IRRIGATION PRACTICES AND COSTS IN SOUTHEASTERN MISSOURI - 1959

A Dissertation Presented to the Faculty of the Graduate School University of Missouri

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

> by Ted Lee Jones August 1961

The undersigned, appointed by the Dean of the Graduate Faculty, have ined a thesis entitled

examined a thesis entitled

IRRIGATION PRACTICES AND COSTS I

atures pies SOUTHEASTERN MISSOURI - 1959

ee Jon presented by Ted L

a candidate for the degree of Doctor of Philosophy

and hereby certify that in their opinion it is worthy of acceptance.

ACKNOWLEDGEMENT

The writer wishes to express his appreciation to his advisor, Dr. Frank Miller, for help and guidance in the preparation of this manuscript.

Appreciation also is extended to C. W. Crickman, Assistant Chief, Agricultural Adjustments Branch, Farm Economics Division, United States Department of Agriculture, for his valuable help in the development of the project plan.

TABLE OF CONTENTS

CHAPTER		PAGE
I.	INTRODUCTION	1
	Objectives of the Study	2
	The Economics of Irrigation	4
	Method of Investigation	7
	Summary of Related Research	8
	Irrigation in Southeastern Missouri	15
II.	DESCRIPTION OF THE AREA	17
	Beonomic Characteristics	23
III.	CHARACTERISTICS OF SAMPLE FARMS	47
	Size of Farms	47
	Fixed Investment in Irrigation	
	Equipment	78
	Irrigation in 1959	102
IV.	IRRIGATION COSTS AND RETURNS	117
	Cost of Irrigating Specific Crops	137
	Returns from Irrigation	152
	Irrigation Returns from Specific Crops	162
	Crop Yields in the Delta Area	214
	Effect of Farm Income-1959	215
٧.	SUMMARY AND CONCLUSIONS	232
	Summary	232
	Conclusion	237
BIB	LIOGRAPHY	240
APP		244

LIST OF TABLES

TABLE		PAGE
I.	Population of Dunklin, Pemiscot, New	
	Madrid, and Mississippi Counties,	
	1810-1950	26
II.	Some Characteristics of the Population by se	
	Sex in Dunklin, Pemiscot, New Madrid,	
	and Mississippi Counties, 1930,	
	1940, and 1950	28
III.	Number, Average Size of Farm, and Value	
	of Land and Buildings in Four	
	Southeastern Missouri Counties,	
	1950, 1954, and 1959	31
IV.	Number of Commercial Farms in Four	
	Southeastern Missouri Counties,	
	1950-1954	35
IVa.	Number of Commercial Farms in Four	
	Southeastern Missouri Counties, 1959 .	36
IVb.	Comparison of Commercial Parms in Four	
	Southeastern Missouri Counties, 1950,	
	1954, and 1959	37
۷.	Number of Farms in Four Southeastern	
-	Missouri Counties, According to Size	
	in Acres, 1950, 1954, and 1959	38

,

VI.	Acres of Cropland Harvested in Four	
	Southeastern Missouri Counties,	
	According to Size, 1949, 1954, and	
	1959	42
VII.	Number of Farmers With Irrigated Land	
	in Four Southeastern Missouri	
	Counties, 1949, 1954, and 1959	43
VIII.	Tenure Condition in Four Southeastern	
	Missouri Counties, 1950, 1954,	
	and 1959	44
IX.	Size of Farm With Irrigation Equipment	
	in Four Southeastern Missouri	
	Counties, by Type of Tenure, 63	
	Farmers, 1959	50
x.	Year Irrigation Started in Four	
	Southeastern Missouri Counties, by	
	Total Acres Operated, 65 Farmers,	
	1959	52
XI.	Year Irrigation Began in Four	
	Southeastern Missouri Countles, by	
	Type of Tenure, 65 Farmers, 1959	54

,

XII.	Major Grop Irrigated in Terms of	
	Total Acres in Four Southeastern	
	Missouri Counties, by Total Acres	
	Operated, 46 Irrigators, 1959	56
XIII.	Major Crop Irrigated in Terms of Total	
	Acres in Four Southeastern Missouri	
	Counties, by Type of Tenure, 46	
	Irrigators, 1959	57
XIV.	Sources of Water Used for Irrigation	
	in Four Southeastern Missouri	
	Counties, by Total Acres Operated,	
	65 Farmers, 1959	59
XV.	Sources of Water Used for Irrigation in	
	Four Southeastern Missouri Counties,	
	by Type of Tenure, 65 Farmers, 1959	60
XVI.		
	Southeastern Missouri Counties, by	
	Total Acres Operated, 46 Irrigators,	
	1959	61
****	Methods of Applying Irrigation Water in	~~
TATT .		
	Four Southeastern Missouri Counties,	
	by Type of Tenure, 46 Irrigators,	
	1959	63

XVIII.	Capacity of Irrigation Systems in Four	
	Southeastern Missouri Counties, by	
	Total Acres Operated, 65 Farmers,	
	1959	66
XIX.	Capacity of Irrigation Systems in Four	
	Southeastern Missouri Counties, by	
	Type of Tenure, 65 Farmers, 1959	68
XI.	Amount Borrowed, Source, Interest Rate,	
	and Length of Loan of Gredit Used to	
	Purchase Irrigation Equipment in	
	Four Southeastern Missouri Counties,	
	by Type of Tenure, 29 Farmers,	
	1953-1958	71
XXI.	Soil Types in Four Southeastern Missouri	
	Counties, by Type of Tenure, 65	
	Farmers, 1959	75
IXII.	Change in Types of Irrigation Systems	
	in Four Southeastern Missouri	
	Counties, by Type of Tenure, 17	
	Farmers, 1959	77
XXIII.	Fixed Investment in Irrigation	
	Equipment in Four Southeastern Missouri	
	Counties, by Total Acres Operated,	
	65 Parmers, 1959	79

XXIV.	Fixed Investment in Irrigation Equipment	
	in Four Southeastern Missouri	
	Counties, by Type of Tenure, 65	
	Farmers, 1959	82
XXV.	Fixed Investment in Irrigation Wells,	
	Pumps, Power Units, and Distribution	
	Systems in Four Southeastern	
	Missouri Counties, by Type of Tenure,	
	65 Farmers, 1959	84
XIVI.	Fixed Investment in Irrigation Equipment	
	in Four Southeastern Missouri Counties,	
	by Type of Tenure, 65 Farmers, 1959	86
XXVII.	Fixed Investment in Portable Pipe and	
	Sprinkler Irrigation Systems in	
	Four Southeastern Missouri Counties,	
	According to Capacity of Irrigation	
	System in Acres Per Year, 39	
	Parmers, 1959	93
XXVIII.	Fixed Investment in Trailer Boom and	
	Giant Sprinkler Irrigation Systems	
	in Four Southeastern Missouri	
	Counties, According to Capacity of	
	Irrigation System in Acres Per Year,	-1
	10 Farmers, 1959	96

XXIX.	Fixed Investment in Surface Irrigation	
	Systems in Four Southeastern Missouri	
	Counties, According to Capacity of	
	Irrigation System in Acres Per Year,	
- ir	14 Farmers, 1959	99
XXX.	Analysis of Fixed Costs as Percentage	
	of Fixed and Total Irrigation Costs	
	by Type of Irrigation Systems, Four	
	Southeastern Missouri Counties, 46	
	Farms, 1959	119
XXXI.	Analysis of Variable Costs as	
	Percentage of Variable and Total	
	Irrigation Costs by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 46 Farms, 1959	123
XXXII.	Analysis of Variable Costs Per Acre	
	Application of Water, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 46 Farms, 1959	124
XXXIII.	Fixed, Variable, and Total Gost of	
	Irrigation Per Acre Inch of Water	
	Applied, Per Acre Irrigated, and Per	
	Acre Application, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 46 Irrigators, 1959	130

x

XXXIV.	Analysis of Irrigation Costs Per Parm,	
	by Type of Irrigation System, Four	
	Southeastern Missouri Counties, 46	
	Farms, 1959	136
XXXV.	Estimated Yield Response, Fixed, Variable,	
	and Total Cost of Irrigation Per Acre	
	Inch of Water, Per Acre Irrigated,	
	and Per Acre Application, Corn, by	
	Type of Irrigation System, Four	
	Southeastern Missouri Counties, 16	
	Irrigators, 1959	138
XXXVI.	Estimated Yield Response, Fixed,	
	Variable, and Total Cost of Irrigation	
	Per Acre Inch of Water, Per Acre	
	Irrigated, and Per Acre Application,	
	Cotton, by Type of Irrigation System,	
3.	Four Southeastern Missouri Counties,	
	35 Irrigators, 1959	143
XXXVII.	Estimated Yield Response, Fixed,	
	Variable, and Total Cost of Irrigation	
	Per Acre Inch of Water, Per Acre	
	Irrigated, and Per Acre Application,	
	Soybeans, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	13 Irrigators, 1959	149

XXXVIII.	Average Temperature and Precipitation,	
	May-September, Four Southeastern	
	Missouri Counties, 1959	154
XXXIX.	Precipitation at Six Localities, May-	
	August, Four Southeastern Missouri	
	Counties, 1959	156
XL.	Net Return and Return Above Average	
	Variable Cost Per Acre Inch of Water,	
	Per Acre Irrigated, and Per Acre	
	Application, Corn, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 16 Farmers, 1959	163
XLI.	Net Return or Loss Above Total	
	Irrigation Costs Per Acre Inch of	
	Water, Corn, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 16 Farmers, 1959	165
XLII.	Additional Return or Loss Above Average	
	Variable Costs Per Acre Inch of Water,	
	Corn, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	16 Farmers, 1959	168

ILIII.	Net Return or Loss Above Total	
	Irrigation Costs Per Irrigated Acre	
	of Corn, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	16 Farmers, 1959	173
XLIV.	Additional Return or Loss Above Average	
	Variable Coats Per Irrigated Acre of	
	Corn, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	16 Farmers, 1959	176
XLV.	Net Return and Return Above Average	
	Variable Cost Per Acre Inch of Water,	
	Per Acre Irrigated, and Per Acre	
	Application, Cotton, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 35 Farmers, 1959	180
XLVI.	Net Return or Loss Above Total	
	Irrigation Gost Per Acre Inch of	
	Water, Cotton, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 35 Farmers, 1959	184

xiii PAGE

XLVII.	Additional Return or Loss Above Average	
	Variable Costs Per Acre Inch of Water,	
	Cotton, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	35 Parmers, 1959	186
XLVIII.	Net Return or Loss Above Total	
	Irrigation Cost Per Irrigated Acre,	
	Cotton, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	et Farmers, 1959	191
XLIX.	Additional Return or Loss Above Average	
Ť	Variable Cost Per Irrigated Acre,	
	Cotton, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	35 Farmers, 1959	194
L.	Net Return and Return Above Average	
	Variable Cost Per Acre Inch of Water,	
	Per Acre Irrigated, and Per Acre	
	Application, Soybeans, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 13 Parmers, 1959	199

xiv

LI.	Net Return or Loss Above Total Irrigation	
	Costs Per Acre Inch of Water, Soybeans,	
	by Type of Irrigation System, Four	
	Southeastern Missouri Gounties, 13	
	Farmers, 1959	201
LII.	Additional Return or Loss Above Average	
	Variable Costs Per Acre Inch of Water,	
	Soybeans, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 13 Farmers, 1959	204
LIII.	Net Return or Loss Above Total	
	Irrigation Costs Per Irrigated Acre,	
	Soybeans, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 13 Farmers, 1959	208
LIV.	Additional Return or Loss Above Average	
(1)	Variabile Costs Per Irrigated Acre,	
	Soybeans, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 13 Farmers, 1959	211
LV.	Estimated Yield Per Irrigated Acre of	
	Corn, Cotton, and Soybeans, 40	
	Irrigators and 19 Non-Irrigators, Four	
	Southeastern Missouri Counties, 1959 .	216

XY PAGE

LVI.	Total Return from Irrigation Per Farm	
	Minus Total Cost of Irrigation and	
	Total Return from Irrigation Minus	
	Total Variable Cost of Irrigation Per	
	Farm for Cotton, Corn, and Soybean	
	Irrigation, by Type of Irrigation	
÷,	System, Four Southeastern Missouri	
	Counties, 40 Farmers, 1959	218
LVII.	Not Return Per Farm from Irrigation for	
	Cotton, Corn, and Soybean Irrigators,	
	by Type of Irrigation System, Four	
	Southeastern Missouri Counties, 40	
	Farmers, 1959	219
LVIII.	Return Above Variable Costs Per Farm	
	for Cotton, Corn, and Soybean	
	Irrigators, by Type of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 40 Farmers, 1959	223
LIX.	Annual Fixed Cost Attributable to	
	Investment in Irrigation Equipment	
	by 19 Farmers Who Did Not Irrigate,	
	by Type of Irrigation System, Four	
	Southeastern Missouri Counties, 1959 .	227
	र के प्राच्या के प्राच तथा प्राच्या के प्राच्या प्राच्या के प्राप्ता के प्राप्ता के प्राप्त के कि विक्रियों के स्वार्थ के प्राप्त के कि	

xvi

LIST OF APPENDIX TABLES

TABLE		PAGE
A-I.	Missouri Land Classes	245
A-II.	Additional Return or Loss, Breakeven	
	Point in Physical Units Required to	
	Pay Average Total Cost and Average	
	Variable Cost Per Acre Inch of Water	
	Applied to Corn, by Types of Irrigation	
	System, Four Southeastern Missouri	
	Counties, 1959	248
A-III.	Additional Return or Loss, Breakeven	
	Point in Physical Units Required to Pay	
	Average Total Cost and Average Variable	
	Cost Per Irrigated Acre of Corn, by	
	Type of Irrigation System, Four	
	Southeastern Missouri Counties, 1959	249
A-IV.	Additional Return or Loss, Breakeven	
	Point in Physical Units Required to	
	Pay Average Total Cost and Average	
	Variable Cost Per Aere Inch of Water	
	Applied to Cotton, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 1959	250

A-V.	Additional Return or Loss, Breakeven	
	Point in Physical Units Required to	
	Pay Average Total Cost and Average	
	Variable Cost Per Irrigated Acre of	
	Cotton, by Type of Irrigation System,	
	Four Southeastern Missouri Counties,	
	1959	252
A-VI.	Additional Return or Loss, Breakeven	
	Point in Physical Units Required to	
	Pay Average Total Cost and Average	
	Variable Cost Per Acre Inch of Water	
	Applied to Soybeans, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 1959	254
A-VII.	Additional Return or Loss, Breakeven	
	Point in Physical Units Required to	
	Pay Average Total Cost and Average	
	Variable Cost Per Irrigated Acre of	
	Soybeans, by Type of Irrigation System,	
3 	Four Southeastern Missouri Counties,	
1 = 1	1959	255
A-VIII.	Average Yield Per Acre for Specific	
	Crops, Missouri, 1950-1959	256

LIST OF FIGURES

FIGURE		PAGE
1.	Southeastern Missouri Counties Where	
	Irrigators Were Interviewed, 1959	18
2.	Generalized Soil Map of Dunklin, Pemiscot,	
	New Madrid, and Mississippi Counties	20
3.	Number of Farms in Bunklin, Pemiscot,	
	New Madrid, and Mississippi Counties,	
	According to Size in Acres, 1950, 1954,	
	and 1959	40
4.	Yield Increases Per Acre of Corn Irrigated	
	and Time of Application, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 16 Parms, 1959	158
5.	Yield Increases Per Acre of Cotton	
	Irrigated and Time of Application, by	
	Type of Irrigation System, Four	
	Southeastern Missouri Counties, 35 Farms,	
	1959	159
6.	Yield Increase Per Acre of Soybeans	
	Irrigated and Time of Application, by	
	Type of Irrigation System, Four	
	Southeastern Missouri Counties, 13 Farms,	
	1959	160

7.	Net Return or Loss Per Acre Inch of Water	
	Applied to Corn Above Total Cost of	
	Irrigation, by Type of Irrigation System,	
	Southeastern Missouri, 16 Farms, 1959	164
8.	Additional Return or Loss Per Acre Inch of	
	Water Applied to Corn Above Variable	
	Costs of Irrigation, by Type of	
	Irrigation System, Southeastern Missouri,	
	16 Farms, 1959	167
9.	Yield Increase Per Acre Inch of Water	
	Applied to Pay Total Cost of Irrigation,	
	Including Harvesting Costs, Corn, by	
	Type of Irrigation System, Southeastern	
	Missouri, 16 Farms, 1959	169
10.	Yield Increase Per Acre Inch of Water	
	Applied to Pay Variable Cost of Irrigation,	
	Including Harvesting Costs, Corn, by	
	Type of Irrigation System, Southeastern	
	Missouri, 16 Farms, 1959	171
11.	Net Return or Loss Per Acre of Corn Above	
	Total Cost of Irrigation, by Type of	
	Irrigation System, Southeastern	
	Missouri, 16 Farms, 1959	172

FIGURE

12.	Additional Returns or Loss Per Acre of	
	Corn Above Variable Costs of Irrigation,	
	by Type of Irrigation System, Southeastern	
	Missouri, 16 Farms, 1959	175
13.	Per Acre Yield Increase Required to Pay	
	Total Cost of Irrigation, Including	
	Harvesting Costs, Corn, by Type of	
	Irrigation System, Southeastern	
	Kissouri, 16 Farms, 1959	177
14.	Per Acre Yield Increase Required to Pay	
	Variable Costs of Irrigation, Corn, by	
	Type of Irrigation System, Southeastern	
	Missouri, 16 Farms, 1959	178
15.	Net Return or Loss Per Acre Inch of Water	
	Applied to Cotton Above Total Cost of	
	Irrigation, by Type of Irrigation	
	System, Southeastern Missouri, 35	
	Farms, 1959	183
16.	Additional Return or Loss Per Acre Inch of	
	Water Applied to Cotton Above Variable	
1	Costs of Irrigation, by Type of	
	Irrigation System, Southeastern	
	Missouri, 35 Farms, 1959	185

xxi PAGE FIGURE

17.	Tield Increase Per Acre Inch of Water	
	Applied to Pay Total Cost of Irrigation,	
	Including Harvesting Cost, Cotton, by	
	Type of Irrigation System, Southeastern	
	Missouri, 35 Farma, 1959	188
18.	Yield Increase Per Acre Inch of Water	
	Applied to Pay Variable Cost of	
	Irrigation, Including Harvest Cost,	
	Cotton, by Type of Irrigation System,	
	Southeastern Missouri, 35 Farms, 1959	189
19.	Net Return or Loss Per Acre of Cotton	
	Above Total Cost of Irrigation, by Type	
	of Irrigation System, Southeastern	
	Missouri, 35 Farms, 1959	190
20.	Additional Return or Loss Per Acre of	
•	Cotton Above Variable Costs of	
	Irrigation, by Type of Irrigation	
	System, Southeastern, Missouri,	
	35 Farms, 1959	193
21.	Per Acre Yield Increase Required to Pay	
	Total Cost of Irrigation, Including	
	Harvesting Cost, Cotton, by Type of	
	Irrigation System, Southeastern	
	Missouri, 35 Farms, 1959	196

xxii

L TAAM		FAUS
22.	Per Acre Yield Increase Required to Pay	
	Variable Cost of Irrigation, Cotton,	
	by Type of Irrigation System,	
	Southeastern Missouri, 35 Parms, 1959	197
23.	Net Return or Loss Per Acre Inch of Water	
	Applied to Soybeans Above Total Cost	
	of Irrigation, by Type of Irrigation	
	System, Southeastern Missouri, 13	
	Parms, 1959	200
24.	Additional Return or Loss Per Acre Inch of	
	Water Applied to Soybeans Above	
	Variable Costs of Irrigation, by Type	
	of Irrigation System, Southeastern	
	Missouri, 13 Farms, 1959	203
25.	Yield Increase Per Acre Inch of Water to	
	Cover Total Cost of Irrigation,	
1	Including Harvesting Cost, Soybeans, by	
	Type of Irrigation System, Southeastern	
	Missouri, 13 Farms, 1959	205
26.	Yield Increase Per Acre Inch of Water to	
	Pay Variable Cost of Irrigation,	
	Including Harvesting Cost, Soybeans, by	
	Type of Irrigation System, Southeastern	
	Missouri, 13 Farms, 1959	206

FIGURE

27.	Net Return or Loss Per Acre of Soybeans	
	Above Total Cost of Irrigation, by Type	
	of Irrigation System, Southeastern	
	Missouri, 13 Farms, 1959	207
28.	Additional Return or Loss Per Acre of	
	Soybeans Above Variable Cost of	
	Irrigation, by Type of Irrigation	
	System, Southeastern Missouri, 13 Parms,	
	1959	210
29.	Per Acre Yield Increase Required to Pay	
	Total Cost of Irrigation, Including	
	Harvesting Cost, Soybeans, by Type of	
	Irrigation System, Southeastern	
	Missouri, 13 Farma, 1959	212
30.	Per Acre Yield Increase Required to Pay	
	Variable Costs of Irrigation, Soybeans,	
	by Type of Irrigation System,	
	Southeastern Missouri, 13 Parms, 1959	213
31.	Net Return from Irrigation, by Type of	
الم	Irrigation System, Four Southeastern	
	Missouri Counties, 39 Farms, 1959	220

xxiv

FIGURE

,

32.	Additional Return or Loss Above Total	
	Variable Cost Per Farm by Cotton, Corn,	
	and Soybean Irrigators, by Type of	
	Irrigation System, Four Southeastern	
	Missouri Counties, 40 Parmers, 1959	224
33.	Annual Fixed Cost Attributable to	
	Investment in Irrigation Equipment by	
	19 Farmers Who Did Not Irrigate, Four	
	Southeastern Missouri Counties, 1959	228

(

1

PREFACE

This study was designed to help farmers make decisions concerning the place of irrigation in their farming operations. They need two types of information for this purpose. The first deals with the amount of investment required for the equipment; the second with returns in relation to the costs. Since capital is limited on most farms, the expected returns from alternative investment opportunities also must be considered. Investment in irrigation equipment should be made only after the operator has decided that expected returns over a period of years will be equal to or greater than those expected from other investment opportunities.

The need for and the response from irrigation in a humid region are likely to be intermittent. Since fixed costs have to be borne regardless of annual use, the attention of the farmer, who has purchased equipment must be centered upon variable costs. He must compare expected returns from applying water to his crop in a given year with what he reasonably would get if he used the money for another purpose, and irrigate when he expects the returns to be equal to or larger than income from other uses of the money. In the years when the equipment is not used the fixed cost can be regarded as crop insurance.

The analysis presented here is designed to help

farmers in both areas of decision making. The 65 farms studied in the Delta Cotton Corn Area owned or controlled irrigation equipment in 1959. Data were obtained that made it possible to determine the cost of installing and operating different types of irrigation systems. The estimated yield response and the variable costs of irrigating corn, cotton, and soybeans also were available. From this information, it was possible to determine the effect of field irrigation on net farm income.

Random weather variations have considerable influence on the responses of crops to irrigation and on the costs of applying water in a given year. The data presented in this study represent irrigation costs and estimated yield responses from 65 farms in one year. This is not sufficient time to justify firm conclusions as to the feasibility of using supplemental irrigation under all price and weather conditions, but the analysis does establish "bench marks" that can be used as a guide in deciding whether or not to invest in irrigating equipment.

xxvii

CHAPTER I

INTRODUCTION

Farmers as well as extension and research personnel of the Land Grant Colleges and the United States Department of Agriculture have become increasingly interested in irrigation in the humid areas of the United States. The primary reason has been reductions in crop yields in extremely dry years. Periodic shortages of natural moisture have encouraged the use of supplemental irrigation in an effort to maintain satisfactory levels of income where water has been available. Furthermore, the technological advances, which have been made in crop variation, in the use of fortilizers, and in irrigation equipment, have lowered the cost of applying irrigation water per unit of output and stimulated a persistent demand for information related to the use of supplemental irrigation for reducing the risk and uncertainty of crop production.

As the interest in irrigation increased, the need for basic data concerning its use also increased. The information desired included specific data on response of different crops, most satisfactory types of equipment to use, amount of investment required and factors influencing costs in relation to returns. Most farm operators have limited capital to invest in their businesses. If it is put into irrigation equipment, alternative uses must be postponed for the present time or indefinitely.

Whether or not to irrigate land is a managerial decision that must be made by each farm operator. Several types of information are needed. They include: (1) the quantity and quality of water available; (2) the cost of installing equipment and distributing water on the land; (3) the additional yield that can reasonably be expected from each type of crop; (4) frequency of need for supplemental water, and (5) additional returns in relation to costs. This information was not available for Missouri farmers, yet many of them had acquired and were using irrigation equipment. In order to take advantage of the experiences of these farmers, this and several other studies were initiated.

I. OBJECTIVES OF THE STUDY

The investigations in Missouri were guided by the following objectives:

- To determine the costs of installing and operating various types of irrigation systems.
- To determine the changes in yield and quality of product obtained from various quantities of water applied to specific types of crops.
- 3. To determine the effects of irrigation on farm

income.

Need for the Study

For several years, the farmers of Missouri have used supplemental irrigation as a means of increasing production, stabilizing yields, improving the quality of their products, and reducing the risk and uncertainty incident to variable weather conditions. Natural moisture conditions fail to meet optimum requirements for crops at some time during the growing season in most years. According to the 1954 U. S. Census of Agriculture, Missouri farmers applied water to 1,113 acres in 1944 and 33,314 acres in 1954. Additional reports indicated that irrigation continued to expand within the state up to 1956. After that date, the total irrigated acreage and the number of farmere applying water to their crop declined. The primary reason for the decline was a more nearly uniform distribution of rainfall throughout the growing season.

The investigation reported in this manuscript covers the second part of a two-phase study. The first was concerned with the nature and extent of irrigation in Missouri.¹ During the initial phase, information was

¹Ted L. Jones and Frank Miller, <u>Nature and Extent of</u> <u>Irrigation in Missouri</u>, University of Missouri Agricultural Experiment Station Research Bulletin 735, April 1960.

obtained by mail questionnaire to indicate the types of crops receiving water and the acreages irrigated in the various areas of the state, sources of supply, and types of distribution systems used. Information was obtained for the years 1954 to 1958.

Only limited information was available concerning costs and returns that could be expected when water was applied to crops and no effort was made to get data of this type in the first round of inquiry. The study reported here deals with costs and returns in the southeastern delta area where most of the irrigation water is used.

II. THE ECONOMICS OF IRRIGATION

Field crops have been produced commercially in the humid areas of the United States for many years without the use of irrigation. In a static economy, irrigation probably would never have been introduced. The tremendous technological changes that have taken place in the production and marketing of agricultural products within the last 40 years have increased the investments in farm businesses greatly and brought on a diligent search for methods that can be used to reduce unit costs and stabilize farm incomes. Farm tractors and other machinery, commercial fertilizer, superior crop varieties, and portable irrigation equipment are only a few innovations that have been

introduced. Naturally, questions have arisen as the specific conditions under which these new practices and devices profitably can be used.

In this study, the assumption is made that farm operators act rationally in the economic sense. Therefore, the maximization of family satisfaction is the goal toward which they are working. The desire for increased farm income is consistent with this assumption. Total family satisfaction will increase as farm income increases up to the point where the efforts expended become less satisfying than leisure. If the assumption is made that most farm families have not attained a flow of income so great that further efforts to increase it would conflict with maximization of satisfaction through other activities or through no effort at all (leisure vs. work), then the conclusion is logical that the adoption of such innovations as irrigation, is an attempt to increase earnings.

Irrigation requires relatively large investments, regardless of the type of system used. Consequently, the annual fixed cost is high. In addition, the use of an irrigation system leads to variable costs such as wages for labor, fuel, and repairs.

Since most farm operators do not have unlimited espital, a choice must be made between two or more alternative uses. Here opportunity costs become the guide.

Before the decision is made to invest in irrigation equipment, the income that might be obtained by putting the money into some alternative use needs to be considered. The choice to buy the equipment should be based on rejection of the second best available alternative use of the funds. After the decision has been reached and the capital investment has been made, the capital is fixed or sunk for a given period of time. Where a well is used as a source of water, its cost can be recovered only through use or sale of the land at a higher price, because the well is there ready for use. Moveable equipment can be sold. If the assumption is made that the fixed capital cannot be recovered for a given period of time, then only the variable costs should be considered. The opportunity cost after acquisition of the water distributing system is the amount of farm income that will be foregone if the value or amount of variable costs needed is placed in uses other than with the fixed capital investment in the irrigation equipment.

Irrigation in the humid areas may not be required every year due to fluctuations in the amount and distribution of rainfall. Because of this fact, yield response will vary from year to year. Fixed costs will be an annual charge, while variable costs will be incurred only when the irrigation system is used. If, over time, investments in irrigation are to be profitable, the yield response in

dollar terms during the years of use must exceed the fixed and variable costs incurred throughout the total period, including the years when water is not applied to crops.

Farm operators who irrigate crops in humid regions face difficult managerial decisions. They must decide what crop will receive the water, when, and how much will be applied. In a given year, the guide is marginal cost and marginal returns. Water should be applied up to the point where the cost of an additional unit (acre inch) is equal to the value of the additional output of product resulting from use of the water. The stand of the crop, the level of plant nutrients in the soil, the presence or absence of weeds, temperature, relative humidity, subsequent rainfall and many other factors influence response. No method or technique is known which will inform the operator when the equimargin is reached. However, the farm operator must act as if hes has perfect knowledge of all these factors.

III. METHOD OF INVESTIGATION

Data for this analysis were obtained from farmers who owned or controlled irrigation equipment in Dunklin, Pemiscot, New Madrid, and Mississippi Counties. An earlier study had shown that the greatest concentration of irrigation was in this region. A list of 186 farmers who owned or controlled irrigation equipment was compiled from

information furnished by County Agents, Soil Conservation personnel, well-drillers, and irrigation equipment dealers. Each farmer was given an identification number and 65 drawn from the list with the aid of tables of random numbers. Each farm operator chosen by this procedure was interviewed three times during 1959. The first interview was made in May and June. The investment in irrigation equipment, and other basic information was obtained during this interview. The second interview was conducted in August and September and operating costs obtained. The third and final interview was made in December to secure estimated yield responses.

IV. SUMMARY OF RELATED RESEARCH

Thorfinnson and others obtained irrigation data from 76 farmers in the Blue River Watershed Area of Nebraska for the 1952 season,² The report of findings included a brief description of 3 systems of water distribution, but it dealt specifically with the relative cost of operating them. The average investment in irrigation equipment per acre irrigated was \$11.00 for the siphon tube method,

²T. S. Thorfinnson, Meryl Hunt and A. W. Epp, <u>Cost</u> of <u>Distribution of Irrigation Water by Different Methods</u>. University of Nebraska College of Agriculture Experiment Station Bulletin 432, August 1955, pp. 3, 5-6.

\$46.00 for gated pipe, and \$67.00 for sprinkler equipment. The number of man hours of labor required for one irrigation per acre of corn was 0.90 for siphon tubes, 0.71 for gated pipe, and 1.41 for sprinklers. Operating costs were least for siphon tubes and most for sprinklers when only labor, repairs for equipment, and power needs were considered. When depreciation, interest, and taxes were included, the total cost was \$1.29 per acre for one irrigation with siphon tubes, \$2.56 with gated pipe, and \$7.70 for sprinklers.

Puterbaugh and Kettke³ studied 167 irrigating units in Connecticut in 1957. They found the greatest interest in additional irrigation was among dairy farmers. When a budgeting analysis of costs and returns from irrigating hay and pasture on a typical dairy farm was made, supplemental irrigation in combination with other good farming practices was found to be profitable over a period of years. Water was obtained from a stream. The analysis, which included no costs for developing a source of water, led to the following conclusions:

1. Variable costs of operating an irrigation system

³Horace L. Puterbaugh and Marvin W. Kottke, <u>Technical</u> and <u>Economic Characteristics of Irrigation on Connecticut</u> <u>Farms</u>, University of Connecticut Storrs Agricultural Experiment Station Sulletin 340, March 1959, pp. 1-2.

in a given year make up a relatively small part of the total costs, especially when additional labor is not hired.

- 2. Yield responses from irrigation in a given year need not be substantial to permit greater additional returns than variable costs.
- 3. Yield responses would probably have to be greater than 0.5 ton of hay equivalent per acre for the additional returns to exceed the fixed costs of equipment as well as the variable costs of applying the water.
- 4. Variations in rainfall reduce the need for irrigation in some years and lead to the need for intensive use of water in other years. The yield response of forage crops probably will have to be as much as 1.5 tons per acre in the years of intensive irrigation to offset losses from fixed costs in the years when irrigation is not needed.

Davis⁴ found that adequate rainfall in 1957 and 1958 reduced the average acreages of irrigated field crops from

⁴Velmar W. Davis, <u>Irrigation in Illinois, 1954 to</u> <u>1958</u>, University of Illinois College of Agriculture in Cooperation with Farm Economics Research Division, Agricultural Research Service, United States Department of Agriculture AERR-53, July 1960, pp. 1-2. 45 in 1956 to 33 in 1957 and to 6 in 1958. Only 13 of 77 field crop irrigators used their systems in 1958. The adequate rainfall in 1958 not only caused fewer farmers to use irrigation, but generally fewer irrigations per crop were made and smaller quantities of water applied per irrigation. Estimated yield response of corn from irrigation decreased from 38 bushels in 1957 to 21 bushels in 1958.

Forty field crop irrigators⁵ reported an average investment of \$7,433 per farm, or \$86 per acre based on 86 acres irrigated per farm. The \$86 per acre included the following items: distribution system, \$51; ppump and power unit, \$23, and water source, \$12. Pipe, fittings, and sprinklers were the chief items of capital investment on nearly all farms. The average investment per farm was \$4,406 in distribution equipment; \$1,976 in pump and power unit, and \$1,051 in source of water.

One hundred and thirty-two central Nebraska farmers had an average investment in well, pump, power unit, and sprinkler equipment of \$11,265 per farm and \$9,822 per well in 1957.⁶ Approximately one-half of the investment

SIbid.

6T. S. Thorfinnson, Norris P. Swanson and A. W. Epp, <u>Cost of Distributing Irrigation Water by the Sprinkler</u> <u>Method</u>, University of Nebraska Agricultural Experiment Station Bulletin 38455, March 1960, pp. 3-4.

was for sprinkler equipment, including main lines, sprinkler lines, risers, nozzles, fuel tanks, gas lines, booster pumps, and booster engines. The other one-half was invested in wells, pumps, and power units.

The cost per irrigated acre averaged \$12.95 for all erops.⁷ For milo, on which 6.7 acre inches of water were applied, the cost was \$11.04 per acre; on corn, \$15.40 per acre with 8.7 inches applied, and on alfalfa, \$13.81 with an average of 9 inches applied. From 40 to 50 per cent of the total was made up of depreciation, taxes, and interest. The remainder was variable costs such as fuel, repairs on equipment, and wages to labor used in moving the equipment.

The cost of distributing water varied widely among farms. Many factors were responsible. Among them were the number of acres irrigated, the quantity of water applied during the season, the kind of fuel used in the power unit, efficiency of the pumping plant, design of the sprinkler system and the extent of irrigation as related to the capacity of the plant.⁸

Two hundred and six farm records covering the 1956-1958 growing seasons in three Delaware counties were

> 7<u>ID10</u>. ³ID10.

analyzed.⁹ The total investment in facilities, including source of water, ranged from \$6,281 per farm (\$481 per acre, on farms with less than 25 irrigated acres) to \$21,096 per farm (\$97 per acre on farms with 150 or more irrigated acres). As the number of irrigated acres increased, investment per acre decreased. Fixed cost per acre on farms with less than 25 acres irrigated averaged \$51.18 per acre as compared to \$8.84 on farms with 150 or more irrigated acres. Average variable costs ranged from \$19.90 per acre for farms with less than 25 acres to \$6.90 per acre for farms with less than 25 acres to \$6.90 per acre for farms with 150 or more irrigated acres. Total irrigation costs per acre averaged from \$71.08 per acre for farms with less than 25 irrigated acres to \$15.74 per acre for farms with 150 or more irrigated acres.

The increased yield per sore that is necessary to pay for irrigation costs varies from year to year.¹⁰ This situation exists because of variations in the following items: (1) number of acres irrigated per farm; (2) number of irrigations per year; (3) total amount of water applied; (4) price per unit of labor and supplies, and (5) price

⁹W. G. Smith, W. E. McDaniel and E. N. Scarborough, <u>Irrigation in Delaware</u>, University of Delaware Experiment Station Technical Bulletin 335, July 1960, pp. 2-3, 7. 10_{Ibid}.

received per unit for the crop produced. Farms having less than 25 irrigated acres required 19.30 owt. of potatoes in 1956 and 50.78 owt. in 1958 to pay for total costs of irrigation or a difference between years of 31.48 owt. The difference in requirements for the same years for farms irrigating a total of 150 acre or more was only 5.73 owt., (4.58 owt. in 1956 and 10.31 owt. in 1958).

Henderson stated that one of the most important factors determining the success of an irrigation enterprise was management. The management required for irrigated farming differed from that needed for dryland farming. It appeared that timing of operations and attention to details became much more important.¹¹ Careful attention had to be given to adequate fertilization, planting and cultivation methods, amount and variety of seed, and good distribution of water.

One of the principal advantages of irrigation, Henderson found, was that it required and permitted an operator to exercise managerial ability through the use of fertilizer, timing of water application, amount and variety of seed used, and other details that influence crop yields.

11 Philip A. Henderson, <u>Will It Pay to Irrigate</u> <u>Corn</u>?, University of Nebraska College of Agriculture Extension Service E. C. 57-805, August 1957, p. 3.

The dryland farmer may find that any efforts on his part to exercise managerial ability is completely overshadowed by the limitations imposed by lack of moisture.

Thesas and Slater¹² made a detailed study of sprinkler irrigation practices on 23 farms in 6 Southwestern Indiana counties in 1955. They found that fixed costs averaged 61 per cent and variable costs 39 per cent of the total irrigation costs. The total cost of applying an acre inch of water averaged \$6.0%. Fixed, variable, and total irrigation costs per acre inch of water applied decreased with increased use of the system.

