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LIST OF ABBREVIATIONS 

mGluR2/3, metabotropic glutamate receptors; 

xc-, Cystine-glutamate exchange; 

XAG, Glutamate transporters; 

PFC, Prefrontal cortex; 

Psyn, PmGluR, and Pex, Glutamate concentrations at synapse, mGluR and extracellular space;

Gi, Glial sheath;

Dsyn, Dsh and Dex,, Diffusion coefficient in the synapse, between the sheath and extracellular 

space; 

TTX, Tetrodoxin; 

AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; 

NMDA, N-methyl-D-aspartic acid; 

GLT1, glial glutamate transporter protein 
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ABSTRACT 

Chronic cocaine administration causes instability in extracellular glutamate in the nucleus 

accumbens that is thought to contribute to the vulnerability to relapse. A computational 

framework was developed to model glutamate in the extracellular space, including synaptic and 

nonsynaptic glutamate release, glutamate elimination by glutamate transporters and diffusion, 

and negative feedback on synaptic release via metabotropic glutamate receptors (mGluR2/3). 

This framework was used to optimize the geometry of the glial sheath surrounding excitatory 

synapses, and by inserting physiological values, accounted for known stable extracellular, 

extrasynaptic concentrations of glutamate measured by microdialysis and glutamatergic tone on 

mGluR2/3. By using experimental values for cocaine-induced reductions in cystine-glutamate 

exchange and mGluR2/3 signaling, the computational model successfully represented the 

experimentally observed increase in glutamate that is seen in rats during cocaine-seeking. This 

model provides a mathematical framework for describing how pharmacological or pathological 

conditions influence glutamate transmission measured by microdialysis.  

-147 words- 

Key words:   Glutamate transporter, Glial geometries, Cystine-glutamate exchange, mGluR2/3, 

Non-synaptic release, Micordialysis 
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Repeated cocaine administration causes enduring changes in glutamate transmission in the 

nucleus accumbens that may contribute to relapse vulnerability (Kalivas et al., 2005).  These 

changes include alterations in glutamate release (McFarland et al., 2003), postsynaptic glutamate 

signaling (Conrad et al., 2008), dendritic spine morphology (Robinson and Kolb, 2004), and 

group II metabotropic glutamate receptors (mGluR2/3; Xi et al., 2002). The diversity of 

neuroadaptations has proven difficult to synthesize into a portrait of cocaine-induced pathology. 

While obtaining experimental measurements of glutamate transmission is critical, an alternate 

approach is to mathematically model an ‘archetypal’ synapse by extracting common features of 

the synaptic environment from a large number of synapses (Clements et al., 1992; Kleinle et al., 

1996; Rusakov and Kullmann, 1998; Rusakov, 2001; Barbour, 2001; Diamond, 2005; Saftenku, 

2005). These models have focused on synaptic glutamate release, diffusion out of the synapse 

and elimination by glutamate transporters (XAG) in an effort to understand the accessibility of 

synaptically released glutamate to the extracellular environment.  

The mathematical models cited are based upon in vitro electrophysiological research and are 

appropriate for assessing concentrations of glutamate in the synaptic cleft and the near adjacent 

perisynaptic environment. However, in vivo extrasynaptic concentrations assessed by 

microdialysis reveal that the majority of glutamate outside of the synaptic cleft is not of synaptic 

origin (Miele et al., 1996; Timmerman and Westerink, 1997; Melendez et al., 2005). Also, 

extracellular glutamate in tissue slices and cell culture experiments is partly of nonsynaptic 

origin (Jabaudon et al., 1999; Haydon, 2001; LeMeur et al., 2007). While a number of sources of 

nonsynaptic extracellular glutamate have been suggested (Danbolt, 2001; Haydon, 2001; 

Cavelier et al., 2005), extracellular glutamate measured by microdialysis in the accumbens arises 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Pendyam et al., 2008

  

6

primarily from cystine-glutamate exchange (xc-; Baker et al., 2002; Xi et al., 2002). Cystine-

glutamate exchange is the rate-limiting step in glutathione synthesis (McBean, 2002), and 

glutamate derived from xc- stimulates perisynaptic mGluR2/3, and thereby inhibits synaptic 

glutamate release (Xi et al., 2002; Moran et al., 2005).  

These data indicate that mathematical modeling of glutamate transmission should include 

nonsynaptic sources of glutamate. Moreover, rats withdrawn from chronic cocaine administration 

show dysregulation of extracellular glutamate in the nucleus accumbens due, in part, to reduced 

xc- and mGluR2/3 signaling (Baker et al., 2003; Madayag et al., 2007).  Therefore, including 

extrasynaptic glutamate is required to model relevant cocaine-induced neuroplasticity. Also, 

while mathematical models considering only synaptically released glutamate predict that each 

glutamate synapse functions in relative isolation from other synapses (Kleinle et al., 1996; 

Barbour, 2001; Lehre and Rusakov, 2002; Sykova, 2004), microdialysis during cocaine-seeking 

measures significant overflow of synaptic glutamate (McFarland et al., 2003, 2004).   

In order to predict cocaine-induced adaptations in extracellular glutamate, we modeled synaptic 

glutamate transmission, different glial geometries populated with XAG and xc-, and the 

regulation of glutamate release by mGluR2/3. Combining physiological values from the literature 

and empirically derived changes produced by chronic cocaine, the proposed mathematical 

framework was able to accurately portray both basal and cocaine altered extracellular glutamate 

levels as measured by microdialysis.   

-497 words- 
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EXPERIMENTAL PROCEDURES 

Model inputs and baseline diffusion, binding and transport parameters.

