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PCE: Piece-wise Convex Endmember Detection
Alina Zare, Member, IEEE, and Paul Gader, Senior Member, IEEE

Abstract—A new hyperspectral endmember detection method
that represents endmembers as distributions, autonomously par-
titions the input data set into several convex regions, and simul-
taneously determines endmember distributions and proportion
values for each convex region is presented. Spectral unmixing
methods that treat endmembers as distributions or hyperspectral
images as piece-wise convex data sets have not been previously
developed.

Piece-wise Convex Endmember detection, PCE, can be viewed
in two parts, the first, the Endmember Distributions detection
(ED) algorithm, estimates a distribution for each endmember
rather than estimating a single spectrum. By using endmember
distributions, PCE can incorporate an endmember’s inherent
spectral variation and the variation due to changing environ-
mental conditions. ED uses a new sparsity-promoting polynomial
prior while estimating abundance values. The second part of PCE
partitions the input hyperspectral data set into convex regions
and estimates endmember distributions and proportions for each
of these regions. The number of convex regions is determined
autonomously using the Dirichlet process. PCE is effective at
handling highly-mixed hyperspectral images where all of the
pixels in the scene contain mixtures of multiple endmembers.
Furthermore, each convex region found by PCE conforms to the
Convex Geometry Model for hyperspectral imagery. This model
requires that the proportions associated with a pixel be non-
negative and sum-to-one.

Algorithm results on hyperspectral data indicate that PCE
produces endmembers that represent the true ground truth
classes of the input data set. The algorithm can also effectively
represent endmembers as distributions, thus, incorporating an
endmember’s spectral variability.

Index Terms—Endmember, Hyperspectral, Spectral Variabil-
ity, Dirichlet Process, Unmixing, Convex Geometry Model.

I. INTRODUCTION

S
PECTRAL signatures representing the constituent mate-

rials in an imaged scene are referred to as endmembers

[1]. For example, in an image containing a grassy field and

a lake, there may be one endmember spectrum corresponding

to the grass, one endmember spectrum corresponding to the

lake water, and mixed pixels would contain spectra composed

of some combination of the grass and water endmembers.

Spectral unmixing is often performed to decompose mixed

pixels into their respective endmembers and abundances.

Abundances are the proportions of the endmembers in each

pixel in a hyperspectral image. Spectral unmixing relies on

the definition of a mixing model. The standard mixing model

is the convex geometry model (also known as the linear

mixing model) which assumes that every pixel is a convex

combination of endmembers in the scene [1], [2], [3]. Under

the convex geometry model, endmembers are the spectra found
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at the corners of a convex region enclosing all the spectra in

a hyperspectral scene. This model can be written as shown in

Equation 1,

xi =

M
∑

k=1

pikek + εi i = 1, . . . , N (1)

where N is the number of pixels in the image, M is the num-

ber of endmembers, εi is an error term, pik is the proportion

of endmember k in pixel i, and ek is the kth endmember. The

proportions of this model satisfy the constraints in Equation

2,

pik ≥ 0 ∀k = 1, . . . , M ;

M
∑

k=1

pik = 1. (2)

The Piece-wise Convex Endmember detection algorithm, PCE,

uses the Dirichlet process to determine the number of convex

regions needed to describe an input hyperspectral image. For

each convex region, PCE uses the Endmember Distributions,

ED, detection algorithm to estimate a distribution for each

endmember rather than estimating single spectra. Overall,

this algorithm is a stochastic EM algorithm. Proportions that

conform to the convex geometry model are estimated for every

pixel in each convex region. The endmember distribution and

Dirichlet process techniques utilize Bayesian machine learning

approaches to learn endmember distributions and partition the

data set into convex regions while simulateneously estimating

proportion values for each data point.

Several endmember detection and spectral unmixing al-

gorithms are described in the literature. Many rely on the

pixel purity assumption and search for endmembers within

the data set [4], [5], [6], [7]. By restricting the endmembers

to be data points from the scene, these methods cannot find

endmembers when pure pixels cannot be found in the image.

Many methods have also been developed based on Non-

Negative Matrix Factorization [8], [9], [10], [11], Independent

Components Analysis [12], [13] and others [14], [15]. These

methods search for a single set of endmembers and, therefore,

a single convex region to describe a hyperspectral scene. Since

these algorithms assume a single convex region, they cannot

find well-suited endmembers for non-convex data sets. PCE

partitions the input hyperspectral set into distinct contexts

using the Dirichlet Process and estimates a set of endmember

distributions for each context. Consider the data shown in

Figure 1. This figure displays the labeled AVIRIS Indian Pines

hyperspectral data set after using PCA for dimensionality

reduction from 220 to 3 bands. A striking feature of this

real hyperspectral data is that the data set is not convex. The

PCE algorithm accounts for this and describes the data using

a piece-wise convex representation of the data.

For further illustration, consider the two-dimensional data

and its PCE results in Figure 2. The two-dimensional data
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(a) (b)

Fig. 2. (a) Two-dimensional data generated from three sets of endmembers. Small points correspond to the input data set. Large points correspond to the
endmembers from which the data was generated. Each triangle of data points was generated from three of the endmembers. (b) Two-dimensional data results
found using PCE. Small points correspond to the input data set. Large points correspond to the mean endmembers for each endmember distribution. Thin
curves correspond to both the 1st and 2nd standard deviation curves from each endmember distribution.