Irrigating corn was profitable on 9 of the 23 farms when total costs were considered. Returns to irrigation exceeded variable costs on 16 farms. In general, unit irrigation costs tended to be lower on farms that used the system extensively, or that had systems requiring low capital investment and made relatively heavy applications per irrigation.¹³

. IRRIGATION IN SOUTHEASTERN MISSOURI

The description of the area where data were obtained

12D. woods Thomas and G. R. Slater, <u>Irrigation</u> -<u>Costs and Returns</u>, <u>Southwestern Indians</u>, <u>1955</u>, Purdue University Agricultural Experiment Station Research Bulletin 568, August 1958, pp. 2-3.

13 Ibid.

for this study is presented in Chapter II. It includes type of soil, climate, water supply, and economic characteristics. Chapter III covers the characteristics of the farms in the sample, including such items as size, tenure, types, capacities and fixed investment in irrigation equipment, sources of credit, kinds of crops irrigated, and number of irrigations. Chapter IV contains the costs and returns attributable to irrigation in 1959. The data are presented so costs and returns by different methods of applying water, and the effect of irrigation upon net farm income can be determined. The summary and conclusions are presented in Chapter V.

CHAPTER II

DESCRIPTION OF THE AREA

The records for this study were obtained from Dunklin, Pemiscot, New Madrid, and Mississippi Counties in the Delta Corn and Cotton Area of the state (Figure 1). The four counties encompass approximately 1,357,440 acres. New Madrid County is the largest with approximately 434,560 acres, of which 84.2 per cent was in farms in 1959. Dunklin is second with 347,520 total acres and 89.2 per cent in farms. Approximately 92.8 per cent of the 312,230 acres in Pemiscot County was in farms in 1959. The smallest of the four, Mississippi County, contains approximately 263,040 acres, of which 86.6 per cent was in farm land in 1959.¹ Grop production is the dominant enterprise in the area with cotton, soybeans, and corn the major crops produced.

30118

The soils are of alluvial origin, but they show extreme variations in texture, profile and drainage. The deposits from which they were derived were largely laid

¹United States Bureau of the Census, <u>1959 Census of</u> <u>Agriculture-Preliminary</u>: Missouri, United States Government Printing Office, Washington, D. C., September 1960.

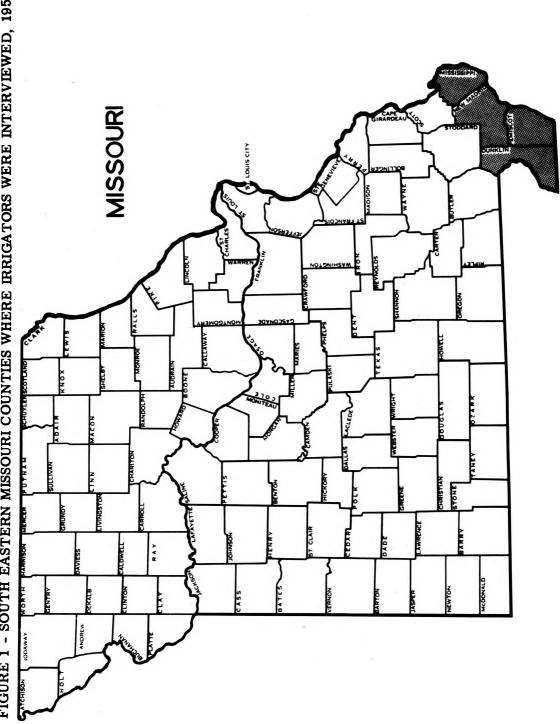
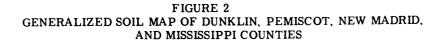
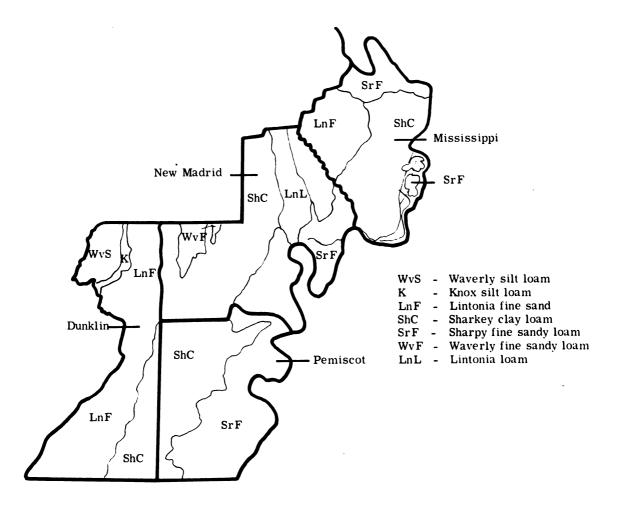


FIGURE 1 - SOUTH EASTERN MISSOURI COUNTIES WHERE IRRIGATORS WERE INTERVIEWED, 1959


down by the Mississippi and other large rivers and are of complex origin. It is difficult to find even a ten acre field which is of the same character throughout. Sandy spots or streaks are common even in the prevailingly heavier soils while the sandy soil areas are interlaced with swales of lower lying silts and clays. This extreme variability makes a general classification of the Southeastern Missouri soils very difficult.² The dominant series are Sharkey clay loam, Sarpy fine sandy loam, Lintonia fine sand, Waverly and Knox silt loams (Figure 2).


Sharkey clay loam is the dominant soil type in the four county area. It forms the belt of heavy soil extending from Cape Sirardeau County through the Center of the area to the Arkansas state line.³ Sharkey is a dark gray clay soil with a clay subsoil which hinders its permeability to air and water. The topography is flat and both surface and internal drainage are problems. Sharkey clay loam was classed as medium cropland in the description of soils in Appendix Table A-I.

Sarpy fine sandy loam represents the frontal land

2M. F. Miller and H. H. Krusekopf, <u>The Soils of</u> <u>Missouri</u>, University of Missouri College of Agriculture, Agricultural Experiment Station Bulletin 264, January 1929, pp. 95-98.

³Ibid. pp. 106-109.

along the Mississippi River in Pemiscot, New Madrid and parts of Mississippi County.⁴ The texture ranges from fine sand to very fine sandy loam, with areas of loam, silt loam, and some clay. The light soil and sandy substratum facilitate internal drainage. Sarpy fine sandy loam is the most productive land in the area. It has been placed in class I which is superior crop land (Appendix Table A-I).

Lintonia fine sandy loam occupies two separate area (Figure 2).⁵ One is in Dunklin County where it varies from four to six miles wide in the northern part and from twelve to fourteen miles wide in the southern part. The other includes parts of Mississippi and New Madrid Counties. The soil is dominantly a fine sandy loam, but it has areas of fine sand and silt loam included in it. The topography varies from almost level in Dunklin County to undulating in Scott County. Surface drainage and permeability to air and water are good. It has been classed as good crop land.

Lintonia loam forms Sikeston Ridge, which extends from near the center of Scott County to the town of New

> ⁴<u>Ibid.</u> pp. 98-101. 5<u>Ibid.</u> pp. 103-106.

Madrid.⁶ The surface soil is variable, and ranges from a brown or grayish silt loam or fine sandy loam to a depth of ten to fifteen inches. Lintonia loam represents outwash from the loessial hills, probably in Scott and Cape Girardeau Counties. Due to the relatively higher elevation and sandy substratum, both surface and underdrainage are good. It has been classed as good crop land.

The Lintonia loan area was settled early in the history of the state. A large share of the soil type was divided into grants which were donated to early settlers during the Spanish regime.⁷

Climate_

The area has a humid continental climate. The average annual precipitation is approximately 50 inches, which is the highest in the state.⁸ Precipitation is greatest in January, March, and April.⁹ The average growing season is 210 days. The first parts of June, July,

6<u>Ibld</u>. pp. 101-103.

7 Ibid.

⁶<u>Glimate and Man</u>, Yearbook of Agriculture, 1941, United States Department of Agriculture, U. S. Government Printing Office, pp. 550-554.

⁹Wayne L. Decker, <u>Nonthly Precipitation in Missouri</u>, University of Missouri Agricultural Experiment Station Bulletin 650, March 1955, pp. 38-39.

and August are periods of low-dry-weather risk, but early May, late June, July and August have high frequencies of dry periods.¹⁰ From the standpoint of crop production, lack of moisture during the growing season often is critical. Also the area has more dry periods lasting three and four weeks than other areas of the state, except East Central Missouri.¹¹

Mater Supply for Irrigation

The area appears to have an unlimited supply of water for irrigation. Wells, from 80 to 125 feet in depth, have supplied farmers with sufficient water for all irrigation needs.¹² However, it should be kept in mind that only a small percentage of the farmers have used water for irrigation. Whether the supply would be adequate, if all farmers were irrigating intensively, is unknown.

I. ECONOMIC CHARACTERISTICS

Early Settlement

The first white settlement in the area was made in

10 wayne L. Decker, <u>Chances of Dry Periods in</u> <u>Missouri</u>, University of Missouri Agricultural Experiment Station Bulletin 707, June 1959, pp. 10-11.

11 Ibid.

12Ted L. Jones and Frank Miller, <u>Nature and Extent</u> of <u>Irrigation in Missouri</u>, University of Missouri Agricultural Experiment Station Research Bulletin 735, May 1960, pp. 29-31. the Winter of 1786-87 by two Frenchmen, Francois and Joseph Lesieur in the New Madrid district. The brothers established a post to trade with the Delaware Indiane. In a short time, the small settlement was one of the best trading points in the country west of the Mississippi River.¹³ Administrative control was under the Spanish Government at this time.

The first American settlers came into the district in 1789. A group of fifty or sixty American immigrants, under the leadership of a Colonel George Morgan, arrived to establish a city. Colonel Morgan had obtained a grant of 12,000,000 to 15,000,000 acres from the Spanish Government. Colonel Morgan did not establish the city as the Spanish governor, Miro, stripped the concession from him before the city could be built. Colonel Morgan soon left the area, but several of the American families remained to establish homes and farms.¹⁴

The first town in the area was New Madrid. It was laid out by Pierre Foucher, the first Commandant, in 1789. The Mississippi River has destroyed the original site, thus the New Madrid of today has nothing about it to

13<u>Goodspeed's History of Southeast Missouri</u>, Goodspeed Publishing Company, 1883, pp. 284-291. 14<u>Ibid</u>.

suggest its origin.

As the Indians moved from the area, the settlers turned their attention to crop production. Cotton was grown extensively from 1800 to about 1820, in New Madrid County. It was then abandoned until after the close of the Civil War. Corn and wheat were produced extensively.¹⁵ The area possesses no minerals of commercial value. Its wealth lies solely in the agricultural and timber resources.¹⁶

New Madrid County was organized from the New Madrid district in 1312. Dunklin and Mississippi Counties were organized in 1845. Pemiscot County was organized just prior to the divil War in February, 1861.¹⁷ The population of the area was slightly over 2,100 when New Madrid County was organized (Table I). It increased slowly until the 1840's, then more than doubled by 1850. The population peak was reached at 154,750 in 1940. There was a net decrease of 1.802 persons during the 1940's.

Drainage was necessary before the area could become highly productive for agricultural purposes. The first

> 15<u>Ibid</u>. p. 199. 16<u>Ibid</u>. 17<u>Ibid</u>. pp. 176-181.

TABLE I

POPULATION	OP	DUNKL	IN,	PENIS	cor,	NEX	MADRID	AND
				ITIES,				

Year	Number of People
1810	2,103
1820	2,445
1830	2,351
1840	4,554
1850	9,884
1860	18,501
1870	19,380
1880	30,867
1890	40,493
1900	56 ,938
1910	83,932
1920	97,447
1930	119,107
1940	154,750
1950	152,948

^aData for 1810 to 1880 from Tenth Census of the United States, Volume I, pp. 68-69. Data for 1890 to 1910 from Thirteenth Census of the United States, Volume II, pp. 1074-1082. Data for 1920 from Fourteenth Census of the United States, Volume III, pp. 554-58. Data for 1930, 1940 and 1950 from United States Census of Population, 1930, Volume III, Part 1, pp. 1,339-1,370; 1940, Volume II, part 4, pp. 368-69; and 1950, Volume II, part 25, pp. 123-36. dredge work in Southeastern Missouri was started about 1896 in New Madrid County. Approximately 7 years later, drainage work was started in several other counties, and ditches were constructed to drain approximately 400,000 scres. In 1907, the Little River drainage district was organized. This was the largest drainage project in the world outside of Holland up to that time. It was designed to drain an additional 500,000 acres of land.¹⁸

Reonomic Characteristics

Agriculture has remained the major industry of the area up to the present time (Table II). In 1930, 71.5 per cent of the people employed were engaged in agriculture. The percentage had decreased to 58.1 per cent in 1950, but agricultural workers were still the most prominent group. The percentage of people employed by wholesals and retail stores has steadily increased from 6.8 to 9.4 to 13.6 per cent in 1930, 1940, and 1950, respectively. This group was second in importance to agricultural workers. Manufacturing was third in 1930, but was replaced by service groups in 1940 and 1950.

18A. T. Sweet, C. J. Mann, H. H. Krusekopf, E. S. Vanalta, and H. G. Lewis, <u>Soil Survey of Pemiscot County</u>, <u>Missouri</u>, United States Department of Agriculture, Bureau of Soils, Government Printing Office, 1912, pp. 29-31.

	1930	0	761.	0		1950 ⁶
Tter	Nale P.	Per	Ne. le F	Fear le	Kale P Number	Feele
Total Population	62,115	56,992	80,154	74.595	067.17	75.458
Percentage:	Per cent	Per cent of total	Per cent	Per cent of total	Per cent	Per cent of total
ld years of age & over In labor force	63.3 ^d	61.7 ^d		67.6	64.8 49.9	65.7
Employed in industry Employed in W.P.A.	56.3	8.3	44.9	8	11.2	10.2
Unemployed			1.9	7.7	3.7	1.2
	Number	ber		Kumber	Ilu	Number
industry industry	34,979	4.724	35,991	5,983	34,223	7.731
Percentage in:	Per cent	Per cent of total	Per cent	Per cent of total	Per cent	Per cent of total
Agriculture Forestry & mining	71.5	29.3	69.1	12.4	58.1	14.2
Construction Manufacturing	1.8	0.6	3.1	23.1	5.4 6.9	16.4
iransportertion « communication	3.6	1.7	2.8	1.3	3.4	2.1

TABLE II

TABLE II (Continued)

	1930	19400	1950 ^c
Item	No. ceed.c	Kale Yenale	Male Female
Percentage in:	Per cent of total	1 Per cent of total	1] Per cent of total
Public utilities Wholesale & retail trade Service Public administration Other	2.04 4.0 4.0 5.8 40.0 5.8 40.0 5.8 5.8 5.8 5.8 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	11369.3 2.64 2.55 2.64 2.55 2.64 2.55 2.64 2.55 2.65 2.65 2.65 2.55 2.55 2.55 2.55	13.6 8.9 1.6 35.6 35.6 2.8 2.8 2.8 2.8 2.8
^a United States Census of Population, 1930, Volume III, part I, pp. 1,339-	of Population, 1	930, Volume III, p	urt I, pp. 1,339-

CUnited States Census of Population, 1950, Volume II, part 25, pp. 123-136. ^bUnited States Census of Population, 1940, Volume II, part 4, pp. 368-369. dover 15 years of age.

Agriculture

In the early period of agricultural development, farms were small, reflecting the high labor requirement of the principal cash crop which was cotton. Cotton still brings more money into the area than any other crop, but the trend is toward mechanization thus releasing labor from agriculture and making larger operating units necessary. The number of farms decreased 21.8 per cent from 1950 to 1954. By 1959, an additional 24.8 per cent of the farm operators had quit farming. Farm businesses were being reorganized into larger, more efficient units in an attempt to lower the cost of production per unit of output. The average size was 91.4 acres in 1950, 111.6 acres in 1954, and 163.7 acres in 1959, an increase of 79.1 per cent from 1950 to 1959.

Farm assets were increasing in value throughout the 1950's. The value of land and buildings averaged \$14,043' per farm in 1950, \$13,991 in 1954, and \$38,714 in 1959. The average value of land and buildings per farm was 175.6 per cent greater in 1959 than 1950. The average price per acre was \$274.09 in 1959 as compared to \$154.15 in 1950 an increase of 77.8 per cent in the ten-year period. (Table III).

The census definition of a connercial farm was changed in 1959 from that used in 1950 and 1954. However,

TABLE III

NUMBER, AVERAGE SIZE OF FARM, AND VALUE OF LAND AND BUILDINGS IN FOUR SOUTHEASTERN MISSOURI COUNTIES, 1950, 1954, AND 1959⁶

	CLUB	Number of Farms	8	Avera	Average Sise of Farm	Farm
County	1950	1954	1959	1950	Acres 1954	1959
Dunklin	3,313	2,605	2,252	90.8	103.4	137.7
Peni scot	3,347	2,794	1,844	81.3	0*96	151.2
New Madrid	3,857	2,865	2,108	89.1	116.8	173.5
Mississippi	1.879	354.1	1.085	1.211	146.4	209.8
Total	12,396	669*6	7,289			
Average				4-16	9.111	163.7
Percentage Change From:						
1950 to 1954		-21.8			+22.1	
1954 to 1959			-24.8	×		+46.7
1950 to 1959			-41.2			1.67+

TABLE III (Continued)

280.25 +77.8 323.82 +39.5 249.37 234.57 274.09 959 Average Per Acre 237.64 196.52 204.17 191.79 +28.5 111.51 Value of Land and Buildings Dollars 188.16 150.24 154.15 115.83 155.41 1950 44.239 35,008 35,870 38,714 +175.6 42.541 +101+ 1959 Average Per Farm 20,334 20,537 16.203 166,91 +35.2 15,500 12,165 14.510 14,511 24,048 1950

the reduction in number of farms due to the change in definition was only .88 per cent or 86 farms in the four county area. For 1954, each place operated as a unit of 3 or more acres on which the value of the farm products produced totaled \$150 or more, as well as each place of less than 3 acres from which the value of all agricultural products sold totaled \$150 or more was counted as a farm. For 1959, each place operated as a unit of 10 or more acres from which the sale of agricultural products totaled \$50 or more, as well as each place operated as a unit of less than 10 acres from which the sale of agricultural products totaled \$250 or more, was called a farm.¹⁹ Commercial farms are divided into six groups on the basis of total value of products sold. The class intervals for 1954 and 1959 are as follows:

		19	954		199	59	
Class	I	\$25,000	or	BOFC	\$40,000	or	more
Class	II	10,000	to	24,999	20,000	to	39,999
Class	III	5,000	to	9,999	10,000	10	19,999
Class	IV	2,500	to	4,999	5,000	to	9,999

¹⁹United States Bureau of the Census, <u>1959 Consus</u> of <u>Asriculture - Preliminary</u>: 1959, Missouri, Farms, Farm Characteristics, Para Products, Mashington 25, D. C. September 1960.

Class V \$1,200 to 2,499 \$2,500 to 4,999 Class VI 250 to 1,199 50 to 2,499 The 1954 commercial farm class I and II were equivalent to 1959 classes of I and II and III. The 1954 classes III and IV were comparable to 1959 classes IV and V. The 1954 classes V and VI are comparable to 1959 class VI.

1954

The total number of commercial farms decreased 20 per cent from 1950 to 1954 (Table IV). The number of farms in class I, II, and III increased as the number in classes IV, V, and VI decreased. Class I had the largest increase with 36 per cent, while class VI had the greatest decline, a decrease of 74 per cent from 1950 to 1954. The number of commercial farms in 1959 is shown in Table IVa, which is based on the 1959 definition. When the 1950 and 1954 classes were changed to conform with the 1959 definition, the number of commercial farms decreased 43 per cent as shown in Table IVb. The number of farms selling the greatest amounts of farm products increased as the total number decreased.

The number of farms of 180 or more acres has increased as smaller farms have decreased (Table V and Figure 3). The increase from 1950 to 1959 in the 180-256 acre group was 23 per cent; in the 260-499 group, 66 per cent; 500-999, 100 per cent; and 1,000 or more, 95 per

34

TABLE IV

. .

NUMBER OF CONNERCIAL FARMS IN FOUR SOUTHEASTERN MISSOURI COUNTIES.

				Cons	Comercial	Paras		
county	Year	H	Ħ	TIT	M		TA	Total
Dunklin	1950	202	420	130	88	320	63	3,063
Pealsot	1950	182	202	22	886 780	768	33	3,143
Kew Madrid	1950	150	780 480	308 1,020	1,106	222	35	3,689
Hisolssippi	1950	36	198	238	442 483	ŝŝ	166	1,791
Total 1	1950	327 445	1,785	2,807	3,350	2,860	250 250	11,706
Percentage Ohange From								
1950 to 1954		+36	\$ +	CI +	-19	-56	-74	29

TABLE IVA

NUMBER OF COMMERCIAL PARKS IN FOUR SOUTHEASTERN MISSOURI COUNTIES, 1959⁵

				Comercial Paras	Saras		
Tounty	-	F	E	Classb	2	R	Total
Dunklin	76	266	605	000	340	18	2,017
enlacot	3	520	04	345	365	8	1,684
New Madrid	122	22	475	505	544	160	2,030
Mississippi	5	F	500	12	99 7	750	52
Total	445	926	1,750	1,695	1,330	250	6,696

"Data from 1959 Census of Agriculture, Preliminary Report, By Countles.

P1959 definition.

TABLE IVD

COMPARISON OF COMMERCIAL PARKS IN FOUR SOUTHEASTERN MISSOURI COUNTIES. 1950, 1954, AND 1959⁶

		Common	この時間の上の一方にあるのの		
	I. II. and II I. II. and III	E	NI A	V and VI	Total
1950	1.726	2,807	3,350	3,833	11,706
1954	2,230	2,855	2,730	1,500	9,315
1959	3,131	1,685	1,330	250	6,666
Percentage Change					
1950 to 1954	+30	¢1	-18	19-	-20
1954 to 1959	04	7	5	-65	-28
1950 to 1959	+82	9	3	-36=	-43

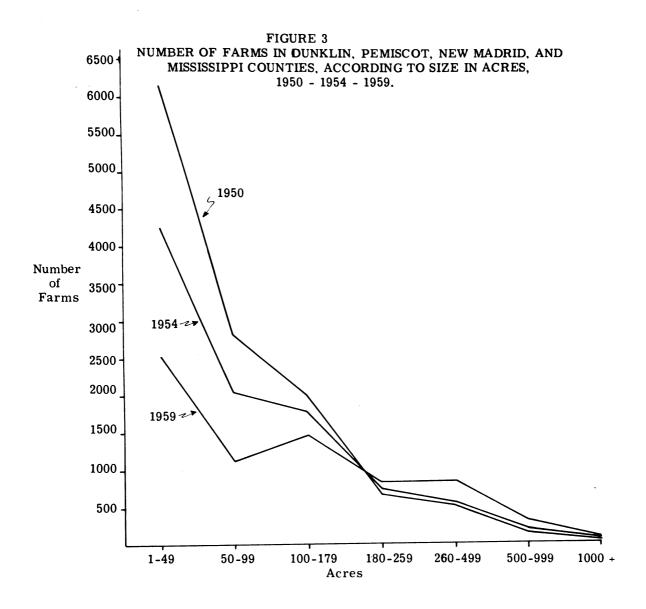
Data for 1959 Census of Agriculture, Preliminary Report, By Countles.

^bThe upper numbers above each column represent the commercial farm classification as defined in the 1950 and 1954 Census of Agriculture. The lower number represents the commercial farm classification as defined by the 1959 Census of Agriculture.

TABLE V

NUMBER OF FARME IN FOUR SOUTHEASTERN MISSOURI COUNTIES. ACCORDING TO SIZE

		60	County			20100	atese Ci	1050
Acres	Durk11n	Peniscot	New Madrid	Mississint.	Total	36	1950	is S
1950	1,136 748 534	1,889 1,429 1,429	2,041 1,333 822	1,054	6.120 4.247 2.503	R.	7	-29
50 - 99 1950 1954	1. 2006 2006	2000	763	551 521 526	2,843	-27	4	-59
100 - 179 1950 1954 1959	770 690 610	449	584 556	216 158	2.019 1.797 1.485	7	17-	-26
180 - 259								


6 +

+16

led
Contli
8
9
-
378
TAB

Acres Nunklin Semiscont New 250 - 499 250 - 499 95 114 172 1959 1959 216 114 172 173 1959 216 208 236 236 236 1959 11 48 173 177 1959 216 143 177 177 1959 216 208 236 236 1959 21 14 177 236 1959 21 21 143 1773 1959 21 23 23 23 1959 23 23 23 23 1959 32 33 173 173	Sent scot.			1950	1954	1950
834 661 834 661 835		Micalealn	Totel	1954	1959	1959
655 959 49 959 49 49 49 49		120	388	414	+46	+66
50	\$88	ଞ୍ଚଞ୍ଚଛ	298	+54	+62	Ş
222		288	\$8%	+14	*8*	56+

VOLUME La Carle LU. I IOT 1950 and 1954 ITOM 1954 Gensus of Agriculture, Freliminary Report, by 代の湯 •1].• pp. 68-71 Countles.

cont.

The number of farms with 199 acres or less of eropland harvested decreased from 1949 to 1959 (Table VI). The number harvesting 200 or more acres increased 82 per cent during the same period. These increases were in harmony with the changes needed as hand labor was replaced with machinery.

According to the 1954 Census of Agriculture, there were no irrigators in the four county area in 1949. In 1954, 108 farmers were reported to be irrigating 8,348 acres. The number had decreased to 88 in 1959 with 5,606 irrigated acres (Table VII).

The number of full owners and tenants decreased during the 1950-1959 period, while the number of part owners remained constant (Table VIII). Tenants decreased 4.137 or 47 per cent. Full owner operators went down 958 or 40 per cent. The per cent of tenancy in the area was 70.5 in 1950; it was 63.2 in 1959. This decline was the result of a reduction in the number of people employed in agriculture and use of hired labor where the work had previously been done by farm operators.

The next task deals with the characteristics of the farms where the data on irrigation were obtained. Particular attention is given to size of operating unit, tenure of operator. fixed investment in irrigation equipment.

TABLE VI

ACRES OF GROPLAND HARVESTED IN POUR SOUTHERSTERN MISSOURI COUNTIES, ACCORDING TO SIZE, 1949, 1954, AND 1959^B

County Year			1					
		ST-AT	20-29	20-49	20-99	AL-ANT	1002	STATISTICS STATISTICS
Dunk11n 1949		245	266	736	1,097	577	134	
1954		172	149	420	016	594	111	
1959	8	141	106	277	609	69	323	2,151
Pealsoot 1949		579	464	692	6969	423	198	3.243
	•	525	215	442	185	456	276	2.757
1959	32	254	129	196	20	437	387	1,815
New Madrid 1949		587	605	832	778	580	261	3.791
1954	1 37	426	413	471	593	540	318	2.648
1959		316	330	8	282	404	25	2.090
Wiseletppi 1949		450	217	542	285	255	215	1,333
		202	169	173	194	412	246	1.405
1959	8	195	8	10	105	621 .	202	1,039
Total 1949	619	1,961	1.552	-	2,856	1,835	828	
1954	124	1,426	1,046	1,506	2,278	1,804	1,017	9.531
1959	330	306	23	765	1,326		1,510	7,095
Percentago Change Prom								
949 - 1954	-26	-21	-33	-40	-25	en 1	÷	12-
1949 - 1959 1949 - 1959	2.94	24	40	22	45	59	49 88 88	415

TABLE VII

		mas
County	Number Reporting	Total Irrigated Acres
Dunklin		
1949	-	
1954	43	2,458
1959	47	2,831
Pem1soot		
1949		*
1954	20	2,086
1959	26	2,526
New Madrid		
1949	•	
1954	34 12	2,531
1959	12	982
Xississi ppi		
1949	-	
1954	11	1,273
1959		270
Total		
1949	•	•
1954	108	8,348
1959	80	6,606
Percentage Change		
1954 - 1959	-19	-51

NUMBER OF PARMS WITH IRRIGATED LAND IN FOUR SOUTHEASTERN MISSOURI COUNTIES, 1949, 1954, AND 1959⁶

⁶Data for 1949 and 1954 from 1954 Census of Agriculture, pp. 47-51. Data for 1959 from 1959 Census of Agriculture, Freliminary Report, By Countles.

		County	5			Percentage		hange
Tenure and Year	Dunklin	Perisot	Nedria	Kission!	Total	1956	1959-	020
Pull Owner								
O	363	293	517	329	2.402			
1954	746	449	426	256	1.877	252		
1959	626	133	213	221	1.444		-33	40
art Omer					•			
350	498	318	241	163	1.220			
1954	439	304	198	161	1.102	-10		NO NO
1959	440	374	227	170	1.220		+10	Change
いのとないの次	1	7	1 		•)
1950	٢Ų	0	Ø	0	30			
1954	4	9	S	9	6	22-		
1959	4	m	~	ŝ	19		-10	-37
All Tenants								
1950	1,946	2,429	3.091	1,378	8.743	·		
1954	1,416	2.035	2,236	1,012	6.699	100		
1959	17.	1,183	1.561	683	4.606		16-	141
Fer Cent of Tenancy								
1950	55.7	72.5	80.1	73.3	70.5			
1954	4.5	72.3	73.0	70.5	69.1	-1.4		
1959	52.1	8.2	74.1	3.5	63.2		-5.9	-1.3
Cash				4				
1950	104	0	21	11	22	Ĩ		
****	ñ,	10	5	4	121	20-		
202	ţ	•	ŧ	•	•		*	ŧ

TABLE VIII

		Compo-	5					alera a
tonure and Year	Dunkala	Perdent	Kededa	Kississis)	Total	1954	1959	1959
Starre Cash								
12.1	629	446	2	R	1,485	1		
1954	273	158	16	12	539	3		
1959	ť	*	•	1	1		1	•
Share and Cropper								
1950	1,017	1,820	2.567	1,272	6,676			
1954	1,064	1,77	2,026	895	5,843	-12		
1959	1		•	•			1	ŧ
Crop Share and								
roper								
1950	466	1.814	100	1,212				
1954	1,046	1,759	1,990	936	5,73	-13		
1959	•	•	1	•	1			1
Livestock Share								
	23	10	10	8	101			
1954	61	27	36	46	112	10 +		
1959		1	t	1	•			
Other	Ç	20	Ş	70	ŝ			
				Ra		YE		
		5	2	2	2	Ķ	1	
201		•	•	ľ	•		•	•

TABLE VIII (Continued)

57-61. Date for 1959 from 1959 Census of Agriculture - Preliminary Report, By Counties.

Data not available.

year irrigation began, and type of irrigation system used.

.

.

.

CHAPTER III

CHARACTERISTICS OF SAMPLE FARMS

I. SIZE OF PARMS

The average size of farm operated by the 65 farmers with irrigation equipment was 405 acres. The median was 342 while the model size was 216 acres. The 0.95 confidence interval for the average size in the universe was from 325 to 485 acres. This means that the interval has a 0.95 chance of including the universe mean or 95 times out of 100, samples drawn from this universe would lead to confidence intervals that would include the universe value.

The average size farm in 1959 for all farmers in the four county area was 164 acres (Table III, page 31). The average farm in the sample was 147 per cent larger than the average size of all farms. Since the fixed investment required for irrigation is large, it was expected that irrigators, in general, would operate larger than average farms.

The 65 farmers operated 25,498 total acres. When the sample total was projected to include 186 farmers in the population, it was estimated that 75,280 acres were operated by farmers with irrigation equipment. There are approximately 1,192,726 acres in farm land and 6,686 commercial farmers in the four counties. These facts indicate that farmers with irrigation equipment are a very small part of the total agricultural industry in the Delta Area. Only 6.3 per cent of the farm land and 2.8 per cent of the commercial farmers in 1959 were associated with irrigation.

Forty-six of the 65 farmers applied water to various crops in 1959. The hypothesis of independence between the size of farm and whether the farmer irrigated or did not irrigate was tested. A chi square of 4.2 was obtained, which suggested the probability of obtaining a larger chi equare was about .50. As a result, the hypothesis was not rejected.

Tenure of Parm Operator

The tenure pattern among the 65 farmers from whom data were obtained varied greatly from that of all farmers in the area. The 1959 Preliminary Consus of Agriculture showed the percentage of owners, part owners and tenants to be 20, 17, and 63 respectively. The proportion of owners and part owners among the farmers included in this analysis was 11 and 23 per cent greater than among all farmers, while the proportion of tenants was 34 per cent smaller. These facts indicate that owners and part owners are more likely to have irrigation equipment than tenants. Since the cost of irrigation equipment is relatively large, it is not surprising that tenants do not invest in it as

readily as owner operators.

The 0.95 confidence interval for the per cent of owners in the universe of irrigators was .22 to .40. This interval has a 0.95 chance of including the universe proportion of owners. The 0.95 confidence intervals for the per cent of part owners and tenants were .302 to .498 and .201 to .379, respectively.

Sixty-five, 65, and 84 per cent of the owners, part owners, and tomants respectively in the sample applied water to various crops in 1959. The hypothesis of independence between tenure status and whether the farmer irrigated or did not irrigate was tested. A chi square of 2,20 was obtained, which was not significant at the .05 probability level. A chi square of this magnitude suggests that the probability of obtaining a larger chi square was about .35. The hypothesis was not rejected.

Sixteen, 24, and 11 per cent of the owners, part owners, and tenants respectively were operating farms in the 360-479 acre group (Table IX). Sixty-three per cent of the owners and tenants and 36 per cent of the part owners were operating farms smaller than 360 acres. Forty per cent of the part owner farms were larger than 479 acres, but only 21 and 16 per cent of the owner and tenant farms were in this category. The part owners were operating farms larger than owners and tenants.

TABLE IX

		Tenu	re	
Sise of Farm (acres)	Owner Operator	Part Owner	Tenant	Total
1 - 119	3	1	1	5
120 - 239	4	3	8	15
240 - 359	5	5	3	13
360 - 479	3	6	2	11
480 - 599		4	2	6
600 - 719	1	4	1	6
720 - 839	-	2	1	3
840 - 1,059	2	-	-	2
1,060 - 1,279			1	1
Over 1,280	1	-	_=	1
Total	19	25	19	63

SIZE OF PARM WITH IRRIGATION EQUIPMENT IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE, 63 FARMERS, 1959

Year Irrigation Was Started

As shown in Table X, none of the farmers had irrigation systems before 1952, and only 8 purchased their equipment before 1954. The largest number of farmers started irrigating in 1954 when 28 per cent applied water to crops for the first time. "Wenty-five per cent started irrigating in 1956.

Apparently there is no particular relationship between size of farm and the year irrightion was started. In 1953, the largest proportion of farmers in the 240-359 acre class started to irrighte. The largest proportion of farmers in the 480-599, 1,060-1,279 and over 1,280 acre classes started in 1954. Since there was only 1 farm in the last two of these classes, the data have very little meaning. The largest proportion of farmers in the 1-119, 120-239, 360-479, 600-719, and 840-1,059 acre classes started after 1954. The hypothesis of independence between the year irrightion was started and whether the farmer irrighted or did not irrighte was tested. A ohl square of 2,97 was calculated, which was not significant at the .05 level. The hypothesis was not rejected.

Eighteen and three por cent of the 65 farmers obtained irrigation equipment in 1957 and 1958, respectively. These men have made limited use of their irrigation system due primarily to changes in the amount TABLE X

YEAR IRRIGATED STARTED IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TOTAL ACRES OPERATED, 65 FARMERS, 1959

Total 1951 Acres or Operated Before 1-119 120-239 240-359 -			6	Yoar I	Year Irrigation was Started	NAS	Started	egesz	
-119 20-239		952	1953	1954	1955 1	1956	1957	1958	Total
1			1	-1	2	1	2	1	5
		1	м	2	Ч	0	2	-	5
	X -	1-	-+ 1	~~		-	ma	- 1	ລະ
- 200			-	1-4	• •	• •	-		1.0
- 612-00		1	Ч	-	•	2	2	1	9
- 669-0		1	1	2	1	-		1	m
1,059 -			1	1	г	ч	1	1	N
1,279 -		•		ч	•	1	•	•	-
			•	ч			. 1	1	-
rotal -		-1	2	18	0	16ª	12	2	65

report total acres operated.

and distribution of rainfall. Over 100 inches of rain fall in 1957 in various areas of the Delta. The amount and distribution of precipitation in 1958 and 1959 permitted better than average crop yields without irrigation. As a result, the farmers obtaining irrigation systems in 1957 and 1958 have had a rather large investment tied up in equipment which has had limited use. When the 25 per cent who started in 1956 are added to the 21 per cent who started in 1957 and 1958, 46 per cent of the farmers have had limited opportunities to recover their fixed investment and have borne a relatively large annual fixed cost in depreciation, interest, and taxee. The amount of annual fixed costs will be discussed later in the chapter.

Furt owners, in general, started to irrigate and stopped buying irrigation equipment earlier than owners or tenants, as shown in Table XI. Twenty-three per cent of the part owners and 11 per cent of the tenants started to irrigate in 1952 and 1953, but none of the owners started to irrigate in 1952 and 1953. The majority of all tenure groups started between 1954 and 1956, when 75 per cent of the owners, 58 per cent of the part owners, and 68 per cent of the tenants began. Twenty-five per cent of the owners and 21 per cent of the tenants started in 1958. Nineteen per cent of the part owners started in 1958.

-	10 2 10	
L #	BLE	II

.

		Tenu	re	
Year	Owner Operator	Part Owner	Tenant	Total
1952	•	1	-	1
1953	-	5	2	7
1954	6	5	7	18
1955	4	4	1	9
1956	5	6	5	16
1957	4	5	3	12
1958	1	-	1	_2_
Total	20	26	19	65

YEAR IRRIGATION BEGAN IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE, 65 FARMERS, 1959 none started in 1958. In general, part owners appear to be more responsive to changing weather conditions than owners or temants.

Mejor Irrigated Groo

Gotton was the major irrighted crop in terms of total acros on all size farms except 1-119 acre class, as shown in Table XII. Gotton was the major irrighted drop on 29 of the 46 farms where water was applied in 1959. Corn was the major irrighted crop in the 1-119 acre class. Seven farmers applied water to more acres of corn than any other orop.

Soybeans, strawberrics, pasture, vegetables, wheat, and sweet corn were the other irrigated crops on 10 of the irrigating farms.

Cotton was the major crop irrigated on 46, 76, and 63 per cent of the owner, part owner, and tenant operated farme respectively (Table XIII). Corn was second in importance for 15 per cent of the owner operators, while soybeans was second in importance for an additional 15 per cent. The number of acres of each crop will be presented in another section of this chapter.

