery and Equipment | 41024 | 27107 | 78 | 25056 | 128 | 24346 | 98 | 24460 | 90 | 23832 | 77 | 33738 | 9 | 24553 | 90 | 25581 | 73 |
| Total value of production | 41030 | 53769 | 78 | 49860 | 128 | 52046 | 98 | 51308 | 90 | 51574 | 77 | 53100 | 9 | 51786 | 90 | 52214 | 73 |
| Per Acre of Open Land | 41031 | 74 | 78 | 70 | 128 | 80 | 98 | 77 | 90 | 73 | 77 | 65 | 9 | 75 | 90 | 75 | 73 |
| Productive Man Work Units | 41040 | 621 | 78 | 676 | 128 | 606 | 98 | 583 | 90 | 567 | 77 | 530 | 9 | 583 | 90 | 569 | 73 |
| Per Man | 41041 | 337 | 78 | 361 | 128 | 344 | 98 | 344 | 90 | 340 | 77 | 282 | 9 | 338 | 90 | 337 | 73 |
| Man Years of Labor | 41050 | 1.91 | 78 | 1.97 | 128 | 1.88 | 98 | 1.79 | 90 | 1.79 | 77 | 2.43 | 9 | 1.83 | 90 | 1.82 | 73 |
| Crop Productive Man Work Units | 41110 | 433 | 78 | 407 | 128 | 389 | 98 | 388 | 90 | 391 | 77 | 410 | 9 | 393 | 90 | 403 | 73 |
| Value of All Production on Cropland | 41220 | 48546 | 78 | 43082 | 128 | 45017 | 98 | 45370 | 90 | 45949 | 77 | 52629 | 9 | 46765 | 90 | 48176 | 73 |
| Per Acre of Cropland | 41221 | 73.31 | 78 | 69.13 | 128 | 72.89 | 98 | 74.04 | 90 | 71.33 | 77 | 73.32 | 9 | 74.40 | 90 | 75.94 | 73 |
| Crop Costs Per Acre of Cropland | 41303 | 34.10 | 78 | 43.27 | 128 | 30.20 | 98 | 33.61 | 90 | 32.33 | 77 | 39.02 | 9 | 33.18 | 90 | 43.17 | 73 |
| Fixed Machine Coses | 41310 | 7006 | 78 | 6227 | 128 | 6331 | 98 | 6450 | 90 | 6504 | 77 | 9157 | 9 | 6478 | 90 | 6923 | 73 |
| Per Acre of Cropland | 41311 | 10.82 | 78 | 10.22 | 128 | 10.52 | 98 | 10.65 | 90 | 10.54 | 77 | 13.03 | 9 | 10.60 | 90 | 11.31 | 73 |
| Variable Machine Costs | 41320 | 4828 | 78 | 4482 | 128 | 4346 | 98 | 4242 | 90 | 4436 | 77 | 6158 | 9 | 4399 | 90 | 4504 | 73 |
| Per Acre of Cropland | 41321 | 7.68 | 78 | 7.33 | 128 | 6.96 | 98 | 7.32 | 90 | 7.30 | 77 | 9.43 | 9 | 7.32 | 90 | 7.48 | 73 |
| Fertilizer and Lime | 41330 | 5745 | 78 | 5354 | 128 | 5470 | 98 | 5466 | 90 | 5261 | 77 | 6951 | 9 | 5353 | 90 | 5484 | 73 |
| Per Acre of Cropland | 41331 | 8.70 | 78 | 8.77 | $12 \varepsilon$ | 8.89 | 98 | 8.93 | 90 | 7.96 | 77 | 10.01 | 9 | 8.5 | 90 | 8.53 | 73 |

TABLE 15 (continued)
year end summary for grain farms typed by various systems of classification

| 1970 GRAIN FARMS |  | MISSOURI |  | KANSAS |  | IOWA |  | ILLINOIS \& KENTUCKY |  | CENSUS |  | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code | Value | (78) |  | (128) |  | (98) |  | (99) |  | (77) |  | (9) |  | (90) |  | (73) |
| Livestock Productive Man Work Units | 41501 | 151 | 77 | 237 | 127 | 182 | 97 | 165 | 89 | 142 | 76 | 109 | 8 | 158 | 89 | 129 | 72 |
| Value of All Livestock Prod. | 41502 | 15979 | 77 | 23953 | 127 | 16926 | 97 | 15377 | 89 | 12381 | 76 | 6598 | 8 | 13775 | 89 | 10941 | 72 |
| Feed Fed to Livestock | 41503 | 13102 | 78 | 19854 | 128 | 12200 | 98 | 11581 | 90 | 9044 | 77 | 8361 | 9 | 10939 | 90 | 9245 | 73 |
| Livestock Returns Above Feed Costs | 41504 | 2877 | 78 | 4099 | 128 | 4727 | 98 | 3796 | 9 C | 3336 | 77 | -1763 | 9 | 2836 | 90 | 1695 | 73 |
| Livestock Returns Per sloo <br> Feed Fed | 41505 | 154 | 77 | 144 | 127 | 158 | 97 | 155 | 89 | 161 | 76 | 83.89 | 8 | 151 | 89 | 152 | 72 |
| Livestock Returns for Labor and Housing | 41506 | -998 | 78 | -1551 | 128 | 286 | 98 | -331 | 90 | -23 | 77 | -7168 | 9 | -1255 | 90 | 1701 | 73 |
| Feed Purchased | 41509 | 2899 | 76 | 4824 | 126 | 3861 | 96 | 3235 | 88 | 2473 | 75 | 4884 | 8 | 2877 | 88 | 2380 | 71 |
| Average No. of Dairy Cows | 41511 | 1 | 2 | 1.4 | 5 | 41 | 6 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 3 | 1 | 1 |
| Milk Per Cow | 41513 | 2820 | 2 | 4715 | 3 | 8190 | 5 | 2640 | 1 | 2640 | 1 | 0 | 0 | 1440 | 2 | 2640 | i |
| Value of Dairy Production | 41514 | 184 | 2 | 104 | 5 | 8589 | 6 | 168 | 2 | 212 | 2 | 0 | 0 | 237 | 3 | 2640 | 1 |
| Number of Beef Cows | 41521 | 37 | 49 | 56 | 86 | 47 | 64 | 48 | 61 | 45 | 58 | 40 | 6 | 46 | 60 | 37 | 46 |
| Number of Stocker \& Feeders | 41522 | 73 | 70 | 122 | 120 | 71 | 85 | 74 | 80 | 56 | 68 | 25 | 5 | 77 | 79 | 69 | 64 |
| Value of All Beef Production | 41525 | 11023 | 70 | 16061 | 120 | 9632 | 86 | 10347 | 79 | 8120 | 68 | 3479 | 5 | 9284 | 79 | 7801 | 64 |
| Litters of Pigs Farrowed | 41531 | 37 | 31 | 41 | 65 | 41 | 41 | 42 | 40 | 37 | 34 | 28 | 4 | 39 | 38 | 33 | 26 |
| Value of All Pork Production | 41535 | 8532 | 54 | 10855 | 98 | 8730 | 65 | 8833 | 63 | 7651 | 51 | 8417 | 5 | 8210 | 60 | 6225 | 46 |
| Pigs Per Litter | 41536 | 8.0 | 31 | 8.1 | 64 | 8.0 | 41 | 7.9 | 40 | 8.0 | 34 | 8.0 | 4 | 8.12 | 38 | 7.86 | 26 |
| Value of Poultry Production | 41557 | 333 | 15 | 2458 | 21 | 6281 | 15 | 143 | 10 | 316 | 10 | 0 | 0 | 371 | 12 | 371 | 12 |
| Total Labor Charge | 41610 | 8417 | 78 | 8872 | 128 | 8475 | 98 | 8119 | 90 | 8026 | 77 | 11841 | 9 | 8171 | 90 | 7946 | 73 |
| Per \$100 Production | 41611 | 17.47 | 78 | 19.77 | 128 | 17.94 | 98 | 17.68 | 90 | 17.34 | 77 | 55.00 | 9 | 17.31 | 90 | 16.82 | 73 |
| Per Man | 41612 | 4384 | 78 | 4570 | 128 | 4543 | 98 | 4550 | 90 | 4516 | 77 | 4696 | 9 | 4459 | 90 | 4360 | 73 |
| Total Mach. \& Equip. Cost | 41700 | 13906 | 78 | 13429 | 128 | 12863 | 98 | 12796 | 90 | 12668 | 77 | 18663 | 9 | 12979 | 90 | 13211 | 73 |
| Fixed Mach. \& Equipment Cost | 41710 | 8404 | 78 | 7899 | 128 | 7652 | 98 | 7723 | 90 | 7583 | 77 | 11110 | 9 | 7765 | 90 | 8016 | 73 |
| Fixed Mach. \& Equip. Cost: Lvst | 41711 | 1397 | 76 | 1672 | 126 | 1321 | 96 | 1273 | 88 | 1080 | 75 | 1952 | 7 | 1287 | 88 | 1093 | 71 |
| Variable Machine Cost: Total | 41720 | 5502 | 78 | 5530 | 128 | 5211 | 98 | 5072 | 90 | 5085 | 77 | 7554 | 9 | 5214 | 90 | 5195 | 73 |
| Variable Machine Cost: Lvst. | 41721 | 674 | 75 | 1049 | 125 | 865 | 95 | 830 | 87 | 649 | 74 | 1395 | 6 | 816 | 87 | 691 | 70 |
| Machine \& Equip. Cost/\$100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Production | 41730 | 29 | 78 | 29.67 | 128 | 27.41 | 98 | 27.38 | 90 | 27.95 | 77 | 63.67 | 9 | 27.98 | 90 | 28.71 | 73 |
| Machine \& Equipment Investment | 41740 | 27108 | 78 | 25056 | 128 | 24346 | 98 | 24460 | 90 | 23832 | 77 | 33738 | 9 | 24553 | 90 | 25582 | 73 |
| Machine and Equip. Invest/Man | 41741 | 15172 | 78 | 14437 | 128 | 14785 | 98 | 15225 | 90 | 15195 | 77 | 18033 | 9 | 15019 | 90 | 15947 | 73 |
| Mach. \& Equip. Invest./\$100 Production | 41742 | 56.45 | 78 | 56.28 | 128 | 52.16 | 98 | 52.49 | 90 | 53.77 | 77 | 108.22 | 9 | 53.41 | 90 | 55.90 | 73 |
| Combined Labor \& Machinery and Equip. Charge/\$100 Prod. | 41800 | 46.22 | 78 | 49.45 | 128 | 45.35 | 98 | 45.06 | 90 | 45.29 | 77 | 118.67 | 9 | 45.29 | 90 | 45.53 | 73 |

acres of high labor using crops such as corn silage and other row crops).
The Michigan groups' high machinery and equipment investment expense and high operating expense contributed to the highest total cash expenses for the subset of grain farms produced by the Michigan system. The Illinois group had the lowest operating expenses.

As was the case in general farms, the per acre cost for grain farms was high for Michigan and appeared to vary significantly from the low groups. The use of fertilizer and lime was considerably higher and contributed to higher unit costs on the highly specialized Michigan farm group. However, this group of farms did not produce the highest value per acre nor did the yields appear significantly higher. Capitalization of the interest paid (at 6 percent) resulted in approximately $\$ 17,000$ difference in indebtedness from the highest interest expense by Michigan to the low interest expenditure by the Illinois group.

The group of grain farms typed 1 by the Kansas system produced the highest total cash receipts due to considerably higher livestock receipts. As was pointed out earlier, the Kansas type 1 criteria allowed farms with considerable numbers of livestock to move into the grain type. Application of the Kansas system of classification resulted in 128 grain farms which was the highest number produced by the eight systems of classification. Allowing diversified farms into the Kansas group produced the lowest value of crops per acre. Kansas grain farms also had the lowest livestock return per $\$ 100$ feed fed. One conclusion from the effects of allowing somewhat 'general' farms into the type 1 classification was: the more diversified farms did not produce as high unit returns as specialized farms.

The combined labor, machinery and equipment charged per $\$ 100$ production varied from a low of $\$ 45$ for the Iowa farms to $\$ 118$ for the

Michigan farms. Interpretation of this result is questionable and possibly could be explained by one of the nine farms greatly distorting the Michigan average. This seems to be validated since all of the seven systems generated groups with average labor, machinery and equipment charged per \$100 production of $\$ 45$ to $\$ 49$. This is also in line with an explanation in the 1969 Missouri Farm Business Summary: "Over the past years, the labor and management returns have been unsatisfactory on those farms which have had a labor and machinery cost in excess of $\$ 50$ per $\$ 100$ production."

Regardless of whether the average for the Michigan group was distorted by one or more records, the above statement from the Missouri Farm Business Summary holds since the return to management was a negative $\$ 8,661$ on the Michigan group while all of the other farm groups were positive with the exception of Kansas with a minus $\$ 298$ return.

The Michigan group had a negative $\$ 4,431$ return to labor and management while all of the other groups were positive. The percent return varied from a high of 6.26 (Iowa) to a low of 3.62 for the Michigan group.

The same questions raised in the discussion of general farms seem to be applicable to the grain farms. That is, there seems to be a trend in physical size measurements and expense for the specialized Michigan farms while the measurements of the lower size groups varied among the other seven types in a random fashion. Which of the eight systems adequately describes the true structure of Missouri grain farms and which year-end business analysis should be used for farm management recommendations? Particularly significant are the questions raised concerning productive man work units for livestock and crops along with per unit returns, per unit cost and efficiency factors. The attraction of outside capital into grain farms based upon expectations of the percent return indicated by the year-end business analysis would be highly re-
warding or highly disappointing depending upon which system of classification was applied to the basic set in order to stratify the 403 farms into grain farms as a basis for the year-end analysis.

Results of the year-end business analysis for the hog farms are presented in Table 16. Compared to previous types, the measures of size are more consistent for this type. However, the numbers of farms classified by the various systems ranged from twenty-four by the Michigan system to 126 by the Illinois system (the Census system did not contain a hog farm classification). The Illinois group of farms was high for cropland and total acres as well as all measure of capital managed. The number of man years of labor, as a measure of size, was also high for the Illinois group.

The twenty-nine farms in the Missouri group generated the lowest physical size measure in terms of acres, capital and man years of labor. The same trend continued for Illinois and Missouri for crop productive man work units. However, the Missouri hog farms were larger in terms of litters farrowed and had the highest value of all pork production among the seven systems classifying farms type 3. Although the Illinois group was lowest in terms of number of litters, it was not lowest in value of pork production due to several feeder pig operations included in the 126 farms composing the Illinois group. The Missouri group had the highest total operating expense with livestock expense being the major contributor to the high total. Likewise, the Missouri group had the highest total cash expenses while the Illinois group was near the bottom in magnitude of total expense.