Baseline physiological parameters for glutamate transmission were employed, primarily as 

described in previous models of glutamate transmission (table 1). The principal mechanisms 

involved in transient glutamate dynamics in the perisynaptic region are glutamate diffusion out 

of the synapse after release, binding to transporters and uptake into glia (Danbolt, 2001), 

production of glutamate by the xc- located in glia (Pow, 2001; Sato et al., 2002), and activation 

of mGluR2/3 autoreceptors reducing synaptic release probability (Dietrich et al., 2002; Losonczy 

et al., 2003; Billups et al., 2005).   

(table 1 approximately here) 

Synaptic release and regulation by mGluR2/3 autoreceptors.  In vivo estimates of basal firing 

frequency in prefrontal cortical (PFC) neurons projecting to the nucleus accumbens range from 1 

to 3 Hz with the capacity for periods of burst firing up to 15 Hz (Chang et al, 1997; Peters et al., 

2005; Sun and Rebec, 2006). Although the probability that an action potential will release a 

synaptic vesicle can range from <0.1 to 1 depending upon the experimental preparation (Allen 

and Stevens, 1994; Murthy and Sejnowski, 1997), the average synaptic release probability more 

typically ranges from 0.1 to 0.5, with estimates for cortex being at ~0.4 (Trommerhauser et al., 

2003; Billups et al., 2005; Volynski et al., 2006). Release probability at glutamatergic synapses is 

reduced by up to 50% following stimulation of presynaptic mGluR2/3 autoreceptors (Dietrich et 

al., 2002; Losonczy et al., 2003; Billups et al., 2005), which are located outside of the synaptic 

cleft (Alagarsamy et al., 2001). Using in vivo microdialysis it has been shown that blocking 

mGluR2/3 elevates extracellular concentrations of glutamate (Xi et al., 2002) and 
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electrophysiological studies in tissue slices reveal that the glutamate providing this tone is 

derived primarily from nonsynaptic sources (Bandrowski et al., 2003; Moran et al., 2005).  Given 

these studies indicating that partial tone exists on mGluR2/3 regulating glutamate release, the 

basal levels of glutamate in the vicinity of perisynaptic mGluR2/3 were optimized in the present 

model to produce ~50% occupancy, based upon the range of Kd and Ki values reported at this 

receptor (0.1 to 0.3 µM glutamate; Schoepp and True, 1992). In the proposed model, presynaptic 

tone on mGluR2/3 was computed as release probability. mGluR2/3 is a Gi-coupled metabotropic 

receptor, and analysis of GTPγS binding reveals that G protein signaling by stimulating 

mGluR2/3 is increased as a logarithm of agonist dose (Xi et al., 2002; Bowers et al., 2004). Thus, 

the relationship between release probability and mGluR2/3 occupation was modeled as the 

logarithm of glutamate concentration, with a Kd = 0.187 µM glutamate (Schoepp and True, 1992) 

and maximum release probability with no mGluR2/3 stimulation set at 0.4 (see above).  Each 

action potential provoking glutamate release (a function of firing frequency and release 

probability) resulted in an instantaneous vesicular release of a fixed number of molecules into the 

cleft. This fixed number was selected iteratively from the range 4700-80,000 reported by Bruns 

and Jahn (1995) and set at 10,000 (table 1). 

Diffusion. In a complex medium, several factors can impose constraints on diffusion, including 

geometry, binding, uptake, viscosity, temperature, or change in structure with time (Nicholson, 

2001, Sykova, 2004, Diamond, 2005, Saftenku, 2005). Diffusion in the extracellular space is 

typically characterized by volume fraction α (void space/total tissue volume) and tortuosity λ

(hindrance to diffusion imposed by local boundaries or local viscosity) (Nicholson, 2001). 

Volume fraction α in brain tissue is estimated to be around 0.2 (Nicholson and Sykova, 1998). 
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Tortuosity λ varies due to constriction, wiggle and topological factors (Nicholson, 2001) and is 

estimated to be ~1.2-2.4 based on diffusion measurements over a range of 100-300 µm 

(Nicholson, 2001). To account for the complex factors cited, diffusion coefficient values have 

been reported in the range from 0.05-0.41 µm
2
/ms (Saftenku, 2005), based on typical tortuosity 

estimates. Further, different cellular elements including spines, small axonal boutons, protein, 

glia, and microfilaments may result in additional tortuosity in the microenvironment of a synapse 

(Saftenku, 2005). Experimental estimates of diffusion coefficients in the perisynaptic region have 

not been reported for synapses with tightly packed glia. In the proposed model, with high density 

glia close to the synapse, we iteratively determined the diffusion coefficients to satisfy steady 

state and transient constraints on glutamate concentrations at three locations (Psyn, PmGluR, and Pex

in figure 1). This iterative process is described in more detail below. 

(Fig.1 approximately here) 

Glutamate transporters (XAG). Glutamate transport into glia is the primary mechanism for 

eliminating extracellular glutamate (Danbolt, 2001). XAG uptake rates depend on local 

glutamate concentration and the kinetics of transporter bidning (see eqn. 3 below). The 

glutamatergic axon terminals from the PFC to the accumbens were assumed to be covered by a 

glial sheath (Lehre et al., 1995). The density of XAG is non-uniform, and glial membranes that 

face neuropil have a higher expression of transporters than membrane surfaces facing other glia 

(Cholet et al., 2002). XAG are expressed with a high density in the hippocampus, with surface 

density ranging from 2500-10,800 molecules/�m
2
 (Bergles and Jahr, 1997; Lehre and Danbolt, 

1998). Based upon glutamate uptake assays (Colombo, 2005) and transporter binding studies 

(Danbolt, 2001) it was estimated that surface density values for XAG in the nucleus accumbens 

is 22-35% (550-3780 molecules/µm
2
) of the value in the hippocampus and cortex. Thus, for the 
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present model (where XAG is volume populated as described later), the equivalent surface 

density of XAG was determined iteratively by varying it within the range of 550-3780 

molecules/µm
2
 (table 1).  