Fig. 1. Plot of labeled pixels from the AVIRIS Indian Pines hyerspectral
data set after dimensionality reduction using PCA. Every 10th labeled pixel
in the image is plotted.

was generated from three sets of endmembers. The piece-

wise convex representation was able to appropriately partition

the data set into three convex regions and find three sets

of endmembers. These endmembers can not be found with

methods that assume a single convex region.

The majority of endmember detection and spectral unmixing

algorithms use a single spectrum to represent an endmember.

PCE incorporates each endmember’s spectral variability by

representing each endmember as a full distribution rather

than a single spectrum. Using a distribution to characterize

a hyperspectral class has been previously discussed in [3].

However, in [3], the probability density models are used to

treat each class as a cluster rather than an endmember in

the convex geometry model. PCE uses distributions to define

endmembers during spectral unmixing and within the convex

geometry model. Therefore, hyperspectral pixels are described

using convex combinations of endmember distributions. This

representation incorporates spectral variability into the con-

vex geometry model and can describe pixels as mixtures of

multiple endmember distributions.

PCE uses the Dirichlet process to find the number of

convex regions for an input image and partitions all spectra in

the image into these regions. Previous endmember detection

methods using the Dirichlet Distribution, Dirichlet Process and

Monte Carlo methods have been developed. In [16], a method

that uses the Dirichlet distribution as a prior distribution

for the abundance values while estimating endmembers and

performing spectral unmixing is presented. In this method, an

expectation-maximization type algorithm is employed to itera-

tively estimate endmembers and abundances. This method, like

most previous endmember detection algorithms, assumes the

convex geometry model and defines a single convex region to

describe the input image. In [17], a Reversible Jump Markov

Chain Monte Carlo method to perform unmixing given a set

of library endmember spectra is presented. In this algorithm,

given a set of known library spectra, abundance values and

the sub-set of endmembers found in each pixel are sampled.

Like PCE, this method encourages sparsity in the abundance

vectors since each pixel uses only a sub-set of the endmembers

in the scene. However, in [17], the endmembers are assumed to

be known. In contrast, endmember distributions are estimated

in PCE. The authors have previously published a method

using the Dirichlet process to perform endmember detection

and spectral unmixing [18]. In [18], a Dirichlet process is

used to sample abundance values and determine the number

of endmembers for a hyperspectral scene. However, in [18],

single endmember spectra are used rather than endmember

distributions and a single convex region is used to describe

the image rather than the piece-wise convex representation

presented here.

In the following, Section II presents the Endmember Dis-

tribution detection algorithm. Section III reviews the Dirichlet

Process Mixture Model. Section IV presents the Piece-wise

Convex Endmember Detection algorithm. Results are shown

in Section V. Conclusions and a discussion on future work is
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shown in Section VI.

II. ED: ENDMEMBER DISTRIBUTION DETECTION

The Endmember Distributions (ED) detection algorithm has

the unique property of representing endmembers as random

vectors, thereby calculating endmembers distributions rather

than single spectra. Endmember distributions are found by as-

suming a model for each endmember and iteratively updating

the proportion vectors for each pixel and the parameters of

the endmember distributions. ED was developed for use within

PCE. However, since ED incorporates spectral variability when

performing spectral unmixing and endmember determination,

applications for ED may extend beyond use within the PCE

algorithm.

Assuming the convex geometry model in Equation 1, each

input hyperspectral pixel is a convex combination of the

endmembers. In the following, all endmember distributions

are assumed to be Gaussian with mean spectra, ek, and

known covariance matrices, Vk. It follows that each pixel is

a multivariate Gaussian random variable whose distribution

is defined by the convex combination of the endmembers’

Gaussian distributions,

f(xj |E,pj) ∝ exp







−1

2
RT

(

M
∑

k=1

p2
jkVk

)−1

R







(3)

where

R = xj −
M
∑

k=1

pjkek,

E is the matrix of mean spectra for all endmember distri-

butions, ek and Vk are the mean spectrum and covariance

matrix for the kth endmember distribution, M is the number

of endmember distributions being determined, and pjk is the

jth data point’s proportion value for the kth endmember [19].

The joint likelihood for all the hyperspectral pixels is assumed

to be the product of the individual likelihoods,

f(X|E,P) ∝
N
∏

j=1

f(xj |E,pj). (4)

Each hyperspectral data point has a unique abundance

vector. Although all the data points share the same set of end-

member distributions, their unique abundance vectors result in

each data point having a unique Gaussian distribution. This is

shown in Equation 3 where the maximum likelihood value of

the data point xj is pjE.

In order to provide a tight fit around the input hyperspectral

data set, the prior on the endmembers is defined using the sum

of squared distances between the means of the endmember dis-

tributions. This is similar to the prior on the endmembers used

by the ICE and SPICE algorithms for endmember detection

[20], [21].

f(E) =
1

(2π)
D
2 |S|

1

2

exp







−1

4

∑

k,l

(ek − el)
T S−1(ek − el)







(5)

Initially, the Dirichlet distribution was considered for the

prior on the abundance values. However, since the Dirichlet

distribution is not a conjugate prior to f(xj |E,pj), a simple
update formula cannot be used. Instead, constrained non-linear

optimization is required when updating abundance values.