The Missouri subset had the highest total cash receipts, but the

## TABLE 16



| 1970 HOG FARMS |  | MISSOURI |  | KANSAS |  | IOWA |  | ILLINOIS \& KENTUCKY |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (29) |  | (58) |  | (83) |  | (126) | (0) |  | (24) |  | (63) |  | 184 |
| Total Livestock Expense | 100 | 32344 | 29 | 27100 | (58) | 20811 | 83 | 19494 | 126 |  | 22711 | 24 | 25005 | 63 | 24027 | 84 |
| Feed | 110 | 30755 | 29 | 25575 | (58) | 19209 | 38 | 18028 | 126 |  | 21149 | 24 | 23089 | 63 | 22236 | 84 |
| Other | XXX | 1589 |  | 1525 |  | 1602 |  | 1466 |  |  | 1562 |  | 1916 |  | 1791 |  |
| Total Machinery \& Eq. Expense | 200 | 4692 | 29 | 4515 | 58 | 5104 | 83 | 5148 | 126 |  | 4457 | 24 | 4950 | 63 | 5009 | 84 |
| Auto | 210 | 225 | 18 | 304 | 46 | 336 | 70 | 349 | 110 |  | 200 | 15 | 296 | 49 | 320 | 70 |
| Gas \& Oil | 220 | 1070 | 28 | 1007 | 56 | 1163 | 82 | 1181 | 125 |  | 987 | 23 | 1092 | 62 | 1115 | 83 |
| Tractor | 230 | 597 | 29 | 556 | 56 | 659 | 82 | 641 | 125 |  | 520 | 24 | 602 | 63 | 647 | 83 |
| Truck | 240 | 644 | 28 | 724 | 57 | 716 | 82 | 740 | 125 |  | 678 | 23 | 764 | 62 | 751 | 83 |
| Other Machinery | 250 | 1146 | 29 | 981 | 58 | 1253 | 83 | 1196 | 126 |  | 1130 | 24 | 1183 | 63 | 1152 | 84 |
| Machine Hire | 260 | 1010 | 29 | 941 | 58 | 976 | 97 | 1042 | 121 |  | 943 | 22 | 1013 | 59 | 1024 | 80 |
| Total Crop Expense | 300 | 3909 | 27 | 3821 | 56 | 6074 | 81 | 6315 | 124 |  | 5685 | 22 | 5459 | 61 | 5801 | 82 |
| Lime | 310 | 352 | 19 | 334 | 39 | 289 | 47 | 309 | 76 |  | 206 | 11 | 326 | 38 | 329 | 50 |
| Phosphate | 320 | 25 | 2 | 57 | 10 | 19 | 4 | 42 | 15 |  | 0 | 0 | 29 | 4 | 38 | 9 |
| Other Fertilizer | XXX | 2099 | 28 | 2129 | 57 | 3409 | 82 | 3535 | 125 |  | 3624 | 23 | 3199 | 62 | 3352 | 83 |
| Chemicals | 350 | 703 | 24 | 630 | 49 | 1290 | 77 | 1255 | 118 |  | 1201 | 21 | 1010 | 56 | 1112 | 77 |
| Miscellaneous | 370 | 730 | 8 | 671 | 57 | 1067 | 82 | 1174 | 125 |  | 954 | 23 | 895 | 62 | 970 | 83 |
| Total Labor Expense | 400 | 2477 | 28 | 2019 | 55 | 2348 | 77 | 2260 | 119 |  | 2135 | 22 | 2646 | 58 | 2428 | 78 |
| Wages | 410 | 2145 | 27 | 1808 | 53 | 2043 | 75 | 2000 | 117 |  | 1798 | 21 | 2269 | 56 | 2124 | 76 |
| Other Labor | XXX | 332 | 10 | 211 | 46 | 305 | 10 | 260 | 97 |  | 337 | 19 | 377 | 37 | 304 | 58 |
| Total Miscellaneous Expense | 500 | 6577 | 29 | 6876 | 58 | 7412 | 83 | 7482 | 126 |  | 7008 | 24 | 7107 | 63 | 7365 | 84 |
| Real Estate Maint. \& Repairs | 510 | 1758 | 28 | 1441 | 57 | 1376 | 82 | 1395 | 125 |  | 1252 | 24 | 1486 | 62 | 1432 | 83 |
| Utilities | XXX | 893 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Taxes | 550 | 870 | 29 | 1019 | 58 | 1252 | 83 | 1353 | 125 |  | 974 | 24 | 1133 | 63 | 1163 | 83 |
| Insurance | 560 | 544 | 28 | 432 | 57 | 497 | 82 | 579 | 125 |  | 600 | 24 | 496 | 62 | 489 | 83 |
| Interest | 570 | 2119 | 26 | 2433 | 56 | 2662 | 75 | 2598 | 115 |  | 2595 | 21 | 2301 | 56 | 2544 | 77 |
| Cash Rent | 580 | 122 | 10 | 497 | 22 | 433 | 36 | 550 | 59 |  | 268 | 7 | 405 | 23 | 553 | 35 |
| Miscellaneous Overhead | 590 | 272 | 29 | 246 | 56 | 297 | 82 | 581 | 125 |  | 233 | 24 | 320 | 61 | 295 | 82 |
| Total Operating Expense | XXX | 49999 | 29 | 44331 | 58 | 41749 | 83 | 40699 | 126 |  | 41996 | 24 | 45167 | 63 | 44630 | 82 |
| Breeding Livestock | 610 | 2305 | 27 | 2455 | 52 | 2212 | 68 | 2141 | 105 |  | 2135 | 18 | 2540 | 53 | 2317 | 72 |
| Stocker \& Feeding Livestock | 620 | 3560 | 12 | 4835 | 28 | 4503 | 41 | 6103 | 70 |  | 175 | 4 | 5263 | 28 | 6688 | 47 |
| Mach. and Equipment | 630 | 4242 | 25 | 3714 | 52 | 5344 | 77 | 5156 | 118 |  | 6605 | 21 | 4741 | 57 | 4805 | 77 |
| Buildings \& Feed Lots | 640 | 4114 | 14 | 3494 | 37 | 3808 | 51 | 3451 | 72 |  | 5623 | 16 | 4121 | 40 | 3284 | 50 |
| Field Improvements | 650 | 778 | 16 | 556 | 27 | 602 | 41 | 567 | 61 |  | 1071 | 16 | 662 | 33 | 593 | 45 |
| Total New Investment | XXX | 14999 |  | 15054 |  | 16479 |  | 17418 |  |  | 15609 |  | 17327 |  | 17687 |  |
| Total Cash Expense |  | 64998 |  | 59385 |  | 58228 |  | 58117 |  |  | 57605 |  | 62494 |  | 62317 |  |
| Resale |  | 577 |  | 989 |  | 323 |  | 322 |  |  | 0 |  | 366 |  | 406 |  |

table 16 (continued)


| 1970 HOG FARMS | MISSOURI KANSAS IOWA <br> KENTUCKY |  |  |  |  |  |  |  |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (29) |  | (58) |  | (83) |  | (126) | (0) |  | (24) |  | (63) |  | (84 |
| Total Livestock Receipts | 700 | 62104 | 29 | 57224 | 58 | 53474 | 83 | 53034 | 126 |  | 44249 | 24 | 60260 | 63 | 58141 | 84 |
| Beef Cattle | 720 | 9885 | 24 | 14444 | 51 | 10312 | 71 | 13998 | 113 |  | 790 | 7 | 11454 | 51 | 12504 | 71 |
| Dairy Cattle | 730 | 34 | 2 | 48 | 8 | 20 | 6 | 125 | 11 |  | 20 | 3 | 27 | 6 | 24 | 8 |
| Hogs | 740 | 52141 | 29 | 40731 | 58 | 43035 | 83 | 38368 | 126 |  | 43435 | 24 | 48628 | 63 | 45373 | 84 |
| Sheep | 750 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |  | 4 | 1 | 2 | 1 | 1 | 1 |
| Milk | 786 | 7 | 1 | 56 | 2 | 1 | 1 | 338 | 6 |  | 0 | 0 | 3 | 2 | 3 | 3 |
| Poultry | 790 | 0 | 1 | 1775 | 3 | 1 | 2 | 1 | 3 |  | 0 | 0 | 1 | 2 | 1 | 2 |
| Eggs | XXX | 34 | 1 | 168 | 3 | 104 | 2 | 203 | 3 |  | 0 | 0 | 145 | 2 | 235 | 2 |
| Total Crop Receipts | 800 | 5040 | 25 | 6058 | 53 | 10239 | 78 | 10679 | 120 |  | 12915 | 21 | 6997 | 58 | 8123 | 79 |
| Forage Crops | 810 | 246 | 11 | 367 | 24 | 255 | 30 | 329 | 47 |  | 301 | 8 | 226 | 23 | 219 | 29 |
| Fruits, Nuts | 820 | 0 | 1 | 0.15 | 2 | 0.75 | 2 | 0.56 | 3 |  | . 02 | 1 | 0.14 | 2 | 1 | 3 |
| Corn | 833 | 837 | 12 | 651 | 24 | 2258 | 52 | 2210 | 75 |  | 5644 | 17 | 1506 | 34 | 1834 | 48 |
| Grain Sorghum | 836 | 27 | 1 | 79 | 4 | 188 | 8 | 139 | 11 |  | 450 | 2 | 128 | 6 | 174 | 9 |
| Soybeans | 837 | 1919 | 13 | 2130 | 32 | 3946 | 59 | 3909 | 88 |  | 3370 | 17 | 2569 | 40 | 3121 | 55 |
| Soybean Seed | 847 | 101 | 2 | 274 | 4 | 263 | 9 | 367 | 15 |  | 7 | 1 | 108 | 4 | 245 | 7 |
| Wheat | 838 | 61 | 6 | 110 | 13 | 310 | 27 | 288 | 39 |  | 132 | 6 | 60 | 14 | 125 | 20 |
| Wheat Seed | 848 | 0 | 1 | . 08 | 1 | 26 | 3 | 17 | 4 |  | 0 | 0 | 5 | 2 | 25 | 3 |
| Grain Sorghum | 850 | 17 | 2 | 54 | 9 | 67 | 11 | 75 | 21 |  | 0 | 0 | 42 | 6 | 46 | 9 |
| Legume Seeds | 860 | 12 | 1 | 6 | 1 | 18 | 5 | 14 | 7 |  | 0 | 0 | 14 | 2 | 11 | 2 |
| Truck Crops | 870 | 0 | 0 | 0 | 0 | 0.40 | 1 | 0.26 | 1 |  | 0 | 0 | 0 | 0 | 0 | 0 |
| Government Payments | 899 | 1799 | 20 | 2254 | 41 | 2595 | 60 | 2942 | 95 |  | 2869 | 13 | 2091 | 41 | 2124 | 55 |
| Total Miscellaneous Income | 900 | 1553 | 28 | 2489 | 55 | 1847 | 80 | 2118 | 123 |  | 2514 | 24 | 1988 | 60 | 2033 | 81 |
| Custom Work | 910 | 184 | 12 | 649 | 21 | 256 | 43 | 379 | 69 |  | 218 | 11 | 116 | 26 | 206 | 39 |
| Ins. from Mach., Buildings | XXX | 34 | 10 | 224 | 20 | 176 | 40 | 342 | 66 |  | 789 | 9 | 387 | 24 | 1073 | 36 |
| Government Payments | 960 | 54 | 10 | 94 | 25 | 84 | 34 | 87 | 50 |  | 60 | 10 | 79 | 23 | 80 | 30 |
| All Other Farm Receipts | XXX | 1267 | 24 | 1520 | 24 | 1331 | 35 | 1310 | 53 |  | 1447 | 12 | 1406 | 20 | 674 | 27 |
| Total Cash Receipts |  | 68697 |  | 65769 |  | 65560 |  | 65831 |  |  | 59678 |  | 69245 |  | 68297 |  |
| Cash Balance (Bus) | 40011 | 3121 | 29 | 5895 | 58 | 7009 | 83 | 7392 | 126 |  | 2073 | 24 | 6395 | 63 | 5574 | 84 |
| Interest (Bus) | 40012 | 2119 | 26 | 2433 | 56 | 2662 | 75 | 2598 | 125 |  | 2595 | 21 | 2301 | 56 | 2544 | 77 |
| Home Used Products | 40013 | 429 | 27 | 408 | 52 | 429 | 77 | 379 | 113 |  | 251 | 20 | 435 | 57 | 403 | 77 |
| Net Change of Inventory | 40014 | 329 | 29 | 197 | 58 | 1189 | 83 | 1262 | 126 |  | 7459 | 24 | -9 | 63 | 1367 | 84 |
| Total Business Unit and Family Earnings | 40019 | 5998 | 29 | 8933 | 58 | 11289 | 83 | 11631 | 126 |  | 12378 | 24 | 9121 | 63 | 9888 | 84 |
| Interest Allow. On Total Cap. | 40021 | 7451 | 29 | 7995 | 58 | 9651 | 83 | 10151 | 126 |  | 8310 | 24 | 9101 | 63 | 9410 | 84 |
| Value of Family Labor | 40022 | 741 | 18 | 1081 | 37 | 1023 | 54 | 924 | 72 |  | 789 | 12 | 1030 | 37 | 896 | 47 |
| Value of Operator's Labor | 40023 | 4331 | 29 | 4706 | 58 | 4811 | 82 | 5104 | 125 |  | 4752 | 24 | 4825 | 62 | 4933 | 83 |
| Peturn to Mgt: Business Unit | 40024 | -6527 | 29 | 4849 | 58 | 4196 | 83 | 4548 | 126 |  | 1472 | 24 | -4835 | 63 | 5350 | 84 |
| Return to Labor \& Management | 40026 | -2195 | 29 | -143 | 58 | 615 | 83 | 556 | 126 |  | 3280 | 24 | -1009 | 63 | 417 | 84 |
| Return to Labor \& Mgt/Man | 40027 | -1982 | 29 | -219 | 58 | 1261 | 82 | 416 | 125 |  | 3224 | 24 | 264 | 62 | 102 | 83 |

table 16 (continued)