Cystine-glutamate exchangers (xc-).  Wyatt et al. (1996) estimated the maximum uptake rate for 

cystine to be 450 µmol l
-1

hr
-1

 based on cerebellar slices. The density of xc- in the cortex is higher 

by a factor of 2.4 compared to the cerebellar molecular layer (1 mmol l
-1

hr
-1

; Warr et.al. 1999). 

Based on microdialysis studies, Baker et al. (2003) reported basal extracellular glutamate 

concentrations to be 1.1 and 5.6 µM in the prefrontal cortex and nucleus accumbens, 

respectively. Iterations to satisfy model constraints resulted in the consideration of a range from 

5 – 50 mmol l
-1

hr
-1

 for the density of xc- in the nucleus accumbens and a final value of 41 mmol 

l
-1

hr
-1

 under basal conditions (table 1). 

Model inputs and cocaine-induced neuroadaptations. 

The parameters adjusted in the model to estimate neuroadaptive changes produced by withdrawal 

from chronic cocaine are outlined in table 2.  Withdrawal from daily cocaine administration 

elicits a 50% reduction in Km for [
35

S] cystine uptake into accumbens tissue slices (Baker et al., 

2003), thereby decreasing the concentration of xc- by 50% (table 2).  Previous studies using 

[
35

S]GTPγS binding in accumbens homogenates revealed that G protein coupling to mGluR2/3 is 

reduced by approximately 70% after cocaine (Xi et al., 2002). Assuming a logarithmic 

relationship between [
35

S]GTPγS binding and vesicle release probability (see above), the 

cocaine-induced reduction in mGluR2/3 function was modeled as a change in release probability 

from 0.14 (control) to 0.34 (cocaine treated condition). Thus, a release event occurred every 2.9 
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action potentials in the cocaine case, instead of every 7.1 action potentials under basal 

conditions.  Finally, the firing frequency of pyramidal cells in the PFC during cocaine-seeking, a 

portion of which project to the accumbens, increases from a range of 1-3 Hz to between 10-15 

Hz (Sun and Rebec, 2006). Thus, to model activity at the glutamatergic synapse in the 

accumbens between the basal and cocaine- or food-seeking condition, the firing frequency was 

increased from 1-15 Hz.   

(table 2 approximately here) 

Modeling the synapse and glial geometry. 

Upon release at the center of the synapse, glutamate molecules diffuse through the porous cleft 

into the perisynaptic space (Barbour and Hausser, 1997), where XAG dense astrocytes reduce 

glutamate spillover to near zero (Diamond and Jahr, 2000; Danbolt 2001). The configuration of 

the glial sheath (Gi in figure 1) is akin to that previously reported (Rusakov, 2001), but distinct in 

that in the present model we include xc-. Also, as an approximation of glial folds, the glial 

membranes were modeled in the form of multiple impermeable sheaths (the dark line at the 

center of each sheath in figure 1 represents an impermeable surface, i.e., flux=0 across this 

surface) with porous space in between them. XAG was volume populated on both sides of each 

glial sheath Gi (permeable to glutamate up to 25 nm thickness on each side of the impermeable 

center surface of the 50 nm thick Gi). Glutamate concentration at mGluR2/3 receptors was 

monitored in the model at the presynaptic location PmGluR in figure 1 (compartment i, j =1, 2, 

starting at θ=20
0
).  

The extracellular space is thus modeled as a porous medium with four glial sheaths whose 

centerlines were 75 nm apart (close to the range of 38-64 nm reported in the extracellular space 
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of the rat neocortex in vivo by Thorne and Nicholson, 2006). Of this 75 nm, 50 nm is volume 

populated with XAG and/or xc-, as described above. This permits the glutamate molecules to 

move up to 75 nm between the impermeable surfaces of each sheath. Based upon studies 

indicating that the highest densities of XAG are closer to the synapse (Lehre and Danbolt, 1998; 

Danbolt, 2001; Cholet et al., 2002), G1 had the highest density of XAG and the density decreased 

radially outwards to G4. Cystine-glutamate exchangers were modeled as being located on the 

outer surface of the glial membranes of regions G4 (table 1). Beyond the last glial sheath (G4), 

the extracellular space contained only glutamate without XAG or xc-. The experimentally 

defined concentrations of extracellular glutamate reported by in vivo microdialysis (table 2) were 

modeled as being at point Pex in figure 1, outside glial region G4.

Mathematical details. In the configuration of figure 1, the two synaptic hemispheres were 

assumed rigid permitting no diffusion (i.e., flux = 0 along the periphery), with synaptic radius r = 

160 nm from the center, and a separation of δ =20 nm (synaptic cleft) (Rusakov and Kullmann, 

1998; Rusakov, 2001; Diamond, 2005). Around this synapse are 40 concentric 25 nm thick shell 

compartments (i1- i40) resulting in the outer boundary of the perisynaptic region modeled being at 

a distance of 1 µm from the edge of the synapse. Each of these shells was divided into 9 

compartments (20
o
 angle increments, j1-j9) circumferentially, permitting XAG and xc- 

concentrations to be assigned individually to each compartment of any shell.  

The synaptic cleft volume was discretized into m = (1....Nm) segments where dRm was the outer 

radius (Rm=m* dRm) of the cylindrical elements of thickness δ, each with a volume of �(Rm
2
 – 

Rm-1
2
)*δ, with the contact surface between adjacent elements being Sm = 2�Rm*δ. The 
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extracellular space were discretized into i = (1…Ni) concentric spherical elements each of 

thickness σ, and each spherical element was divided into j = (1…Nj) annular sections where Nj

was determined by �. In the model for the cleft, m=4, and dRm = 40 nm, and for the spherical 

shells, σ =25 nm and � = �/9 rad.   

