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ABSTRACT

ADInsight represents the crux of this dissertation, introducing an integrated and

explainable framework centered on predicting Alzheimer’s disease (AD) conversion, par-

ticularly for those at the early stage of mild cognitive impairment (EMCI). Beginning

with an examination of models grounded in individual research modalities, such as clin-

ical data and advanced imaging, the research underscores the potential and limitations

of singular approaches. As a response to these findings, this dissertation introduces a

multimodal ensemble conversion prediction model that combines Diffusion Tensor Imag-

ing (DTI) scans with clinical data. This ensemble not only increases the accuracy of

predictions but is also notable for its dedication to explainability, bridging the gap be-

tween intricate neural network predictions and understandable medical interpretations.

Upon further exploration a unique framework is revealed, combining the advantages of

Random Forest Regression alongside the latest over-sampling methods. This framework
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unravels the intricacies of AD’s nonlinear progression, leading to the formulation of pa-

tient progression groupings. The dissertation is then concluded with the Cognitive Visual

Recognition Tracker (CVRT) application. This application marks an exploration into cog-

nitive focus and visual identification, which are essential elements in the development of

Alzheimer’s disease. Benefiting both clinicians and patients, CVRT paves the way for

innovative treatment strategies. In summary, our ADInsight framework provides a novel

approach to understanding and predicting the progression of AD, providing a beacon of

hope and knowledge in the ongoing struggle against this debilitating condition.
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CHAPTER 1

INTRODUCTION

In this chapter, we provide an introduction to Alzheimer’s Disease conversion

prediction and the various challenges and approaches that have been implemented thus

far. The potential and vital role of explainability in prediction models is emphasized,

followed by our contributions and the rationale for our ADInsight framework.

1.1 Background and Significance

Alzheimer’s disease (AD) is a progressive neurological disorder that causes the

brain to diminish and leads to nerve cell death. It is the most common type of dementia

and presents with memory loss, impaired daily living activities, and cognitive decline.

This can eventually lead to a significant burden on the individuals themselves, as well as

caregivers and our healthcare systems. Preventing the progression of AD is difficult as

there are no effective treatment plans. However, early detection could significantly alter

the course of disease management and potentially enhance the effectiveness of treatments

when provided as early as possible [1]. This early stage, classified as Mild Cognitive Im-

pairment (MCI), represents the onset of problems with memory recall, language, thinking,

or judgment. Within the MCI umbrella, this dissertation focuses on the Early Mild Cog-

nitive Impairment (EMCI) subjects as they represent the furthest possible MCI subclass

from AD. Given that approximately 32% of patients diagnosed with MCI will develop
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Alzheimer’s Disease [1], it becomes crucial to devise an accurate, explainable tool to

identify which patients will convert, given the life-changing implications of an inaccurate

prediction. Furthermore, in a healthcare landscape that is increasingly reliant on data-

driven decision-making, the value of an interpretable prediction model extends beyond

individual patient care. It can potentially shape policy, resource allocation, and the future

direction of AD research.

1.2 Problem Statement

AD conversion prediction from MCI subjects has been an area of intense research,

hoping to create models that can effectively determine individuals who are more likely to

progress to AD. However, this area of research faces the challenge of balancing accuracy

and explainability. Many different techniques have been explored for this problem across

multiple modalities including genetic biomarkers, neuropsychological assessments, neu-

roimaging data, and different assortments of clinical variables. These approaches often

have promising results for accuracy, but often lack explainability.

This deficiency in explainability for prediction models poses a challenge when

seeking adoption in real-world clinical environments. Since the factors that generate these

predictions are often in a “black-box,” it is more difficult for clinicians to establish trust

and confidence without having a transparent view into the underlying prediction rationale.

Explainable artificial intelligence (XAI) has emerged as a domain to attempt to address

this issue by providing prediction explanations that can be interpreted by other researchers

or clinicians.
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1.3 Dissertation Objectives

The primary objectives of this work are as follows:

• To develop an accurate and explainable tool for the prediction of Alzheimer’s Dis-

ease conversion from the Early Mild Cognitive Impairment (EMCI) stage.

• To enhance the transparency and trust in predictive models, aiding their integration

into clinical settings.

• To provide a thorough analysis of the various methods and approaches used in

Alzheimer’s Disease conversion prediction.

• To develop a multimodal framework that combines different types of data for im-

proved accuracy and explainability.

• To present the application of the developed framework in mobile and web platforms

for wider accessibility and use.

1.4 Summary of Contributions

This dissertation seeks to address these challenges with Alzheimer’s disease con-

version prediction by developing a prediction framework (ADInsight) that focuses on ex-

plainability. The main goal is to develop a framework that can accurately identify which

EMCI subjects are likely to progress to AD, estimate the timeframe of this progression,
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while also offering explanations that are interpretable. An explainable framework devel-

oped with this criteria can help the transition from black-box AI models to more transpar-

ent and reliable clinical decision support systems.

The main contributions of this work are as follows:

• An Alzheimer’s Disease Conversion Prediction model to identify the MCI conver-

sion population from clinical data (Chapter 2);

• A Diffusion Tensor Imaging (DTI) approach for visual AD conversion prediction

with Convolutional Neural Networks (Chapter 3);

• An ensemble multimodality model that combines clinical and FMRI data to predict

AD conversion alongside improved explainability methods (Chapter 4);

• Pattern analysis for longitudinal data is proposed that determines the timeline of a

patient’s AD conversion alongside categorization into novel groups (Chapter 5);

• Clinical Decision Support Applications that are presented in both mobile and web

application formats. These can be used with dynamic inputs across multiple modal-

ities (Chapter 6)

1.5 Dissertation Structure

The remaining chapters of this dissertation are organized as follows. In Chapter 2

we develop a random forest model from clinical data that accurately predicts AD conver-

sion. This provides a foundation for subsequent analysis. We then explore Convolutional
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Figure 1: ADInsight Workflow

Neural Network (CNN) explainability via the generation of a visual model (Chapter 3).

We then combine our clinical data and fMRI approaches into a single ensemble model

capable of explainability across multiple modalities (Chapter 4). This step represents

an integration of distinct data sources, enhancing the predictive capacity. Moreover, we

present patient timelines that determine when a patient is likely to convert and similarity

to other patient’ progressions (Chapter 5). These patient timelines provide dynamic in-

sights into the progression of AD. Furthermore, in Chapter 6, we extend this framework

to web and mobile solutions so that our results can be reproduced dynamically. This also

enables wider reach of our developed framework as well as a practical application. Fi-

nally, Chapter 7 serves as our conclusion by providing a summary of the dissertation and

potential future work.
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CHAPTER 2

FEATURE-BASED RANDOM FOREST MODEL

Alzheimer’s Disease (AD) conversion prediction from the mild cognitive impair-

ment (MCI) stage has been a difficult challenge. This chapter focuses on providing an

individualized MCI to AD conversion prediction using a balanced random forest model

that leverages clinical data. In order to do this, 383 Early Mild Cognitive Impairment

(EMCI) patients were gathered from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). Of these patients, 49 would eventually convert to AD (EMCI C), whereas the

remaining 334 did not convert (EMCI NC). All of these patients were split randomly into

training and testing data sets with 95 patients reserved for testing. Nine clinical features

were selected, comprised of a mix of demographic, brain volume, and cognitive testing

variables. Oversampling was then performed in order to balance the initially imbalanced

classes prior to training the model with 1000 estimators. Our results showed that a ran-

dom forest model was effective (93.6% accuracy) at predicting the conversion of EMCI

patients to AD based on these clinical features. Additionally, we focus on explainability

by assessing the importance of each clinical feature. Our model could impact the clini-

cal environment as a tool to predict the conversion to AD from a prodromal stage or to

identify ideal candidates for clinical trials.

As previously mentioned, Alzheimer’s Disease (AD) is a progressive, degenera-

tive brain disorder that leads to nerve cell death and tissue loss in the brain. Currently,
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there are no treatment plans that prevent the progression of AD, and this has led to in-

creased emphasis on being able to predict AD at an earlier stage. Mild Cognitive Impair-

ment (MCI) is an intermediary stage between being cognitively normal and having AD

where 32% of MCI patients will go on to develop Alzheimer’s Disease [1]. This makes

the MCI stage an ideal target for early prediction as studies point to early diagnosis as

being key to potentially delaying the overall progression of AD [1]. Early detection at

the MCI stage can assist in clinical trial enrollment and provide more specific treatment

plans when more effective ones do become available. Our focus in this chapter was to

target the earliest subset of MCI patients (EMCI), as that subset is the furthest from an

AD diagnosis and would thus provide a more beneficial prediction. As a result, it is of

high importance to accurately determine which EMCI patients will develop AD.

For this reason, an accurate, ensemble learning model that can aid in clinical de-

cision making is necessary to help ascertain the patient’s prognosis. A random forest

algorithm is a supervised learning algorithm that randomly creates and merges multiple

decision trees and that has been proficient with classification problems [2]. In this chap-

ter, a random forest model is used to determine which patients will convert to AD (our

EMCI C class) and those that will not convert (EMCI NC) against an imbalanced data

set. As well as determining how to best balance the data, assessing which clinical fea-

tures are most relevant for conversion prediction is fundamental to our problem. Through

our random forest model we are able to see which of our clinical features has the most

significant impact at both the model and the individual prediction levels. This allows us to

interpret the individual results better to provide more clinical significance. In this work,

7



we sought to (1) identify significant features from clinical data; (2) build a random for-

est classification model from an imbalanced data set of those features; (3) determine the

prediction accuracy of our model.

Also, we observed the associations between individual predictors and their impor-

tance to the problem. By attempting different feature groupings, we were able to distin-

guish the most crucial feature types. As a result of this approach, our work provides a

clinical decision-making tool that can predict MCI-to-AD conversion with high accuracy

and interpret the results meaningfully. We envision that this work will provide an accu-

rate tool for predicting conversion probability from MCI to AD and further understand

the impact of neuropsychological, biomarker, and demographic features.

2.1 Related work

A review on the use of random forest models in classifying Alzheimer’s Disease

was provided by Sarica et al. [3]. Their review consisted of 12 studies that were primar-

ily focused on the classification of Alzheimer’s Disease stages from MRI images. The

accuracy across these studies ranged from 53% to 96%, depending on whether they were

performing multiclass classification or not. These studies were also focused on the direct

stage classification of AD vs. Normal Controls vs. MCI, rather than the prediction of AD

from an earlier stage.

Another review by Weiner et al. [4] summarized 49 ADNI papers. These papers

did target the prediction of AD but were also focused mainly on MRI data. These were
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occasionally supplemented by clinical data or other imaging data (PET), with most stud-

ies using a support vector machine (SVM) model. A few of the studies [5][6][7] did use

the random forest algorithm as well and will be compared, alongside the SVM implemen-

tations, against our model’s performance.

Huang et al. [8] proposed a predictive nomogram that combined image features,

clinical factors, and AB concentration to predict the conversion of MCI to AD. They also

explored the associations between the different selected features and reported on their

significance. Their goal was to examine the associations at both a macro and micro level

to better understand the underlying patterns.

Moore et al. [9] proposed using a pairwise selection from time-series data to

predict AD conversion. The authors analyzed the relationships between data point pairs

at different times using a random forest algorithm. They leveraged a mix of demographic

and genetic data and achieved a classification accuracy of 73% as a result.

Lebedev et al. [6] used a combination of structural MRI scans along with a few

clinical features from the ADNI data set to achieve an MCI-to-AD conversion accuracy

of 81.3%. Their work also saw a sharp increase in accuracy by using a Random Forest

algorithm rather than a Support Vector Machine. One advantage in their study is that they

validated the model extensively outside of the ADNI data set and found no substantial

drop in accuracy, suggesting a good foundation for clinical implementation.

Rana et al. [10] created a model deemed MudNet, which combined both clinical
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data and MRI imaging for MCI-to-AD conversion prediction. They used many neuropsy-

chological assessment scores alongside T1-weighted structural MRIs to achieve a conver-

sion accuracy of 69.8%. Their work also provided a time-to-AD conversion classification

which differentiated between high-risk (AD conversion within two years), and low-risk

people (AD conversion greater than two years) at a 66.9% accuracy.

Thushara et al. [11] used a random forest algorithm for multi-class Alzheimer’s

classification. Their work sought to distinguish between AD, MCI, cMCI (Converted

MCI), and normal controls using largely biomarker features. They achieved a multi-class

classification accuracy of 69.33% with an MCI-to-AD conversion prediction (cMCI class)

accuracy of 47.19%.

2.2 Methods

2.2.1 Alzheimer’s disease neuroimaging initiative data

All data used for this work were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database and included patients from their ADNI-1, ADNI-

2, and ADNI-GO studies [12]. The ADNI was launched in 2003 as a public-private

partnership with the primary goal of testing whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cog-

nitive impairment (MCI) and early Alzheimer’s disease (AD) [12]. Early Mild Cognitive

Impairment (EMCI) patients were eligible for our study as long as they had follow-up

appointments for greater than a year. The EMCI subset consists of patients that are 5-7
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years before a possible AD diagnosis and are identified by the results of the Wechsler

Memory Scale Logical Memory II test. These EMCI patients were then subdivided into

two groups based on whether they would eventually be diagnosed with Alzheimer’s Dis-

ease or not. We chose to represent these groups as EMCI C, for our AD conversion

group, and EMCI NC for our stable group. From the ADNI variables, the Clinical De-

mentia Rating was used to make this determination based on the value of their last visit’s

diagnosis. The remaining 1806 EMCI visits were then used as a starting point for train-

ing prior to augmentation. Of these, 198 belonged to the EMCI C class while 1608 visits

were from EMCI NC subjects. Overall, our study consisted of 383 EMCI patients (shown

in Figure 2), with 49 belonging to the EMCI C group and the remaining 334 within the

EMCI NC group. These patients were then randomly split such that 75% (288 patients)

of our selected patients were used to train the random forest model, with the remaining

25% (95 patients) used for validation testing (shown in Table 1).

Table 1: EMCI Data Set for Machine Learning

EMCI C EMCI NC
Subject# 49 334
Visit# 198 1608
Record# after Oversampling 1608 1608
Training Data 1206 1206
Testing Data 402 402

2.2.2 Clinical features selection

The clinical features that were used to train our random forest model included a

mix of genetic biomarkers (APOE4), physical biomarkers (hippocampal and ventricular
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Figure 2: Participants’ Age and Gender Distribution

volume), four neuropsychological scale scores (ADAS13, ADAS11, FAQ, MMSE), and

the patient’s demographic information (age, race). Many different variations of ADNI

features were tested for model inclusion; however, these nine features were found to pro-

vide the best overall fit. Additionally, related studies have used similar features and found

the mix of biomarker and neuropsychological scale scores to be an ideal selection for AD

prediction [13]. The ADNI features that we have used per training group can be seen in

Table 2.

2.2.3 Random forest classification model

Random forests are an ensemble learning method for classification, regression,

and other tasks that operate by constructing a multitude of decision trees at training time

and outputting the class that is either the mode of the classes, in regards to a classifier, or

the mean prediction of the individual trees for a regression model. Since random forests

consist of a collection of decision trees that are trained with different data subsets and

then averaged, this allows them to be tolerant of the problem of overfitting.
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For our work (as seen in Figure 3), the random forest classifier has two potential

classes eligible for its output, EMCI C (patients that converted to AD) and EMCI NC

(patients that did not convert to AD). These classes are voted on from each individual

tree, which is then aggregated to provide an overall probability of AD conversion. Fig-

ure 4 shows an example of an individual tree. Random Forest classifiers also allow for

individual input variable importance to be evaluated. As part of our work, we built an

ad hoc prediction script that evaluates this variable importance at both the model and in-

dividual prediction levels. Initially, while training the model, this evaluation helped us

determine which variables were most relevant for model inclusion. After the model has

been trained, this variable importance ranking then helps to interpret the individual pre-

diction results Table 3 shows the rankings of 6 features, 9 features and 13 features as well

as the fractional ranks that are the average of the ordinal ranks for these three feature

groups.

2.3 Results

2.3.1 Demographic and clinical characteristics

As can be seen across Table 2, 383 EMCI patients were gathered from the ADNI

database, of which 49 would convert to AD (EMCI C), and 334 would not convert

(EMCI NC). The patients’ average age was 71.4, and 55.6% of the patients were men.

There was a significant difference in age between the two groups (P <.05) according to

the t-test, however this feature’s difference was not statistically significant between classes

when measuring feature importance. Additionally, a subsequent model was trained on a
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Figure 3: Model Workflow

Figure 4: Example of a Small Random Forest Tree Within Our Model
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Table 3: Comparison of Feature Importance Ranking by Feature Groups

Feature 6FT Ranks 9FT Ranks 13FT Ranks Fractional Ranks
AGE 1 1 1 1
FAQ 2 4 3 3
ADAS13 3 5 6 4.6
ADAS11 4 6 8 6
MMSE 5 8 12 8.3
PTRACCAT 6 9 13 9.3
Hippocampus - 2 2 2
Ventricles - 3 4 3.5
APOE4 - 7 9 8
RAVLT immed - - 5 5
RAVLT perc forg - - 7 7
RAVLT forg - - 10 10
RAVLT learn - - 11 11

reduced data set that eliminated Age outliers and accuracy was only reduced by .3%.

Also shown in Table 2 are the genetic and physical biomarkers. The APOE4 and

hippocampal volume differences were statistically significant between the EMCI C and

EMCI NC groups, whereas the ventricular volume was not. For the neuropsychological

scale scores, the ADAS13 and the FAQ features were significantly different (P <.05).

The ADAS11 and the MMSE features were found not to be significantly different. The

relationships between our features are further seen in Figure 5 as a Correlation Matrix.

2.3.2 Model performance

A workflow of our random forest model can be seen in Figure 3. This summarizes

the training methodology as well as the prediction and variable importance output. After

our pre-processing steps, we train a 1000 tree random forest model on 2412 exam visits
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Figure 5: Random Forest Model Correlation Matrix

against different feature groups to compare their results. While initially, using all 13-

features seemed to provide the highest accuracy at 91.6%, we found that by removing the

Rey Auditory Verbal Learning Test (RAVLT) features, our accuracy rose to 93.6% in the

9-feature group. We also tested a 6-feature group, which removed the RAVLT variables

as well as the biomarker data; however, this saw the worst accuracy of the three groups at

89.2%.

After running these feature group variations through our random forest training

process, we decided to implement the same training data into a support vector classifier

(SVC), an XGBoost classifier, and a Logistic Regression model for comparison (See Ta-

ble 4). As these are commonly used for this problem, we considered this to be a reasonable

comparative measure to the efficacy of our random forest model.

Support vector classifiers attempt to find the separating hyperplane that maximizes

the distance of the closest points to the boundary of the class. These are typically effective
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Figure 6: Receiver Operating Characteristic Curves for Random Forest and Comparison
Models.

in high dimensional spaces and have seen a fair amount of usage within the AD conversion

prediction domain [14] [8]. In both the 9-feature and 13-feature groups, we found that our

random forest model outperformed our SVC implementation (93.6% vs. 90% and 91.6%

vs. 90%, respectively). The SVC did show higher accuracy than the 6-feature RF model;

however, the AUC was inferior on all SVC variations. The difference in AUC between

our best RF variation (96% AUC) and our best SVC variation (54% AUC) is shown in

Figure 6. One observation when observing our SVC model is that it struggled to predict

the negative class (conversion to AD) and predominantly chose the majority class. This

was not the case with our balanced random forest model which was able to appropriately

distinguish between both classes.

XGBoost is an implementation of gradient boosted decision trees that has seen

success in structured data classification. While not being common in the AD conversion

prediction space, we wanted to compare how our feature-selection would be handled by
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its algorithm. XGBoost resulted in the second-best overall method behind our top RF

model and showed significantly better performance than the SVC and Logistic Regression

implementations. For the 6-feature group, XGBoost outperformed our RF model (89.8%

vs. 89.2%). However, while performing better than SVC and Logistic Regression, the

XGBoost model still saw less accuracy than the RF model at both the 9 and 13 feature

groups, as seen in Table 4. When comparing AUC, one can see how well XGBoost

performed (89%) in relation to SVC (54%) and Logistic Regression (75%).

Table 4: Performance of Random Forest vs Support Vector Classifier

Model/Feature Accuracy Precision Recall F1 Score AUC p-value
Random Forest
6-Features 0.892 0.907 0.980 0.942 0.88 0.91
9-Features 0.936 0.952 0.978 0.965 0.96 0.71
13-Features 0.916 0.916 0.998 0.955 0.93 0.82
Support Vector
6-Features 0.900 0.900 1 0.948 0.52 -
9-Features 0.900 0.900 1 0.948 0.54 -
13-Features 0.900 0.900 1 0.948 0.55 -
Logistic Regression
6-Features 0.894 0.902 0.990 0.944 0.76 -
9-Features 0.892 0.903 0.985 0.942 0.75 -
13-Features 0.896 0.904 0.990 0.945 0.75 -
XGBoost
6-Features 0.898 0.904 0.993 0.946 0.87 -
9-Features 0.920 0.930 0.985 0.957 0.89 -
13-Features 0.907 0.921 0.980 0.950 0.88 -

Finally, Logistic Regression was the last method that we leveraged for compari-

son. Logistic Regression calculates the probability of an event occurrence and can be used

when the target variable is categorical. For this model, we trained individual versions of
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Table 5: State of the Art MCI-to-AD Prediction

Approach Data #Subject Model Estimator MCI-AD(%) Predict Train
ACC AUC Year Time

Proposed
(ours)

Clinical ADNI(383) RF 1000 93.6 96 5-7 2.98 sec

Grassi [14] Clinical ADNI(550) SVM - - 88 3 2 days
Huang [8] Clinical/MRI ADNI(290) SVM 1000 80 84.6 5 -
Albright [13] Clinical ADNI(1737) MLP - - 86.6 5 -
Moore [9] Clinical ADNI(1627) RF 60 73 82 5 -
Ghazi [15] MRI ADNI(742) RNN 1000 - 76 5 340 sec
Rana [10] Clinical/MRI ADNI(559) CNN 100 69.8 83 5 -
Thushara [11] Clinical ADNI(NA) RF 100 47.2 - 5 -

6, 9, and 13 features but found them to all exhibit less accuracy than our RF model. Ad-

ditionally, while its AUC (75%) underperformed in contrast to RF and XGBoost, it did

significantly better than our best SVC model (54%). Still, this did not result in a model

that was close enough to warrant further consideration for our AD conversion problem.