| 1970 HOG FARMS | MISSOURI |  |  | KANSAS |  | IOWA |  | ILLINOIS \& KENTUCKY |  | $\frac{\text { CENSUS }}{(26)}$ | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (29) |  | (58) |  |  |  | (126) |  |  | (26) |  | (63) |  | (84) |
| Return to Capital \& Mgt. Business Unit | 40028 | 925 -.60 | 29 29 | 3146 1.20 | 58 58 | 5454 2.44 | 83 83 | 5603 2.31 | 126 126 |  | 6838 2.81 | 24 | 3266 1.28 | 63 63 | 4059 1.68 | 84 84 |
| Percent Return: Business Unit Net Earnings Per $\$ 100$ Charged | 40030 | 53.58 | 29 | 65 | 58 | 76.74 | 83 | 73.67 | 126 |  | 90 | 24 | 68 | 63 | 69.68 | 84 |
| Total Acres in Business Unit Acres of Cropland | 41010 | 414 | 28 | 501 | 57 | 570 | 82 | 619 | 126 |  | 421 | 23 | 547 | 62 | 567 | 83 |
|  | 41012 | 255 | 28 | 277 | 57 | 359 | 82 | 378 | 125 |  | 309 | 23 | 309 | 62 | 319 | 83 |
| Total Capital Managed <br> Land \& Improvements Livestock <br> Feed, Seed \& Supplies Machinery and Equipment | 41020 | 149025 | 29 | 159896 | 58 | 193015 | 83 | 203027 | 126 |  | 166198 | 23 | 182023 | 63 | 188191 | 84 |
|  | 41021 | 92016 | 29 | 103698 | 58 | 131600 | 83 | 137858 | 126 |  | 116730 | 23 | 120253 | 63 | 126551 | 84 |
|  | 41022 | 30422 | 29 | 32507 | 58 | 28732 | 83 | 32350 | 126 |  | 20096 | 24 | 30590 | 63 | 31294 | 84 |
|  | 41023 | 13144 | 29 | 10168 | 58 | 14303 | 83 | 14418 | 126 |  | 12516 | 24 | 14193 | 63 | 13413 | 84 |
|  | 41024 | 13443 | 29 | 13525 | 58 | 18380 | 83 | 18403 | 126 |  | 16857 | 24 | 16988 | 63 | 16932 | 84 |
| Total Value of Production <br> Per Acre of Open Land <br> Productive Man Work Units Per Man <br> Man Years of Labor | 41030 | 26376 | 29 | 27638 | 58 | 33888 | 83 | 34606 | 126 |  | 34053 | 24 | 31361 | 63 | 32077 | 84 |
|  | 41031 | 87 | 28 | 80 | 57 | 81 | 82 | 75 | 125 |  | 93 | 23 | 82 | 62 | 81 | 84 |
|  | 41040 | 621 | 29 | 622 | 58 | 630 | 83 | 655 | 126 |  | 555 | 24 | 631 | 63 | 631 | 84 |
|  | 41041 | 366 | 29 | 368 | 58 | 365 | 83 | 366 | 126 |  | 348 | 24 | 358 | 63 | 365 | 84 |
|  | 41050 | 1.69 | 29 | 1.73 | 58 | 1.82 | 83 | 1.86 | 126 |  | 1.62 | 24 | 1.88 | 63 | 1.82 | 84 |
| ```Crop Productive Man Work Units Value of All Production on Cropland Per Acre of Cropland``` | 41110 | 151 | 28 | 171 | 57 | 227 | 82 | 241 | 125 |  | 200 | 23 | 200 | 62 | 206 | 83 |
|  | 41220 | 13213 | 28 | 15085 | 57 | 21439 | 82 | 22158 | 125 |  | 22845 | 23 | 17644 | 62 | 18313 | 83 |
|  | 41221 | 47 | 28 | 47 | 5 | 58 | 82 | 58 | 125 |  | 67 | 23 | 55 | 62 | 57 | 83 |
| Crop Costs Per Acre of Cropland <br> Fixed Machine Costs <br> Per Acre of Cropland | 41303 | 32 | 28 | 29 | 57 | 34 | 82 | 33 | 125 |  | 36 | 23 | 35 | 62 | 35 | 83 |
|  | 41310 | 2068 | 27 | 1996 | 54 | 3500 | 81 | 3519 | 124 |  | 3394 | 23 | 2964 | 61 | 3030 | 82 |
|  | 41311 | 8 | 26 | 7 | 53 | 9 | 80 | 9 | 123 |  | 10 | 22 | 9 | 60 | 9 | 81 |
| Variable Machine Costs Per Acre of Cropland | 41320 | 2024 | 29 | 1810 | 58 | 2828 | 83 | 2872 | 126 |  | 2515 | 24 | 2536 | 63 | 2601 | 84 |
|  | 41321 | 7 | 28 | 6 | 57 | 8 | 82 | 8 | 125 |  |  | 23 | 8 | 62 | 8 | 83 |
| Fertilizer and Lime Per Acre of Cropland | 41330 | 2558 | 28 | 2351 | 57 | 3368 | 82 | 3477 | 125 |  | 4124 | 23 | 3137 | 62 | 3257 | 83 |
|  | 41331 | 11 | 27 | 10 | 56 | 10 | 81 | 10 | 123 |  | 11.4 | 22 | 11 | 61 | 11 | 82 |
| Cropland Returns to Land and Labor <br> Per Acre of Cropland | 41411 | 15 | 28 | 23 | 57 | 25 | 82 | 25 | 125 |  | 31 | 23 | 21 | 62 | 22 | 83 |
| Alfalfa Hay (tons) <br> Rotation Pasture <br> Permanent pasture <br> Corn Silage (tons) <br> Corn <br> Sorghum <br> Soybeans <br> Wheat |  | AC YLD | NO |  | AC YLD | NO | AC YLD | NO | AC YLD | NO |
|  | 41431 | $14 \quad 1.9$ | 7 | 202.6 | 19 | $15 \quad 2.4$ | 24 | $22 \quad 2.6$ | 38 |  | 102.0 | 1 | 152.0 | 19 | 212.1 | 24 |
|  | 41434 | $77 \quad 1.2$ | 18 | 991.2 | 35 | $71 \quad 1.3$ | 56 | 931.3 | 87 |  | 451.6 | 9 | $73 \quad 1.3$ | 38 | 781.3 | 52 |
|  | 41435 | 671.0 | 19 | 1371.0 | 44 | $92 \quad 0.9$ | 61 | 1321.1 | 99 |  | $73 \quad 0.6$ | 8 | 1080.9 | 45 | 1111.1 | 63 |
|  | 41436 | 2210.7 | 7 | 2510.3 | 16 | 2110.7 | 19 | 2910.4 | 38 |  | 00 | 0 | 2410.3 | 17 | 2010.8 | 24 |
|  | 41448 | 12748.5 | 22 | 10150.9 | 43 | 15255.2 | 74 | 13956.0 | 111 |  | 19365.3 | 20 | 14252.1 | 53 | 13852.6 | 72 |
|  | 41451 | 6835.3 | 1 | 9163.1 | 7 | 9453.4 | 10 | 6653.1 | 22 |  | 15377.6 | 2 | 9752.7 | 9 | 8052.7 | 13 |
|  | 41452 | 7225.7 | 14 | 7621.7 | 32 | 9925.4 | 60 | 9725.6 | 90 |  | 8525.7 | 17 | 8023.6 | 41 | 8525.3 | 56 |
|  | 41453 | 1529.1 | 12 | 202.7 | 27 | 2726.1 | 45 | 2627.5 | 73 |  | 2621.7 | 8 | 2125.9 | 28 | 2225.7 | 41 |

table 16 (continued)


| 1970 HOG FARMS | MISSOURI |  |  | KANSAS |  | ILLINOIS \&KENTUCKY |  |  |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (29) |  | (58) |  | (83) |  | (126) | (0) |  | (24) |  | (63) |  | (84) |
| Livestock Productive Man Work |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Value of All Livestock Prod. | 41502 | 53311 | 29 | 47493 | 58 | 43402 | 83 | 41968 | 126 |  | 41739 | 24 | 48682 | 63 | 46855 | 84 |
| Feed Fed to Livestock | 41503 | 40807 | 29 | 35801 | 58 | 32003 | 83 | 31149 | 126 |  | 31038 | 24 | 45981 | 63 | 34334 | 84 |
| Livestock Returns Above Feed costs | 41504 | 12504 | 29 | 11691 | 58 | 11399 | 83 | 10819 | 126 |  | 10700 | 24 | 12700 | 63 | 12520 | 84 |
| Livestock Returns Per $\$ 100$ Feed Fed | 41505 | 132 | 29 | 133 | 58 | 134 | 83 | 134 | 126 |  | 134 | 24 | 134 | 63 | 136 | 84 |
| Livestock Returns for Labor and Housing | 41506 | 3401 | 29 | 3214 | 58 | 3090 | 83 | 2703 | 126 |  | 3562 | 24 | 3529 | 63 | 3663 | 84 |
| Feed Purchased | 41509 | 17519 | 29 | 15504 | 58 | 12764 | 83 | 11814 | 126 |  | 14812 | 24 | 14705 | 63 | 14189 | 84 |
| Average No. of Dairy Cows | 41511 | 2 | 2 | 5 | 5 | 4 | 3 | 1 | 7 |  | 0 | 0 | 4 | 3 | 3.5 | 4 |
| Milk Per Cow | 41513 | 697 | 5 | 3115 | 4 | 2426 | 2 | 193 | 6 |  | 0 | 0 | 2426 | 2 | 2226 | 3 |
| Value of Dairy production | 41514 | 78 | 8 | 436 | 22 | 242 | 25 | 500 | 36 |  | 135 | 6 | 252 | 23 | 251 | 27 |
| Number of Beef Cows | 41521 | 24 | 19 | 44 | 43 | 37 | 55 | 42 | 93 |  | 8 | 6 | 35 | 38 | 44 | 55 |
| Number of Stocker \& Feeders | 41522 | 46 | 26 | 97 | 54 | 52 | 73 | 66 | 115 |  | 12 | 10 | 56 | 54 | 61 | 74 |
| Value of All Beef Production | 41525 | 5157 | 27 | 9069 | 55 | 5835 | 74 | 8891 | 116 |  | 776 | 11 | 5180 | 55 | 7885 | 75 |
| Litters of Pigs Farrowed | 41531 | 152 | 29 | 140 | 56 | 123 | 82 | 103 | 120 |  | 129 | 23 | 136 | 61 | 125 | 82 |
| Value of All Pork Production | 41535 | 48387 | 29 | 37019 | 58 | 38050 | 83 | 42404 | 126 |  | 41311 | 24 | 43290 | 63 | 39524 | 84 |
| Pigs Per Litter | 41536 | 8.83 | 29 | 8.48 | 56 | 8.61 | 82 | 8.16 | 120 |  | 8.97 | 23 | 8.87 | 61 | 8.67 | 82 |
| Value of Poultry Production | 41557 | 118 | 3 | 6663 | 14 | 159 | 14 | 41 | 20 |  | 82 | 1 | 174 | 11 | 30 | 15 |
| Total Labor Charge | 41610 | 7802 | 29 | 1608 | 14 | 8427 | 83 | 8549 | 126 |  | 7911 | 24 | 8754 | 63 | 8513 | 84 |
| Per \$100 Production | 41611 | 47 | 29 | 40 | 58 | 37 | 83 | 35 | 126 |  | 39 | 24 | 43 | 63 | 40 | 84 |
| Per Man | 41612 | 4614 | 29 | 4724 | 58 | 4640 | 83 | 4600 | 126 |  | 4996 | 24 | 4654 | 63 | 4669 | 84 |
| Total Mach. \& Equip. Cost | 41700 | 8519 | 29 | 7771 | 58 | 10268 | 83 | 10180 | 126 |  | 9354 | 24 | 9753 | 63 | 9730 | 84 |
| Fixed Mach. \& Equip. Cost | 41710 | 4366 | 29 | 4115 | 58 | 5757 | 83 | 5724 | 126 |  | 5439 | 24 | 5284 | 63 | 5284 | 84 |
| Fixed Mach. \& Equip. Cost: Lvst | 41711 | 2298 | 29 | 2119 | 58 | 2257 | 83 | 2205 | 126 |  | 2044 | 24 | 2320 | 63 | 2254 | 84 |
| Variable Machine Cost: Total | 41720 | 4153 | 29 | 3656 | 58 | 4512 | 83 | 4456 | 126 |  | 3915 | 24 | 4470 | 63 | 4446 | 84 |
| Variable Machine Cost: Lvst. | 41721 | 2129 | 29 | 1846 | 58 | 1683 | 83 | 1584 | 126 |  | 1400 | 24 | 1933 | 63 | 1844 | 84 |
| Machine \& Equip. Cost/\$100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Production | 41730 | 37.62 | 29 | 32.71 | 58 | 36.64 | 83 | 35.06 | 126 |  | 30.50 | 24 | 39.63 | 63 | 37.85 | 84 |
| Machine \& Equipment Investment | 41740 | 13443 | 29 | 13524 | 58 | 18380 | 83 | 18403 | 126 |  | 16857 | 24 | 16988 | 63 | 16932 | 84 |
| Machine and Equip. Invest/Man | 41741 | 7779 | 29 | 7947 | 58 | 10124 | 83 | 9937 | 126 |  | 10500 | 24 | 9085 | 63 | 9390 | 84 |
| Mach. \& Equip. Invest/\$100 production | 41742 | 57.17 | 29 | 54.38 | 58 | 62.89 | 83 | 60.69 | 126 |  | 51.33 | 24 | 65.84 | 63 | 62.46 | 84 |
| Combined Labor \& Machinery and Equipment Charge/\$100 Prod. | 41800 | 85.07 | 29 | 73 | 58 | 73.37 | 83 | 69.56 | 126 |  | 69.71 | 24 | 82.83 | 63 | 78.10 | 84 |

high expenses resulted in a cash balance of $\$ 3,121$ with only the Michigan system, composed of twenty-four farms, being lower ( $\$ 2,073$ ).

Crop receipts per farm varied from $\$ 5,040$ in Missouri to $\$ 12,915$ in Michigan. The Michigan system, with rigid typing requirements, might be expected to produce the most highly specialized group of hog farms. However, Michigan had the highest crop receipts, the lowest livestock receipts and was the middle group in hog receipts for the seven groups.

Returns per $\$ 100$ feed fed were not very different for the seven groups. Pigs per litter varied from a low of 8.16 in Illinois to a high of 8.83 in Missouri. The labor charged per $\$ 100$ production was highest in Missouri and lowest in Illinois, reflecting capital intensity and measure of labor employed as discussed under measures of size. The low Missouri cash balance was reflected in the return to management of minus $\$ 6,527$. The Wisconsin group also showed a negative return to management while all other groups were positive,

Returns to capital and management for the business unit varied from the low of $\$ 925$ in Missouri to a high of $\$ 6,838$ for Michigan. This relationship shows again in the percent return, ranging from a negative 0.6 to a positive 2.81. The combined labor, machinery and equipment charge per $\$ 100$ production is usually higher on livestock farms and ranged from a high of $\$ 85$ per $\$ 100$ production for the Missouri group down to about $\$ 70$ for the Illinois group.

The same type questions can be raised concerning the comparison discussed for the hog farm types as for general farms and grain farms. However, a significant difference appears in the group of hog farms; low measures of size tended to be consistent in one group and the high size measures in one group. High expenses tended to remain with the low size measurement group (Missouri). The Missouri group reflected
hog efficiency in terms of litter size but no differences appeared in crop yields. Expenses were enough higher to result in low or negative returns in terms of labor, management and capital for the Missouri group. Illinois resulted in the highest returns due to lower operating expenses. Efficiency did not decline for the hog farms due to size differences among the various groups.

The question remains regarding which system correctly reflects the characteristics desired to describe and analyze a group of type 1 farms. It is noteworthy that consistent patterns developed within the systems used to generate the hog farm type. The pattern was inconsistent in terms of number of farms composing each type, but as noted above, consistency showed up in the selected measures used to portray a discussion of prescription and diagnosis. The results of the beef and dairy farms need to be examined before implications considering the results for the various systems can be effectively discussed.

## BEEF FARMS (TYPE 5)

Compared to the previous three types, beef farms produced the most scattered results in terms of measurements discussed (Table 17). That is, no single system generated consistently high or low results for the groups of farms making up the beef type. The computer was programmed to only run a year-end business analysis for groups of five farms or greater. The Kansas group of five farms was unique in that they were largest in terms of total acres and only one farm had any crops. Three farms averaged 580 acres of rotation pasture and the remaining farms had an average of 1,286 acres of permanent pasture. This group of five farms apparently were made up of beef cow operations since only one farm spent \$86 for stocker and feeding livestock.

While the Kansas group had the highest investment in livestock, the Iowa group had the highest capital managed in the other categories. It can be noted from Table 17 that the other measures of size were randomly distributed among the seven systems producing beef farms. The lack of crop acres for the Kansas group along with considerable returns for custom work resulted in a negative figure for variable machine costs per acre. The data shown in Table 17 concerning expenses also present a scattered pattern when considering which group generated the high and low expenses for particular items.