Source of Mater

Wells were the major source of irrigation water. Fifty of the 65 farms had only wells; three used drainage TABLE XII

MAJOR CROP IRRIGATED IN TERMS OF TOTAL ACRES IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TOTAL ACRES OPERATED, 46 IRRIGATORS, 1959

Acres Dersted	Corn	Cotton	Sevècens	berries	Pasture	berries Pasture Vezetables Other ^a	Other ^a	Total
1-119	24	10		101,			14	120
120-599 120-599		0-4M-		- • •	1 - 1	411		משמע
720-639		4-4	• •					h
1,059	1	1	•	1	•		•	1
1.279	•	ы	•	1	•		•	-
1,280	•	M	•	•	•	•		н
[otal	~	29	3	m	-	•	N	46

TABLE XIII

		Ten	n.e)
Najor Grop Irrigated	Owner Operator	Part Owner	Tenant	Total
Corn	2	1	4	7
Cotton	6	13	10	29
Soybeans	2	1	-	3
Strawberries	1	2	-	3
Pasture	1	-	-	1
Vegetables	-		1	1
Other ^a	1	_=	1	_2
Total	13	17	16	46

MAJOR CROP IRRIGATED IN TERMS OF TOTAL ACRES IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE, 46 IRRIGATORS, 1959

^aOne - sweet corn, one - wheat.

ditches only, and 12 used a combination of wells and drainage ditches, as shown in Table XIV.

Wells were the exclusive source of water on 60, 81, and 39 per cont of the owner, part owner, and tenant operated farms. An additional 35, 15, and 5 per cent respectively had drainage ditches in addition to wells available as a water source. The remainder considered drainage ditches as their exclusive source of water, as shown in Table XV.

Methods of Distributing Water

Sprinklers were the major method of distributing water on all size farms, as shown in Table XVI. Three different types were used. The most common was the conventional sprinkler system, which usually has 12 to 22 small sprinklers 60 to 90 feet apart on lateral lines. This type operates under low pump pressure, and applies water at a relatively slow rate. It is called the 60 X 60 or 90 X 90 system, meaning the sprinklers are 60 to 90 feet apart on the lateral lines and the entire line is moved 60 to 90 feet after the completion of irrigation from each set. Twenty-five of the 46 farmers used this mothod exclusively in 1959.

The second type of sprinkler system has two or three giant sprinklers per quater mile of lateral line. It uses high pump pressure, and applies water at a rapid

TABLE XIV

SOURCES OF WATER USED FOR IRRIGATION IN FOUR SOUTHEASTERN MISSOURI COUNTIES.

		Source of Water		
Totel Acres Operated	viells Only	Dreinsco Ditch Only	Combination - Well and Drainsce Ditch	Total
1-119 240-539 260-479 260-719 260-719 260-719 200-719 200-719 200-1,279 2000	- ผู้ปัจพทตาม เ		MUUMIMMIIM	กมมาวิจอยลาง
Totel	n N	R	12	959

"Includes two fareers who did not report total sores operated. "Includes one farmer who did not report total acres operated.

TABLE XV

SOURCES OF WATER USED FOR IRRIGATION IN FOUR SOUTHEASTERE MISSOURI COUNTIES, BY TYPE OF TENURE, 65 PARMERS, 1959

		Tonuro		
Source of Water	Owner Operator	Part Ovmer	Tonant	Total
Volla	12	21	17	50
Drainage Ditch	1	1	1	3
Combination Well and Drainage Ditch	_7	4	٢	12
Total	20	26	19	65

TABLE XVI

METHODS OF APPLYING MATER IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TOTAL ACRES OPERATED. 16 IERICATORS, 1959

					Total	I Acre	Acres Operated	sted			
Methods of Applying Water	18	22	226	22	28 65	32	28	1.059	1,060	Over 1.200	Total
Sprinkier Only: Pertable Pipe and					•						ž
Sprinkler Traffar Boom	- 1	:	~ 1	4 01	N 1	- 1	- •	1	1 -1		<u>s</u> w
Clant Sprinkler	ri	H	Ч		1	-	1	•	1		-
Surface Only: Cated Pipe	2	•	~	н	н	н		•	•	1	2
Ditches and Furrows		•	•	•	1	Pİ	1	•		8	-
Combination of Methods: Pertable Pipe and											
Sprinkler and a. Gated Pipe		1	•		1		1	1	1	1	-
b. Ditches and Purrows	1	i	-1			-1	•	1		1	~
c. Glant Sprinkler			•	н			1				M
d. Trailer Boom	8		•	1	1			1	•	-	-
Gated Sprinkler and a. Gated Pipe	'	-		1	1	1	1	٠	•	1	н
Total ⁶	-4	2	6	6	m	*	н	•	ч	Ч	\$

"Fineteen farmers did not irrigate in 1959. The types of Arrigation system system system availated of portable pipe and sprinklers, 3 gated pipe, 2 ditches and furrows, 1 trailer boom. Nore:

rate. Four farmers used this method exclusively, and one farmer used both of the above types.

The third type of sprinkler system has a large rotating boom mounted on a trailer. The system is operated under high pump pressure and has a high rate of application. Three farmers used this method exclusively, and one used both this method and the conventional portable pipe and sprinklers.

Eight farmers used surface irrigation exclusively. Two procedures of distribution were followed. Seven of the eight farmers used light portable gated pipes with gates or openings 36 to 40 inches apart to carry water to the rows where it was applied. One farmer used ditches and furrows exclusively. Water was transferred from the irrigation ditch to the furrows between the rows by siphon tubes.

Sincteen farmers with irrigation equipment did not irrigate in 1959. Thirteen of this group owned portable pipe and sprinklers; three had gated pipe; two had used ditches and furrows, and one, a trailer boom type of water distribution system.

The portable pipe and sprinkler system was the major type employed by all tenure groups, as shown in Table XVII. Forty-six, 47, and 69 per cent of the owners, part owners, and tenants, applying water in 1959, employed

TABLE XVII

METHODS	OF AP	PLYIN	9 I.F	GAT:	ION W	L TOH	INI	FOUR	
SOUTHEA	STERN	MISS	OURI	COUNT	FIES.	BY	TYPE	OF	
	the second se			RIGAT		the station made and			

	ann an	Tenure		an a
Methods of Applring Water	Ownor Operator ^a	Part Ownerb	Tenanto	Total
Sprinkler only:				
Portable pipe and				
sprinklor	6	8	11	25
Trailer boom		1	2	25
Giant sprinkler	3	1	•	4
Surface only:				
Gated pipe	3	3	1	7
Ditches and furrows	*	1		1
Combination of methods: Portable pipe and				
sprinkler and				
a. Gated pipe	-	1	-	1
b. Ditches and				
furrows	*	1		1
c. Giant				
oprinkler	1	-	1	2
d. Trailer boom		-	1	1
diant sprinkler and				
a. Gatod pipe		1		1
Total	13	17	16	46

ASeven owner operators did not irrigate in 1959. Six portable pipe and sprinkler systems, one ditch and furrow system.

^bNine part owners did not irrigate in 1959. Five portable pipe and sprinkler systems, three gated pipe systems and one trailer boom.

^CThree tenants did not irrigate in 1959. Two portable pipe and sprinkler systems, one ditch and furrow system. this type of system exclusively. Twenty-three, 12, and 13 per cent of the owners, part owners, and tenants respectively used trailer booms or giant sprinklers to apply water. Surface irrigation methods were employed by 23, 23, and six per cent of the owners, part owners, and tenants respectively. Six farmers used a combination of methods to apply water.

For purposes of analysis, the different types of irrigation systems were divided into three classifications. The first was the portable pipe and sprinkler system. Classification two was a combination of trailer booms and giant sprinklers. The two surface irrigation methods were combined for the third classification. The above classifications were used to test the hypothesis of independence between the tenure classification of the farm operators and the type of irrigation system used to distribute water in 1959. A chi square of 3.32 was obtained, which was not statistically significant at the.05 level. Therefore, the hypothesis was not rejected. The probability of obtaining a chi square larger than 3.32 was .51.

The chi square technique also was used to test the hypothesis of independence between use of irrigation in 1959 and the tenure of the farm operators. A chi square of 2.34 was calculated, which was not statistically significant at the .05 level. The probability of obtaining

a chi square larger than the one above was approximately .33.

Canacity of Irrigation System

The capacity of an irrigation system was defined as the total number of scree the farmer thought could be covered by the system to prevent a decreased erop yield from lack of moleture. Implicit in the definition is the fact that the total number of acres may be irrigated more than one time and/or different crops may be irrigated at different times of the growing senson.

The average capacity of all irrigation systems in the sample was 128 acres. The capacity of individual systems ranged from 11 to 510 acres per farm. The modal size was in the 60-99 acre class, as shown in Table XVIII.

The hypothesis of independence between capacity of irrigation system and total acres operated was tested. A chi square of 23.5 was obtained, which was not significant at the .05 level.

The 60-99 acre class was the modal acreage for all tenure classes, as shown in Table XIX. Forty-two, 50, and 37 per cent of the owners, part owners, and tenants were in this group. TABLE XVIII

CAPACITY OF IRRIGATION SYSTEMS IN FOUR SOUTHEASTEAN MISSOURI COUNTIES, IN TOTAL ACRES OPERATED. 65 PAREAUS, 1959

				12	OV IP105	Acres On	operated				
Capacity of Irrightion System (Acres)	10	339	339	369-	480-	-002	720-	840-	1,279	over 1,200	Total
19 or less Inviated	•	-	-	•	•	•	•			•	N
pid not irrigate	ŧ			٠	•	*	•	•	•	•	•
20 = 59 Invigated	• •	. 🕬	1-	• •					• •		~
222			•	ŀ	ł	k					I
60-99 Irrigated Did not irrigate	MH	44	NM	NN	Ma	m	NH				2.4
100 - 139 Irritated	М	*		м	. *	M	•	•		-	ø
pid not irrigate		М	ł	1	•		1		8		M
140 - 179 Invitation			N	CU	Ч	1	•	•	•	•	ŝ
Did not irrighte		*	M		H	~	•	CU		•	10
100 - 219		A	~	e	н	н		•			9
nid not irritate						*				*	
											6

TABLE XVIII (Continued)

Cayacity of Irrigation System 1- 10-200 - 259 Irrigated Irrigated 10-339 Irrigated Irrigated Irrigated	38			Same internationality of						
220 - 259 Invigated Did not invigate 300 - 339 Invigated Invigated		28	28	38	38	20	102	1.200	1.280	BE
Did not irrigate - 300 - 339 Irrigated Did not irrigate -	M	eri	ŝ	. 1	t	•			1	*
300 - 339 Irrigated Did not irrigate		*	1	1	1	1	1			
	\$		7	*	\$	*	•	1		M
	1	•	1	1		1	ł		1	ŧ
Over 340 Irvitated	1	١	1	\$. •	•		-	•	-
Did not irrigate	ģ .	•	ŧ	*				1	1	•
Total Irrigated 4 Did not irrigate 1	5°	00	0.0	mm	5	<i><u></u></i> <u></u> 	1 (4	et (A 1	961
		I								
"Includes one farmer		ald 1	St 12	2 140	oter.		who did not report total acres irrigated			
Dinoludes one farmer	44.1	ald r	iot rot	te	otal	Sores C	who did not report total acres operated or capacity	or capac	ity of	

TABLE XIX

CAPACITY OF IRRIGATION SYSTEMS IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE. 65 FARMERS. 1959

	ç	0	apacı	TO AL	capacity of irrigation system (Acres)	CION S	76tea	(ACTOS	-	CAN	
Tenure	Less	ຂໍ່ຮ	\$8	22	42	219-	228	200	200	100	Total
Owner-Operator Irrigated	-	N	in	4		-		٠	٠	٠	13
irrigate			m	н	2	•	•	•	•	•	9
Part-Owner Irrigated	Ч	н	Ø	н	3	m	Cu		•	•	17
lrrigate	•		5	•	Q	•	•	•	•	•	0
Tenant Irrigated	•	•	n	m	N	Q	Q	٠	~	Ч	16
und not irrigate	•		N	•	H		•	•	•	1	m
Total Irrigated	CV	m	70	Ø	10	9	4	1	-	н	46
Did not irrigate	*		12	-	ŝ		•		•	•	188

"One owner-operator did not irrigate and did not report capacity of system.

The mean capacity of the irrigation system for owner operators was 105 acres; 121 for part owners, and 160 for tenants. The average capacity of the tenant operated farms was 52 and 32 per cent larger than the systems on the farms of owners and part owners respectively.

The differences between the mean capacity of irrigation systems was tested for the three tenure classes. The null hypothesis, that $\overline{X}_1^* - \overline{X}_2^* = 0$, was used. The standard deviations of the populations were not known, but were assumed to be equal. A "t" value of -.79 was obtained, when the difference between the system capacity of owners and part owners was tested. A "t" value of 2,021 was necessary to reject the null hypothesis. Consequently, the null hypothesis was not rejected. Values for "t" of -1.812 and 1.47 were obtained when the differences between owners and tenants and part owners were tested. The null hypotheses were not rejected in either test.

The hypothesis of independence between the capacity of the irrigation system and whether the farmer irrigated or did not irrigate in 1959 was tested. A chi square of 5.29 was obtained. The chi square at the .05 level was 7.81. As a result, the hypothesis was not rejected. The probability of obtaining a chi square larger than 5.29 was .17.

Gredit Characteristics of Irrigation Equipment Loans

Twenty-mine of the 65 farmers had purchased irrigation equipment on oredit, as shown in Table XX. The average amount borrowed was \$5,291, but the amount per farm ranged from \$1,500 to \$15,550. Credit was obtained from irrigation equipment dealers, commercial banks, Farmers Home Administration, Production Credit Associations, Federal Land Bank Associations and insurance companies. Commercial banks and irrigation equipment dealers were the major sources of funds, in terms of number of loans. The average interest rate was 5.6 per cent, with a range from 4.0 to 8.0 per cent. The average length of the loan was 9.5 years, with a range from 1 to 30 years. Most of the loans were executed in 1954 and 1956.

The proportion of irrigators who used credit was used to establish confidence limits for the population. The 0.95 confidence interval was from .325 to .567. The universe proportion has a .95 chance of being within this interval.

The loans obtained by tenants were larger, had a higher rate of interest, and a shorter average length than those obtained by owners and part owners. The average amount borrowed by tenants was \$6,348, the interest rate averaged 6.28 per cent, and the term, 4.6 years. The sources were commercial banks and irrigation equipment

TABLE XX

AMOURT BORROWED, SOURCE, INTEREGT RATE, AND LENGTH OF LOAN OF CREDIT USED TO PURCHASE IRRIGATION FOULPMENT IN FOUR SOUTHEASTERN MISSOURI COUNTIES. BY TYPE OF TENURE, 29 PARMERS, 1953-1953

		Cenura		
Characteristic of Loan	Owner Operator	Part Ovner	Tenant	Total
Sumber of farmers	8	14		8
Average amount borrowed	\$4,500	§ 4,550	\$ 6, 343ª	\$ 5,291
Bange	\$2.500- \$7.700	\$ 1.500- \$10,000	\$15,550 \$15,550	\$15,550-
:00100				
Irrightion Dealer	-1	4	5	0
Commercial Bank	7	5	-4	n
Farzers Hone				
Administration	Q	Q		4
Production Gredit				
Assoclation	•	-		-
Insurance Company	5	4	•	4
Pederal Land Bank	1	-	•	CV
Average Interest Rate	5.0	5.58	6.28	5*59
RADEO	4.0-	\$. \$	5.0-	5.4
	7.0	8.0	3.0	8.0
Average Length of Loan	15.1	8.8	4.6	9.5
Range (Years)	22	2-2	316	2-3

TABLE XX (Continued)

Characteristics of	Saner	Tentre		
Loen	Operator	Ovner	Tonant	Total
Year Borroved:				
1953		CU.		
1954	et	m	m	a
1955	Q	Q	-1	
1956	N	4	~	
1957	N	m	-1	0
1958	M		•	

"Does not include two loans obtained by the land owners to purchase irrigation equipment.

dealers.

Owner operators obtained the smallest loans and had lower annual costs of financing the credit. The average amount borrowed was 04,500, and the interest rate 5.0 per cent. The average length of loan was 15.1 years. Fifty per cent of the loans were obtained from insurance companies and the Federal Land Bank with farm land given as security. Availability of land for security was the primary reason for the superior credit terms obtained by owners as compared to tenants.

The average amount borrowed by part owners was \$4,550, and the term, 3.8 years. The average rate of interest was 5.58 per cent, which is between the rates for the other tenure groups. The majority of part owners obtained loans from commercial banks and irrigation equipment dealers; however, the longer term, lower rate loans from insurance companies and the Federal Land Bank lowered the average rate of interest and increased the average time for repayment.

Solla

Supplemental water was applied to a wide range of soils in 1959. As noted in Chapter II, alluvial soils vary greatly in physical properties. Consequently, it is difficult to make a general classification of soil types where water was applied. The following procedure was used to determine the type of soil on the 65 farms. The fields, which were irrigated or could have been irrigated, were plotted on a county highway map. Soil Conservation personnel inspected the maps and compared them to detailed county soil maps to determine the soil characteristics. The soils were divided into four groups for analysis: Those which were predominately sandy, silt loam, clay loam, and combinations of the first three, as shown in Table XXI.

Thirty-five, 23, 14, and 28 per cent of the farm operators reported their type of soil as clay loam, sandy, silt loam, and combinations respectively.

The hypothesis of independence between type of tenure and type of soils was tested. A chi square of 8.31 was obtained, which was not statistically significant at the .05 level. The hypothesis was not rejected. The probability of obtaining a chi square larger than 8.31 was .22.

A chi square statistical test was used to determine if there was a significant difference between type of soil and whether or not the farmer irrigated his crops in 1959. A value of 5.18 was obtained, which was not statistically significant at the .05 level. The result indicates that the type of soil was not an important reason either for irrigating or not irrigating in 1959.

IXX TIEVL

SOIL TYPES IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE, 65 PARMERS, 1959

			A	Type of Soll	Combination:	tton:		
	peaz	Predestantely:		Sandy	Sendy	SALE	Sudy	
Type of Soil	Sandy	Silt	Clay	Silt Loss	193	Clay Clay	Clay Loan	Total
Owner-Operator Irrigated	ŝ	ŝ	'n	•	•	•	•	2
lrrigate		~	ŝ		•	•	•	-
Part-Ouner Irrigated	ŝ	Cu	ŝ	-	n	el	•	ħ
Did not irrigate		N	~	г	¢,	-1	-	Q
Tenant Irrigated	*	н	ŝ	4	-	rl		16
lrrigate	•	H	rd		•	н		m
Total Irrigated	M	5	5	ø	4	ŝ		46
Imigate	•	4	0	et	Q	N	T	19

Changes in Methods of Distributing Water

Seventeen or 26 per cent of the 65 farmers have changed their method of distributing water since their original investment in equipment was made (Table XXII). The sample statistic, .2615, was considered to be the best estimate of the proportion in the population which had changed methods of applying water. The 0.95 confidence interval was .158 to .372. Ninety-five per cent originally had purchased portable pipe and sprinkler systems. One had changed from using gated pipe to sprinklers, because the land had not been graded and distribution of the water over the field was unsatisfactory. Sine changed from the conventional portable pipe and sprinkler method either to the trailer boom or giant sprinkler method. The other eight changed to surface irrigation. Seven of these had changed to gated pipe and one to ditches and furrows.

The primary reason for the change was the labor requirements for the portable pipe and sprinkler system. Eighty-sight per cent of the farmers had made the change to reduce labor requirements or to be able to hire personnel to work with the irrigation equipment.

The hypothesis of independence between type of tenure and whether the farmer had changed or did not change methods of applying water was tested. A chi square of .68 was obtained which was not significant at the .05

TABLE XXII

CHANGE IN TYPE OF IRRIGATION SYSTEMS IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE, 17 FARMERS, 1959

		Penure		
Type of Irrigation System	Owner Operator	Part Owner	Tenant	Total
Changed from:				
Portable pipe and				
sprinklor	4	7	5	16
Oatod pipe		1		1
Total	4	8	5	170
Changed to:				
Trailor boom		1	3	4
Giant sprinkler	3	1	2	5
Gated pipe	1	6	***	7
Ditch and furrow			1	i
Total	4	<u>_</u>	5	17
Reasons for Changing Type of Irrigation System:		÷		
Loss labor required	4	2	4	10
Could not hire labor				
for portable pipe and				
sprinkler	-	4	1	5
Better drainage	-	1	***	11
Land not levelenough				
for gated pipe		1		1
Total	4	8	5	17

^aForty-eight of 65 farmers have not changed type of system.

level. The hypothesis was not rejected. In addition, the relationship between type of tenure and type of original irrigation system was tested. A chi square of .98 was obtained which was not statistically significant.

The relationship between type of tenure and the new method of distributing water was tested. A chi squre of 4.78 was obtained, which was not statistically significant at the .05 level. The probability of obtaining a chi square larger than 4.78 was .093, which is relatively close to the zone of rejection.

II. FIXED INVESTMENT IN IRRIGATION SQUIPMENT

The average fixed investment in irrigation equipment was \$7,122 per farm for the 65 farmers. This amount was considered the best estimate of the population value. The 0.95 confidence interval was from \$6,282 to \$8,012. This interval has a 0.95 chance of including the value of the universe mean.

As shown previously, the average capacity of the irrigation systems was 128 acres. Therefore, the average fixed investment per capacity acre was \$56. The modal class of total fixed investment was \$3,000 to \$5,999. Twenty-six of the 65 farmers were in this group, as shown in Table XXIII.

TIIXX STRFI

,

FIXED INVESTMENT IN INNIGATION EQUINMENT IN POUR SOUTHERSTERN MISSOURI COUNTIES.

				To	Total Acres Operated	res Op	ersted				
Fired Inventment (Dollars)	19	120-	240-	360-	480-	300	720-	340-	1.279	0ver 1.230	Total
1.000 - 2.999 Irrigated Did not irrigate	- 1	• •	-11		1-	••	1-1	• •			~~~
3,000 - 5,999 Irrigated Did not irrigate	1-1	50	mm	ev eu	• • •	5	1	14		••	12
6,000 - 8,999 Irrigated Did not irrigate	m i	91	- 1	eni 1	N H	01 M	- 1	1-1		• •	yn T
9,000 - 11,999 Irrigated Did not irrigate		• •	01	m (1-		• •			• •	10.00
12,000 - 14,999 Irrigated Did not irrigate			Q 1	CU 8						-	11
15.000 - 17.999 Irrigated Did not irrigate	••	-		- 1	• •				-		m 1

TABLE XXIII (Continued)

Total 1961 04er 1.270 205 105 105 1 (1) Total Acres Operated 220 #4 QU 88 480-\$2 C> (1) 205 123ne 13 42 14 18.000 - 20.999 Irrigated Did not irrigate Did not irrigate Fixed Investment Irrigated Dollars) Total

"Includes two farmers who did not report total acres operated.

The relationship between fixed investment in irrigation equipment and total acres operated was analyzed. When the hypothesis of independence was tested, a chi square of 24.98 was obtained, which was not significant at the .05 probability level. A chi square of this magnitude suggests a probability of .21 of obtaining a larger chi square. The hypothesis was not rejected.

The relationship between fixed investment in irrigation per farm and whother the farmer irrigated or did not irrigate in 1959 was not statistically significant. When the hypothesis of independence was tested, a chi square of 7.32 was obtained. The probability of obtaining a larger chi square was about .12, which is relatively close to the some of rejection.

Other things being equal, the assumption can be made that farmers with large investment in irrigation equipment will attempt to recover their fixed investment at a faster rate than farmers with smaller investments. In other words, farmers with larger investments are more responsive to irrigation opportunities than farmers with small investments. As shown above, the data do not support this assumption statistically.

The 65 farmers had made investments in irrigation equipment which ranged from \$1,900 to \$19,000 per farm (Table XXIV). Porty per cent of the 65 had investments

		State of the state						
lenure	000	3.000-	F1xed In 6,000- 0,000-	Investment - 9,000- 11,200	(Dollare 12.000- 14.999	15,000-	10,000-	ł
nor-Operator	м	Ø	*	•	*	•	•	2
lrrighte	1	0	н		1	•	•	2
Fart Owner Irrigated	м	n	in	n	m	•	•	L.
und not irrigate	M	'n	H	N	•	•		0
Tenant	•	4	v	М	н	m	-	316
lirigate	e	M	-	•			1	n
Total Irrigated	¢,	ŝ	5	in	IN	m	м	40
Uld not	0	5	m	~	1	•	•	9

ATXX STRVI

within the \$3,000 to \$5,999 class. Sixty, 38, and 26 per cent of the owners, part owners, and tenants respectively were in this class. However, 35, 54, and 68 per cent of the owners, part owners, and tenants respectively had investments of \$6,000 or more.

The relationship between the fixed investment in irrigation equipment and the tenure of operators was analyzed. When the hypothesis of independence was tested, a chi square of 10.0 was obtained, which was not statistically significant at the .05 probability level. The hypothesis was not rejected. The probability of obtaining a chi square larger than 10.0 was approximately .27.

As shown in Table XXV, the average investment in irrigation equipment per farm was \$7,122. The cost of wells, pumps, power units, and distribution systems were classed as fixed investment. The average investment per farm in the distribution system was \$3,671 or 52 per cent of the total amount. The average investment per farm in wells was \$1,379 or 19 per cent. Cost of power units averaged 15 per cent or \$1,094 per farm. Investments in pumps averaged \$978 or 14 per cent of the total.

The investment on farms operated by tenants averaged \$3,817, which was the largest of the tenure groups (Table XXV). Distribution systems, wells, power units, and pumps

TABLE XXV

FIXED INVESTMENT IN INRIGATION WELLS, PUMPS, POWER UNITS, AND DISTRIBUTION SYSTEMS, IN FOUR SOUTHEASTERN MISSOURI COUNTIES, BY TYPE OF TENURE, 65 FARMERS, 1959

·······			Ten	ure				
	Own	and the second sec	ľa:					
Type of Equipmont	000	mator_	ON	302	20	dan k	10	tel_
Welle:								
Number of wells		34		50	80	38		155
Average cost per well	\$	667	\$	683	Ø	364	-	735
Avorage investment					**	200 - 200-200		
por fara		,134	14	,313	4) 1	,727	4 L	,379
Per cent of total		5.0.		* ^		-		**
investment		19		19		20		19
Puape:								
again 10 redaul		25		40		28		93 684
Average coat per pump	*	740	0	643	\$	693		684
Average investment			#2.	1 m 1 m	134 min			-
per fara	10	925	\$	983	91	,201	ş	978
Per cent of total				-		-		14
investment		16		15		12		TA
Power Units:3								
Number of power units		24		33		27		84
Average cost per								
power unit	¢	729	3	885	-	904	蓉	840
Average investment	10		10. 10.				14	
per fare	\$	375	01	,123	10	,285	A T	,094
For cont of total		-		-		-		** *
investment		15		16		15		1
Distribution Systems:								
Number of systems		20		26		19		6
Average investment				8 ante - m				
per fara	72	1,920		,435		,784		,671
Per cent of total								-
investment		50		50		54		5
Total Investment	119	.854	\$6	.859	88	1,817	17	,120

³Excludes power unit investment on 2 farms using the farm tractor as a source of power. accounted for 54, 20, 15, and 12 per cent, respectively of the average investment per farm.

The fixed investment in irrigation equipment on the farms of part owners averaged \$6,859. The cost of the distribution system accounted for 50 per cent of the total. The investment in wells was second with 19 per cent. Power units and pumps accounted for 16 and 15 per cent respectively.

The fixed investment of owner operators averaged \$5,854 per farm, which was the smallest of the three tenure groups. The proportion of the total in the four items was similar to the part owners (Table XXV).

Types of Irrigation Systems

The characteristics of the five different types of irrigation systems have been explained in an earlier section of this chapter. As shown in Table XXVI, there was a wide variation in the average fixed investment. Sprinkler systems cost more than surface systems, but require less expenditure for land leveling.

<u>Trailer boos</u> - The average fixed investment for the five farmers with trailer boom systems was \$13,200, which was the largest among the five types of systems. Wells, pumps, power units, and distribution systems made up 19, 13, 15, and 53 per cent, respectively of the total

		Sprather lov		2015	Survitates	
Type of Equipment	frailer Boom	Glant Sprinkler	Portable Fire and Small Sprinkler	lated Pine	D1 tehes and Furrous	Potal
Wells: Number of wells Average cost per well		cres é	\$97 \$	38	457	36
Average investment	\$2,430	\$1,934	\$1,232	01,200	\$1,033	\$1°,579
Per cent of total Investment	19	8	2	ŝ	R	2
Number of pumpe Average cost per pump	98	\$ 700	25	\$ 6 6 7 6	\$ 350 *	*
Average investment	1.780	1,240	Re So	§ 9955	\$1,133	016
Turon 10 theory	57	14	12	21	8	2
	8	0	43	*	4	24
Average cost per power unit	\$1,020	\$ 372	\$ 756=	§ 343	\$1 , 125	\$ 040
Der fars	\$2,040	\$1,460	\$ 336 \$	\$1,073	\$1.500	\$1.094
	5	27	2	19	8	8651

TAXX SAMA

「「「「「「「「」」」

連接ないたね

TABLE XXVI (Continued)

				Sur	Bee -	
Type of Equipment	Trailor Boon	01ant Surlntter	Pipe and Smilther	Cated 7106	Di tohes Parte Furrown	Tetel
Distribution Systems: Number of systems	N	ŝ	4	3	M	8
Average Investment	\$6,970	091.48	\$3,641	\$2,291	**	119 . Ka
investment	ŝ	47	25	45	11	8
Total Investment	\$13,200	\$3,844	\$6,310	5.51 8	\$4,100	\$7,122

Azzeludes power unit on two farms using farm tractor as a source of power.

investment per farm. The average amount invested in the distribution system, 86,970, was larger than the total investment for portable pipe and sprinkler, gated pipe, and ditches and furrows.

<u>Siant sprinkler</u> -- The five farmers with giant sprinkler systems had average investments of \$3,844 per farm. The average cost per well, pump, power unit, and distribution system was smaller than for the same items for the trailer boom system. Twenty-two, 14, 17, and 47 per cent of the total investment was in wells, pumps, power units, and distribution systems, respectively.

Fortable nine and sprinkler -- Forty-one farmers had an average of \$6,810 per farm invested in portable pipe and sprinkler systems. The total invested per well, pump, power unit, and distribution system was smaller for portable pipe and sprinkler systems than for trailer boom and giant sprinkler systems. The per cent of the total investment per farm for wells, pumps, and power units was smaller for portable pipe and sprinkler systems than for the other types. The distribution system investment for portable pipe and sprinkler systems was 57 per cent of the total, which was higher than for any other type.

Surface irrigation-sated pipe -- The average investment per farm for the 11 farmers with gated pipe was

35,518. The average cost per well and pump was the lowest of all systems. The average cost per power unit was lower than in other systems, except those that used portable pipe and sprinklers. The need for high capacity pumps was reduced, since the water was not distributed under pressure. The investment in the distribution system averaged 42 per cent of the total investment per farm.

Surface irrigation-ditches and furrows -- The per cent of the total investment that was in wells, pumps, and power units was higher for this type of system than for any other type. Only 11 per cent of the total was invested in the distribution system. The cost of siphon tubes was small when compared to the cost of pipes and sprinklers. Water was pumped under open discharge directly into the irrigation ditch, in most cases. The water was transferred from the irrigation ditch to the furrows or rows by means of siphon tubes. The three farmers who used this system had an average investment per farm of §4,100.

<u>Statistical tests</u> -- The null hypothesis of no difference between the types of irrigation systems and the average investment per farm was tested. As stated previously, the five different types were divided into three categories, due to the small number in certain systems. Category I was the portable pipe and sprinkler

systems exclusively. Trailer boom and giant sprinklers were combined to form Category II. The two methods of surface irrigation were combined as Category III. With this arrangement, the average investment per farm was \$6,810 for Category I, \$11,022, Category II, and \$5,252 for Category III.

The difference between the means of the categories was tosted statistically. The "t" statistic was used. The standard deviations were unknown, but assumed to be equal. A "t" value of 1.59 was obtained when the difference between the means of Category I and III was tested. The "t" value was not statistically significant at the .05 level. As a result, the null hypothesis was not rejected. The "t" values, when the differences between the means of Category I and II and Category II and III were tested, were -3.38 and -4.34 respectively. The former was statistically significant at the .Ol level, and the latter at the .001 level. The null hypotheses were rejected in both tests. There was a significant difference between the average investment in irrigation equipment on Category II farms and Category I and III farms.

In order to obtain additional insight into the reasons for a significant difference between the means, the average cost per well, pump, power unit, and

distribution system was determined. By reducing the analysis of costs to a per well, pump, and power unit basis, the effects of the larger capacity systems were partially eliminated. The larger capacity effect was not removed, however, by using the cost per distribution system, because the larger systems of all categories directly reflected the increased quantity of main and lateral lines or gated pipe.

The average cost per well was \$850 for Category I: \$393, Category II, and \$881 for Category III systems. The differences between the means were tested, but were not statistically significant. The null hypotheses were not rejected.

The average cost per pump was \$639, \$790, and \$771 for Category I, II, and III systems respectively. The differences between the means were not statistically significant.

Category I, II, and III systems had an average cost per power unit of \$848, \$1,027, and \$1,042 respectively. The differences between the means were not statistically significant.

The average cost per distribution system was \$3,842, \$5,560, and \$1,893 for Category I, II, and III systems respectively. A "t" value of -2.44 was calculated when the difference between the means of Category I and II were

tested. The "t" value was statistically significant at the .02 probability level. The null hypothesis was rejected. There was a significant difference in the average cost of distribution equipment for Category I and II systems.

A "t" value of 3.46 was calculated when the difference between the means of Category I and III were tested, which was statistically significant at the .01 probability level. The null hypothesis was rejected.

The null hypothesis also was rejected, when the difference between the means of Category II and III systems was tested. A "t" value of 4.19 was computed, which was statistically significant at the .001 probability level.

<u>Capacity of irrigation system</u> -- The average capacity of the portable pipe and sprinkler systems was 118 acres. The range was from 11 to 219 acres. The average investment in irrigation equipment ranged from \$3,600 for the 19 or less group to \$10,660 for the 180-219 acres group, as shown in Table XXVII. The average investment per acre of irrigation capacity varied from \$360 for the 19 or less group to \$52 for the 140-179 acre group.

The five farms with giant sprinkler systems had an average capacity of 144 acres. The range was from 60 to 259 acres, as shown in Table XXVIII. The average

TABLE XXVII

FINED INVESTMENT IN PORTABLE PIPE AND SPRINKLER IRRIGATION SYSTEMS IN POUR SOUTHEASTERN MISSOURI COUNTIES, ACCORDING TO CAPACITY OF IRRIGATION SYSTEM IN ACRES PER YEAR, 39 PARMERS, 1959

				S	Capacity of (Acre	Acres		(tion	System	8		
Type of Koulphent	23	19 or Lean	88	.	88	.	äĦ	120	22	-041	32	180-
Wells: Number of wells		Q		n		23		3		4		5
well	0	80	-	603	\$	55	-	765	1	936		892
Average investment		80		633	*0	666	8	1,200	60	\$1.4TL		2,320
Lor cent of total		14		18		17		13		13		5
Pumpet of pumpe		N		m		H		0		~		1
Average cost per	**	8	41%	400		632	10 M	733	10	725		627
Average investment	•	20	*	400		412	-	55	12	88	-	1,330
ler cent of total		14		1		13		14		2		13
Power Units: ⁸ Rumber of power units		H		\$		16		0		2		6

TABLE XXVII (Continued)

•

88 5 t 5.780 \$10,660 1,180 T 180-010 *****30 -1 25 3 \$**4**,942 3 \$1,036 \$1,036 \$8, 327 126 Capacity of Irrigation System (Acres For Year) 构融 55 8 54 \$3,514 \$6.557 787 100-661 18.E# 动物 书门 306 360 5 5 5 \$3,113 \$5,600 L \$8 nin sin 8 8 8 \$00 \$3,600 32,167 11 88 -小物 13 8 \$3,600 38 8 8 \$2,250 10 01 の初め、 *()* Average investment Average investment Distribution System: Per cent of total Number of systems Per cent of total Average per acre Average cost per Total Investments Type of Soulpment. **invest**ment power unit investment. investment Dor farm

^aExcludes power unit investment on 2 farms using farm tractors as a source . TONOC. 10

TABLE XXVIII

FIXED INVESTMENT IN TRAILER BOOM AND GIANT SPRINKLER IRRIGATION SYSTEMS IN FOUR SOUTHEASTERN MISSOURI COUNTIES, ACCORDING TO CAPACITY OF IRRIGATION SYSTEM IN ACRES PER YEAR, IO PARMERS, 1959

			3		Capacity of Irrigation (Acres Por Year	L' so	rigation Per Year		Systems)				
	1		Clant Sprinkler	TIN	nkler.		1		1	٣	शाव	Trailer Been	
Type of Soutpuent	60-99	8	100-139	197	160-219	8	220-259	IN-ON	IW	8	220-259	300-339	June of
Mells: Number of wells		CV			4		2		N		5	N	
Average cost per well	-	250	\$ 28	-	\$ 1,025	-	E	**	650	-	88	8	\$ 2,550
per fars	-	750	\$2,900	40	4,100	-	1,422	0 I.	1,300	N 807	2,200	\$ 1,600	\$ 5,100
for cent of votal		2	35		3		2		18		316	2	R
Pumpet of pumps	j. Ne	N	-1		67		N		н		5	¢1	
Average cost per pump	-	250	8	-	\$ 1,033	杨子	89	*	88	会争	640	\$ 1,300	\$ 1,000
per farm	•	750	8	**	3,100	-	1,200		88	-1	1,600	2,600	2,000
trer case of cover		ล	5		8		9		Ħ		2	11	21
Power Units: Rumber of power units		N	Ч		m		~		н		m	н	e
Average cost per power unit	-	202	\$1,700	-	80	1	8	68	806	-	070	\$ 1,800	\$ 1,100
per fam	•	8	1,700		2,400	-	1,800		8	N	2,100	1,600	3,300

96

I.

