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Introduction Let X and Y be Banach spaces, and let X®.Y denote their injective tensor
product. In this paper, we shall study the behavior of those operators on X®.Y that are

p-summing.

If X,Y and Z are Banach spaces, then every p-summing operator T : X®.Y — Z
induces a p-summing linear operator T# : X — Hp(Y, Z). This raises the following
question: given two Banach spaces Y and Z, and 1 < p < oo, for what Banach spaces
X is it true that a bounded linear operator 7 : X®.Y — Z is p-summing whenever

T#: X — [[,(Y,Z) is p-summing?

In [11], it was shown that whenever X = C(12) is a space of all continuous functions
on a compact Hausdorff space , then T : C()®.Y — Z is 1-summing if and only if
T#: C(Q) — [[,(Y, 2) is 1-summing. We will extend this result by showing that this
result still remains true if X is any £..-space. We will also give an example to show that
the result need not be true if X is not a £..-space. For this, we shall exhibit a 2-summing
operator T on {,®.ls that is not 1-summing, but such that the associated operator T7 is

1-summing.

The case p > 1 turns out to be quite different. Here, the £, ,-spaces do not seem to
play any important role. We show that for each 1 < p < 0o, there exists a bounded linear
operator T : C0,1]®fs — o such that T# : C[0,1] — [1,(¢2,£2) is p-summing, but
such that T is not p-summing. We will also give an example that shows that, in general,
the condition on 7% to be 2-summing is too weak to imply any good properties for the
operator T at all. To illustrate this, we shall exhibit a bounded linear operator 1" on
C[0,1]&c¢; with values in a certain Banach space Z, such that 7% : C[0,1] — [, (41, 2)
is 2-summing, but for any given N € N, there exists a subspace U of C[0,1]®/;, with

dimU = N, such that T restricted to U is equivalent to the identity operator on £% .

Finally, we show that there is a compact Hausdorff space K and a bounded linear

operator T : C(K)®l; — Uy for which T# : C(K) — [],(/1,¢2) is not 2-summing.
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I - Definitions and Preliminaries
Let E and F' be Banach spaces, and let 1 < ¢ < p < co. An operator T': E — F
is said to be (p,q)-summing if there exists a constant C' > 0 such that for any finite

sequence e, es, ... ,e, in E, we have

1
q

<Z I T'(e:) Hp) < Csup (Z |€*(€i)|q> et e BN fle" <1
=1 =1

We let 7, ,(T") denote the smallest constant C' such that the above inequality holds, and let
Hp,q(E, F') be the space of all (p, ¢)-summing operators from E to F' with the norm m, 4. It
is easy to check that [, (E, F) is a Banach space. In the case p = ¢, we will simply write
[[,(E, F) and 7. We will use the fact that 7' € [[, (F, F) if and only if 3 [|Te,[|” < oo
for every infinite sequence (e,) in E with ) |e*(e,)|? < oo for each e* En E*. That is
to say, T"is in [ (&, F) if and only if T sZznds all weakly /,-summable sequences into

strongly ¢,-summable sequences. In what follows we shall mainly be interested in the case

where p =¢qg and p =1 or 2.

Given two Banach spaces F and F, we will let E®.F denote their injective tensor
product, that is, the completion of the algebraic tensor product £ ® F under the cross

norm || - || given by the following formula. If > e; ® z; € E ® F, then
i=1

n
1S e o = sup{
=1

Ze*(ei)fc*(%)

et IS L 2" € 1,e" € EF a2t GF*}.

We will say that a bounded linear operator T between two Banach spaces E and F' is
called an integral operator if the bilinear form 7 defines an element of (E®.F*)*, where
7 is induced by T according to the formula 7(e,z*) = x*(Te) (e € E, z* € F*). We will

define the integral norm of T', denoted by || T' |/int, by

n n
S ai(Te)|: | Y e @ af < 1}.
=1 =1

2

1T [fing = sup {




The space of all integral operators from a Banach space E into a Banach space F' will

be denoted by I(E, F'). We note that I(F, F') is a Banach space under the integral norm

I lint-

We will say that a Banach space X is a £.-space if, for some A > 1, we have that
for every finite dimensional subspace B of X, there exists a finite dimensional subspace F
of X containing B, and an invertible bounded linear operator T': E — (4mE gych that

T T=t < A

It is well known that for any Banach spaces E and F, if T is in I(E, F), then it is
also in [[,(E, F), with 7 (T) <|| T [lins. But I(E, F) is strictly included in [[,(E, F). It
was shown in [12, p. 477] that a Banach space E is a £.-space if and only if for any
Banach space F', we have that I(E,F) = [[,(E, F). We will use this characterization of

£ so-spaces in the sequel.