The Wisconsin group had the highest livestock receipts; however, total cash receipts were highest for Iowa. Expenses were lowest for the Michigan group, thereby producing the highest cash balance. The high

TABLE 17 (continued)
YEAR END BUSINESS SUMMARY FOR BEEF FARMS TYPED BY VARIOUS SYSTEMS OF CLASSIFICATION

| 1970 BEEF FARMS |  | MISSOURI |  | KANSAS |  | IOWA |  | ILLINOIS \& KENTUCKY |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (21) |  | (5) |  | (41) |  | (60) | (0) |  | (41) |  | (32) |  | (43) |
| Total Livestock Receipts | 700 | 70328 | 21 | 51444 | 5 | 95945 | 41 | 83297 | 60 |  | 56720 | 40 | 103842 | 32 | 98816 | 43 |
| Beef Cattle | 720 | 58646 | 21 | 35066 | 5 | 88114 | 41 | 68108 | 60 |  | 55463 | 40 | 93006 | 32 | 87019 | 43 |
| Dairy Cattle | 730 | 33 | 4 | 0 | 0 | 22 | 4 | 20 | 5 |  | 0 | 0 | 19 | 3 | 17 | 3 |
| Hogs | 740 | 11615 | 13 | 13452 | 3 | 7695 | 27 | 14888 | 48 |  | 1237 | 7 | 10781 | 20 | 11341 | 30 |
| Sheep | 750 | 21 | 2 | 0 | 0 | 13 | 4 | 12 | 5 |  | 0 | 0 | 14 | 2 | 4 | 3 |
| Milk | 786 | 13 | 1 | 0 | 0 | 7 | 1 | 14 | 3 |  | 0 | 0 | 9 | 1 | 6 | 1 |
| Poultry | 790 | 0 | 0 | 72 | 1 | 0.20 | 1 | 2 | 2 |  | 0.2 | 1 | . 25 | 1 | 9 | 2 |
| Eggs | xxx |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Crop Receipts | 800 | 8248 | 21 | 7865 | 5 | 15164 | 41 | 15033 | 60 |  | 25281 | 41 | 10918 | 32 | 14644 | 43 |
| Forage Crops | 810 | 702 | 7 | 2190 | 2 | 440 | 11 | 498 | 19 |  | 475 | 19 | 493 | 8 | 451 | 11 |
| Fruits, Nuts | 820 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |
| Corn | 833 | 1388 | 6 | 0 | 0 | 2828 | 19 | 2594 | 27 |  | 9928 | 30 | 1656 | 12 | 2501 | 17 |
| Grain Sorghum | 836 | 0 | 0 | 0 | 0 | 437 | 3 | 473 | 4 |  | 728 | 6 | 406 | 1 | 391 |  |
| Soybeans | 837 | 1260 | 9 | 83 | 1 | 6184 | 28 | 5456 | 43 |  | 7079 | 30 | 3349 | 17 | 5473 | 27 |
| Soybean Seed | 847 | 0 | 0 | 0 | 0 | 285 | 1 | 666 | 5 |  | 119 | 1 | 0 | 0 | 328 | 2 |
| Wheat | 838 | 303 | 4 | 1 | 1 | 447 | 12 | 344 | 20 |  | 842 | 25 | 292 | 6 | 337 | 12 |
| Wheat Seed | 848 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |
| Grain Sorghum | 850 | 195 | 3 | 807 | 2 | 104 | 6 | 292 | 14 |  | 488 | 10 | 386 | 6 | 287 | 8 |
| Legume Seeds | 860 | 418 | 1 | 1757 | 1 | 219 | 3 | 188 | 5 |  | 9 | 3 | 343 | 3 | 256 | 3 |
| Truck Crops | 870 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 203 | 1 | 0 | 0 | 0 | 0 |
| Government Payments | 899 | 3947 | 16 | 2956 | 5 | 4138 | 33 | 4044 | 52 |  | 4988 | 31 | 3924 | 23 | 4223 | 36 |
| Total Miscellaneous Income | 900 | 3187 | 21 | 5297 | 5 | 3780 | 41 | 3496 | 60 |  | 4076 | 41 | 3235 | 32 | 3830 | 43 |
| Custom Work | 910 | 823 | 11 | 1965 | 4 | 873 | 24 | 679 | 30 |  | 1332 | 26 | 799 | 17 | 967 | 24 |
| Ins. from Mach., Buildings | xxx | 1122 |  | 512 |  | 240 |  | 668 |  |  | 288 |  | 133 |  | 235 |  |
| Government Payments | 960 | 98 | 9 | 40 | 3 | 95 | 16 | 99 | 26 |  | 92 | 17 | 96 | 15 | 95 | 19 |
| All Other Farm Receipts | xxx | 1144 |  | 2860 |  | 2572 |  | 2050 |  |  | 2364 |  | 2207 |  | 2533 |  |
| Total Cash Receipts |  | 81763 |  | 64606 |  | 114889 |  | 101826 |  |  | 86077 |  | 117995 |  | 117290 |  |
| Cash Balance (Bus) | 40011 | -1019 | 21 | -10612 | 5 | 155 | 41 | 4873 | 60 |  | 9373 | 41 | 589 | 32 | 1522 | 43 |
| Interest (Bus) | 40012 | 3763 | 17 | 4591 | 3 | 6803 | 37 | 5477 | 53 |  | 4178 | 33 | 6296 | 28 | 6465 | 39 |
| Home Used Products | 40013 | 329 | 11 | 509 | 2 | 377 | 27 | 410 | 44 |  | 237 | 22 | 346 | 20 | 407 | 28 |
| Net Change of Inventory | 40014 | 9112 | 21 | 18054 | 5 | 7688 | 41 | 3953 | 60 |  | 2974 | 41 | 5800 | 32 | 5359 | 43 |
| Total Business Unit and Family Earnings | 40019 | 12185 | 21 | 12542 | 5 | 15624 | 41 | 14713 | 60 |  | 16761 | 41 | 13032 | 32 | 13753 | 43 |
| Interest Allow. on Total Cap. | 40021 | 15365 | 21 | 17503 | 5 | 18537 | 41 | 16778 | 60 |  | 15949 | 41 | 18468 | 32 | 18186 | 43 |
| Value of Family Labor | 40022 | 547 | 10 | 1640 | 2 | 670 | 16 | 744 | 28 |  | 385 | 20 | 496 | 13 | 952 | 20 |
| Value of Operator's Labor | 40023 | 5657 | 20 | 7224 | 4 | 6905 | 40 | 6166 | 59 |  | 5392 | 40 | 6536 | 31 | 6608 | 42 |
| Return to Mgt: Business Unit | 40024 | -9385 | 21 | -13825 | 5 | -10278 | 41 | -8976 | 60 |  | 4965 | 41 | -12468 | 32 | -11993 | 43 |
| Return to Labor \& Management | 40026 | -3727 | 21 | -6600 | 5 | -4184 | 41 | -2810 | 60 |  | 427 | 41 | -5932 | 32 | -5385 | 43 |
| Return to Labor \& Mgt/Man | 40027 | -4738 | 20 | -7678 | 4 | -5951 | 40 | -3877 | 59 |  | 1422 | 40 | -4973 | 31 | -6682 | 42 |

table 17 （continued）
TABLE 17 （continued）

| 1970 BEEF FARMS | MISSOURI |  |  | KANSAS |  | IOWA |  | ILLINOIS \＆ KENTUCKY |  | CENSUS | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | code |  | （21） |  | （5） |  | （41） |  | （60） | （0） |  | （41） |  | （32） |  | （43） |
| Return to Capital \＆Mgt．Busi－ ness Unit <br> Percent Return：Business Unit | 40028 40029 | $\begin{aligned} & 5980 \\ & 1.00 \end{aligned}$ | 21 21 | $\begin{aligned} & 3678 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 8258 \\ & 1.78 \end{aligned}$ | $\begin{aligned} & 41 \\ & 41 \end{aligned}$ | $\begin{aligned} & 7802 \\ & 2.09 \end{aligned}$ | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ |  | $\begin{array}{r} 10985 \\ 3.80 \end{array}$ | 41 | $\begin{array}{r} 6000.09 \\ 1.01 \end{array}$ | $\begin{aligned} & 39 \\ & 32 \end{aligned}$ | 6193 1.27 | 43 43 |
| Net Earnings Per $\$ 100$ Charged for Land，Labor \＆Capital | 40030 | 54 | 21 | 50.15 | 5 | 61.80 | 41 | 66.48 | 60 |  | 83.25 | 41 | 54.4 | 32 | 57.94 | 43 |
| Total Acres in Business Unit Acres of Cropland | $\begin{aligned} & 41010 \\ & 41012 \end{aligned}$ | $\begin{array}{r} 1027 \\ 516 \end{array}$ | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | $\begin{array}{r} 1816 \\ 603 \end{array}$ | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | $\begin{array}{r} 1052 \\ 609 \end{array}$ | $\begin{aligned} & 41 \\ & 41 \end{aligned}$ | $\begin{aligned} & 991 \\ & 578 \end{aligned}$ | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ |  | 902 590 | $\begin{aligned} & 41 \\ & 41 \end{aligned}$ | $\begin{aligned} & 995 \\ & 558 \end{aligned}$ | $\begin{aligned} & 32 \\ & 32 \end{aligned}$ | 1024 590 | 43 43 |
| Total Capital Managed | 41020 | 307302 | 21 | 350059 | 5 | 370747 | 41 | 335569 | 60 |  | 318984 | 41 | 369359 | 32 | 363726 | 43 |
| Land \＆Improvements | 41021 | 189664 | 21 | 217120 | 5 | 239028 | 41 | 222039 | 60 |  | 221342 | 41 | 230233 | 32 | 230522 | 43 |
| Livestock | 41022 | 84269 | 21 | 102841 | 5 | 83955 | 41 | 70973 | 60 |  | 50991 | 41 | 92945 | 32 | 86816 | 43 |
| Feed，Seed \＆Supplies | 41023 | 15309 | 21 | 9720 | 5 | 21260 | 41 | 19050 | 60 |  | 21127 | 41 | 20357 | 32 | 21259 | 43 |
| Machinery and Equipment | 41024 | 18059 | 21 | 20377 | 5 | 26505 | 41 | 23508 | 60 |  | 25524 | 41 | 25824 | 32 | 25129 | 43 |


| 44282 | 41 | 44744 | 32 | 47152 | 43 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 62 | 41 | 57 | 32 | 60.09 | 43 |
| 722 | 41 | 948 | 32 | 947 | 43 |
| 416 | 41 | 409 | 32 | 422 | 43 |
| 1.84 | 41 | 2.27 | 32 | 2.35 | 43 |


| 392 | 41 | 382 | 32 | 432 | 43 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 31091 | 41 | 25997 | 31 | 46839 | 43 |
| 37169 | 41 | 32256 | 32 | 36057 | 43 |
| 63 | 41 | 57 | 32 | 44 | 43 |



| 35 | 41 | 35 | 32 | 31.34 | 43 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6504 | 40 | 5548 | 30 | 5320 | 40 |
| 11 | 40 | 10 | 30 | 8.41 | 40 |
| 3983 | 41 | 4006 | 32 | 4559 | 43 |
| 5 | 41 | 4 | 32 | 2.83 | 43 |
| 5026 | 41 | 5614 | 32 | 5625 | 43 |
| 12.30 | 41 | 15 | 32 | 13.53 | 43 |

$\begin{array}{rrrrrr}18214 & 41 & 14026 & 32 & 14629 & 43 \\ 28.23 & 41 & 22 & 32 & 25.71 & 43\end{array}$ AC YLD NO AC YLD NO AC YID NO $\begin{array}{rrrrrrrrr}27 & 2.7 & 9 & 25 & 2.9 & 9 & 27 & 2.9 & 14 \\ 142 & 1.2 & 27 & 202 & 2.1 & 25 & 212 & 1.9 & 32 \\ 285 & 1.2 & 31 & 389 & 1.0 & 27 & 343 & 1.2 & 36\end{array}$




ぶがが



Per Man
Man Years of Labor
Crop Productive Man
Crop Productive Man Work
Units
$\begin{array}{ll}\text { Units } & 41110 \\ \text { Value of Crop Harvested } & 41210 \\ \text { Value of All production on }\end{array}$
$\begin{array}{ll}\text { Units } & 41110 \\ \text { Value of Crop Harvested } & 41210 \\ \text { Value of All production on } & \\ \text { Cropland } & 41220 \\ \text { Per Acre of Cropland } & 41221\end{array}$
Per Acre of Cropland Crop Costs Per Acre of
land Machine Costs
Fixed Machine Costs

Per Acre of Cropland | Variable Machine Costs | 41320 |
| :--- | :--- |
| Per Acre of Cropland | 41321 |

Fertilizer and Lime Per Acre of Cropland
Total Value of production
$\begin{array}{ll}\text { Per Acre of Open Land } & 41031 \\ \text { Productive Man Work Units } & 41040 \\ \text { Per Man } & 41041 \\ \text { Man Years of Labor } & 41050\end{array}$
$\begin{array}{ll}\text { Per Acre of Open Land } & 41031 \\ \text { Productive Man Work Units } & 41040 \\ \text { Per Man } & 41041 \\ \text { Man Years of Labor } & 41050\end{array}$ Per Acre of Cropland 41221 Crop Costs Per Acre of Crop－

Fixed Machine Costs 41310 Fertilizer and Lime 41330 41330
41331

cash balance for Michigan generated positive returns to management, to labor and management and to labor and management per man. All other systems generated groups of farms which showed negative returns for these factors. The percent return to capital and management for the business ranged from a high of 3.80 (Michigan) to a low of 0.18 (Kansas).

If livestock returns per $\$ 100$ feed fed are meaningful, then the $\$ 161$ return shown for the Michigan group was a contributing factor to the positive returns to labor, management and capital. Although the physical crop yields were not highest for Michigan, the value per acre of cropland was highest and was another factor explaining the positive returns. Also, the combined labor, machinery and equipment charge per $\$ 100$ production was lowest for this group.

While type 3 (hog farms) showed consistency in terms of physical size measurement and other factors, it appeared that the type 5 (beef farms) groups were inconsistent in all factors except the Michigan group. The results of the business analysis for beef farms again raise the same questions that were raised for types 0,1 , and 3. The task remains to examine the results of the year-end business analysis for the dairy farms and then determine if general conclusions can be made concerning the five types.

DAIRY FARMS (TYPE 7)

As noted earlier, the eight systems were consistent in the number of dairy farms composing the eight subsets. The purpose of this section was to determine if the exit and entry of a few farms (except the Michigan subset with thirty-one fewer farms than the Missouri subset) generated varying analysis factors.

The dairy farms, in terms of acres, were considerably smaller than other types with the total acres ranging from 379 to 445 . The crop acres ranged from 227 to 284. The average number of dairy cows per farm did not appear significantly different for each system with a range of fiftyeight to sixty-one. Size, as measured in head of livestock other than dairy, did not appear significantly different except for the specialized Michigan group which had only three farms with three beef cows each and two farms with four litters of pigs farrowed. Capital managed as a size measure was lowest for the Kansas group; the Kansas subset was also lowest in terms of acres. As might be expected from the number of head, the investment in livestock was very similar for the eight systems. Total capital managed was also quite similar except for the Kansas group where total capital was lower due primarily to fewer acres. Crop productive man work units were lowest for Kansas. Yields expressed in value of production per crop acre showed no apparent significant differences. Total expenses, total receipts and, therefore, the average cash balance for the business unit appeared similar for all groups.