As mentioned previously, our 9-feature random forest implementation with an

accuracy of 93.6% and an AUC of 96% against a 383-patient data set represents our best

model. While also using the ADNI data set, Grassi et al. [14] could achieve an AUC of

88% with an SVM that made predictions 3 years prior to AD onset. Huang et al. [8] also

attained 80% accuracy and 84.6% AUC with an SVM model against the ADNI data set

leveraging both clinical and MRI data looking 5 years prior to AD onset. As our approach

differs by using Early Mild Cognitive Impairment patients (EMCI) rather than the broader

MCI grouping used by other studies, we can predict conversion from 5-7 years prior to

the onset of AD. Our outcome is state-of-the-art when comparing our accuracy and AUC

to the previously published work for MCI-to-AD prediction as shown in Table 5.
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2.3.3 Balancing the data

As a result of our imbalanced data set, where 12.8% of the patients belonged to the

minority class (EMCI C); we perform a random oversampling algorithm that generates

new samples with replacement from the EMCI C class. Replacement ensures that samples

can be selected, added to the augmented data set, and then returned to the non-augmented

data as eligible for further random sampling. For our study, we choose a minority strategy

such that all samples would be generated solely from the existing EMCI C data. This

augmentation provides a balance between the two classes so that the majority class does

not take over during model training. Through this process of oversampling our number of

minority class visits become equivalent to that of the majority. This allows for the model

to be trained against 2412 exam visits (1206 per class) rather than only the 1354 from the

original data set train/test split. Table 1 further demonstrates the evolution of the data set

after oversampling.

Table 6: Comparison of Imbalanced Data Set Sampling Methods

Method Accuracy
Random Over sampler 93.60
SMOTE 92.97
Borderline SMOTE 93.19
ADASYN 93.30

We first compared our random oversampling method against an under-sampling

method that targeted the majority class and found a 3.1% increase in accuracy via the

oversampling process (see Table 6). Our approach was also compared to class weight

21



modifications, but they performed poorly in comparison to our minority strategy. After

determining that oversampling was the preferred method we began to compare against the

established oversampling methods.

SMOTE, or rather Synthetic Minority Oversampling Technique, was the first of

these methods that we evaluated against. SMOTE relies on generating new information

from the minority class population, rather than duplicating from that population. This is

done by pulling from a random minority class sample, and then also finding a random

k-nearest neighbor from that sample. The new data is then created in a space between

those two samples [16]. However, against our EMCI data set this was found to reduce

accuracy by .63% compared to our original technique.

Borderline SMOTE was also considered as this modifies the SMOTE technique to

generate new data along the decision boundary of the two classes, rather than randomly

between two samples [17]. While we did see a 0.22% improvement over SMOTE, it still

fell short of our Random Oversampler.

Finally, we attempted the Adaptive Synthetic Sampling (ADASYN) method as

a means of comparison. This deviates from the other SMOTE methods by generating

new data based on the density of the data, rather than the decision boundary or k-nearest

neighbor. ADASYN focuses its synthetic data creation within the low density feature

space regions and creates less data within the high density regions [18]. For our data, this

method produced the second best results and outperformed both SMOTE and Borderline

SMOTE. The overall accuracy comparison of these oversampling techniques can be seen

in Table 6.
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Figure 7: 6-Feature Model Feature Importance

Figure 8: 9-Feature Model Feature Importance
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Figure 9: 13-Feature Model Feature Importance

2.3.4 Assessment of model feature importance

One advantage of using the random forest algorithm is that feature importance

can be assessed at both the model and individual prediction levels. The model feature

importance of our three feature groupings can be seen in Figures 7-8 and Figure 9. As

a random forest algorithm deals with different combinations of features in each of its’

decision trees, this allows for the feature importance to be calculated based on how much

the prediction error increases [9]. This is done by first calculating the individual nodes’

importance per tree as seen in Equation 2.1. Within this, nij represents the importance of

node j, wj being the weighted samples reaching node j, and Cj as the impurity value of

the node. Once each node’s importance has been determined, the feature importance per

tree is calculated per Equation 2.2 and is then normalized to a value between 0 and 1 per

Equation 2.3. This result is then averaged across the entire forest before being divided by

the total number of trees as seen in Equation 2.4 [19].
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nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (2.1)

fii =

∑
j:node j splits on feature i nij∑

k∈ all nodes nik
(2.2)

normfii =
fii∑

j∈ all features fij
(2.3)

RFfii =

∑
j∈ all trees norm fiij

T
(2.4)

For our 6-feature model, the three most important features are Age, FAQ, and

ADAS13. For our top-performing 9-feature model, the top features are Age, Hippocam-

pus, and Ventricles. Finally, for our 13-feature model, Age, Hippocampus, and FAQ score

are the most important. The presence of hippocampal and ventricular volume towards the

top explains why the absence of those features in our 6-feature model resulted in dimin-

ished accuracy. By adding in the RAVLT features, our accuracy improved, but these

were redundant with the other neuropsychological scale scores, so they were removed for

our final model. Age was consistently seen as the best conversion predictor, which corre-

sponds to the increased risk of AD at an older age [20]. Race (PTRACCAT) was routinely

at the lowest feature importance between our models, but we did observe a decrease in

accuracy upon its’ removal. This is likely due to race having very little correlation with

the other included features, whereas some neuropsychological scores exhibited signs of

possible overlap (RAVLT).
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Table 7: Average Standard Deviation Difference for Incorrect Predictions by Ground
Truth Class and Feature

Record# Age APOE4 ADAS11 ADAS13 MMSE FAQ Ventricles Hippocampus
EMCI C 20 1.90 2.20 1.30 1.38 2.37 0.82 0.80 1.00
EMCI NC 9 1.74 2.26 2.87 2.46 2.68 2.61 1.13 2.76

For our best model, we also assess the permutation importance seen in Equa-

tion 2.3. This reduces the high cardinality bias seen in the feature importance charts by

permuting against a held-out test set. This is done by each feature column being permuted

against a baseline metric that was initially evaluated against the data set. The permuta-

tion importance is then established as the difference between the baseline metric and the

feature column permutation. From this, we see that Age and FAQ maintain their high

importance. However, APOE4 is now significantly more relevant in regards to the test set

prediction (see Figure 10).

Table 7 shows the average standard deviation differences from the mean out of

the subjects that the model predicted incorrectly. We omit our PTRACCAT (Race) fea-

ture into this analysis, given that it is not a continuous variable. In total, 20 EMCI C

ground truth subjects and 9 EMCI NC ground truth subjects were incorrectly classified.

By analyzing the standard deviation differences, we can determine which feature was

most abnormal compared to the average model prediction for that given class.

We do this by establishing the data set means and standard deviations per feature

for both the EMCI C and EMCI NC classes. We then take each misclassified patient’s

feature values and subtract them by the corresponding mean, prior to dividing them by

that feature’s standard deviation value. This allows us to see which features were the
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Figure 10: 9-Feature Model Permutation Importance

most unusual at an individual patient level. Coupled with the feature importance ranking

this gives us clearer insight into the model’s prediction rationale. For example, the MMSE

feature was 2.37 standard deviations away from its EMCI C mean, which contributed to

our model misclassifying those cases as EMCI NC. Of the EMCI C misclassifications,

MMSE proved to be the most misleading feature. However, we still saw higher overall

accuracy by including it within our model because of its relatively low feature importance.

Out of the EMCI NC misclassifications, there was less clarity as to which feature

was problematic. However, we do observe a standard deviation increase in our neuropsy-

chological test scores across the nine misclassifications. This is indicative of the model

believing these subjects’ test scores to be similar to those of the EMCI C class and thus

making the false prediction. In future work, we will explore whether knowing these mis-

leading instances can help our model’s accuracy, but currently, it appears that these are

outliers within the ADNI dataset.
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2.3.5 Assessment of individual predictors’ feature importance

For the individual level, we can see which features specific to that patient made

the largest contribution to their prediction. An example of these prediction contributions

can be seen in Figure 11 based on the test patient’s features provided in Tables 8 and 9.

In this case, our model correctly predicted that this patient would convert to AD with an

overall confidence of 90.4%. This confidence is a reflection of the aggregate of all of the

individual trees’ votes within our forest.

From Figure 11 and the contributions listed in Tables 8 and 9, we see that ven-

tricular volume was the most predictive feature for this patient as it contributed 24.2%

towards the model’s decision. This was closely followed by their Functional Activities

Questionnaire (FAQ) score which contributed 21.2% of the prediction. Race (PTRAC-

CAT) was the only feature that contributed to the wrong prediction, albeit only a 0.3%

prediction contribution for this patient. These individual feature importances are calcu-

lated in an identical manner to the model feature importance formulas above, however

they do not include the model-level aggregation. In this sense, it allows us to interpret

precisely why the decision trees chose a certain classification.

Tables 8 and 9 show the prediction contributions from subjects across both the

EMCI C and EMCI NC classes. The PC column represents the amount of each fea-

ture’s contribution to the overall prediction. A positive value indicates the contribution

towards the ground truth class, whereas a negative value denotes the contribution towards

the incorrect class. The PC’s overall sum and average for the EMCI C class’s correctly

classified cases are higher than 0.7 and 0.08 while ones for the EMCI C class are lower
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Figure 11: Feature Importance Example for an Individual Patient

than 0.061 and 0.008, respectively. The PC sum and average are strong indicators for the

classification. As Table 7 is helpful for interpreting possibly misleading features at the

model level, this individual PC metric allows us to better understand the model’s decision

making on a per subject basis.

2.4 Discussion

We have demonstrated that a random forest model can take clinical features and

accurately predict MCI-to-AD conversion probability. Our RF classifier showed superior

performance compared to competing SVM, XGBoost, and Logistic Regression imple-

mentations, including our own. It is also worth noting that the best models looked at all

MCI patients, rather than the earlier EMCI subset. This gives our model the strength of

predicting from 5-7 years prior to the onset of AD. Our results show that clinical features
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Table 8: Example Features and Prediction Contributions (9FT PC) for EMCI C Cases

EMCI C Class Correctly Classified Misclassified
9 Features Mean Subject C1 Subject C2 Subject C3 Subject C4

Value PC Value PC Value PC Value PC
Age 73.5 68 0.11 77 0.118 69.1 0.008 73 0.337
FAQ 4.1 0 -0.036 10 0.212 4 0.007 3 0.039
ADAS13 15.8 20 0.042 17 0.022 10 -0.008 9 0.025
ADAS11 9.7 13 0.039 9 0.022 5 -0.006 4 0.013
MMSE 28.1 29 0.006 26 0.057 26 0.023 29 -0.011
PTRACCAT – 7 -0.001 7 -0.003 7 0.003 7 0
Hippocampus 6875.2 7853 0.173 6901 0.025 5576 0.158 7835 -0.02
Ventricles 39282.7 38627 0.145 24285 0.242 35280.12 -0.006 32379 -0.031
APOE4 0.9 2 0.248 1 0.096 2 0.138 0 -0.022

PC: Sum (AVG) 0.726 (0.08) 0.79 (0.087) 0.317 (0.035) 0.33 (0.036)

can also outperform MRI-based models. This is important as obtaining neuropsychologi-

cal scores, a significant subset of our chosen features can be far more affordable and less

intensive than obtaining a patient’s MRI imaging. With a more flexible approach, the

expectation is that this predictor would be easier to deploy into a clinical setting.

In our experiments with the feature groupings, we found neuropsychological scores

to be the most reliable and essential feature subset as we always experienced lower model

accuracy with their exclusion. Performing tests on individual predictors also showed their

weaknesses as each predictor demonstrated improved accuracy when coupled with an ad-

ditional predictor. Even the neuropsychological scores by themselves exhibited signs of

subjectivity, which were remediated by including biomarker and demographic features.

Additionally, our methods for oversampling an initially imbalanced data set can be

of use throughout the medical research domain. With many medical data sets consisting of

similar target class imbalance, our process enhances bagging algorithms by augmenting
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Table 9: Example Features and Prediction Contributions (9FT PC) for EMCI NC Cases

EMCI NC Class Correctly Classified Misclassified
9 Features Mean Subject NC1 Subject NC2 Subject NC3 Subject NC4

Value PC Value PC Value PC Value PC
Age 71.1 59 0.047 81 0.001 79.8 0.106 63.6 0.009
FAQ 1.82 4 -0.037 1 0.056 5 0.099 17 0.158
ADAS13 13.3 16 -0.001 21 -0.005 17 -0.013 37 0.346
ADAS11 8.5 13 -0.002 14 0.009 12 0.019 27 0.208
MMSE 28.3 29 0.015 27 -0.008 30 -0.002 19 -0.025
PTRACCAT – 7 0.001 7 0.008 7 -0.006 7 -0.002
Hippocampus 7334.1 8303 0.023 6288 0.015 5437 0.256 7223.86 -0.021
Ventricles 34504.6 22275 -0.03 30260 -0.001 69583 -0.043 35280.12 -0.019
APOE4 0.4 0 0.045 1 -0.002 0 -0.041 0 -0.037

PC: Sum (AVG) 0.061 (0.006) 0.073 (0.008) 0.375 (0.041) 0.617 (0.068)

more samples for the minority classes. For our purpose, this was only tested within a

binary classification problem, however we will be extending this technique to multi-class

problems.

One limitation of this study is that all of the patients were from the ADNI data

set. While our accuracy was verified by splitting our data across multiple instances, we

did not test the population outside of the ADNI participants. The inclusion of other data

sets into our model would help account for even more significant variations and will be a

target for future work.

In the future, we would like to combine this clinical features dependent model with

our prior diffusion tensor imaging model [21] in order to create an ensemble predictor

that can handle a large variety of available patient information. This would allow for

greater flexibility for patient input data while maintaining high accuracy in the prediction.
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Additionally, it is currently difficult to differentiate between the sub-types of dementia

when a patient presents with cognitive and memory decline [22]. This can lead to an

inaccurate treatment plan if the patient is misdiagnosed. Having the ability to predict

additional sub-types at such an early stage would help significantly with pharmacological

management [23]. Researching the differences between these sub-types based on this

study’s clinical features will be a subject of our future work.

In summary, we created a balanced random forest model based on multiple fea-

tures to predict the MCI-to-AD conversion probability. In addition, we determined which

features were most important for the overall model, as well as for individual patient pre-

dictions. We also took advantage of oversampling methods to better balance the target

classes. As early detection is critical for both clinical trial enrollment and cost-effective

treatment plans, we expect our work to help in clinical diagnosis as well as establishing

treatment timelines. Our random forest model achieved state-of-the-art performance with

an accuracy of 93.6% and showed that the combination of demographic, neuropsycholog-

ical scores and biomarker features could be used to predict which EMCI patients are at a

higher risk of AD.
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CHAPTER 3

DIFFUSION TENSOR IMAGING (DTI) DEEP NEURAL NETWORK (DNN)

MODEL

Building on the foundation laid in prior chapters, Alzheimer’s Disease is an ir-

reversible, progressive brain disorder that slowly destroys cognitive abilities. In recent

years, the relationship between the prodromal Mild Cognitive Impairment (MCI) stage

and the Alzheimer’s Disease (AD) stage has been extensively researched in hopes of find-

ing a path towards early diagnosis. Early detection at the MCI stage can help determine

appropriate treatment plans as well as assist in clinical trial enrollment as 32% of individ-

uals with MCI will develop AD within 5 years.

Computer vision studies leveraging Magnetic Resonance Imaging (sMRI, fMRI),

Diffusion Tensor Imaging (DTI), and Positron Emission Tomography (PET) have led to

encouraging results in classifying the different stages of AD. Studies around DTI specif-

ically have shown that structural differences in white matter are prevalent between these

stages. Rather than classification between stages, we propose a recurrent neural network

model (RNN) based on the DTI modality for identifying the subset (32%) of individuals

with Early Mild Cognitive Impairment (EMCI) that will develop AD. Our results demon-

strate high accuracy in determining which individuals will develop AD within the next

5-7 years. Additionally, we propose our augmentation methods for DTI data as well as

our classification accuracy across the traditional AD stage categories.

AD continues to be a leading cause of dementia, with a growing global prevalence.
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In 2017, nearly 44 million people were reported to have Alzheimer’s Disease. This num-

ber is expected to be over 100 million by 2050 [24]. There are many studies that demon-

strate that as AD progresses many regions of the brain experience pathological structural

changes. These structural changes are significantly different at varying stages of the dis-

ease [25]. A diagnosis of suspected AD is made through a battery of neuropsychologic

testing combined with clinical interviews as the current lack of specific radio-diagnostic

markers makes diagnosis and clinical research from neuroradiology unreliable. There is

an existing need for further technological development of image-based tools for AD re-

search. Previous attempts at image-based detection have focused on classifying the stage

of the disease, rather than predicting whether an individual is likely to develop AD in the

future [26]. As a result, the focus of our study is to create an image-based detection model

that can predict 5-7 years prior which patients will progress to Alzheimer’s Disease.

Gaining an increase in popularity with clinicians in recent years [27], Diffusion

tensor imaging (DTI) provides a way to explore the micro-architecture of the brain by de-

tecting how water moves along the white matter tracts. This form of magnetic resonance

imaging (MRI) has revolutionized diagnostic imaging as it is capable of producing image

contrast based on the water molecule diffusion difference within the brain [28]. In previ-

ous AD studies, tissue measurement differences based on DTI scans were tested, typically

using the fractional anisotropy results [29]. Fractional anisotropy is represented by a zero

to one value that describes the degree of anisotropy of a diffusion process. For this chap-

ter, we explore the differences in apparent diffusion coefficient (ADC) DTI images. The

ADC represents a measure of the magnitude of water molecule diffusion within tissue.
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We then use these images to determine if they are statistically significant in predicting

AD from the Early Mild Cognitive Impairment (EMCI) prodromal stage.

This chapter is organized as follows: we will first review the work that is being

done with Alzheimer’s Disease classification/prediction. We will describe our dataset

and pre-processing steps. We will then describe our technical approach for data collec-

tion/augmentation as well as the specifics regarding our model and architecture. We will

then evaluate the model’s performance and report on the results achieved. Finally, we

conclude with the chapter’s primary insights and potential for future work in addition to

the limitations that were present.

3.1 Related Work

A review on quantitative methodologies [30] summarized the recent brain studies

in Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) while another re-

searched conversion prediction from MCI to AD [31]. Similarly, detecting AD onset in

MCI subjects were presented by Amoroso et al., [32].

While our work focused on the DTI modality, other work in this area attempted

to use a combination of other modalities such as sMRI, fMRI, PET, and non-clinical data

such as sociodemographic and other ancillary information.

Li et al. [33] proposed a deep learning framework for early prognosis of AD based

on hippocampal MRI data. They trained a deep learning classifier based on the ADNI-1

cohort by extracting informative imaging features, and built a time-to-event prognostic

model on these features. This predicted the progression to AD for MCI subjects of the
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ADNI-GO/2 and AIBL cohorts.

Grassi et al. [34] proposed a study where their aim was to develop a new machine-

learning algorithm to allow for a three-year prediction for conversion to AD in subjects di-

agnosed with MCI. Their algorithm aimed to achieve good predictive performance based

only on a reduced set of sociodemographic characteristics, clinical information, and neu-

ropsychological test scores. Their goal was to not rely on information coming from proce-

dures that are expensive, invasive, or not readily available in many clinical settings, such

as neuroimaging techniques, lumbar puncture, and genetic testing.

Khvostikov et al. [35] proposed an adapted architecture of a CNN for classifica-

tion of 3D volumes of hippocampal ROIs and explored fusions of two modalities, sMRI

and DTI. The authors ran a number of experiments with different configurations: used

image modalities (sMRI, DTI), ROI sizes, number of convolutional layers, and number of

convolutions in each layer before comparing them. They trained and evaluated 3 binary

classifiers: AD-NC, AD-MCI, and MCI-NC. The results that the authors obtained con-

firmed that training Deep Neural Networks on 3D volumes and fusing different modalities

can produce high classification accuracy. They report an accuracy of 90% for AD-NC and

80% for AD-MCI.

3.2 Dataset and Pre-Processing Steps

Our work used data obtained from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database [36] which includes both the T2-weighted images as well as the

DTI imaging. The ADNI was launched in 2003 as a public-private partnership with the
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primary goal of testing whether serial magnetic resonance imaging (MRI), positron emis-

sion tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD)[36]. In addition to the DTI images, ADNI di-

agnostic summary data was used to distinguish between which patients, at the MCI stage,

would later develop AD and those that would not develop AD.

For pre-processing, the first step was to download the Average DC DTI images

from ADNI in DICOM format. After obtaining the set of DICOM images, these were then

converted to the NIFTI format using MRIConvert. Once we separated the image folders

by patient, we used the Nilearn Python module to extract the central slice from each axial

image. After this, we divided the patients into classes based on their level of dementia,

i.e. Cognitively Normal (CN), Mild Cognitive Impairment (MCI), Alzheimer’s Disease

(AD), and of utmost importance Early Mild Cognitive Impairment (EMCI) patients.

These classes are defined by ADNI based on the subject’s test scores and clini-

cal diagnosis [37]. Cognitively Normal (CN) is seen as the control group for the study

as they show no signs of depression, dementia, or cognitive impairment. Mild Cogni-

tive Impairment (MCI) subjects have reported a memory concern either to a clinician or

autonomously, however they do not show any signs of dementia and their daily living

activities are largely intact. Determining the level of MCI (early vs. late) is done via the

Wechsler Memory Scale Logical Memory II test. The Early Mild Cognitive Impairment

subjects represent the earliest stage of memory concern and are typically categorized as

such 5-7 years prior to an AD diagnosis [38]. Finally, the Alzheimer’s Disease (AD)

37



Figure 12: DICOM Format Example Downloaded from ADNI (Left), NIFTI Image Ex-
ample After MRIConvert Conversion (Middle), and Final Training Image After NiLearn
Python Script (Right).

group represents individuals who are experiencing significant mental deterioration that

results in both cognitive and behavioral changes.

We further split the EMCI class into two subclasses by cross-referencing the

ADNI Diagnostic Summary information in order to determine whether that individual

would eventually develop Alzheimer’s Disease or not. On average, 32 percent of individ-

uals with Mild Cognitive Impairment will develop Alzheimer’s Disease within the next

5 years of their follow-up appointments [39]. Since these EMCI scans are captured 5-7

years prior to AD diagnosis, identifying the 32 percent became our primary goal.

Going forward these subclasses will be referred to as EMCI with AD vs. EMCI

without AD. Cross-referencing between the DTI images and the diagnostic summaries

was done for each study ADNI1, ADNIGO, ADNI2, and ADNI3 once common variables

were determined as they differed slightly between studies.
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Figure 13: Participant Information (Age and Gender Distribution)

3.3 Methods

3.3.1 Data collection

As previously mentioned, the Average DC DTI images used for our study were

collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The Diagnostic

Summary Information data that was used to cross-reference the MCI to AD converted

patients was also obtained from the same ADNI dataset.

For the EMCI with AD vs. EMCI without AD comparison, 405 DTI scans of

both male and female subjects were gathered. After our pre-processing steps, each of our

corresponding 405 images represented a singular central slice of the complete DTI scan.

These images were then grouped by patient into 90 distinct EMCI subjects. Of these 90

subjects, 16 had eventually been diagnosed with Alzheimer’s Disease during the study.