As abundances approach zero (which is very desirable and

common), the log of the Dirichlet distribution is very steep

and approaches −∞ causing instability when using non-linear

optimization techniques. Therefore, the polynomial prior in

Equation 6 was developed to be the prior on the abundance

vectors.

P (pj) =
1

Z

(

M
∑

k=1

bk + 1−
M
∑

k=1

bk(pjk − ck)2

)

(6)

where Z is a normalization constant given by Equation 7.

The p and c vectors are constrained to be non-negative and

sum-to-one,

pjk ≥ 0 ∀k = 1, . . . , M ;

M
∑

k=1

pjk = 1,

ck ≥ 0 ∀k = 1, . . . , M ;

M
∑

k=1

ck = 1.

The vector c is the maximum likelihood value for p. The bk

terms control the steepness of the prior. The polynomial prior

prefers abundance vectors which are binary; that is, vectors

with a single abundance with value 1 and the rest with value

0. This is a result of the normalization constant, Z .

The numerator of the polynomial prior is maximized when

c is equal to p. The normalization constant in the denominator

is minimized when c is binary. Thus, when both the p and

c vectors are binary, the polynomial prior is maximized. This

property introduces sparsity within abundance vectors which,

when combined with the flexibility achieved by representing

endmembers by distributions, represents a major advance

in automated determination of meaningful endmembers and

abundances.

If several endmembers adequately describe a data point,

the polynomial prior will place all weight on one endmember

rather than spreading the abundance across endmembers en-

couraging the method to use the minimum number of end-

members needed. Furthermore, many different points can be

assigned abundance values of one with respect to a given

endmember because of the variance of the endmember distri-

bution. Examples of this prior for abundance vectors of length

two are shown in Figure 3. Also, plots showing the abundance

prior as a function of c are shown in Figure 4.

The algorithm proceeds by iteratively maximizing

f(X|E,P)f(E)f(P) where f(P) is the joint likelihood

of all the abundance vectors. Given initial estimates of the

endmember distributions and c in the polynomial prior,

abundance vectors are updated by maximizing the log of

f(xj |E,pj)P (pj) given by Equations 3 and 6 with respect

to pj for each data point. This is a constrained non-linear

optimization problem. In the current Matlab implementation,

this is maximized using Matlab’s fmincon function in the

optimization toolbox. Following an update of the abundance
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Z =

√
M
(

∑M

k=1 bk + 1
)

(M − 1)!
−
√

M

M
∑

k=1

bk

(M − 1)!

(

(

ck −
1

M

)2

+
M − 1

(M + 1)M2

)

(7)

(a)

(b)

Fig. 3. Plots of ED’s abundance prior for M = 2 and various c and b values.
The x-axis is the 1st abundance value. The y-axis is the prior probability value
for the abundance vector. a) c = [.5, .5] b) c = [.75, .25].

vectors, f(X|E,P)P (E) defined in Equations 4 and 5

is maximized with respect to means of the endmember

distributions, ek for k = 1, . . . , M . This maximization is

performed directly by taking the derivative of the log of the

product and setting it equal to zero, as shown in Equation 8.

Equation 8 does not constrain ek to be positive.

The third step of the iteration updates the c vector in the

abundance prior given the abundance vectors for all the data

points. The third step is also a non-linear optimization problem

solved using Matlab’s fmincon function.

Although the ED algorithm was developed for use within

the PCE algorithm, applications of the ED algorithm may

extend beyond this. This may occur since, using endmember

distributions, the spectral variation which occurs due varying

environmental conditions or inherent variability can be mea-

sured in controlled environments and then incorporated and

utilized during endmember detection or spectral unmixing. For

example, if endmember means and covariances are estimated

from a spectral library, these can be held constant during the

ED algorithm while spectral unmixing is performed and, if

necessary, additional endmember distributions are learned.

The use of the endmember distribution model can represent

a wide variety of data. For example, the data points in Figure 5

were generated using two endmember distributions. The stan-

dard model using convex combinations of single endmember

spectra would require three endmembers to represent the data

while maintaining a small reconstruction error. As can be seen

(a)

(b)

Fig. 4. Plots of ED’s abundance prior for M = 2 and various p and b

values. The x-axis is the 1st c value. The y-axis is the prior probability
value for c. a) p = [.45, .55] b) p = [.5, .5].

Fig. 5. Data points generated from linear combinations of 2 endmember
distributions. The endmember distribution centered at (5,5) has a diagonal
covariance whose elements are all equal to 0.005. The endmember distribution
centered at (1,1) has a diagonal covariance whose elements are all equal to
0.5. Data points are shown in light gray. Mean spectra and standard deviation
curves for the endmember distributions are shown with squares and thin
curves, respectively. Both the first and second standard deviation curves are
shown for each endmember distribution.

in the Figure 1, some of the data appears to follow a linear

combination of Gaussian distributions like shown in Figure 5.

III. OVERVIEW OF GIBBS SAMPLING FOR THE DIRICHLET

PROCESS MIXTURE MODEL

The Dirichlet Process Mixture Model applies a Dirichlet

Process prior to the mixing proportions of a mixing model

allowing for a countably infinite number of mixture compo-

nents [22], [18]. Consider N data points, {x1, . . . , xN} each
of which are assumed to have been independently generated

by some distribution fi (·, φi) where φi is the vector of

parameters that defines the process generating observation xi.