Returns to management, returns to labor and management, returns to
YEAR END BUSINESS SUMMARY FOR DAIRY FARMS TYPED BY VARIOUS SYSTEMS OF CLASSIFICATION

| 1970 DAIRY FARMS |  | MISSOURI |  | KANSAS |  | IOWA |  | ILLINOIS \& KENTUCKY |  | CENSUS |  | MICHIGAN |  | WISCONSIN |  | NEBRAS KA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | (99) |  | (84) |  | (97) |  | (99) |  | (97) |  | (68) |  | (92) |  | (98) |
| Total Livestock Expense | 100 | 16283 | 99 | 16900 | 84 | 16613 | 97 | 16035 | 99 | 16156 | 97 | 15657 | 68 | 16184 | 92 | 16432 | 98 |
| Feed | 110 | 12345 | 99 | 13003 | 84 | 12640 | 97 | 12110 | 99 | 12253 | 97 | 11472 | 68 | 12224 | 92 | 12483 | 98 |
| Other | XXX | 3893 | 99 | 3897 | 84 | 3973 | 97 | 3925 | 99 | 3903 | 97 | 4185 | 68 | 3960 | 92 | 3949 | 98 |
| Total Machinery \& Eq. Expense | 200 | 4641 | 99 | 4174 | 84 | 4572 | 97 | 4649 | 99 | 4471 | 97 | 4499 | 68 | 4379 | 92 | 4656 | 98 |
| Auto | 210 | 300 | 83 | 276 | 69 | 280 | 82 | 289 | 82 | 294 | 82 | 302 | 57 | 271 | 77 | 302 | 82 |
| Gas \& Oil | 220 | 1057 | 99 | 902 | 84 | 1034 | 97 | 1055 | 99 | 1003 | 97 | 1037 | 68 | 1014 | 92 | 1070 | 98 |
| Tractor | 230 | 703 | 99 | 612 | 84 | 656 | 97 | 679 | 99 | 645 | 97 | 679 | 68 | 610 | 92 | 681 | 98 |
| Truck | 240 | 487 | 96 | 444 | 81 | 473 | 94 | 506 | 96 | 460 | 94 | 391 | 65 | 452 | 92 | 509 | 95 |
| Other Machinery | 250 | 1220 | 99 | 1109 | 84 | 1268 | 97 | 1235 | 99 | 1223 | 97 | 1190 | 68 | 1218 | 92 | 1241 | 98 |
| Machine Hire | 260 | 873 | 97 | 830 | 83 | 860 | 95 | 885 | 97 | 847 | 95 | 900 | 67 | 814 | 90 | 853 | 96 |
| Total Crop Expense | 300 | 5194 | 99 | 4494 | 84 | 5004 | 97 | 5232 | 99 | 4994 | 97 | 4950 | 68 | 4847. | 92 | 5219 | 98 |
| Lime | 310 | 283 | 69 | 273 | 59 | 284 | 68 | 279 | 69 | 286 | 68 | 239 | 43 | 294 | 65 | 281 | 67 |
| Phosphate | 320 | 42 | 20 | 46 | 18 | 40 | 18 | 42 | 20 | 37 | 18 | 27 | 9 | 41 | 8 | 41 | 19 |
| Other Fertilizer | XXX | 3430 | 99 | 2934 | 84 | 3162 | 97 | 3246 | 99 | 3186 | 98 | 3122 | 68 | 3394 | 92 | 3362 | 98 |
| Chemicals | 350 | 429 | 90 | 410 | 75 | 575 | 88 | 660 | 89 | 542 | 89 | 608 | 63 | 523 | 83 | 613 | 89 |
| Miscellaneous | 370 | 1010 | 99 | 831 | 84 | 943 | 97 | 1005 | 99 | 943 | 97 | 954 | 68 | 595 | 92 | 922 | 98 |
| Total Labor Expense | 400 | 2351 | 94 | 2115 | 80 | 2271 | 93 | 2303 | 94 | 2206 | 92 | 2350 | 63 | 2252 | 87 | 2401 | 93 |
| Wages | 410 | 2183 | 94 | 1965 | 80 | 2130 | 93 | 2138 | 94 | 2070 | 92 | 2189 | 63 | 2113 | 87 | 2232 | 93 |
| Other Labor | XXX | 168 |  | 150 |  | 141 |  | 165 |  | 136 |  | 161 |  | 139 |  | 169 |  |
| Total Miscellaneous Expense | 500 | 6793 | 99 | 6539 | 84 | 6942 | 97 | 7042 | 99 | 6735 | 97 | 6872 | 68 | 6762 | 92 | 7001 | 98 |
| Real Estate Maint. \& Repairs | 510 | 1113 | 99 | 1054 | 84 | 1095 | 97 | 1105 | 99 | 1120 | 97 | 1115 | 68 | 1089 | 92 | 1125 | 98 |
| Utilities | XXX | 846 | 99 | 633 | 84 |  | 97 | 450 | 99 |  | 97 | 859 | 68 | 838 | 92 | 871 | 98 |
| Taxes | 550 | 949 | 98 | 841 | 83 | 939 | 96 | 960 | 98 | 917 | 96 | 937 | 68 | 889 | 91 | 936 | 97 |
| Insurance | 560 | 431 | 98 | 412 | 83 | 430 | 96 | 829 | 98 | 425 | 96 | 442 | 67 | 423 | 91 | 428 | 97 |
| Interest | 570 | 2464 | 91 | 2601 | 78 | 2561 | 90 | 2663 | 92 | 2436 | 89 | 2458 | 64 | 2490 | 86 | 2607 | 90 |
| Cash Rent | 580 | 749 | 63 | 760 | 52 | 833 | 64 | 795 | 63 | 756 | 62 | 814 | 45 | 803 | 59 | 789 | 63 |
| Miscellaneous Overhead | 590 | 241 | 98 | 238 | 83 | 239 | 96 | 240 | 98 | 239 | 96 | 247 | 67 | 230 | 91 | 245 | 97 |
| Total Operating Expense | XXX | 35262 |  | $3 \div 222$ |  | 35402 |  | 35262 |  | 34562 |  | 34328 |  | 34424 |  | 35709 |  |
| Ereeding Livestock | 610 | 2619 | $\epsilon 7$ | 2308 | 57 | 2369 | 69 | 2726 | 66 | 2606 | 66 | 2543 | 43 | 2182 | 62 | 2658 | 66 |
| Stocker \& Feeding Livestock | 620 | $72:$ | 22 | 89 | 19 | 918 | 24 | 738 | $2 ?$ | 505 | 21 | 104 | 10 | 490 | 21 | 633 | 22 |
| Mach. and Equipment | 630 | 5631 | 93 | 5*? | 7\% | 5653 | 01 | 55.6 | 53 | 5618 | 31 | 6390 | 65 | 5608 | 86 | 5734 | 92 |
| Buildings and Feed Lots | 640 | 1631 | 42 | 1765 | 33 | 1839 | 42 | 1764 | 42 | 1822 | 41 | 2120 | 34 | 1892 | 39 | 1898 | 44 |
| Field Improvements | 650 | 377 | 40 | $3 \% 8$ | 37 | 414 | 42 | 407 | 42 | 379 | 40 | 363 | 29 | 376 | 38 | 408 | 42 |
| Total New Investment | XXX | 11019 |  | 13695 |  | 11223 |  | 11141 |  | 10930 |  | 11520 |  | 10548 |  | 11391 |  |
| Total Cash Expense |  | 46281 |  | 44917 |  | 46625 |  | 46042 |  | 45492 |  | 45848 |  | 44972 |  | 471.00 |  |
| Resale |  | 679 |  | 75 |  | 80 |  | 442 |  | 69 |  | 43 |  | 80 |  | 82 |  |


| 1970 DAIRY FARMS | MISSOUR |  |  | KANSAS |  | IOWAILLINOIS <br> KENTUCK |  |  |  | CENSUS |  | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Code |  | 199 |  | (84) |  | (97) |  | (99) |  | (97) |  | (68) |  | (92) |  | (98) |
| Total Livestock Receipts | 700 | 48755 | 99 | 48906 | 84 | 49842 | 97 | 48153 | 99 | 48024 | 97 | 47958 | 68 | 48085 | 92 | 49067 | 98 |
| Beef Cattle | 720 | 2180 | 37 | 1620 | 31 | 2570 | 38 | 2271 | 38 | 883 | 36 | 171 | 19 | 1177 | 34 | 1759 | 37 |
| Dairy Cattle | 730 | 7218 | 33 | 6893 | 84 | 6981 | 97 | 7139 | 99 | 7335 | 97 | 7231 | 68 | 7022 | 92 | 7270 | 98 |
| Hogs | 740 | 1945 | 23 | 2335 | 20 | 2418 | 26 | 1687 | 23 | 2192 | 24 | 149 | 4 | 1836 | 21 | 2250 | 24 |
| Sheep | 750 | 4 |  | 5 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 0 | 0 | 5 | 4 | 4 | 4 |
| Milk | 786 | 37269 | 99 | 37892 | 84 | 37740 | 97 | 36904 | 99 | 37498 | 97 | 40383 | 68 | 37958 | 92 | 37691 | 98 |
| Poultry | 790 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 2 | 1 | 3 | 1 | 3 |
| Eggs | xxx | 138 | 3 | 159 | 3 | 128 | 3 | 147 | 3 | 112 | 3 | 23 | 2 | 86 | 3 | 92 | 3 |
| Total Crop Receipts | 800 | 5387 | 88 | 2920 | 73 | 4027 | 85 | 5144 | 88 | 4327 | 86 | 4631 | 58 | 3747 | 8 | 4502 | 87 |
| Forage Crops | 810 | 276 | 33 | 237 | 28 | 247 | 31 | 304 | 32 | 380 | 30 | 191 | 18 | 257 | 29 | 249 | 30 |
| Fruits, Nuts | 820 | 8 | 2 | 9 | 2 | 8 | 2 | 8 | 2 | 8 | 2 | 11 | 2 | 8 | 2 | 8 | 2 |
| Corn | 833 | 1135 | 32 | 615 | 24 | 689 | 32 | 1133 | 31 | 826 | 32 | 923 | 19 | 773 | 28 | 1111 | 32 |
| Grain Sorghum | 836 | 85 | 11 | 92 | 9 | 132 | 11 | 98 | 12 | 129 | 12 | 52 | 7 | 59 | 7 | 86 | 11 |
| Soybeans | 837 | 1550 | 36 | 728 | 22 | 1402 | 35 | 1811 | 35 | 1536 | 35 | 1821 | 25 | 1354 | 31 | 1510 | 34 |
| Soybean Seed | 847 | 188 | 3 | 9 | 1 | 133 | 3 | 210 | 4 | 89 | 2 | 116 | 1 | 8 | 1 | 88 | 2 |
| Wheat | 838 | 203 | 29 | 138 | 22 | 164 | 25 | 197 | 27 | 173 | 27 | 185 | 21 | 140 | 20 | 171 | 27 |
| Wheat Seed | 848 | 11 | 2 | 0.21 | 1 | 11 | 2 | 11 | 2 | 11 | 2 | 16 | 2 | 12 | 2 | 11 | 2 |
| Grain Sorghum | 850 | 34 | 11 | 37 | 10 | 41 | 12 | 40 | 12 | 35 | 11 | 20 | 7 | 38 | 11 | 35 | 11 |
| Legume Seeds | 860 | 28 | 2 | 5 | 2 | 4 | 2 | 28 | 3 | 28 | 3 | 40 | 3 | 4 | 2 | 28 | 3 |
| Truck Crops | 870 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Government Payments | 899 | 1145 | 65 | 914 | 53 | 1063 | 64 | 1180 | 66 | 1112 | 65 | 1106 | 41 | 1017 | 60 | 1671 | 63 |
| Total Miscellaneous Income | 900 | 2095 | 98 | 2081 | 83 | 2134 | 96 | 2184 | 98 | 2039 | 96 | 2000 | 67 | 2085 | 91 | 2161 | 97 |
| Custom Work | 910 | 472 | 55 | 508 | 45 | 524 | 54 | 491 | 55 | 460 | 53 | 385 | 32 | 462 | 50 | 505 | 55 |
| Ins. From Mach., Buildings | xxx | 669 | 55 | 393 | 45 | 355 | 54 | 451 | 55 | 394 | 53 | 431 | 32 | 369 | 50 | 444 | 55 |
| Government Payments | 960 | 55 | 40 | 54 | 35 | 51 | 37 | 56 | 40 | 57 | 39 | 48 | 23 | 58 | 37 | 58 | 40 |
| All Other Farm Receipts | Xxx | 899 | 48 | 1126 | 41 | 1204 | 54 | 1186 | 55 | 1128 | 53 | 1136 | 63 | 1196 | 50 | 1154 | 55 |
| Total Cash Receipts |  | 56327 |  | 33907 |  | 56003 |  | 55481 |  | 54390 |  | 54589 |  | 53917 |  | 55732 |  |
| Cash Ealance (Bus) | 40011 | 9277 | 99 | 8915 | 84 | 9298 | 97 | 8997 | 99 | 8819 | 97 | 8698 | 68 | 8865 | 92 | 8550 | 98 |
| Interest (Bus) | 40012 | 2464 | 91 | 2415 | 78 | 2561 | 90 | 2663 | 92 | 2436 | 89 | 2458 | 64 | 2490 | 86 | 2602 | 90 |
| Home used Products | 40013 | 48.3 | 95 | 493 | 81 | 499 | 94 | 489 | 95 | 494 | 93 | 493 | 64 | 497 | 88 | 486 | 94 |
| Net Change of Inventory | 40014 | 4767 | 99 | 4545 | 84 | 4620 | 97 | 5087 | 99 | 5402 | 97 | 6690 | 68 | 4711 | 97 | 5263 | 98 |
| Total Business Unit and Family Earnings | 40019 | 16991 | 99 | 16469 | 84 | 16978 | 97 | 17236 | 99 | 17151 | 97 | 18338 | 68 | 16563 | 92 | 16907 | 98 |
| Interest Allow. on Total Cap. | 40021 | 8131 | 99 | 7382 | 84 | 8115 | 97 | 8276 | 99 | 8004 | 97 | 7916 | 68 | 7794 | 92 | 8133 | 98 |
| Value of Family Labor | 40022 | 1998 | 84 | 1917 | 71 | 1986 | 82 | 1989 | 84 | 2023 | 83 | 1743 | 57 | 1960 | 88 | 2067 | 83 |
| Value of Operator's Labor | 40023 | 5292 | 99 | 5205 | 84 | 5329 | 97 | 5350 | 99 | 5309 | 97 | 5412 | 68 | 5265 | 92 | 5265 | 98 |
| Return to Mgt: Business Unit | 40024 | 1571 | 99 | 1965 | 84 | 1549 | 97 | 1622 | 99 | 1815 | 97 | 3267 | 68 | 1543 | 92 | 1442 | 98 |
| Return to Labor \& Management | 40026 | 6863 | 99 | 7170 | 84 | 6878 | 97 | 6971 | 99 | 7124 | 97 | 8678 | 68 | 6809 | 92 | 6707 | 98 |
| Return to Labor \& Mgt/Man | 40027 | 5179 | 99 | 5752 | 84 | 5373 | 97 | 5233 | 99 | 5675 | 97 | 6714 | 68 | 5352 | 92 | 5139 | 98 |