74 of the subjects did not have an AD diagnosis at any point in the study.
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3.3.2 Data augmentation

Overfitting is a common problem that can occur when training with smaller datasets.

To help prevent this, our 405 EMCI images were then augmented with a few methods to

improve our training set size. One method used was to mirror the images by flipping

them horizontally. After performing only this augmentation, the accuracy of our model

increased by eight percent. Building on this success, further augmentations were tested

and the randomization of image brightness became another method that we added to our

process. The random brightness is particularly useful for brain imaging as typically the

input data will vary in brightness level. By inserting 30 random brightness variations

per image into our training process, our accuracy improved by an additional six percent.

Many other methods were tested such as random cropping or scaling but these techniques

lowered the overall accuracy given the nature of our input data.

3.3.3 Architecture

For our work we decided to implement the NASNet architecture [40] as the back-

bone. The NASNet architecture was developed in 2017 by Google researchers and rep-

resents an automated machine learning structure which gathers and trains an entirely new

neural network NASNet built upon Google’s AutoML by redesigning the search space

so that ideal layers for ImageNet classification, COCO object detection, and CIFAR-10

could be established efficiently [41]. It is the combination of these two layers that result

in the new architecture. To substantiate our chosen architecture we performed compar-

isons between Inception V3 [42], NASNet [40], and PNASNet [43]. We initially began
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Figure 14: Model Workflow

our model on the Inception V3 architecture, but discovered that switching to NASNet

boosted our accuracy 2% (96.4% vs. 94.7%). We also ran our model against the PNAS-

Net architecture but found that it was 5.2% less accurate than our NASNet model (96.4%

vs. 91.2%). As a result, we felt confident proceeding with our chosen architecture.

3.3.4 Training process

Transfer Learning is a technique that takes a model that has already been trained on

a related task and reuses it for a new model. For our work, we reuse the feature extraction

capabilities from powerful image classifiers that were trained on ImageNet [44]. We
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Table 10: Model Accuracy by Demographic

Category Group Subject(%)
EMCI with AD EMCI without AD

Subject# Accuracy(%) Subject# Accuracy(%)

Gender
Male 59% 11 96.8% 42 97.3%

Female 41% 5 95.8% 32 96.1%

Age
60-69 2% 2 100% 0 N/A
70-79 28% 8 95.5% 17 96.3%
80-89 43% 5 96.9% 34 97.2%
> 89 27% 1 100% 23 96.2%

then retrain the final classification layer on our training set using TensorFlow. Starting

in 2010, ImageNet is a visual database that consists of over 14 million hand-annotated

images with over 20,000 categories [44]. This image database has been useful for prior

medical classification in the radiological and pathological domains so we determined that

it would fit well with our work [45].

For the training process, we use 80% of our images for the primary training set,

with 10% being reserved for validation testing, and the remaining 10% reserved for the

testing set. The validation set is then used while training in order to see the accuracy of

the model as it progresses through each epoch.

In this work we test multiple hyperparameter configurations and image distortions

as seen in Table 11. While initially our accuracy was low (67.7%), we are able to increase

this significantly through parameter modifications. At first we thought cropping could

increase our model’s performance but given the consistent structure of DTI scans, we

decide to exclude it. This exclusion along with our modified learning rate of .005 helps

bring our model to greater than 80% accuracy.
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(1) Normal (2) Flipped (3) 30% Brightness (4) 50% Brightness (5) 30% Crop (6) Scaled Wide Screen

Figure 15: DTI Input Distortion Examples

Table 11: Compared Model Configurations

Model Accuracy Arch. Train.
Steps

Scale
Dist.

Bright.
Dist.

Crop
Dist.

Flipped
Img.

Learn.
Rate

Model 1 96.4% NASNet [40] 8000 0 30 0 True .005
Model 2 94.7% Inception V3 [42] 8000 0 30 0 True .005
Model 3 91.2% PNASNet [43] 8000 0 30 0 True .005
Model 4 89.6% NASNet [40] 8000 0 0 0 True .005
Model 5 79% NASNet [40] 10000 30 30 30 True .005
Model 6 77.1% NASNet [40] 8000 30 30 30 False .005
Model 7 75% NASNet [40] 10000 50 50 50 True .003
Model 8 73.7% Inception V3 8000 50 50 50 True .005
Model 9 67.7% PNASNet [43] 8000 50 50 50 True .01

From there, we find that dropping the scale distortions gives a similar bump in

performance as did the cropping exclusion. Randomly changing the brightness on the

training data also proves to be key as it helps handle the scope of variations we see in our

test data. Finally, by flipping the input images, we consistently see better performance

(∼ 2% increase) so that parameter is left at True for the majority of our configurations.

After optimizing these augmentation distortions, we train on 8000 steps and a learning

rate of .005 to achieve our final model.
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3.4 Results

In this chapter we assess the accuracy of using MRI DTI scans, taken at the initial

EMCI diagnosis, to predict whether an individual will develop Alzheimer’s Disease. We

run many different configurations for our experiments: different architectures, distortions,

and learning rates to arrive at our final model with an accuracy of 96.4%. This accuracy is

based on the percent of the images in the test set that are given the correct label after the

model is fully trained. We group our findings by gender and by age group to determine

if there is any significant performance difference between them. In Table 10 we see that

our age groups were ranged as follows: 70-79, 80-89, and greater than 89. As far as we

are aware, our accuracy is state of the art as other MCI-to-AD prediction models can be

compared in Table 12.

In addition to our goal of AD prediction based on the EMCI stage, our deep learn-

ing model also performs well with classification between the standard categories (NC,

MCI, AD). For differentiating between AD and MCI subjects our accuracy is 98.1%.

When comparing MCI to NC subjects, our accuracy is 95.2% as the water molecule dif-

fusion is slightly less indicative between those classes. Finally, when comparing AD to

NC subjects, our accuracy is 99.9% as the difference in DTI imaging is at it’s greatest

between those categories. Related classification methods and their accuracy for these

standard categories can be seen in Table 13.

Figure 16 shows an example of our model’s classification output for a single im-

age. The confidence score is displayed across our two classes, EMCI with AD and EMCI

44



without AD. On a per image basis, this score would originally range between 71.4%-

98.2% confidence with the lower scores being tied to darker images. However, after our

brightness augmentations, the overall confidence range improved to 82.5%-98.8% as our

model was more confident in low-light inputs. These score ranges do not impact our

overall reported accuracy of 96.4% as that accuracy is derived on a binary basis. That is,

did the model predict the correct class, rather than the question of how confident was the

model in predicting the correct class?

Looking at Figure 18 we see additional samples of correctly classified test inputs.

As seen in these examples, our model predicts the patient’s AD trajectory accurately

despite differing qualities of input. This was important to achieve as DTI scan quality

can vary greatly depending on the process and machine used. Figure 17 provides a case

where our model misclassified the image. The confidence of the model in this instance

was 52% as it was near the border of the two classes. Lack of clarity and axial centrality

contributed to the lower score on this image.

Since we use TensorFlow as our deep learning library, we are able to output the

Tensorboard graphs seen in Figure 19. These graphs show the loss (Fig. 19(a)) and accu-

racy (Fig. 19(b)) of our model as it trains. This helps us determine the relevant amount of

steps that we should use as we can see how the accuracy interval diminishes over time. In

our experimentation, we tried multiple step configurations ranging from 1000-20000 but

found 8000 to be the best point for loss minimalization. Additionally, by stopping at 8000

steps we take an extra measure to avoid potential overfitting of the model. For our work,

we perform these experiments on an Intel Core i5-9600K with an Nvidia RTX 2080 using
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Figure 16: Example Code Output for AD Prediction for an EMCI Subject.

Figure 17: Example of a Misclassified Image. Ground Truth is EMCI with AD but Pre-
diction Showed EMCI Without AD (Albeit at Low Confidence).

the TensorFlow GPU libraries.

3.5 Limitations and Future Work

There are some limitations in our study in regards to the ADNI dataset. First, the

different ADNI studies (ADNI1, ADNI2 etc.) used scanners that possessed different field

strengths, so combining these studies could have affected our results. Additionally, since

many ADNI subjects are still alive there is no guarantee that individuals that have yet to
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Figure 18: Accurately Predicted Results for EMCI Subjects with Eventual AD (Top) and
EMCI Subjects Who Would not Develop AD (Bottom).

(a) Loss (b) Accuracy

Figure 19: Tensorboard Training Metrics: Step-wise Loss and Accuracy
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Table 12: Comparative Evaluation for MCI-to-AD Prediction

Approach Modal. Data Model MCI-to-AD Pred. Year
Velazquez et al. (our Model 1) DTI ADNI RNN NASNet 96.4% 5
Spasonv et al. (2019) [31] sMRI ADNI 3D CNN 92.5% 3
Grassi et al. (2019) [34] Cognitive mea-

sures
ADNI Ensemble based ML 88% (ROC) 3

Li et al. (2019) [33] PET + clinical
data

ADNI CNN 81.3% (ROC) 3

Moscoso et al. (2019) [46] MRI ADNI ML 84% (AUC) 5
Khvostikov et al. (2018) [35] sMRI + DTI ADNI 3D CNN 80% 5

be diagnosed with Alzheimer’s won’t be diagnosed with the disease in the future. For our

work, we sought to reduce this bias by using subjects that were long-time participants in

ADNI. We do not believe this would impact our accuracy significantly given our sample

size.

Another limitation is that the ADNI subjects are not a real representation of the

general population given the different inclusion criteria per study. Also, the demographics

of our smaller sample of 90 subjects does not align to the existing population demograph-

ics.

While our accuracy was verified by multiple instances of splitting our data, we

did not test against the broader population outside of the ADNI participants. Inclusion of

other datasets into our model could potentially help with even more variations seen in the

DTI scan inputs. Despite these limitations, our work shows that there are detectable tissue

differences between the water molecule diffusion of EMCI subjects who would go on to

develop AD, and those that would not. Furthermore it shows the effectiveness of using

DTI imaging instead of the traditional sMRI approach as a means for early AD detection.
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For our future work we would like to see the differences in accuracy when us-

ing multi-modality. Some of the related work shows the additions of sMRI to the DTI

modality [26], but it is unclear as to whether that modality addition would improve our

performance. As ADNI provides a notable amount of clinician notes, we’d like to in-

corporate that data into our model to see if it can substantiate the prediction confidence.

Additionally, we would like to explore contrasting a patient’s prescribed medication list

with their progression towards AD. In combination with DTI imaging, this would allow

us to build a time-series analysis based on their scan dates.

Performing an analysis on ADNI’s Significant Memory Concern (SMC) subjects

would also be a category that we’d like to target. SMC subjects are distinguished by

having a self-reported significant memory concern that is quantified with the Cognitive

Change Index and by having a Clinical Dementia Rating of zero [37]. These subjects

do not have progressive memory impairment concerns and thus have not been diagnosed

with MCI. If early detection at this level is possible, it would prove very important as

many AD clinical drug trials have difficulty due to damage from AD already being done

by the time of their participation [53].

From a clinical perspective, when patients present with cognitive and memory de-

cline, current limitations in diagnostics do not allow for a clear differentiation between

sub-types of dementia. This commonly leads to misdiagnosis and administration of in-

correct medications which can lead to harmful adverse events. Being able to determine

the dementia sub-type as early as possible could drastically help with pharmacological

management and end-of-life planning for patients and families [24]. Exploring the white
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matter differences between these sub-types will be a topic of our future research.

3.6 Conclusion

In this chapter, we created a deep learning model capable of predicting Alzheimer’s

Disease from the EMCI stage based on DTI imaging. As 32% of EMCI patients will de-

velop AD within 5 years, early detection at this point (5-7 years prior to AD) is key to

providing an accurate and cost-effective treatment plan. This detection could also aid

in clinical trial enrollment as they could potentially assess the prognosis of subjects at

a much earlier phase. Our model achieved state-of-the-art performance with accuracy

higher than 96% and demonstrated that water molecule diffusion differences can be used

to distinguish between patients at-risk for AD. While these results display the effective-

ness of DTI as an input, it will be interesting to add additional modalities as well as

predictions for other dementia subsets in our future research.

51



CHAPTER 4

MULTIMODALITY ENSEMBLE MODEL

This chapter centers on individualized EMCI (the earliest MCI subset) to AD con-

version prediction on multimodal data such as diffusion tensor imaging (DTI) scans and

electronic health records (EHR) for their patients using the combination of both a bal-

anced random forest model alongside a convolutional neural network (CNN) model. Our

random forest model leverages EHR’s patient biometric and neuropsychiatric test score

features, while our CNN model uses the patient’s diffusion tensor imaging (DTI) scans

for conversion prediction.

In our previous chapters, we focused on the prediction aspect of this problem

within a single modality, such as electronic health records (EHR) or medical images.

This led to a machine learning model (i.e., random forest) that focused on EHR patient

clinical data and a Convolutional Neural Network (CNN) model that performed predic-

tions based on Diffusion Tensor Imaging (DTI) scans. While these models performed

well, each had limitations and was not focused on being explainable. It became clear that

combining these models into an ensemble multi-modality model with the added feature

of explainability would be ideal for EMCI conversion prediction.

Additionally, the explainability of a model’s predictions has been challenging to

determine or is sometimes an afterthought. This has led to many high-performing predic-

tion models that do not provide a clear rationale to healthcare providers. With explainable
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models, clinicians can be more confident in their diagnoses when leveraging a clinical

decision-making tool. For our multi-modal work, explainability was a key objective.

Therefore, our work focused on developing a multi-modality ensemble model for

AD conversion prediction that could explain the rationale behind its predictions. The

first piece leverages a random forest, a supervised learning algorithm that is efficient with

classification problems [54]. This would focus on interpreting patient clinical features

while the other side of the ensemble, the CNN model, would handle a patient’s Diffusion

Tensor Imaging (DTI) scans.

Diffusion tensor imaging (DTI) is a form of magnetic resonance imaging (MRI)

that detects how water moves along the brain’s white matter tracts. This water molecule

diffusion difference can then be contrasted to show the variation between scans. Our

work centered on apparent diffusion coefficient (ADC) DTI scans. ADC measures the

magnitude, within the tissue, of water molecule diffusion.

As our classes are originally imbalanced, we provide determinations on how to

best balance our data as well as which augmentation forms are most appropriate. In addi-

tion, a method for dynamically choosing the ideal weight of each model within the ensem-

ble for any given prediction is also provided. Finally, complete ensemble explainability

of both the visual and clinical feature inputs is provided, and analysis is performed. The

main contributions in this chapter are (1) building an ensemble model against an imbal-

anced data set; (2) determining the ideal weighting of that ensemble per patient prediction;

(3) explaining model prediction rationale for both visual and clinical features; (4) deter-

mining the conversion prediction accuracy of our model. We believe that this work will
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provide an understandable tool that can be used to predict patient AD conversion from

a prodromal stage. In addition, this work provides both global and local explainability

methods for ensemble models.

4.1 Related Work

4.1.1 MCI-to-AD Conversion Prediction

As the AD conversion problem matures, multiple studies now evaluate based on

different mixes of modalities. [55] used a combination of graph theory and machine

learning to predict the conversion of MCI subjects to AD based on sMRI/fMRI data.

Their work explored multiple feature selection methods (e.g., random subset feature se-

lection algorithm, minimal redundancy maximal relevance, and sparse linear regression)

and achieved an accuracy of 84.71%. They also explored the relationship between AD

conversion and high-sensitivity brain regions to find that both structural and functional

areas were relevant as predictors.

An evaluation between unimodal and multimodal models for AD conversion was

performed by [56]. In their work, MRI-derived biomarkers in combination with neuropsy-

chological measures were used to determine early AD warning signs from an MCI popu-

lation. They achieved an AUC of 95.7% with their multimodality data trained through a

support vector machine (SVM).

Lin et al. [57] fused four modalities (MRI, positron emission tomography, cere-

brospinal fluid biomarkers, and gene data) which were then individually graded using their

Extreme Learning Machine (ELM) model. Their scope focused on conversion prediction

54



within three years as they achieved an accuracy of 84.7%. In addition, their findings

demonstrated a minimum 10% increase in accuracy from using multiple modalities rather

than when only a single modality was used.

Focusing on a reduced set of sociodemographic, characteristics, clinical informa-

tion, and neuropsychological test scores, [14] developed a new machine-learning algo-

rithm for three-year AD conversion prediction. Their work aimed to leverage data that

did not derive from expensive, invasive, or otherwise difficult procedures such as lumbar

puncture, genetic testing, or neuroimaging techniques. With these restrictions, they could

still obtain an AUC of 88% through an SVM.

Huang et al. [58] proposed a predictive nomogram that combined AB concentra-

tion, image features, and clinical factors to predict MCI-to-AD conversion. Analysis was

also performed on how features were associated with one another and the significance

of each feature. To better understand the patterns of AD conversion, they focused on

examining the associations at both the micro and macro levels.

Varatharajah et al. [59] focused on which markers would be most relevant for AD

conversion models. Using a mix of clinical data, MRI, and FDG-PET, they could isolate

large shares of variance in the pathophysiology (amyloid, tau) variables. Their work also

revealed the relevance of CR1 (complacent receptor 1) as an individual predictor of AD

conversion. As a result of their work, they achieved an AUC of 93% via an SVM.

Rana et al. [60] created MudNet, a CNN model which performed both MCI-to-

AD conversion prediction and time-to-AD conversion. They could group patients into

high-risk and low-risk categories based on whether they were predicted to convert within
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24 months. Their model used a mixture of volumetric MRI and clinical data, which also

consisted of neuropsychological tests (RAVLT, ADAS-11, ADAS-13, ADASQ4, MMSE).

With these inputs, they achieved an accuracy of 69.8% for conversion predictions and

66.9% for risk classification.

4.1.2 Explainability

Explainability for AI models has seen increased demand over recent years. His-

torically, models were seen as black boxes, but now multiple explainability methods can

be used to provide the rationale behind a model’s behavior. For the medical domain, this

is highly relevant as it allows physicians to understand the process that a decision support

system uses to arrive at its recommendation. In one study, Viton et al. [61] focused on

using heatmaps to visually explain a CNN model’s predictions on in-hospital mortality.

Their multivariate time series approach allowed for critical points to be identified and the

most influential variables. The visual aid can help justify the model’s decisions with this

detailed explainability. While the purpose of their work was explainability, they were still

able to achieve an AUC of .8207, predicting in-hospital mortality risk.

Maweu et al. [62] also worked to provide an explainable framework for their

CNN model. In this case, they targeted ECG signals (one-dimensional time-series data).

An interesting aspect of their approach is that they leveraged 1D-CNN models rather than

the standard 2D-CNN ones. This allowed them to display descriptive statistics, feature

visualization, detection, and mapping for each module of their proposed framework. With

this knowledge, they could further explore the relationships between their features and
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how they might contribute to misclassification. This idea of identifying the rationale

behind misclassification was a focus of our work and will be analyzed within our results.

4.1.3 Ensemble Classification

Ensemble classifiers have proven to be highly efficient in recent years. The ma-

jority of these ensembles are typically similar algorithms which are then stacked. This

usually consists of stacked ML algorithms (RF, SVM, XGBoost, etc.) or a chain of deep

learning models. Some ensembles represent the combination of an ML model and a deep

learning model, which is the approach we took for this work. We seek to add to this do-

main by including an explainability layer by combining a random forest classifier with a

CNN model.

Mostafiz et al. [63] performed Covid-19 detection via chest x-rays by combining

a random forest with a CNN model. After scanning, the initial x-ray is then enhanced

and segmented before the key features are extracted. The random forest is then used

for detection once the key features have been passed. Their work achieved an accuracy

of 98.5% when both sides of their ensemble were engaged. However, when only one

side was leveraged, their accuracy dropped to 84%, showing the advantage of ensemble

classification.

Another study by [64] combined multiple machine learning algorithms (SVM,

Random Forest, MLP, etc.) on top of a CNN, which served to draw out comparisons

between the different methods. Their goal was exoplanet detection, and they were able to

achieve 99.62% accuracy with their Ensemble-CNN model.
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Figure 20: Ensemble Model Workflow

4.2 Methods

4.2.1 Data Collection

All data used for this chapter were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database and included patients from their ADNI-1, ADNI-2,

and ADNI-GO studies [12]. “ADNI is a global research study that actively supports the

investigation and development of treatments that slow or stop the progression of AD”

[12]. ADNI aims to track AD progression using biomarkers and clinical measures to

assess the brain over each stage of the disease.

The selection criteria for our work focused specifically on the EMCI subset with

patients that had follow-up exams for more than a year. EMCI patients represent the

stage typically 5-7 years before a potential AD diagnosis. The Wechsler Memory Scale

Logical Memory II test determines this earlier subset compared to the more general MCI
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Figure 21: Subjects’ Age and Gender Distribution

stage. For our classification problem, the EMCI patients were divided into two classes

(EMCI C, EMCI NC). EMCI C represents patients that would eventually convert to an

AD diagnosis, whereas EMCI NC represents patients that would not convert. This dis-

tinction was provided by the Clinical Dementia Rating ADNI variable of the patient’s last

exam diagnosis.

For the clinical feature model, 1806 exam visits were used pre-augmentation.

1608 belonged to the EMCI NC class, while 198 were from the EMCI C conversion

class. For the DTI model, 405 DTI images were gathered, which, after our pre-processing

methods, represented a singular central slice of each scan. These were then grouped into

90 unique EMCI patients, where 16 would convert to AD (EMCI C) and 74 would not

(EMCI NC). In total, our study consisted of 383 EMCI patients (shown in Figure 21), 49

of these within the EMCI C class and 335 within the EMCI NC class. Stratified by age,

our largest demographic was ages 70-74, followed by 65-69. Our training/test split for

this work was 75% (288 patients) to 25% (95 patients).
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Table 14: Clinical Feature Characteristics

EMCI C EMCI NC
Subject# 49 335

ADNI Feature Description Mean SD Mean SD
DX Diagnosis – – – –
Demographic information
PTRACCAT Patient Race – – – –
AGE Patient Age 73.5 6.47 71.1 7.49

Genetic Biomarkers
APOE4 The number of e4 alleles of APOE 0.9 0.71 0.4 0.46
Physical Biomarkers
Hippocampus Hippocampal volume 6875.2 947.45 7334.1 910.20
Ventricles Ventricular volume 39282.7 21031.66 34504.6 21394.49

Neuropsychological scales
ADAS13 13-item AD Assessment Scale 15.8 6.02 13.3 5.41
ADAS11 11-item AD Assessment Scale 9.7 4.12 8.5 3.29
FAQ Functional Activities Questionnaire 4.1 4.38 1.82 2.50
MMSE Mini-Mental State Examination 28.1 1.58 28.3 1.71

EMCI C the converter group, EMCI NC the stable group

4.2.2 Clinical features selection

For the random forest component of our ensemble model, nine ADNI features

were chosen, as seen in Table 14. These features contained physical biomarkers (ventric-

ular and hippocampal volume), genetic biomarkers (APOE4), neuropsychological scale

scores (FAQ, MMSE, ADAS13, ADAS11), and demographic variables (age, race). Ini-

tially, starting with over 90 features, we could eliminate many variables with a combina-

tion of SHAP analysis and Gini importance until an ideal fit had been obtained.