The specific mathematical equations used are described next. These standard conservation and 

flux equations (see Rusakov, 2001 for a comprehensive description including derivations) were 

used to analyze the effect of the proposed glial geometry. A mass balance for extracellular 

glutamate in each (i,j)
th

 compartment (with XAG and/or  xc-, as appropriate) yields eqn.1 

(Rusakov, 2001), �

dtvv
jiV

dt
StjiJStjiJdttjiGlutjiGlu TTRR )(

),(
)),,(),,((),,(),,( −+ −+Σ+Σ+−=     (1) 

where dt was the time step, SR(i,j) = 2�Ri
2
(cos �j-cos�j-1) was the surface area between adjacent 

volume elements in the radial direction, and ST(i,j) = 2�Risin �j*(�) was the surface area shared 

by adjacent volume elements in the tangential direction, with Ri = r + σ∗i. The radial and 

tangential fluxes into the compartment were denoted by JR and JT, respectively. Each 

compartment had a volume of V(i,j) = 0.5(SR(i,j)+SR(i-1,j))*(�). The term v+ accounted for the 

production of glutamate by xc- and unbinding of glutamate from the transporters (v+ = cg(i,j) + 

k1*[Glu-XAG], where cg(i,j) is the constant production rate of glutamate by xc- for compartment 

(i,j), while the term (v- =k1*[Glu]*[XAG]) accounted for the reduction in glutamate due to 

transporter binding. For compartments that are not populated with XAG or xc-, the 

corresponding terms in eqn. 1 are omitted. Also, eqn.1 is appropriately modified for the 

compartments in the synaptic cleft, to exclude XAG, xc-, and the tangential flux, and include 

synaptic release.  �
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�

The glutamate flux JAB between any two adjacent volume compartments A and B was computed 

by eqn. 2, 

    ( ) ( ) ( ( ) ( ))AB A B

D
J t D Glu Glu t dt Glu t dt

ds
= − ∇ = − − − −    (2) 

where ds was the spatial distance between compartment centroids and D the diffusion coefficient. 

For each compartment, this flux was calculated considering two others connected to it radially, 

and two connected in the tangential direction. Within any glial compartment, binding of 

glutamate with transporters is governed by eqn. 3, (Rusakov and Kullmann, 1998), 

   ][][][][][
21

1

XAGGluXAGGluXAGGlu in

kk

k
+�−⇔+

−

    (3) 

where [Glu], [XAG], and [Glu-XAG] represent the compartmental concentrations of glutamate, 

transporter, and the bound complex, respectively, and k2*[Gluin] represents uptake rate of 

glutamate by XAG. 

The discrete form of the differential equation for this kinetic equation is given by eqn. set 4 

(Rusakov, 2001):    

dtXAGGlukGluGlu

XAGXAGXAGGluXAGXAGGlu

dtXAGGlukXAGGlukkXAGGluXAGGlu

dtXAGGlukXAGGlukGluGlu

dttdttintin

totaldttdtttt

dttdttdttdttt

dttdttdttdttt

*][*][][

][][][][][

}][][])[({][][

)][][][(][][

2

121

11

−−

−−

−−−−−

−−−−−

−+=

=+−=+−

+−+−+−=−

−+−+=

 (4) 

The kinetics for XAG were taken from Rusakov (2001) and Lehre and Rusakov (2002) who 

based it on experiments reported in the literature (Wadiche et al., 1995; Bergles and Jahr, 1998), 

k1 = 10
4 

M
-1

ms
-1

, k-1 = 0.2 ms
-1

, and k2 = 0.1 ms
-1

. For the outermost shell, e.g., i = 40, the 
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boundary condition of flux = 0 was imposed at the outer edge of all compartments, to simulate 

identical neighboring synapses. That is, no flux enters or leaves the outer boundary of this shell. 

Iterative evaluation.   The computational model was developed using C
++

 software (Microsoft 

Visual Studio, 2005), and an integration time step of 0.5 µs was used. The concentration of 

glutamate was considered uniform in each compartment and this concentration was updated 

(eqns. 1-4) at each integration interval based on diffusion, uptake by XAG, and production rates 

for glutamate, as appropriate. Conservation of molecules was confirmed at each time step by 

computing the numbers of free, bound and transported glutamate molecules. To check for 

numerical accuracy, we decreased the integration time step by a factor of 10 and found no 

significant change in concentration estimates. Similarly, insignificant changes in the same 

estimates were found with variation of spatial resolution of compartments by 50%.

To implement a volume fraction of α = 0.2 (Nicholson and Sykova, 1998) in the model shown in 

figure 1 (which was also iteratively derived; details not shown), we approximated shells i=20-40 

to be representing cellular obstacles (i.e., space that glutamate cannot flow into), with an 

effective extracellular space from i=1-20 for glutamate overflow. This implies that Pex is now 

measured in shell 20. The model showed that in the space outside the glial sheaths (i.e., outside 

shell 12) the steady state concentration of glutamate was uniform for any number of total outside 

shells, and differed by less than 0.01 µM for all cases considered. This observation justifies 

selection of Pex anywhere in the space outside G4 for measurement purposes.  
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As cited earlier, diffusion coefficients close to the synapse have not been reported for synapses 

with tight glial coverage. With the glial geometry in figure 1, we considered three diffusion 

coefficients, one in the synapse (Dsyn near Psyn), one in the sheath region (Dsh in the region that 

has PmGluR) and one outside the glial sheath region (Dex in the region that has Pex). We noticed 

that the flow dynamics was governed solely by Dsh, with insignificant effects due to variations in 

Dsyn and Dex within the range of 0.05 to 0.41 µm
2
/ms (data not shown). Accordingly, we used a 

uniform value of D (from the same range cited above) for all the regions in the model, without 

loss of accuracy. It should be noted that the glial sheaths added geometric tortuosity in the model. 