Finally, we note the following characterization of 1-summing operators (called right

semi-integral by Grothendieck in [5]), which will be used later.

Proposition 1 Let EF and F' be Banach spaces. Then the following properties about a
bounded linear operator T from E to F' are equivalent:

(i) T is 1-summing;

(ii) There exists a Banach space Fi, and an isometric injection ¢ : F — F}, such that

poT : E — F} is an integral operator.

For all other undefined notions we shall refer the reader to either [3], [7] or [10].



IT 1-Summing and Integral Operators

Let X and Y be Banach spaces with injective tensor product X&.Y. For a Banach
space Z, any bounded linear operator T : X®.Y — Z induces a linear operator T# on
X by

T#z(y)=T(x®y) (yeY).

It is clear that the range of T# is the space £(Y, Z) of bounded linear operators from Y

into Z, and that 7% is a bounded linear operator.

In this section, we are going to investigate the 1-summing operators, and the integral
operators, on X®.Y. We will use Proposition 1 to relate these two ideas together. First

of all, we have the following result.

Theorem 2 Let X,Y and Z be Banach spaces, and let T: X®.Y — Z be a bounded
linear operator. Denote by ¢ : Z — Z** the isometric embedding of Z into Z**. Then
the following two properties are equivalent:
() T € I(X®.Y, Z);
(i) 10T € I(X,I(Y, Z**)), where i : I(Y,Z) — I(Y, Z**) is defined by i(U) =i o U for
each U € I(Y, Z).
In particular, if T# € I(X,1(Y, Z)), then T € [(X®.Y, Z).

Proof: First, we show that (X®.Y)®.Z* and X®.(Y ®.Z*) are isometrically isomor-
phic to one another. To see this, note that the algebraic tensor product is an associative
operation, that is, (X ® V) ® Z* and X ® (Y ® Z*) are algebraically isomorphic. Also,
they are both generated by elements of the form i T ®Y; @z, where x; € X, y; € Y and
zf € Z*. Now, if we let B(X™*), B(Y*) and B(Zz*:*l) denote the dual unit balls of X*, Y*
and Z** equipped with their respective weak® topologies, then the spaces (X ®Y) ®, Z*
and X ®. (Y ®. Z*) embed isometrically into C' (B(X*) x B(Y*) x B(Z**)) in a natural
way, by

n n
Swop e, @y =3 2 @)y )2 (=),
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where Y 2, ®@y; @27 isin (X ®.Y)® Z* or X ®c (Y ® Z*), and (z*,y*, 2**) is in the
i=1

compact set B(X*)x B(Y*)x B(Z**). Thus both spaces (X®.Y)®.Z* and X®(Y®.Z*)

can be thought of as the closure in C' (B(X*) x B(Y*) x B(Z**)) of the algebraic tensor

product of X, Y and Z*.

Now let us assume that T: X®.Y — Z is an integral operator. Then the bilinear
map 7 on X®.Y x Z*, given by 7(u, 2*) = 2*(Tu) for v € X®.Y and z* € Z*, defines an

element of (X®EY®EZ*)*, that is,

(*) T Jline= sup {\ DA T@iew): | Y wi0y®z < 1} :
=1

=1

To show that for every z in X the operator T#x is in I1(Y, Z), with
I T#2 Jlime<ll 2 | 1| T [line,

is easy. This is because, for each x € X, the operator 7%z is the composition of T with
the bounded linear operator from Y to X®.Y, which to each y in Y gives the element

rRY.