4.2.3 Ensemble Classification Model

We assemble an ensemble model that combines Random Forest clinical feature

prediction alongside a Convolutional Neural Network (CNN) that performs predictions
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based on diffusion tensor imaging (DTI) scans to take advantage of our multimodality

data. This allows each model’s limitations to be mitigated by engaging the other model

for its prediction confidence.

Random Forest, our first classifier, uses a method that constructs a multitude of

decision trees which then outputs the majority vote as the prediction. As subsets of fea-

tures are randomly selected for each decision tree, this provides enhanced tolerance for

overfitting. For our work, this classifier can either output EMCI C (conversion class) or

EMCI NC (stable class). Each decision tree, made up of a random assortment of our nine

clinical features, gets to cast a vote. Overall prediction confidence can be determined by

observing how many trees voted for the majority class. As we can assess each node’s im-

portance in a given tree, we can evaluate each feature’s importance for both the model and

individual predictions. This allows us a measure of explainability for the clinical feature

aspect of our overall ensemble model. Other classifiers were evaluated per Table 15, but

the Random Forest algorithm provided the best performance. Additional specifics on this

random forest model can be seen in our prior work [65].

Our second classifier consists of a Convolutional Neural Network (CNN) with

a NASNet architecture [40] as its backbone. CNN models have previously demonstrated

accuracy with MRI scans as they are built to process pixel data [21]. These capture spatial

and temporal dependencies within an image, making them ideal for image classification.

We had initially built our model with the Inception v3 architecture [42] but found better

performance with NASNet. [40] integrate reinforcement learning with a controller RNN

to construct a cell or layer for the NASNet network, which delivers cutting-edge ImageNet
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Table 15: Clinical Data Classifier Performance Comparison

Model/Feature Accuracy Precision Recall F1 Score AUC p-
value

Random Forest
6-Features 0.892 0.907 0.980 0.942 0.88 0.91
9-Features 0.936 0.952 0.978 0.965 0.96 0.71
13-Features 0.916 0.916 0.998 0.955 0.93 0.82
Support Vector
6-Features 0.900 0.900 1 0.948 0.52 -
9-Features 0.900 0.900 1 0.948 0.54 -
13-Features 0.900 0.900 1 0.948 0.55 -
Logistic Regression
6-Features 0.894 0.902 0.990 0.944 0.76 -
9-Features 0.892 0.903 0.985 0.942 0.75 -
13-Features 0.896 0.904 0.990 0.945 0.75 -
XGBoost
6-Features 0.898 0.904 0.993 0.946 0.87 -
9-Features 0.920 0.930 0.985 0.957 0.89 -
13-Features 0.907 0.921 0.980 0.950 0.88 -

accuracy. Our CNN model combines a NASNet architecture with an RNN controller to

recursively search for the best structure as it trains. Creating a network with NASNet

makes the search strategy significantly more successful for PNASNet [43].

As shown in Figure 22, these blocks consist of both standard and reduction cells.

Normal cells represent convolutional cells that return a feature map of the same dimen-

sion. In contrast, reduction cells produce similarly but with the height and width reduced

by a factor of two [66]. These are the only structures that the RNN controller subsequently

searches. As seen in Table 16, other architectures were evaluated, but NASNet was the

leading performer. As a result, this became our ideal architecture despite its computation-

ally intensive approach. As NASNet was trained on ImageNet’s 1.2 million images, our
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Figure 22: NASNet Architecture

ADNI data was used to retrain the final classification layer using TensorFlow.

We then combine these classifiers to form our ensemble model. This allows us

to intake either clinical data, DTI scans, or both to accurately predict AD conversion

while mitigating each classifier’s weaknesses. A grid search algorithm is then performed

to exhaustively determine the ideal weight that each classifier should carry within the

ensemble. This optimization (Table 18) resulted in a .55 CNN vs. .45 RF weighting as

the ideal balance for AD conversion prediction.

4.2.4 Data Balancing

Given the nature of our imbalanced data set, with 12.8% of patients belonging

to the minority class (EMCI C), we implement different augmentation methods for our

ensemble to have better representation in our training/test data. We perform random over-

sampling for our Random Forest classifier to make our two classes equivalent in size.

This is done by taking random samples from the EMCI C class with replacement until

the size matches that of the majority class. This provides 2,412 total exam visits for
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training rather than the original 1,354 pre-augmentation visits. Our over-sampling method

was compared against both under-sampling methods and class weight modifications but

continued to perform best.

For the CNN classifier, multiple augmentation methods were performed against

our initial 405 EMCI images to increase the overall training size. The most effective

augmentation methods were to flip the scans horizontally and to add randomization to

an image’s brightness. As these scans come in at different brightness levels, augmenting

this allowed our model to learn at a far better rate. Variations of cropping or scaling the

images did not increase our accuracy. A comparison of our visual augmentation methods

sorted by accuracy can be seen in Table 16. Additionally, compared to our augmented

data set, our original data set can be observed in Table 17. This table demonstrates our

train/test data split and the initial class imbalance.

4.2.5 Grid Search Algorithm

We perform a grid search to exhaust possible weight combinations to find the ideal

weighting for our ensemble model. First, we define our possible weight values for each

model as 0.0 to 1.0 and then iterate through the process in steps of 0.1. After each weight

vector is generated, they are normalized to ensure that they sum to one. Once the grid

search has been completed, the weights of the highest accuracy run (.55 CNN, .45 RF)

are captured and used for the final ensemble model. Other weighting combinations can be

observed in both Table 18. As each model running independently is also contained within

this table (1, 0 and 0, 1), the advantage of using both the ensemble approach and dynamic
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Table 17: Data Set by Modality and Class

Clinical Data DTI
Data EMCI C EMCI NC EMCI C EMCI NC
Subject# 49 Subjects 335 Subjects 16 Subjects 74 Subjects
Original Record# 198 1608 72 images 333 images
Record# after Over-sampling/ Augmenta-
tion

1608 1608 576,000 images 2,664,000 images

Training Data 1206 1206 432,000 images 1,998,000 images
Testing Data 402 402 144,000 images 666,000 images

Table 18: Weighted Average Classifier Accuracy Compared

Iteration CNN Weight RF Weight Accuracy
1 .55 .45 98.81%
2 .60 .40 97.62%
3 .40 .60 94.05%
4 .70 .30 96.43%
5 .65 .35 96.43%
6 .50 .50 95.24%
7 0 1 92.86%
8 1 0 96.43%

weighting can be easily compared.

When individual patients are submitted to our model, each classifier (RF and

CNN) generates a prediction and its confidence in that prediction. Our grid search-derived

weighting is then factored into this prediction confidence (PC) to determine the overall

ensemble prediction. As there can be disagreements between the different modalities, this

weighting allows us to slightly prefer the more accurate classifier (CNN).
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Figure 23: Random Forest Model Correlation Matrix

4.3 Results

4.3.1 Random Forest Feature Characteristics

For our clinical data, the average age of the subjects was 71.4. 55.6% of these were

men, and there was a statistically significant age difference between the two groups (P

<.05). Regarding the genetic and physical biomarkers, APOE4 and hippocampal volume

showed substantial differences between the EMCI C and EMCI NC classes. Ventricular

volume was consistent across both classes. With the neuropsychological scale scores,

ADAS13 and FAQ showed significant differences (P<.05), whereas ADAS11 and MMSE

did not. The correlation matrix in Figure 23 demonstrates the totality of our clinical data

feature relationships.
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4.3.2 Ensemble Model Performance

Our ensemble model workflow can be observed in Figure 20. This demonstrates

how the random forest and CNN models work together or independently to output an

explainable prediction for our EMCI subjects. Our random forest model is trained with

1000 trees against 2412 exam visits, while our CNN model leverages Tensorflow to re-

train the final classification layer of NASNet for DTI analysis. Additionally, we pass a

max depth of 40 with nine max features as further hyperparameters to the random forest

model. We arrive at this tuning by implementing Grid Search to derive the ideal hyperpa-

rameters. Next, we optimize our CNN model with the previously discussed augmentation

distortions and then train for 8000 steps at a learning rate of .005. During random forest

training, 25% of our clinical data are reserved for testing, while the remaining 75% ac-

count for the training data. For CNN training, 10% of our images are reserved for testing,

10% for validation, and the remaining 80% for training. These models are then com-

bined to form our ensemble model, after which our Grid Search algorithm is applied to

determine the ideal weight distribution. Once the weighting has been applied, our model

explainability occurs via the combination of feature ranking and Grad-Cam analysis. This

ensures that each outputted prediction has accompanying explainability.

One of the advantages of our ensemble approach is that it allows either modality

to be passed absent of the other, and a prediction is still generated. When both modal-

ities (clinical data and DTI scans) are provided, our weighted ensemble model achieves

an EMCI-to-AD conversion prediction accuracy of 98.81%. With only clinical data be-

ing supplied, our model maintains an accuracy of 92.86%. When only DTI scans are
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RF Confusion Matrix CNN Confusion Matrix EM Confusion Matrix

Figure 24: Confusion Matrix: (a) Random Forest (RF) for EHRs, (b) Convolutional Neu-
ral Network (CNN) for fMRI, and (c) Ensemble Model (EM)

provided, our model performs at 96.43% accuracy. This flexibility ensures that accurate

conversion prediction can be obtained even if one is missing certain features. We also

measure the model differences in Figure 25 with the polygon area metric (PAM) pro-

posed by [67]. The individual PAM metrics per model are shown in Table 19. As the

model spent significant time being fine-tuned, the experiment was repeated several dozen

times per model. After each repeat, performance metrics were assessed to see how to

tune the model further. Additionally, cross-validation was performed to ensure different

bagging combinations performed well.

The difference between each model’s confusion matrix can be seen in Figure 24.

While the individual RF model struggled with false negatives, this weakness is removed

when transitioning to the ensemble approach. Similarly, while the individual CNN model

had three false positives, this was mitigated when predicting as part of the ensemble

model.
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Table 19: Individual Polygon Area Metrics: Classification Accuracy (CA), Sensitivity
(SE), Specificity (SP), Jacard Index (JI), F-Score (F), Area Under Curve (AUC)

CA SE SP JI F AUC
RF .929 .615 .986 .571 .727 .960

CNN .964 1 .958 .813 .897 .973
Ensemble .988 1 .986 .929 .963 .992

Figure 25: Polygon Area Metric

(a) Loss (b) Accuracy

Figure 26: Tensorboard Training Metrics: Step-wise Loss and Accuracy
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4.3.3 Ensemble Explainability

A key contribution of this work was to provide accurate conversion prediction and

be capable of explaining the rationale behind individual predictions and the overall model.

As our ensemble model weighs visual prediction alongside clinical data prediction, it is

essential to know the prediction confidence related to each modality. Additionally, under-

standing the features or pixels that led to the overall decision within each classifier can

help instill confidence in a clinical setting. This can be distinguished by providing context

around global (model-level) explainability vs. local (individual-level) explainability.

For our clinical global explainability, we perform feature ranking of our nine fea-

tures based on the following formula:

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (4.1)

fii =

∑
j:node j splits on feature i nij∑

k∈ all nodes nik
(4.2)

normfii =
fii∑

j∈ all features fij
(4.3)

RFfii =

∑
j∈ all trees norm fiij

T
(4.4)

Initially, in Equation 4.1, we determine the importance of each node per tree (ni).

nij represents node j’s importance, with Cj being a node’s impurity value. Additionally,
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the weighted samples that reach node j are represented as wj . From this, feature impor-

tance (fi) per tree can be calculated as seen in Equation 4.2. This result is then normalized

between 0 and 1 (Equation 4.3). This process is then averaged out to the entire forest and

divided by the number of trees within the forest per Equation 4.4 [68].

For global explainability, our ensemble model’s feature ranking per the above

function can be seen in Figure 27. We also demonstrate the permutation importance

ranking seen in Figure 28 as well as the Shapley plot (Figure 29). Permutation rank-

ings can reduce high cardinality bias as the features are permuted against a held-out test

set. A baseline metric is established for this to occur, which has each feature permuted

against itâthe difference between this feature permutation and the baseline metric results

in the overall permutation importance. For our primary feature ranking, age, hippocampal

volume, and ventricular volume stood out as our model’s most important features. With

permutation ranking, age and FAQ continued to show strength, with APOE4 gaining in

importance compared to its feature ranking. Finally, the Shapley plot shows how strongly

each feature contributes to a positive (EMCI C) versus a negative (EMCI NC) prediction.

The color of each value denotes whether it is high (red) or low (blue) relative to other

values for that feature. The combination of these ranking systems aided us in reducing

the original feature map to the final model.

For DTI local explainability, we perform Gradient-weighted Class Activation Map-

ping (Grad-CAM) [69] to generate pixel heat maps. These are then superimposed on the

existing image to display the most important regions for the resulting prediction. In this

sense, Grad-CAM allows us to understand what our CNN model focuses on by using the
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Figure 27: Ensemble Model Feature Importance

Figure 28: Ensemble Model Permutation Importance
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Figure 29: Ensemble Model SHAP Summary

Figure 30: Grad-CAM Explainability: Grad-CAM and DTI Images for EMCI C Patient
(Left) & EMCI NC Patient (Right).
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Figure 31: Conversion Prediction Intake (Left) and Results (Right).

gradients that flow into the final convolutional layer. These gradients then use global av-

erage pooling to obtain the necessary weights as seen in Equation 4.5. Examples of these

heat maps for both an EMCI C and EMCI NC patient are shown in Figure 30. For our

output, the black and white image represents the initial input before Grad-Cam applies

the heatmap. As Grad-Cam assesses which pixels are most relevant, it colors them red

at varying intensities to demonstrate that pixel’s importance to the prediction. Similarly,

darker shades of blue occur when the pixel is deemed not to have a strong contribution

to the prediction. Future work will explore aligning these heat maps to segmented brain

regions to establish more in-depth global explainability.

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(4.5)

To assess our ensemble model’s local explainability and demonstrate its poten-

tial as a clinical decision support tool, we’ve built a Flask Python application to host our
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model and allow for patient intake. Our application allows for patient clinical data to be

entered in addition to attaching DTI scans. Partial patient information can also be pro-

vided as the application will understand if it has been provided with limited features. For

example, only the Random Forest classifier will be engaged if only clinical data is pro-

vided. Likewise, the CNN model will serve as the sole predictor if a DTI scan is the only

patient data provided. The application also accounts for blanks by substituting the empty

field with that feature’s mean average. Once the data has been submitted, our ensemble

model is engaged, which outputs its prediction and explainability. From our application’s

output, we can see the importance of the clinical data feature importance alongside the

Grad-Cam analysis. We also see the prediction confidence of each independent classifier

and the overall ensemble confidence. This informs the user which modality contributed

the most to the prediction, highlighting key regions/features of interest. An example of

the intake form and a sample prediction can be seen in Figure 31.

Table 20 and Figure 32 detail three unique, individual predictions with local ex-

plainability that demonstrate our ensemble model’s strength in contrast to a singular

model. Within this table, prediction contributions (PC) are also shown. This represents

the amount of each clinical feature’s contribution to the overall RF prediction. A posi-

tive value indicates the contribution towards the ground truth class, whereas a negative

value represents the contribution to the incorrect class. As an example, patient 2106 was

eventually diagnosed with AD. However, based on their clinical data, our Random Forest

component predicted with 52% confidence that they wouldn’t convert. In contrast, after

assessing the patient’s DTI scan, our CNN model predicted that they would convert with
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Figure 32: Grad-CAM Explainability (Heat Map Overlay on Left, Intake Image on Right)
and Feature Importance Ranking: (a) Patient 2106, (b) Patient 4220, (c) Patient 4897.

79% confidence. With the CNN model being more confident and having more weight

in the overall prediction, this resulted in an ensemble confidence of 65% that the patient

would convert to AD (EMCI C). In this case, a singular RF model would have been pre-

dicted inaccurately, but with added visual analysis, our ensemble was capable of avoiding

the mistake.

Another example from Table 20 can be seen with EMCI NC patient 4220. How-

ever, with this patient, the RF prediction (EMCI NC, 99% confidence) helped overrule

the incorrect CNN prediction (EMCI C, 58% confidence). The Grad-CAM analysis in

Figure 32 shows the difficulty in assessing this patient’s DTI scan as the heat map over-

laid most of the brain. However, despite the model weighting favoring the visual analysis,

the ensemble could still make the correct prediction with a final confidence level of 68%.
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Patient 4897 represents an instance where our ensemble model provided an in-

correct prediction (EMCI C, 57% confidence). Despite the clinical data pointing toward

an EMCI NC classification, the DTI prediction confidence won out (95% CNN vs. 89%

RF). From Figure 32, we see that the visual model focused heavily on the ventricles,

whereas the RF feature ranking placed ventricular volume as 7th in predictive power for

this specific individual.

Overall, with our EMCI C subset, 38% of the ensemble predictions had disagree-

ments between the RF and CNN model but resulted in a correct ensemble prediction.

For EMCI NC, 4.3% of the predictions encountered disagreements between modalities.

Given these findings, we see that the ensemble benefits conversion class prediction more

significantly than the EMCI NC class.

Table 21 shows that our proposed model outperforms recently published multi-

modality models for AD conversion prediction. A defining difference is our usage of DTI

over traditional sMRI and our ensemble classification in place of a single classifier. While

many competing authors leverage multiple modalities, they typically limit their studies to

a single classifier rather than an ensemble approach. Additionally, our model can predict

from 5 to 7 years out due to focusing on EMCI rather than the more general MCI data set.

4.4 Limitations and Future Work

A limitation of our study is that all patients were derived from the ADNI data

set. For our work, this was acceptable. However, a clinical setting implementation of

our model could benefit from additional data sets to account for further feature variation.
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In addition, these different ADNI studies (ADNI1, ADNIGO, etc.) also leveraged scan-

ners with varying field strengths, which could have affected our results. This will be a

consideration for our future work as we aim for more robust modeling.

Another limitation is that gradient-based saliency techniques have shown some

unreliability regarding medical imaging [70]. For future work, alternate mappings will be

explored and evaluated against our Grad-Cam maps.

Future work will explore performing time-series analysis via an ensemble model

in addition to binary classification. This would allow patient progression trajectories to

be determined rather than distinguishing between EMCI C and EMCI NC. In addition,

the generated heatmaps from our CNN model would also be aligned to segmented brain

areas to explore potential findings from that relationship.

4.5 Conclusion

An ensemble model for EMCI to AD conversion probability within five years is

proposed. Either DTI scans, clinical data, or both can be used for this reason. First, our

balanced random forest assesses the clinical data input before our CNN evaluates the DTI

scan. Each modality generates separate prediction confidence, which is then factored into

our ideal model weight (45% RF, 55% CNN). With this approach, our model achieves an

accuracy of 98.8% on EMCI to AD conversion prediction within five years. In this study,

we observed that DTI scans are better at AD conversion prediction (96.43%) than clin-

ical data alone (92.86%). We also demonstrated ensemble explainability by employing

clinical data feature ranking and Grad-CAM analysis for DTI heat map generation. This
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allows for greater confidence and understanding of the prediction rationale when framing

our model as a decision-support tool.
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CHAPTER 5

CHARTING AD PROGRESSION: TIME-TO-EVENT PREDICTIVE MODELS AND

NOVEL CATEGORIZATION

In this chapter, we propose a Random Forest Regression Model augmented with

SMOGN to predict the time to conversion from MCI to AD in months, along with an

explainable feature-ranking and progression category layer. Additionally, we include a

new Convolutional Neural Network (CNN) that classifies the diffusion tensor imaging

(DTI) scans from our prior work [71] into this study’s novel progression categories. By

categorizing patients based on their predicted progression rate towards AD and provid-

ing feature-importance assessment, our model offers clinical decision-making support

and can impact treatment plans for patients with MCI. In this chapter, we’ll explore our

methodology, showcase our results, and discuss the broader implications of our findings.

Although the median survival time after an AD diagnosis is 4.8 years, some in-

dividuals live longer. As discussed in prior chapters, 32% of the MCI population will

eventually convert to an Alzheimer’s disease diagnosis [1]. Therefore, it is crucial not

only to predict which individuals will convert to AD but also to the timeline of their con-

version.

However, Alzheimer’s Disease progression can be non-linear, making it challeng-

ing to determine the effectiveness of treatment plans and the aggressiveness of the dis-

ease’s decline [72]. Additionally, it is unclear whether there are common patterns of clini-

cal feature progression in AD. To address these challenges, we propose a novel framework
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that provides MCI-to-AD conversion prediction by month, identifies patient progression

slopes, performs novel patient grouping based on progression non-linearity, and provides

feature ranking across longitudinal data.

Our framework combines a random forest regression model with SMOGN (Syn-

thetic Minority Over-sampling Technique for Regression with Gaussian Noise) [73] to

work in tandem with our prior CNN/RF ensemble classification model [71] detailed in

Chapter 4. The prior model determined which MCI patients would eventually convert to

Alzheimer’s disease based on a combination of clinical data and diffusion tensor images

(DTI). The regression model, from this work, uses patient clinical data to predict how

many months a patient has until an AD diagnosis, providing further explainability to the

conversion patients identified in the ensemble classifier. By performing these estimates

across multiple exam visits, we can determine the non-linearity of a patient’s progres-

sion, allowing the model to form novel groupings of MCI-to-AD patients based on the

aggressiveness of their predicted decline.

The primary contribution of this study is a proposed framework that can accom-

plish the following tasks: 1) providing MCI-to-AD conversion prediction by month, 2)

identifying patient progression slopes, 3) performing novel patient grouping based on

progression non-linearity, and 4) providing feature ranking across longitudinal data. Our

framework represents a significant advancement in both explainability and progression

modeling for Alzheimer’s disease.
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5.1 Related Work

For longitudinal data disease progression analysis there have been significant find-

ings in recent years. Ramamoorthy et al. [74] attempted to determine if there were pat-

terns within amyotrophic lateral sclerosis (ALS) disease progression. They were suc-

cessful in clustering patients with similar progression patterns by leveraging a mixture of

Gaussian techniques. They also showed that progression patterns can often be non-linear

with stages of rapid decline observed between stable periods.

Lars Lau Raket [72] proposed a model that predicted the disease month from a

summary of patient biomarkers that they aggregated as ADAS-cog. Additionally, their

model was able to make predictions on disease stage, rate of decline, and cognitive de-

viation from the mean. This allowed for the interpretation of different factors on how

they could potentially impact cognitive function. The impact of proposed treatment plans

could also be considered given the knowledge of a patient’s predicted rate of decline.