Under the Dirichlet Process Mixture Model, φi is generated
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eT
k =







N
∑

j=1



xj −
∑

l 6=k

ajlel





T 



∑

l 6=k

a2
jlVl





−1

ajk +
∑

l 6=k

eT
l S−1













N
∑

j=1

a2
jk





∑

l 6=k

a2
jlVl





−1

+ (M − 1)S−1







−1

(8)

by some unknown distribution G [23]. Then, G is distributed

according to the Dirichlet process, D(αG0) where G0 is the

base distribution and α is the concentration parameter [22].

Therefore, the complete model can be written as: [24], [22]

xi ∼ f(·|φi)

φi ∼ G (9)

G ∼ D(αG0).

Under this model, the values φi, i = 1, . . . , N , generated

from G are members of a set of M ≤ N distinct values de-

noted as Θ = {θ1, . . . ,θM} corresponding to the parameters

for each mixture components. In other words, several data

points can be generated from the same mixture component

[23].

To simplify the model, G can be integrated out to express

the prior of each φi in terms of the base distribution, G0, and

all other parameter sets [24], [22], [25], [23],

φi|φ−i ∼

1

α + N − 1

N
∑

j=1,i6=j

δ(φj) +
α

α + N − 1
G0 (10)

where φ−i is the set of component distributions for all data

points other than i, N is the number of data points, δ(φi) is
the distribution over parameters with all weight concentrated

at parameter set φi, and G0 is the prior distribution for the

component parameters [24].

As shown by [24], the likelihood of a data point given

component parameters can be combined with the probability

of a class label given all other labels in Equation 10. Then,

the Gibbs sampler can be used to sample indicator variable

values and component parameter values. Furthermore, if G0

is a conjugate prior to the likelihood distributions (compo-

nent distributions), then only the indicator variables of the

observations need to be sampled. In this case, the conditional

distributions are expressed as in Equation 11 [22],

where C is a normalizing constant and H−i,cj
is the

posterior distribution of the component parameters given prior

G0 and current indicator values c−i [22]. Given that G0 is

a conjugate prior to the likelihood distributions, the integrals

in Equation 11 can be computed analytically. These integrals

remove the need to include component parameters in the

Markov Chain which significantly reduces the search space

for the Gibbs sampler [22].

IV. PCE: PIECE-WISE CONVEX ENDMEMBER DETECTION

In this section, a novel method for endmember detection

using the Dirichlet process is presented. Existing endmember

detection algorithms generally assume that all pixels in a

hyperspectral image are convex combinations of a single set

of endmembers. However, some hyperspectral images may

be better represented using several sets of endmembers. This

algorithm partitions the input hyperspectral data set into con-

vex regions each with a its own set of endmember distri-

butions. Using the Dirichlet process, the Piece-wise Convex

Endmember (PCE) detection algorithm learns the number of

convex regions needed to represent an input hyperspectral

image and estimates endmember distributions and proportion

values for each convex region.

This method differs from the Dirichlet process mixture

model since each convex region is represented with a set

of endmember distributions for which each data point has

a unique abundance vector. Thus, as previously shown in

Equation 3, each data point is a random variable with a unique

distribution. Each data point having a unique distribution

contrasts with the DPMM approach where data points from

each cluster are assumed to be identically distributed.

PCE performs Gibbs sampling with Dirichlet process priors

to sample the partition to which each data point belongs.

The probability of sampling a partition is computed using the

likelihood of a data point belonging to a convex combination

of the associated endmember distributions,

where ri is the indicator variable for the current data point,

xi, C is a normalization constant, n−i,j is the number of data

points excluding xi in partition rj , N is the total number of

data points, and α is the innovation parameter for the Dirichlet

process. The matrices, T and S, correspond to
∑

k c2
kVk

and
∑

k p2
ikVk, respectively. The matrices V and Vrj are

the covariance matrices associated with new and existing

endmember distributions. In the current implementation of this

algorithm, all covariance matrices for endmember distributions

are set to the same constant matrix value.

The prior distribution, G0, is Gaussian where the mean, µ0,

is set to the mean of the input data set and the covariance,

V0, is constant,

G0 = N



µ0 =
1

N

N
∑

j=1

xj ,V0



 (13)

The prior distribution combined with α, the innovation param-

eter in the Dirichlet process prior, dictates the probability of

generating a new partition. The covariance matrix, V0, is set

to a large value to approximate a broad uniform prior over the

data set.

Assuming that each endmember distribution is Gaussian

with a known covariance matrix, the likelihood for an existing

partition, f(xi|prj

i ,Vrj ,Erj), is determined by Equation 3.

The vector, p
rj

i , contains the proportion values for the current

data point in partition rj . These proportion values are deter-

mined by maximizing the log of f(xj |E,pj)P (pj) given by

Equations 3 and 6 with respect to pj given the endmembers

of the partition, Erj . The f(xi|prj

i ,Vrj ,Erj) value measures
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f(ci = cj for some j 6= i|c−i,xi) = C
n−i,j

α + N − 1

∫

f(xi|θ)H−i,cj
(θ)dθ

f(ci 6= cj∀j 6= i|c−i,xi) = C
α

α + N − 1

∫

f(xi|θ)G0(θ)dθ

(11)

f(ri = rj j 6= i|r−i,xi) = C
n−i,j

α + N − 1

∫

f(xi|prj

i ,Vrj ,Erj)H−i,rj
(Erj ,Vrj ,Prj )dp

rj

i Erj

= C
n−i,j

α + N − 1
N

(

T (T + S)−1pErj + S(T + S)−1cErj , S + T (T + S)
−1

S
)

f(ri 6= rj ∀j 6= i|r−i,xi) = C
α

α + N − 1

∫

f(xi|E∗)G0(E
∗)dE∗

= C
α

α + N − 1
N

(

V0(V0 + V)−1xi + V(V0 + V)−1µ0,
(

V−1
0 + V−1

)−1
+ V

)

(12)

the ability of a set of endmembers to represent a data point by

computing the distance between the data point and prjErj .