The model was optimized by changing the following parameters within the ranges outlined in 

table 1: number of molecules/release, xc- concentration, diffusion coefficient and XAG 

concentration. The iterative process began with values in the lower end of the ranges for these 

parameters, while monitoring the concentrations of glutamate at Psyn, PmGluR, and Pex (figure 1), 

for the basal control case (2 Hz). When the densities of XAG were iteratively changed in glial 

sheaths Gi, their relative proportions were maintained, i.e., density (G1) > density (G2) and so on. 

Through this iterative process, numerous solutions were found that satisfied empirically 

determined concentrations at Psyn, PmGluR, and Pex for the control case at 2 Hz (table 2).  

After satisfying the requirements for the basal control case, we simulated the basal cocaine and 

drug-seeking situation by modeling known cocaine-induced changes to xc- and mGluR2/3 

signaling (modeled as release probability, see above). Through further iterative changes we 

identified multiple parameter sets that satisfied some of the constraints in table 2, and the model 

values listed in table 1 constitute values that satisfied all the constraints simultaneously.
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RESULTS  

Geometry of the glial sheath.  Multiple 3-D spherical configurations were studied for glia 

surrounding the synapse by varying glial coverage, thickness and openings (similar to those in 

Rusakov, 2001; Barbour, 2001; data not shown). Table 1 shows the range of diffusion 

coefficients, number of molecules per release, as well as XAG and xc- concentrations in the 

various glial sheaths. These were varied iteratively to determine the configuration that brought 

glutamate concentration at Pex (extracellular compartment sampled by microdialysis) into the 

range outlined in table 2 at both low and high firing frequencies. At the same time, 

concentrations at Psyn and PmGluR were constrained to be <200 nM. This process involved 

simultaneous variations of the parameters (see Methods). Following this iterative process, the 

configuration in figure 1 proved most robust at sustaining glutamate concentrations within the 

acceptable ranges. Of note, the basal control concentration at Pex did not exceed the range 

measured by microdialysis at firing frequencies of 15 Hz (table 3, figure 2A). Also, by providing 

resistance to the flow of glutamate, this configuration established the necessary gradient to 

support levels of extracellular glutamate at Psyn approaching those estimated from in vitro slice 

physiology (Herman and Jahr, 2007) and at PmGluR that are consistent with in vivo tone being 

present on mGluR2/3 (Xi et al., 2002). Thus, at both low and high frequency stimulation, PmGluR

remained between 0.1 and 0.3 µM, which approximates the Kd for glutamate binding to 

mGluR2/3 (0.19 µM; Schoepp and True, 1992).  

(Fig 2 approximately here) +  (table 3 approximately here) 

Figure 2B shows how the increase in PmGluR associated with increased firing frequency 

negatively regulated release probability, i.e., as PmGluR increased with increasing synaptic release, 

the release probability decreased from 0.14 to 0.12. Thus, as firing frequency ranged from 1 to 15 
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Hz, the peak concentration at Psyn reached as high as 10 mM, which, when averaged over 100 µs 

around this peak, resulted in a maximum value of 0.5 mM (figure 2C). As well, transient 

glutamate concentrations in the synapse (at Psyn) were biphasic and within ranges reported by 

Clements (1996) and Bergles et al. (1999). The resting concentration at Psyn between release 

events ranged from 0.16 to 0.19 µM (table 3). These levels are somewhat higher than recent 

published estimates which range from 25 to 100 nM using tonic activity at NMDA receptors in 

tissue culture (Herman and Jahr, 2007; Le Meur et al., 2007), and could reflect a lack of neuronal 

glutamate uptake in the present model. 

Effect of withdrawal from chronic cocaine. 

Table 2 illustrates the alterations made in parameters by incorporating experimentally determined 

values for reduced xc- and mGluR2/3 desensitization after chronic cocaine (Xi et al., 2002; 

Baker et al., 2003). In addition, concentrations at Pex approximated the basal values determined 

by microdialysis in the accumbens after withdrawal from chronic cocaine, as well as peak values 

elicited after inducing cocaine-seeking. The transition from basal to cocaine-seeking behavior is 

associated with an increase in firing frequency of accumbens neurons, driven in part by inputs 

from the prefrontal cortex, and the firing frequency can range from 1 to 15 Hz (Sun and Rebec, 

2006), while the in vivo basal firing of prefrontal pyramidal cells is reduced after withdrawal 

from self-administered cocaine (Trantham et al., 2002; however, see Dong et al., 2005, showing 

increased excitability of dissociated prefrontal pyramidal cells after chronic cocaine). Therefore, 

to model this behavioral transition, a firing frequency range of 1 (basal) to 15 Hz (cocaine-

seeking) was employed. The model constraints for the basal extracellular concentration measured 

by dialysis in Pex after cocaine was in the range of 2.55-3.23 µM, and the basal concentration for 
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control animals was in the range of 4.6-6.6 µM (Baker et al., 2003; Szumlinski et al., 2006). 

When cocaine-seeking was introduced into the model (i.e., 15 Hz firing frequency) extracellular 

concentration was expected to be in the range of 11.9-14.7 µM (McFarland et al., 2003, 2004; 

Szumlinski et al., 2006). In contrast, in control animals engaging in the seeking of biological 

rewards (e.g., food), the level of extracellular glutamate at Pex is not expected to differ 

significantly from basal (i.e., remain in the range of 4.6-6.6 µM; McFarland et al., 2003).  