If1: Z — Z** denotes the isometric embedding of Z into Z**, it induces a bounded
linear operator i : I(Y,Z) — I(Y,Z**) given by i(U) = io U for all U € I(Y,Z).
It is immediate that 7 is an isometry. We will now show that the operator i o T# :
X — I(Y,Z*) is integral. It is well known (see [3, p. 237]) that the space I(Y,Z**)
is isometrically isomorphic to the dual space (Y ®.Z*)*. Thus to show that 1o T# :
X — (Y®.Z*)* is an integral operator, we need to show that it induces an element of
(X R(Y®Z *))* For this, it is enough to note that, by our discussion concerning the
isometry of (X®.Y)®.Z* and X®.(Y ®.Z*), that

n n
() H%oT#Him=sup{12%oT#xi,yi@zm:uzmmz«:Hes1}-

=1 =1



But for each x € X, y € Y and z* € Z*, we have
(5 oT#z,y®@2*) = (T(z@y),2*).
Hence, from (*) and (**), it follows that
lioT fine=IT llint -

Thus we have shown that (i) = (ii). The proof of (ii) = (i) follows in a similar way. If
ioT#: X — I(Y, Z**) is an integral operator, then one can show that ioT : X®. Y —

Z** is integral, which in turn implies that 7" itself is integral (see [3, p. 233]).

Finally, the last assertion follows easily, since if T# : X — I(Y, Z) is integral, then
i 0T is integral (see [3, p. 232]). O

Since the mapping i : I(Y,Z) — I(Y,Z**) is an isometry, Proposition 1 coupled
with Theorem 2 implies that, if T : X®.Y — Z is an integral operator, then T7# :
X — I(Y, Z) is 1-summing. This result can be shown directly from the definitions. In

what follows we shall present a sketch of that alternative approach.

Theorem 3 Let X, Y and Z be Banach spaces, and let T: X®.Y — Z be a bounded
linear operator. If T is integral, then 7% : X — I(Y,Z) is 1-summing. If in addition
X is a £o.-space, then T : X®.Y — Z is integral if and only if T# : X — I(Y, Z) is

integral.

Proof: First, we will show that, if T : X®.Y — Z is an integral operator, then 7%
is in [[, (X, (Y, Z)) with 71 (T#) <|| T |lins. Let z1,22,...,2, be in X, and fix € > 0.
For each ¢ < n, there exists n; € N, (yi;),<,,, in Y, and (2];)j<n, in Z*, such that

n
I3 yiy @25 < 1, and
j=1

€

| T flme< Y 25 (T @ 9ig) + o5
j=1

6



Since T is an integral operator, and
n o n n
1D @ ©yiy @ 2 [|< sup {Z 2" (@i)] - | 2" [|[< 1,27 € X*}’
i=1j=1 i=1
it follows that
n n n
Yo 2 (T @) < T e sup {Z 2" ()]« | 2" [[< 1, 2% € X*} :
i=1j=1 i=1

Therefore
n n
S T# s e </ T e sup {Z (@) 2 € X7 2 < 1} ‘e
i=1 i=1

Now, if in addition X is a £..-space, then by [12, p. 477], the operator T# is indeed

integral. |

Remark 4 If X = C() is a space of continuous functions defined on a compact Hausdorff

space {2, one can deduce a similar result to Theorem 3 from the main result of [13].

Our next result extends a result of [16] to £,-spaces, where it was shown that
whenever X = C(£2), a space of all continuous functions on a compact Hausdorff space
Q, then a bounded linear operator T : C(Q)®.Y — Z is l-summing if and only if
T#: C(Q) — [[,(Y,Z) is 1-summing. This also extends a result of [14] where similar
conclusions were shown to be true for X = A(K), a space of continuous affine functions

on a Choquet simplex K (see [2]).

We note that one implication follows with no restriction on X. If X, Y and Z are
Banach spaces, and T : X®.Y — Z is a 1-summing operator, then T7# takes its values
in [T,(Y,Z). This follows from the fact that for each x € X, the operator T#z is the
composition of 7' with the bounded linear operator from Y into X®.Y which to each y in

Y gives the element z ® y in X®.Y, and hence

m(T%z) <|| z || m(T).
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Moreover, one can proceed as in [16] to show that 7% : X — [[,(Y, Z) is 1-summing.

Theorem 5 If X is a £, space, then for any Banach spaces Y and Z, a bounded linear

operator T : X®.Y — Z is 1-summing if and only if 7% : X — [[,(Y, Z) is 1-summing.