TABLE 18 (continued)


| 1970 DAIRY FARMS |  | MISSOURI |  | KANSAS |  | IOWA <br> KENTUCKY |  |  |  | CENSUS |  | MICHIGAN |  | WISCONSIN |  | NEBRASKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | code | MIS | (99) | KANS | (84) |  | (97) |  | (99) |  | (97) |  | (68) |  | (92) |  | (98) |
| Livestock Productive Man Work Units | 41501 | 683 | 99 | 689 | 84 | 692 | 97 | 676 | 99 | 681 | 97 | 686 | 68 | 683 | 92 | 690 | 98 |
| Value of All Livestock Prod. | 41502 | 48232 | 99 | 48878 | 84 | 49274 | 97 | 4781 | 99 | 48254 | 97 | 49208 | 68 | 48349 | 92 | 48653 | 98 |
| Feed Fed to Livestock | 41503 | 24657 | 99 | 24829 | 84 | 25411 | 97 | 24253 | 99 | 24588 | 97 | 24338 | 68 | 24647 | 92 | 24759 | 98 |
| Livestock Returns Above Feed Costs | 41504 | 23574 | 99 | 24048 | 84 | 23863 | 97 | 23428 | 99 | 23666 | 97 | 24871 | 68 | 23702 | 92 | 23894 | 98 |
| Livestock Returns per $\$ 100$ Feed Fed | 41505 | 198 | 99 | 200 | 84 | 197 | 97 | 200 | 99 | 199 | 97 | 207 | 68 | 199 | 92 | 199 | 98 |
| Livestock Returns for Labor and Housing | 41506 | 12786 | 99 | 13359 | 84 | 12866 | 97 | 12682 | 99 | 12876 | 97 | 13842 | 68 | 12929 | 92 | 12976 | 98 |
| Feed Purchased | 41509 | 8210 | 99 | 8639 | 84 | 8488 | 97 | 8109 | 99 | 8185 | 97 | 7418 | 68 | 8319 | 92 | 8178 | 98 |
| Average No. of Dairy Cows Milk Per Cow | 41511 41513 | 59 11226 | 99 99 | 60 11232 | 84 84 | 59 11353 | 97 97 | 58 11080 | 98 | 59 11309 | 97 97 | 61 11684 | 68 68 | 59 11329 | 92 92 | 60 11251 | 98 98 |
| Value of Dairy Production | 41514 | 44930 | 99 | 45653 | 84 | 45274 | 97 | 44408 | 99 | 45175 | 97 | 48750 | 68 | 45684 | 92 | 45395 | 98 |
| Number of Beef Cows | 41521 | 34 | 17 | 37 | 13 | 39 | 17 | 36 | 19 | 31 | 17 | 3 | 3 | 32 | 15 | 34 | 18 |
| Number of Stocker \& Feeders | 41522 | 22 | 39 | 23 | 31 | 27 | 40 | 25 | 39 | 18 | 38 | 7 | 19 | 18 | 36 | 21 | 39 |
| Value of All Beef Production | 41525 | 3088 | 58 | 2615 | 50 | 3707 | 58 | 3395 | 59 | 2390 | 57 | 609 | 37 | 2316 | 54 | 2749 | 58 |
| Litters of Pigs Farrowed | 41531 | 25 | 16 | 26 | 14 | 26 | 19 | 21 | 16 | 27 | 17 | 4 | 2 | 23 | 15 | 26 | 17 |
| Value of All Pork Production | 41535 | 5375 | 25 | 5750 | 22 | 5738 | 28 | 4405 | 25 | 5815 | 26 | 102 | 6 | 3835 | 23 | 5773 | 26 |
| Pigs Per Litter | 41536 | 9 | 15 | 8 | 13 | 8 | 18 | 9 | 15 | 9 | 16 | 10 | 1 | 9 | 14 | 9 | 16 |
| Value of Poultry production | 41557 | 357 | 14 | 452 | 11 | 51 | 15 | 310 | 16 | 352 | 14 | 188 | 9 | 19 | 3 | 51 | 14 |
| Total Labor Charge | 41610 | 9859 | 99 | 9445 | 84 | 9800 | 97 | 9863 | 99 | 9749 | 97 | 9731 | 68 | 9681 | 92 | 9946 | 98 |
| Per \$100 production | 41611 | 26.76 | 99 | 27.04 | 84 | 26.49 | 97 | 26.54 | 99 | 26.28 | 97 | 24 | 68 | 26.67 | 92 | 26.45 | 98 |
| Per Man | 41612 | 4278 | 99 | 4202 | 84 | 4285 | 97 | 4246 | 99 | 4271 | 97 | 4248 | 68 | 4266 | 92 | 4254 | 98 |
| Total Mach. \& Equip. Cost | 41700 | 9981 | 99 | 9177 | 84 | 9925 | 97 | 9943 | 99 | 9771 | 97 | 10200 | 68 | 9570 | 92 | 10061 | 98 |
| Fixed Mach. \& Equip. Cost | 41710 | 6047 | 99 | 5717 | 84 | 6100 | 97 | 6015 | 99 | 5980 | 97 | 6342 | 68 | 5570 | 92 | 6129 | 98 |
| Fixed Mach. \& Equip. Cost: Ivst | 41711 | 2529 | 99 | 2712 | 84 | 2772 | 97 | 2642 | 99 | 2710 | 97 | 2746 | 68 | 2714 | 92 | 2718 | 98 |
| Variable Machine Cost: Total | 41720 | 3934 | 98 | 3460 | 84 | 3824 | 97 | 3928 | 99 | 3791 | 97 | 3858 | 68 | $370 \%$ | 92 | 3932 | 98 |
| Variable Machine Cost: Lvst. | 41721 | 1421. | 99 | 1343 | 84 | 1408 | 97 | 1371 | 99 | 1395 | 97 | 1315 | 68 | $2: 35$ | 92 | 1411 | 98 |
| Machine and Equip. Cost/\$100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Production | 41730 | 25.80 | 99 | 25.37 | 84 | 25.7 | 97 | 25.47 | 99 | 25.19 | 97 | 24.37 | 68 | 25.7. | 92 | 25.72 | 98 |
| Machine \& Equipment Investment | 41740 | 20121 | 99 | 19777 | 84 | 21003 | 97 | 20622 | 59 | 20553 | 97 | 22033 | 68 | 205\%\% | $9 \%$ | 21174 | 98 |
| Machine \& Equip. Invest/Man | 41741 | 9037 | 99 | 8774 | §4 | 9168 | 97 | 893E | 99 | 9013 | 97 | 9580 | 68 | 911" | 52 | 3127 | 98 |
| Mach. \& Equip. Invest./\$100 production | 41742 | 53.37 | 99 | 54.20 | 84 | 53.99 | 97 | 52.82 | 99 | 52.20 | 97 | 51.81 | 68 | 54.28 | 92 | 54.20 | 98 |
| Combined Labor \& Machinery and |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Equipment Charge/\$100 Prod. | 41800 | 52.56 | 99 | 52.40 | 84 | 52.20 | 97 | 22.01 | 99 | 51.46 | 97 | 48.57 | 68 | 52.37 | 92 | 52.17 | 98 |

labor and management per man, as well as percent returns, showed little variance for all groups. The only exception was possibly the slightly higher percent return (7.19) for the sixty-eight farms in the Michigan group.

The year-end summary analysis for dairy farms indicated that the systems used did not result in different factors from the analysis. This could be expected from the stable composition of the farms in each group. It appears that any differences were for the specialized Michigan farms which were somewhat more efficient as reflected in the percent returned to the business unit for capital and management.

The objectives of computer farm accounting programs are to provide benchmarks, to be a data source for research and to provide analysis results meaningful for decision making and forward planning. The computer accounting objectives were only met for the analysis of the dairy subset. Thus, the system of classification did not produce differences that were evident in the year-end analysis for dairy.

Types $0,1,3$, and 5 analysis results did not meet the above objectives. The systems of classification applied to the basic set caused differences in the composition of the subsets and resulted in varying implications from the year-end analysis. Thus, four of the five types considered for the eight systems of classification verified the hypothesis that: different subsets generated by the various systems of classification will result in varying farm management recommendations for individual firms and differing policy recommendations concerning aggregate use of the analysis results.

## CHAPTER VI

## SUMMARY

A type classification system should type farms individually and stratify the farms into subsets that portray those farms producing like products. If this were accomplished, it would be expected that resource use for farms within the subsets would be rather stable. Factors used to describe the subsets should be consistent for various measures commonly used in farm management interpretations of year-end analysis results.

The major enterprise on a farm should be the major contributor to income, be the major user of labor and capital, and have relatively high variable expenses. The enterprise name should be descriptive of the farm type.

Specialized dairy farms with few enterprises other than dairy can be classified by various systems and grouped into subsets which meet the above criteria. Classification and stratification into subsets meeting the above criteria cannot be accomplished for farms other than dairy due to: (1) their heterogeneous nature (heterogeneity is not unique to Missouri farms), (2) variations in the classification criteria and (3) variation in classification definitions.

Beef farms included in the study covered a broad spectrum of beef production and were all included in type 5. Additional classifications are needed for farms producling beef in order for the subsets to meet the above requirements. For example, cow-calf operations have different
requirements for capital, labor and feed than backgrounding or finishing operations.

Each system will be summarized with suggested modifications in order to more effectively classify the farms by type, stratify the subsets into groups and improve the year-end analysis results. The suggestions are presented in the framework of questions raised by the study. In some cases, suggestions should be considered tentative hypothesis for verification by future studies.

Factors used to generate the productive man work units for Missouri and Kansas should be empirically examined and adjusted to more clearly reflect the labor input for each enterprise. Until agricultural technology progresses to the point where machinery can be programmed to operate by remote control, a man and machine will continue to be a unit for tilling, planting and harvesting. Therefore, productive man work units, with the correct factor representing time required per unit, can effectively proxy for the inputs in crop production. However, machinery and equipment size can distort the proxy for crop inputs. An adjustment factor should be applied to the productive man work units for each farm to account for the size variable. The crop productive man work unit factor would be adjusted upward for those farms with large capital investments in machinery and equipment. Thus, productive man work units, with an adjustment factor, would effectively proxy for the 'bundle' of resources used for crop production, accounting for machinery size variations represented by machinery investment.

Similarly, empirical studies are needed to validate the correctness of the factors used to generate livestock productive man work units. Adjustments should be made to livestock productive man work units for each farm to represent differences in capital intensity in livestock
production. For example, feeding operations with automatic auger equipment have different labor requirements than operations handling similar numbers of livestock where the feeding is accomplished by 'hand' methods. Hog farrowing operations in individual houses require different amounts of labor compared to central farrowing houses.

If the above adjustments to productive man work units were accomplished on each farm, the variations in the labor required for specific operations due to capital intensity would be lessened. The ratios derived from comparing enterprises on each farm would then be compatible for use in typing and stratifying farms into groups. Without the adjustment, an individual farm highly capitalized in crop production and labor intensive in livestock production could be typed as a livestock farm even though crops used more total resources than livestock and crops produced more output than livestock. The adjustment factor applied to the crop productive man work units would reflect the relatively high crop resource use and output. The productive man work units, before adjusting, would continue to be used for 1 abor efficiency studies by comparing with actual labor used per farm.

The initial division for the Iowa and Illinois systems were similar for separating grain and livestock farms. The two systems produced similar numbers of grain farms with similar year-end analysis results.

The livestock types were determined by feed-fed for Illinois and income for Iowa. Individual items in the hog analysis were very similar for the groups generated by the two systems. The composition of the beef farms resulted in varying returns as shown by the year-end analysis. Price variations affect the input (feed fed) in the same way that it
affects output (value of production). For the results to be consistent, either of these two systems would require a price index adjustment. Although the study was based on one year's records, the implication could be extended to construe the need for index adjustments over time.

The Census method of classification would produce different ratios and hence different subsets if government payments were not removed from total receipts. The ratios were biased in favor of livestock classifications due to reducing crop receipts by the government payments. The other systems included in the study (except Michigan) reflect accrued production by valuing unsold goods through inventories. The effect on the classification due to not including accrued production could not be determined from the study.

The Nebraska system will not consistently type farms or correctly stratify farms into subsets due to double accounting influencing the ratio used to determine the types of farms. The Wisconsin system adjusts the value of farm production by the value of home grown feed fed. An adjus tment of this nature would correct the Nebraska method of adjusting the denominator of the ratios used to classify the farms according to type.

The Michigan system is similar to the Census classification since the value of livestock production is based on receipts and not adjusted for inventories. The Michigan system adjusts receipts by purchased livestock and feed to calculate value of livestock production. Thus, total value of farm production in Michigan is the sum of all types of farm income less the cost of purchased feed and livestock. The cost of livestock is removed from both the numerator and denominator to determine the ratio to compare with an arbitrary standard to determine specific livestock types. However, the cost of purchased feed is removed from
the denominator only which allows the ratio to be influenced by both home grown feed and the magnitude of purchased feed. It is recognized that part of the adjustment made is to arrive at 'value added' on the individual farms. If the 'value added' approach is used in part of the ratio, however, it should be used in all of the ratio.

The Michigan percentage requirements for typing resulted in specialized farms in each subset. Although the requirements were very rigid, the analysis results for the Michigan subsets were not more consistent than the results from the subsets generated by the other systems of classification.

Traditional farm management recommendations indicate that high gross income (sales, receipts, or value of production, depending on which system's terminology is used), is necessary for high net income. High income can result from large farms in terms of physical size measurements and/or efficiency in terms of production per unit for crops and/or livestock. Neither larger farms nor higher efficiency were observed for all groups generated by Michigan's system of classification. Physical crop yields for the Michigan group appeared similar to the yields for the groups generated by the other classification systems.

Value of farm production by the Wisconsin system accounts for accrued production in livestock and value of current production in crops. Value of production is adjusted by home grown feed fed so that double accounting by valuing crops produced and 'selling' crops through livestock is eliminated. Of the income systems included in the study, the Wisconsin system is the most valid in terms of accounting and system criteria.

The value of type classifications should be viewed from the use-
fulness of farm record analysis within the various systems of classification as well as among the various systems of classification. The shortcomings of each system in isolation were presented with suggested modifications. Modifications of the nature discussed would improve the usefulness of the type classification and analysis results within each system. The analysis results indicate that comparison among the various systems is impossible without major adjustments to make each system compatible with another.

A Utopian objective would be one system of classification adopted by all land grant universities, USDA agencies, U.S. Census, and others contemplating classification of farms into types. Even if this ideal is not achieved, the study demonstrated that adjustments within each system could more effectively sort farm records into homogeneous subsets. Homogeneity of the subsets would remove the conundrum presented concerning analysis desired to effectively portray the structure as well as allow effective recommendations to the firm.

The study did not determine which system was 'best'. The eight systems generated subsets which varied in number and produced varied year-end analysis results. Thus, adoption of one of the existing systems by all agencies and institutions would not be expected or desired; however, one of the modified systems suggested by this study would be desirable for widespread adoption.

Alternatives to modified systems are: (1) a type classification considering all outputs, and (2) a type classification considering all resources. Both methods would require development, testing and the use of price indexes.

Additional type designations for the modified or new systems would
be recommended. Widespread adoption of 'a' system would allow the subsets to: (1) portray those farms producing like products, (2) exhibit stability in resource use, (3) produce consistent measures used in farm management, and (4) effectively describe the structure of agriculture.

SELECTED BIBLIOGRAPHY

Acker, Darrel; Rieck, Robert; Weigle, R. N.; and Saupe, William; editors. Wisconsin Farm Business Summary Electronic Farm Records Program, 1968. Madison, Wisc.: Cooperative Extension Programs - University Extension, Department of Agricultural Economics, University of Wisconsin, 1969.

Bachman, K. L.; Ellickson, J. C.; Goodsell, W. D.; and Hurley, Ray. "Appraisal of the Economic Classification of Farms." Journal of Farm Economics, Vol. XXX, No. 4, November, 1948, 680-702.

Benedict, M. R.; Elliott, F. F.; Tolley, H. R.; and Taeuber, Conrad. "Need for a New Classification of Farms." Journal of Farm Economics, Vol. XXVI, No. 4, November, 1944, 694-708.