El-Sappagh et al. [75] used an LSTM model to classify a patient as cognitively

normal, MCI, or AD, and to predict the time until conversion for those classified as MCI.

Their classification stage showed an accuracy of 93.87%, while their regression stage

demonstrated a mean absolute error of 0.1375. However, one limitation of their study

was the lack of explainability for their model’s decisions.

El-Sappagh et al. [76] developed an ensemble learning framework to predict AD

progression for up to 2.5 years in the future. Their focus was on accuracy and diversity

metrics as they fine-tuned their model until both were balanced and provided optimal

output. Notably, their classifier achieved high accuracy without including neuroimaging
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data, which could potentially lower the cost compared to MRI-based approaches.

David Loeffler [77] performed a review of the literature exploring how different

variables can impact the development of AD, categorizing them as modifiable (vascular

risk factors, malnutrition, etc.), non-modifiable (age, family history, etc.), and clinical

(neuropsychiatric symptoms, extrapyramidal signs, baseline cognitive level). He found

that six factors consistently displayed a positive association with AD: malnutrition, ge-

netic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symp-

toms, and extrapyramidal signs. However, he did not assess how these factors might

impact a patient’s rate of decline, leaving that for future explainability work.

Our approach builds upon existing methodologies but introduces key innovations.

Previous studies have primarily focused on either clinical data or imaging analysis inde-

pendently. Our research bridges this gap by integrating both modalities. Our combined

methodology not only enhances the accuracy of progression prediction but also provides

a multi-faceted view of the disease’s impact.

5.2 Methods

We have established methods to track the progression from Early Mild Cogni-

tive Impairment (EMCI) to Alzheimer’s disease. Our approach includes two categories:

Early MCI to Conversion (EMCI C) and Early MCI Non-Converter (EMCI NC). In this

process, we are integrating multiple dimensions, such as Cognitive Decline (CD), Neu-

roimaging (NI), and Biochemical Markers (BM). This section provides a comprehensive

overview of our dataset, our methodological approach, and rationale for our selection of

86



Table 22: EMCI Data Set for Machine Learning

EMCI C EMCI NC
Subject# 49 335334
Visit# 198 1608
Record# after Oversampling 1608 1608
Training Data 1206 1206
Testing Data 402 402

clinical features.

5.2.1 Alzheimer’s Disease Neuroimaging Initiative Data

All data used for this study were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database and included patients from their ADNI-1, ADNI-2,

and ADNI-GO studies [12].

For this study, all Early Mild Cognitive Impairment (EMCI) subjects who had

exam visits for over a year were eligible. This EMCI subset represents patients that are 5-

7 years prior to a possible AD diagnosis. The Wechsler Memory Scale Logical Memory

II test identifies this subset and we further distinguish them into two groups based on

whether they convert to AD (EMCI C) or fail to convert (EMCI NC). For our original

conversion classifier [71], 1806 exam visits were originally used for training prior to

further augmentation. For our month of conversion regression model, we focus only on

the EMCI C group. This group is represented by 198 exam visits (45 patients) prior to

SMOGN augmentation.
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5.2.1.1 Early MCI with Conversion (EMCI C)

In the EMCI C (Early MCI with Conversion) subclass, patients exhibit a definitive

progression from Early Mild Cognitive Impairment to Alzheimer’s disease. This progres-

sion is characterized by a cognitive decline coupled with observable changes in daily

functional abilities, social interactions, and possibly mood and behavior. The underlying

cause of this progression may be sped-up neurodegenerative processes, such as synaptic

dysfunction, neuronal loss, and the buildup of amyloid plaques and neurofibrillary tau

tangles. Disruption of neurochemical pathways and inflammation may also play signif-

icant roles. In addition to genetic predispositions like the APOE4 allele, other factors

such as cardiovascular health, metabolic conditions like diabetes, psychosocial factors,

and environmental influences can significantly impact the progression rate.

5.2.1.2 Early MCI Non-Converter (EMCI NC)

The Early MCI Non-Converter (EMCI NC) group consists of individuals who

present with EMCI symptoms but do not progress to Alzheimer’s disease during stan-

dard observation periods. Their cognitive impairment might remain stable or even show

signs of improvement. The stability in this group could be attributed to factors such as

higher cognitive reserve due to lifelong learning and intellectual engagement, robust so-

cial networks, physical exercise, a healthy diet, and possibly innate genetic resilience.

Investigating the EMCI NC group can offer valuable insights into preventive strategies

and potential therapeutic targets for Alzheimer’s disease.
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5.2.1.3 Clinical Features Selection

Our random forest regression model was trained on a combination of neuropsy-

chological scale scores (ADAS13, ADAS11, FAQ, MMSE), demographic variables (age,

race), genetic biomarkers (APOE4), and physical biomarkers (hippocampal and ventricu-

lar volume). These match the features used in our prior EMCI-to-AD conversion predic-

tion model [65].

5.2.1.4 Diffusion Tensor Imaging Data

For the secondary progression category classification, our Convolutional Neural

Network (CNN) model was trained on the diffusion tensor imaging (DTI) scans from our

prior work [71]. Diffusion Tensor Imaging (DTI) is a type of magnetic resonance imaging

(MRI) technology that is specifically focused on measuring the directional movement of

water molecules within tissue. This is particularly useful in the brain, where DTI can be

used to map neural pathways and understand the integrity of white matter tracts. As a

result, microstructural changes in brain tissue can be tracked over time, which is valuable

for both clinical and research purposes. These DTI scans were drawn from both EMCI C

and EMCI NC patients. The EMCI C scans were specifically from patients that were

included in our regression model time series prediction.
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5.2.1.5 Mathematical Model for Alzheimer’s Progression

The mathematical model for the progression of Alzheimer’s Disease in Early Mild

Cognitive Impairment with Conversion encompasses several dimensions, namely Cogni-

tive Decline (CD), Neuroimaging (NI), and Biochemical Markers (BM).

• Cognitive Decline (CD) is evaluated through comprehensive neuropsychological

testing, encompassing a range of cognitive domains.

• Neuroimaging (NI) employs advanced techniques such as volumetric MRI for

brain atrophy, PET scans for amyloid and tau pathology, and functional MRI for

neural network activity.

• Biochemical Markers (BM) include a range of biomarkers in the CSF, including

amyloid-beta and tau proteins, alongside emerging markers like neuroinflammatory

indicators.

The rate of progression R(t) is modeled by:

R(t) = f(CD(t), NI(t), BM(t))

5.2.1.6 Formal Definitions for Progression Categories in EMCI C

• Rapid Progression Rapid Progression is characterized by a swift and significant

decline in cognitive functions, evidenced by rapid brain atrophy on neuroimaging

and elevated levels of pathological biomarkers. Clinically, this progression leads

to Alzheimer’s Disease in less than 12 months. The rate of cognitive decline R(t)
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is significantly above a high threshold, necessitating immediate and intensive inter-

ventions.

– Accelerated cognitive decline, significant impairments in daily activities.

– Elevated neurodegenerative biomarkers, rapid neuroimaging changes.

– TAD < 12 months, R(t) > Rrapid.

• Moderate Progression Moderate Progression is defined by a steady decline in cog-

nitive abilities, with moderate changes in neuroimaging and biomarker levels. This

progression results in Alzheimer’s Disease typically between 12 and 47 months.

The rate of decline R(t) lies between the thresholds of Rapid and Gradual Progres-

sion. Management strategies include a combination of cognitive therapies, lifestyle

adjustments, and pharmacological treatments.

– Steady cognitive decline, difficulties in complex tasks.

– Moderate neuroimaging and biomarker changes.

– 12 ≤ TAD < 47 months, Rmoderate ≤ R(t) ≤ Rrapid.

• Gradual Progression Gradual Progression involves a slow decline in cognitive

functions, with less severe changes in neuroimaging and biomarkers. The transition

to Alzheimer’s disease typically occurs over a period exceeding 47 months. The rate

of cognitive decline R(t) falls below the moderate threshold. Clinical management

focuses on lifestyle interventions, cognitive stimulation, and regular monitoring.

– Very slow cognitive decline, subtle changes initially.
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– Slight changes in neuroimaging and biomarkers.

– TAD ≥ 47 months, R(t) < Rmoderate.

These formal definitions enhance our understanding of the progression categories

within the EMCI C class of Alzheimer’s Disease. They highlight the importance of per-

sonalized and timely interventions, based on the specific progression rate and character-

istics of each patient. This approach underlines the need for continuous research and

development of advanced diagnostic tools for accurate categorization and effective man-

agement of Alzheimer’s disease progression.

5.2.2 Multi-Modal AD Progression Predictive Model

A sophisticated, multi-modal model has been developed, integrating clinical data,

neuroimaging (DTI), and advanced machine learning techniques, to accurately predict

Alzheimer’s disease progression.

This multi-modal predictive model, leveraging the synergy of clinical data, neu-

roimaging, and advanced machine learning techniques, offers a nuanced and precise pre-

diction of Alzheimer’s Disease progression. The use of t-SNE, SHAP, and Grad-CAM

for validation underscores the model’s robustness and explainability, particularly in cate-

gorizing and understanding specialized progression paths within the EMCI C cohort.

5.2.3 Normalization and Categorization Methodology

We employ a detailed normalization and categorization methodology to align and

categorize patient data effectively for predictive modeling.
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Algorithm 1 Multi-Modal Alzheimer’s Disease Progression Predictive Model
Require: EMCI patient data (Clinical, DTI)
Ensure: Comprehensive predictive models for AD progression

Step 1: Multi-Modal Clinical Data Analysis
for each patient in EMCI group do

Analyze clinical records and DTI data: Assess clinical progression and neuroimag-
ing markers over time.
end for
Step 2: Progression Slope Analysis
for each patient in EMCI group do

Determine progression trajectory: Quantify the rate of progression using clinical
and DTI data.
end for
Step 3: K-Means Clustering for Specialized Categories
Identify distinct progression clusters: Apply k-means clustering to categorize patients
into specialized progression groups based on EMCI C.
Step 4: Validation Using Advanced Imaging Techniques
for each cluster do

Employ Grad-CAM for neuroimaging validation: Correlate clinical progression
with specific brain regions affected in each category.
end for
Step 5: CNN-Based Predictive Models for Each Category
Develop tailored CNN models: Construct separate CNN models for each progression
category, integrating clinical and DTI data.
Step 6: Comprehensive Model Explainability
Implement t-SNE, SHAP, and Grad-CAM: Utilize t-SNE for data visualization, SHAP
for clinical data interpretation, and Grad-CAM for neuroimaging analysis to validate
and explain each specialized progression category.
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Normalized Time = Month-wise alignment of patient data (5.1)

Category =


Rapid Progression, if TAD < 12 months, R(t) > Rrapid

Moderate Progression, if 12 ≤ TAD < 47 months, Rmoderate ≤ R(t) ≤ Rrapid

Gradual Progression, if TAD ≥ 47 months, R(t) < Rmoderate

(5.2)

5.2.4 Feature Selection

In our study on Alzheimer’s Disease (AD) progression, we employed grid search

optimization to fine-tune the parameters of k-means and hierarchical clustering algo-

rithms. These algorithms were applied to a dataset informed by nine crucial biomarker

parameters, carefully selected based on findings from our previous studies [65]. These

biomarkers were chosen to determine the conversion from early dimensions to AD pre-

diction more accurately and achieve state-of-the-art detection accuracy.

In the Random Forest algorithm, the significance of features is derived from the

variation in prediction error across the ensemble of decision trees. This methodology is

detailed in [9]. Initially, the importance of each node in a tree is assessed, as formulated

in Equation 5.3. In this equation, nij denotes the importance of node j, wj represents the

weight of the samples reaching node j, and Cj indicates the impurity measure at the node.

Following this, the importance of features within each individual tree is computed as per

Equation 5.4, and subsequently normalized to lie within a range of 0 to 1, according to
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Equation 5.5. The final step involves averaging these normalized values across all the trees

in the forest and then dividing by the total number of trees, as presented in Equation 5.6

[19].

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (5.3)

fii =

∑
j:node j splits on feature i nij∑

k∈ all nodes nik
(5.4)

normfii =
fii∑

j∈ all features fij
(5.5)

RFfii =

∑
j∈ all trees norm fiij

T
(5.6)

The importance scores seen in Table 23 quantitatively reflect the predictive power

of various biomarkers within two distinct models. The ’Classification Importance Score’

gauges each biomarker’s capacity to predict the likelihood of conversion from Mild Cog-

nitive Impairment (MCI) to AD, thus serving as a critical indicator for identifying patients

at high risk of developing AD. On the contrary, the ’Progression Importance Score’ as-

sesses the biomarker’s predictive strength in determining the time until conversion, pro-

viding an estimation of how many months it may take for a patient with MCI to convert

to AD, based on our regression model.

For example, the Age feature displays a higher Classification Importance Score

(.19) than Progression Importance Score (.07), suggesting that while age is a significant

97



factor in identifying which MCI patients may convert to AD, it provides less predictive

value regarding the timeframe of conversion. In contrast, hippocampal volume demon-

strates a greater Progression Importance Score (.22) than Classification Importance Score

(.17), underscoring its predictive utility in estimating the timeline for conversion rather

than just the likelihood.

This nuanced differentiation between the two importance scores is critical for de-

veloping targeted clinical strategies. The Classification Importance Score informs clini-

cians about which patients require close monitoring for potential conversion to AD, while

the Progression Importance Score helps in crafting timelines for intervention, potentially

allowing for preemptive measures to slow or alter the disease’s trajectory.

Figure 35 presents a correlation heatmap that shows the relationships between

our selected features. Each square in the heatmap corresponds to the Pearson correlation

coefficient between pairs of features, providing a visual summary of how each parameter

may be related to another within the context of AD progression.

Notably, a positive correlation between Alzheimer’s Disease Assessment Scale

(ADAS) scores (ADAS11 and ADAS13) and Ventricular Volume suggests that as the cog-

nitive impairment severity increases, so does the volume of the brain’s ventricles. This

correlation reinforces the clinical observation that ventricular enlargement is often asso-

ciated with the progression of AD. The ADAS scores also exhibit a positive correlation

with each other, as expected, due to their mutual aim of assessing cognitive dysfunction.

Conversely, we observe a negative correlation between age and hippocampal vol-

ume. Similarly, the MMSE score shows a negative correlation with the ADAS scores,
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Table 23: Biomarker Parameters with Importance Scores

Parameter Description Classification
Importance
Score

Progression
Importance
Score

Alzheimer’s Dis-
ease Assessment
Scale (ADAS13)

A cognitive assessment scale de-
signed to measure the severity of
cognitive impairment in AD patients.

.12 .18

Alzheimer’s Dis-
ease Assessment
Scale (ADAS11)

Another cognitive assessment scale
used to evaluate cognitive dysfunc-
tion in AD.

.09 .06

Functional Activi-
ties Questionnaire
(FAQ)

A tool used to assess a person’s abil-
ity to perform daily activities inde-
pendently.

.14 .15

Mini-Mental
State Examination
(MMSE)

A widely used cognitive screening
tool to assess cognitive impairment.

.06 .09

Age The age of the individuals in the
dataset, can be an important demo-
graphic factor in AD progression.

.19 .07

Race Demographic information about the
individuals, can provide insights into
potential disparities in AD risk.

.02 .02

Apolipoprotein E4
(APOE4)

A genetic marker associated with an
increased risk of developing AD.

.07 .04

Hippocampal Vol-
ume

The volume of the hippocampus, a
brain region crucial for memory and
often affected in AD.

.17 .22

Ventricular Volume The volume of the brain’s ventricles,
which can change with disease pro-
gression and may be indicative of
AD.

.14 .17
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Figure 35: Random Forest Model Correlation Matrix

indicating that as cognitive impairment worsens (higher ADAS scores), the cognitive

function measured by the MMSE decreases.

The heatmap also highlights the relatively lower correlation coefficients of APOE4

and PTRACCAT with other features, indicating that these may provide unique informa-

tion in the AD prediction model that is not captured by other parameters.

These observed correlations inform our feature selection process by identifying

features that not only offer independent predictive power, but also those that may act in

tandem to enhance the model’s performance. The heatmap aids in avoiding redundancy

within our predictive model and ensures a robust feature set that is both comprehensive

and representative of the complex biological interactions in AD progression.

The integration of sophisticated validation techniques, such as Silhouette Width

Analysis and t-distributed Stochastic Neighbor Embedding (t-SNE), has refined our fea-

ture selection process to align closely with the distinct needs of patient groups within
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our dataset. By leveraging these techniques and interpreting the calculated Importance

Scores, we have pinpointed a subset of biomarkers that show the highest predictive align-

ment with the progression categories, optimizing our feature selection for robust, future-

focused predictive modeling. The precise selection of these features, informed by their

respective importance scores, significantly enhances our model’s ability to support early

and personalized treatment plans for patients at various stages.

5.2.5 Clustering Techniques with Grid Search Optimization

This section explores the application of grid search optimization in clustering tech-

niques, specifically focusing on K-Means and Hierarchical clustering. By employing grid

search, we aim to fine-tune the parameters for these methods, enhancing the efficacy of

our clustering models.

5.2.5.1 K-Means with Grid Search Optimization

K-means clustering was optimized using a grid search. The objective function is

defined as:

S =
k∑

i=1

∑
x∈Si

‖x− µi‖2 (5.7)

where k is the number of clusters, Si is each cluster, x is each data point, and µi is the

centroid of each cluster.

5.2.5.2 Hierarchical Clustering with Grid Search Optimization

Hierarchical Clustering with Grid Search Optimization: For HC, we employed

grid search over different linkage methods. Hierarchical Clustering (HC) was optimized
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Algorithm 2 K-Means Clustering with Grid Search
Require: Dataset D, Range of k values
Ensure: Optimal clusters C

1: Initialize best score to infinity
2: for each k in the range do
3: Initialize k centroids randomly
4: repeat
5: Assign each point in D to the nearest centroid
6: Update each centroid to the mean of its assigned points
7: until convergence
8: Calculate silhouette score for current k
9: if score is better than best score then

10: Update best score and C
11: end if
12: end forreturn C

using grid search over different linkage methods.

5.2.5.3 Validation with t-SNE and Silhouette Width Analysis

t-Distributed Stochastic Neighbor Embedding (t-SNE) The t-SNE algorithm mini-

mizes the KullbackâLeibler divergence between two distributions. t-SNE was used for

dimensionality reduction and visualization:

Minimize KL(P ‖ Q) (5.8)

Silhouette Width Analysis The silhouette width calculation for each data point is given

by:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(5.9)

Silhouette width for each point i is given by:
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Algorithm 3 Hierarchical Clustering with Grid Search
Require: Dataset D, Set of linkage methods L
Ensure: Optimal dendrogram T

1: Initialize best score to infinity
2: for each linkage method l in L do
3: Initialize each point in D as a separate cluster
4: while number of clusters > 1 do
5: Find the closest pair of clusters
6: Merge the closest pair
7: Update the distance matrix
8: end while
9: Construct dendrogram Tl for l

10: Calculate silhouette score for Tl
11: if score is better than best score then
12: Update best score and T
13: end if
14: end forreturn T

s(i) =
b(i)− a(i)

max{a(i), b(i)}

Grid search optimization in both k-means and HC allowed for a more precise

determination of the clustering parameters, thereby enhancing the accuracy and relevance

of our findings in the context of AD progression.

5.2.6 Progression Group Categorization

In our study, we utilized an expanded EMCI Dataset, detailed in Table 24, to en-

hance predictive modeling for Alzheimer’s disease progression. This dataset distinguishes

between EMCI patients with and without conversion, providing an extensive overview of

subject demographics, visit numbers, and cognitive scores. The dataset’s comprehensive

nature, underscored by careful oversampling and split into training and testing groups,
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Table 24: Expanded EMCI Dataset for Predictive Modeling

Parameter EMCI C EMCI NC
Total Subjects 49 334

Total Visits 198 1608
Records after Oversampling 1608 1608

Training Dataset 1206 1206
Testing Dataset 402 402
Average Age 72 years 70 years

Gender Distribution 40% Female, 60% Male 45% Female, 55% Male
Average Cognitive Score 23 25
Rapid Progression Visits 14 -

Moderate Progression Visits 75 -
Gradual Progression Visits 36 -

Table 25: DTI Data for EMCI Progression Category Classification

Patient Group Description #Image
EMCI C Rapid Progression 18

Moderate Progression 13
Gradual Progression 15

facilitates an in-depth analysis of progression patterns.

Table 25 presents DTI data employed for EMCI progression category classifica-

tion. It categorizes patients based on progression rates and offers a comparative anal-

ysis with a substantial collection of scans. This approach underlines the utilization of

advanced neuroimaging techniques in discerning progression trajectories in Alzheimer’s

patients, demonstrating the potential of DTI in clinical applications. These datasets col-

lectively form the backbone of our study, laying the foundation for nuanced insights into

Alzheimer’s progression.
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The advanced normalization and categorization methodology, combined with de-

tailed data analysis, forms a robust framework for understanding and predicting the pro-

gression of Alzheimer’s disease.

5.2.7 Random Forest Regression Model

For regression problems, random forests create numerous decision trees while

training and then output the mean prediction of the individual trees. This averaging not

only improves the overall model accuracy but also reduces overfitting [2]. For our work-

flow, the random forest regressor is making predictions of how many months a patient has

until AD diagnosis. This is performed specifically on EMCI C patients that have been

previously identified by our ensemble model. Each decision tree casts a vote which is

then aggregated into a final Months Till AD prediction. One advantage of random forest

is that it allows us to assess both local (individual prediction) and global (model) explain-

ability as we can extrapolate feature importance. When measuring longitudinal data, this

provides us a method in which we can determine how feature importance might change

between patient exam visits, and how that might impact the overall rate of decline.

5.2.7.1 Regression Model Data Augmentation

Data augmentation is an important aspect of machine learning, especially when

working with smaller clinical datasets. Small datasets can lead to inaccurate predictions

which can have serious consequences in the clinical setting. To address this issue, we

applied the SMOGN (Synthetic Minority Oversampling Technique with Gaussian Noise)
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algorithm to balance our clinical dataset. SMOGN is a widely used method for imbal-

anced regression that has been shown to be effective in a variety of applications [78]. It

works by generating new synthetic samples that are obtained by either the SmoteR or

Gaussian Noise techniques. The chosen technique depends on the distance between the

cases supplied. If they are close, SMOGN will leverage the SmoteR method, otherwise, it

will introduce Gaussian Noise. The algorithm also includes a noise filtering step, which

helps to remove the noise from the synthetic examples that are not useful for improving

the regressor’s performance. To apply SMOGN to our clinical dataset, we first split the

data into a training set and a testing set. We then used the SMOGN algorithm to over-

sample important ranges, that might otherwise have been ignored, in the training set to

generate synthetic examples. We added these synthetic examples to the training set and

retrained our model using the balanced training set.

