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Abstract

We show that the canonical embedding C(K)→ LΦ(µ) has Gaussian cotype p, where µ is

a Radon probabilty measure on K, and Φ is an Orlicz function equivalent to tp(log t)
p
2 for

large t.

* * * * * *

In [6], I showed that the Gaussian cotype 2 constant of the canonical embedding

lN∞ → LN2,1 is bounded by log logN . Talagrand [9] showed that this embedding does not

have uniformly bounded cotype 2 constant. In fact, a careful study of his proof yields that

the cotype 2 constant is bounded below by
√

log logN . In this paper, we will show that

this is the correct value for the Gaussian cotype 2 constant of this operator. However, we

will show this via a different result, which we will give presently. First, let us define our

terms.

We will write Φp for an Orlicz function such that Φp(t) ≈ tp(log t)
p
2 for large t.

For any bounded linear operator T : X → Y , where X and Y are Banach spaces, and

any 2 ≤ p < ∞, we say that T has Gaussian cotype p if there is a number C < ∞ such

that for all sequences x1, x2, . . . ∈ X we have

E

∥∥∥∥∥
∞∑
s=1

γsxs

∥∥∥∥∥ ≥ C−1

( ∞∑
s=1

‖Txs‖p
) 1
p

.

(Here, as elsewhere, γ1, γ2, . . . denote independent N(0, 1) Gaussian random variables.)

We call the least value of C the Gaussian cotype p constant of T , and denote it by β(p)(T ).

Throughout this paper, we shall use the letter c to denote a positive finite constant,

whose value may change with each occurence. We shall write A ≈ B to mean A ≤ cB and

B ≤ cA.

Theorem 1. Let µ be a Radon probability measure on a compact Hausdorff topological

space K, and let 2 ≤ p <∞. Then the canonical embedding C(K)→ LΦp(µ) has Gaussian

cotype p.

Finding the Gaussian cotype p constant of an operator from C(K) involves finding

lower bounds for the quantity E ‖
∑∞
s=1 γsxs‖∞, where x1, x2, . . . ∈ C(K). In fact, since
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we really only need to consider finite sequences x1, x2, . . . , xS ∈ C(K), in order to prove

Theorem 1, it is sufficient to show that the Gaussian cotype p constant of the canonical

embedding C(K)→ LΦp(µ) is uniformly bounded over all finite K. Now we see that we are

trying to find lower bounds for the supremum of the finite Gaussian process, supω∈K |Γω|,
where Γω =

∑∞
s=1 γsxs(ω). Hence we can apply the following result due to Talagrand [8].

Theorem 2. Let ( Γω : ω ∈ K) be a finite Gaussian process.

i) Let

V1 = E
(

sup
ω∈K
|Γω|

)
.

ii) Let V2 be the infimum of

(
sup
t≥1

√
1 + log t

(
E |Yt|2

) 1
2
)(

sup
ω∈K

∞∑
t=1

|αt(ω)|

)

over all Gaussian processes (Yt)∞t=1 and over all sequences (αt)∞t=1 of functions on K

such that Γω =
∑∞
t=1 αt(ω)Yt.

Then V1 ≈ V2.

We can rewrite this corollary in the following way. First, let us define the following

spaces (here we are assuming K is finite).

G =

{(
xs ∈ C(K)

)∞
s=1

: ‖(xs)‖G =

∥∥∥∥∥
∞∑
s=1

γsxs

∥∥∥∥∥
∞

<∞

}
,

C(K, l1) =

{(
αt ∈ C(K)

)∞
t=1

: ‖(αt)‖C(K,l1) =

∥∥∥∥∥
∞∑
t=1

|αt|

∥∥∥∥∥
∞

<∞

}
,

Y =
{(

yt ∈ l2
)∞
t=1

: ‖(yt)‖Y = sup
t≥1

√
1 + log t ‖yt‖2 <∞

}
.

Let m : C(K, l1)× Y → G be the bilinear map m
(
(αt), (yt)

)
= (xs), where

xs =
∞∑
t=1

yt(s)αt.

Corollary 3. The map m has the following two properties:

i) m is bounded;
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ii) m is open, that is, if ‖(xs)‖G ≤ 1, then there are ‖(αt)‖C(K,l1) ≤ c and ‖(yt)‖Y ≤ c

such that m(
(
(αt), (yt)

)
= (xs).

Proof: This is just restating Theorem 2, setting Γω =
∑∞
s=1 γsxs(ω), and Yt =∑∞

s=1 γsyt(s).

From this we obtain the following corollary, for which we first give a definition.

Definition. If 2 ≤ p < ∞, and T : C(K) → Y is a bounded linear map, where K is a

finite Hausdorff space, and Y is a Banach space, then we set

H(p)(T ) = sup


( ∞∑
s=1

‖Txs‖p
) 1
p

 ,

where the supremum is over all xs =
∑∞
t=1 yt(s)αt, with α1, α2, . . . pairwise disjoint

elements of the unit ball of C(K), and ‖(yt)‖2 ≤
1√

1+log t
for each t ≥ 1.