The distribution, H−i,r(E
r,Vr,Pr) is the prior distribution

updated based on the data points assigned to the rth partition,

H−i,r(E
r,Pr) = N

(

cEr,

M
∑

k=1

c2
kV

r
k

)

(14)

where c is the center from the polynomial abundance prior

determined by maximizing Equation 6 given Pr and Vr.

By incorporating this updated prior, the likelihood depends

not only on the distance to pE but also to cE. When the

covariance matrices for endmember distributions are equal, the

updated prior depends on the distance to a point on the line

segment connecting pE and cE, namely, w1pE+w2cE where

w1 =
PM

k=1
c2

k
P

M
k=1

(c2

k
+p2

jk
)
and w2 =

PM
k=1

p2

jk
P

M
k=1

(c2

k
+p2

jk
)
.

As stated above and shown in line 12 of the following

pseudo-code, in each iteration of the algorithm a partition is

sampled for the current data point. A partition is sampled by

computing the likelihood of a data point belonging to each

existing partition and the likelihood of a data point generating

a new partition using Equation 12. The unit interval is then

divided into regions whose lengths are equal to each partition’s

normalized likelihood value. A random value from the unit

interval is then generated. The corresponding partition whose

region includes the generated random value is the partition

that is sampled for the current data point.

After a partition is sampled, the parameters of the sampled

partition are updated. This is done by updating the prior

on the abundances (Equation 6) with respect to c for the

given partition. After one or more iterations of the partition

sampling scheme using the Dirichlet process, the endmember

distributions and all proportion values are updated using a

designated number of iterations of the ED algorithm.

Several items in the following PCE pseudo-code differ from

the standard DPMM method. As stated in lines 10 and 13 of

the pseudo-code, a partition’s parameters are updated when a

data point is removed or added to the partition by updating

the partition’s c vector in the polynomial abundance prior. In

contrast, for the standard Gaussian DPMM method, the mean

of the Gaussian cluster would be updated instead. Lines 16 to

18 of the pseudo-code also differ from the standard DPMM

method. After a set number of Gibbs sampling iterations in

PCE, each partition’s endmembers and proportion matrices

are updated. In the standard DPMM, all values associated

with each cluster are updated in each Gibbs iteration. PCE

essentially performs a series of several Gibbs sampling runs

each with a new set of endmembers. Overall, this algorithm

is a stochastic EM method.

PCE(X)

1: Initialize Partitions

2: for r ← 1 to Rinitial partitions do

3: Initialize Er and Pr using ED

4: end for

5: for k ← 1 to number of total iterations do

6: for i← 1 to number of Gibbs sampling iterations do

7: Randomly reorder data points in X

8: for j ← 1 to number of data points do

9: Remove xj from its current partition

10: Update the partition’s c

11: Compute Dirichlet process partition probabilities

for xj using Equation 12.

12: Sample a partition for xj based on the Dirichlet

process partition probabilities

13: Update new partition’s c

14: end for

15: end for

16: for r ← 1 to Rk partitions do

17: Update Er and Pr using ED

18: end for

19: end for

20: Rfinal = Rk

V. EXPERIMENTAL RESULTS

The PCE algorithm was tested on real hyperspectral data.

Results are shown and compared to results found using the ICE

and SPICE endmember detection algorithms [20], [21]. The

ICE algorithm is an iterative algorithm that alternates between

solving for endmembers and abundances while holding the

other constant. Endmembers and abundances are estimated

by maximizing an objective function containing two terms, a
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squared error term between data points and their reconstruction

using endmembers and abundances and a sum-of-squared

distances term between the estimated endmembers to promote

a tight fit around the data set. The SPICE algorithm is an

extension of ICE which adds a sparsity promoting Laplacian

prior to the objective function. This sparsity promoting prior

is used to determine the number of endmembers while simul-

taneoulsy estimating abundances and endmembers spectra.

A. Piece-wise Convex Endmember Detection Results on the

AVIRIS Indian Pines Data

PCE was tested on the labeled pixels of the June 1992

AVIRIS data set collected over the Indian Pines Test site in an

agricultural area of northern Indiana. The image has 145×145
pixels with 220 spectral bands and contains approximately

two-thirds agricultural land and one-third forest and other

elements. The soybean and corn crops in the image are in early

growth stages and, thus, have only about a 5% crop cover [27],

[28]. The remaining field area is soil covered with residue

from the previous crop. The no till, min till, and clean till

labels indicate the amount of previous crop residue remaining.

No till corresponds to a large amount of residue, min till has

a moderate amount, and clean till has a minimal amount of

residue [28]. Figure 6 shows band 10 (approximately 0.49 µm)

and the ground truth of the data set. Only 49% of the pixels

in the image have ground truth information [28].