Black, John D.; Clawson, Marion; Sayre, Charles R.; and Wilcox, Walter W. Farm Management. New York: The MacMillan Co., 1947.

Brown, Thomas G. "Missouri's Experience in the Application of EDP in Farm Management Educational Programs." Proceedings of a Workshop: Computer Use in Farm Management Analysis and Production Decisions. November 20-22, 1968. Washington, D.C.: U.S. Department of Agriculture, August, 1969.

Castle, Emery N., and Becker, Manning H. Farm Business Management: The Decision-Making Process. New York, London: The MacMillan Co., 1962.

Duey, Douglas D. Nebraska Farm Management Summary and Analysis Report 1968. Lincoln, Nebr.: Extension Service, University of Nebraska $\overline{C o l T e g e ~ o f ~ A g r i c u l t u r e ~ C o o p e r a t i n g ~ w i t h ~ t h e ~ U . S . ~ D e p a r t m e n t ~ o f ~}$ Agriculture and the College of Home Economics, 1968.

Finley, Robert M. An Appraisal of EDP and Its Relationship to the Decision Making Process in Farm Management. Agricultural Economics Paper \#1966-3. Federal Extension Service, USDA, Washington, D.C. and Department of Agricultural Economics, University of Missouri, Columbia, Mo.

Finley, Robert M.; Langemeier, Larry N.; and Kirtley, Carrol L. Effects of Varying Management Levels of Crops and Livestock on Optimal Farm Organizations. Research Bulletin 866, University of Missouri. Columbia, Mo.: University of Missouri College of Agriculture and Agricultural Experiment Station, July, 1964.

Goodse11, Wylie D., and Jenkins, Isabel. Costs and Returns on Commercial Farms, Long-Term Study, 1954-63. Statistical Bulletin No. 368. Economic Research Service, USDA. Washington, D.C.: U.S. Government Printing Office, March, 1966.

Goodsell, Wylie D., and others. Costs and Returns on Commercial Farms, Long-Term Study, 1930-57. Statistical Bulletin No. 297. Economic Research Service, USDA. Washington, D.C.: U.S. Government Printing Office, 1958.

Goodsell, Wylie D.; Evans, J. Albert; Hole, Erling; Hurd, Edgar B.; Shugars, Owen K.; Strand, Edwin G.; and Jenkins, Isabel. Farm Costs and Returns: Commercial Farms by Type, Size and Location. Agriculture Information Bulletin No. 230. Economic Research Service, USDA. Washington, D.C.: U.S. Government Printing Office, October, 1967.

Heady, Earl 0. Economics of Agricultural Production and Resource Use. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1952.

Hepp, Ralph E., and Brown, L. H. Dairy - General Farming Today in Southern Michigan, 1969. Agricultural Economics Report, No. 176, August, 1970. TelFarm Business Analysis Summary for Southern Dairy General, 1969. East Lansing, Mich.: Department of Agricultural Economics, Michigan State University, August, 1970.

Irwin, George D., and Havlicek, Joseph, Jr. "Tailoring Farm Account Projects to Answer Aggregate Questions." Journal of Farm Economics, Vol. 48, No. 5, December, 1966, 1623-1628.

Johnson, D. Gale. "Contribution of Price Policy to the Income and Resource Problems in Agriculture." Journal of Farm Economics, Vol. XXVI, No. 4, November, 1944, 631-664.

Kansas Farm Management Association Account Book. Revised Edition, 1970. Manhattan, Ks.: Extension Division and Department of Agricultural Economics of Kansas State University.

Kirtley, Carrol L. "The Missouri Farm Business Record Analysis Program." IBM Agricultural Symposium. Endicott, N.Y., May 10-13, 1965.
, and Rottmann, Leroy. Missouri Farm Business Summary for 1969. Columbia, Mo.: Extension Division, University of Missouri, August, 1970.

Stoneberg, E. G. Costs and Returns on Iowa Farms - 1969. Report for the Iowa Agricultural Experiment Station. Project No. 111. Ames, Iowa: Iowa State University of Science and Technology, Cooperative Extension Service, November, 1970.

Summary of Illinois Farm Business Records - 1969. "Commercial Farms: Production, Costs, Income, and Investments." Urbana, Ill.: University of Illinois at Urbana-Champaign, College of Agriculture, Cooperative Extension Service, Circular 1019, August, 1970.
U.S. Department of Commerce. Bureau of the Census. "Type of Farm." The 1964 U.S. Census of Agriculture, Vol. II, Chap. 10. Washington, D.C.: U.S. Government Printing Office, 1968.
. Bureau of the Census. "Value of Farm Products Sold and Economic Class of Farm." The 1964 U.S. Census of Agriculture, Vol. II, Chap. 6. Washington, D.C.: U.S. Government Printing Office, 1966.
, and U.S. Department of Agriculture. "Analysis of Specified Farm Characteristics For Farms Classified by Total Value of Products." Technical Monograph. Washington, D.C.: U.S. Government Printing Office, 1943.

Warren, G. F. Farm Management. New York: The MacMillan Co., 1919.

APPENDIXES

## APPENDIX I

## CRITERIA FOR TYPING THE BASIC SET

The basic set of 403 records used in the study were from Missouri Farmers enrolled in the 1970 Missouri Mail-In Record Analysis Project. The farmers were enrolled and assisted through the year by County Extension Agents of the University of Missouri.

The Missouri program types the farms according to productive man work units as set out below under "Missouri". Each of the other systems of classification determined type by meeting different criteria. The subsets for specific types under each system were determined by a series of calculations and "if" statements on the 360-65 computer.

Missouri factors used to determine productive man work units can be found by referring to Code 41040 Appendix II. Additional information concerning type classifications may be found by consulting the appropriate state or Census bibliography reference.

## MISSOURI ${ }^{1}$

(PRODUCTIVE MAN WORK UNITS)

The basis for determining the farm type for Missouri was:

1. Grain: a) Less than 33 percent of the total PMWU in any one animal enterprise, and b) 50 percent or more of total PMWU in grain, fiber, seed, and fruit crops (corn silage and grain sorghum silage are included).
2. Grain Animal (grain-hog, grain-beef, etc.): a) 33 percent or more of total PMWU in grain and cash crops, and b) 33 percent or more of total PMWU in any one type of animal enterprise.
3. Animal, one only (beef, dairy, hog, etc.): a) Less than 33 percent of total PMWU in grain and cash crops and b) 50 percent or more of total PMWU in any one type of animal enterprise.
4. Mixed Livestock (beef-hog, dairy-hog, etc.): a) Less than 33 percent of total PMWU in grain and cash crops, and b) 33 to 49 percent of total PMWU in one type of animal enterprise, and c) 33 to 49 percent of total PMWU in another type of animal enterprise.
5. General: Farms not meeting the foregoing criteria.
[^17]
## KANSAS ${ }^{2}$

(PRODUCTIVE MAN WORK UNITS)

The mechanics of sorting the basic set of 403 Missouri farms to identify individual farm types according to Kansas criteria, was accomplished by a series of questions about PMWU's for each farm. Kansas PMWU factors differ from Missouri factors resulting in differing specific crop and livestock PMWU's for the calculation necessary to answer the questions. The series of questions to determine type by Kansas criteria were of the following nature:

1. Were "Total Crop PMWU's" greater than 33.33 AND "Dairy PMWU's" less than or equal to 33.33 AND "Beef PMWU's" less than or equal to 33.33 AND "Hog PMWU's" less than or equal to 33.33? If yes, it was a GRAIN FARM of type \#1.
2. Were "Beef PMWU's" greater than 33.33 AND "Dairy PMWU's" less than or equal to 33.33 AND "Hog PMWU's" less than or equal to 33.33 AND "Crop PMWU's" less than or equal to 33.33? If yes, it was a BEEF FARM of type \#5.
3. Were "Dairy PMWU's" greater than 33.33 AND "Beef PMWU's" less than or equal to 33.33 AND "Hog PMWU's" less than or equal to 33.33 AND "Crop PMWU's" less than or equal to 33.33? If yes, it was a DAIRY FARM of type \#7.

[^18]4. Were "Hog PMWU's" greater than 33.33 AND "Dairy PMWU's" less than or equal to 33.33 AND "Beef PMWU's" less than or equal to 33.33 AND "Crop PMWU's" less than or equal to 33.33? If yes, it was a HOG FARM of type \#3.
5. Farms not meeting the above criteria were typed GENERAL FARM of type \#0.

KANSAS PMWU FACTORS FOR CROPS AND LIVESTOCK

| Crop Acres $\quad X$ | factor | Livestock X | factor |
| :---: | :---: | :---: | :---: |
| Alfalfa hay | 1.5 | Dairy (head) | 9.0 |
| Clover hay | 0.6 | Beef cows (head) | 1.0 |
| Other hay | 0.6 | Stocker \& feeders | 0.5 |
| Rotation past | 0.2 | Litter hogs | 3.0 |
| Silage | 1.2 | Feeder pigs | 0.2 |
| Barley | 0.6 | Laying hens | 0.075 |
| Corn | 0.8 | Total Livestock PMWU's |  |
| Oats | 0.6 |  |  |
| Rye | 0.6 |  |  |
| Sorghum | 0.7 |  |  |
| Soybeans | 0.7 |  |  |
| Wheat | 0.6 |  |  |
| Grass \& legume seed | 0.5 |  |  |
| Cotton | 2.1 |  |  |

Total Crop PMWU's
Total Farm PMWU's = Total Livestock + Total Crops

IOWA ${ }^{3}$

(FEED FED AND RECEIPTS)

Sorting the basic set of 403 Missouri farms to identify individual farm types, according to Iowa criteria, was accomplished by a series of questions concerning 'feed fed' and 'livestock increase'.

1. Was the ratio "Value Feed Fed" "Value Open Land Production" less than . 50 ? If yes, the farm was a GRAIN FARM of type \#1.
2. Was the ratio "Value Hog Production" "Value All Livestock Production" greater than or equal to . 70 ? If yes, the farm was a HOG FARM of type \#3.
3. Was the ratio "Value of Dairy Production" "Value All Livestock Production" greater than or equal to . 50 AND "Number of dairy cows" greater than or equal to 18 ? If yes, the farm was a DAIRY FARM of type \#7.
4. Was the ratio "Value of Beef Production" "Value of All Livestock Production" greater than or equal to .70? If yes, the farm was a BEEF FARM of type \#5.
5. Farms not meeting the above criteria were typed GENERAL FARM of type \#0.
${ }^{3}$ E. G. Stoneberg, Costs and Returns on Iowa Farms - 1969, Report for the Iowa Agricultural Experiment Station, Project No. 111 (Ames, Iowa: Iowa State University of Science and Technology, Cooperative Extension Service, November, 1970), pp. 8, 9. Iowa increased their percentage necessary for a farm to meet specific type classification in 1970 (for 1969 records) according to correspondence dated July 7, 1971 from E. G. Stoneberg, Extension Economist, Cooperative Extension Service, Iowa State University, Ames, Iowa.

## ILLINOIS AND KENTUCKY ${ }^{4}$

## (FEED FED)

The 403 Missouri farms were typed by Illinois (Kentucky) ${ }^{5}$ criteria as follows:

1. If the value of feed fed was less than one-half of the feed and grain returns and value of feed fed to dairy or poultry was not more than one-sixth of the feed and grain returns, the farm was a GRAIN FARM.
2. HOG or BEEF FARMS were those farms where the value of feed fed was more than one-half of the feed and grain returns and either hog or beef enterprises received more than one-half of the value of feed fed.
3. DAIRY FARMS were those where the value of feed fed was more than one-half of feed and grain returns and either dairy or poultry enterprises received more than one-third of the value of feed fed.
4. Those farms not meeting the above criteria were classified GENERAL FARMS.
[^19]CENSUS ${ }^{6}$

(CASH RECEIPTS METHOD)

Sorting the basic set of 403 Missouri farms to identify individual farm types according to Census criteria was accomplished by a series of questions about receipts. Farm "receipts" for Census purposes are cash sales. "Total farm receipts" were livestock, crop and miscellaneous receipts plus 'expected' sales minus government payment and minus capital items sold. ${ }^{7}$

1. Was the item "Total Crop Receipts" greater than one-half of "Total Farm Receipts"? If yes, it is a GRAIN FARM of type \#1.
2. Was the ratio "Poultry Receipts" $\frac{\text { "Total Farm Receipts" }}{\text { greater than or equal to }}$ .5? If yes, it was a POULTRY FARM of type \#9.
3. Was the ratio "Dairy Receipts" "Total Farm Receipts" greater than or equal to .5? If yes, it was a DAIRY FARM of type \#7.
4. Was the ratio "Total Livestock Receipts minus Dairy Receipts" greater than or equal to . 5 ? If yes, it was a MIXED LIVESTOCK FARM of type \#8.
${ }^{6}$ U.S. Department of Commerce, Bureau of the Census, "Type of Farm," The 1964 U.S. Census of Agriculture, Vol. II (Washington, D.C.: U.S. Government Printing Office, 1968), Chap. 6, pp. 593-596 and Chap. 10, p. 961.
${ }^{7}$ The Census does not classify beef, hog, and grain - livestock combinations. Thus, all livestock farms other than noted above were grouped into "mixed livestock".
5. Farms not meeting the above criteria were GENERAL FARMS of type \#0.

## MICHIGAN

## (VALUE OF PRODUCTION METHOD)

Sorting the basic set of 403 Missouri farms to identify individual farm types according to Michigan criteria, was accomplished by a series of questions concerning the 'production' of each farm. 8

1. Was the ratio "Crop Value" "Value of Farm Production" greater than or equal to . 95 ? If yes, the farm was a SPECIALIZED GRAIN FARM, type \#1. If no, go to 2.
2. Was the ratio "Value of Hog Production" "Value of Farm Production" greater than or equal to . 95 ? If yes, the farm was a HOG FARM, type \#3. If no, go to 3 .
3. Was the ratio "Value of Beef Production" greater than or equal to .95? If yes, the farm was a BEEF FARM, type \#5. If no, go to 4.
4. Was the ratio "Value of Dairy Production" greater than or equal to . 95 ? If yes, the farm was a DAIRY FARM, type \#7. If no, go to 5.
$8_{\text {Ralph E. Hepp and L. H, Brown, Dairy - General Farming Today in }}$ Southern Michigan, 1969, Agricultural Economics Report, No. 176, August, 1970, TelFarm Business Analysis Summary for Southern Dairy General, 1969 (East Lansing, Mich.: Department of Agricultural Economics, Michigan State University, August, 1970) and a letter from Myron P. Kelsey, Extension Specialist in Agricultural Economics (June 21, 1971).
5. The remaining farms were classified GENERAL FARMS, type \#0.

Michigan definitions used for the above calculations:
Value of Farm Production is the sum of all types of farm income less the cost of purchased feed and livestock. ${ }^{9}$

Crop Value is computed by yield $X$ acres $X$ standard price including government payments.

Value of Livestock is receipts minus purchases,
${ }^{9}$ Landlord's share from rented land is not included for the Michigan sys tem.
(VALUE OF PRODUCTION METHOD)

Sorting the basic set of 403 Missouri farms to identify individual farm types according to Wisconsin criteria, was accomplished by a series of questions about the production of each farm.