5.2.8 CNN Classification Model

For our progression category classification problem, we leverage a Convolutional

Neural Network (CNN) with a NASNET architecture to classify Diffusion Tensor Imag-

ing (DTI) scans into categories based on the expected rate of progression to AD from

the MCI stage. NASNET was chosen as the architecture given its high performance with

complex image analysis. We distinguish our progression categories as gradual, moderate,

or rapid as they reflect the anticipated speed of progression towards an AD diagnosis. We

define these three distinct categories based on the timespan from the initial condition to

their AD diagnosis as well as the severity of the initial stage:
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We have developed a Convolutional Neural Network (CNN) classification sys-

tem with four distinct categories to enhance the diagnosis and monitoring of Alzheimer’s

Disease progression. The categories are as follows:

1. EMCI C (Early MCI with Conversion): This category is further divided into

three subcategories based on the rate of progression to Alzheimer’s Disease (AD):

(a) Rapid Progression: Patients showing significant cognitive decline and con-

version to AD within a period of less than twelve months.

(b) Moderate Progression: Patients whose transition from Mild Cognitive Im-

pairment (MCI) to AD occurs within 12 to 47 months, accompanied by mod-

erate deterioration in cognitive functions.

(c) Gradual Progression: Patients experiencing a slower decline, with the tran-

sition to AD occurring over a period exceeding 47 months.

2. EMCI NC (Early MCI Non-Converter): This category includes patients who

present with EMCI symptoms but do not progress to Alzheimer’s disease within

the standard observation periods.

By aligning patients into these progression categories, we enhance our understand-

ing of the disease trajectory. The convolutional layers specifically seek to detect key image

features or patterns that correlate to each of these progressions. This is supplementary to

our clinical data classification as it adds a layer of visual biomarker analysis.

CNN Model Data Augmentation. Augmentation was also key to our CNN model given

107



Table 26: CNN Augmentation Methods Compared

Variant Accuracy Scale Dist. Bright.
Dist.

Crop
Dist.

Flipped
Img.

Variant 1 86.5% 0 30 0 True
Variant 2 85.1% 0 0 0 True
Variant 3 83.8% 0 30 0 False
Variant 4 82.6% 0 0 0 False
Variant 5 78.2% 30 0 0 False
Variant 6 76.5% 0 0 30 False

the small dataset. Limited data can be prone to overfitting and reduce a model’s gener-

alizability. To mitigate this, we performed image-specific augmentation techniques that

enhanced the diversity and robustness of our model. The techniques we focused on were

horizontal flipping, brightness adjustment, and minor scaling variations. These variations

were chosen based on our comparative analysis seen in Table 26. The augmented dataset

was formed by applying these transformations to the original DTI images which allowed

us to expand our dataset without compromising the integrity of the medical details. This

augmented dataset not only helps us to prevent overfitting, but also increases how well

our model can generalize to new data as evidenced by the enhanced post-augmentation

performance.

5.3 Results

5.3.1 Regression Model Performance

The workflow of our progression model is depicted in Figure 34. This shows how

our random forest regressor alongside our CNN classifier takes EMCI C predictions from
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our previous ensemble model as input and produces the predicted months until AD con-

version as output. Our regression model is trained with 10000 estimators against 198

exam visits, split with 75% reserved for training and 25% for testing, which are then

augmented by SMOGN. This split was additionally grouped by patient to prevent the

same patient existing in both the training and validation datasets. For individual exam

prediction, feature ranking explainability is performed after the prediction output. For

multi-exam prediction, feature ranking is performed, and a progression category is as-

signed based on the non-linearity of the patient’s progression.

The overall workflow of our framework is shown in Figure 33. This demonstrates

how a patient progresses through conversion prediction into progression analysis.

In Figure 37, both features are plotted against the number of months that the pa-

tient has been in the study (Months Since Baseline), as well as the model’s predicted

months until AD conversion. This allows us to see the trend of each feature over time and

how different progression categories, such as Rapid (red), Moderate (blue), and Gradual

(green), are affected. These progression categories are determined by a combination of

the patient’s conversion timeline and K-means clustering.

The K-means algorithm was chosen due to its effectiveness in handling vast datasets

and generating distinct, non-overlapping clusters. This quality proved crucial for our

dataset, facilitating the identification of clear AD progression patterns. A comparison

with hierarchical clustering revealed K-means to be superior in terms of consistency and

interpretability, supported by silhouette scores as shown in Table 27.

An in-depth subset iteration test was conducted to ascertain the most significant
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Table 27: Comparative Analysis of K-Means and Hierarchical Clustering

Aspect K-means Clustering Hierarchical Clustering
Silhouette Score 0.651 0.636
Method Centroid-based Connectivity-based
Formation Centroid proximity clusters Distance linkage hierarchy
Complexity Lower Higher
Flexibility Fixed cluster number Variable clusters
Interpretability Straightforward Detailed dendrogram
Efficiency Faster for large data Slower, more intensive
Use Cases Uniform cluster sizes Diverse natural groupings

features for clustering. This test measured the silhouette score for various feature combi-

nations, resulting in the identification of Race, APOE4, MMSE, and Ventricular Volume

as the feature subset yielding the highest silhouette score of 0.655. This high score reflects

well-separated clusters, suggesting that these specific features capture the essence of AD

progression most effectively.

Figure 36 displays a t-SNE visualization of the clustering performed with the best

feature subset. The visualization reveals a clear separation between the clusters, with each

cluster suggesting different rates of progression of AD.

As depicted, the data points coalesce into clusters that are differentiated with a

gradient color scheme, indicating the cluster to which each data point belongs. The gra-

dation also subtly reflects the degree of membership, providing insight into the certainty

of the clustering. We observe that the points form a series of discrete, yet contiguous,

clusters stretching across the t-SNE feature space. This pattern suggests that while each

group is distinct, there is a progression or gradation from one group to the next, which

may mirror the progressive nature of Alzheimer’s Disease.
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Figure 36: T-SNE Clusters of Patient Data by Key Features and AD Progression Category

The separation of clusters along the t-SNE dimensions affirms the discriminative

power of the selected features. The tightness of the clusters, particularly noted in the clus-

ter associated with the rapid progression category (as denoted by the darker color in the

upper right quadrant), suggests a high degree of homogeneity within this group. In con-

trast, the gradual progression category, represented by a lighter color, is characterized by

a broader spread across the t-SNE space, implying a more heterogeneous mix of features

within this group.

The middle region where clusters merge represents patients with a moderate pro-

gression rate, displaying an intermediate feature profile between the rapid and gradual
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Figure 37: FAQ Progression (top) & ADAS13 Progression (bottom)

groups. This visual segregation aligns with the clinical understanding of Alzheimer’s Dis-

ease, where patients exhibit a spectrum of symptoms and progression rates, influenced by

a complex interplay of genetic, cognitive, and neuroanatomical factors.

In summary, the t-SNE visualization corroborates the efficacy of our feature selec-

tion process, emphasizing the value of these features in capturing varying rate of progres-

sions within AD. The discernible cluster patterns not only validate the analytical approach

but also underscore the potential for these biomarkers to contribute to a refined stratifica-

tion of AD patients.

For the month conversion prediction, we conducted several experiments to vali-

date our model, as outlined in Table 28. Our best-performing configuration was a random

112



Table 28: Regression Model RMSE and Accuracy Compared

Model Augmentation RMSE Accuracy
Random Forest SMOGN 12.61 78.34%
Random Forest Quantile Transformer 21.64 42.75%

XGBoost None 20.69 34.96%
Random Forest None 19.28 37.74%

SVC None N/A 11.53%

Table 29: Sample Individual Months Till Conversion Predictions: PC: Progression Cate-
gory, VT: Ventricles, HP: Hippocampus, GT: Ground Truth, PM: Predicted Months

PC Rapid Moderate Gradual
Age 68 64 72 76

APOE4 2 1 1 1
ADAS11 16 11 8 6
ADAS13 22 19 19 9
MMSE 23 25 26 27

FAQ 10 9 2 7
VT 57676 67764 12511 24453
HP 7528 6918 7439 8478
GT 11 23 47 67
PM 22 20 51 64

forest regressor with SMOGN, which achieved an accuracy of 78.34% and an RMSE of

12.61. To ensure that our model was not overfitting, we also performed cross-validation.

Table 29 displays the predicted months until conversion for individual patients

based on various input features. Although useful on their own, these predictions allow

our model to further classify each patient into an associated progression category when

evaluated across multiple exam visits.

We also evaluated the predictive accuracy of our model across our different AD

progression categories, as detailed in Table 30. This table delineates the mean values of

key features and the corresponding RMSE for each category: Gradual, Moderate, and

Rapid.
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The Gradual category, with an average age of 72.40 years and mean feature values

such as an APOE4 frequency of 0.78, ADAS11 score of 8.33, and Hippocampal volume

of 6993.93, shows a lower RMSE of 6.58. This suggests that the model is particularly

adept at predicting disease progression in this group, where changes might be more subtle

and gradual.

In the Moderate category, the patients are slightly older on average (73.57 years),

and display different biomarker profiles, such as a higher ADAS13 score (18.13) and a

lower average Hippocampal volume (6582.79). The RMSE here is 14.23, indicating a

moderate level of predictive challenge, which could be attributed to a more varied pro-

gression pattern within this group.

The Rapid category represents the most aggressive disease progression with the

youngest average age (70.69 years), the highest APOE4 frequency (1.00), and the largest

Ventricular volume (43272.17). Despite these challenging characteristics, the model achieves

an RMSE of 10.46, reflecting reasonable prediction accuracy under conditions of rapid

and unpredictable disease progression.

The heatmap in Figure 38 illustrates the confusion matrix of this model. Rows

represent actual categories, while columns represent predictions. The color intensity indi-

cates prediction counts, with darker shades signifying higher numbers. The diagonal cells

show correct predictions, with 17 accurate ’Rapid’ and 48 ’Gradual’ predictions. Notably,

the model misclassified 5 ’Rapid’ instances as ’Moderate’, highlighting a potential area

for improvement. This visualization offers a succinct overview of the model’s perfor-

mance, emphasizing its strengths in predicting ’Moderate’ and ’Gradual’ stages and the
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Figure 38: Random Forest Regressor Confusion Matrix

need to enhance ’Rapid’ stage identification.

These findings underscore the diverse predictive performance of the model across

the progression spectrum of AD. The variance in RMSE across categories highlights the

complex interplay of age, genetic factors (like APOE4), and neuroimaging biomarkers

(such as Hippocampus and Ventricles volume) in forecasting disease progression. This

analysis not only demonstrates the model’s capabilities and limitations but also illumi-

nates the potential for tailored prognostic strategies based on specific patient profiles.

Table 31 demonstrates a comparison between existing time-to-event prediction

models. While the events predicted are distinct, similar modalities are used. A benefit of

our proposed model is that our scope of time extends to 5-7 years, whereas many of the

comparative models work within a one-year span. Within Alzheimer’s disease conversion

prediction timing specifically, we are not aware of any competing models that assess this

from an MCI stage.
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Table 30: Mean Feature Values with Standard Deviation and RMSE by Progression Cat-
egory: PC: Progression Category, VT: Ventricles, HP: Hippocampus

Progression Category
PC Gradual Moderate Rapid EMCI NC
Age 72.40(6.54) 73.57(5.73) 70.69(5.63) 70.53(7.29)
APOE4 0.78(0.81) 0.80(0.71) 1.00(0.62) 0.43(0.59)
ADAS11 8.33(3.13) 11.20(3.93) 13.80(6.20) 7.97(4.19)
ADAS13 13.49(4.50) 18.13(5.88) 20.03(7.32) 12.31(6.15)
MMSE 28.12(1.72) 27.03(1.94) 26.50(2.09) 28.28(1.75)
FAQ 2.20(2.09) 5.53(4.14) 7.73(3.88) 1.79(3.11)
VT 32512.13(17457.28) 38163.84(20530.91) 43272.17(20953.00) 34779.82(19564.64)
HP 6993.93(1170.74) 6582.79(1058.94) 6438.56(942.24) 7300.77(1009.95)
RMSE 6.58 14.23 10.46 -

Approach Condition Model Accuracy RMSE
Proposed Model (ours) Alzheimer’s RF 78.34% 12.61
Bossa et al. (2023) Alzheimer’s Bayesian - 16.1
Wijeratne et al. (2023) Alzheimer’s TEBM - 21.73
Rajkomar et al. (2018) Hospital Readmission RNN 75% -
Weng et al. (2017) Cardiovascular Events RF 74.5% -
Avati et al. (2018) Palliative Care DNN 69% -
Wang et al. (2022) Cancer 3D-Resnet 69% -

Table 31: Time to Event (Monthly Prediction) Model Comparison

5.3.2 CNN Model Performance

Our CNN progression category classification model was trained over 18 epochs,

with an early stopping parameter that prevents overfitting. This also serves to optimize

our overall training time. Our Variant 1 model was trained with a learning rate of .005 and

a batch size of 64. Many variations of this were tested but these proved to be the optimal

parameters. Our use of NASNET as the backing architecture played a significant role
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Figure 39: CNN Accuracy & Loss Graphs

in achieving high performance, given its capabilities with image classification. DTI im-

ages from 80 patients were used for training across 4 classes (Gradual, Moderate, Rapid,

EMCI NC). Prior to training, these images were augmented with brightness distortion

as well as horizontal flipping with 20% of the dataset reserved for validation testing. In

addition to progression category classification, we perform GradCAM analysis to further

explain our patient’s trajectory from a visual perspective.

Our model demonstrated significant efficacy in classifying DTI scans into the de-

fined progression categories by achieving an accuracy of 86.49%. Our accuracy and loss

curves can be seen in Figure 39. This bolsters the output provided by our regression model

by providing a visual justification. When converting our clinical data regression model

output to our progression categories, we achieve an accuracy of 87.64%.

A comparative analysis of these two models is presented in Table 32 alongside

related progression categorization models. The slightly higher accuracy of the regression

model indicates its potential in effectively categorizing progression stages, despite being
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Table 32: Comparative Evaluation for AD Progression Category Classification

Approach Model Modality Accuracy (%)
Proposed RF Model (ours) RF Regressor Clinical Data 87.64
Proposed CNN Model (ours) CNN DTI 86.49
Hashemifar et al. (2023) [79] 3D CNN MRI 82.34
Van Der Haar et al. (2023) [80] SVM Clinical Data 89.35
Pan et al. (2022) [81] 3D CNN MRI 79.01
El-Sappagh et al. (2022) [82] LSTM Clinical Data 82.82

primarily designed for Months Till Conversion prediction. This underscores the model’s

adaptability and reinforces the utility of combining clinical data insights with advanced

machine learning techniques.

We have expanded the approaches from three significant studies in AD progres-

sion analysis to create a nuanced and comprehensive model. Building upon the DeepAD

model [79], which integrates clinical, genomic, demographic, and MRI data using ad-

vanced techniques for broad analysis, we have introduced our RF Regression model with

SMOGN, combined with our CNN model for DTI scan analysis. This enhancement al-

lows for a more detailed categorization of AD progression rates, offering greater diagnos-

tic precision and valuable insights for treatment planning.

We also contrast our approach with the Manifold Learning study [80], which em-

ploys manifold learning techniques such as t-SNE, UMAP, and sparse denoising autoen-

coders on ADNI data. While this study provides insights into potential subcategories

within AD progression, our research emphasizes specific, measurable progression rates,

integrating advanced imaging techniques with machine learning models for a more ac-

tionable clinical understanding.

Additionally, we evolve the methodologies presented in the “Deep Learning for
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Brain MRI” study [81], which uses an Ensemble of 3D CNNs for MRI analysis, devel-

oping a P-score biomarker for assessing neurodegeneration. Our model extends these in-

sights by creating a comprehensive multimodal framework that captures both neuroimag-

ing nuances and clinical progression patterns.

The juxtaposition of our clinical data approach against our CNN model in catego-

rizing progression categories underlines the diverse methodologies available in medical

image analysis. It also highlights the importance of tailoring the model architecture and

parameters to the specificities of the dataset and the task at hand. Our integrated ap-

proach, combining visual justification through CNN with clinical data insights, offers a

more comprehensive understanding of AD progression.

5.3.3 Ensemble Progression Category Classification Performance

To enhance the predictive accuracy of the progression category classification, we

employed an ensemble approach combining our CNN classifier and our RF regressor.

The primary objective was to leverage the distinct strengths of these two models in a

complementary fashion. To this end, a grid search was conducted to determine the optimal

weighting of each model within the ensemble. The results of this search are summarized

in Table 33.

The grid search systematically varied the weights assigned to the CNN and RF

models, ranging from 0 to 1 in increments of 0.1. Each combination was evaluated for

its classification accuracy, with the findings indicating a nuanced interplay between the

weights and the overall ensemble performance.
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A notable observation from the results is the peak accuracy of 89.4%, achieved

with a weight of 0.4 for the CNN and 0.6 for the RF model. This specific combination

outperforms the individual standalone models, underscoring the efficacy of the ensemble

approach. The enhancement in performance can be attributed to the synergy between the

CNN’s image-based analytical prowess and the RF’s robustness in handling structured

clinical data. The weighted ensemble evidently capitalizes on the strengths of each model

while mitigating their individual weaknesses.

Interestingly, as the weight shifts progressively towards the CNN (beyond the 0.4

mark), a decline in accuracy is observed. This trend highlights the RF model’s slightly

superior standalone performance and its critical role in the ensemble’s overall effective-

ness. Conversely, an ensemble dominated by the RF model (weights lower than 0.4 for

the CNN) fails to harness the CNN’s valuable insights fully, leading to suboptimal perfor-

mance.

These findings underscore the importance of balance in model weighting within

an ensemble framework. The optimal weight distribution not only maximizes predictive

accuracy but also ensures a harmonious integration of diverse analytical methodologies.

The ensemble model, with its finely tuned weighting, presents a robust solution to the pro-

gression category classification challenge, demonstrating the potential of hybrid machine

learning approaches in complex analytical tasks.
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Table 33: Grid Search Results for Ensemble Weighting

Weight CNN Weight RF Accuracy
0.0 1.0 87.6%
0.1 0.9 87.9%
0.2 0.8 88.1%
0.3 0.7 88.4%
0.4 0.6 89.4%
0.5 0.5 88.5%
0.6 0.4 87.5%
0.7 0.3 87.4%
0.8 0.2 87.2%
0.9 0.1 87.1%
1.0 0.0 86.5%

5.3.4 Explainability

Our study’s main contribution is the ability to provide explanations for our model’s

predictions, including the identification of features that may contribute to a patient’s rapid

decline. We accomplish this through the output of feature rankings at both the global

(model) and individual levels, as well as the use of SHAP values to explain each feature’s

contribution to the overall prediction. These explanations can be seen in Figure 40.

5.3.4.1 Global and Individual Feature Analysis

At a global level, the hippocampal volume and the ADAS13 test results contribute

the most towards our months till conversion prediction. Ventricular volume and FAQ also

show high importance whereas APOE4 and age are less meaningful in comparison to

the previous classification work. For individual predictions this ranking varies, however

FAQ, ventricular volume, and hippocampal volume are consistently represented towards

the top.
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Figure 40: Feature Importance and SHAP Summary

5.3.4.2 Progression Category Analysis

Breaking out the feature importance analysis by our progression categories re-

veals additional insights. Figure 41 demonstrates this feature importance breakout. In the

Gradual category, Age and Hippocampal volume emerge as the most influential factors,

suggesting that older age and hippocampal atrophy are strong predictors for patients who

will progress to AD more slowly (over 47 months). The significance of hippocampal vol-

ume is consistent with clinical understanding, as hippocampal atrophy is a well-known

marker of AD progression.

For the Moderate progression category, where patients are predicted to convert

to AD between 12 and 47 months, ADAS13 shows the highest feature importance, fol-

lowed closely by hippocampal volume and age. This underscores cognitive function, as

measured by ADAS13, along with age and hippocampal volume as key indicators of a

moderate progression timeline.

In the Rapid category, hippocampal volume is the feature with the highest im-

portance, indicating a strong relationship between rapid disease progression (less than

12 months until conversion) and hippocampal atrophy. This is followed by ventricular
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Figure 41: Progression Feature Importance by Category

Figure 42: Feature Importances and SHAP Values for the Gradual Progression Cadtegory,
Highlighting the Dominance of Age and Hippocampal Volume.
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Figure 43: Feature Importances and SHAP Values for the Moderate Progression Category,
with ADAS13, Age, and Hippocampal Volume as the Most Informative Predictors.

volume, which may reflect the increased brain atrophy and ventricular enlargement asso-

ciated with more aggressive AD.

Figure 44: Feature Importances and SHAP Values for the Rapid Progression Category,
Emphasizing the Importance of Hippocampal and Ventricular Volume in Forecasting
Swift Disease Progression.

Across all categories, hippocampal volume consistently appears as a critical fea-

ture, underscoring its importance in AD progression. However, the variation in feature

rankings across categories may indicate different pathological or clinical patterns that

characterize the rate of progression.
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Table 34: Feature Importance in AD Categories: A Quantitative Comparison

Feature Gradual Moderate Rapid Sum
Age 0.30 0.15 0.10 0.55
Hippocampus 0.23 0.15 0.25 0.63
Ventricles 0.20 0.11 0.21 0.52
ADAS11 0.04 0.13 0.17 0.34
ADAS13 0.04 0.15 0.05 0.24
MMSE 0.09 0.14 0.11 0.34
FAQ 0.06 0.12 0.08 0.26
APOE4 0.03 0.03 0.02 0.08
PTRACCAT 0.01 0.02 0.01 0.04

5.3.4.3 Visualizations and Interpretations

Table 34 provides a quantitative complement to the visual feature importance

plots, enabling a direct, numerical comparison across the progression categories. Age

and hippocampal volume, as quantitatively underscored in the table, are the predominant

features influencing the Gradual progression category. This aligns with the visual inter-

pretations that indicated these features as critical predictors for patients with a slower

transition to AD. Interestingly, while the table confirms ADAS13 as a significant indica-

tor for Moderate progression, it is ADAS11 that gains prominence in the Rapid category.

This shift may reflect the differential sensitivity of these cognitive scales to the stages of

AD progression.

Additionally, we present a heatmap visualization in Figure 45. This heatmap em-

ploys a color gradient to represent the importance scores of each feature within the cate-

gories of Gradual, Moderate, and Rapid progression.
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As depicted in the heatmap, warmer colors signify higher importance scores, indi-

cating a stronger predictive value for the respective AD progression category. Conversely,

cooler colors correspond to lower importance scores, suggesting a lesser predictive value.

The numerical values within each cell of the heatmap provide exact scores consistent with

Table 34.