TABLE XXVIII (Continued)

		3		Aspacity of Litigation Systems (Acres Per Year)	ar)		1	
		Glant 3	Clant Sprinkler			Trailer Boom	F Boos	340 or
Type of Equipment	66-09	601-00	160-219	220-259	60-99 100-139 180-219 220-259 140-147 220-259 300-339 Over	230-259	300-339	Over
Per cent of total investment	2	8	8	2	2	78	ន	ត
Matribution System: Number of systems	8	H	F	м	-	N	ч	H
Average invatment	\$ 3,700	\$3,300	\$ 2,400	\$ 7,700	\$ 3,700 \$3,300 \$ 2,400 \$ 7,700 \$ 4,400 \$ 7,600 \$ 9,500 \$ 5,700	\$ 7,600	\$ 9,500	\$ 5,700
Per cent of total	3	3	8	\$	28	*	19	R
Total Investment	\$ 5,900	\$\$°,300	\$12,000	21'21	\$ 5,900 \$8,300 \$12,000 \$12,122 \$77,400 \$13,500 \$15,500 \$16,100	\$13,500	\$15,500	001,815
Average per aure	74	69	3	8	3	25	PT	\$5

^dDrainage ditch was used as source of irrigation water also.

investment in irrigation equipment ranged from \$5,900 for the 60-99 acre group to \$12,122 for the 220-259 acre group. The small number of cases within each class limited the importance of the data for purposes of projection.

The trailer boom systems had an average capacity of 290 acres, which was the largest of the five systems. The range was from 140 to 510 acres. The limited number of cases, particularly in the large capacity systems, had a large effect on the data. The average investment in irrigation equipment ranged from \$7,400 to \$16,100. The average investment per capacity acre was practically constant, ranging from \$45 to \$56, with a mean of \$46.

The capacity of the irrigation systems on the three farms with ditches and furrows where siphon tubes were used to distribute the water was different for each farm. Essentially, the analysis required a case study of the three different capacities. The cost of grading land was not included in the total investment for the two surface type systems. The total investment for the 60-99, 100-139, and 140-179 acres was \$2,500, \$4,600, and \$5,200 respectively, as shown in Table XXIX. The average investment per acre was \$31, \$38, and \$32 for the 60-99, 100-139, and 140-179 acres groups respectively.

The average capacity of the irrigation systems of the 11 farmers with gated pipe was 87 acres. Ten of the 11

TABLE XXIX

.

PIXED INVESTMENT IN SURFACE INFIGATION SYSTEMS IN FOUR SOUTHEASTERN MISSOURI COUNTIES, ACCORDING TO CAPACITY OF INFIGATION SYSTEM IN ACRES PER YEAR, 14 PARKERS, 1959

		ž		(Acres Por Year	ur) ete	2	
Type of Soutpeent	ାଷ		130	140	38	140	
Wells: Number of wells Average cost per well	44	10	\$ 7001	\$1.700	តផ្ល *	-	233
Average investment	动	200	8	\$1,700	\$1.220	e>	1,000
Lor cent of total		58	15	2	đ.		30
Tumps: Rumber of pumps Average cost per pump	dh	3005	\$1,600	1,200 1,200	\$ 524 \$	0	3008
per fars	-	8	\$ 1 ,600	\$1,200	\$ 830	412 412	• 600
Ler cont of could		5	32	8	17		16
Fower Units: Number of power units		Q	-	H	12		Cu
Average cost per power unit		\$	01,500	\$2,100	825	•	. 950

99

TABLE XXIX (Continued)

5 S S \$10°00 61 \$ 1,900 \$ 5.58 TD **老**() asirty-two acres were graded with an average cost of \$13 per acre. ated \$5,0700 Capacity of Irrigation System (Acres Per Year) 016 207 3 5 \$1,970 8 8 00 e : : : : C. 2 88 \$5,200 \$2,100 04 E 2 -Ditches and Furrows \$4.600^b \$1,500 900 8 1 5 3 00 er faithe 100 \$2**,5**00 5 CV T 000 200 88 1 1 Distribution Systems: Average Investment Average investment Rumber of systems Per cent of total Fer cent of total Average por acre True of Equipment Total Investment investaent Investment Investment

Done hundred and twenty-flye acros were graded with an average cost of \$104 per acre.

Creenty sores graded with an average cost of \$20 per sore.

had systems with capacities in the 60-99 acre range. The total investment in equipment averaged \$5,070 for the 60-99 acre group, and \$10,000 for the 140-179 acre group. The average investment per acre was \$63 and \$62, as shown in Table XXIX.

Based on the above analysis, it appeared that the total investment and the average investment per acre were approximately twice as much for the gated pipe systems as for the ditch and furrow systems, when the same number of acres could be irrigated.

The same three categories were used to test the difference between the average capacity for different types of irrigation systems, as was used in the previous section. Category I, II, and III systems had average capacities of 118, 217, and 93 acres respectively.

The null hypothesis of no difference between the type of irrigation system and average capacity per farm was tested. A "t" value of 1.33 was obtained when differences between the means of Category I and III were tested. The "t" value was not statistically significant at the .05 probability level. Therefore, the null hypothesis was not rejected.

The "t" values, when the differences between the means of Category I and II and Category II and III was tested, were -3.30 and -3.35 respectively. Both "t" values were statistically significant at the .01 probability level. The null hypotheses were rejected in both tests. There was a significant difference between the average capacity per farm with a Category II system and Category I and III systems.

<u>Irrigated or did not irrigate in 1959</u> -- The relationship between the type of irrigation system and whether the operator used the equipment or did not irrigate in 1959 was tested. A chi square of 1.73 was obtained, which was not statistically significant at the .05 probability level. The hypothesis was not rejected. The probability of obtaining a chi square larger than 1.73 was .44.

III. IRRIGATION IN 1959

Mumber of Farmers Applying Vater

Forty-six of the 65 farmers from whom data were obtained applied water to crops in 1959. This number was .7077 of the number interviewed. The proportion of farmers who did not irrigate was designated as "q," which was 1 - p or .2923. The sample statistic, "p," was considered the best estimate of the proportion of irrigating farmers in the population. The 0.95 confidence interval for the population proportion of irrigators was between .597 and .818.

Irrigated Aeres

The acres irrigated was defined as the area to which water was applied, regardless of the number of water applications. An acre application was defined as the application of water to one acre one time. For example, ten acres watered four times would equal ten irrigated acres and 40 acre applications. However, if the ten acres were only watered one time, then both the irrigated acres and acre applications would equal ten.

The 46 irrigating farmers applied water to 2,637 acres of land. The average number of irrigated acres per farm was 57. The range was from 11 to 232 acres. The average number of irrigated acres per farm was considered the best estimate of the average number of irrigated acres per farm in the population. The 0.95 confidence interval for the average number of irrigated acres in the population was from 44 to 71 acres per farm. This interval has a 0.95 chance of including the universe mean.

It was estimated that 7,546 total acres were irrigated by the 186 farmers in the population. The formula, $\frac{1}{2}(X)$ = estimate of total acres irrigated, was used. X equaled the total number of acres irrigated by the 65 sample members, and "f" was the sampling fraction. The 0.95 confidence interval for the total irrigated acres by the 186 population members was from 4,883 to 10,210

aeres.

The total capacity of the irrigation systems within the population was estimated to be 23,445 acres, using the irrigated acres concept. No attempt was made to estimate the number of acre applications which could have been made by the 186 farmers.

The percentage of the total irrigation capacity employed in 1959 was estimated to be 20 to 44 per cent. These percentages were estimated from the sample proportion of irrigated acres. Based upon this analysis, it was evident that the irrigation systems were not fully employed in 1959.

Agre Application

The 46 farmers irrigating in 1959 made 4,486 acre applications of water. The average number per farm was 97.5, with a range from 11 to 522. The probability was 0.95 that the universe mean of acre applications per farm was between 69 and 126. Since, 2,637 acres were irrigated, and 4,486 acre applications of water were applied, each acre was watered an average of 1.7 times.

Crops Irrigated

Cotton, corn, and soybeans were the major irrigated crops, in terms of number of irrigated acres. Other irrigated crops were strawberries, sweet corn, pasture, cabbage, and wheat. The detailed analysis will cover only cotton, corn, and soybeans, due to the limited number of irrigators and irrigated acreage of other crops. The irrigated acres of cotton, corn, and soybeans were 94.7 per cont of the total to which water was applied.

<u>Cotton</u> -- Cotton was the major irrigated crop. Thirty-five farmers applied water to 1,523 acres. Four hundred and eleven acres were irrigated twice and 273 acres, three times. An average of 2.89 inches of water was applied per acre. The farmers believed that they were actually getting 2.39 inches of water on the ground. The loss from evaporation, wind, and seepage had been taken into consideration. The 0.95 confidence interval for the universe mean was between 2.38 and 3.41 inches of water per acre.

An average of 43.5 acres of cotton was irrigated per farm by the 35 farmers. It was estimated that the average number of acres of cotton irrigated by all farmers with equipment was from 34 to 53 acres.

The irrigated acres of cotton were 53 per cent of the total acreage to which water was applied. Based on the sample statistics from the records obtained, it was estimated that cotton was between .45 and .70 of the total acres irrigated by all of the farmers who had equipment.

Cotton vield response from irrigation -- Fifteen or 43 per cent of the 35 farmers obtained a yield response from irrigation, but 57 per cent did not. One reason for the limited results was time of application. Ten of the 35 farmers applied a limited quantity of water to germinate the seed immediately following planting. Most of these growers made no further applications. In view of this fact, it was not surprising that no yield response could be attributed to irrigation.

The average yield response attributed to irrigation was 66 pounds of lint cotton per agre, even though 57 per cent of the cotton irrigators did not receive a yield increase. The range was from 0 to 300 pounds of lint per agre.

Yield responses for all crops were estimated by the farmers. No field checks were made. In many cases, the farmer actually had two fields of the grop on comparable soils with comparable production techniques, with the exception of irrigation. Other farmers, however, did not have comparable crops on the same farm. In the latter case, the farmer's estimate was simply his opinion of the yield increase or a check of the difference in the yields of a neighbor's crop and his own.

<u>Corn</u> -- Sixteen farmers applied water to 659 acres of corn. Of the total, 397 acres were irrigated twice,

and 235 acres, three times. An average of 5.25 inches of water was applied per acre. It was estimated that the average amount of water applied per acre by all the farmers who irrigated corn was between 4.2 and 6.3 inches.

The 16 farmers irrigated an average of 41 acres per farm. The universe mean was estimated to be between 21 and 62 acres per farm.

<u>Corn-vield response</u> -- Ten or 62.5 per cent of the 16 farmers reported a yield response from irrigation. Six or 37.5 per cent did not obtain a yield response. The average yield increase was 30 bushels per acre. The range was from 0 to 50 bushels per acre. It was estimated that the average yield increase for all corn irrigators in the area was between 21 and 40 bushels per acre.

Sorbeans -- Thirteen farmers who contributed data for the analysis irrigated 316 acres of soybeans. The average number of acres per farm was 24 with a range from 5 to 70. It was estimated that the average number of acres irrigated per farm in the population of soybean irrigators was between 14 and 34. One hundred and sixty-four acres were irrigated twice. The remaining acreage received water only once. An average of 4.4 inches of water was applied per sore. It ranged from one to ten inches.

Sorbeans-vield response -- Nine or 69.2 per cent of the 13 farmers reported a yield response from irrigation. The average was 8.5 bushels per acre with a range from 0 to 19 bushels. It was estimated that the average yield increase for soybean irrigators in the Delta Area was from five to 12 bushels per acre.

Other irrigated grops -- Four farmers irrigated 51 acres of strawberries. Four applied water to 34 acres of pasture. Thirty-five, 15, and four acres of sweet corn, wheat, and cabbage were irrigated. No detailed analysis was made of these crops due to the small number of irrigators.

Statistical test-difference between the average amount of water applied to different grops -- As stated in a previous section of this chapter, an average of 5.23, 2.89, and 4.37 inches of water per scre was applied to corn, cotton, and soybeans respectively in 1959. The null hypothesis of no difference between the average for the three grops was tested.

A "t" value of 4.5 was obtained when the difference between the means of corn and cotton was tested. A "t" value of this magnitude was statistically significant at the .001 probability level. The null hypothesis was rejected. Corn received more water per acre in 1959 than

cotton.

When the difference between the means of corn and soybeans was tested, a "t" value of .95 was obtained. The "t" value was not statistically significant at the .05 probability level. The null hypothesis was not rejected.

A "t" value of 2.26 was obtained when the difference between the means of cotton and soybeans was tested. The "t" value was statistically significant at the .05 probability level. The null hypothesis was rejected. Soybeans received more water per acre than cotton.

There was a significant difference between the average amount of water applied per sore in 1959 to corn and cotton and to soybeans and cotton. Cotton received the smallest amount of water per sore.

Statistical test-difference between the average

aross return per sore attributable to irrigation -- The average physical product attributable to irrigation was 30 bushels of corn, 8.5 bushels of soybeans, and 66 pounds of lint cotton per sore. The average prices received by Missouri farmers in September, October, and November, and December, 1959, were \$1.00 per bushel for corn; .322\$ per pound for lint cotton, and \$1.95 per bushel for soybeans. The price per unit of output multiplied by the average

physical product per acre equaled the average gross return per acre attributable to irrigation in 1959. The average gross return per acre was \$30.36 for corn; \$21.24 for cotton, and \$16.66 for soybeans.

The difference between the average gross return per acre of the three crops was tested. A "t" value of 1.06 was obtained when the difference between the means of corn and cotton was tested. This value was not statistically significant at the .05 probability level. The null hypothesis was not rejected.

A "t" value of 2.23 was obtained when the difference between the means of corn and soybeans was tested. A value of this magnitude was statistically significant at the .05 probability level. The null hypothesis was rejected. There was a significant difference between the average gross return per sere of corn and soybeans. Corn received the higher return.

When the difference between the means of cotton and soybeans was tested, a "t" value of .50 was found. It was not statistically significant at the .05 probability level, and the null hypothesis was not rejected.

The analysis revealed a significant difference between the average gross return per acre of corn and soybeans in 1959. The average irrigated acre of corn returned \$13.70 more than the average irrigated acre of soybeans.

Statistical test-difference between adjusted gross return per sore attributable to irrigation -- The average gross return per sore minus the harvest cost of the additional yield was assumed to equal the adjusted gross return per sore attributable to irrigation. The harvest cost per bushel of corn was $.15\neq$;per pound of seed cotton, $.02\neq$, and per bushel of soybeans, $.30\neq.^1$ The average physical output per sore multiplied by the unit harvest cost equaled the average harvest cost per irrigated sore. The adjusted gross return per sore was 325.31 for corn; 317.23 for cotton, and 314.10 for soybeans.

The difference between the adjusted gross return per acre of the three crops was tested. The computed "t" values, when the difference between corn and cotton, corn and soybeans, and cotton and soybeans was tested, were ,99, 2.25, and ,35 respectively. The "t" value of 2.25 was statistically significant at the .05 probability level. Irrigated corn had a higher adjusted gross return per acre than soybeans. The difference between the

¹Albert Hagan, "Nissouri Custom Rates" (University of Missouri Department of Agricultural Economics, 1960), pp. 1, 4, and 19. (missographed).

adjusted gross return per irrigated acre in 1959 was not significant for corn and cotton, and cotton and soybeans.

Summary of Statistical Tests

Test of independence --

Fac	tore tested	Computed Chi Square	Critical Chi Square .05 Level	Signif- icent	Not Signif- icant
81z	e of farm and				
(1)	Whether irriga- tion was used	4.20	9.49		X
(2)	Capacity of irrigation system	23.52	25+00		X
	ure of fars rator and				
(1)	whether irriga- tion system was used	2.34	5.99		x
(2)	Type of soil	9.31	12.59		X
(3)	Type of irriga- tion system	3.32	9.49		X
(4)	Whether type of system has been changed	• 68	5.99		X
	Old type system	• 98	5.99		X
	New type system	4.78	5.99		X
	ed investment in igation equipment				
(1)	Size of farm	24,98	31.41		x

Fac	tors tested	Computed Chi Square	Critical Chi Square .05 Level	Signif- loant	Not Signif- loant
(2)	Whether irriga- tion system was used	7.32	9.49		X
(3)	Tenure	10.00	15.51		x
	ther irrigation tem was used				
(1)	Type of irriga- tion system	1.72	5+59		X
(2)	Capacity of irrigation system	5.29	7.81		X
(3)	Year irrigation was started	2.97	5.99		x
(4)	Type of soil	5.18	7.81		x

Test of difference between means when standard deviations are unknown, but assumed equal.

Factors tested	Computed "t" Value	Critical "t" Value .05 Level	Signif- icant	Not Signif- icant
Type of irrigation system and				
(1) Fixed investment in irrigation equipment				
Category I and II	3.38	2.021	.01	
Category I and III	1.59	5.051		X
Category II and III	4,34	2+074	+001	

Fact	tors tested	Computed "t" Value	Critical "t" Value .05 Level	Signif- icant	Not Signif- leant
(5)	Capacity of irrigation system				
	Category I and II	3.30	5.051	.01	- 1
	Category I and III	1.33	2.021		X
	Category II and III	3.35	2.074	.01	
(3)	Average cost per well				
	Category I and II	*24	2.021		X
	Category I and III	.1 8	5.051		X
	Category II and III	.04	2.074		X
(4)	A vera ge cost per pump				
	Category I and II	1.26	5.057		x
	Category I and III	1.14	2.021		X
	Category II and III	.15	2.074		X
(5)	Average cost per power unit	n (j. 1997) N	14 1		
	Category I and II	1.03	2.021		X
	Category I and III	1.12	5*051		x

ĺ.

<u>Pactors</u> tested	Computed "t" Value	Critical "t" Value .05 Level	Signif- icant	Not Signif- icent
Category II and III	.06	2,074		x
(6) Average cost per distribu- tion system				
Category I and II	2.44	5.051	*02	
Category I and III	3.46	2.021	.01	
Category II and III	4.19	2.074	.001	
Kinds of irrigated crop and				
(1) Amount of water applied per acre	•			
Corn and cotton	4.50	5.051	.001	
Corn and soybean	•95	2.052		x
Soybeans and cotton	2.26	5.051	.05	
(2) Gross return per acre				
Corn and ootton	1.06	2.021		X
Corn and soybear	10 2.23	2.052	.05	
Soybeans and cotton	•50	2.021		X
(3) Adjusted gross return per scre				
Corn and cotton	.99	5.051		X
corn and soybean	a 2.25	2.052	.05	

Pac	tors tested	Computed "t" Value	Critical "t" .05 Level	Signif- loant	Not Signif- leant
	oybeans and otton	•35	2.021		x
1.77	acity of Igation tem and				
(1)	Tenure Owner-operator and part-owner	.79	2.021		X
	Owner-operator and tenant	1.81	2.042		x
	Part-owner and tenant	1.47	5.051		X

i

,

CHAPTER IV

IRRIGATION COSTS AND RETURNS

Production costs are important to decision makers in all firms. Irrigation costs are no exception. The farm operator needs to have the best available data showing the cost of applying water. The decision as to whether or not to irrigate his crops in a given year depends upon the information that is available concerning costs in relation to expected returns. The amount of investment in equipment has already been pointed out. In a humid region such as the Delts of Missouri, profitable crops can be grown in most years without irrigation. The question to which this analysis will be addressed is whether or not more profit can be made by applying water. Many variables of indeterminate magnitude must be considered. They include the amount and distribution of rainfall, the yield response from irrigation, and the price of the product.

The costs involved in the purchase and use of irrigation systems are of two general types--fixed and variable. Annual fixed costs reflect the amount of capital invested in irrigation equipment and the length of time in the investment period. Variable or operating costs reflect prices of variable inputs such as labor, fuely. oil, and other supplies required to pump and distribute the water and to harvest the increased yield.

Annual Fixed Cost

The annual fixed cost per irrigation system included depreciation, interest, taxes, and insurance. The following procedures were used to compute the individual items:

Depreciation = Original Value Years of Useful Life

The useful life of wells and siphon tubes was estimated to be 20 years. The depreciation schedule for pumps, power units, and distribution systems, other than siphon tubes, was 15 years. The annual interest charge was equal to one-half of the original value of the equipment multiplied by 5.0 per cent

(Annual Interest * Original Value X .05).

The tax charge was the assessed value multiplied by 30 cents per \$100 valuation (Taxes = assessed value X \$0.30). The annual charge for insurance was obtained by taking 80 per cent of the original value of the pump, power unit, and distribution system and multiplying the result in thousands of dollars by \$5.80 (Insurance Charge =

Original Value X .80 X 85.80). \$1000

Depreciation charges made up 69 per cent of the annual fixed cost for the three different types of systems, as shown in Table XXX. Interest charges averaged 27 per cent, which was second in importance, and taxes and

TABLE XXX

ANALYSIS OF FIXED COSTS AS PERCENTAGES OF FIXED AND TOTAL IRRIGATION COSTS BY TYPE OF IRRIGATION SYSTEMS, FOUR SOUTHEASTERN MISSOURI COUNTIES, 46 FARMS, 1959

	Per Ce Fized		P or Co Total	
Type of System	Averske		Average	Ranke
Gated Pipe and Ditches				
and Aurrows : 8				
Depreciation	69	67-76	55	40-66
Interest	27	21-29	21	16-25
Taxes and Insurance	Ą	3- 5	4	3- 6
Total Fixed Coats	•		80	59-91
Giant Sprinkler and Trailer Boon: D				
Depreciation	69	64-72	45	31-62
Interest		25-31	10	13-24
Taxes and Insurance	27	4-5		2- 5
Total Fixed Costs		*	65	4 3-9 1
Portable Pipe and				
Store me lar: 0				
Depreciation	69	66-70	55	27-63
Interest	2 7	56-53	21	10-27
Taxes and Insurance	4	4- 3		8- 6
Total Fixed Costs			30	38-9 8

^aNine irrigators.

baine irrigatore.

CTwenty-eight irrigators.

insurance, four per cent.

Fixed charges in 1959 averaged 80 per cent of the total irrigation costs for the surface and portable pipe and sprinkler systems, and 65 per cent for the trailer boomgiant sprinkler systems (Table XXX). The relative proportion of fixed costs to total costs depended upon the amount the system was used. The sore use, or the higher the variable costs, the lower the per cent of fixed charges in relation to the total. The trailer boom-giant sprinkler systems were used more extensively than the other two types, and the per cent of fixed costs, in relation to total costs, were smaller. The range in fixed costs as a per cent of the total costs was 59-91. 48-91. and 38-98 for the surface, trailer boom-giant sprinkler. and portable pipe and sprinkler systems respectively. These ranges show that one of the portable pipe and sprinkler systems was used more, and one less than any other type of system. In general, portable pipe and oprinkler systems where strawberries were irrighted received more use in 1959 than systems which were used exclusively for field crops.

Variable Costs

After a farm operator has invested in irrigation equipment, and can apply supplemental water to crops,

variable costs must be considered. The annual fixed costs must be borne as long as the equipment is owned or until the cost has been charged off regardless of the annual use. If the production functions were known and accurate cost data were available, the decision maker should apply water to the point where the marginal cost was equal to the marginal revenue from the last unit applied in order to maximize profit. However, knowledge is not perfect in the real world and many uncertainties must be faced. Therefore. on a given farm in a given year, the decision maker should consider the variable costs of applying water in relation to the expected returns from its use. If he expects the return from irrigation to equal or exceed the variable cost, water should be applied. Irrigation can be justified, as long as the average variable costs are covered. Any additional return above the average variable cost will reduce the average fixed cost. The decision maker will have to receive a return greater than the average irrigation cost in many years to make up for the years when the system was not used, and those in which the returns did not pay average variable costs, if the practice is to be profitable. It was assumed that farmers who had purchased irrigation equipment expected returns over the time period of the investment which would equal or be greater than could be expected from investment in other

endeavors. Otherwise, the original investment in irrigation equipment would not have been logical.

Variable costs as a percentage of the items in this class, and total irrigation costs were analyzed (Table XXXI). Expenditures for fuel and oil averaged 55, 57, and 51 per cent of the variable costs for the surface, trailer boom-giant sprinkler, and portable pipe and sprinkler systems respectively. Labor costs were second in importance. Thirty-six, 32, and 41 per cent of the variable costs was attributed to labor charges for the surface, trailer boom-giant sprinkler, and portable pipe and sprinkler systems respectively.

Variable costs as a per cent of the total irrigation costs were 20 per cent for the surface and portable pipe and sprinkler systems respectively. The fuel and oil costs were about twice as large for the trailer-boom-giant sprinkler as for the other two systems. Labor costs were seven, 11, and eight per cent of the total costs for the three systems.

The labor, tractor, fuel and oil, and minor repair costs per acre application of water were determined for the three different systems (Table XXXII). The average variable cost per acre application for the surface systems was \$1.59, which was the lowest among the three types of

TABLE XXXI

ANALYSIS OF VARIABLE COSTS AS PERCENTAGE OF VARIABLE AND TOTAL IRRIGATION COSTS BY TYPE OF IRRIGATION SYSTEM, FOUR BOUTHEASTERN MISSOURI COUNTIES, 46 PARMS, 1959

	Per Cer Variable	and the in the	Total	costs
Type of System	Average	Range	Average	Range
Sated Pipe and Ditches				
and Purrova:				
Labor	36	14-57	71	1-19
Tractor	4	2-7		0-1
Fuel and oll	55	33-87	11	4-26
Minor repairs and				
miscellaneous	5	0-15	1	0- 4
Total Variable Costa			50	12-52
Jiant Sprinkler and Trailer Boom: D		44		
Labor	32	22-41	11	5-20
Tractor	5	1- 7	1	0- 4
Fuel and oil	57	43-76	20	6-32
Minor repairs and				
miscellaneous	6	0-24	2	0-12
Total Variable Costs			35	11-52
Portable Pipe and				
Sprinkler: C	£. 4	15 MB 27 AS	6	
Labor	41	13-69	8	1-34
Tractor	.5	1-18	L	0- 4
Fuel and oil	51	21-70	10	1-40
Minor repairs and				• •
miscellaneous	3	0-30	1	03
Total Variable Costs			20	2-62

⁸Nine irrigators.

DNine irrigators.

^CTwenty-eight irrigators.

TABLE XXXII

ANALYSIS OF VARIABLE COSTS PER AGRE APPLICATION OF WATER, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 46 FARMS, 1959

		le Costs (lars)
Type of System	Average	Range
Sated Pipe and Ditches and Fu provs : ⁸		
Labor	.58	.12-1.24
Tractor Cost	.06	.0211
Fuel and Oil	.87	. 39-1. 20
Minor Repairs	.08	.0038
Total	1.59	1.00-2.60
Siant Sprinkler and Trailer Boom: D		
Labor	.83	.45-1.75
Practor Cost	.11	.0418
Fuel and Oil	1.48	.86-2.80
Minor Repairs	.16	.0050
Total	2.58	1.70-4.60
Portable Pipe and Sprinkler: C		
Labor	1.15	.50-2.81
Tractor Cost	.14	.1024
Fuel and Oil	1.44	.42-3.22
Minor Repairs	.09	.0083
Total	2.32	1.37-4.95

^ANine irrigators.

^bNino irrigators.

CTwonty-eight irrigators.

systems.¹ The range was from \$1.00 to \$2.60. The following items were included: labor, \$0.58; tractor, \$0.06; fuel and oil, \$0.87, and minor repairs, \$0.08. The variation in the average variable cost per acre application was very noticeable within a given type of system as well as among the different types. The average labor cost per acre application ranged from \$0.12 to \$1.24 for the surface systems. A range of \$0.39 to \$1.20 per acre application of water was found for the fuel and oil costs.

The average variable cost per acre application of water for the trailer boom-giant sprinkler systems was \$2.55 with a range from \$1.70 to \$4.60. All variable costs were higher for the trailer boom-giant sprinkler systems than for the surface systems. The labor, tractor, fuel and oil, and minor repair costs averaged \$0.83, \$0.11, \$1.48. and \$0.16 respectively.

The portable pipe and sprinkler systems had an average variable cost of \$2.82 per acre application with a range from \$1.37 to \$4.95. This was the highest average variable cost among the three different types of systems. The labor and tractor costs were greater for the portable pipe and sprinkler systems than for the other two types.

¹An acre application is an acre irrigated one time.

However, the trailer boom-giant sprinkler system had the greatest fuel and oil, and minor repair costs per acre application.

The difference between the average labor, tractor, fuel and oil, and minor repair costs for the three systems was analyzed. The null hypothesis was tested in all cases. The same classification was given to the different irrigation systems as was followed in Chapter III. Category I or portable pipe and sprinklers, Category II or giant sprinkler and trailer boom combinations and Category III or gated pipe and ditches and furrows were used.

Average labor cost per sare application -- The

difference between the means of average labor cost per acre application was tested. The "t" statistic was used. The standard deviations were unknown, but assumed to be equal. A "t" value of +1.23 was obtained when the difference between the means of Category II and III were tested. The "t" value was not statistically significant at the .05 probability level. The null hypothesis was not rejected. When the difference between the means of Category II and I was tested, a "t" value of -1.42 was obtained. This value was not statistically significant.

The average labor cost per acre application of water was \$0.58 and \$1.15 for Categories III and I respectively.

A "t" value of -2.6 was calculated, which was statistically significant at the .05 probability level. The null hypothesis was rejected. There was a significant difference between the average labor cost per acre application between Category III and I. The average labor cost was greater for Category I. The average labor cost was greater for Category I and the users of this type of equipment had difficulty in hiring workers to move the pipe and sprinklers.

Average tractor cost per acre application -- The average tractor cost per acre application was \$0.14, \$0.11, and \$0.06 for Categories I, II, and III respectively, as shown in Table XXXII. The "t" values, when the difference between means of Category II and III and Category III and I was tested, were 2.13 and -4.40 respectively. The former was statistically significant at the .05 probability level, and the latter at the .001 level. The null hypotheses were rejected in both tests. There was a significant difference between the average tractor cost per acre application on farms with Category III and Category I and II irrigation systems. The average tractor cost was smallest on farms with surface type systems. A "t" value of 1.28 was obtained when the difference between the means of Category II and I was tested. The difference was not

statistically significant. The null hypothesis was not rejected.

Average fuel and oil cost per acre application --The average fuel and oil cost per acre application was \$1.44. \$1.48. and \$0.87 for Categories I, II, and III respectively. The "t" values, when the difference between the means of Category II and III and Category III and I was tested, were 2.78 and -2.29 respectively. The former was statistically significant at the .02 probability level. and the latter at the .05 probability level. The null hypotheses were rejected in both cases. There was a significant difference between the average fuel and oil costs per acre application on Category III farms and Category 1 and 11 farms. The average fuel and oil cost was the lowest on farms with surface type systems. The water was not pusped under pressure on farms with surface irrigation systems, while it was on farms with portable pipe and aprinklers and trailer boom-giant sprinkler cystems. A "t" value of .16 was obtained when the difference between the means of fuel and oil costs of Category II and I was tested. The difference was very small. and consequently not statistically significant, The null hypothesis was not rejected.

Average minor repair cost per sore application --

The average minor repair cost per acre application was \$0.09, \$0.16, and \$0.08 for Categories I, II, and III respectively. The differences between the means were tested. The "t" values were .78, .64, and .06, which were not statistically significant. The null hypotheses were not rejected.

Total Cost of Irrigation

Fixed costs plus variable costs equal total irrigation costs. The average fixed, variable, and total costs per sore inch of water applied, per sore irrigated, and per acre application for the three different types of systems were analyzed, as shown in Table XXXIII. The computations included the cost of all of the irrigation that was done on the farms where data were obtained in 1959. However, costs of harvesting the increased yield were not included in order to keep the analysis on a comparable basis between the farmers who received a yield response and those who did not. The costs of irrigating individual crops will be analyzed in a later section of the chapter. Data in Table XXXIII show average fixed, variable, and total cost of applying water in 1959 by use of three different systems based upon the estimated amount of water applied. The farmers who used portable pipe and sprinkler

Molecularies (Dollaries) (Dollaries) Lgated 272 2.12 4.1 55 1.1 Lgated 63 9.11 2.3 2.3 1.1 Lgated 63 9.11 2.3 2.3 1.1 Jantion 93 9.11 2.3 2.3 1.1 Jantion 93 9.11 2.3 1.00-2.52 1.00-2.52 Jantion 93 5.19 2.19 2.19 1.17 0 A 66 2.18 1.15 2.54 1.00-2.52	Mena of States	Amount	Pixed Cont	Variable	Total
*72 *12 *12 *13 *55 *111 tweed 67 77-4.41 275 116-570 77-4.41 255 attion 73-4.41 77-4.41 273 214 255 attion 93 9.11 2.34 2.34 2.34 93 9.11 0.12 0.11 2.34 2.34 93 9.11 0.2.19 2.19-20.25 1.000-5.52 94 90 2.19 2.19 2.34 96 9.11 1.59 1.000-2.60 1.17 100 86-1, 220 2.96-13.21 1.69-1.00 1.17 111 9.52 0.96-13.21 1.69-1.00 1.17 attion 221 2.58 4.13.01 1.77 20 2.96-13.21 1.69-1.00 2.13 1.69-1.00			(Dollars)	(Dollars)	(Dallare)
272 2-12 3-12 3-55 ili6-570 -73-4.41 -25-4.11 34-115 3-11 2-34 34-115 3-11 2-34 34-115 3-11 2-34 34-115 3-11 2-34 34-115 3-11 2-34 34-190 6-21 2-13-20.25 1.00-2.52 34-190 2-13-20.25 1.00-2.52 1.00-2.52 111 86-1, 220 -36-13.21 1.17 111 3-52 4.81-28.41 1.69-1.00 111 3-52 3-52 1.00-2.52 111 3-52 3-53 1.00-2.52 111 3-52 1.50-1.00 1.17 111 3-52 3-53 1.00 111 3-52 1.50-1.00 1.17 110 3-52 1.50-1.00 1.17 110 3-52 3-13 1.51 110 3-52 3-13 1.51	sted 7100 and Ditch and Furrows				
Multiple Contract (Contraction) Contract (Contraction) Contract (Contraction) Contract (Contraction) Contraction Contraction <thcontraction< td=""><td></td><td>212</td><td>2.12</td><td>• 55</td><td>2.67</td></thcontraction<>		212	2.12	• 55	2.67
63 34-115 3-11-20.25 2-34 3-115 3-11-20.25 3-11-20.25 3-11-29 3-11-29 2-19-20.25 1-59 3-15-20 2-19-20.25 1-17 -69-1.90 2-19-01 -69-1.90 2-51 2-19-01 -69-1.90 2-58 2-58 2-19-01 -69-1.90 2-58 2-19-01 -69-1.90 2-58 2-58 2-58 2-19-01 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -1-17 -69-1.90 -67 -1-17 -69-1.90 -1-17 -69-1.90 -67 -69-1.90 -67 -69-1.90 -69-1.90 -1-17 -69-1.90 -69-1	Range	116-570	14-4-62.	11-1-12.	1.245.8
93 6.21 1.59 93 6.21 1.59 94 190 6.21 93 6.21 1.59 94 1.17 1.59 11 3.52 1.00-2.60 111 3.52 1.17 111 3.52 1.69-1.30 111 3.52 1.17 111 3.52 1.69-1.30 111 3.52 1.69-1.30 111 3.52 1.69-1.30 111 3.52 1.69-1.30 111 3.52 1.69-1.30	Average Arrithmenu	63	2.11	2.34	11.45
93 94-190 6.21 1-17 1	Per Aore Application				
atted 1.17 486 2.18 1.17 86-1,220 2.18 1.17 .69-1.30 .0000 .00000 .0000 .0000 .00000 .000000 .0000 .000000 .00000 .000000 .0000	Average Range	3-190	6.21 2.19-20.25	1.59	7.80
486 2.18 1.17 86-1.220 2.18 1.17 86-1.220 .98-13.21 1.69-1.30 111 9.52 3.52 1.31 40-232 4.81-28.41 1.84-9.01 2.58 40.232 0.11.18.04 1.70-4.60	lant Sprinkler and Trailer Boog ^D				
86-1,220 .98-13.21 .69-1.90 111 9.52 9.52 13.01 40-232 4.81 28.41 1.84-9.01	Per Acre Inch Average	436	2,10	1.17	3.35
111 9-52 9-52 5-13 40-232 4-81-28.41 1.84-9.01 221 4-80 2-58	Range	86-1,220	. 99-13.21	.69-1-90	1.93-14.68
221 4.80 2.58 60.52 2.11.18.04 1.70-4.60	Average Range	111 40-232	9.52	5.13	14.65 10-31.56
	Per Acre Application Average Range	221	4.80	2.58	7.38

TABLE XXXIII

TABLE XXXIII (Continued)

۱

Pris of Svatem	Anomic Par Par	Pixed Cast	e Toetae	Total
		(Dollars)	(are)	(Dollare)
Fortable Fipe and fortabler Per Aore Inch				
Average	168	4.00	1.00	2.8
Jango	10-1,667	.27-97.28	· 37-2.43	.60-03-22
ser acre irrigatod Averato	8	17.62	4.59	22.01
Ange	87	4.41-252.95	1.37-56.00	7.23-260.95
Per Acre Application Average	65	8.11	60	14-11
Nango -	9-176	2.01-97.28	1.37-4.95	4.10-99.22

^aline Irrigatore.

Daine irrigators.

"Twenty-eight irrigators.

systems applied the smallest amount of water to the smallest number of acres, while those with giant sprinkler-trailer boom systems applied the greatest amount. Differences in system use affected costs, but the small number of cases did not permit further breakdown of the data.

Cost per sore inch of water -- Twenty-eight Category I irrigators applied an average of 168 acro inches of water per farm. The range was extremely wide, from ten to 1.667 inches. The 1.667 acres inches were applied to strawberries. The average cost was \$5.00 with a range from 0.60 to \$99.22 per acre inch. The extremely low average cost was the result of intensive use of a small system while the extremely high average cost resulted from limited use of a large system. The average fixed cost was \$4.00 with a range from \$0.23 to \$97.28. The wide range resulted from the same factors that affected the average cost figure. The average variable cost was \$1.00 with a range of \$0.37 to \$2.43. The difference between the high and low average variable cost was \$2.06, which was the greatest difference in cost items among the three systems. Category I farmers had the largest average fixed and total cost per acre inch of water, but Category II farmers had the largest average

variable cost.