1. Was "Total Value of Livestock Produced" greater than one-half of "Total Value of Farm Production"? If no, it was a GRAIN FARM of type \#1. If yes, go to 2.
2. Was the ratio "Value Dairy Produced" greater than or equal to . 6? If no, go to question 3. If yes, it was a DAIRY FÁRM of type \#7.
3. Was the ratio "Value Beef Produced" greater than or equal to .6? If yes, it was a BEEF FARM of type \#5. If no, go to 4.
4. Was the ratio "Value Hogs Produced" $\frac{\text { "Value of Farm Production" }}{\text { greater than or equal }}$ to .6? If yes, it was a HOG FARM of type \#3. If no, go to 5.
5. If the above criteria was not met, the farm was classified GENERAL FARM, type \#0.

Wisconsin definitions used for the above calculations were:
${ }^{10}$ Darrel Acker, and others, eds., Wisconsin Farm Business Summary Electronic Farm Records Program, 1968 (Madison, Wisc.: Cooperative Extension Programs - University Extension, Department of Agricultural Economics, University of Wisconsin, 1969), Appendix I, p. 45.

Value of Farm Production; Value of livestock production, plus value feed crops produced, plus value cash crops produced, minus value of home grown feed fed. Value of feed fed was computed by subtracting cost of purchased feed from total feed fed.

Total Value of Livestock Produced; Value of ending livestock inventory, plus value of products sold, plus livestock sold, plus home use, minus livestock purchases and minus beginning inventory.

Value of Specific Livestock Class; Calculated by same method as Total Value of Livestock Produced.

Value of Crops were computed by acres $X$ yield $X$ standard price.

## NEBRASKA ${ }^{11}$

## (VALUE OF PRODUCTION METHOD)

The 403 Missouri farms were typed by Nebraska criteria according to the following:

1. GRAIN FARMS were those with less than 35 percent of "Gross Production" from livestock.
2. BEEF FARMS were those with "Gross Production" from all types beef enterprises greater than 40 percent of total farm production (but no other enterprise greater than 40 percent). 12
3. HOG and DAIRY were typed by the same criteria as no. 2 (BEEF) type \#3 and \#7 respectively.
4. All farms not meeting the above criteria were typed GENERAL, type \#0.

Nebraska definitions used for the above classifications were:
Gross Production; An estimate of all value added on the farm during the year. It is "Total Net Livestock Production" plus "Total Value of All Crop Production on the Farm".

Net Livestock Production; The value added to all classes of livestock on the farm during the year, taking into account purchases, sales,

[^20]
## inventory change and home use.

Specific Livestock Classes; Computed similar to Net Livestock Production.

## APPENDIX II

## DETAILED DEFINITION OF SELECTED ANALYSIS TERMS USED IN THE 'YEAR-END' BUSINESS ANALYSIS

## Code Description

- Resale: Resale items account for any discrepancy of (Total Cash Receipt) - (Total Cash Expense) not equaling Cash Balance. Government Payments: Payments associated with the crops program.

960 Government Payments: Payments for practices other than crop program payments.

40011 Cash Balance: Total Cash Receipts less Total Cash Expense.
40012 Interest Actually Paid by the Business.
40014 Net Change of Inventory: The difference in value of all business assets, except land, at the beginning and end of the year.

40019 Total Business Unit and Farm Earnings: The sum of cash balance (40011) plus interest paid (40012) plus home used products (40013) plus net change of inventory (40014).

40021 Interest Allowance on Capital: Five percent times total capital managed (41020).

40024 Return to Management: Business unit and family earnings (40019), minus interest allowance (40021) minus value of unpaid family labor (40022) minus the value of operator labor (40023).

40026 Return to Labor and Management: Value of operator labor (40023) plus the return to management (40024).

40027 Return to Labor and Management Per Year: Labor and management (40026) divided by months of 1 abor times. 12.

40029 Percent Return: Return to capital and management divided by total capital managed times 100.

40030 Net Earnings Per $\$ 100$ Charged for Land, Labor, and Capital: 25 percent of machine hire (assumed labor share of 260 ), plus hired labor (400), plus earnings (40019) divided by the sum of interest allowance (40021), family labor (40022), operator labor (40023), hired labor (400) and 25 percent of machine hire (260).

41020 Total Capital Managed: The market value of land and improvements reported at the end of the year (41021) plus one-half of the January 1 and one-half of the December 31 inventory of livestock (41022) plus feed, seed and supplies (41023) and machinery and equipment (41024). Total Value of Production: Value of all open land production (41230) plus livestock return above feed costs, plus custom work plus timber products. Total PMWU's: Total crop productive man work units plus total livestock productive man work units. The following indicate the factors used in computing the major crop and livestock PMWU's.

| Crop $\quad X$ | factor | Livestock $X$ | factor |
| :---: | :---: | :---: | :---: |
| Cereals | . 5 | Beef cows | 1.5 |
| Corn (grain) | . 8 | Dairy cows | 10.0 |
| Grain sorghum | . 8 | Other beef | 1.5 |
| Soybeans | . 7 | Other dairy | 1.5 |
| Row crop silage | 1.5 | Litters farrowed | 1.5 |
| Alfalfa (72.5 T) | 1.8 | Hogs fed to market | 0.2 |
| Sudan, rye, etc. | . 3 | Ewes | 0.5 |
| Brome (hay or seed) | . 4 | Other sheep | 0.15 |
| Prairie hay | . 4 | Laying hens | 0.10 |
|  |  | Broilers | 0.005 |

41050 Man Years of Labor: Months of hired labor reported plus months of family and operator's labor plus . 00125 times expenditure for custom work (260) divided by 12.

41220 Value of Production on Cropland: Value of crops harvested plus value of rotation pasture grazed plus government payments for retired acres, price support, etc.

Fixed Machinery Crop Costs: Depreciation times percent machine used for crops plus 05 times (value beginning of year plus value end of year). The five percent is an allowance for interest, taxes, insurance and housing. Note: Depreciation as such is not reported in the analysis. Said figure is not carried as an explicit expense item by the Missouri method of analysis.

41320 Variable Machinery Crop Costs: This item includes the portion of the following expense items which the cooperator did not allocate to livestock: auto (210) gas, oil and grease (220), tractor (230), truck (240), other machinery and equipment (250),

75 percent of machine hire (260), minus gas tax refund and 75 percent of custom receipts (910).

## VITA

Don D. Pretzer was born , at Elmdale, Kansas. He is the youngest of four children. At an early age, his family moved to Anderson county near Garnett, Kansas. His father was a beef-hog-grain farmer.

He attended rural school for his elementary education and graduated from Garnett High School. During high school, he participated in all sports, edited the high school paper, played in the band and was president of his senior class. In September of 1950, he enrolled at Kansas University where he received the "Dad Butcher" scholastic scholarship. One semester of college was missed in 1951 in order to operate the family farm while his father was ill.

Continued agricultural interests prompted transferring to Kansas State University in the fall of 1952. At Kansas State University, he received a B.S. in Agronomy and was commissioned a Second Lieutenant in the United States Air Force. While in the Air Force, he completed pilot training and served three years active duty.

After discharge from the Air Force in 1958, he started work for the Kansas Extension Service as Assistant County Agent for Balanced Farming in Rice County, Kansas. In 1959, he accepted the position of County Agricultural Agent in Linn County, Kansas. In 1964, he was appointed Extension Economist, Farm Management Fieldman, located at Garnett, Kansas.

Graduate study in Agricultural Economics was initiated in 1967
while serving as Extension Economist, Grain Marketing, Kansas State University, Manhattan, Kansas. Early in 1969, he was appointed Section Leader and Extension Economist, Farm Management . . . a position he currently occupies.

In 1969, he received an NDEA fellowship, University of Missouri, Columbia, to pursue graduate work toward a Ph.D. degree. His wife is Carolyn A. (Barndt) Pretzer. They have three children: Janis, Denise and Mark.

He is a member of American Farm Economics Association, Epsilon Sigma Phi and Omicron Delta Epsilon.

```
University Libraries
University of Missouri
Digitization Information Page
Local identifier Pretzer1971
Source information
    Format Book
    Content type Text
    Source ID Gift copy from department; not added to MU
collection.
    Notes
Capture information
    Date captured November 2023
    Scanner manufacturer Fujitsu
    Scanner model fi-7460
    Scanning system software ScandAll Pro v. 2.1.5 Premium
    Optical resolution 600 dpi
    Color settings 8 bit grayscale
    File types tiff
    Notes
Derivatives - Access copy
    Compression Tiff: LZW compression
    Editing software Adobe Photoshop
    Resolution 600 dpi
    Color grayscale
    File types pdf created from tiffs
    Notes Images cropped, straightened, brightened
```


[^0]:    ${ }^{1}$ Wylie D. Goodsell and Isabel Jenkins, Costs and Returns on Commercial Farms, Long-Term Study, 1954-63, Statistical Bulletin No. 368, Economic Research Service, USDA (Washington, D.C.: U.S. Government Printing Office, March, 1966), p. 3.
    ${ }^{2}$ M. R. Benedict and others, "Need for a New Classification of Farms," Journal of Farm Economics, XXVI, No. 4 (November, 1944), 695.
    $3^{\text {Ibid. }}$

[^1]:    ${ }^{4}$ The North Central Region, as used in this study, includes North Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Illinois, Wisconsin, Missouri, Indiana, Michigan and Ohio. Kentucky was also included as its criterion was very similar to Illinois. The specific states selected for this study were those representative of the systems currently used in the North Central Region.
    ${ }^{5}$ The Census System of classification was included as part of the study because of its wide use in agricultural studies.

[^2]:    ${ }^{1}$ Early classification studies include type tabulation by W. J. Spillman and the comprehensive tabulation worked out by F. F. Elliott in connection with the 1930 Census and published in the monograph, "Types of Farming in the United States," (Bureau of the Census, 1933).
    ${ }^{2}$ Benedict and others, op. cit., p. 698.
    ${ }^{3}$ Ibid.
    ${ }^{4}$ Earl 0. Heady, Economics of Agricultural Production and Resource Use (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1952), p. 3.
    ${ }^{5}$ Ibid.

[^3]:    ${ }^{6}$ D. Gale Johnson, "Contribution of Price Policy to the Income and Resource Problems in Agriculture," Journal of Farm Economics, XXVI, No. 4, November, 1944, p. 630.
    ${ }^{7}$ See Appendix I for a discussion of definitions and specific questions asked the computer in order to meet each state's criteria. Appendix I also contains specific reference for criteria used by the systems included in the analysis.

[^4]:    ${ }^{8}$ Emery N. Castle and Manning H. Becker, Farm Business Management: The Decision-Making Process (New York, London: The MacMillan Co., 1962), p. 104.

[^5]:    ${ }^{9}$ U.S. Department of Commerce, Bureau of the Census, "Value of Farm Products Sold and Economic Class of Farm," The 1964 U.S. Census of Agriculture, Vol. II, Chap. 6 (Washington D.C.: U.S. Government Printing Office, 1966), p. 593.

[^6]:    ${ }^{10}$ Idem., "Type of Farm," The 1964 U.S. Census of Agriculture, Vol. II, Chap. 10 (Washington, D.C.: U.S. Government Printing Office, 1968), p. 961.

    11 Benedict and others, op. cit., p. 694.

[^7]:    ${ }^{13}$ K. L. Bachman and others, "Appraisal of the Economic Classification of Farms," Journal of Farm Economics, XXX, No. 4, November, 1948, p. 688.
    ${ }^{14}$ U.S. Department of Commerce and U.S. Department of Agriculture, "Analysis of Specified Farm Characteristics For Farms Classified by Total Value of Products," Technical Monograph (Washington D.C.: U.S. Government Printing Office, 1943), p. 3.
    ${ }^{15}$ John D. Black and others, Farm Management (New York: The MacMillan Co., 1947), p. 434.
    ${ }^{16}$ Benedict and others agreed with Black and associates that inputs would be the most satisfactory classification systemif this could be handled on a practical basis.

    17 Bachman and others, op. cit., p. 134.

[^8]:    ${ }^{22}$ Wylie D. Goodsell and others, Costs and Returns on Commercial Farms, Long-Term Study, 1930-57, Statistical Bulletin No. 297, Economic Research Service, USDA (Washington, D.C.: U.S. Government Printing Office, 1958), p. 1.
    ${ }^{23}$ Telephone conversation with Wylie Goodsell, Leader, Type of Farm Analysis Group, Production Adjustments Branch, FPED, Economic Research Service, USDA, Washington, D.C., July, 1971.

[^9]:    ${ }^{25}$ Robert M. Finley, Larry N. Langemeier, and Carrol L. Kirtley, Effects of Varying Management Levels of Crops and Livestock on Optimal Farm Organizations, Research Bulletin 866, University of Missouri (Columbia, Mo.: University of Missouri College of Agriculture and Agricultural Experiment Station, July, 1964), p. 51.
    ${ }^{26}$ George D. Irwin and Joseph Havlicek, Jr., "Tailoring Farm Account Projects to Answer Aggregate Questions, " Journal of Farm Economi cs, 48, No. 5, December, 1966, p. 1624.

[^10]:    ${ }^{\mathrm{a}}$ For the factors used to generate the productive man work units, see Appendix I.

[^11]:    ${ }^{2}$ The Michigan system is the first system presented which uses some measure of production. Nebraska and Wisconsin systems have the same basic notion and very similar terminology, however, interpretation of value of production and adjustments concerning feed are quite different. The definitional differences were analyzed and will be presented in Chapter IV.

[^12]:    ${ }^{1}$ Henceforth, the systems using a percent common to each (Wisconsin's percent) will be referred to as 'The Revised Michigan System' and 'The Revised Nebraska System'.

[^13]:    ${ }^{4}$ Carrol L. Kirtley and Leroy Rottmann, Missouri Farm Business Summary for 1969 (Columbia, Mo.: Extension Division, University of Missouri, August, 1970), p. 2.

[^14]:    ${ }^{5}$ A similar summary publication for 1970 was being prepared at the time this dissertation was being written.

[^15]:    ${ }^{6}$ Terminology, such as 'Illinois farms', should not be contrued to mean... the farms are representative of Illinois farms...but should mean a group or subset from the basic set of 403 Missouri Mail-In Records typed and grouped by the Illinois system with the same implications for the systems other than the Illinois system.

[^16]:    ${ }^{7}$ The percent return is calculated by the return to capital and management divided by total capital managed and converted to percent.
    ${ }^{8}$ Illinois was an exception to this statement.

[^17]:    ${ }^{1}$ Carrol L. Kirtley and Leroy Rottmann, Missouri Farm Business Summary for 1969 (Columbia, Mo.: Extension Division, University of Missouri, August, 1970), p. 2.

[^18]:    ${ }^{2}$ Kans as Farm Management Association Account Book (Revised ed.; Manhattan, Ks.: Extension Division and Department of Agricultural Economics of Kansas State University, 1970), p. 13A.

[^19]:    ${ }^{4}$ Summary of Illinois Farm Business Records - 1969, "Commercial Farms: Production, Costs, Income, and Investments" (Urbana, Ill.: University of Illinois at Urbana-Champaign, College of Agriculture, Cooperative Extension Service, Circular 1019, August, 1970), p. 13.
    ${ }^{5}$ Kentucky criteria were essentially the same as Illinois.

[^20]:    ${ }^{11}$ Douglas D. Duey, Nebraska Farm Management Summary and Analysis Report - 1968 (Lincoln, Nebr.: Extension Service, Uni versity of Nebraska College of Agriculture Cooperating with the U.S. Department of Agriculture and the College of Home Economics, 1968), pp. 3, 5, 14 and Table Ia.
    ${ }^{12}$ The statement in parenthesis was added when typing the basic set of farms to eliminate two enterprises each meeting said percentages.