Noteworthy observations from the heatmap include the pronounced importance of

age in the Gradual progression category, as indicated by the deep red coloration, with a

score of 0.30. In contrast, hippocampal volume shows a high importance score of 0.25 in

the Rapid category, marked by a similarly intense color.

The consistent presence of hippocampal volume as a key feature across all cat-

egories, as highlighted in both the plots and the table, reiterates its central role in the

disease’s progression. Conversely, PTRACCAT’s minimal importance across the board

raises questions about its utility and may suggest the need for alternative measures that

can capture the nuances of AD progression more effectively. The variability in feature

importances suggests that different pathological mechanisms may be at play as the dis-

ease progresses at different rates, warranting a tailored approach to the prediction and

management of AD.

Figure 48 illustrates the predicted months until conversion to AD from MCI, plot-

ted against the elapsed months since baseline for each patient within the study. The pa-

tients are categorized into three distinct progression trajectories: rapid (red), moderate

(blue), and gradual (green). This visualization provides a compelling overview of the het-

erogeneity in AD progression rates and validates the efficacy of the predictive modeling
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Figure 45: Feature Importance by Progression Categories Heatmap
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approach used in this study.

The rapid progression group, depicted in red, is characterized by steep trajectories,

indicating a swift decline within a shorter timeframe. In contrast, the moderate (blue)

and gradual (green) progression groups exhibit less steep trajectories, reflecting a slower

transition to AD. The plot reveals a clear demarcation between the progression rates,

underscoring the potential of our model to differentiate between varying rates of disease

advancement effectively.

A key observation from this plot is the non-linear progression slopes, which align

closely with the known non-linear course of AD. This non-linearity is particularly crucial

as it underpins the complex nature of AD progression, where each patient’s journey is

unique and not strictly time-bound. The implications of these findings are significant for

clinical practice, as they suggest that treatment and monitoring strategies should be highly

personalized, taking into account the patient’s predicted progression rate.

Moreover, the plot serves as a validation tool for our predictive model, demon-

strating its capacity to not only forecast the time to AD conversion with a high degree

of accuracy but also to categorize patients into clinically relevant progression categories.

Such categorization could be instrumental in tailoring intervention strategies, potentially

improving patient outcomes by allowing for earlier and more targeted therapeutic ap-

proaches.
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For this work, a t-SNE visualization was employed to explore the intrinsic struc-

ture of the patient data in a two-dimensional space (Figure 46). This non-linear dimen-

sionality reduction technique revealed distinct clusters that correspond to our AD pro-

gression categories. In the t-SNE plot, each point represents an individual patient, color-

coded according to the progression category: green for Gradual, yellow for Moderate,

and purple for Rapid progression. Notably, patients with a Moderate progression pattern

tend to cluster centrally, while Rapid and Gradual progressions are somewhat dispersed.

This clustering pattern may suggest underlying differences in the progression pathways of

AD, with Moderate progression showing the most distinguishable grouping in the reduced

space.

For our CNN progression category model, we perform Grad-CAM (Gradient-

weighted Class Activation Mapping) analysis to better interpret the model’s decision-

making process. For a comprehensive analysis, we have included detailed case studies of

Patients 2216, 4765, and 2106. These cases were selected due to their unique progression

patterns, providing critical insights into the variability of AD. Figure 48 (a) presents a

visualization of Grad-CAM for Patient 2216 within the rapid progression category. The

sequence of images represents the evolution of DTI scan features, captured from their

initial exam visit (leftmost image), an intermediate exam (middle image), and finally their

final exam visit (rightmost image). These heatmaps highlight the brain regions that our

model identified as critical in predicting disease progression, with the heatmap intensity

reflecting our model’s focus during a particular exam visit. This specific sequence indi-

cates a significant change of intensity which aligns with the expected rapid progression
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Figure 46: T-SNE Patient Data: 2D Embedding with Progression Categories (Green:
Gradual, Yellow: Moderate, Purple: Rapid)

of this category. For the initial exam, the heatmap is primarily centralized at the core

brain regions. Progressing to the intermediate exam, we see that the heatmap expands

both in scope and intensity. This expansion traverses the surrounding areas, along with

providing a more vivid coloration, indicating an escalation in the disease activity. Finally,

the latest exam exhibits the brightest areas indicative of significant disease progression.

This heatmap is significantly more widespread and intensified reflecting the imminent

conversion period to AD.
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Initial Stage: (a) Rapid (Red) (b) Moderate (Blue) (c) Gradual (Green)

Intermediate Stage: (a) Rapid (Red) (b) Moderate (Blue) (c) Gradual (Green)

Final Stage: (a) Rapid (Red) (b) Moderate (Blue) (c) Gradual (Green)

Figure 47: Grad-CAM Rapid Progression Category Example for Initial, Intermediate, and
Final stages for (a) Rapid Progress: Patient 2216 (b) Moderate Progress: Patient 4765 (c)
Gradual Progress: Patient 2106
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Figure 48: Grad-CAM Intensity by Sample Patients

Figure 48(b) illustrates the Grad-CAM for Patient 4765 in the moderate progres-

sion category. The intensity changes are more moderate over time, reflecting an inter-

mediate disease trajectory. This visualization is less aggressive than our rapid example,

however, it contains more variability than our gradual progression category.

Figure 48(c) shows the Grad-CAM for Patient 2106 in the gradual progression

category. The intensity regions change subtly over time, demonstrating a more gradual

development towards AD-specific features.

The sequence of these images demonstrates a clear trend: an escalation in both

the spatial distribution and intensity of the highlighted areas as the disease progresses.

The progression from sparser, cooler regions to widespread, warmer areas aligns with our

hypothesized AD progression, thus offering a compelling visual narrative of a patient’s

AD journey.

The Grad-CAM Intensity chart presented in Figure 49 quantitatively depicts the
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Figure 49: Progression of GradCAM Intensity Sum Over Time

progression of disease-associated features in patients over time, as identified by our CNN

model. This chart plots the sum of Grad-CAM intensities for our sample patients at

various times since their initial exam. This provides a numerical representation of our

model’s focus per visit. Each line corresponds to a different patient and aligns with the

Grad-CAM analysis seen in Figure 48.

For patients within our progression categories, the chart shows an increasing trend

in Grad-CAM intensities. This suggests that our model consistently recognizes stronger

AD-related features as time progresses. This trend correlates with our previously observed

patterns, where intensity became more pronounced within later exam date images. By

comparing these quantitative trends with the qualitative Grad-CAM examples, we are

able to validate our model’s ability to discern progression rates accurately over time.
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Through the combination of our patient progression slope and Grad-CAM analy-

sis, alongside the individual feature ranking, we are able to obtain a more holistic view of

each conversion patient. This will allow clinicians to cater their treatment plans based on

the aggressiveness of a patient’s progression category.

5.4 Conclusion

In this study, we have developed a comprehensive analytical framework for AD

progression, utilizing both clinical and imaging data. We proposed a regression model

that not only predicts the time until AD conversion for MCI patients, but also classi-

fies these patients into rate of progression categories. This regression model, enhanced

with SMOGN augmentation, led to an accuracy of 78.34% and an EMSE of 12.61. This

provides valuable explainability through our feature importance ranking and novel pro-

gression categories.

In addition to our clinical data approach, we introduced a CNN model to fur-

ther classify patients with DTI scans into progression categories. This augmented model

demonstrated an accuracy of 86.49%, illustrating it’s ability to learn patterns from the

DTI scans.

This dual approach, combining time-to-conversion predictions with progression

categorization, represents a significant advancement in AD research, offering a more nu-

anced understanding of the disease’s progression. The integration of Grad-CAM analysis

with our model’s predictions has enabled us to validate the model’s accuracy and provide

a more holistic view of each patient’s progression. This comprehensive approach is not
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only academically significant but also holds immense clinical value. It equips clinicians

with a powerful tool to tailor treatment plans according to the aggressiveness of a patient’s

progression, potentially improving patient outcomes in AD management.

One limitation of our study is that all patients were derived from the ADNI dataset,

which may limit the generalizability of our findings. Future work will consider the inclu-

sion of additional datasets to account for further feature variation and enhance the robust-

ness of our model for clinical implementation.

Overall, our study stands at the forefront of AD research, offering novel insights

into disease progression through advanced predictive modeling. The combination of mul-

timodal monthly predictive modeling alongside progression categorization represents a

substantial contribution to the field of personalized healthcare.
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CHAPTER 6

CLINICAL DECISION SUPPORT APPLICATION

As we explore the Clinical Decision Support Application, the groundwork laid

in the preceding chapters becomes both the foundation and the impetus for innovation.

This chapter is dedicated to not just describing a tool but to delineating a new approach

to patient care. Here, the abstract meets the practical, and the potential of predictive

modeling is funneled into a format that aims to be intuitive, insightful, and integral to

the management of Alzheimer’s disease. Through this application, we seek to not only

predict but to empower, offering a new dimension to decision-making in the complex

landscape of neurodegenerative disease management.

Studies on visual attention of patients with Alzheimer’s disease and Dementia is

a promising way for keeping track of the individual patient’s image recognition ability

over time. This research seeks to expand upon the current applications of combining the

Android operating system with TensorFlow by providing a visual question answering plat-

form for image analysis. This application, Cognitive Visual Recognition Tracker (CVRT),

provides an entry point by which the user can ask questions concerning any image of their

choosing, and then receive cumulative metrics over time to better assess any diminishing

cognitive ability (i.e. Alzheimer’s patients). In this chapter, recurrent neural networks as

well as semantic analysis are leveraged to provide an interactive VQA experience. One of

the main objectives of CVRT is for physicians to be able to determine trends from patient
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data that could either be applicable to the individual patient, or to many patients if an

aggregate is formed from many individual datasets. On an individual level, these metrics

would provide a way for the physician to monitor daily cognitive capability, whereas on

a grander scale, these joint datasets could be used to provide better overall treatment for

the disease with the future inclusion of predictive analytics. The final contribution is an

interactive metrics platform by which other users can assess the primary user’s cognitive

capacity based on features of their questioning, and to then provide them with accurate

trending or possible remediation plans based on their condition.

Patients with Alzheimer’s disease and dementia have difficulties in performing

tasks of everyday life such as the ability to think, remember, and reason due to loss of

cognitive functioning [83]. The number of Alzheimer’s disease patients is predicted to

almost double every twenty years [84]. Currently, there are approximately 5.4 million

Americans with Alzheimer’s disease [84]. Studies on visual attention of patients with

Alzheimer’s disease and dementia is a promising way to keep track of the individual

patient’s image recognition ability.

There have been significant advances in big data analytics and mobile computing.

Recently, mobile applications have been found to be helpful in diagnosis and treatment

of diseases due to their accuracy and ability to assist medical practitioners. For example,

the iWander app allows for caregivers to cost effectively monitor Alzheimer’s disease or

dementia patients remotely [85].

While there is some work done in Visual Question Answering [86], very few exist

that have applicable results for the medical field. With this in mind, this research seeks
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to expand upon the current applications of combining the Android operating system with

TensorFlow by providing a visual question answering platform for image analysis. Ad-

ditionally, we also wanted to add QA diagnostics into our model to further expand the

practicality. Cognitive Visual Recognition Tracker (CVRT), was designed to build on the

existing Visual Question Answering space, but to produce practical, medically relevant

data as a result. This application is significant because it provides a unique way to track

the progression of Alzheimer’s disease based on image recognition in a more data-driven

way than was previously possible. With the combination of intelligent semantic analysis

alongside image classification, new methods are now able to be explored in the medical

domain, and with CVRT, an attempt is made to build a powerful data model alongside

the added flexibility of a mobile UI. By using the COCO-QA dataset mentioned in [87],

alongside the TensorFlow and Android framework, CVRT is able to serve the following

features to the end user:

• User may choose any picture to be displayed in the application with a question-

answer focused interface.

• Users can ask questions about those images in order to discover their identities/characteristics.

(i.e., What is happening in this picture? Where is this? What item is on the table?)

• Users can ask non-image related questions regarding medical definitions (e.g. What

is Donepezil? What is Galantamine?)

• Users can initiate a preliminary medical diagnosis by describing their symptoms

(e.g. I am having memory loss. I feel disoriented.)
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• Ability to track metrics for the individual patient’s image recognition ability over

time.

• Short-term monitoring that can detect delirium and advise for emergent medical

treatment.

• Ability to aggregate multiple patients’ data to allow for better predictive analytics.

A common scenario for this application would be a family wishing to track the

cognitive status of a loved one with dementia or Alzheimer’s disease. This individual

would be the primary user as they would be the one launching the application to ask ques-

tions. The application will allow them to skip as many pictures as they would like, or they

can stay focused on one particular image until their curiosities are satisfied. The applica-

tion will provide the primary user with answers to their questions while simultaneously

logging results to a database. This database would then allow for family members to view

metrics on the individual’s cognitive visual recognition health.

Apart from the deep learning image analysis aspects of CVRT, the medical strength

of the application is intrinsically tied to these metrics. For example, by measuring the rate

of an individual’s cognitive decline, one can determine the type of dementia (vascular vs.

Alzheimer’s) as well as the aggressiveness of the disease. With the inclusion of semantic

analysis, the vocabulary patterns of the individual can also be assessed to measure the

progression of aphasia. With this proposed implementation, these metrics function on an

individual basis, however the possibility exists for future medical studies on dementia to

be performed that leverage this model’s aggregate data.
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6.1 Related Work

6.1.1 VQA Methods

In regards to the Visual Question Answering space, similar work has been done

related to the questions being asked of an image with answers generated in response.

These demos exist online and serve as a form of introduction to the domain itself, however,

they do not apply to the medical field.

The work done by [88] attempted to solve the VQA problem by leveraging the

Visual Genome dataset, which connects structured image concepts to language. This

work has a nice advantage in that the Visual Genome dataset allows for human-generated

structure annotations on a per image basis in the form of scene graphs. These scene graphs

are based on the nodes of visual elements and while it does handle some question types

accurately, their study found that it struggles on “what” questions as those tend to be the

most granular in nature. Other papers, such as [89] tackle the problem by leveraging only

a CNN model and a bag-of-words approach when predicting their images.

The most ideal approach to this problem from a non-medical standpoint in terms

of accuracy and question flexibility was presented in [90]. Their work is very new and

they propose a conversational AI bot which can have meaningful dialog with a user about

any custom image of the user’s choosing. This was an inspiration for the initial back-and-

forth image interaction provided by CVRT.

The fact-based VQA method from [91] with its supporting facts functionality, is

something that I would be interested to implement in the future work of CVRT. This

“common-sense” framework can be used to create a more conversational atmosphere for
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the user experience.

6.1.2 Methods Closest to CVRT Model

The VQA approaches from [92], [87], [93] are the closest to the one used in

CVRT as they rely on the combination of an LSTM model alongside a CNN one. Similar

to CVRT, a VGG-16 model [94] is used with an MSCOCO dataset. Where CVRT differs

from these implementations is primarily in its mobile platform as well as its medical

focus.

One method that did have a relatable medical focus was presented in [86]. They

mention having open-ended questions/answers in order to possibly aid the visually im-

paired, and is one of the few recent examples of a medically applicable VQA solution.

Finally, the work done by [95] was a useful study to realize that humans often

have very different attention regions compared to popular VQA models. This was used

on a cautionary basis when fine-tuning the CVRT model.

6.1.3 Visual Cognition Studies within Alzheimer’s Disease

Part of the idea of the metrics component of CVRT derived from the work done

in [96]. This study of repetition-lag effects was the basis for the idea of tracking the

questions per image frequency and the date grouping. The work done in [97] and [98]

highlighted the idea that visual dysfunction can serve as an early indicator of Alzheimer’s

disease. This served as the medical rationale for the predictive analytics offered by CVRT.

With this work, a strong positive correlation was found between visual recognition ability

and Alzheimer’s disease progression, which formed the starting point for CVRT.
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Finally, breakdown characteristics of Alzheimer’s disease was studied in [99] and

[100], which focused on the specific types of information that is typically lost at the

greatest margin. This served as the basis for the CVRT metrics centered on question type

and object vs. person cognitive visual recognition performance.

6.2 Proposed Work

6.2.1 CVRT’s Question Answering Model

One primary component of the work is related to providing a preliminary diag-

nosis based on the users reported symptoms. The CVRT system (Figure 53) is com-

posed of three question answering models: (1) diagnostic question answering (GQA) (2)

definition-type question answering (DQA) (3) visual question answering (VQA).

6.2.1.1 Diagnostics Question Answering Model

For the Diagnostics Question Answering (GQA) model of CVRT, it is noticed that

despite the many visual features in the chosen image, CVRT identifies that the patient is

asking a non-image related question and provides the appropriate follow-up question in

response (Figure 50). The GQA model was designed with Infermedica [101] that aims

to checker alongside natural language processing to extrapolate the key items out of the

users speech.

6.2.1.2 Definition-Type Question Answering Model

Regarding the Definition Question Answering (DQA) model of CVRT, one can

see that despite prefacing the query with What, CVRT remains capable of distinguishing
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Figure 50: Diagnostics Question Answering Examples

Figure 51: Definition-Type Question Answering Examples

the definition-type query from a visual query (Figure 51). The DQA model was designed

with Wolfram Alpha [102] that aims to provide medical definitions for items that the

diagnostic feature returns.

6.2.1.3 Visual Question Answering Model

For the visual question answering (VQA) model in CVRT, we can observe that

despite the clutter of the image, the visual model is able to correctly assess that there are

only two dogs in the image (Figure 52). It is also able to distinguish between the frisbee

that is in the dogs mouth, and the one that is lying on the grass.

143



Figure 52: Visual Question Answering Examples
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Table 35: Additional Result Examples

Query Response Type

My hand is shaking. Do you have an elevated body temperature or fever? GQA
I am having neck pain. Do you have hypertension? GQA
What is bipolar disorder? A major affective disorder marked by severe mood swings. DQA
What is an antidepressant? Any of a class of drugs used to treat depression DQA
Where is this? Hallway VQA
What color is the man’s coat? White VQA

6.2.2 Proposed System

For the TensorFlow model side, this work was primarily done using recurrent

neural networks in combination with semantic analysis. By leveraging the COCO-QA

dataset in conjunction with the DAQUAR QA dataset, each custom image can be at-

tributed a proper QA set from which the Android UI can interact with through verbal

invocation. The second part of the work is concerned with metrics generation from the

SQLite database created from the Android code.

The main analytic tool that will be used for the metrics component of this applica-

tion will be done with the Google Charting API. This API allows for our stored database

information (imageID, question, answer) to be rendered as user-friendly charts that will

be displayed via an Android WebView. Bar graphs and line charts will be featured heav-

ily to measure the frequency of the patient’s questions in relation to the image that they

decided to focus upon. Over time, this can be leveraged to determine trends that could

possibly predict the patient’s rate of cognitive visual recognition impairment. In addi-

tion to identifying trends, these types of graphs will help recognize outliers which could

signify the sudden emergence of delirium.
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6.2.3 Deep Learning Models

For CVRT, the image recognition is being done via the TensorFlow model for neu-

ral VQA that is composed of both visual representation and text representation (as shown

in Figure 53). As for the CVRT model, using a modified TensorFlow implementation

of the VIS+LSTM model seen in [87], the LSTM sentence model forms the basis of the

text processing schema. The LSTM outputs are then used to create the answers by being

processed through the Softmax layer. In regards to visual embeddings, these are done by

extracting features from the FC7 RELU layer within the VGG-16 model itself.

Figure 53: The CVRT Deep Learning Model Schema

The best CNN models for image classification are GoogLeNet [103] and ResNet

[104]. However, we used VGG Net [94] that showed good performance on ILSVRC-

2012. VGG-16 is also relatively small, simple as it has only three fully-connected layers.

The VGG-16 has been reduced to 7.5% of its original size that is critical for real-time

image processing. Considering the benefits of the VGG-16 model, it is suitable for our

purpose.
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6.3 Implementation and Evaluation

The primary data source when the application launches will be the Android de-

vice’s gallery or sdcard photos. Ideal images to select would be common locations that

the patient should be familiar with to hopefully gauge if they’ve retained their familiarity

with those locations. If not, how much has it declined? Once the application has loaded,

the relevant information will come via the Google Voice Speech Recognizer as the patient

asks questions concerning the image. This will be stored in a variable that is then passed

to the rest of the application’s workflow.

Table 36: Overview of Key Services and APIs Utilized in the Application Development

Service Name Description
Heroku PaaS that allows for web app delivery
SQLite Database local to Android device
Android Primary OS for mobile platforms
Google Charting API Charting engine for data rendering
TensorFlow Machine learning library
Google Speech Recognition API Provides Speech Recognition

The primary input for CVRT (Cognitive Visual Recognition Tracker) are the ques-

tions that are asked via voice recognition by the patient. After this speech is recognized

and assigned to a variable, it is then passed to the Python Server alongside the image de-

tails to perform the image analysis. This combination of inputs is then used to generate

an appropriate answer to the user’s question as the output. Another output that can be

expected is the write to the database of the image ID, question, and answer. These will

then output to a WebView for statistical viewing via the Android device.

147



6.3.1 Software Architecture

Once an image has been selected from the user’s phone, it imports as a bitmap

and is then converted into a byte array. After this conversion, it is then compressed before

being passed to the python server. This is done as a background asynchronous task so

that it does not interfere with the processes occurring on the main thread. The python

predict.py script asks for only two parameters (image and question) to generate a proper

answer back to the Android device.

For the CVRT Android client, once the image, question, and answer are stored in

the database, each chart references the data points by using a combination of JavaScript

and HTML to pull the appropriate metrics from the SQLite database. This is slightly

different depending on the amount of dependent or independent variables used in the

chart, however, they are essentially always referencing variables in the JavaScript portion

of the CVRT Android model.

Figure 54: CVRT Software Architecture
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6.3.2 Dataset

The COCO-QA dataset elements that were used for CVRT are as follows:

• Training dataset: 78,736 question-answer pairs

• Test dataset: 38,948 question-answer pairs

• Image count: 123,287 images

These are further broken down into four distinct types of questions: object, number, color,

and location. Also, it is important to note that answers for this dataset are all one-word.

6.3.3 Learning Results

The result examples presented below demonstrates the model’s reaction to several

types of questioning. These differences in question type determines the method the model

needs to take for it to properly generate an answer. We can observe that despite the clutter

of the top-right image, the model is able to correctly assess that there are only two dogs

in the image. It is also able to distinguish between the frisbee that is in the dog’s mouth,

and the one that is lying on the grass.

Table 37 demonstrates the model accuracy as it relates to the question-answer

type. As observed below, the model does well with object type questions as the CNN

component handles image classification well. Color questions also seem to perform well

despite how cluttered or busy an image might be with objects.
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Figure 55: Result Examples of Visual Question Answer

Table 37: COCO-QA Accuracy Per Type

Object Number Color Location
.6008 .4534 .5122 .4893
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Figure 56: CVRT Workflow

6.4 Workflow

The activity diagram shown in Figure 56 gives a good example of the typical work-

flow that a user can be expected to experience while using CVRT. The speech recognition

button triggers the first of our API usages and prepares the intent for the ’Ask Question’

node. The question variable is then assigned based on whether the ’Speech Recognized’

node can interpret the user’s speech or not.