(figures 3 and 4 approximately here) 

Figures 3 and 4 illustrate the outcome for concentrations at Psyn and Pex after introducing the 

cocaine-altered parameters for xc- and mGluR2/3 (modeled as release probability, see Methods) 

and stimulating synaptic transmission at 1 to 15 Hz. Over a firing frequency of 1 to 15 Hz, the 

change in concentration at PmGluR was similar to that at Psyn (table 3). While the model accurately 

predicted the reduction in basal value at Pex into the expected range, it did not predict the 

expected increase in the concentration at Pex for the 15 Hz case (see 0% reduction in XAG in 

figure 3). Although values after chronic cocaine for both xc- and mGluR2/3 regulation of release 

probability have been empirically determined, no experimental values for XAG after withdrawal 

from cocaine have been published. Thus, the model was employed to iteratively explore the 

effects of changing XAG, and it was found that if XAG was reduced in the range of 40-50%, the 

concentration at Pex rose with increasing firing frequency to within the expected range of 11.9-

14.7 µM (figure 3).  Figure 4 shows modeled data including a 40% reduction in XAG along with 

the cocaine-induced reductions in xc- and mGluR2/3 signaling. Note that release probability did 

not change appreciably even though PmGluR increased as a function of increased firing frequency 

due to the fact that mGluR2/3 signaling is reduced by 70% after chronic cocaine (Xi et al., 2002).   
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DISCUSSION 

A computational modeling framework for studying glutamate homeostasis in prefrontal 

glutamatergic synapses onto nucleus accumbens spiny cells is reported that predicted 

extracellular glutamate concentrations as measured by in vivo microdialysis. The parameters used 

include those previously employed in computational models of excitatory neurotransmission, 

such as synaptic release, diffusion from the synaptic cleft and glutamate uptake, as well as 

parameters not typically modeled, including xc- and negative feedback on synaptic release by 

perisynaptic mGluR2/3.  These latter parameters were included to model changes in extracellular 

glutamate concentrations produced by chronic cocaine administration that are hypothesized to 

result at least in part from cocaine-induced reductions in xc- and mGluR2/3 signaling (Xi et al., 

2002; Baker et al., 2003; Moran et al., 2005).   The computational model successfully predicted 

extracellular concentrations at different firing frequencies in control accumbens. Although 

incorporating cocaine-induced reductions in xc- and mGluR2/3 signaling predicted the reduction 

at Pex at low firing frequencies, it was necessary to incorporate a reduction in XAG to predict the 

large increase at Pex that occurs at the higher firing frequencies achieved during cocaine-seeking.  

Importantly, recent reports indicate that XAG is reduced in the accumbens after withdrawal from 

self-administered cocaine, including lower levels of the primary glial transporter, GLT-1, and a 

decrease in 
3
[H]-glutamate uptake (Knackstedt et al., 2007).  

Effect of chronic cocaine on glutamatergic transmission.

Withdrawal from repeated cocaine administration results in two changes in extracellular 

glutamate measured by microdialysis: 1) reduced basal concentrations, and 2) increased levels of 

glutamate after an acute injection of cocaine that induces cocaine-seeking or sensitized motor 
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activity (Pierce et al., 1996; Reid and Berger, 1996; Hotsenpiller et al., 2001; Baker et al., 2003; 

McFarland et al., 2003; Madayag et al., 2007).  Under basal conditions, glutamate measured by 

microdialysis is almost entirely of nonsynaptic origin (Miele et al., 1996; Timmerman and 

Westerink, 1997; Melendez et al., 2005), while the increase following a cocaine injection in 

chronic cocaine treated animals is of synaptic origin (i.e., blocked by tetrodotoxin or inhibiting 

prefrontal glutamatergic inputs to the accumbens; Pierce et al., 1996; McFarland et al., 2003).  

Importantly, an increase in extracellular glutamate (either synaptic or nonsynaptic) does not 

accompany an acute injection of cocaine or operant responding in animals trained to seek 

biological rewards such as food (Pierce et al., 1996; Hotsenpiller et al., 2001; McFarland et al., 

2003).  Thus, in the accumbens of animals chronically pretreated with cocaine, synaptic 

glutamate transmission appears to escape from the immediate synaptic environment and is 

measured in significant amounts outside of the synaptic region. The overflow of synaptic 

glutamate in animals withdrawn from cocaine is in contrast to the lack of diffusion by significant 

amounts of synaptic glutamate to adjacent synapses predicted under physiological conditions by 

previous mathematical models (Barbour, 2001; Lehre and Rusakov, 2002; Sykova, 2004) or 

empirically derived using in vivo microdialysis (Miele et al., 1996; Timmerman and Westerink, 

1997; Melendez et al., 2005). Thus, it is possible that the cocaine-induced glutamate overflow 

may be a critical event in addiction. However, stress induces overflow of glutamate in the 

striatum or prefrontal cortex that is inhibited by TTX (Moghaddam, 2002), indicating that at least 

some biological stimuli can also induce release of synaptic glutamate measurable by dialysis. 

The concentrations of glutamate predicted by the model at PmGluR and at Psyn are presumably 

capable of stimulating perisynaptic and synaptic glutamate receptors in adjacent synapses, since 
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at 15 Hz firing frequency (e.g., during drug-seeking), the model predicted that the concentration 

of glutamate at Psyn and at PmGluR are 1.1 and 1.2 µM, respectively, and the estimated Kd values 

for mGluR2 and NMDA receptors are in the range of 200 nM and 2 µM, respectively (Patneau 

and Mayer, 1990; Schoepp and True, 1992). Moreover, this concentration of glutamate would be 

expected to partially desensitize NMDA receptors (Cavelier et al., 2005), and could contribute to 

the increase in AMPA/NMDA current ratio (Kourrich et al., 2007) and AMPA receptor 

membrane insertion seen after chronic cocaine (Conrad et al., 2005). 