Nine Category II farmers applied an average of 486 acre inches of water per farm with a range from 26 to 1,220. The average farm in this group received 2.9 times as much water as was applied to the Category I farms. The average cost was \$3.35 with a range from \$1.93 to \$14.63. The narrower range indicated less variation in system use than among the Category I farms. The average fixed and variable costs were \$2.18 and \$1.17 respectively. The average fixed cost ranged from \$0.92 to \$13.21, while the average variable cost ranged from \$0.69 to \$1.90.

An average of 272 sore inches of water per farm was applied by nine Category III farmers. The amount per farm ranged from 118 to 570. The average fixed, variable, and total costs were \$2.12, \$0.55, and \$2.67 respectively. The average farm received 62 per cent more water than Category I farms, but only 56 per cent as much as Category II farms. The range was smaller for all three cost groups on Category III farms than on the other two system types. One reason for the smaller variation was the design of the system. Water can be applied effectively by surface methods only after the land had been graded. The land area that can be irrigated by this method is limited. Also, surface irrigation is not practiced for strawberries or seed germination irrigation in most cases. As a result, when

applied to graded land, the entire area will receive water, unless rainfall makes the irrigation unnecessary. Field crops normally will require no more than three applications of water during the growing season, so the range in acre inches applied per farm usually will be narrower than with the other two systems.

<u>Cost per sore irrigated</u> — Category I, II, and III farms averaged 38, 11, and 63 irrigated acres respectively. The range per farm was smallest in Category III. The average cost per irrigated acre varied from \$22.01 on Category I farms to \$11.45 on Category III farms. The average fixed and total costs were the largest on Category I farms, but the average variable costs were largest on Category II farms. Category III farms averaged \$9.11, \$2.34, and \$11.45 for the average fixed, variable, and total costs, which were the lowest among the three types of systems (Table XXXIII).

Gost per acre application -- Nine Category II farmers averaged 221 acre applications of water per farm, which was the largest among the three systems. Each irrigated acre received two water applications on the average on Category II farms in comparison with 1.6 and 1.5 on Category I and III farms respectively. As a result, the average fixed and total costs were \$4.80 and \$7.38 for Category II farms,

which were the smallest averages among the three systems. The average variable cost was \$1.59 on Category III farms, which was the smallest average.

Irrigation costs per farm -- The absolute dollar cost of irrigation per farm was studied to gain an insight into the difference in magnitude of total costs among the three systems (Table XXXIV). The average fixed cost per farm was \$671, \$1,059 and \$578 on Category I, II, and III farms. These data reflected differences in the investment in irrigation equipment among the three systems.

The average variable cost per farm was \$167, \$570 and \$148 for Category I, II, and III farms respectively. The absolute variable cost in 1959 on Category II farms was 285 per cent greater than on Category III farms, and 241 per cent greater than on Category I farms.

When a farm operator decides to apply water, the risk involved per farm approximates the expected variable cost of irrigation. The magnitude of cash loss per farm does not appear to be large in light of the average variable cost per farm in 1959. The breakeven point required to cover average variable cost per acre inch of water, per irrigated acre, and per acre application will be analyzed later in the chapter. VIXX 3JEAT

AMALTEIS OF INRIGATION COSTS PER PARM, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 46 PARMS, 1959

		The of Systems	
Irrigation Costs	Gated Pipe and Ditches and Furrows	Olant Sprinkler and Trailer Boom	Portable Pipe and Burintler
Runder of Farms	6	0	8
Average Fixed Costs	\$578	\$ 1 ,059	* 01
Per Cent of Total Cost	8	65	8
Average Variable Costa	\$140	\$ 570	\$167
Fer Cent of Total Cost	8	2	8
Average Cost	\$726	\$1,629	9 2 9
Per Cent of Total Cost	100	100	200

I. COST OF IRRIGATING SPECIFIC CROPS

The average fixed, variable, and total cost of irrigating corn, cotton, and soybeans was determined. Due to the limited number of irrigators, the cost of applying water to other crops was not computed. The proportion of the annual fixed cost assigned to each crop was determined by the following procedure:

Irrigated acres of one crop X annual fixed cost = Fixed cost assigned to that crop.

If the irrigation system was used exclusively to water one crop, all of the fixed were assigned to that erop. Consequently, the average cost per unit analyzed was exceedingly large, where a relatively small acreage of one crop received water.

Cora

Cost per sore inch of water -- Eight Category I farmers applied an average of 66 acre inches of water per farm (Table XXXV). The range was from 24 to 212. The average fixed, variable, and total cost was \$4.97, \$1.16, and \$6.13 respectively.

The estimated yield response was 12 bushels of corn per acre inch of water applied. The range was from no increase to 23 bushels. The net return attributed to

TABLE XXXV

ESTIMATED YIELD RESPONSE, FIXED, VARIABLE, AND TOTAL COST OF IRRIGATION PER ACRE INCH OF WATER, PER ACRE IRRIGATED AND PER ACRE APPLICATION, CORN, BY TYPE OF IRRIGATION SYSTEM, POUR SOUTHEASTERN MISSOURI COUNTIES, 16 IRRIGATORS, 1959

	Amount				
Type of	Ser	Fixed	Variable	Total	X101d
STO-De	La ra	Cost	Cost	Cost	Reponse
		SIGTOG	DOLLAR	DOLLAPS	
and Sorinkler					
Avanara	KK.	A 07	21 1		;
Rente	24-212		-97-1	199	N NO L
		17.93	2.20	17.75	3
Per Acre Irrigated					
Average	25	12.97	3.04	16.01	11
itange	2-85	4.41-	-32-	5.32-	18.2
		53.78	10.20	55.40	
Per Aore Application		-	ł		
Average	27	11.96	2.81	14.77	80
Range	8-93	4.41-	-32-	5.32-	00
•		53.78	5.10	55.40	
Giant Sprinkler					
Per Acre Inch					
Average	398	1.21	.98	2.19	ŝ
Range	1,020	10.4	.68-1.76	1.77-	0-1
	•	5			

,

-
pom
ntinu
00)
XXXV
ABLE

Type of System	Amount Per Farm	Fired Cost	Variable Cost	Total Cost	Y1eld Response
		Dollars	Dollars	Dollars	
rer Acre Arrigated Average Range	66 15-160	7-33	5.87	13.20	32
Per Acre Application Average Range	167 24-440	2.03	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5-21	13
Surface System ^C Per Acre Inch Average Range	233 28-551	56.5	54:	1.38	6 0
Per Acre Irrigated Average Range	42 7-80	2.05.2 2.55.2 2.55.2	442	5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-10

.

TABLE XXXV (Continued)

	Amount				
Type of	S.	Pixed	Variable	Total	Yleld
<u>×retor</u>		Dollar	Cost Dollar	CORL	Red Norse
Per Acre Application	1				•
Average		3.17	l.42	4.59	14
Range	7-185	2.92	2.1	4.12-	85
	、	10.01	4.43	14.44	
•			1		

Rach alight farmers applied an average of 2.6 inches of water per acreacter was irrigated the equivalent of 1.1 times.

Each ^bFive farmers applied an average of 6.0 inches of water per acre.

Each ^cThree farmers applied an average of 5.5 inches of water per acre. acre was irrigated the equivalent of 1.8 times.

irrigation and the effect of irrigation on farm income will be discussed in later sections of the chapter.

Five Category II farmers applied an average of 398 acre inches of water per farm (Table XXXV). The average fixed, variable, and total cost per acre inch was \$1.21, \$0.98, and \$2.19 respectively.

The estimated yield response was five bushels of corn per acre inch of water. The range was from no increase to seven bushels.

Three Category III farmers applied an average of 233 acre inches of water per farm. The range was from 28 to 551 acre inches. The average fixed, variable, and total cost per acre inch of water was lower on farms with Category III systems than on farms with other types of systems.

Cost per sore irrigated -- Farmers with Category II systems applied water to an average of 66 acres of corn, while farmers with Category III and I systems irrigated 42 and 25 acres respectively. The average fixed, variable, and total cost per acre was \$5.79, \$2.59, and \$8.38 respectively for Category III systems, which was the smallest among the three different systems (Table XXXV). The average application of water per acre was 2.6, 6.0, and 5.5 inches with Category I. II. and III systems respectively. The average yield increase per acre ranged from no increase to 50 bushels, but the average yield increase for Category I, II, and III systems was 31, 32, and 26 bushels respectively.

Cost per acre application -- Water was applied an average of 1.1, 2.5, and 1.8 times per acre on farms with Category I, II, and III systems respectively. The estimated yield response per acre application ranged from no increase to 50 bushels, but the average for Category I, II, and III systems was 23, 13, and 14 bushels respectively. Category I systems had an average fixed, variable, and total cost per application of \$11.96, \$2.81, and \$14.77 respectively, which was the largest average cost among the three systems. The close relationship between the per irrigated acre cost and per acre application cost with Category I systems reflected limited use in comparison with the other two systems.

Cotton

Cost per acre inch of water -- Nineteen farmers with Category I systems applied an average of 77 acre inches per farm. The amount ranged from ten to 255 acre inches. The average cost per acre inch was \$8.92. The average fixed cost represented \$7.60 of the average cost (Table XXXVI). The average fixed cost and average cost range was extremely

	Amont				
Type of System	Pr.	F1xed Cost	Variable Cost	Total Cost	Y1eld Response
		Dollars	Dollars	Dellare	Pounds
Average Lion	44	2.6	6 X . I	8.05	MO
Range	10-255		- 4 - 4 - 4	8.19- 0-19- 0-19-	0-100
Per Aore Irrigated					
	8-82 8-82	2.1.2	3.01	20.31 2.81-	0-300
Per Acre Annlication		21+ 40	8	****	
Average Ranza	4 2-53	05.0	2°.¥	15.84	45
	k k	97.28	4-35	99.22	
Aint Sprinkler and Trailer Boomb Par Acre Inch					
	214 20-458	3.42	1. 8. 8.	A.87 2.70-	-452 0-452
)	•	13.22	1.9	14.68	

•

TABLE XXXVI

(þet	
(continu	•
IAXXX	,
TARLE	

Type of	Amount	Fired	Variable	Total	Yield
		Dollars	Dollars	Dollars	Pounds of Lint
Fer Acre Irrigated Average Range	65 8 -102	12.11	4.75	15.96	0-240
Ter Acre Application Average Range	111 8-254	18.9 6 6 18.9 6 19.0 10 19.0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	5-1-4 	21-04 21-04	40 0-240
<u>Surface Sratew</u> ^C Per Agre Inch Average Range	154 26-450	50 C	69	3.36	13
Per Aore Irrigated Average Range	45 14-104	30.9.9 20.9.9 20.9.9	2 8 8 8 2 8 8 2 8 8 2 8 2 8 2 8 2 8 2 8	2.05	0-225

•

TABLE XXXVI (Continued)

Type of	Per	P1xed	Variable	Total	Yleld
System	Para	Cost	Cost	Cost	Reaponse
		Dollars	Dollars	Dollars	founds of Lint
Per Aore Application Average	19	6.72	1.13	3.45	ñ
Range	14-150	20.23	5°60 5°60	2.2	0-525

Each acre was irrigated the equivalent of 1.3 times.

bright farmers applied an average of 3.3 inches of water per acre. Each acre was irrigated the equivalent of 1.7 times.

CEIGht farmers applied an average of 3.5 inches of water per acre. Each acre was irrigated the equivalent of 1.4 times.

wide due to limited use of large capacity systems. Eight of the 19 farmers applied one to 1.5 inches of water per acre on a limited number of acres to germinate the cotton seed. Since this was the extent of irrigation on most of the farms, the entire annual fixed cost was charged to cotton irrigation.

The estimated yield response averaged 23 pounds of lint cotton per acre inch of water. It ranged from no increase to 100 pounds of lint. A yield increase was not expected on the eight farms where only seed germination irrigation was applied. In all cases, the total acres of cotton, which could have been irrigated, did not receive an application, and the seed germination irrigation was halted due to rain.

An average of 214 acre inches of water per farm was applied by eight farmers with Category II systems. The average fixed, variable, and total cost was \$3.42, \$1.45, and \$4.87 respectively. The average yield response per acre inch of water was 21 pounds of lint cotton. The range was from no increase to 46 pounds.

The average number of acre inches of water applied per farm was 154 on farms with Category III systems. The amount per farm ranged from 26 to 450 acre inches. The average fixed, variable, and total cost was \$2.67, \$0.69, and \$3.36 respectively. The estimated yield response

averaged 13 pounds of lint cotton per acre inch of water. The range was from no increase to 112 pounds.

<u>Cost per acre irrigated</u> -- Farmers with Category I systems irrigated 34 acres per farm. The farmers operating Category II and III systems averaged 65 and 45 acres respectively. The average fixed, variable, and total cost was \$17,30, \$3.01, and \$20.31 for Category I systems, and \$9.23, \$2.38, and \$11.61 respectively for Category III systems.

The average water application per acre was 2.3, 3.3, and 3.5 inches of water for Category I, II, and III systems respectively. The farmers applied less water to cotton than to corm. The greatest differences were on farms with Category II and III systems. Farmers with Category II systems averaged an increase of 68 pounds of lint cotton per acre, which was a larger increase than was obtained by users of Category I and III systems.

Cost per acre application -- Water was applied an average of 1.3, 1.7, and 1.4 times per acre with Category I, II, and III systems respectively. The farmers using Category III systems had the lowest cost per acre application, which was \$6.72, \$1.73, and \$8.45 for the average fixed, variable, and total cost respectively.

Farmers operating Category I systems averaged an

increase of 42 pounds of lint cotton per acre application, which was the largest increase among the three systems. However, the difference in yield response was smaller for cotton than for corn.

Soybeane

<u>Cost per acre inch of water</u> -- The average cost per acre inch of water was \$2.58 for Category III, which was the lowest cost among the three systems. However, the average fixed cost was \$1.87 on Category II farms, which was smaller than on Category III farms (Table XXXVII).

The average yield response per acre inch of water was two bushels for all three systems. The range was from no increase to seven bushels on farms using Category II systems.

Cost per sore irrigated - Farmers using Category I. II, and HII systems averaged 17, 36, and 22 irrigated acres. The average fixed, variable, and total cost per sore was \$9.02, \$4.10, and \$13.12 respectively on farms with Category I systems. The highest fixed and total cost system was in Category III, which averaged \$13.38 and \$15.21 for the average fixed and total cost respectively. The average variable cost per sore was \$1.83 on farms using Category III systems, which was the lowest cost

	Amount				
Type of Svatem	Per	P1xed Cost	Variable	Total	Yleld Response
		Pollare	Dollars	Dollars	
Portable 2100 and Sprinkler Per Acre Inch					
Average	42	3.75	1.63	5.20	~
Range	10-105	1.20-	-69-	1.95	9-6
Per Aere Irrigated		12.01	66.6	13.20	
Average	17	9.02	4.10	13.12	4
Range	Ĩ	4.41-		7.61-	612
Ser Acre Application		20.07	A.04		
	19	8.06	3.66	11.72	M
Range	Î	4.41-	10.90	7.61-	0-12
<u>Alant Sprinkler</u> and Trailer Boom ^b					
er Acre Inch Avanase	163	1.87	1-06	10.01	Q
Range	22-420	30	-69-	100	2-0
		cn•1	+ * +	5	

TABLE XXXVII

	Amount				
System		Cost	Variable Gost	Total	Tield
The form fundaments		Dollars	DOLLARS	Dollars	
Average	36	9.4	1.7	13.21	G
	16-70	48.2	8.05	9.89-	0-12
Per Acre Application					
Average	62 16-140	4.88 4.33	2.76	39	5
		8°.8	4.28	10.93	
Surface States ^c Per Acre Inch					
Average	130	2-27	R	2.58	~
		8.96	18	6.64	5
Average	22	13.38	1-83	15.21	12
			1.95	22.20	61-0

TABLE XXXVII (Continued)

TABLE XXXVII (Continued)

va mena na mana va vista a tri ca na ca van a van a van a van a vista a deva a deva a deva deva deva deva de	Amount		and a second		
Type of	10	Fixed	Verledig	Total	Yleld
System	Para	COBL	Cost	Cost	Reeponse
	v Bandarda - Martina - La colo - Adalanda - Adalanda - Martina - Adalanda - Adalanda - Adalanda - Adalanda - A	Dollare	Dollers	Dollars	
Per Acre Amilication					
Average	6	10.06	1.38	11.44	٩
Range	19-53	2.63-	1.14-	3.91-	0-15
÷		20.25	1.95	22.20	

⁸ Five farmers applied an average of 2.5 inches of vater per acre. Each acre was irrigated the equivalent of 1.1 times.

brour farmers applied an average of 4.5 inches of water per acre. Each sore was irrigated the equivalent of 1.7 times. 1.1.4

^CFour farmers applied an average of 5.9 inches of water per acre. Each acre was irrigated the equivalent of 1.3 times.

azong the three types.

The estimated yield response per acre ranged from an average of four to twelve bushels on farms with Category I and III systems respectively. The widest variation occurred on farms with Category I systems, where the range was from no increase to 19 bushels.

Cost per acre application -- Water was applied an average of 1.1, 1.7, and 1.3 times per acre on farms with Category I, II, and III systems respectively. The average number of acre applications per farm was 19, 62, and 29 on farms with Category I, II, and III systems respectively. The lowest average cost was \$7.64, which occurred on farms with Category II systems. The average variable cost on farms with Category III systems was \$1.38, which was lower than the other two systems.

The estimated yield response per acre application ranged from three bushels on farms with Category I systems to nine bushels on farms with Category III systems.

II. RETURNS FROM IRRIGATION

In general, returns attributable to irrigation result from increased yields or increased quality of product. Since this study was concerned primarily with field crops, additional returns reflected increased yields. The variation in yield response from irrigation was extremely wide in 1959. Yields on irrigated land were substantially higher than on non-irrigated fields in several cases. In other instances, no yield increase was obtained from irrigation. The variation was a result of many factors. Among them were differences in soil types, planting rates, planting dates, time of irrigation, fertilizer applications, and cultural practices. If all of the farming practices except irrigation had been controlled, the effect of irrigation could have been determined precisely. Since this procedure was not practical for this study, the effect of irrigation was estimated under general farming conditions. An estimate for one year limite the reliability of the data.

In addition to the above factors, normal variations in temperature and amount and distribution of rainfall affect the yield response from irrigation. In general, 1959 was a near normal year in regard to amount and distribution of rainfall (Table XXXVIII). The amount was slightly above the long time average in May and September, and below normal in June and August. In June, the rainfall was 1.07 inches less than the long time average. This was the greatest deficit in the five month period. Rainfall distribution also has an important effect on yield responses from irrigation. The amount and distribution of rainfall

TABLE XXXVIII

AVERAGE TEMPERATURE AND PRECIPITATION, MAY-SEPTEMBER, FOUR SOUTHEASTERN MISSOURI COUNTIES, 1959

				Nonths		
-	• • •	May	June	ATNP	August	September
				Precipitat.	lon	
				(inches)		
Bootheel Area						
Average		62.4	2.85	3.10	2.95	4.44
re from	Normal	.18	- 1.07	8.	15	37.7
Normal.		4.21	3.92	3.10	3.10	3226
Six Stations ^a						
Average		4.09	2.99	3.03	3.10	4.57
-	Normal.	• .13	93	10	8.	1.31
				Temperatu	2	
			e	Degrees Fahre	Pahrenhelt)	
Bootheel Area						
Average		72.2	75.1	6-11	79.6	72.9
re from	Normal	4.3	- 2.3	1 2.7	4.	1.0
Normal		61.9	77.4	80.6	79.6	71.9
Six Stations ^a						
Average		72.5	75.3	78.2	7.67	73.3
57	Normal	*	- 2.1	- 2.4	ŝ	5.4
1	1	Malden, Caruthersville,	sville, Por	Portageville,	Siketon E	Elkeston Experimental
Fara, and Charle	eston.					

Source: Climatological Data, Missouri, Volume LXIII, Number 4-9, United States Department of Commerce, Weather Bureau, 1959.

at six selected stations in the sample area were analyzed (Table XXXIX). In May, the Malden Station reported only a trace of precipitation up to May 11, while the Portageville Station recorded .67 of an inch during this same period. Precipitation was limited throughout the area the first ten days in May.

The relationship between time of application of irrigation water and the estimated yield increase per acre was studied in an effort to explain some of the yield variation. The estimated yield increase of corn and the time of application were plotted (Figure 4). In general, the highest yield increase resulted from water application near June 15 and July 1. The data in Table XXXIX show that precipitation from June 16-20 and from June 26-30 was low. Therefore, it would appear that the crop was in need of moisture during this period.

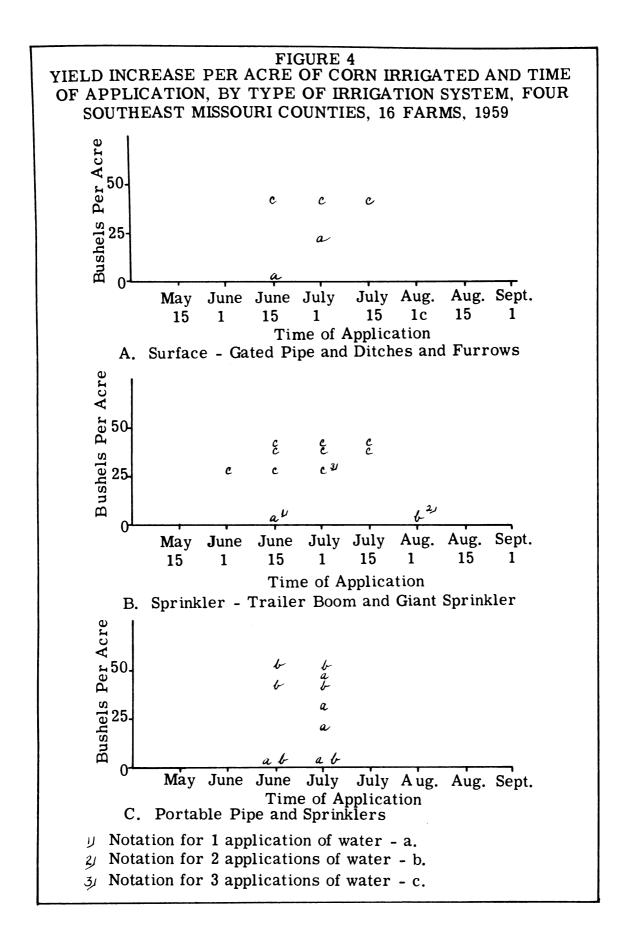
Figure 5 indicates that irrigators who applied water to cotton early in May got no yield increase from the one application. The majority of those who applied water near July 15 received a substantial increase.

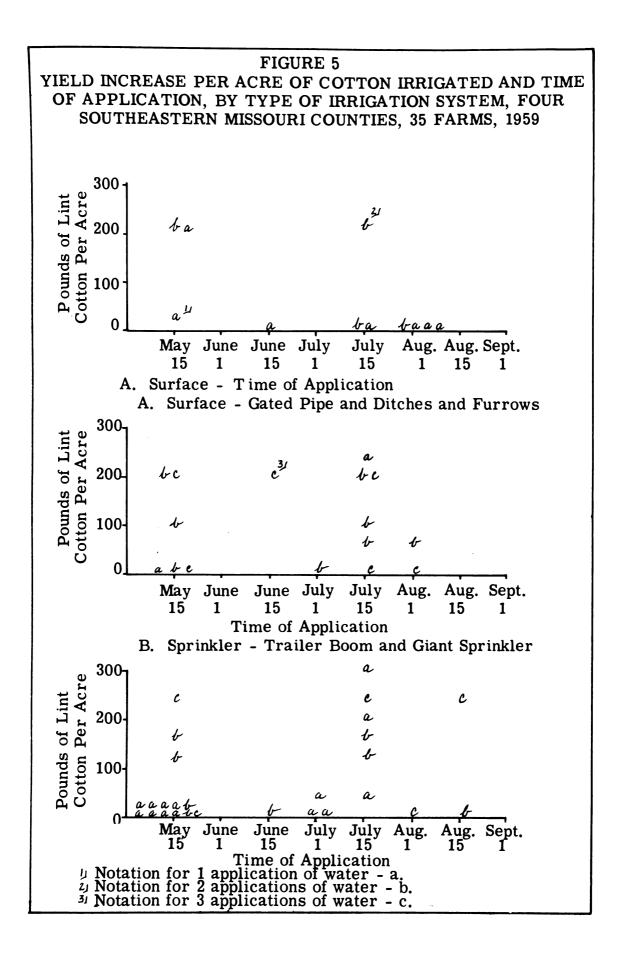
Figure 6 indicates that water applied to soybeans near July 1 and 15 resulted in substantial yield increases. The farmers who applied water near August 15 also received yield increases, but not as large as those irrigating earlier in the growing season.

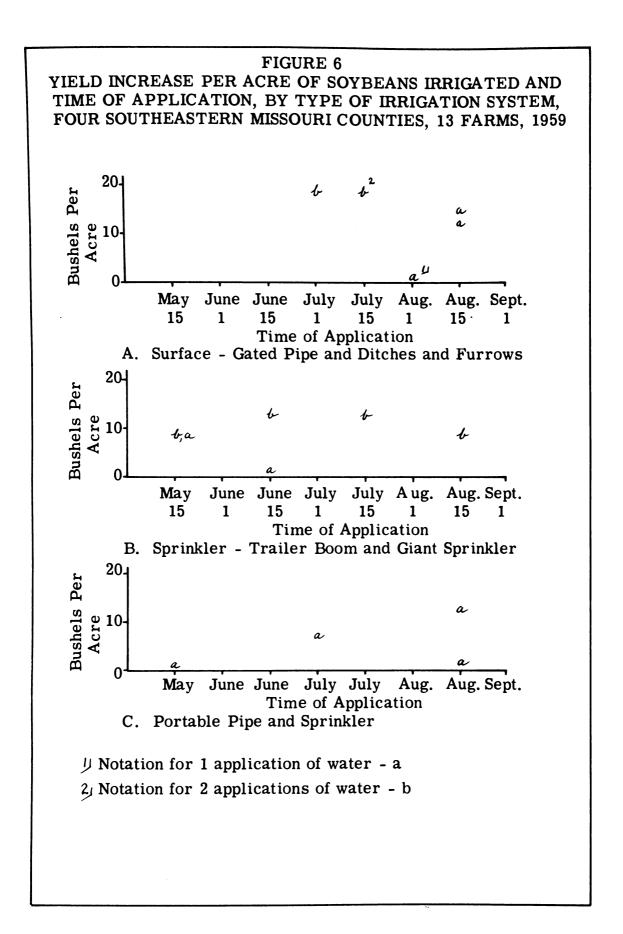
TABLE XXXIX

PRECIPITATION AT SIX LOCALITIES, MAY-AUGUST, FOUR SOUTHEASTERN MISSOURI COUNTIES, 1959

Localities Caruthersville Charleston Kennett Malden	1-5	6-10	21.11				
aruthersville harleston cennett falden	20.	the second s	21-11	16-20	21-25	26-30(31)	Total
aruthersville harleston tennett alden	-05			Kay	-		
harleston lennett lalden		10	1.85	• 75	5	•89	3.96
(ennett (alden		.46	1.37	.9.	.56	1.00	4.34
(alden	1	•04	.66	- 54	.65	1.74	3.63
		2 .	1.20	.52	.87	***	٠
Portageville	.10	-57	1.33	•64	た	1.93	4.91
Sixeston ^b	.18		1.7	17.	40	1.00	
Total	. 30	71.17	8.12	1.11	3.9	6.9	24.54
Average	.05	61.	1.35	· 69	.66	1.15	
				June			
Caruthereville	.85	.85	1.37	!	49.	- 45	4.16
Charleston	6.	.75	1.25	•	22.	.08	
Cennett	.07	1.01	.12	•	1.19		1
Malden	.67	1.26	6-	1	1.24	.06	
Portageville	.05	2.03	3.	•	64.	10	2.50
Sigeston ^b	50	1.36	11.		1.20	.03	
Total	1.69	7.26	2.89	.	1:12	10	
Average	5	1.21	2.	1	16.		2.99
				July			
Caruthersville	.06	1.01	2.			.03	
Charleston	.91	•	•	.63	1.00	40	3.03
Sennett	00	1	.02		1.50	o.	101
Waldan	69	1		YC	i di m		


TABLE XXXIX (Continued)


	Inch	Inches		
11-15	16-20	21-25	26-30(31)	Total
·02	2.4	-51	5.0	2.46
22.	26-1	1	200	18:51
•02	• 33	1. 56	.15	3.03
	Ausu	भ्र	1.30	
•	8	1	1.23	1.53
-12	- 42	•	2.50	
1	1.39	1	1.00	
1	1.35		1.16	
·F.	٩ř	• •	12.5	影中
0.0	62.		1.57	3.10
•	12	-12 4-15 -12 4-76 -02 -79	- 4.	- 14 .


ar represents trace of precipitation.

bSikeston Experimental Farm.

Source: Climatological Data, Missouri, Volume LXIII, Number 4-9, United States Department of Commerce, Weather Bureau, 1959.

Procedures Used to Determine Net Return and Return Above Variable Cost

The average fixed, variable, and total cost computations, as shown in Table XXXIII, XXXV, XXXVI, and XXXVII, did not include expenses of harvesting the increased yield attributable to irrigation. The purpose in that section of the chapter was to estimate the cost of applying water by different types of systems. Here the purpose is to indicate the relationship between total costs and total returns attributable to irrigation. Harvesting costs are included.

The average estimated yield response, shown in the above tables, was multiplied by the average prices received for the products from September-December, 1959 to compute the gross returns attributable to irrigation. The prices used were \$1.00 per bushel for corn; \$1.95 per bushel for soybeans, and \$0.322 per pound for lint cotton.

The adjusted gross returns were equal to gross returns minus harvesting costs, which were \$0.15 per bushel for picking and shelling corn; \$0.30 per bushel for combining soybeans, and \$2.00 per hundredweight for picking seed cotton.

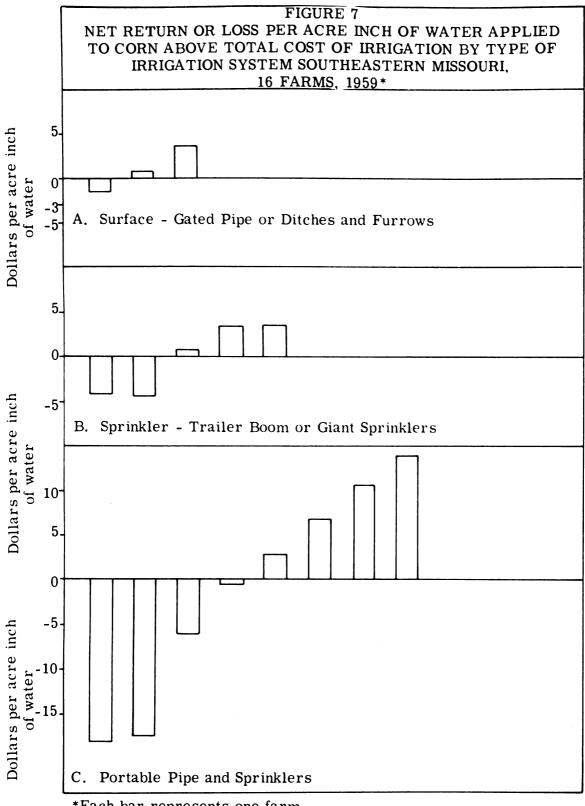
The net returns and returns above average variable costs per acre inch, per acre irrigated, and per acre application of irrigation water were computed for the three different systems. Net returns to irrigation were equal to total revenue minus total costs or adjusted gross returns minus average costs. The returns above average variable costs were equal to the adjusted gross returns minus the average variable costs. Greater insight into the relationship between costs of and returns from irrigation in 1959 was obtained by analyzing both the net returns and the returns above average variable costs, than if either had been analyzed alone.

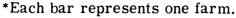
III. IRRIGATION RETURNS FOR SPECIFIC CROPS

<u>Per acre inch of water</u> -- The net returns were positive for the three different systems of water distribution used in the area. The average net returns per acre inch of water applied ranged from \$4.07 for Category I to \$2.06 for Category II (Table XL).

The net returns on individual farms ranged from -\$18.47 to +\$13.91 (Figure 7 and Table A-II, in the Appendix). Fifty, 60, and 67 per cent of the farmers who used Category I, II, and III systems received positive net returns from corn irrigation. Forty-four per cent of the corn irrigators did not receive returns from irrigation large enough to pay the total irrigation costs (Table XLI).

TABLE XL


NET RETURN AND RETURN ABOVE AVERAGE VARIABLE COST PER ACRE INCH OF WATER, PER ACRE IRRIGATED AND PER ACRE APPLICATION OF CORN, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 16 FARMERS, 1959


	Type	of Irrigation	System
Irrigation, Cost	Surface System	Giant Sprinkler and Trailer Boom ^b	Portable Pipe and Sprinkler
	(Dollars)	(Dollars)	(Dollars)
For Acre Inch of Water Adjusted Gross Return Average Cost Not Return Average Variable Cost Return Above Average Variable Cost		4.25 2.19 + 2.06 .98 + 3.27	$ \begin{array}{r} 10.20 \\ \underline{6.13} \\ \div 2.07 \\ 1.16 \\ + 9.04 \end{array} $
	A 1414		T 28.97
Per Acre Irrigated: Adjusted Gross Return Average Cost Net Return Average Variable Cost Return Above Average Variable Cost	22.10 <u>3.38</u> +13.72 2.59 +19.51	27.20 <u>13.20</u> +14.00 5.87 +21.33	26.35 <u>16.01</u> +10.34 3.04 +23.31
Per Acre Application: Adjusted Gross Return Average Cost Net Return Average Variable Cost Return Above Average Variable Cost	$ \begin{array}{r} 11.90 \\ \underline{4.59} \\ + 7.31 \\ 1.42 \\ +10.48 \end{array} $	$ \begin{array}{r} 11.05 \\ 5.21 \\ + 5.34 \\ 2.32 \\ + 8.73 \end{array} $	23.80 <u>14.77</u> + 9.03 2.81 +20.99

a Three farmers.

brive farmers.

^oEight farmors.

	TWC
	ACRE
	020
	04500
TABLE XLI	ROLLTULAEL
	TAPAT.
	ABAR
	244

NET RETURN ON LOSS ABOVE FOTAL IRRIGATION COSTS PER AGRE INCH OF WATER, CORN, BY TYPE OF IRRIGATION SYSTEM, POUR SOUTHEASTERN MISSOURI COUNTIES, 16 PARNERS, 1959

		Trpe of Irrigation System	atton Sreten	
Return Above Tetal Costs Dollars Per Acre Inch	Portable Pipe and Sprintlers	diant Sprinklers and Trailer Boome	Gated Fipe and Ditches and Pirrova	Per Cent of Farms
0 to	0	ł		13
3		•	•	1
	-4	1	•	9
3 1	-	N	-	5
1 50	-1	m	Q	2
20	-1		1	9
+10.00 to +14.99	~	1	•	17
Total	œ	ſ	m	100

Thirty-seven per cent received net returns from \$0.01 to \$4.99 per acre inch of water above the average costs. The positive net returns were from \$5.00 to \$14.99 for 19 per cent of the corn irrigators.

The returns above average variable costs per acre inch of water were \$9104, \$3.27, and \$3.78 for farmers using Category I, II, and III systems respectively (Table XL). On individual farms, the returns above average variable costs ranged from \$2.20 to \$18.13 (Figure 8 and Table A-II). Sixty-three, 60, and 67 per cent of the farmers employing Category I, II, and III systems received positive returns.

Thirty-eight percent of the corn irrigators did not cover their average variable costs (Table XLII). An additional 37 per cent received returns above average variable costs between \$0.01 and \$4.99. The returns above variable costs ranged from \$15.00 to \$19.99 for six per cent of the farmers.