Corollary 4. For any 2 ≤ p < ∞, and for any bounded linear operator T : C(K) → Y ,

where K is a finite Hausdorff space, and Y is a Banach space, we have

H(p)(T ) ≈ β(p)(T ).

Proof: This follows straight away from Corollary 3 and the following lemma.

Lemma 5. Let B be the set of (αt) ∈ C(K, l1) such that the αt are pairwise disjoint

elements of the unit ball of C(K). Then the closed convex hull of B is the unit ball of

C(K, l1).

Proof: See [5], Lemma 4 or [3], Proposition 14.4.

Now we are almost in a position to prove Theorem 1; we just need the following

properties of LΦp(µ).

Lemma 6. If µ is a Radon probability measure on a compact Hausdorff space K, then

i) for any Borel subset I of K, we have ‖χI‖Φp ≈
(
µ(I)

) 1
p

√
log 1

µ(I) ;

ii) the space LΦp satisfies an upper p estimate.

Proof of Theorem 1: We want to show that H(p)
(
C(K) → LΦp(µ)

)
≤ c, where µ

is a probability measure on a finite Hausdorff space K. So consider (xs), (αt) and (yt) as

3



given in the definition of H(p)(T ). Then we need to show that

∞∑
s=1

‖xs‖pΦp ≤ c.

First note, by Lemma 6, that

‖xs‖pΦp ≤ c
∞∑
t=1

yt(s)p ‖at‖pΦp

≤ c
∞∑
t=1

yt(s)pµ(It)
(

log
1

µ(It)

) p
2

,

where It is the support of αt. Hence

∞∑
s=1

‖xs‖pΦp ≤ c
∞∑
t=1

∞∑
s=1

yt(s)pµ(It)
(

log
1

µ(It)

) p
2

≤ c
∞∑
t=1

1
(1 + log t)

p
2
µ(It)

(
log

1
µ(It)

) p
2

,

since ‖yt‖p ≤ ‖yt‖2 ≤
1√

1+log t
. But now, splitting the sum into the two cases µ(It) ≥ 1

t2

or µ(It) < 1
t2 , we deduce that this sum is bounded by some universal constant.

Concluding Remarks

We first note that there is a nice way to calculate the Orlicz norms ‖ · ‖Φp provided by the

following result of Bennett and Rudnick.

Theorem 7. If 1 ≤ p < ∞ and a ∈ R, then the Orlicz probability norm given by the

function Θ(t) ≈ tp(log t)a (t large) is equivalent to the norm

‖x‖ =
(∫ 1

0

(1 + log 1
t )
ax∗(t)p dt

) 1
p

,

where x∗ is the non-increasing rearrangement of |x|.

Proof: See [1], Theorem D.

Thus we can now deduce the following result.
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Theorem 8. The Gaussian cotype 2 constant of the canonical embedding lN∞ → LN2,1 is

bounded by
√

log logN .

Proof: Let K = {1, 2, . . . , N}, and let µ be the measure µ(A) = |A|
N . Now notice that

if x ∈ lN∞ = C(K), then x∗(t) is constant over 0 ≤ t ≤ 1
N , and hence

‖x‖LN2,1 =
1
2

∫ 1

0

x∗(t)√
t
dt

=
x∗(1/N)√

N
+

1
2

∫ 1

1
N

x∗(t)√
t
dt

≤

(∫ 1
N

0

(1 + log 1
t )x
∗(t)2 dt

) 1
2

+
1
2

(∫ 1

1
N

1
t(1 + log 1

t )
dt

) 1
2
(∫ 1

1
N

(1 + log 1
t )x
∗(t)2 dt

) 1
2

≤ c
√

log logN ‖x‖Φ2
.

This is sufficient to prove the result.

An obvious question is the following.

Problem 9. Is there a rearrangement invariant norm ‖ · ‖X on [0, 1] which is strictly larger

than ‖ · ‖Φp , but for which the canonical embedding C(K) → X(µ) has Gaussian cotype

p?

For p > 2, the answer is yes. The embedding C(K) → Lp,1(µ) has cotype p (this

follows from results in [2]). Hence X = LΦp ∩ Lp,1 equipped with the norm ‖x‖ =

max{‖x‖Φp , ‖x‖p,1} provides the counterexample.

For p = 2, the answer is no. Talagrand [10] has recently shown that if C[0, 1] → X

has Gaussian cotype 2, then ‖ · ‖X is bounded by a constant times ‖ · ‖Φ2
.

Another problem is also suggested by Theorem 1.

Problem 10. If T : C(K)→ X is a linear map with Gaussian cotpye 2, does it follow that

there is a Radon probability measure µ on K such that ‖Tx‖ ≤ c ‖x‖LΦ2 (µ) for x ∈ C(K)?

Talagrand [10] has recently shown that this not the case.
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