Limitations of the proposed mathematical model. 

Two general limitations exist in the proposed model. The first limitation is the simplicity of the 

model relative to the known physiology and cocaine-induced changes in glutamate transmission. 

Notably, only occupancy of mGluR2/3 is considered, but occupancy of mGluR1 or mGluR5 can 

be expected to change glutamate release and synaptic scaling (Malenka and Bear, 2004; Kreitzer 

and Malenka, 2005), and mGluR1/5 content and/or function is altered by chronic cocaine 

administration (Swanson et al., 2001; Szumlinski et al., 2006).  In addition to xc-, there are other 

sources of nonsynaptic glutamate release that may tonically stimulate glutamate receptors, such 

as calcium-dependent release from astroglia and release from junction hemi-channels (Danbolt, 

2001; Cavelier et al., 2005). Finally, while the glial geometry used in the framework is a 

reflection of endogenous tortuosity, it oversimplifies the more varied in vivo structural geometry. 

Thus, future models need to consider additional dynamic cellular processes that accompany 

alterations in firing frequency, as well as more complicated morphological geometries. 
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A second important consideration is that in contrast to the standard mathematical models using 

postsynaptic currents to empirically validate synaptic concentrations of extracellular glutamate, 

the present model employed in vivo microdialysis measures. Although the strengths of 

microdialysis are that estimates are made in vivo and nonsynaptic release is readily determined, 

microdialysis induces damage artifacts that are distinct from the damage artifacts produced by 

dissecting tissue for in vitro measurements.  Two distinctions between estimates of extracellular 

glutamate made in vitro versus with in vivo microdialysis are particularly relevant.  The first is 

that previous microdialysis estimates of extraction fraction (i.e. the slope of the line in the no net 

flux experiment; Bungay et al., 2003), which is used to determine the elimination rate of 

glutamate in brain tissue by passing different concentrations of glutamate through the probe, 

found no apparent change in uptake (Baker et al., 2003). In contrast, both [
3
H]-glutamate uptake 

and membrane protein content of GLT-1 are reduced ~40% in the accumbens (Knackstedt et al., 

2007). Recent modeling of microdialysis concludes that the extraction fraction may not be a 

reliable estimate of transmitter uptake (Bungay et al., 2003; Chen, 2006).  The reasons for this 

are two-fold. 1) The presence of a tissue trauma layer changes the tissue resistance and volume in 

the vicinity of the dialysis probe.  While this markedly affects the estimates of extraction 

fraction, it does not impact the no net flux estimate of basal transmitter concentration.  2) The 

distribution of XAG within the present model is based upon data indicating that uptake sites are 

concentrated in the vicinity of the synaptic cleft (Lehre and Danbolt, 1998; Danbolt, 2001), while 

nonsynaptic glutamate release via xc- was inversely distributed with the highest concentration of 

xc- being found away from the synapse (Sato et al., 2002). This distribution of XAG and xc- can 

contribute to both the lack of TTX sensitivity in basal glutamate levels and the relatively poor 

capacity to detect uptake-dependent changes in the extraction fraction (Bungay et al., 2003).  
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The second concern raised by modeling glutamate transmission based upon microdialysis 

measurements is revealed by estimates of extracellular glutamate using NMDA currents in tissue 

slices being 1-3 orders of magnitude less than dialysis measurements (Cavelier et al., 2005; 

Herman and Jahr, 2007). However, this fact is largely incorporated into the proposed model that 

contains a steep gradient of glutamate concentrations between the synapse (PmGluR<0.2 µM where 

the electrophysiological measures are obtained) and the site where the dialysis measurements 

occur (Pex=5.04 µM).  

Conclusions. 

A computational framework of glutamate transmission is presented that incorporates both 

synaptic and nonsynaptic glutamate release and homeostatic regulation of synaptic release via 

stimulation of mGluR2/3 autoreceptors.  This model accurately predicted the basal levels of 

extracellular glutamate measured by microdialysis, as well as the levels of glutamate in the 

vicinity of mGluR2/3 that provides inhibitory tone on synaptic release. Thus, this model provides 

a general mathematical framework for describing how pharmacological or pathological 

conditions influence glutamate transmission, and for predicting molecular targets that may be 

important to experimentally evaluate. 

-1332 words- 
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Table 1.  Ranges for parameter values used in model.   

Parameter  Range of Values (citation) Model Value
a

Diffusion coefficient (µm
2
/ms) 0.05 – 0.41 (Rusakov and Kullmann, 1998, 

Saftenku, 2005)

0.05

k 1  (M
-1

ms
-1

) 10
4 

(Lehre and Rusakov, 2002) 10
4

k -1 (ms
-1

) 0.2  (GLAST/GLT; Lehre and Rusakov, 2002) 0.2   

k2 (ms
-1

) 0.1 (Lehre and Rusakov, 2002) 0.1

No. of molecules per release 4,700 - 80,000 (Bruns and Jahn, 1995) 10,000 

Intersynaptic distance (µm) 2-20 (Rusakov, 2001) 2 

Kd  for mGluR2/3 (µM) 0.1-0.3 (Schoepp and True, 1992 ) 0.187  

Maximum release probability 0.1-0.5  (Trommerhauser et al., 2003; Billups 

et al., 2005; Volynski et al., 2006)