<u>Yield increase required to pay irrigation costs</u> --The yield increase necessary to pay total irrigation costs ranged from 1.7 to 13.5 bushels of corn per acre inch of water (Figure 9 and Table A-II). The wide variation resulted from limited employment of some of the systems. Average fixed costs per acre inch of water applied were extremely

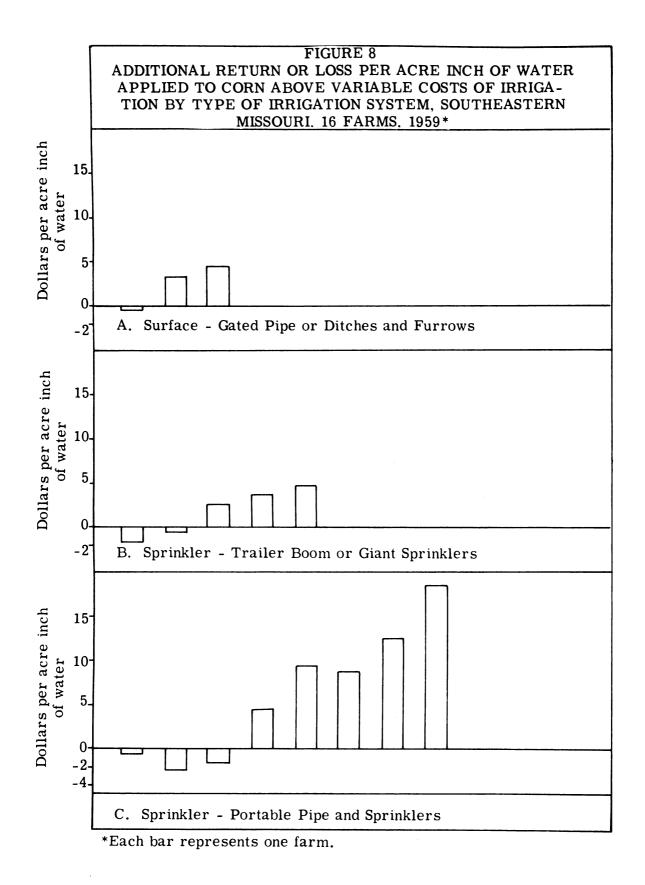
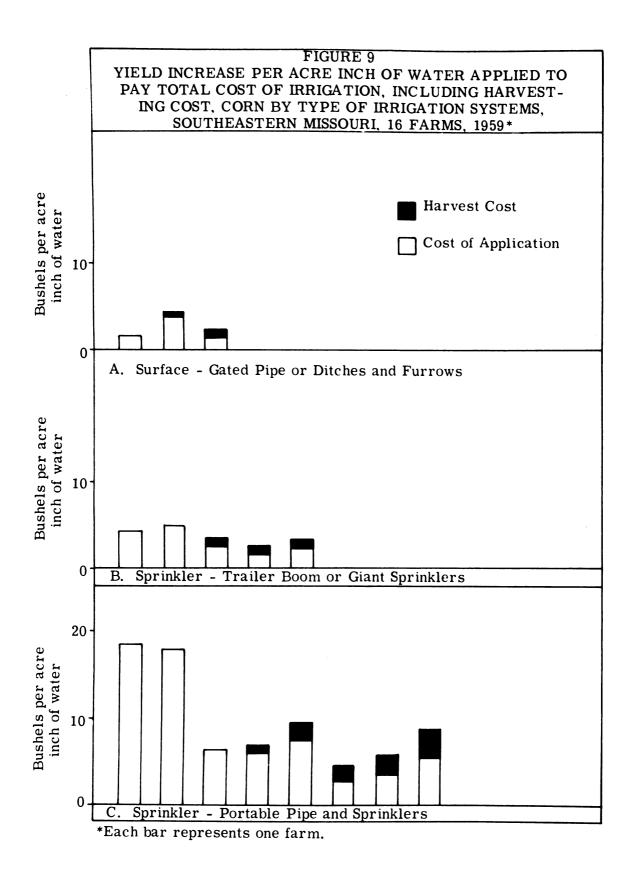
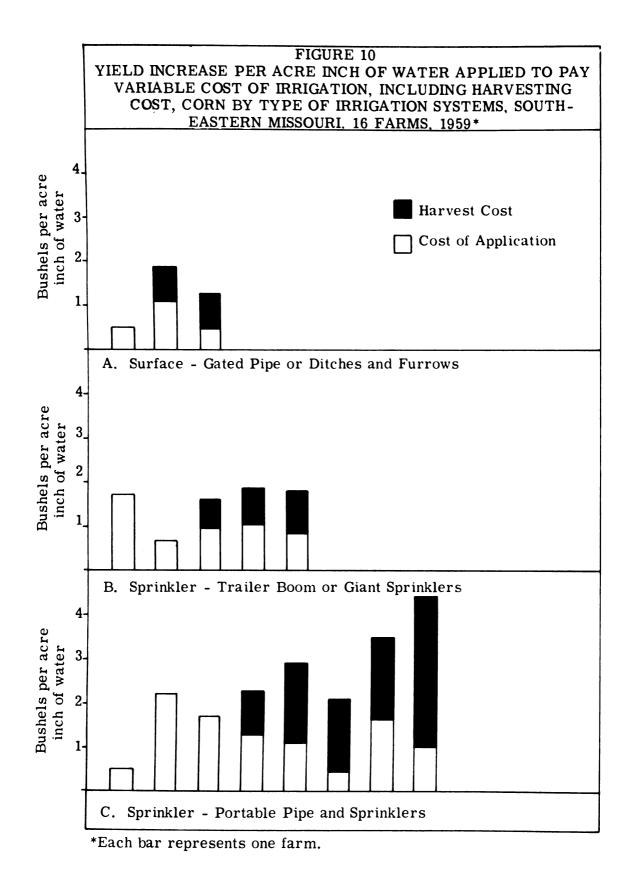



TABLE XLII

ADDITIONAL RETURN OR LOSS ABOVE AVERAGE VARIABLE COSTS FER ACRE INCH OF WATER, CORN, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 16 PARKERS, 1959

		Type of Irrigation System	Atton Srates	
	Portable	Glant Sprinklers	Gated Pipe and Ditches	fer cent
Return Above Variable Costs	Pipe and Sprinklere	and Trailer Boome	and Purrova	of Farma
Dollars Per Acre Inch				
*	n	¢¥:		ŝ
01 to + 4.	-1	m	Q	8
80 to + 9.	~	•	•	2
	H	1		9
00 to +19.	ᅯ	*	•	9
Total	Ø	ŝ	m	100


high for systems which received limited usage in 1959. The increased yield requirement ranged from three to 19, two to five, and one to four bushels for Category I, II, and III systems respectively.

The yield increase required to pay average variable costs was much less than the increase necessary to pay total costs.

Since average variable costs were defined as operating or use cost, this was expected. Category I, II, and III systems required from one to four, one to two, and one to two bushels of corn respectively to pay average variable costs (Figure 10 and Table A-II).

<u>Per irrizated acre</u> — The net return per irrigated acre of corn averaged \$10.34, \$14.00, and \$13.72 for farmers using Category I, II, and III systems respectively (Table XL). The net return on individual farms ranged from -\$55.41 to \$27.82 per irrigated acre (Figure 11 and Table A-III). Farmers using Category I systems had both the highest and lowest net return per acre.

Forty-four per cent of the corn irrigators failed to recover their water application costs. Twenty-six per cent lost from \$20.00 to \$55.00 per acre (Table XLIII). On the other end of the distribution, 31 per cent obtained positive net returns per acre ranging from \$20.00 to \$29.99.

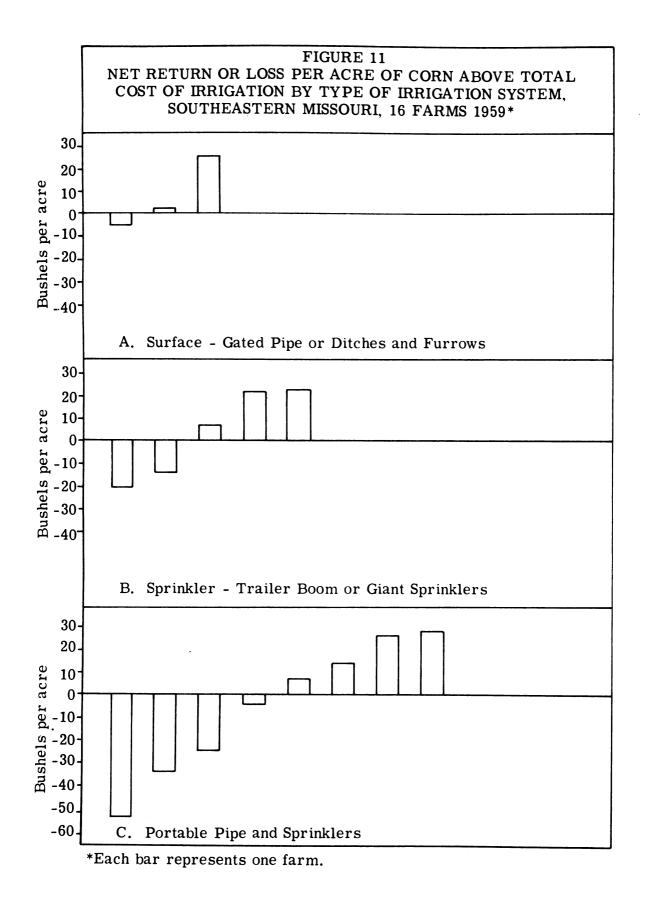


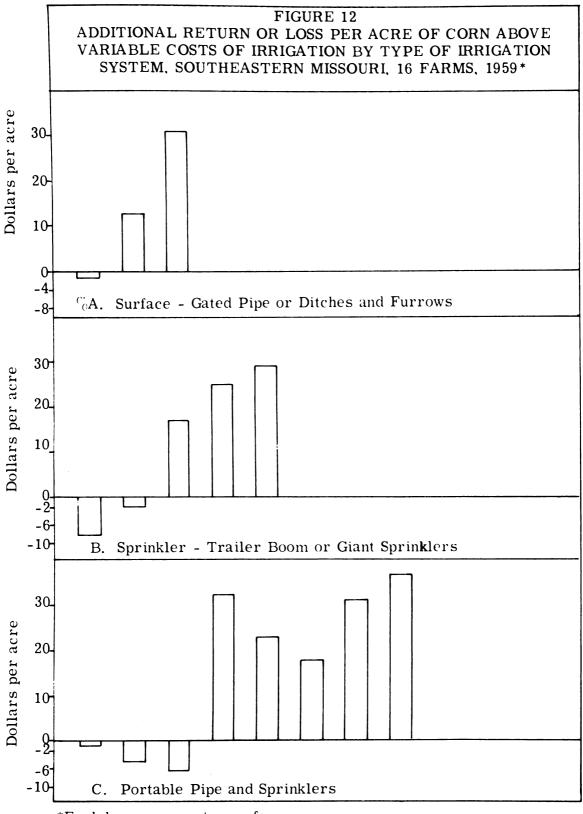
TABLE XLILI

NET RETURN OR LOSS ABOVE TOTAL IRRIGATION COSTS PER IRRIGATED ACRE OF CORN. BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 16 FARMERS, 1959

			Type of Irrightion	ization System	
		Portable 71pe and	Gient Sprinklers and Trailer	0	Per Cent
Total Costs Dollars Per Acre		20141151	2000 A	and Purrovs	of Paras
8	Ø	80		•	S.E
00 to	.9	-	et		12
00 to -1			*		
00		*	-	1	9
- 00 to -				e-1	5
- 01 to -	66.	-1		•	. 0
.01 to +	66.		•	-	0
.00 to	.93	-	-	1	13
.00 to	.99			•	10
00 60	. 33		•	1	1
00 to	.99	1	C	-	18
-	.93	a	•	•	57
Total		ŝ	IN	m	100

173

"-\$35.50 and -\$55.41.


The return above average variable costs for Category I, II, and III systems averaged \$23.31, \$21.33, and \$19.51 per acre respectively (Table XL). On indidivual farms, the range was from -\$8.47 to \$36.25 (Figure 12 and Table A-III).

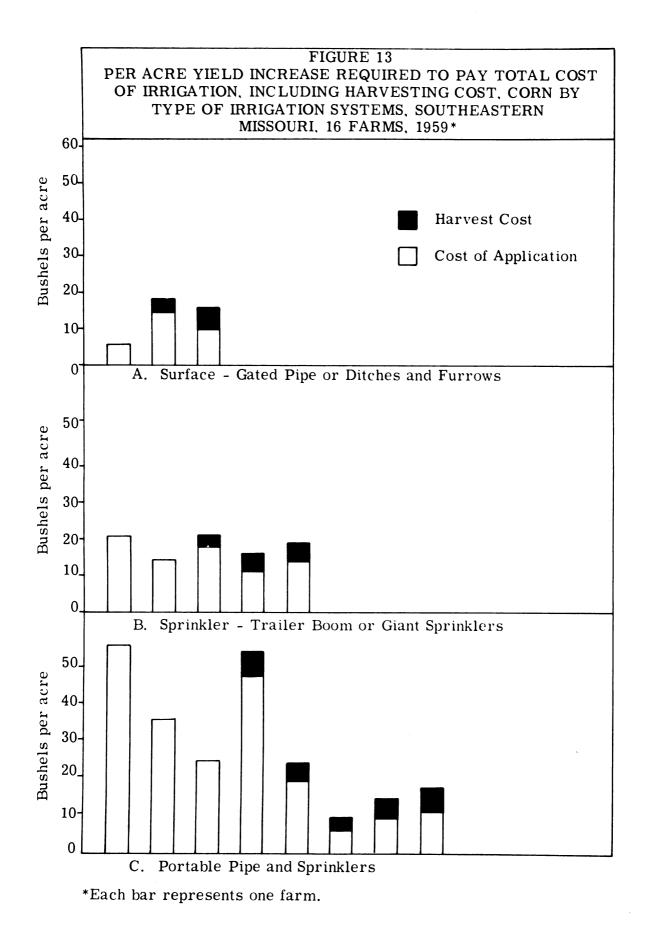
Thirty-seven per cent of the farmers applying water to corn failed to recover variable irrigation costs. The losses ranged from \$0.01 to \$9.99 per acre (Table XLIV). Sixty-three per cent obtained yield increases large enough to pay average variable costs and all or a share of the fixed costs. Twenty-five per cent had a return of \$30.00 or more above the average variable costs.

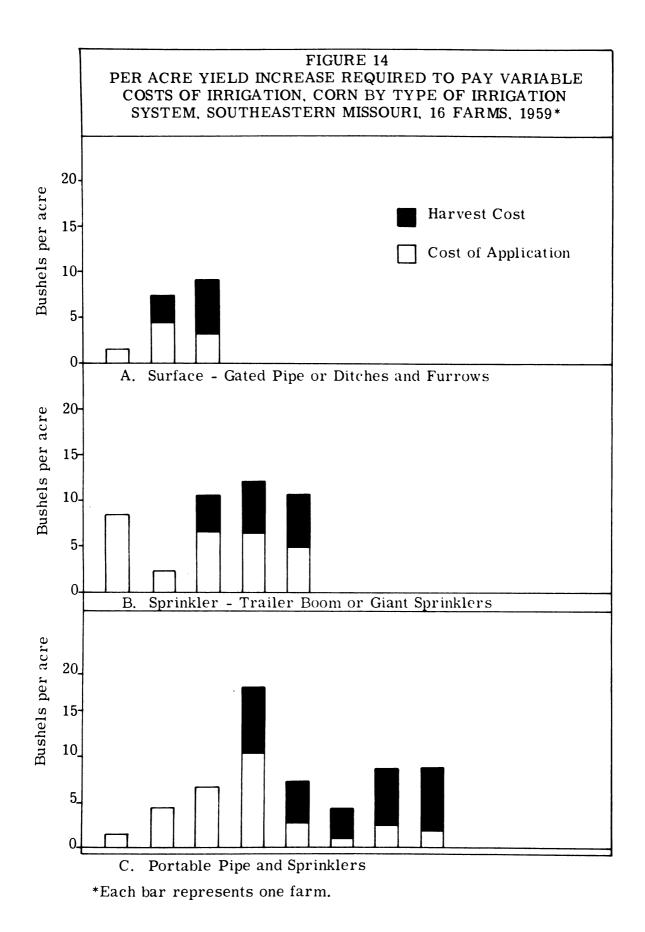
Yield increase required to pay irrigation costs --The yield increase needed to pay total costs of irrigation ranged from five to 55 bushels. (Figure 13 and Table A-III). Limited system use was the major cause of the wide variation.

The yield increase needed to pay average variable costs ranged from two to eighteen, two to twelve, and one to nine bushels of corn for Category I, II, and III systems respectively (Figure 14 and Table A-III).

<u>Summary of corn irrigation</u> -- Average net returns per acre inch and per irrigated acre were positive for farmers using all three systems in 1959. The average net

*Each bar represents one farm.


TABLE XLIV


ADDIFIONAL RETURN OR LOSS ABOVE AVERAGE VARIABLE COSTS FOR IRRIGATED ACRE OF CORM, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 16 FARMERS, 1959

	and the second se	ションはいましょう。		
Return Above Variable Costs	Portable Pipe and Sprinklers	Glant Sprinklers and Trailer Boome	Gated Pipe and Ditches and Purrows	Per Cent
Dollars Per Aoro				
3	7	-	•	0
03		1	- e	10
+ 0.01 to + 4.99			1]
\$	1	*		
3	•	1	-	6
\$	-1	T	1	- 0-
3	-		1	
0,2		-	•	4
0.01778	찌	•	24	-12
Total	60	in	M	100

^a+\$31.32, \$32.30, and \$36.25.

b+\$30.99.

returns per irrigated acre averaged \$10.34, \$14.00, and \$13.72 for farmers using Category I, II, and III systems respectively.

When returns on individual farms were analyzed, it was found that 44 per cent of the operators did not receive enough increase from irrigation to pay the total cost of applying water. However, 62 per cent of the corn irrigators obtained enough return to equal or exceed the average variable costs. Since only 62 per cent obtained a yield increase large enough to pay variable costs, the conclusion was reached that the actual yield increase was less than expected on 38 per cent of the farms. Otherwise, the 38 per cent would not have applied water to corn in 1959.

Cotton

Per agrs inch of water -- Net returns averaged -\$1.93, \$1.23, and \$0.74 for farmers using Category I, II, and III systems respectively (Table XLV). Average net returns per acre inch were smaller for cotton than for corn. Farmers using Category I systems got average returns that were negative in 1959. This means that the average farmer employing a Category I system in 1959 had a loss of \$1.93 per acre inch of water applied to cotton. The primary reason was limited system use during the year. In many cases, a small acreage of cotton was charged with a large

,		
	HE.	ł
	WATER,	NOLIVEL
	Ô	N N N
	NONI	6
	ACRE	and a
	к Ц	R
	5033	COTTON.
	XET RETURN AND RETURN ABOVE AVERAGE VANIABLE COST PER ACRE INCH OF WATER, PER	ACRE IRRIGATED, AND PER ACRE APPLICATION, COTTON, BY TYPE OF IRRIGATION
	ERAGE	APLI
	2	C H
	NOSA	E de
	TURN	ARD.
	2	G 32
	UNV	RRIGAT
	7UP8	EXT I
	ke Ke	ACR
	1 I I	

TABLE XLV

SYSTEM, FOUR SOUTHEASTERN RISSOURI COURTIES, 35 PARKERS, 1959

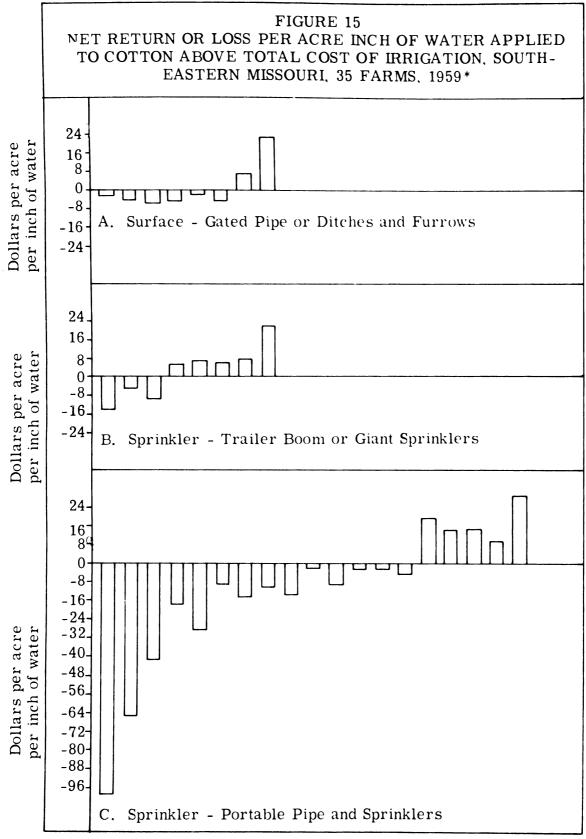
		igation	System
	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 lant Sprinkler	Portable
Irrigation, Cost	Burface	and Traller	pup edit
and Return	Svetena	Roomb	Sprinkler
	(bollare)	(Dollars)	(Dollars)
Per Acre Inch of Water:			
Adjusted Gross Return	4.10	6.20	6.93
Average Cost	3.36	4.87	0.92
liet leturn	***	+ 1. 33	101
Average Variable Cost	69	1.45	1.32
Return Above Average			
Variable Coat	+ 3.41	+ +*75	+ 5.67
Der Gora Trutzatod.			
Adjusted Pross Return	14.18	20.08	15.65
Average Cost		15.96	20.31
Set Return	+ 2.57	1.1	29.4.
Average Variable Coat	5.98	4.75	3.01
Return Above Average			
Variable Cost	+11.80	×12.43	+12.64

TABLE XLV (Continued)

	in the second		System
Irrigation, Cost and Naturn	Surface	Sprinkler and Trailer Boom	Portable Fipe and Sprinkler
	(Dollars)	(Dollars)	(Dollars)
<u>Per Acre Application</u> : Adjusted Gross Return	10.40	11.81	12.39
Arerage Cost Net Return	8 45 + 1- 05	1	10.1
risble	1.73	2.79	in a
variable Cost	+ 8.67	+ 9,02	+10.05

"Zight farmers.

balent famers.


Cultuteon farmers.

share of the annual fixed costs. In fact, eight of the 22 cotton irrigators made only one application of water to a limited cotton acreage during the first part of May. None of these men obtained a yield response.

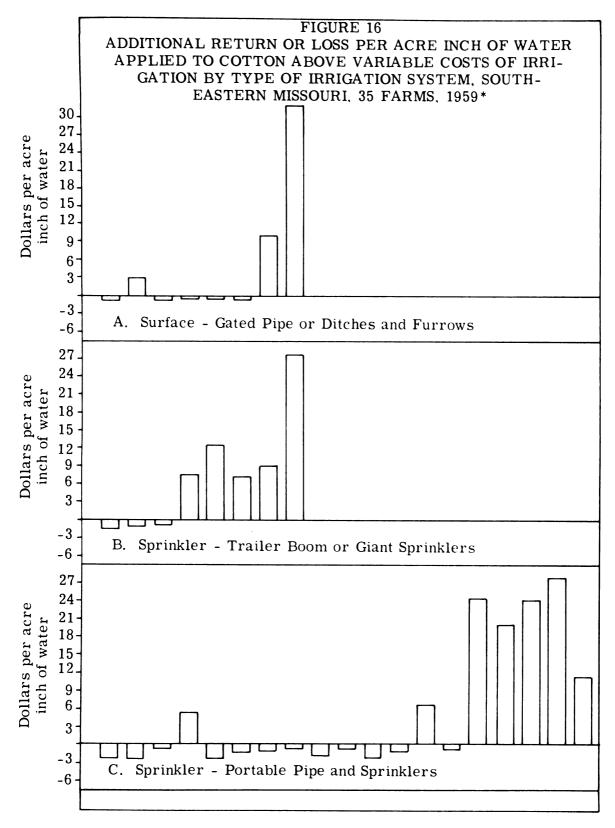
The net returns per acre inch of water on individual farms ranged from -399.22 to \$25.61 (Figure 15 and Table A-IV). Sixty-five per cent of the cotton irrigators did not obtain a yield increase sufficient to pay total irrigating costs (Table XLVI). Thirty-five per cent obtained a positive net return. Nine per cent of the 35 per cent received net returns ranging from \$20.00 to \$29.99 per acre inch of water applied.

Returns above variable costs averaged \$5.67, \$4.75, and \$3.41 for farmers employing Category I, II, and III systems respectively (Table XLV). When average fixed costs were not considered, average returns from irrigation more than paid the average variable costs for all three systems. On individual farms, the returns above average variable costs ranged from -\$2.20 to \$32.17 (Figure 16 and Table A-IV). Thirty-seven, 62, and 29 per cent of the farmers cmploying Category I, II, and III system respectively obtained positive returns above average variable costs.

Fifty-seven per cent of the cotton irrigators did not obtain a yield increase large enough to pay average variable costs (Table XLVII). Fourteen per cent obtained

*Each bar represents one farm.

.


TABLE LXVI

HET RETURN OF LOSS ABOVE TOTAL IRRIGATION COSTS PER ACRE INCH OF WATER. COTTON, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES. 35 FARMERS. 1959

		Type of Irrel	Type of Irrigation System	
Return Above	Portable	Sprinklers Sprinklers and Prailer	Gated Pipe and Ditabes	Par Cant
610	Sprinklers	Boone	and Purrove	of Parse
DOLLARS Per				
Acre Inch				
8	øć	•	•	ŝ
00 50		•		~
00 to -24.		•	٠	•
00 to -19.	Cu	*		Q
00 to -14.	N	ert	•	Ø
00 to - 9.	m	1	-1	14
01 60 -	m		ŝ	36
01 to + 4.	٠	ŧ	1	*
80 to + 9.	1	4	н	17
80 to +14.	ŝ	1	ł	0
00 to +19.	r-1	*	*	M
00 to +24.	•	H	щ	0
to +29.	ᅯ		•	Ч
Total	61	Ô	Ø	100
where we are the second second		\$	P	

184

^a-\$41.57, -65.90, and -99.22.

*Each bar represents one farm.

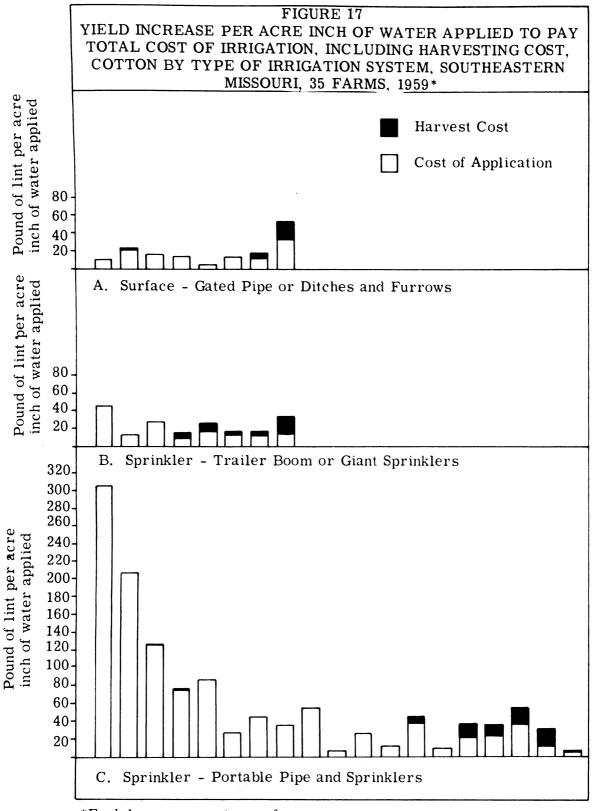
TABLE XLVI

ADDITIONAL RETURN OR LOGS ABOVE AVERAGE VARIABLE COSTS PER AGRE INCH OF WATER, COTTON, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 35 PARMERS, 1959

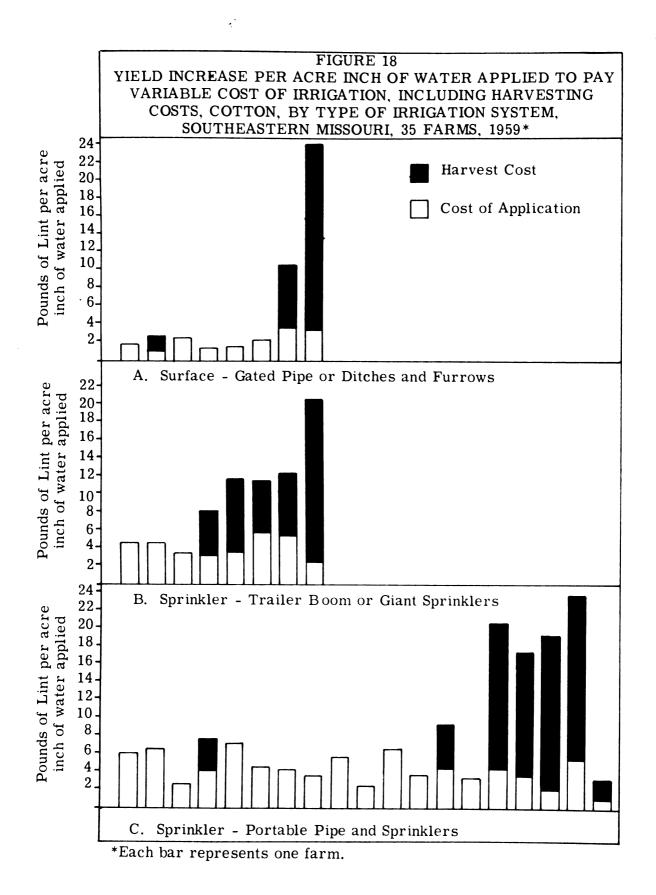
		Type of Irrigation System Glant	on System	
Return Above Variable Costs Dollars Fer Acre Inch	Pipe and Sprinklers	portuktors and Trailler Booss	and Ditohes and Purrove	Per Cent of Farms
	~	٣	ŧ,	ř
	-			~~
+ 5.00 to + 9.99	(1	m	1	1
93 QC	gand	-	•	v v
00 60	11	•	•	5
00 to	-1	•	•	1
00 to	Q	-4	*	(7)
00 and	•	•	-1	Ч
Total	19	¢	0	100

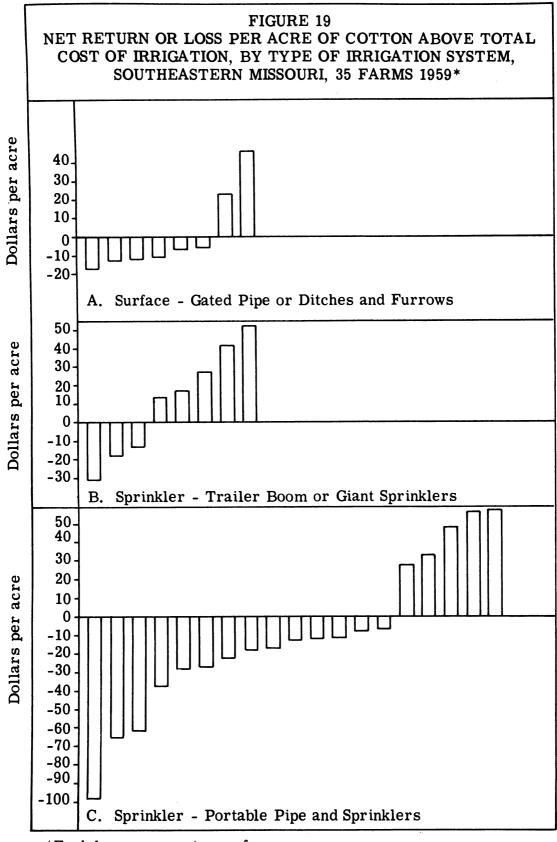
*\$32.17.

returns from \$20.00 to \$32.17 above average variable costs.


Yield increase required to pay irrigation costs --

The yield increase needed to pay total irrigation costs per acre inch of water ranged from 3 to 308 pounds of lint cotton on individual farms (Figure 17 and Table A-IV). The required increase for farmers with different types of equipment was from 5 to 308, 8 to 45, and 3 to 52 pounds of lint for Category I, II, and III systems respectively.


The yield increase needed to pay operating or variable costs ranged from 3 to 24 pounds of lint cotton, when harvesting costs were included. An increase of 1 to 8 pounds would pay average variable costs per acre inch of water applied by all systems, if harvesting costs were excluded (Figure 18 and Table A-IV).


Per irrigated agre -- Net returns per irrigated acre of cotton averaged -\$4.66, \$4.12, and \$2.57 for farmers employing Category I, II, and III systems respectively (Table XLV). On individual farms, the net returns ranged from -\$99.22 to \$55.63 (Figure 19 and Table A-V). Individual farmers using Category I systems had both the highest and lowest net return per acre.

Fourteen per cent of the cotton irrigators had net losses of \$30.00 or more per sore (Table XLVIII). An

*Each bar represents one farm.

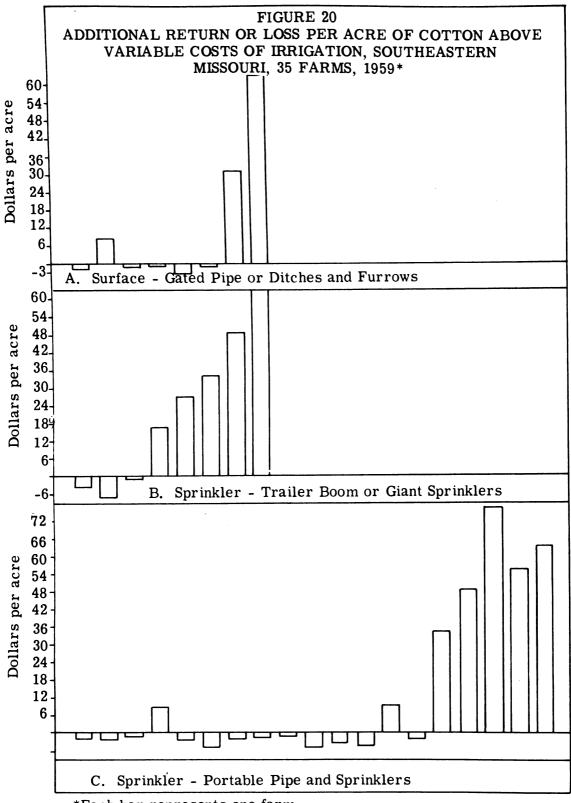
*Each bar represents one farm.

TABLE XLVIII

NET RETURN OR LOSS ABOVE TOTAL IRRIGATION COST PER IRRIGATED ACRE, COTTON, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTREN MISSOURI COUNTIES, 35 FARMERS, 1959

	ed fa	of Irrigation System Glant	System	
Return Above Total Conta	Portable Pipe and Sorintlare	Sprinklers and frailer Boom	dated Pipe and Ditches	er Cent
14 -			1	1
00 or M	48	qT		14
10	00			Ø
00 to -24.	1		*	m
.00 to -19.	0	1	М	I
.00 to +14.	5	rt	m	8
8 1 3	1		N	6
,01 to - 4.	• 66	\$	•	ŧ
.01 to + 4.	-	•	1	
.00 to + 9.	1 I		•	m
.00 to +14.	•	-	•	n
.00 to +19.	•	-1		m
.00 to +24.	•	•	r-1	m
.00 to +29.		4	•	9
	<u>क</u>		2	1001
8-037.15	5, -62,90, and -99,22	.22.		
142 tes	1. +40-78. +55.63.	and +57.22.		

additional 51 per cent had net losses which ranged from \$0.01 to \$29.99 per acre. Eighteen per cent obtained positive net returns which ranged from \$0.01 to \$29.99, and 17 per cent had not returns of \$30.00 or more.


Returns above variable costs averaged \$12.64, \$15.33, and \$11.80 for farmers employing Category I, II, and III systems respectively (Table XLV). On individual farms, the range was from -\$6.40 to \$86.05 per irrigated acre (Figure 20 and Table A-V).

Sixty per cent of the cotton irrigators did not obtain yield increases large enough to pay average variable costs (Table XLIX). Six per cent had losses ranging from \$5.00 to \$9.99 per irrigated acre. An additional 56 per cent had variable costs ranging from \$0.01 to \$4.99, which additional yield increases did not pay.

Forty per cent of the cotton irrigators obtained yield increases that raised incomes more than average variable costs (Table XLIX). Six per cent received returns which were \$5.00 to \$3.99 above the average variable costs per acre. Twenty-eight per cent paid the average variable cost per acre, and had more than \$30.00 per acre remaining.

Yield increase required to pay irrigation costs --

The yield increases needed to pay total irrigation costs

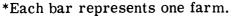


TABLE XLIX

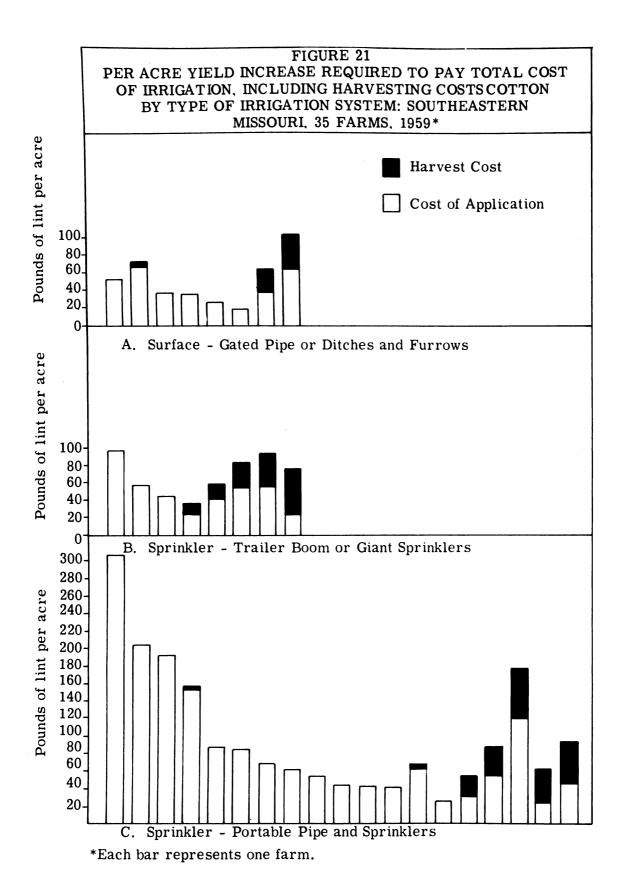
ADDITIONAL RETURN OR LOSS ABOVE AVERAGE VARIABLE COST PER IRRIGATED ACRE, COTTON, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 35 PARKERS, 1959

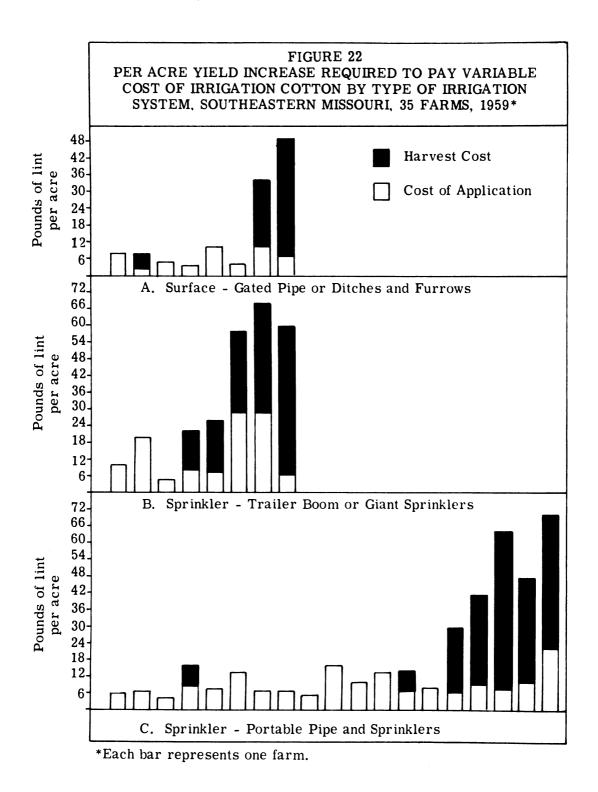
	8	of Irrigation	System	
Return Above Variable Costs	Portable Elpe and Sorinkler	Glant Sprinklers and Trailer Boome	Gated Pipe and Ditches and Furrows	Per Cent
Dollars Per Acre				
8	н	M	•	0
10	3	~	S	5
01 to + 4.	1	•	•	1
00 to + 9.	rl	•	~	v
	1	•	1	1
00 to +19.	1	-		3
00 to +24.	1	•	•	1
00 to	1	4		n
00 or	20	러	20	53
Total	19	0	0	100

a+\$34.81, +\$43.73, +\$55.63, +\$63.73, and +\$86.05.

D.\$34.78. +\$49.53. and +\$68.84.