Proof: Let T: X®.Y — Z be such that T# : X — [[,(Y,Z) is 1-summing. Since
X is a £oo-space, it follows from [14, p. 477] that 7% : X — [],(Y,Z) is an integral
operator. Let ¢ denote the isometric embedding of Z into C (B(Z*)), the space of all
continuous scaler functions on the unit ball B(Z*) of Z* with its weak*-topology. This

induces an isometry
(/5 : Hl(Y7 Z) - Hl ((ch(B(Z*))) )
o(U)=polU forall U € [, (Y, 2).

Now, it follows from [15, p. 301}, that [[, (Y,C(B(Z*))) is isometric to I (Y,C(B(Z*))).
Hence we may assume that ¢ o T# : X — I (Y,C(B(Z*))) is an integral operator.
Moreover, it is easy to check that (p o T)# = % o T#. By Theorem 2 the operator
poT: X®Y — C(B(Z*)) is an integral operator, and hence T is in [], (X&®.Y, Z) by

Proposition 1. O

In the following section we shall, among other things, exhibit an example that illus-
trates that it is crucial for the space X to be a £, .-space if the conclusion of Theorem 5

is to be valid.

IITI 2-summing Operators and some Counter-examples.

In this section we shall study the behavior of 2-summing operators on injective tensor
product spaces. As we shall soon see, the behavior of such operators when p = 2 is quite
different from when p = 1. For instance, unlike the case p = 1, the £,.-spaces don’t seem
to play any particular role. In fact, we shall exhibit operators T on C[0,1]®.f> which
are not 2-summing, yet their corresponding operators T# are. We will also give other

interesting examples that answer some other natural questions.
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We will present the next theorem for p = 2, but the same result is true for any

1 < p < oo, with only minor changes.

Theorem 6 Let X,Y and Z be Banach spaces. If T : X®.Y — Z is a 2-summing

operator, then T# : X — [[,(Y, Z) is a 2-summing operator.

Proof: If T: X®.Y — Z is 2-summing, then using the same kind of arguments that
we have given above, it can easily be shown that for each z € X, that T#z € LY, 2),
with 7o (T#z) < mo(T) || z ||.

Now we will show that T# : X — [[,(Y,2) is 2-summing. Let (z,) be in X such
that > |2*(z,)|? < oo for each z* in X*. Fix ¢ > 0. For each n > 1, let (y,m) be a

sequence in Y such that

0o 1/2
sup (Z ly*(ynm>l2> Ny <Ly eV <1,
m=1

and

- 1/2
T2 (T#xn) < (Z | T(zn @ Ynm) H2> + 2%

m=1

Then

0 o 1/2 9
[71—2 (T#xn)]2 S Z || T(I’n X ynm) ||2 +2n€—1 <Z || T(an X ynm) ||2> =+ 26%
m=1 m=1

Now, consider the sequence (7, ® yn,) in X®.Y. For each £ € (X®EY)* ~ [(X,Y") we

have that

Z |€(xn)(ynm)|2 = Z Z |£(xn)(ynm)|2

n=1m=1
<>l |17
n=1
Since £ € I(X,Y™), it follows that £ € [[5(X,Y™), and so

Y 1) IP< oo
n=1
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Hence we have shown that for all £ € (X®.Y)*,
D 1E@n) (nm)* < 0.
Since T € [], (X&®.Y, Z), we have that

Z | T(20 @ Ynm) [|2< o0,

m,n

and therefore

3 (w2 (T#,)]” < .

n

O

Remark 7 The above result extends a result of [1], where it was shown that if T :

X®.Y — Z is p-summing for 1 < p < oo, then T# : X — £(Y, Z) is p-summing.
Now we shall give the example that we promised at the end of section II.

Theorem 8 There exists a bounded linear operator T : ¢5®.¢5 — ¢ such that T is not

I-summing, yet T# : fy — 71 ({3, l5) is 1-summing.

Proof: First, we note the well known fact that fo®fo = IC(l2, £2), the space of all compact

operators from {5 to ¢5. Now we define T" as the composition of two operators.

Let P: IC({2,05) — co be the operator defined so that for each K € IC(ls, {2),
P(K) = (K(en)(en))

where (e, ) is the standard basis of £5. It is well known [10, p.145] that the sequence (e, ®e;,)
in fo®.l5 is equivalent to the co-basis, and that the operator P defines a bounded linear

projection of K(¢2, ¢3) onto co.
Let S: ¢g — £2 be the bounded linear operator such that for each (a,) € ¢

Ay,

S(ay) = (—) .

n
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It is easily checked [7, p. 39] that S is a 2-summing operator that is not 1-summing.