Prior to running PCE, the data dimensionality was reduced

from 220 bands to 6 dimensions using principal components

analysis. A total of 1037 pixels (every 10th labeled pixel)

were selected from the data set and used in the PCE algo-

rithm. Partitions on this data were initialized using the KG-

FCM algorithm and the DPMM algorithm resulting in three

partitions[29]. After initial partitions were found, endmembers

for each partition were initialized using the ED algorithm.

Each partition was restricted to three endmembers. The pa-

rameters used to generate results shown are listed in Table

I.

In order to compute abundance maps for the entire image,

every data point was unmixed using each partitions’ set of

endmembers and the likelihood under each partition was

computed. Every data point was then assigned to partition

with the largest likelihood value. Also, all endmembers whose

maximum proportion value was less than 0.05 were removed.

Following these steps, 13 clusters were found with a total

of 14 endmembers. Figure 7 shows the abundances maps for

endmembers associated with more than 20 pixels.

For comparision, SPICE was run on the labeled Indian Pines

data set. A total of 1037 normalized pixels (every 10th labeled

pixel) was selected from the image and used to determine

the endmembers. The initial number of endmembers, µ, and

Γ, were set to 20, .01 and .1, respectively. Six endmembers

were found for the labeled pixels of the Indian Pines scene.

The abundance maps are shown in Figure 8. The endmembers

roughly correspond to the following classes: (A) grass/pasture

and woods, (B) hay-windrowed, alfalfa and grass/pasture-

mowed, (C) and (E) correspond to corn and soybean, (D)

stone-steel towers, and (F) grass/trees, wheat, woods.

The distribution of abundances values among endmembers

in each ground truth class found by SPICE are shown in

Figure ??. These distributions were computed by summing

all the abundance values associated with an endmember in

each ground truth class. Each distribution was normalized by

dividing by the number of points in the corresponding ground

truth class,

hlk =

∑

i:xi∈Gk
ail

Nk

(15)

where Gk is the set of pixels in ground truth class k, Nk is

the number of points in ground truth class k, ail is the ith

data points’ abundance value for the lth endmember, and hlk

is the kth value corresponding to the lth endmember.

For comparison with the SPICE results in Figure 9, normal-

ized distributions of abundance values across each endmember

found by PCE were computed using Equation 15. The dis-

tributions found are shown in Figure 10. When comparing

the SPICE and PCE distributions, the PCE results for each

ground truth class are significantly more concentrated than

the SPICE results. This fact can be measured by computing

Shannon’s entropy for the normalized distribution associated

with each ground truth class [30]. A smaller entropy value

indicates that a fewer number of endmembers are being used to

describe each ground truth class and that the endmembers are

better representatives of the ground truth classes. The sum of

the Shannon entropies for SPICE’s distributions of abundance

values comes to 19.0. In contrast, the sum of the Shannon

entropies for PCE’s distributions of abundances is significantly

lower at 9.4. This indicates that PCE produces endmembers

which better represent the ground truth classes.

Consider the wheat ground truth class in the SPICE and

PCE results. The SPICE abundance map associated with

the most amount of wheat is shown in Figure 8(f) and the

corresponding distribution of abundance values is found in

Figure 9(m). By examining the abundance map, it can be seen

that many pixels other than wheat have non-zero abundance

values associated with wheat’s SPICE endmember. In contrast,

very few pixels outside of the wheat ground truth class share

wheat’s endmember. This is shown in the PCE abundance

map in Figure 7(i). Furthermore, by examining the SPICE

distribution of abundance values for wheat, only about 60%

of the wheat pixels’ abundance values are associated with that

endmember whereas 100% of wheat’s abundance values are

placed with the associated endmember found using PCE.

For the stone-steel towers ground truth class, more than

70% of the pixels assigned to a single endmember using PCE

and that endmember is not associated with any other ground

truth classes. The SPICE endmember most associated with

the stone-steel towers ground truth class is also used by every

other ground truth class.

The hay-windrowed (Figure 10(h)), grass/pasture-mowed

(Figure 10(g)) and alfalfa (Figure 10(a)) PCE distributions

of abudance values show that they are associated with the

same endmember. This can also be seen in the abundance

map in Figure 7(h). The corresponding SPICE distributions

of abundance values for hay-windrowed, grass/pasture-mowed

and alfalfa in Figures 9(h), 9(g), and 9(a) show that the three

ground-truth classes have similar distribution shapes and share
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(a) (b)

Fig. 6. (a) Band 10 ( ∼ 0.5 µm) of the AVIRIS Indian Pines data set (b) The ground truth of the AVIRIS Indian Pines data set.

TABLE I
PARAMETER VALUES USED TO GENERATED PCE RESULTS. ALL COVARIANCE MATRICES ARE DIAGONAL WITH ELEMENTS EQUAL TO THE VALUES

SHOWN IN THE TABLE.

Data Variance Likelihood ED likelihood ED SSD
Data Set dimen. of data variance α variance variance bk

2D Data 2 2.16 0.005 2 0.010 1.000 0.001
PCA IP 6 0.05 0.005 1 0.005 0.001 0.001
Full Spectra Cuprite 51 0.12 0.005 1 0.005 0.005 0.001

the same endmembers. However, the abundances found by

SPICE are spread among three endmembers whereas PCE

placed their full weight with one endmember.