0.4

XAG conc. (molecules/µm
2
)
 b 550-3780 (Bergles and Jahr, 1997; Lehre and 

Danbolt, 1998; Colombo, 2005)

see ‘b’ below 

xc- (mmol l
-1

hr
-1

)
c 5 – 50 (basal values from Warr et al., 1999; 

Baker et al., 2003)

41

a
Values used to populate model in figure 1 to generate the data shown in figure 2

b
surface density (molecules/µm

2
) of XAG was distributed as follows: G1a-1575, G1b-970, G2a-790, 

G2b-560, G3a-260, G3b-150, G4a-0, G4b-0; corresponding volume density (x 10
-21

 moles) of XAG: 

G1a-1.089, G1b-1.085, G2a-1.082, G2b-1.08, G3a-0.602, G3b-0.463, G4a-0, G4b-0 

c 
xc

- 
was distributed uniformly in seven compartments of G4b: (i=12, j = 2-8)  
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Table 2.  Parameters altered by chronic cocaine administration. 

Parameter Control Cocaine Reference 

Glutamate 

concentration at Pex

(µM; basal)

5.6 ± 1.0 2.89 ± .34 Baker et al., 2003; 

Szumlinski et al., 2006 

Peak glutamate in Pex

(µM; during food 

seeking/cocaine-seeking)

5.6 ± 1.0 13.3 ± 1.4 McFarland et al., 

2003, 2004 

xc- (mmol l
-1

hr
-1

) 41 
a
 20.5 Baker et al., 2003; 

figure 5C 

Release probability  0.14 (basal) 
b
 0.34 (basal) Xi et al., 2002 

Firing freq (Hz) 
(basal) 

2 1 Sun and Rebec, 2006; 

Trantham et al., 2002 

Firing freq (Hz) 
(drug-seeking)

N/A 3-15 Chang et al., 1997; 

Sun and Rebec, 2006 

a
Based upon increase in Km for cystine from 2.1±0.2 to 4.2±0.2 µM; 28.3±7.9% reduction in catalytic 

subunit of xc- (xCT) 

b
  Based upon 70% reduction in mGluR2/3 induced GTPγS binding
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Table 3. Model predictions at varying firing frequencies using control and chronic cocaine 

parameters.  

Parameter 

Control 

basal 

Control 

biological 

reward 

seeking 

Cocaine 

basal
a

Cocaine 

drug  

seeking
a

Firing freq (Hz) 2 15 1 15

Release probability 0.14 0.12 0.34 0.30

XAG (moles) 5.4 x10
-21

5.4 x10
-21

3.24 x10
-21

3.24 x10
-21

xc- (mmol l
-1

hr
-1

) 41 41 20.5 20.5

Estimates of steady state Glu concentrations at three locations 

Psyn (µM) 0.16 0.19 0.24 1.05

PmGluR (µM) 0.195 0.28 0.27 1.19

Pex (µM) 5.04 6.58 3.03 12.4

a 
Cocaine-induced reduction in XAG (40%), xc- (50%) and mGluR2/3 signaling (70%; modeled as 

release probability) 
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Figure Legends 

Figure 1. The glial configuration used to study glutamate homeostasis in the perisynaptic space 

around the PFC-accumbens synapse. The model depicts glutamate transporters (XAG) and 

cystine-glutamate exchangers (xc-) in glial regions (shaded) in varying concentrations. The cleft 

(δ =20 nm) separates the two hemispheres of radius (r = 160 nm) surrounded by glial sheaths 

(Gi, i=1-4; i=1 being the closest to the synapse) with the highest density of XAG in G1 and 

decreasing in radially outward sheaths. Each sheath is 50 nm thick with an impermeable surface 

in the middle, and with XAG volume-populated in the 25 nm thick space on either side, 

permitting interaction with glutamate molecules in those regions. The perisynaptic space is 

partitioned in radial (step � =25 nm) and tangential (step � =20
0
) directions as in Rusakov 

(2001). Binding, uptake and efflux are computed for each compartment.  Glutamate 

concentrations were measured at three sites, within the synaptic cleft (at Psyn), in the perisynaptic 

region containing presynaptic mGluR2/3 (at PmGluR), and at the site where dialysis probe 

measures extracellular glutamate (at Pex).

Figure 2. Concentrations of glutamate at different spatial locations under control conditions. A.

The increase in glutamate at Pex remained within the basal range over the entire 1-15 Hz range of 

firing.  B. As firing frequency increases, the concentration of glutamate in the vicinity of 

perisynaptic mGluR2/3 autoreceptors (at PmGluR) increases producing a concomitant decrease in 

release probability. C. Model output at 2 and 15 Hz over 5 sec, illustrating the dynamic changes 

in synaptic (at Psyn), and extracellular glutamate (at Pex).  
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Figure 3. Effect of reducing XAG on the concentration of extracellular glutamate at Pex, in 

cocaine treated rats. To model the cocaine condition, the function of xc- and mGluR2/3 were 

reduced by 50% and 70%, respectively.  Iterations of the model were then run at different 

percent decreases in the concentration of XAG over a firing frequency range of 1-15 Hz. 

Figure 4. Concentrations of glutamate at three spatial locations under cocaine conditions (i.e., 

xc- reduced 50%, mGluR2/3 signaling reduced 70%, XAG reduced 40%). A. The increase in 

glutamate at Pex was within the basal range at 1 Hz and increases to the cocaine-seeking range at 

15 Hz firing frequency. B. As firing frequency increased, the concentration of glutamate in the 

vicinity of perisynaptic mGluR2/3 autoreceptors (at PmGluR) increased with a concomitant 

decrease in release probability.  C. Model output at 1 and 15 Hz over 5 sec, illustrating the 

dynamic changes in synaptic (at Psyn), and extracellular concentration (at Pex). 
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