Now we define T : IC(l3,02) — €3 to be T'= S o P. Thus T is 2-summing but not
l-summing. It follows from Theorem 6 that the induced operator T% : fo — [],(fa, £2)
is 2-summing. Since ¢5 is of cotype 2, it follows from [10, p. 62], that for any Banach space
E, we have [[,({2, E) = [][,(¢2, E), and that there exists a constant C' > 0 such that for

all U € [[,(l2, E) we have

7T1(U) S C7T2(U)

This implies that T# is 1-summing as an operator taking its values in [, (f2, £2). O

Remark 9 We do not need to use Theorem 6 to show that 7% is l-summing in the
example above. Instead, we can use the following argument. First note that 7% factors as

follows:

T#
by — 7T1(52752)

]
ly /' B
Here A : (5 — {5 is the 1-summing operator defined by

Alan) = (22,

n

for each () € lo, and B : ly — w1 ({2, {2) is the natural embedding of /5 into the space

1 (62, 52) defined by

B(ﬁn)('yn) = (ﬁn')/n)

for each (8,), (7n) € £s.

Now we will give two examples concerning the case when p > 1. We will show that we

do not have a converse to Theorem 8, even when the underlying space X is a £,.-space.
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First, let us fix some notation. In what follows we shall denote the space ¢,(Z) by £,,

and call its standard basis {e,, : n € Z}. Thus if x = (z(n)) € ¢,, then z(n) = (z,e,), and

P

I [le,= (Z (=, 6n>|p>)

I £ lle,= (/01 |f(t)|pdt>%.

If Q is a compact Hausdorff space, and Y is a Banach space, then C(Q,Y) = C(Q)®.Y

For f € L,[0,1], we let

will denote the Banach space of continuous Y-valued functions on €2 under the supremum

norm.

We recall that since /5 is of cotype 2, we have that [[,(l2,l2) =[] (¢2,f2). We also

oo
recall that, if u = ) ane, ® e, is a diagonal operator in [[,(¢2,¢2), then

n=1

o0 3
mo(u) = (Z |an|2> = the Hilbert-Schmidt norm of w.
n=1

Theorem 10 For each 1 < p < oo, there is a bounded linear operator T : C([0, 1], ¢2) — {2

that is not p-summing, but such that T# : C[0,1] — II,,(f2, £2) is p-summing.

Proof: We present the proof for p < 2. The case where p > 2 follows by the same
argument. For each n € Z, let €,(¢) : [0,1] — C, €,(t) = 2" denote the standard
trigonometric basis of Ly[0,1]. If f € L1]0,1], let f(n) = fol f(t)en(t)dt denote the usual

Fourier coefficient of f. For each A = (\,,), where |\,,| < 1 for all n € Z, define the operator
T,\ : C([O, 1],52) — EQ
such that for ¢ € C ([0, 1], ¢2) we have

Trp = (An (@(n),€n) ) -

12



Here ¢(n) = Bochner —fol o(t)en (t)dt.

The operator T is a bounded linear operator, with || The |, <|| ¢ ||-

note that for ¢ € C ([0, 1], ¢2) we have
I Tae 17, = D Pl (@), en)
< Z [ (p(n),e

<Z/| ), en) |2dt

—/0 | o(t) |2, dt

< sup I o) |, -

Now, note that if f € C'(]0,1]), and z € /5, then
L(f 9 2) = (Af )z e0))
and hence the operator Tf : C0,1] —£(La, ) is such that
T () = (Mf()a.en))

Thus

N

m(T f) = (Z\MU’ )

Hence, by Holder’s inequality,

m(TE£) < ) el (F()) e,

1 1 1
where — + — = 3 By the Hausdorft-Young inequality, we have that
rooq

I (F ) e, <Nl f Iz,

1 1
where 1 <p <2and — + — =1. Thus
p q

mo(TEF) <) Ow) e || £ Iz,

13
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1 1 1

for1<p<2 2<r<ocoand - =-+ 3 This shows that if || (A\,,) ||¢, < 0o, then
p T

(1) TF (C[0,1]) C ma(la, £a) = mp(L2, L);

(2) Tf : C|0,1] — mp(¢2, £2) is p-summing.