C+\$31.41 and \$64.34.


ranged from 20 to 308 pounds of lint cotton per scre (Figure 21 and Table A-V). They ranged from 24 to 308, 23 to 98, and 20 to 104 pounds of lint cotton for farmers using Category I, II, and III systems respectively.


Average variable costs could have been paid by a yield increase of 3 to 67 pounds of lint cotton (Figure 22 and Table A-V). Farmers using Category I, II, and III systems needed from 6 to 67, 5 to 67 and 3 to 48 pounds of lint cotton respectively to pay average variable costs.

<u>Summary of cotton irrigation</u> -- Applying water to this crop was not as profitable as irrigating corn in 1959. The average net return per scre was \$4.12 on farms where Category II systems were used and \$2.57 for Category III farms, but those where Category I systems were used had average net losses per scre of \$4.66.

Sixty-five per cent of the cotton irrigators did not obtain yield increases sufficient to pay total irrigation costs. Fifty-seven of the 65 per cent could not pay average variable costs from the increased yields.

A modest yield increase would have paid the average variable costs for all systems. However, 1959 was an excellent cotton year in the Delta area without irrigation. The average yield per acre was 613 pounds of lint, which

was 165 pounds greater than the average in 1958.²

Soybeans

Per aore inch of water -- Net returns were -\$1.90, \$0.37, and \$0.72 for farmers using Category I, II, and III systems respectively (Table L). The net per acre inch of water was less for soybeans than for corn and cotton. On individual farms it ranged from -\$12.28 to \$5.92 (Figure 23 and Table A-VI).

The revenue attributable to irrigation did not pay the total costs on 46 per cent of the farms where water was applied to this grop (Table LI). Eight per cent of the 46 had not losses ranging from \$10,00 to \$14,99 for each acre inch of water applied. Fifty-four per cent obtained net returns in excess of costs from irrigating soybeans. The gain ranged from \$0.01 to \$4.99 and \$5.00 to \$9.99 for 46 and 8 per cent of the operators respectively.

The returns above variable costs averaged \$1.67, \$2.24 and \$2.29 for farmers employing Category I, II, and III systems respectively (Table L).

On individual farms, the return above variable cost ranged from -\$3.33 to \$8.91 per acre inch of water (Figure

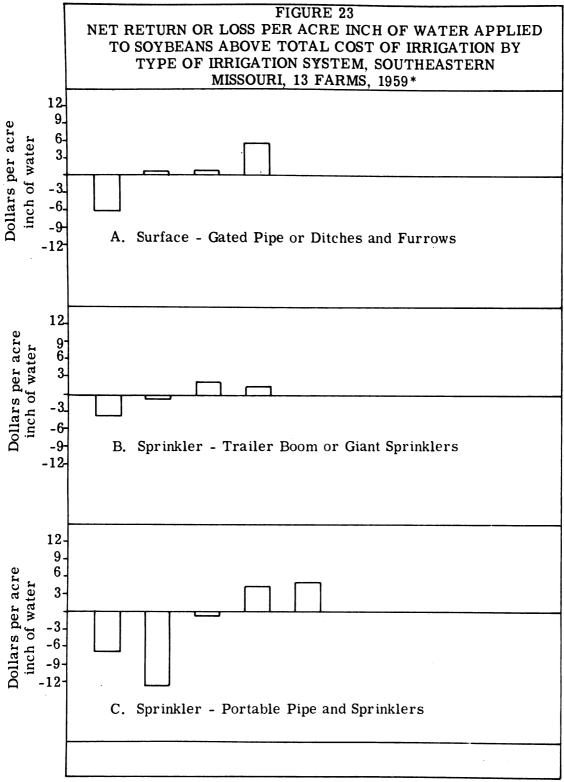

²United States Department of Agricultures <u>Agriculturel</u> <u>Statistics</u>; 1960 (Washington: Government Printing Office) 1961, page 61.

TABLE L

NET RETURN AND RETURN ABOVE AVERAGE VARIABLE COST PER ACRE INCH OF WATER, PER AGRE IRRIGATED AND PER ACRE APPLICATION, SOYBEANS, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 13 FARMERS, 1959

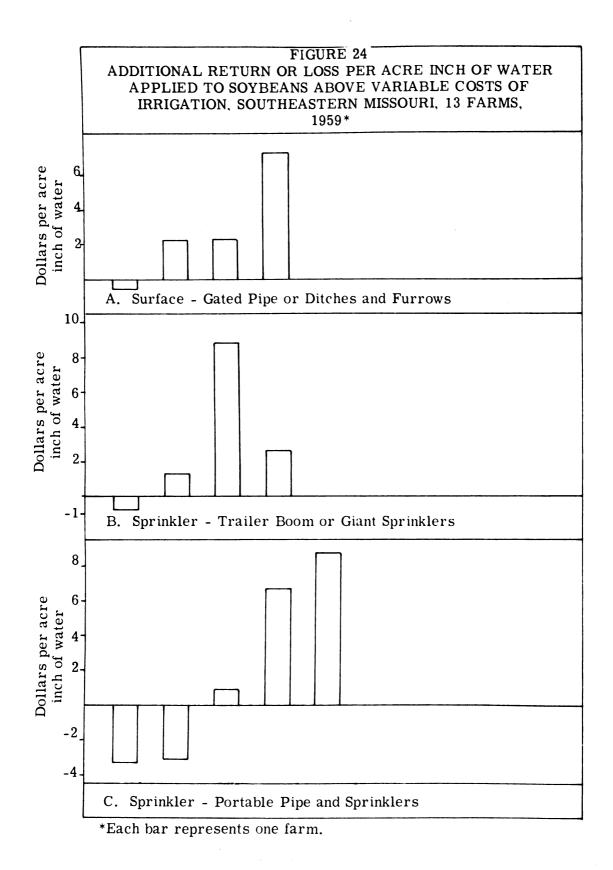
Irrigation. Cost	Type	of Irrigation Giant Sprinkler and Trailer	System Portable Pipe and
and Return	System ⁸	Doon	Sprinkler
······································	(Dollars)	(Dollars)	(Dollars)
Per Acre Inch of Water:			
Adjusted Gross Return	3.30	3.30	3.30
Average Cost	2.58	2.93	5.20
Net Return	+ .72	+ + 37	- 1.90
Average Variable Cost	.31	1.06	1.63
Return Above Average			
Variable Cost	+ 8.99	+ 2.24	+ 1.67
Per Acre Irrigated:			
Adjusted Gross Return	19.80	14.85	6.60
Average Cost	15.21	13.21	13.12
Net Roturn	+ 4.59	+ 1.64	- 6.52
Average Variable Cost	1.83	4.77	4.10
Roturn Above Average			
Variable Cost	+17.99	+10.08	+ 2.50
Per Acre Application:			
Adjusted Gross Return	14.85	8.25	4.95
Average Cost	11.44	7.64	11.72
Net Return	+ 3.41	+ .61	- 6.77
Average Variable Cost	1.38	2.76	3.66
Return Above Average			
Variable Cost	+13.47	+ 5.49	+ 1.29

^AFour farmers. ^bFour farmers. ^oFive farmers.

*Each bar represents one farm.

TABLE LI

NET RETURN OR LOSS ABOVE TOTAL IRRIGATION COSTS PER ACRE INCH OF WATER, SOYBEANS, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 13 PARMERS, 1959

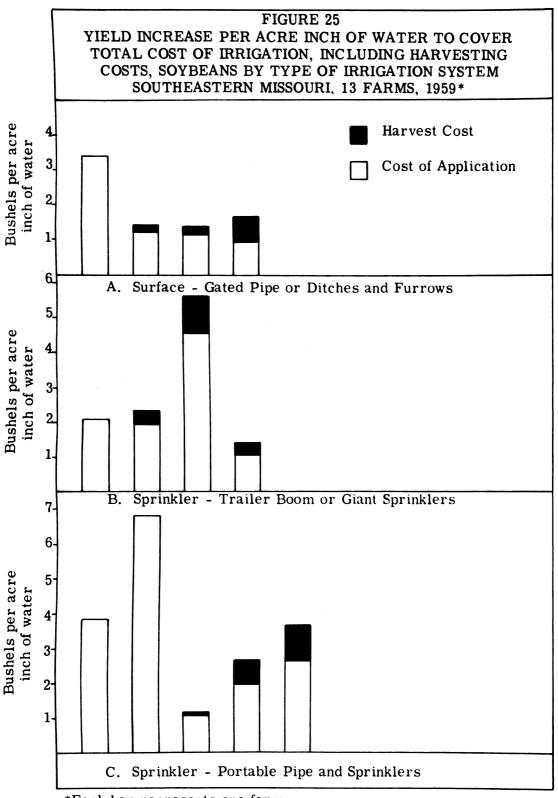

	Sec.17	of Irrigation	Byatem	
Return Above Total Costs	Portable Pipe and Bortinglers	Glant Sprinklers and Trailer Booms	Gated 21pe and Ditches	
Dollare Per Aore Inch				
to -14.	-	•	•	0)
3 - 3	H		-	12
4-3	м	CV	•	53
+ 0.01 to + 4.99	Q	Q	~	46
to + 3.	•	•	ᅯ	9
Total	ŝ	4	4	8

24 and Table A-VI). Thirty-one per cent of the soybean irrigators did not obtain a yield increase sufficient to pay the variable costs of applying the water (Table LII). Thirty-eight per cent obtained returns which were from \$0.01 to \$4.99 above variable costs. An additional 31 per cent obtained returns above variable costs ranging from \$5.00 to \$9.99.

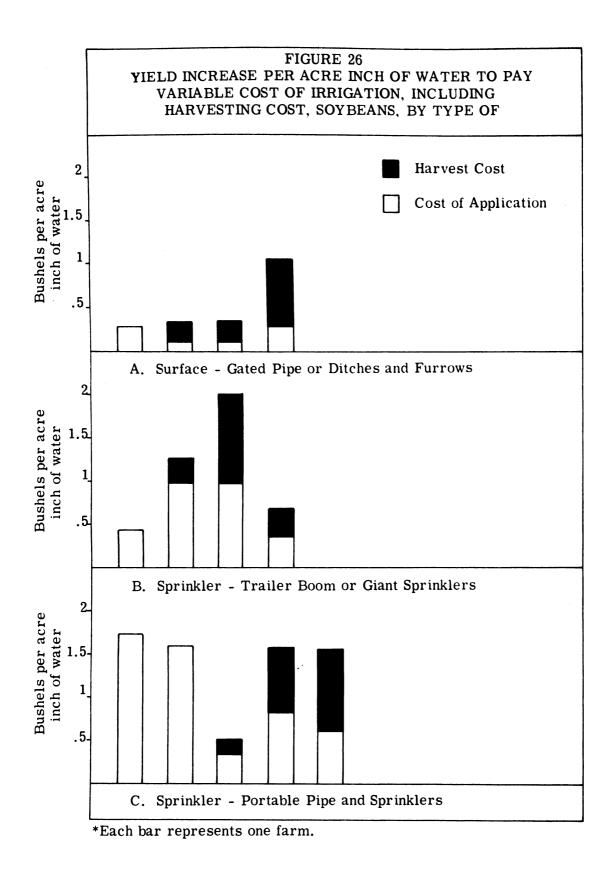
<u>Yield increase required to pay irrigation costs</u> --The yield increases needed to pay all irrigation costs ranged from 1 to 7 bushels of soybeans on individual farms (Figure 25 and Table A-VI). The increase required to pay average variable costs was less than that needed to pay total costs. It ranged from 1 to 2 bushels per sore inch of water applied (Figure 26 and Table A-VI).

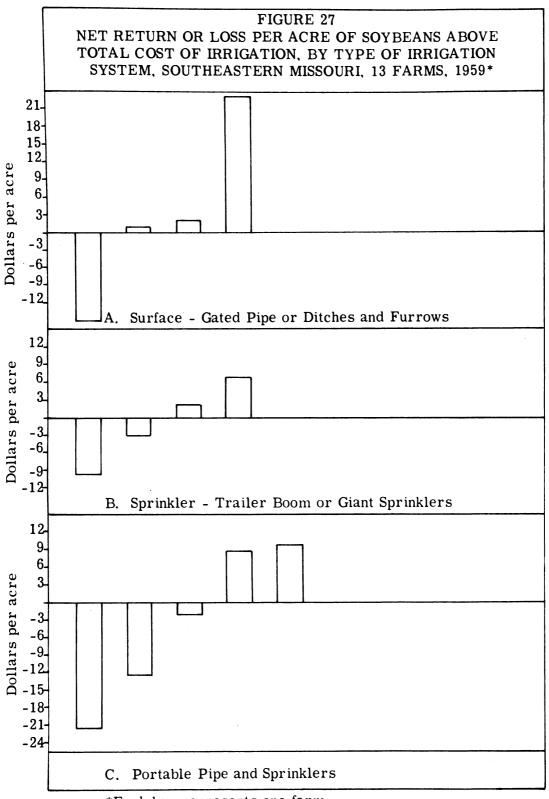
<u>Per irrigated acre</u> -- Net returns per irrigated acre averaged \$1.64 and \$4.59 for farmers using Category II and III systems respectively. Farmers employing Category I systems had not losses per acre, which averaged \$6.52.

On individual farms, net returns ranged from -\$22.06 to \$23.69 (Figure 27 and Table A-VII). Forty-six per cent of the irrigators had net losses from irrigating soybeans. Twenty-two per cent of the 46 lost from \$0.01 to \$9.99 per acre (Table LIII). An additional 24 per cent lost from \$10.00 to \$24.99 per acre. Forty-six of the 54 per cent



-
(mag
Ч
62
R
-
6-4


ADDITIONAL RETURN ON LOGS ABOVE AVERAGE VARIABLE COSTS PER ACRE INCH OF WATER, SOYDEANS, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 13 PARMERS, 1959


.

	Portable	of Irrigation Gient Sprinklers	System Gated Fipe	
Variable Costs Dollars Per Aore Inch	Sprinklere	Server and	and Purrova	of Parts
• 0.01 to • 4.99 + 0.01 to + 4.99 + 5.00 to + 9.99	040	Man	-0-	RRA
Total	ŝ	*	*	100

*Each bar represents one farm.

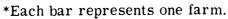


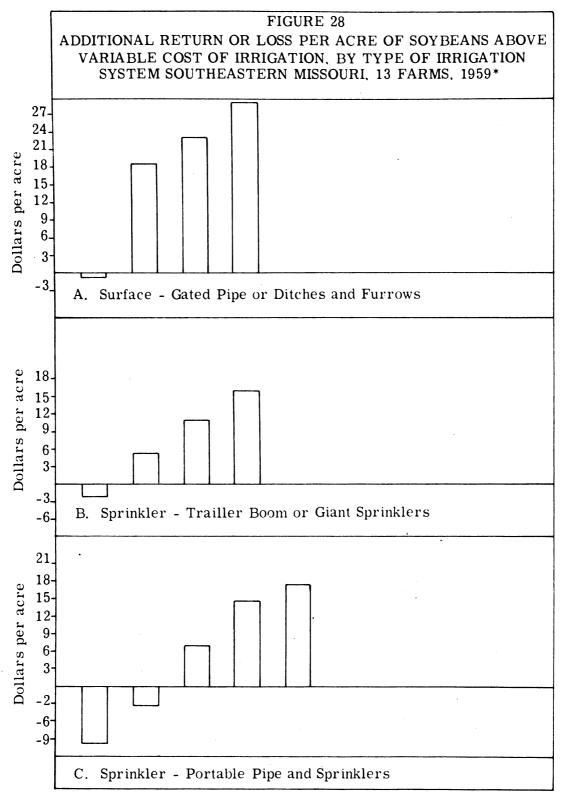
TABLE LITI

NET RETURN ON LOSS ABOVE TOTAL INRIGATION COSTS PER IRRIGATED ACRE, SOTEANS, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 13 PARMERS, 1959

	edit	Type of Irrigation System	System	
Return Above Total Cost	Portable Pipe and Sprinklers	Glant Sprinklers and Trailer Booms	Gated Pipe and Ditches and Furrows	Per Cent of Farms
to -24.	-	•	•	0
	•	•	-1	0
to Pld.	rI			a)
to - 9.		-1		Ø
to - 4.		-	•	14
to + 4.	1	-1	2	6
to + 9.	Q	-		52
to +14.		•		•
to +19.	•			
+20.00 to +24.99	•	•]	4	9
Total	c	•	4	Tool

obtained net returns per acre which ranged from \$0.01 to \$9.99. The other 8 per cent had net returns, ranging from \$20.00 to \$24.99 per acre.

Returns above average variable costs per sore for farmers employing Category I, II, and III systems averaged \$2.50, \$10.08, and \$17.99 respectively (Table L). On individual farms, not returns ranged from -\$10.00 to \$29.04 per sore (Figure 28 and Table A-VII).


Thirty-two per cent of the soybean irrigators failed to obtain yield increases large enough to pay their variable costs (Table LIV). Thirty per cent met their variable costs and received additional returns per acre ranging from \$5.00 to \$14.99. An additional 38 per cent obtained returns ranging from \$15.00 to \$29.00 per acre over variable costs.

Yield increase required to pay all irrigation

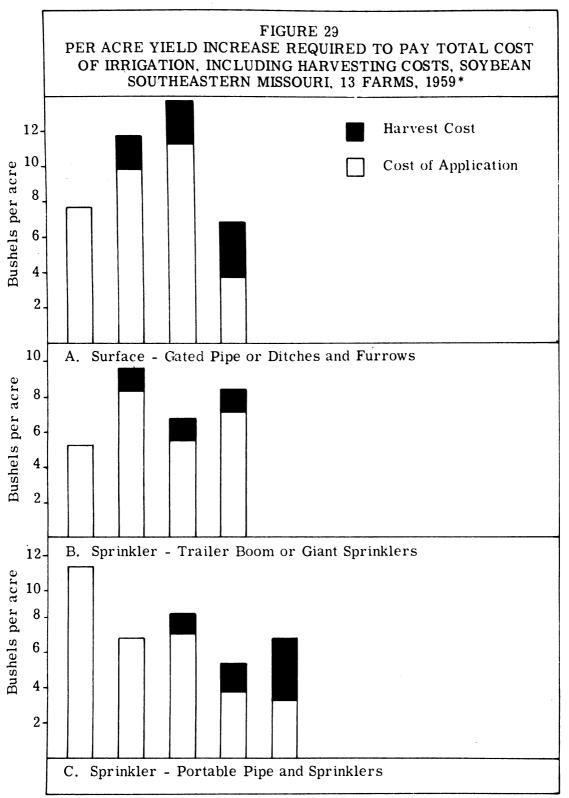
<u>COBLE</u> -- The yield increase needed to pay the total costs of irrigation ranged from 4 to 14 bushels (Figure 29 and Table A-VII).

Average variable costs could have been paid, if increases of 1 to 5 bushels had been obtained (Figure 30 and Table A-VII).

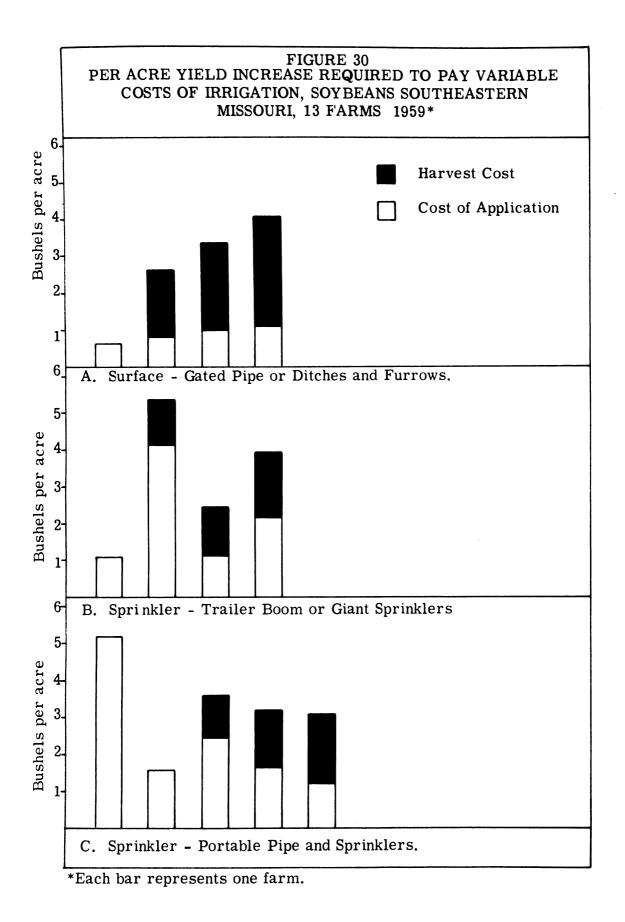
<u>Summary of sorbean irrigation</u> -- Farmers using Category II and III systems obtained average net returns

*Each bar represents one farm.

-


TABLE LIV

.


ADDITIONAL RETURE OR LOSS ABOVE AVERAGE VARIABLE COSTS PER IRRIGATED ACRE, SOYBEANS, BY TYPE OF IRRIGATION SYSTEM, POUR SOUTHEASTERN MISSOURI COUNTIES, 13 FARMERS, 1959

	odku	of Irrigation	System	
Return Above Variable Costs	Portable Pipe and Sprinkler	Giant Sprinklers and Trailer Boome	Gated Pipe and Ditches and Purrows	Fer Cent
Dollars Per Acre			•	
to -14.	н	•		6
to - 9.	1			•
- 0.01 to - 4.99	-1	-	1	23
to + 4.	1		1	
to + 9.	Ч	-1		5
to +14.	H	-	1	5
to +19.	~	-	-	5
or over	·	-	r.	ন
Total	ŝ	4	4	100

a+\$22.80 and \$29.04.

*Each has represents one farm.

per acre of \$1.64 and \$4.59, but farmers using Category I systems had losses that averaged \$6.52 an acre.

Forty-six per cent of the soybean irrigators did not obtain yield increases that were sufficient to pay total irrigation costs. However, the additional returns were equal to or larger than variable costs on 69 per cent of the farms.

Farmers employing Category III systems had higher net returns per acre than those using the other types of systems.

IV. CROP YIELDS IN THE DELTA AREA

The average yield of cotton has been increasing rapidly during the past ten years (Table A-VIII). In 1950, it was 280 pounds of lint per acre. In 1959, the average was 613 pounds. The 10 year average, 1950-1959, was 420. This increase has resulted primarily from use of more fertilizer and superior varieties. Irrigation has had very limited influence for several reasons. One is the small percentage of farmers who have used irrigation. A large proportion of the farmers with irrigation equipment obtained it between 1953 and 1956. Another reason is variability in rainfall. Supplemental water is not needed every year. The rainfall in 1957 was extremely heavy. It appears that irrigation could have been used in 1958, but crop yields in 1959 on farms where irrigation was not used were only slightly lower than on irrigated farms (Table LV).

The estimated yield per acre for corn, cotton, and apybeans on the forty farms where irrigation was practiced in 1959 was 86 bushels, 668 pounds of lint, and 29 bushels respectively (Table LV). The 19 farmers, who had irrigation equipment but did not irrigate, reported estimated yields of 80 bushels of corn, 655 pounds of lint cotton, and 25 bushels soybeans. These men could have irrigated if they had deemed it necessary.

Corn and soybean yields throughout the state have not increased as rapidly as cotton (Table A-VIII). The average yield from 1950-1959 was 44 bushels per acre for corn and 20 bushels for soybeans. Yields of these crops were particularly low from 1953 through 1955, when the weather was abnormally dry during a large part of the growing season.

V. EFFECT OF IRRIGATION ON FARM INCOME-1959

Net Return to Corn. Cotton and Sorbean Irrigators

The net return from corn, cotton, and soybean irrigation on 40 farms was computed. The individual farmer was concerned with the influence of irrigation upon net farm income, which encompassed all of his farm enterprises.

TABLE LV

ESTIMATED YIELD PER IRRIGATED ACRE OF CORN, COTTON, AND SOYBEANS, 40 IRRIGATORS AND 19 NON-IRRIGATORS, FOUR SOUTHEASTERN MISSOURI COUNTIES, 1959

	· · · · · · · · · · · · · · · · · · ·	Type of Crop	
	Corn	Cotton	Soybeans
	Bushels	Pounds of Lint	Bushels
Irrigators:	0 - 3		
Average Yiel	a 36	668	29
Range	55-120	500-900	29 15+34
Number	16	35	13
Non-Irrigator	<u>e</u> :	1000	
Average Yiel	a 80	655	25
Rango	70-90	500-900	17-30
Number	9	15	14

.1

Type of Crop

For this reason, not returns from corn, cotton, and soybean irrigation were added together to determine the effect on not farm income.

Forty-three per cent or 17 of the 40 farmers obtained net gains from irrigation, and 57 per cent had net losses (Table LVI). The average net gain per farm was \$761 and \$316 for farmers using Category II and III systems respectively. Farmers employing Category I systems had an average net loss of \$65.00.

Fifteen per cent or 6 of the 40 farmers had net losses ranging from \$1,000 to \$2,499 per farm (Table LVII and Figure 31). The net loss per farm ranged from \$1.00 to \$999 on 42 per cent of the farms. Fifteen per cent had net returns ranging from \$1.00 to \$1,499 per farm. Twenty per cent obtained net gains varying from \$1,500 to \$1,999, and 3 per cent had net returns greater than \$2,000.

Records from forty of the 46 farmers who applied water in 1959 were used in the calculations. The other 6 farmers did not apply water to corn, cotton, or soybeans. Since 40 of the 46 irrigating farmers applied water to corn, cotton, and soybeans, it was estimated that 58 of the 65 from whom records were obtained were potential irrigators of the same crops. The sample proportion, p, of farmers obtaining a net return from irrigation was 17/58 or .29. The sample p was considered the best

TABLE LVI

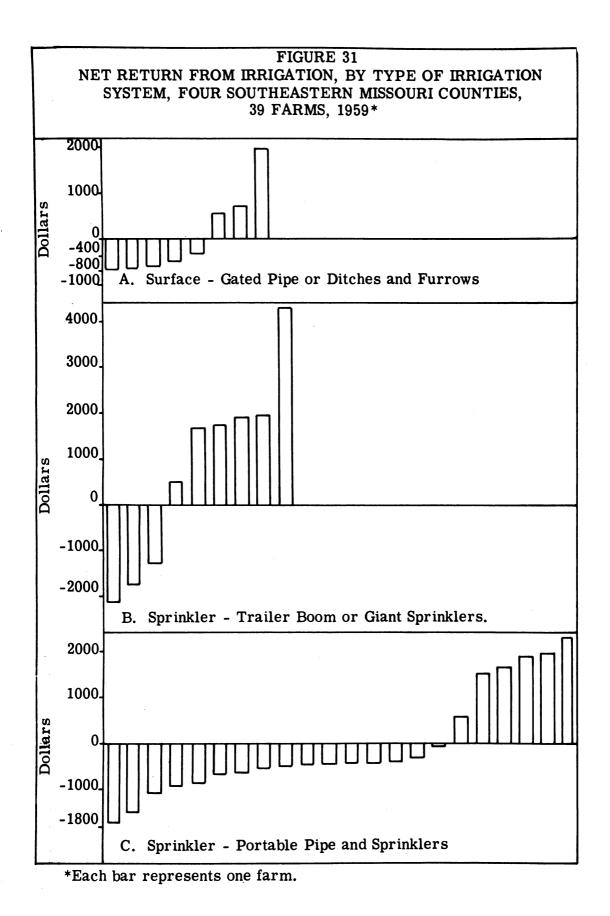
TOTAL RETURN FROM IRRIGATION PER FARM MINUS TOTAL COST OF IRRIGATION AND TOTAL RETURN FROM IRRIGATION MINUS TOTAL VARIABLE COST OF IRRIGATION PER FARM FOR COTTON, CORN, AND SOYBEAN IRRIGATION, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 40 FARMERS, 1959

Lea		Les	from Irri	Lea	
	Total	1966	Total	Light	Total
Total	Variable	Total	Variable	Total	Variable
Cont	Cost	Coat	Cost	Cost	Cost
Dollars	Dollars	Dollars	DOLLARS	Dollars	Dollara
Portable	Pipe and	Glant Sp	rinklor &	Gated P1	pe and
Sprin	lerea	Traile	r Boomeb		& Furrows
Dollars	Dollars	Dollars	Dollars	Dollars	Dollars
2,231	+2,855	+4,284	+5,399	+2,350	+3,270
1,926	+2,569	+1,999	+2,989	+1,958	+2,479
+1,830	+2,032	+1,948	+2,763	+ 659	+1,266
1,629	+3,857	+1,673	+2,177	+ 579	+ 825
1,493	+1,826	+1,613	+3,071	- 194	+ 617
571	+1,194	+ 489	+1,095	- 503	- 104
- 147	- 677	-1,263	- 126	- 629	• 81
• 199	- 90	-1,716	- 515	- 671	- 60
409	+ 102	-2,185	• 780	- 702	- 287
• 443	- 29				
- 483	- 198				
• 499	- 11				
- 532	- 65				
- 597	- 87				
- 588	- 97				
- 620	• 66				
• 660	- 21				
- 824	- 78				
• 979	- 81				
1,041	- 109				
-1.538	- 364				
1,786	- 35				
Xean	Mean	Mean	Mean	Moan	Mean
• 65	629	761	1,820	316	880

⁸Twenty-two farmers.

bwine farmers.

CNine farmers,


TABLE LVII

NET RETURN PER FARM FROM INCLOATION FOR COTTON, CORN, AND SOVERAN INRIGATORS, BY TYPE OF BRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI

ķ.	
8	
Ê.	
ú.	
θ.	
8	
È.	
1	
Ľ.,	
6	
¢,	
5	
ε.	
ŝ.,	
Ε.	
£.	
1	
6	
1	
5	
6	
5	
F.	
	· .

eturn Proteble Sprinklere Gated Tpe eturn Proteble Sprinklere Gated Tpe and Trailer and Ditches and Trailer and Ditches and Protect 499 b to -2,499 b to -2,499 b to -1,999 b to -1,998 b to -1					
A 200 200 200 200 200 200 200 200 200 20	Net Return Per Farm	2.3	lant prinkle nd frei ooms	22 g	Per Cent of Perme
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-				
00000000000000000000000000000000000000	9	•	1		n
A 1	to -1.	N	~	•	2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to -1'	H	F		S
0 to +1, +99 0 to +1, +99 0 to +1, +99 0 to +2, +2, +2, +2, +99 0 to +2, +2, +2, +2, +2, +2, +2, +2, +2, +2,	to -	2	•	4	23
0 to + +99 0 to +1, +99 0 to +1, +99 0 or Above	- 93	1	*	4	5
0 to + 999 0 to +1, 499 0 to +1, 999 0 or Above	to + 4	rl			5
0 to +1.499 0 to +1.999 0 or Above	+ 01	-	•	~	2
0 to +1.999 0 to +2.499 0 or Above	000 to +1.4	~1		•	m
0 or Above	500 to +1.9	n	4	ч	2
0 or Above	000 to +2.4	H		Ч	ŝ
	500 or Abo	•	키	·I	-
		64 64	o	•	100
				•	

·\$4,234.

estimate of the population parameter, or proportion of farmers in the population of farmers with irrigation equipment who received a net return from irrigation in 1959. The 0.95 confidence interval was from .17 to .41, which meant the probability that the universe proportion of irrigators was within the interval was .95.

The relationship between the type of irrigation system employed and whether a net gain or a net loss was obtained in 1959 was studied. The hypothesis of independence was tested. A chi square of 3.3 was calculated, which was not statistically significant. The hypothesis was not rejected. There was no significant difference between the type of irrigation system and the number of irrigators obtaining a gain or a loss.

The difference between the average net gain or less per farm, according to type of irrigation system used, was studied. Mull hypotheses were tested in all cases. The "t" statistic was used. As stated earlier, average net gains or losses were \$761, \$316, and -\$65 for farmers using Category II, III, and I systems respectively. When the difference between the means of Category I and II was tested, a "t" value of 1.34 was obtained. When Category I and III, and Category II and III differences were tested, "t" values of .81 and .52 were computed. None of the "t" values were large enough to be statistically

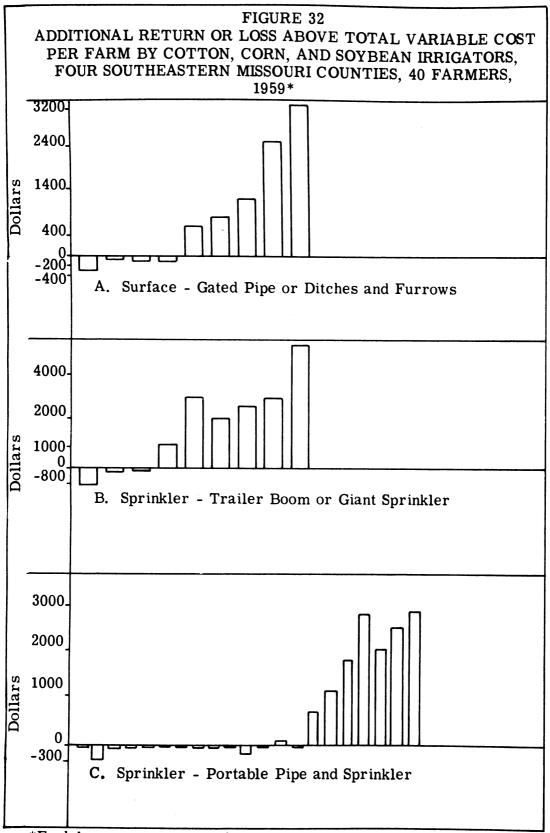
significant. The null hypotheses were not rejected. There was no significant difference between the average net return or loss per farm, according to the type of irrigation system.

Returns Above Variable Cost to Corn. Cotton. and Soybean Irrigators

The average gains per farm above variable irrigation costs were \$629, \$1,320, and \$380 for farmers using Category I, II, and III systems respectively (Table LV).

Forty-eight per cent or 19 of the 40 irrigators obtained returns which were larger than the variable irrigation costs (Table LVIII and Figure 32). Fifty-two per cent did not obtain a return from irrigation which was as large as the variable irrigation costs. These costs for 50 per cent of the irrigators were from \$1 to \$400. Nineteen per cent obtained returns above variable costs per farm, which ranged from \$1.00 to \$1,499. An additional 20 per cent received returns ranging from \$1,500 to \$2,999 above variable costs, and seven per cent obtained returns greater than \$3,000 per farm.

The sample proportion of irrigators obtaining returns larger than variable costs was 19/58 or .33. The sample p was the best available estimate of the number of


TABLE LVIII

RETURN ABOVE VARIABLE COSTS PER PARM FOR COTTON, CORN, AND SOYBEAN IRRIGATORS, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 40 FARMERS, 1959

Return Above Variable Costs Dollars	Portable Fipe and Sprinklers	of Irrigation System Giant Sprinklers Gate and Trailer and Booms and	System Gated Pipe and Ditches and Aurrovs	Per Cent
500 to +1, 499 500 to +1, 499 500 to +1, 499 500 to +1, 499 500 to +2, 490 500 to +2, 400	12			๛฿๛๛๛๛๛๛๚๛๛
	8	¢	0	100

223

***5**399*

*Each bar represents one farm.

farmers in the irrigation population who received a return above variable costs. The 0.95 confidence interval was from .20 to .45. The probability that the universe proportion of irrigators receiving a return above variable costs would be within this interval was .95.

The relationship between the type of irrigation system employed and whether or not a return above variable costs was obtained, was studied. The hypothesis of independence was tested. A chi square of 2.66 was computed, which was not statistically significant. There was no significant difference between the type of irrigation system and the number of irrigators who obtained a return above or below variable costs.

The difference between the average return or loss per farm above or below variable costs, according to the type of irrigation system employed, was studied. Null hypotheses were tested in all cases. When the difference between the means of Category I and II, Category I and III, and Category II and III were tested, "t" values of 1.96, .50 and 1.12 obtained. None of the "t" values were statistically significant. The null hypotheses were not rejected.

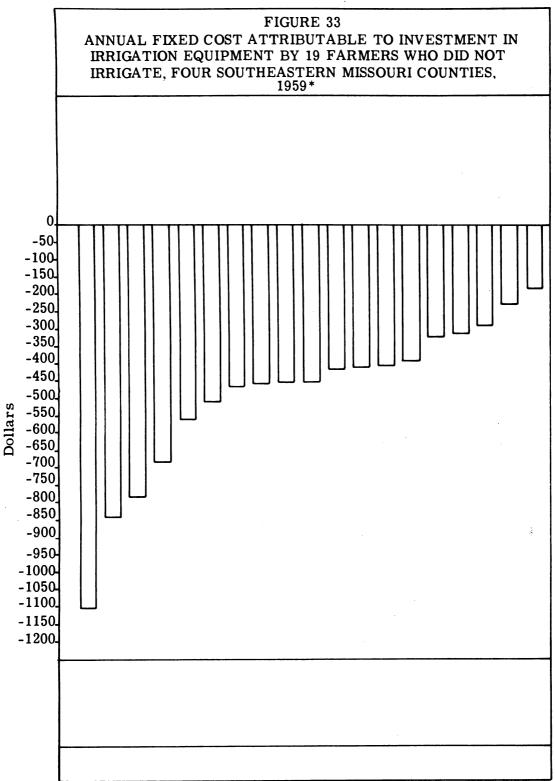
Annual Fixed Cost of 19 Non-Irrigators

Ninetcen of the 65 farmers from whom data were obtained did not irrigate in 1959. The average annual

fixed cost attributable to the investment in irrigation equipment was \$490. The amount ranged from \$178 to \$1,103 per farm (Table LIX and Figure 33). The annual fixed cost should be considered a net loss from irrigation. This loss reduced net farm income an average of \$490 on the 19 farms.

Summary of the Effect of Irrigation on Net Farm Income

Net income per farm was increased \$761 and \$316 for farmers using Category II and III systems respectively, but farmers employing Category I systems reduced their net farm income by \$65.


Twenty-nine per cent of the farmers who provided information for the study obtained a net return from irrigation. It was estimated that the universe proportion of irrigators obtaining a net return was between .17 and .41. The conclusion was reached that irrigation was not profitable for the majority of the farmers who had equipment in 1959.

The probability was .95 that the universe proportion of irrigators who obtained a return above variable costs was between .20 and .45. Consequently, it was concluded that less than 50 per cent of them obtained a return equal to the variable irrigation costs.