Soybean and corn ground truth classes constitute a large

majority of the Indian Pines scene. In the SPICE results,

abundance values associated with the soybean and corn classes

are spread over all of the six endmembers found. In contrast,

the PCE endmember results places nearly all soybean and corn

abundances with the 2nd, 6th, and 10th endmembers.

Another indication that PCE is producing representative

endmembers is found with the Building/Grass/Trees/Drive

ground truth class. This class is composed of a variety of

material types. Interestingly, this is clearly shown in the

class’ PCE distribution of abudance values (Figure 10(o)).

The abundance values for the class are spread across many

endmembers.

In order to verify that the difference in the results between

PCE and SPICE are not due to different data dimensionality

and a different number of endmembers, the ICE algorithm was

run on the same AVIRIS PCA-reduced Indian Pines data set

discussed in this section. The ICE algorithm was employed

rather than SPICE since the number of endmembers can be

set to the same number found by PCE. The ICE algorithm was

restricted to 14 endmembers and the µ parameter was set to

0.01.

The sum of the Shannon entropies of ICE’s distribution of

abundance value from these results is 29.2. In comparison,

PCE’s value was 9.4. Therefore, although ICE was restricted

to the same number of endmembers found using PCE, ICE

did not produce endmembers that represent the ground truth

classes as well as PCE.

B. Results on AVIRIS Cuprite Data

PCE was also run on the AVIRIS Cuprite “Scene 4” data

set collected over Cuprite, NV. This data contains 51 spectral

bands in the range of 1978 to 2477 nm. PCE was applied to

this data set to examine the quality of endmembers found by

comparing the PCE results to spectra from the USGS Spectral

Library with materials known to be found in the Cuprite scene

[31] and results obtained using the VCA [6] algorithm. As

in [20], PCE was run on a subset of pixels from the image

using “candidate points” selected using the pixel purity index

(PPI) [5]. The candidate points in our experiments were chosen

from 10,000 random projections where the pixel purity indices

of points within a distance of two from the boundary of the

projection were incremented. The 1011 pixels with the highest

PPI were used as the candidate points. A PPI threshold that

allowed as close to 1000 pixels as possible (many pixels have

the same PPI) was chosen. This is the same data set used

in [21]. Three partitions on this data were initialized using

the KG-FCM algorithm. After initial partitions were found,

endmembers for each partition were initialized using the ED

algorithm. Each partition was restricted to 4 endmembers. The

parameters used to generate results shown are listed in Table

I.

PCE found 10 partitions with 14 endmember distributions.

Endmember distributions whose abundance values summed

to less than 5 over the entire data set were removed. In

order to determine the quality of endmembers, they were

compared to 100 USGS spectra of materials known to be

found in the AVIRIS Cuprite scene: Alunite, Buddingtonite,

Calcite, Chalcedony, Desert Varnish, Kaolinite, Montmoril-

lonite, Muscovite, Nontronite and Sphene. Figure 11 shows the

comparison of the endmembers found to the closest matching

2006 USGS spectral library spectra. VCA was also run on this

data set with the same number of endmembers found by PCE.

Figure 12 shows the comparision of the VCA endmembers to

the closest matching 2006 USGS spectral library spectra. The

endmembers found were compared the USGS spectral library

using Euclidean distance. The title above each plot in Figures
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Abundance maps found using PCE on labeled PCA-reduced AVIRIS Indian Pines data. Only abundance maps with greater than 20 associated pixels
are shown. Pixels in white are unlabeled. Pixels in gray indicate pixels from another convex partition. Remaining pixels have abundance values of 1.

11 and 12 list the name of the matching USGS library spectra

and the Euclidean distance between the estimated endmembers

and the spectral library spectra. The mean Euclidean distance

between the estimated and spectral library spectra using PCE

was 0.32 whereas for VCA was 0.53 indicating that the PCE

algorithm found endmembers that better match the spectra

from the USGS spectral library. Furthermore, a right-sided

t-test in Matlab showed that the differences between the PCE

distances and VCA distances were significant with a 96%

confidence interval.

These Cuprite results were found with 100 iterations of the

PCE algorithm. Each iteration consists of sampling a partition

for each hyperspectral pixel and optimizing the endmembers

and abundances for each partition using the ED method.

Each iteration took 5.3 minutes. However, similar results were

obtained in 25 iterations with the mean Euclidean distance for

PCE at 0.33 and the mean Euclidean distance for VCA at 0.53.

Future work will include determining the number of iterations

required for PCE to obtain the endmembers estimates as well

as methods to speed up each iteration of the PCE algorithm.

VI. CONCLUSIONS AND FUTURE WORK

The Piece-wise Convex Endmember (PCE) detection algo-

rithm used the Dirichlet process to learn the number of convex

regions needed to describe an input hyperspectral scene. For

each convex region, an individual set of endmember distri-

butions and proportion values were determined. In contrast,

previous endmember detection algorithms applied the same

set of endmembers to every data point in a scene. Using

PCE, different portions of an input hyperspectral scene can be

represented using a separate set of endmembers. This results

in better suited endmembers for all of the various regions in

an input image.

In PCE, the Endmember Distribution (ED) detection al-

gorithm was used to estimate endmember distributions to

incorporate spectral variability into the endmember detec-

tion model. Previously, endmember detection algorithms con-

strained endmembers to be single spectral vectors. By utilizing

endmember distributions, several pixels of the same material

with some spectral variation can all be identified as having a

full abundance for the same endmember.