Now, let U C C([0,1],%2) be the closed linear span of {¢; ® e;, a; € Z}. Then U is

isometrically isomorphic to ¢5. This is because

1Y mici@ei | = sup || (paea(®)) |l
P te[0,1]

=l (mi€ito)) lles

for some ¢y € [0, 1], and hence

1
2
1) piei @e; ||= <Z|Mi|2> :
7 1

Moreover

T)\(Ei X 62‘) = \;€; for all 7 € Z,

Therefore, we have the following commuting diagram
T
v 25 4

Ql /" S

£y
where @) : U — /{5 is the isomorphism from U onto ¢y such that Q(e, ® e,) = e, for
all n € Z, and Sy : {3 — {5 is the operator given by Sx(e,) = Anen. So to show that
T\ is not p-summing, it is sufficient to show that one can pick A = ()\;,) such that S

is not p-summing. To do this, we consider two cases. If p = 2, we take \,, = 1 for all

n € Z. Then the map Sy induced on /5 is the identity map which is not s-summing for
1

In+ 1|7 log|n+ 1|

the map Sy : ¢35 — {5 is not s-summing for any s < r. To show this, we may assume,

any s < oo. If 1 < p <2 let A\, = so that || (An) |le, < 00. Then

without loss of generality, that s > 2. Let z,, = e,, for all n > 1, and note that

0=

sup (le*(wn)F) <l 2" lle,< 1,

ZC*EB(ZQ) n
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whilst )

s

(; I A us) .

O

While the operators T) in the previous example failed to be p-summing, they were all
(2,1)-summing. This suggests the following question: suppose T': C([0,1],Y) — Z is a
bounded linear operator such that T# : C[0,1] — [[,(Y, Z) is 2-summing. What can we

say about 77 Is T' (2, 1)-summing? The following example shows that 7' can be very bad.

Theorem 11 There exists a Banach space Z, and a bounded linear operator

T: C([0,1],¢1) — Z such that T# : C[0,1] — [[,(f1, Z) is 2-summing, with the property
that, for any N € N, there exists a subspace U of C (]0,1],¢;) with dimU = N, such
that T restricted to U behaves like the identity operator on ¢ . In particular T is not

(2,1)-summing.

Proof: If X and Y are Banach spaces, we denote by X®,.Y the projective tensor product,

that is, the completion of the algebraic tensor product of X and Y under the norm

n n
lulla= ity i 1y ll, w=) zi©y}
i=1 i=1

It is well known that (X®,Y)* is isometrically isomorphic to the space £(X,Y*) of all

bounded linear operators from X to Y*.

Let Z = C ([0,1],¢1) + L2[0, 1)®,¢2 be the Banach space with the norm
|2 llz=inf ()l & e + | 2" o & ="+ 2"},

where || || denotes the sup norm in C' ([0, 1], ¢1), and || || denotes the norm of the projective

tensor product Lo[0, 1)@, ¢2. Let

T: C(0,1,6) — Z

15



be the identity operator.

We first see that for each f € C[0,1], the operator T# f : ¢; — Z is 2-summing with

mo(T#f) <o) 1 T#f |l g0y

where I : /1 — {5 is the natural mapping. This is because, for each f € C[0, 1], and each

x € /1, we have that

IT(f@z) <l forllp,e.e<lfl |zl -

To see that T# : C[0,1] — [],(¢1, X) is 2-summing, note that || T# f £, Z)SH fllzgs
and hence if f1,..., f, € C[0,1], then

( [wQ(T#fk)}Q) < ma(l) (Z | i ||%2)
L k=1

=1

-

NI

< mo(I)ma(J) sup (Z |fk(t)|2>
K=1

te(0,1]
Here J : C[0,1] — Lx[0, 1] denotes the natural mapping.

Now we define the space U, a closed linear subspace of C ([0,1],¢1). Let {fi; : 1 <
i,j < N} be disjoint functions in C10, 1], for which 0 < f;; < 1, || fi; [|= 1, each f;; is

1
supported in an interval of length N2 and

! 1 v, 1
/0 Jigdt = 5y and /0 Jiydt = 3
Let {e;; : 1 <4,j < N} be distinct unit vectors in ;. Welet U = {>_ \;fi; ®e;5, A € R}.
1,
Now we consider T restricted to U. If > \; fi; ® e;; € U, then
4,9
1) " Aifis @ eij [|e< sup |Aql,
ij ’
and hence
1) " Nifi; @ eij [l z< sup | Aq].
i, !