6.4.0.1 Medical Knowledge Engines

One primary component of the CVRT system is related to providing a preliminary

diagnosis based on the users reported symptoms. This uses a combination of the Infer-

medica API symptom checker [101] alongside natural language processing to extrapolate
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the key items out of the users speech. This works in tandem with a highly customized

Wolfram Alpha API [102] integration that can provide medical definitions for items that

the diagnostic feature returns. 1) Medical Knowledge Engines: The two medical knowl-

edge engines that CVRT uses to augment its answer accuracy are the Infermedica platform

[101] and the Wolfram Alpha computational knowledge engine [102]. The Infermedica

platform derives their data from a combination of their team of physicians using respected

literature as well as their AI model based on machine learning. Because of this continual

learning, this platform gains accuracy daily. For the Infermedica engine [101], once a

question has been given by the user it scans the content using natural language processing

to see if any symptoms or other medical keywords are present in the users query. If any

are identified then the Infermedica API will return a symptom ID for each and CVRT will

then concatenate them into an evidence array. This array is then passed to the diagnostics

API which will return both a follow-up question and the likeliest diagnosis at the time.

These follow-up questions are used to gather further symptoms from the user by prompt-

ing them with relevant yes/no queries to their originally proposed symptoms (e.g. Are you

feeling disoriented?). Based on the users response, additional symptoms will be added or

negated into the original evidence array. These follow-up questions will continue until

the returned diagnosis achieves a probability higher than 70%. Regarding the Wolfram

Alpha computational knowledge engine [102], if the users query is identified as asking a

definition-type question (e.g. What is Alzheimer’s?), then the Wolfram Full Results API

will return the answer, typically a medical definition, into an alert dialog. This dialog box

differs from the other systems by waiting for user confirmation as more time might be
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Figure 57: Initial User Interface

necessary to fully read the definition.

6.4.0.2 Visual Question Answering Engine

The implementation of CVRT begins with the user opening the application on

their Android device. This presents them with a simple UI that has three options (as

shown in Figure 57):

The button on the right acts as a ’Skip’ option which prompts the user to select

a new image from their phone’s gallery in case they are not interested in questioning the

existing image. This will allow for increased flexibility as the user can choose any image

that is on their phone. This functionality is exemplified by the screenshot of the selection

screen as shown in Figure 58.
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Figure 58: Gallery Selection

Figure 59: Ask Question UI

The button on the left side of the UI acts as an ’Ask Question’ option and allows

the user to verbally dictate a question that they have concerning the image. By clicking

this option, the following dialog will display as shown in Figure 59.

If no speech is recognized, then CVRT will prompt the user to speak again. Once

speech has been detected, the speech is converted to a string and then stored within a

variable. After this speech is recognized, it is then passed to three separate systems. The
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Figure 60: Example of Returned Answer

Infermedica API [101] is trusted to identify if the users intention is that of a diagnostic

nature (e.g. I feel confused). The Wolfram Alpha API [102] is responsible for identify-

ing whether a definition-type question is being asked. If it identifies that a definition is

the users intention then it will return the appropriate result and override the returned re-

sponses from the other systems. The Python server containing TensorFlow is responsible

for the image analysis. This combination of returned results from each system is then

used to generate an appropriate answer to the users question as the output. The Android

application will then create an asynchronous task to leverage the TensorFlow model for

image analysis, and then provide an answer based on its findings. This answer will be

verbally returned to the user on the main UI where they can choose to continue asking

questions, thus repeating the process, until they are satisfied.
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An example of this implementation is as follows. After choosing a picture in the

user’s phone gallery of a woman on a bicycle, they then tapped on the “Ask a Question”

button. This triggered the “What is your question?” speech prompt, which is then an-

swered with “Tell me about this picture.” After passing this to the TensorFlow model, the

application provides the user with a verbal answer. Also, included with the verbal re-

sponse is a toast message with the same results in case the user is deaf or hard of hearing.

An example of these returned results can be seen in Figure 60. A simple question and

answer can be extended as a dialogue to get the user’s attention as follows:

Q: Who is she?

A: Your grandma.

Q: What is she doing?

A: She is riding a bicycle.

Q: What color jacket is she wearing?

A: Green.

...

After the answer has been returned to the user, the image ID, question, and answer

will be stored into a database table. This can then be leveraged by clicking on the metrics

button located in the top-right of the UI once database results have been entered. This

button launches a WebView HTML page that takes the database information, calls the
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Figure 61: Metrics UI

Google Charting API, and then displays the report metrics as shown in Figure 61. This

metrics interface will be viewable to the patient as well as any family members/doctors

that would be interested in the individual’s cognitive progress/decline.

The possible metrics capable of being displayed can be added in a flexible nature

as the Google Charting API does the actual chart creation and only requires certain pa-

rameters to be passed into it. The way these additional graphs are added is simply by

creating a query against the local SQLite db. As long as the query returns the result set

preferred, the rest of the code will handle the conversion through javascript/HTML into

the eventual WebView. This provides a way that once ideal medical metrics are identi-

fied for the individual or healthcare providers’ use case, they can easily be added to the
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application in a format that is specific to their needs.

6.4.1 Medical Evaluation

The criteria that was used to measure the medical relevance of CVRT correlates

with the three factors identified in [105]. They identify these factors as:

1. Feasibility in relation to organizational and systems readiness.

2. Acceptability of the solution.

3. Usability for different users.

When evaluating the feasibility of CVRT the largest barrier is in identifying the best

metrics to follow. If the scope is increased to aggregating this data across multiple devices

in order to perform further studies, then mutual agreement will be necessary in order to

track the same data. If healthcare providers (HCPs) can’t agree on the best way to measure

data then the application’s scope remains solely for the individual end-user. As for system

readiness, the application would only require a download from the Google Play store

in order to be ready to use. If additional metrics are requested beyond the initial ones

provided then that would increase the implementation timeframe. This is something that

will be designed in a modular style for future work in order to ease this process and give

the control to the user themselves, rather than relying on the developer.

For acceptability evaluation, the flexibility of the metrics UI gives an added bonus

as HCPs can customize the tracked datapoints to their specific preference. They could also

expose multiple users to different preferences if they wanted to critique the effectiveness
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of one solution versus the other. In the case of hospitals or medical research institutions,

this would allow for greater control of a given study as they wouldn’t have the disagree-

ment issue mentioned in the feasibility analysis given their more organized structure. If

ideal metrics were identified and proven to be relevant on a smaller scale, then the will-

ingness of adopting this new technology on a larger scale would greatly increase [105].

On an individual basis, acceptability would be determined by their ability to form a habit

to use CVRT almost daily (if necessary). To gather relevant data, semi-frequent user in-

teraction is necessary so that trends can be established. This would be similar to how

weight loss applications currently function. Essentially, if the user is not consistent with

their application usage, then trending data would not be meaningful.

Finally, the usability evaluation is a critical factor when dealing with a solution

that requires consistent usage. Given that only three options are presented to the user for

interaction, the UI for CVRT was designed in a manner to facilitate ease of use. Other than

the metrics UI, the entire application functions from the main screen rather than sending

the user down multiple android Action pages. This simplicity was intentional in order to

make the target demographic as comfortable as possible when using the application. The

more complicated functionality of interpreting the metric results or determining which

ones to deem as relevant are largely meant for the HCP, and as a result, the end-user may

never have a need to view that component. Because of this, the metrics option exists only

in the top-right of the UI and is not central to the user-driven workflow.

Launching the application is also intended to be simple for the patient as no login

is required at this stage so password retention is not necessary. This could be added
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in future work should there be a need for multiple users per device, however, it would

need to leverage biometric authentication so that the individual’s memory recall is never

a requirement for entry.

6.4.2 Comparative Evaluation

For the first iteration of CVRT work, the Clarifai API was used in order to generate

the top captions related to the passed image. While this did have better overall accuracy

than the TensorFlow model in regards to basic image captioning, it was limited in re-

gards to its inability of handling dynamic questions and providing appropriate answers.

While the Clarifai API model only took a few seconds to call the API and also did not

require a local webserver, its lack of VQA essentially relegated it to a foundation for the

eventual classification path that CVRT would take. After transitioning to a TensorFlow

model, CVRT experienced lessened accuracy at around 50%, however, this was in rela-

tion to dynamic questioning, as opposed to generic image captioning. This TensorFlow

implementation also required the python prediction script to be referenced over HTTP via

Android. This required a local server to be setup that was previously not the case when

dealing with the Clarifai API. However, similar functionality existed from the Android

side as only one additional parameter (question) was necessary to be passed to the python

server in comparison to Clarifai.

6.5 Discussion and Limitation

In the current state of CVRT, some of the unanswered questions are more related

to the medical side. The cognitive visual recognition tracking outlined above has very
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little research done to show its impact on a patient’s long-term/short-term mental health

[106]. While these metrics are interesting from a familial perspective to see the rate of

a person’s cognitive decline, it is unproved as to whether these results would be useful

to a medical professional given the large quantity of existing medical procedures. As for

the data model, future studies could focus on further semantic analysis to determine the

frequency of a patient’s vocabulary and how that might correlate with changes in their

visual recognition ability.

6.6 Conclusion

With CVRT, the QA Diagnostics/VQA problem is presented through a new inter-

face via Android. In conjunction with the Infermedica and Wolfram Alpha knowledge

engines, TensorFlow model, and semantic analysis, it is able to take any user-selected

image, process its features and the passed question, and then return an appropriate answer

verbally, providing for an engaging experience for the user. While this model may not

be concrete when answering certain types of questioning, it is able to provide a general

answer for most question types and images that are presented to it. With the addition of

the metrics platform that allows for truly data-driven medical results, my hope is that fur-

ther research can be done to best exemplify possible treatment plans to better help anyone

with this condition.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we embarked on an exploratory journey into Alzheimer’s dis-

ease prediction. The aim was clear: to unveil new pathways for early detection and inter-

vention in Alzheimer’s disease, a condition that stands as a formidable challenge in the

healthcare landscape.

The motivation for this research was rooted in the stark reality of Alzheimer’s dis-

ease a neurodegenerative disorder that not only impairs cognitive function but also places

a heavy emotional and financial burden on patients, families, and healthcare systems. This

backdrop set the stage for a crucial investigation: Could AI transform the way we predict

and ultimately confront AD?

The research questions were shaped by this overarching goal. They were designed

to probe the potential of AI in enhancing the accuracy and explainability of Alzheimer’s

disease progression, using a variety of data sources and analytical techniques. This dis-

sertation thus unfolded as a series of methodical inquiries, each chapter building upon

the last, to construct a comprehensive understanding of the current state of Alzheimer’s

prediction and how it might be revolutionized.

As we traverse through the subsequent sections of this conclusion, we will revisit

the pivotal moments of this research. We will synthesize the key findings from each

chapter, reflect on the methodologies employed, and consider the broader implications of
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this work. This synthesis is not merely a recapitulation of the dissertation’s contents but

an invitation to contemplate the future of Alzheimer’s disease management through the

lens of technological innovation.

7.1 Chapter Summaries

Chapter 1: Introduction: The introduction laid the groundwork for the dissertation, es-

tablishing the context and significance of Alzheimer’s disease prediction. It set the stage

for the exploration of AI techniques, outlining the research objectives and the potential

impact of these technologies in revolutionizing Alzheimer’s disease diagnosis and man-

agement.

Chapter 2: Feature-based Random Forest Model: This chapter delved into the devel-

opment and application of a feature-based Random Forest model for Alzheimer’s disease

prediction. It highlighted the model’s ability to handle diverse feature types and its effec-

tiveness in identifying key features associated with the disease, showcasing the model’s

potential as a tool for early diagnosis.

Chapter 3: Diffusion Tensor Imaging (DTI) Deep Neural Network (DNN) Model:

The third chapter focused on the application of a Deep Neural Network (DNN) model for

analyzing Diffusion Tensor Imaging (DTI) data. This innovative approach demonstrated

how advanced imaging techniques, combined with deep learning, can provide critical

insights into the structural changes in the brain associated with Alzheimer’s disease.

Chapter 4: Multimodality Ensemble Model: In this chapter, the research moved to-

wards the integration of multiple modalities of data through an ensemble model. This
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combined our previous two models into a better performing model capable of handling

multiple types of input data. This multimodality approach underscored the complexity of

Alzheimer’s disease and the need for comprehensive models that can synthesize informa-

tion from various sources to improve prediction accuracy.

Chapter 5: Charting AD Progression: Time-to-Event Predictive Models and Novel

Categorization: This chapter presented an in-depth analysis of AD progression using

longitudinal data. A new Random Forest regression model was created alongside a new

CNN classifier model. Working in tandem, these models not only were capable of predict-

ing how many months a patient has until AD conversion, but were also able to categorize

the rate of their progression into novel progression categories. The focus on temporal

changes and progression patterns offered a dynamic perspective on the disease, highlight-

ing the importance of understanding Alzheimer’s over time for effective prediction and

intervention.

Chapter 6: Clinical Decision Support Application: The final chapter described the

development of the Cognitive Visual Recognition Tracker (CVRT) clinical decision sup-

port application, a practical tool designed to aid healthcare professionals in diagnosing

and managing Alzheimer’s disease. This application, grounded in the research findings

and models developed in previous chapters, represented a crucial step towards translating

academic research into practical, clinical tools.
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7.2 Key Findings

This research has led to several pivotal findings, each contributing significantly to

the field of AD prediction.

Innovation in Feature-based Random Forest Modeling: The development and applica-

tion of the Feature-based Random Forest model marked a significant achievement. This

model not only identified key features, but demonstrated an accuracy of 93.6% in AD

conversion prediction, showcasing the potential of machine learning to improve diagnos-

tic accuracy.

Breakthroughs in DTI Data Analysis with DNN: The exploration and application of

a Deep Neural Network (DNN) model for analyzing Diffusion Tensor Imaging (DTI)

data represented a major step forward. This approach provided crucial insights into the

structural brain changes associated with Alzheimer’s, illustrating the power of combining

advanced imaging techniques with deep learning algorithms.

Advancements in Multimodality Ensemble Modeling: Perhaps one of the most sig-

nificant contributions of this research was the development of a multimodality ensemble

model. By effectively integrating diverse data types, this model offered a more compre-

hensive and accurate approach (98.81%) to predicting Alzheimer’s conversion, paving the

way for more nuanced and effective diagnostic techniques.

Insights from Progression Analysis: The analysis of progression patterns in Alzheimer’s

disease added a dynamic dimension to the study. This approach allowed for a deeper

understanding of the progression of the disease over time, highlighting the importance of

temporal factors in effective prediction and management.
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Impact of the Clinical Decision Support Application: The development of a clinical

decision support application based on these models bridged the gap between advanced

research and practical clinical tools. This application stands as a crucial tool for healthcare

professionals, translating complex data analysis into actionable insights for patient care.

7.3 Research Significance

The research conducted in this dissertation holds significant implications for the

field of Alzheimer’s disease prediction and the broader context of healthcare technology.

Advancing Alzheimer’s Disease Prediction: The innovative use of AI models, par-

ticularly the feature-based Random Forest model, the DTI DNN model, and together

as a multi-modality ensemble model, represents a significant step forward in predict-

ing Alzheimer’s disease. These models’ ability to process and analyze complex, multi-

dimensional data offers a more accurate and comprehensive approach to early detection,

which is crucial for timely intervention.

Contributions to AI in Healthcare: This research contributes substantially to the evolv-

ing domain of AI applications in healthcare. By demonstrating how different AI ap-

proaches can be effectively utilized in the context of a complex neurological disorder, this

work sets a precedent for future research in the field and highlights the versatility and

potential of these technologies in medical diagnostics.

Impact on Clinical Practices: The development of a clinical decision support application

based on these models bridges the gap between theoretical research and practical appli-

cation. This tool has the potential to transform clinical practices by providing healthcare
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professionals with advanced, data-driven insights for early diagnosis and management of

Alzheimer’s disease, thereby improving patient outcomes.

Fostering Interdisciplinary Collaboration: The research underscores the importance of

interdisciplinary approaches in tackling complex health challenges. By integrating tech-

niques from computer science, neurology, and data science, the study serves as an exam-

ple of how collaborative efforts can lead to more comprehensive and effective solutions

in healthcare.

Setting New Directions for Future Research: The methodologies and findings of this

dissertation open new avenues for further exploration in Alzheimer’s disease prediction.

They challenge future researchers to continue innovating and expanding the boundaries

of artifical intelligence in medical applications, encouraging a continued focus on multi-

modal and longitudinal data analysis.

In summary, the significance of this dissertation lies in its successful demonstra-

tion of how AI techniques can be harnessed to make meaningful advancements in the

diagnosis and treatment of Alzheimer’s disease. It stands as a beacon of innovation and

interdisciplinary collaboration, paving the way for future research and advancements in

the field of healthcare technology.

7.4 Limitations

While this dissertation has made significant strides in the field of Alzheimer’s dis-

ease prediction using AI, it is important to acknowledge its limitations. These limitations
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offer a realistic perspective on the findings and provide valuable directions for future re-

search.

Data Scope and Diversity in the Models: One of the primary limitations involves the

scope and diversity of data used in the models. While these models are powerful, their ef-

fectiveness is contingent on the ADNI dataset that they were trained on. Future research

would benefit from incorporating additional datasets to enhance the models’ generaliz-

ability.

Generalizability of the Clinical Decision Support Application: While the clinical deci-

sion support application developed in this study represents a significant practical contribu-

tion, its applicability and usability in diverse clinical settings have yet to be fully assessed.

Further research and field testing are needed to determine its effectiveness across different

healthcare environments.

Interdisciplinary Collaboration Opportunities: The study, while interdisciplinary in

nature, also points towards opportunities for even broader collaboration. Future research

could benefit from a more extensive integration of expertise from fields such as geriatrics,

psychology, and genetics, to provide a more holistic approach to Alzheimer’s disease

prediction and management.

These limitations, while underscoring areas for improvement, also provide a roadmap

for future research. They highlight the continuous need for innovation, collaboration, and

adaptation in the pursuit of advanced solutions for Alzheimer’s disease.
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7.5 Future Work

The conclusions drawn from this dissertation pave the way for further research

in the field of Alzheimer’s disease prediction. The following topics are proposed for

future investigation, aiming to enhance the predictive capabilities and understanding of

the disease’s progression.

7.5.1 Comorbidity Correlation

Comorbidity Correlation: Future research should delve into the comorbidity correla-

tions within the ADNI dataset to evaluate their impact on time-to-event conversion predic-

tion. Understanding how comorbid conditions influence the progression of Alzheimer’s

disease could significantly refine prediction models.

7.5.2 Analysis of Clinical Notes

Analysis of Clinical Notes: Investigating the informational content of patients’ clini-

cal notes offers a promising direction. Analyzing narrative records could provide deeper

insights into the individual’s disease trajectory and inform the rate of progression, poten-

tially enhancing predictive accuracy.

7.5.3 Leveraging LLM Models

Leveraging LLM Models: Exploring the application of Large Language Models (LLMs)

presents an exciting frontier. Comparative studies assessing the performance of LLMs

against current methods could reveal new perspectives and techniques for predicting Alzheimer’s

disease progression.
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By exploring these avenues, future studies will likely yield novel insights and

methodologies, contributing to the ongoing efforts to combat Alzheimer’s disease with

advanced predictive analytics.

7.6 Reflection on Personal Learning and Development

Undertaking this dissertation has been an enriching journey of personal and pro-

fessional growth, marked by a deepened understanding and a broadened skill set in the

realm of artificial intelligence and its application in healthcare.

Enhanced Understanding of Artificial Intelligence and Neurology: Delving into ad-

vanced models such as the Feature-Based Random Forest, Random Forest Regressor, DTI

DNN, and Multimodality Ensemble Model for AD prediction has significantly expanded

my knowledge and expertise. This experience has illuminated the intricate ways in which

AI can be applied to complex neurological disorders, offering insights into both the po-

tential and the challenges of this technology in healthcare.

Skills Development in Advanced Data Analysis: The process of developing and refining

these sophisticated models has honed my skills in data analysis, particularly in handling

and interpreting complex datasets. It has taught me the value of precision and rigor in re-

search, as well as the importance of being adaptable in the face of evolving technological

landscapes.

Appreciation for Interdisciplinary Research: This journey has reinforced my belief in

the power of interdisciplinary collaboration. Integrating insights from various fields has

not only enriched the research but also highlighted the importance of diverse perspectives
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in tackling complex healthcare challenges.

Personal Growth and Resilience: Throughout this research process, I have developed

resilience in overcoming challenges and setbacks. It has taught me the value of perse-

verance, critical thinking, and the pursuit of knowledge, shaping my approach to future

research and professional endeavors.

In reflection, this dissertation journey has been transformative, shaping my profes-

sional identity and preparing me for a future career in data science. The skills, knowledge,

and insights gained through this research are invaluable assets that I will carry forward in

my ongoing quest for innovation and excellence in the field.

7.7 Concluding Thoughts

As this dissertation journey concludes, it not only marks the completion of a sig-

nificant academic endeavor but also represents a meaningful contribution to the field of

AD prediction and the broader domain of healthcare technology.

This research has traversed the complex landscape of AI in healthcare, tackling

the formidable challenge of AD prediction and progression analysis with innovative ap-

proaches. The development and analysis of the Feature-based Random Forest Model, the

DTI DNN Model, the Random Forest Regression Model,and the Multimodality Ensemble

Model have shed new light on the capabilities and potential of AI in medical diagnostics.

These models, each with their unique strengths, collectively represent a significant ad-

vancement in our ability to predict and understand Alzheimer’s disease.

The journey, however, extends beyond the technical achievements. It has been a
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testament to the strength of interdisciplinary research and collaboration. The integration

of knowledge from fields such as computer science, medical bioinformatics, and data

analytics has underscored the importance of a holistic approach in addressing complex

health challenges.

Moreover, the development of CVRT, the clinical decision support application,

highlights the critical transition from theoretical research to practical, real-world appli-

cations. This tool embodies the essence of the dissertation â bridging the gap between

computational research and clinical practice, making sophisticated predictive models ac-

cessible and useful in the context of patient care.

In reflection, this dissertation stands as a source of optimism and advancement

in the fight against Alzheimer’s disease. It represents the convergence of technological

innovation and medical research. While this journey may be concluding, it paves the way

for future exploration and advancements. The quest for knowledge, innovation, and the

betterment of human health continues, fueled by the foundations laid by this research.

In closing, this dissertation is more than a collection of models and analyses; it is

a narrative of discovery, challenge, and the relentless pursuit of a future where the early

detection and intervention of Alzheimer’s disease is not just a possibility, but a reality.
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