The results in Figure 10 show that PCE produces endmem-

bers that are significantly better suited to a data set when
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 8. Abundance maps generated by SPICE on the labeled AVIRIS Indian Pines data set. Pixels in white correspond to unlabeled pixels. Remaining pixels
range from black (abundance value of zero) to abundance values of 1. The scale for all the images is shown in (g).

compared to previous methods. This is shown with the fact

that the abundance values for each ground truth class are very

compact and concentrated to a small set of endmembers.

During development and testing of the methods, several

interesting areas for future research were uncovered. Currently,

the ED algorithm assumes a constant and known covariance

matrix for each endmember distribution. Investigations into

methods of learning appropriate covariance matrices for each

endmember distribution can be done. By learning covariance

matrices, endmembers distributions can be further tailored to

the input data set. Also, PCE utilizes optimization schedules

and many parameter values. Studies on methods to determine

the appropriate optimization schedules and parameter values

with regard to the input data set can be conducted.

PCE currently assigns each data point to a single partition.

Investigations into methods of allowing data points to have

partial membership in several partitions can be conducted. By

allowing partial memberships, overlapping clusters are likely

to be found using PCE.

Finally, since the current algorithm using a sequential Gibbs

sampler, the running time can be long. The Gibbs sampler

requires several iterations for a “burn-in” period. Following

the “burn-in” period, the Gibbs sampler samples values driven

by the given likelihood until the distribution of partitions for

the data points is learned. Future work includes investigating

methods to shorten the running time needed for PCE. One

potential option is through the use of variational methods

which would approximate the solution with a much shorter

running time than needed by the Gibbs sampler.

ACKNOWLEDGMENT

The views and conclusions contained in this document

are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,

of the Army Research Office, Army Research Laboratory, or

the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for government purposes

notwithstanding any copyright notation hereon. This work

was supported by the U.S. Army Research Office and the

U.S. Army Research Laboratory, and was accomplished under

Cooperative Agreement DAAD19-02-2-0012.

REFERENCES

[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal
Processing Magazine, vol. 19, pp. 44–57, 2002.

[2] J. M. P. Nascimento and J. M. Bioucas-Dias, “Does independent
component analysis play a role in unmixing hyperspectral data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 43, no. 1, pp.
175–187, Jan. 2005.

[3] D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image pro-
cessing for automatic target detection applications,” Lincoln Laboratory
Journal, vol. 14, no. 1, pp. 79–116, 2003.

[4] M. E. Winter, “Fast autonomous spectral end-member determination
in hyperspectral data,” in Proceedings of the Thirteenth International
Conference on Applied Geologic Remote Sensing, Vancouver, B.C.,
Canada, 1999, pp. 337–344.

[5] J. Boardman, F. Kruse, and R. Green, “Mapping target signatures via
partial unmixing of AVIRIS data,” in Summaries of the 5th Annu. JPL
Airborne Geoscience Workshop, R. Green, Ed., vol. 1. Pasadena, CA:
JPL Publ., 1995, pp. 23–26.

[6] J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis:
A fast algorithm to unmix hyperspectral data,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898–910, Apr. 2005.

[7] A. Plaza, P. Martinez, R. Perez, and J. Plazas, “Spatial/spectral end-
member extraction by multidimensional morphological operators,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 40, no. 9, pp.
2025–2041, Sep. 2002.



ACCEPTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, TO APPEAR 11

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(a)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(b)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(c)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(d)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(e)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(f)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(g)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(h)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(i)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(j)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(k)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(l)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(m)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(n)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(o)

1 2 3 4 5 6
0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8
0.9
1

Endmember

(p)

Fig. 9. Distribution of abundance values over the endmembers found by SPICE on labeled AVIRIS Indian Pines data in each ground truth class. Distributions
were computed according to Equation 15. The sum of these distributions’ Shannon’s entropy values is 19.0. The distributions correspond to the following
ground truth classes: (a) alfalfa, (b) corn-notill, (c) corn-min, (d) corn, (e) grass/pasture, (f) grass/trees, (g) grass/pasture-mowed, (h) hay-windrowed, (i) oats,
(j) soybeans-notill, (k) soybeans-min, (l) soybean-clean, (m) wheat, (n) woods, (o) building-grass-trees-drive, and (p) stone-steel towers.
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Fig. 10. Distribution of abundance values over the PCE endmember results on labeled PCA-reduced AVIRIS Indian Pines data in each ground truth
class. Distributions were computed according to Equation 15. The sum of the distributions’ Shannon’s entropy values is 9.4. The histograms correspond to the
following ground truth classes: (a) alfalfa, (b) corn-notill, (c) corn-min, (d) corn, (e) grass/pasture, (f) grass/trees, (g) grass/pasture-mowed, (h) hay-windrowed,
(i) oats, (j) soybeans-notill, (k) soybeans-min, (l) soybean-clean, (m) wheat, (n) woods, (o) building-grass-trees-drive, and (p) stone-steel towers.
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Fig. 12. Comparison of the mean of the endmember distributions found using VCA on the AVIRIS Cuprite Data Set to USGS Spectra. The estimated spectra
are shown with dashed lines. The USGS spectra are shown with solid lines.