The monetary returns from irrigation in 1959 were below expectations of the majority of irrigating farmers

		Type of Irrigation System	sten
	Portable Pipe and Sprinkler	diant Sprinkler and Trailer Boom	Gated Pipe and Ditches and Furrows
	1.000	1	Llara
	1,103	687	411
	561		227 178
	517		
	456		
	512		
	394		
rotal.	\$7. 4 89	\$687	\$1.130
Average	\$295-\$1.103	687	283

TABLE LIX

*Each bar represents one farm.

who had equipment for this practice. Otherwise, the irrigation system would not have been employed and variable irrigating costs incurred.

Summary of Statlatical Tests

Test of independence ---

200	tors tested	Computed Chi Square	Critical Chi Square .05 Lovel	Signif- icant	Not Signif- icant
	e of irrigation ten and				
(1)	Net return or loss per fara	3.32	5.99		X
(2)	Return above variable cost per fara	2.66	5.99		x

Test of difference between mean when the standard deviations are unknown, but assumed equal.

Factors tested	Computed	Criti	tical		Not
	"t" Value	.05	Value Lovel	Signif- icant	Signif- loant
Type of irrigation system and					

(1) Average labor cost per acre

application

Category and II	I	1.42	2.042		X
Category and III	I	2.60	2.042	.02	

Category II and III 1.23 2.120 X

 (2) Average tractor cost per acre application Category I and II 1.28 2.042 X Category I 4.40 2.042 .001 Category II 2.13 2.120 .05 (3) Average fuel and oil cost per acre application Category I and III 2.29 2.045 X Category II 2.29 2.045 X Category II 2.78 2.120 .02 (4) Minor repair cost per acre application Category I and III 2.78 2.120 .02 (4) Minor repair cost per acre application Category I and III 2.78 2.120 .02 (5) Net return or loss per farm 	Fac	tors tested	Computed "t" Value	Critical "t" Value .05 Level	Signif- leant	Not Signif- leant
and II 1.28 2.042 X Category I and III 4.40 2.042 .001 Category II 2.13 2.120 .05 (3) Average fuel and oil cost per acre application Category I and III .16 2.045 X Category I and III 2.29 2.045 X Category II 2.78 2.120 .02 (4) Minor repair cost per acre application Category I and III .06 2.045 X Category I .07 X	(2)	cost per sore				
and III 4.40 2.042 .001 Category II and III 2.13 2.120 .05 (3) Average fuel and oil cost per acre application Category I and III .16 2.045 X Gategory I and III 2.29 2.045 X Category II and III 2.78 2.120 .02 (4) Minor repair cost per acre application Category I and II .64 2.045 X Category I and II .64 2.045 X Category I and II .06 2.045 X Category I and III .78 2.120 X (5) Net return or		Category I and II	1.28	2.042		X
and III 2.13 2.120 .05 (3) Average fuel and oil cost per more application Category I and III .16 2.045 X Gategory I and III 2.29 2.045 X Gategory II 2.78 2.120 .02 (4) Minor repair cost per acre application Gategory I and II .64 2.045 X Gategory I and II .06 2.045 X Gategory I and III .73 2.120 X (5) Net return or			4.40	2.042	.001	
and oil cost per acre application Category I and III .16 2.045 X Category I and III 2.29 2.045 X Category II and III 2.78 2.120 .02 (4) Minor repair cost per acre application Category I and II .64 2.045 X Category I and II .06 2.045 X Category II and III .78 2.120 X (5) Net return or		Category II and III	2.13	2.120	•05	
III .16 2.045 X Gategory I and III 2.29 2.045 X Gategory II and III 2.78 2.120 .02 (4) Minor repair cost per acre application Gategory I and II .64 2.045 X Gategory I and II .06 2.045 X Gategory II and III .73 2.120 X (5) Net return or	(3)	and oil cost per				
and III 2.29 2.045 X Category II 2.78 2.120 .02 (4) Minor repair cost per acreapplication Category I .64 2.045 X Category I .06 2.045 X Category I .06 2.045 X Category II .78 2.120 X (5) Net return or			.16	2.045		x
and III 2.78 2.120 .02 (4) Minor repair cost per acre application Category I and II .64 2.045 X Category I and III .06 2.045 X Category II and III .78 2.120 X (5) Net return or			2.29	2.045		x
cost per scre application Category I and II .64 2.045 X Category I and III .06 2.045 X Category II and III .73 2.120 X (5) Net return or		Category II and III	2.78	2.120	.02	
and II .64 2.045 X Category I and III .06 2.045 X Category II and III .78 2.120 X (5) Net return or	(4)	cost per acre				
and III .06 2.045 X Category II and III .73 2.120 X (5) Net return or			.64	2.045		x
and III .78 2.120 X (5) Net return or		Category I and III	.06	2.045		x
			•78	2.120		X
	(5)					
and II 1.34 2.045 X		Category I and II	1.34	2.045		x

230

-

Faci	lors teste	<u>id</u>	Computed "t" Value	Critical "t" Value .05 Level	Signif- icant	Not Signif- loant
	Category and III	1	.81	2+045		x
	Category and III	II	.52	2+120		X
(6)	Return al variable per farm				0 * Ģ	
	Category and II	I	1.96	2.045		X
	Category and III	I	• 50	2:045		x
	Category and III	II	1,12	2.120		x

~

CHAPTER V

SUMMARY AND CONCLUSIONS

Etabania Pre

The data for the analysis were obtained from farmers who owned or controlled irrigation equipment in Dunklin, Pemiscot, New Madrid, and Mississippi Counties. A random sample of 65 operators was selected from a population of 186 farmers, who were known to have irrigating equipment.

Wells were the major source of irrigation water. Seventy-seven per cent of the farmers from whom data were obtained used wells exclusively, 18 per cent used a combination of wells and drainage ditches, and five per cent used drainage ditches exclusively.

Sprinkler systems were the major method of distributing water. Three different types were used. Fifty-four per cent used the portable pipe and sprinkler system exclusively. Eleven per cent used the giant sprinkler system and nine per cent used the trailer boom method.

Two methods of surface irrigation were used in the area. Fifteen of the 17 per cent used gated pipe and two per cent used ditches and furrows.

Twenty-six per cent of the farmers from whom data were obtained had changed their method of distributing water since the original investment in irrigation equipment was made. Only one had changed from using gated pipe, the others changed from portable pipe and sprinkler systems to other sprinkler or surface methods. The primary reason for the change was the labor requirement for portable pipe and sprinkler systems. Eighty-eight per cent of the farmers made the change to reduce the labor requirement or to be able to hire personnel to work with irrigation equipment.

The fixed investment in irrigation equipment averaged \$7,122 per farm or \$56 per capacity acre for the 65 farmers.

Farmers with trailer boom systems had an average investment of \$13,200 with an average capacity of 290 acres per farm. The investment per capacity acre was practically constant, ranging from \$45 to \$56, with a mean of \$46.

Farmers with giant sprinkler systems had average investments of \$8,344 per farm. The average capacity was 144 acres. The average investment per capacity acre decreased from \$74 in the 60-99 acre group to \$50 in the 200-259 acre group.

Farmers with portable pipe and sprinkler systems had an average of \$6,810 invested, and average capacity of 118 acres. The average investment per capacity acre decreased from \$360 for the 19 acres or less group to \$52

for the 140-179 scre group.

Farmers with gated pipe and ditch and furrow systems had average investments of \$5,518 and \$4,100 respectively. The average capacity was 87 acres on the 11 farms with gated pipe systems. The average investment per capacity acre was \$63 and \$62 for the 60-99 and 140-179 acre groups, which was approximately twice as large as the ditch and furrow systems, when the same number of acres could be irrigated.

The average investment per capacity acre declined as the capacity increased for the portable pipe and sprinkler and the giant sprinkler systems, but remained approximately constant within the surface and trailer boom systems.

Forty-six or 71 per cent of the 65 farmers applied water to 2,637 acres. The average number of acres per farm was 57. Cotton was the major irrigated crop. An average of 2.9 inches of water was applied to 1,523 acres. Cotton accounted for 58 per cent of the total iprigated acres. The average yield response was 66 pounds of lint per acre, even though 57 per cent of the cotton irrigators did not obtain a yield increase.

Six hundred and fifty-nine acres of corn received an average of 5.25 inches of water per acre in 1959. An average of 41 acres per farm was irrigated with an average

yield increase of 30 bushels. Sixty-three per cent of the corn irrigators obtained a yield increase.

Thirteen farmers applied an average of 4.4 inches of water per acre to 316 acres of soybeans. The average acreage per farm was 24. Sixty-nine per cent of these irrigators reported average yield increases of 8.5 bushels per acre.

Fixed costs averaged 80 per cent of total irrigation costs for the surface and the portable pipe and sprinkler systems, and 65 per cent for the trailer boom-giant sprinkler systems. The averages varied from 59-91, from 48-91, and from 38-98 per cent for the surface, trailer boom-giant sprinkler, and portable pipe and sprinkler systems, respectively, depending upon the amount of use.

Variable costs averaged 20 per cent of total irrigation costs for surface and portable pipe and sprinkler systems, and 35 per cent for the trailer boom-giant sprinkler types.

There was a significant difference in the average labor, tractor, fuel and oil costs per acre of application among the different types of systems. The average labor cost was significantly higher for the portable pipe and sprinkler systems than for the surface systems. The average tractor, fuel and oil costs were significantly higher for the trailer boom-giant sprinkler and portable pipe and

sprinkler systems than for the surface systems.

The average cost per irrigated acre of cotton was \$20.31, \$15,96, and \$11.61 for portable pipe and sprinkler, trailer boom-giant sprinkler, and surface systems respectively. Net returns per irrigated acre were -\$4.66, \$4.12, and \$2.57, and returns above variable costs \$12.64, \$15.33 and \$11.80 for portable pipe and sprinkler, trailer boom-giant sprinkler, and surface systems respectively.

The average costs per irrigated acre of corn were \$16.01, \$13.20, and \$8.38 for portable pipe and sprinkler, trailer boom-giant sprinkler, and surface systems respectively. Net returns were \$10.34, \$14.00, and \$13.72, and returns above variable costs \$23.31, \$21.33, and \$19.51 for the portable pipe and sprinkler, trailer boom-giant sprinkler and surface systems respectively.

Average costs per irrigated acre of soybeans was \$13.12, \$13.21, and \$15.21 for portable pipe and sprinkler, trailer boom-giant sprinkler, and surface systems respectively. Net returns were -\$6.52, \$1.64, and \$4.59, and returns above variable costs \$2.50, \$10.08, and \$17.99 for portable pipe and sprinkler, trailer boom-giant sprinkler, and surface systems respectively.

Twenty-nine per cent of the farmers increased their net farm incomes by irrigating cotton, corn, and soybeans. Irrigation was not profitable for the majority of farmers BIBLIOGRAPHY

controlling irrigation equipment in 1959. Thirty-three per cent of the farmers obtained a return which was greater than variable irrigation costs. Consequently, less than 50 per cent of those who had irrigation equipment obtained increased returns which were large enough to pay variable irrigation costs.

Nineteen of 29 per cent of the 65 farmers did not apply water in 1959. The average fixed cost attributable to investment in irrigation equipment was \$490. As a result, not farm income was reduced this amount on these farms.

Conclusions

Net farm income was not increased on the majority of farms where corn, cotton, and soybeans were irrigated in 1959. There was no significant relationship between the number of farmers obtaining a net return from irrigation and the method of distributing water. There was a significant difference between the adjusted gross return per acre of corn and soybeans. Irrigated corn had a higher return than soybeans.

The average cost of irrigation and the yield response required to pay irrigation costs are influenced by many factors. Probably the most important in humid areas like the Delta of Missouri is the amount and distribution of

rainfall. Other factors include the number of acres irrigated, number of irrigations during the year, amount of water applied, price of the product, the price of the variable inputs and the managerial skill of the farm operator.

There was a significant difference in the average labor, tractor, fuel and oil costs per acre application among the different methods of distributing water.

A large yield response from irrigation was not needed to pay variable costs of applying water to corn, cotton, and soybeans.

Farmers in the Delta Area of Missouri have been shifting from the portable pipe and sprinkler method of applying water to other sprinkler and surface methods. The high labor requirement associated with portable pipe and sprinkler systems have been the major reason for changing to other types.

The data contained in this study cover only the crop year of 1959. The yield responses reflect returns to a random sample of irrigators under general farm conditions for a single year. Neather conditions were favorable for crop production. The year was near normal in rainfall, and distribution throughout the growing season was better than usual. In fact, the average cotton yield without irrigation was the highest ever obtained in the area.

These facts should be considered when evaluating the results.

Careful attention must be given to varieties and stands of crops, levels of fertility, weed control, and other managerial practices, if profits are to be made. If careful attention is given to these details, irrigation can be profitable in many years.

The results of this study point to the need for additional research. Studies of the type reported here should be repeated over a period of years to increase the reliability of the findings. The intensity and frequency of drought should be determined to establish the frequency of need for supplemental water. This work would require an analysis of long-time weather records in the area. A detailed analysis of the managerial practices on farms where irrigation has been profitable over a period of years should be made to identify the procedures that need to be followed to make irrigation profitable.

BIBLIOGRAPHY

- Davis, Velma W., <u>Irrigation in Illinois, 1954 to 1958</u>. University of Illinois College of Agriculture in Cooperation with Farm Economics Research Division, Agricultural Research Service, United States Department of Agriculture, AERR 33, 1960, 26 pp.
- Decker, Wayne L., <u>Monthly Precipitation in Missouri</u>, University of Missouri Agricultural Experiment Station Bulletin No. 650, 1955, 60 pp.
- of Missouri Agricultural Experiment Station Bulletin No. 707, 1958, 11 pp.
- Goodspeed's History of Southeast Missouri, Goodspeed Publishing Company, 1888, 1215 pp.
- Hagan, Albert R., "Missouri Custom Rates" (Department of Agricultural Economics, University of Missouri, 1960), 21 pp. (Mimeographed).
- Henderson, Philip A., <u>Will it Pay to Irrigate Corn?</u>, Extension Service, University of Nebraska and U.S. Department of Agriculture cooperating, Extension Circular 57-805, 1957, 15 pp.
- Jones, Ted L. and Frank Miller, <u>Nature and Extent of</u> <u>Irrigation in Missouri</u>, University of Missouri Agricultural Experiment Station Research Bulletin No. 735, 1960, 44 pp.
- Key For Identifying Soils of Missouri, University of Missouri Agricultural Experiment Station Progress Report 12, Columbia, Missouri, 1950, 23 pp.
- Miller, M. F. and H. H. Krusekopf, <u>The Soils of Missouri</u>, University of Missouri Agricultural Experiment Station Bulletin No. 264, 1929, 113 pp.
- Puterbaugh, Horace L. and Marvin W. Kottke, <u>Technical and</u> <u>Economic Characteristics of Irrigation on Connecticut</u> <u>Farms</u>, University of Connecticut Storrs Agricultural Experiment Station Bulletin 340, 1959, 42 pp.
- Smith, W. G., W. E. McDaniel, and E. N. Scarborough, <u>Irrigation in Delaware</u>, University of Delaware Agricultural Experiment Station Technical Bulletin 335, 1960, 26 pp.

- Sweet, A. T., C. J. Mann, H. Krusekopf, E. S. Vanatta, and H. C. Lewis, <u>Soil Survey of Pemiscot County, Missouri</u> United States Department of Agriculture, 1912, 32 pp.
- Thomas, D. Woods, and G. R. Slater, <u>Irrigation Costs and</u> <u>Returns, Southwestern Indiana</u>, 1955, Purdue University Agricultural Experiment Station Research Bulletin No. 668, 1958, 16 pp.
- Thorfinnson, T. S., Meryl Hunt, and A. W. Epp, <u>Gost of</u> <u>Distribution of Irrigation Water By Different Methods</u>, University of Nebraska Agricultural Experiment Station Bulletin No. 432, 1955, 28 pp.
- Norris P. Swanson, and A. W. Epp, <u>Cost of</u> <u>Distributing Irrigation Water by the Sprinkler Method</u>, University of Nebraska Agricultural Experiment Station Bulletin No. SB 455, 34 pp.
- United States Department of Agriculture, Agricultural Statistics, 1950 to 1960, U.S. Government Printing Office, Washington, D.C.
 - Government Printing Office, 1941, Washingston, D. C.
- United States Bureau of the Census, <u>Tenth Census of the</u> <u>United States</u>, Volume I, U. S. Government Printing Office, Washington, D. C.
- U. S. Government Printing Office, Washington, D. C.
- U. S. Government Printing Office, Washington, D. C.
- . United States Census of Population, 1930, Volume III, Part 1, U. S. Government Printing Office, Washington, D. C.
- . United States Census of Population, 1940, Volume II, Part 4, U. S. Government Printing Office, Washington, D. C.
- . United States Census of Population, 1950, Volume II, Part 25, U. S. Government Printing Office, Washington, D. C.

. United States Census of Agriculture, 1954, Volume I, Part 10, U. S. Government Printing Office, Washington, D. C.

<u>Counties</u>, 1960, U. 3. Government Printing Office, Washington, D. C.

United States Bureau of Commerce, <u>Climatological Data</u>, <u>Missouri</u>, Volume LXIII, No. 4-8, 1959, U. S. Government Printing Office, Washington, D. C. APPENDIX

TABLE A-I

MISSOURI LAND CLASSES

Land class is the grouping of soils according to their inherent fertility, physical properties, slope, erosion, and desirability for agricultural uses. Seven classes have been determined. They are:

<u>Class 1 - Superior Grop Land</u>. This is permanent high-quality land. All conditions of soil and topography are highly favorable for crop production. All of the following qualities are present: high productivity and optimum conditions for crops from the standpoint of drainage, safety from erosion and flooding, ease of tillage, and slopes of less than five per cent. It produced dependable crop yields and is adapted to a wide variety of crops.

<u>Class 2 - Good Grop Land</u>. This is good farm land, but less desirable in one or more respects than Class 1. It may have a wider range of soil and topographic conditions or other factors. Grop adaptation is not as wide as with Class 1. Under good management, a high state of productivity can be maintained. Rolling areas have slopes of less than ten per cent.

<u>Class 3 - Medium Grop Land</u>. Land in this class requires good management for best results. It is either of medium productivity or subject to erosion, poor drainage or overflow. The limits from soil properties, topography, and other factors affecting its use are wider than with Class 2. Erosion control and soil improvement practices are necessary for maximum yields and soil maintenance. Rolling areas do not have slopes of more than 15 per cent.

<u>Class 4 - Inferior Grop Land</u>. This is the lowest class of land suitable for cultivation. It includes land of many limitations due either to soil properties, erosion, overflow or other factors. Low fertility or poor physical properties of the soil results in low productivity and hazardous farming. As a result, low yields are the rule and only the exceptional farmer can get fair yields under favorable weather conditions. Slopes of the folling areas may go as high as 16-17 per cent. In the bottom land the hazards of heavy texture, poor drainage, or frequent and prolonged overflow often exist.

<u>Class 5 - Pasture Land</u>. This is or should be permanent grass land. It is unsuited to cultivation because of one or more of the following conditions: steepness of slope, severe erosion, poor drainage, stone content, low productivity or very high percentage of nonarable land. The classification as grass land is based largely on topography. Since Class 5 contains that land which is too steep for cultivation, its fertility is often equal to Class 4 and even Class 3. <u>Class 6 - Marginal Pasture-Forest Land</u>. This land is similar to Class 5, but with more unfavorable soil properties and hence lower productivity. The soils are usually shallow, light in color, of poor structure, often with a high gravel and stone content, and the vegetation on it is highly susceptible to changes in moisture conditions. Vegetation cover is hard to maintain on this class of land.

<u>Class 7 - Forest Land</u>. Land with characteristics which make it unsuitable for crops and pasture production and hence its highest usage is classed as forest land. It includes both cleared and uncleared areas which are better suited to tree growth than to pasture. Low fertility and high stone content are the main factors which separate it from Class 5 and Class 6.

Source: <u>Key to Identifying Soils of Missouri</u>, University of Missouri Agricultural Experiment Station Progress Report 12, October 1950, pp. 4-5.

Number Acre or J of Total 0	r Loss Per re Inch Above Variable s Costs	Including Earvest Cost Bortable Pipe (Bushels) 5.5 5.5 5.5 5.5 5.5	Cost Excluding Harvest Cost Bushels 5.2 3.2 2.7	Average Variable Cost Including Excluding Harvest Cost Harvest C	iable Cost Excluding Harvest Cost
	60 -				
1111 + + + + + + + + + + + + + + + + +	1 and 1	1		(Buchela)	
2000 0020 1 1111 1 1111 1	10 10771	85.40 0.0 m	NUN	Internation 1	(Bushels)
0,00, 00,00 +++1111 4	+18.13	0.040	NE	4.4	1.0
	4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	10	1+4	ma	1.1
1111	· · · · · · · · · · · · · · · · · · ·		w. r.	10.	
	+ 4-37	5.8 B	0	2.2	mit.
-18.	- 2.20	(d) 	17.8		2
•	54		18.5	1	\$.
*	* L. 77	Dt Sprinkler a	1d Traller booms	1.8	90
+	+	No.		1.9	1.0
+ - 63	* 1 * 1		01	1.0 ^B	1.0
- 4.26	- T-76	ed 1		aj 1	1.8
3 + 3.55	+ 4.50	710e and 2.3	ULUCIDES AND FULLO	1.3	4.
+ .64	+ 3.14	4.4a	3.6	1.9ª	1.i .5

TABLE A-LT

ADDITIONAL RETURN OR LOSS, BREAKEVEN POINT IN PHYSICAL UNITS REQUIRED TO PAY AVERAGE TOTAL CAST AND AVERAGE VARIABLE COST DER ACRE THEN OF WATER ADDITED TO PAY BY

TABLE A-III	BREAKEVEN POINT IN PHYSICAL UNITS REQUIRED TO PAY AVERAGE VARIABLE COST PER IRRIGATED ACRE OF CORN. BY TYPE OF TEM. FOUR SOUTHEASTERN MISSOURI COUNTIES, 1959	Breakeven Point
	ADDITIONAL RETURN OR LOSS, BREAKEVEN TOTAL COST AND AVERAGE VARIABLE C IRRIGATION SYSTEM, FOUR S	Extra Return

	9	1	Including	Cost Exeluding	Average Var Including	Variable Cost Excluding
Farmers Co	Costs	Costs	Harvest Cost Fortable Pipe	Harvest Cost and Sprinkler	Hervest Cost	Harvest Cost
	100)	(Dollars)	(Bushels)	(Bushels)	(Bushels)	(Bushels)
100 110	27.82	+36.25	17.2	10.4	8. 8	2.0
Ŧ	25.94	+31.32	14.0	8.0	1.1	2.7
+	13.37	+17178	8.6	5.3	4.2	6.
+	7.35	+22.70	22.7	18.1	7.3	2.8
1	4.37	+32.30	54.42	46.9	17.7	10.2
7	24.22	- 6.92		24.2		6.9
T	35.50		1	35.5		4.4
1	-55.41	- 1.63	đ	55.4	3	1.6
		Gian	at Sprinkler a	nd Trailer Boo		
5	21.24	+29.06	18.8	12.7	10.9	6.4
	20.18	+24.99	16.8	11.3	12.0	6.5
+	+ 6.28	F17.16	21.7.	17.5	10.6	6.6
1	14.07	- 2.04	1	14.1		2.0
7	20.48	- 3.47	4	20.5	1	0.5
		Gater	I Pipe and Dit	ches and Furro	51	
+	+24.47	30.99	15.5	9.5	9.0	3.0
+	2.56	12.57	17.4.	7-17	7.4	4.4
•	5.04	- 1.43	¢ 1	5.0	1 1	1.4

Tarbor of Paraore		61	Including	hronnice Cost Ing Excluding A Cost Harrest Cost	Including	rishie Cost Excluding Baryssi Cost
	Ĕ		1			
				OF LINE	Rotton	
6	1922	+27.82	P	12.1	8	
	+ 3.76	+11.20	~	*	1.	C. 1
	*14.33	÷25.02	5	26.5	1.61	
	+13.63	62.61+			0.11	
	+12.03	424+40			R.	?
	- 5×13	*		24-00	**	¢.
		1.02		0.01	* 4	
		122	\$		*	
		5.13	*	21.2	1 e	0
	- 2.18		d (0	6 a	
			4		2 ed	
	ev e	8:	5 a			۲
	0.		1 4			* .
) 1			
			2.0	10.92	2.8	
		8.		129.1		6
		- 2,10	*	24.2	*	
	80 00 T					C

TARK A-TV

	ertra 1	a Return		Breakeyon	ount	
nater.	APL P	Inch Above Variable	Including	Exelutions	Including	Cleble Cost
armaro.	Costs	Costs	Earyest Cost	Marvaet Cost	Earvest Cost	Barveat Cos
	e	Mars)				
		<u>61e</u>	at Sorinkler e	ind freiler Boom		
C 2	+24.31	+37.54	30.4	12°T		2
	1	* 2.8	17.0	6.01	12.1	4.5
	+ 5.31	+ 6.96	16.6	11.0	11.5	5
		+12,39	27.4	18.9	11.9	4.4
		+ 7.00	13.4	** ©	0.6	3.0
	60"6 -	- 1.07	4	5.5	4	3.3
	CO. 38	- 1.43	1	12.7	•	4.4
		- 1.47	42	45.6	6	4.6
		Gata	ed Fire and Di	tohes and Murr	0MB	
C	+23*55	+32.17	6716	6.05	3.0	~
ð	* 7.12	+ 9.92	19.1	12.1	10.4	5
	- 4.27	2	6	13.1		2.1
	- 1.11	式 ・	cs 1	×*	•	1.6
	- 4.40	- 1	6	ちょうて	ct) ‡	1.2
	- 5.78	22* *	cit 1	13.0	¢	4.0
	- 4.04	+ 2.64	23.3	21.4	2 *0	0
	• 3.66		4	11.3	4	1.9

TABLE A-IV (CONCLEVED)

.

251

attributed to irrigation.

	L'a terra	Return		Real avon	on Polat	
to Jo	or lo lor	de Fer Abore Variable Cont	Taoluding Farrent Cost	Cost Excluding	Averace Var Including Earweat Coat	Variable Cost Excluding of Harvest Cost
	(Q)	(save)			l	
			Portable The	and Services		
	+51-55		925	1	6°24	10.6
	23.02			121.62		100
	0A. KA+		4.60	36.0	4.7	1
	+27.21	+34.01	53.0			5.
		10°6 +	0.00		I4.5	o≠ oe
		81	1 1			
				1	c) 	10.01
	13.5	- 4.97	•	43.2	*	7-57
	-17.35	1.32	e) «	0	4 4	1
		30°0	•	۰.	3 •	
			8 ¢		1 (
		86 6 C	•		•	
			159-5	132.0	15.7	2
	S. 1998	お.1.*	4	193.7	•	\$
		- 2.10	6	294.7	•	5
	-99.22	- 1.9	•	TER	•	6.0

TABLE A-V

	Extina Na or Long	Neturn 6 Par			Freekeven 701nt	
ar ar		Above Variable	YaoAuding	Scort Excluding Reveat Cost	Averace Var Including	Sected for Excluding Reveat Coe
		Count of				
			Sardabaten	and Frailer 200		
0)	121-04	+69-63+	ŝ	24.5	50.05	6.2
	40.04	+49.53	33.5	56.2	66.3	3.5
	+26.53	+34.78	63.1	H-MA	52.5	
	416.24	+27.13	59.9	41.0	1.92	5.2
	14.2	+19,45	×.	23.3	22.5	8.4
	-13.64	51.	4	45.4	4	ŝ
	-10,40	· 5.8	*	2.5	1	19.9
	-31.56	- 3.15	*	96.0	•	0.0
			1 May and Di	tobes and huma		
0	+46.50	1 × × ×		D. S.	1	6.4
	+22.59	-71. ht	69.5		33.0	10.9
,	- 6.41	- 1.06		19.9	*	5
	- 6.69	* 3.07	-	20.1	¢) 1	5
	61-11-	- 1.8	4	1	•	22
	-11.56	· 1.55	4	2	•	4
	-12.12	+ 8.65	2.0	\$ 653. \$	1. 0	0
	-16.33	· 2.67	-	0.0	•	5.0

TARE A-V (continued)

253

not receive a yield response, therefore, no harvest cost t

8

4

	Sxtro Set 12	irs Return		Dreakev	Breakeven Point	
aver of	1	12	Tuntultue	Cost sectore	Avorese Val	Average Variable Cost
STORIS.	Cost	0056	Harvest Cost	Harvest Cost	Harvent Cost	
	ð	(anallog)	(Sushels)	Bushels)	(Bushels)	(Bushels)
n	+ 4.64	00	3.6	2.7	1.5	9.
	+ 4.45	+ 6.65	2.7	1.9	1.6	•
	R	15. +	2.	F.o	ŝ	
	23.28	- 3.07		6.9	6	7. 6
	1 2.35	- 3.33	¢\$	3.8	e)	1.7
		GIARL	int Surinkler a	nd Treller Boo		
4	* 1.27	+ 2.61	4.T	L.	*:	4.
	+ 1.36	+ 8.91	2.0	4.6	2.0	1.0
	n:- 1	+ 1.23	m.c	5.0	1.3	C T
	- 3.96			2.0	6	4
		Octod	Plae and	Ditches and Purro		
4	+ 5.92	+ 7.26	Let	L.0	1.0	-
	* . 36	+ 2,28	1.4		5	
	*	+ 2.8	2.5	1.03	5	-4
	AN AN	Cu II		* *	-	1

ADDITIONAL RETURN ON LOSS, BHEAKEVEN POINT IN PHYSICAL UNITS REQUIRED TO PAY AVERAGE TOTAL COST AND AVERAGE VARIABLE COST PER AGRE INCH OF WATER APPLIED TO SOTBEANS. BY

TABLE A-VI

attributed to irrigation.

-
int.
12
*
٩£,
10
1

ADDITIONAL RETURN ON LOSS, BREAKEVEN FOINT IN PHYSICAL UNITS REQUINED TO PAY AVERAGE TOTAL COST AND AVERAGE VARIABLE COST PER IRRIGATED ACRE OF SOVBEANS, BY TYPE OF IRRIGATION SYSTEM, FOUR SOUTHEASTERN MISSOURI COUNTIES, 1959

	Extra Retu or Loss Pe	Return 35 Per		Breakeven	en Point	
Numbor	Asre	2.25	Average	Cost	SI.	sriable Cost
CALCOLG	COST	Cost	Jarvest Cost	Rarveat Cost	Earvest Cost	Harvest Cost
			100 10 10 10 10 10 10 10 10 10 10 10 10	and Suplimizer		
		Dollara)	(Bushels)	(Bushels)	(Buchele)	(Bushels)
S	+ 9.29	+17.40	7.2	5.4	3.1	1.2
	◆ 8°99	+13.30	5.4	3.9	3.0	1.6
	- 2.12	+ 6.82	8.1	0-1	5.5	2.4
	-13.23	- 3.07	ci .1	0.0	-	1.6
	-22.06	-10.00	¢. †	11.3	4	5.1
		GARN	nt Sprinkler a	nd Trailer Box	教授	
4	+ 6.99	+15.64	6.4	5. 6	4.0	2.1
	+ 2.27	+10.87	6.8	5.6	2.4	1.2
	- 3.07	+ 5.10	9.6	5	5.3	4.1
		- 2.06	aj 1	2.1	1	1.1
		Ga tes	1 21 no and 214	ches and Furry	NO.	
4	+23.69	+29.04	0.8	2.9	14	1.2
	+ 2.55	+22.80	13.7	11.4	3.3	1.0
	107 +	+18.33	11.8	2.9	2.6	0
	-15.03	- 1.32	*	1.7	1	1.*

"Farmer did not receive a yield response, therefore, no harvest cost was attributed to irrigation.

TABLE A-VIII

•		Grop	
Yeer	Corn Bushels	Botton Pounds of Lint	Sorbeans Bushels
1950	44	280	23
1951 1952	32	303 367	20 19
1953	20	480 480	15
1955 1956	48	587	50
997 1958	60	452	51
1959 Av erage 1950-1959	55	420	23

AVERAGE YIELD PER ACRE FOR SPECIFIED CROPS, MISBOURI, 1950-1959

Source: <u>Agricultural Statistics 1950-1960</u>, United States Department of Agriculture, United States Government Printing Office, Washington.

Ted Lee Jones, oldest son of Mr. and Mrs. Julian W. Jones was born **Manual on a farm northwest of** Warrensburg, Missouri. Thirteen years in the early part of his life were spent on temant farms in Johnson and Saline Counties, Missouri.

In March 1943, the family returned to the home community north of Warrensburg and purchased a 40 acre farm. The father worked for a neighboring farmer, so the farming operations were the responsibility of the son. Ted carried this responsibility and completed his elementary school training in 1943 as the only graduate of the Foster Grade School. In the autumn, he entered Farmers High School, a consolidated rural district in Johnson County.

In March 1944, the family purchased a 120 acre farm in the same community which is still the home of the parents. The father worked in a coal mine during the winter months and farmed the rest of the year. Ted worked on the home farm during the summer months between his first and second years in high school. During the remaining years in high school, he worked for a neighboring farmer when school was not in session.

After graduation from Farmers High School as valedictorian in 1947, Ted entered the College of Agriculture, University of Missouri on a Sears Roebuck

VITA

Scholarship. To earn a major share of his college expenses, he worked in a drug store, in a cafe, and as a student laboratory assistant in the Soils Department. In June 1951, he received a Bachelor of Science degree in Agriculture and a reserve commission in the U. S. Army.

On May 1, 1951, Ted was employed by the Missouri Agricultural Extension Service as Assistant County Agent in Livingston County. He entered the U. S. Army in August 1951 as a second lieutenant for a two-year tour of active duty. Sixteen of the 24 months were spent in Germany. Ne was released July 29, 1953.

In December 1953, Ted and Betty Rose Eckhoff were married. A son, Ted Lee II, was born in February 1961.

Ted was employed as an insurance salesman from August 1953 to May 1954. In June 1954, he returned to the Missouri Agricultural Extension Service as Assistant County Agent in Cass County. He left extension work in June 1956 to return to the University of Missouri for graduate study in Agricultural Economics. From June 1956 until May 1958, he was a Graduate Assistant in Agricultural Economics, and attended the Land Economics Institute at the University of Illinois during the summer of 1958. The Master of Science Degree was received in 1958.

In June 1958, Ted was employed by the Farm Economics Research Division, Agricultural Research Service, United

States Department of Agriculture and was made a research associate at the University of Missouri. He has continued to conduct research for the Fara Economics Research Division until the present time. Publications and manuscripts include <u>Progress in Econing Established in</u> <u>Farming, Nature and Extent of Irrigation in Missouri.</u> University of Missouri Agricultural Experiment Station Research Bulletin 735, April 1960 and <u>Irrigation Practices</u> and <u>Costs in Southeastern Missouri, 1959</u>.

Ted has maintained his affiliation with the Military Service and at present holds the grade of Captain in the Army Reserve. His present assignment is Assistant Battalion 8-3, with the 4th Nowitzer Battalion, 84th Artillery at Columbia, Missouri.

IRRIGATION PRACTICES AND COSTS IN SOUTHEASTERN MISSOURI - 1959

Ted Lee Jones

Prank Miller, Dissertation Supervisor

ABSTRACT

Field crop irrigation is a relatively new production technique in Missouri. Prior to this investigation, only limited information was available concerning costs and returns. The research reported here was designed to determine (1) the costs of installing and operating various types of irrigation systems, (2) changes in yields resulting from applying water to specific crops, and (3) the effects of irrigation on farm income.

A random sample of 65 farmers was chosen from a population of 186 farmers who owned or controlled irrigation equipment in Dunklin, Pemiscot, New Madrid, and Mississippi Counties in the Delta Cotton and Corn Area. Each farm operator was interviewed three times in 1959 to obtain the fixed investment in irrigation equipment, the operating costs, the acreage and crop receiving water, and the estimated yield response.

The data obtained showed that the farmers were using five types of irrigating equipment. The fixed investment in all types averaged \$7,122 per farm or \$56 per capacity acre. It was highest for trailer boom types with outlays of \$13,200 per farm and lowest for ditch and furrow types at \$4,100.

The cost per acre of land irrigated varied widely with the type of equipment used and the number of acres to which water was applied. Fixed items made up more than one-half of the average cost per acre for all types. Variable costs averaged 20 per cent of the total for surface, and portable pipe and sprinkler systems, and 35 per cent for the trailer boom-giant sprinkler systems.

There was a significant difference in the average labor, tractor, fuel and oil cost per aore application of water with the different types of systems. The average labor cost was significantly higher for the portable pipe and sprinkler systems than for the surface systems. Average tractor, fuel and oil costs were significantly higher for the trailer boom-giant sprinkler type and for the portable pipe and sprinkler systems than for the surface systems, but considerable leveling was required for use of gravity distribution.

Cotton, corn, and soybeans were the principal crops irrigated in 1959. The average yield response of cotton was 66 pounds of lint per acre, but 57 per cent of the irrigators got no increase. The average yield response of corn was 30 bushels per acre, and 63 per cent of the

irrigators had yield increases. Soybean yields were increased an average of 8.5 bushels per acre, and 69 per cent of the farmers reported gains.

Only 29 per cent of the farmers increased their net income by irrigating cotton, corn, and soybeans. Use of supplemental water was not profitable for the majority of the men who had equipment in 1959. However, the data were obtained in a year when weather conditions were favorable for erop production. The average cotton yield without irrigation was the highest ever obtained in the Delta. The fact that more than one-fourth of the farmers increased their net income in one of the most favorable erop years on record, suggests that the practice has merit, but must be applied under conditions of superior management to bring satisfactory returns in relation to costa.

University Libraries University of Missouri Digitization Information Page Local identifier Jones1961 Source information Format Book Text Content type Source ID Gift copy from department; not added to MU collection. Notes Capture information Date captured January 2024 Scanner manufacturer Fujitsu Scanner model fi-7460 Scanning system software ScandAll Pro v. 2.1.5 Premium Optical resolution 600 dpi Color settings 8 bit grayscale File types tiff pg. 94 missing Derivatives - Access copy Compression Tiff: LZW compression ComplessionIIII. H2W complessionEditing softwareAdobe PhotoshopResolution600 dpiColorgrayscaleFile typespdf created from tiffsNotesImages cropped, straightened, brightened