16



Let yf NZfU ® e;5, and set © = Y A fi; ® e;;. Then whenever z = 2/ + 2, with
i,
' e C(]0,1], 61) and z” € L]0, 1)@, F2, we know that

7 ()] < lyi' ()] + [yi (7)1

Hence
i (@) <y leqoanens 12" e + 195 lirao,n8.00) 127 NIz -
But
| vi lleqo,e) = NZ/ | fijldt
supp fij
B N 1
2N2 2’

and, since (L]0, 1]®,r£2)* is isometric to £(L2[0, 1], ¢2),

1

N 1
197 ooty = Sup 4[> (N / Figdt)E | g lla< 1
j=1

N

< su

T

N 1
N [ [ lgPant g st
j=1 0 supp fij

a_w 8-

2/ Pty o g < 1
supp fi;

Therefore
1 1 1
@<z 2 e +—= 2" |-, < —= || x| .
lyi (@) < 5 |« | \/gll I _\/gll I
However,
N 1
_ 2
s
=N2)\—— ==,
Ai 3N2 3
Therefore

HZA fij ® ei Hz>fsup\yz( )|

,J

1
> —su )\2
2 7= p A

17



Thus the space U is isomorphic to X, and we have the commuting diagram

T\u

U —— 7T(0)

4o e

N td,N N
loo — L

where A: U — (% is the isomorphism between U and ¢%. O

IV Operators that factor through a Hilbert space

It is well known that £(X,¥2) = [[5(X,¢2) whenever X is C(K) or ¢;. One might
ask whether this is true when X = C(K, ¢1). Indeed one could ask the weaker question: if
T : C(K, ;) — {5 is bounded, does it follow that the induced operator T# is 2-summing?

We answer this question in the negative.

Theorem 12 There is a compact Hausdorff space K and a bounded linear operator

T: C(K,t;) — {y for which T# : C(K) — [],(¢1,¢2) is not 2-summing.

Proof: First, we show that there is a compact Hausdorff space K, and an operator
R: C(K) — l that is (2,1)-summing but not 2-summing. To see this, let K = [0, 1],
and consider the natural embedding C[0,1] — L2 1[0, 1], where Ly 1[0,1] is the Lorentz
space on [0,1] with the Lebesque measure (see [6]). By [11], it follows that this map is
(2,1)-summing. To show that this map is not 2-summing, we argue in a similar fashion to
[8]. For n € N, consider the functions e;(¢) = f(¢t+ 1 mod 1) (1 < i < n), where f(t) = %

if t > % and /n otherwise. Then it is an easy matter to verify that for some constant

C >0,

2

(Z e (e¢)|2> < C+/logn

for every e* in the unit ball of C[0,1]*, whereas

=

(zne@-umﬂ) > Clogn.
1=1

18



Finally, since L2 110, 1] is separable, it embeds isometrically into {.

Define T': C(K,{;) — {5 as follows: for ¢ = (f,) € C(K,{1), let

T(fn) =Y Rfa(n)en.

Then T is bounded, for

N=

| T(fn) |2 = (Z |an<n)|2>
< (Z | Rfy H%w)

< maa(R)sup ¥ [ fu(t)].

N[

Thus

| T < w21 (R).

But T# : C(K) — £(f1,{3) is not 2-summing, because for each f € C(K), the operator
T#f: #; — ly is the diagonal operator >_ Rf(n)e, ® e,. Hence the strong operator
norm of T7# f is

I T#f |I= sup|Rf (n)] =|[ Bf lle. -

Thus T# : C(K) — £({1,0) is not 2-summing, because R : C(K) — { is not

2-summing,. O

Discussions and concluding remarks

Remark 13 Theorem 12 shows that if X and Y are Banach spaces such that £(X,¢s) =
[1,(X,ls) and £(Y,l3) = [[,(X,¢2), then X®.Y need not share this property. This
observation could also be deduced from arguments presented in [4] (use Example 3.5 and
the proof of Proposition 3.6 to show that there is a bounded operator T': ({1 ® {1 & ... D

01)e,, — U5 that is not p-summing for any p < co).
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Remark 14 In the proof of Theorem 2 we showed that the injective tensor product is
an associative operation, that is, if X,Y and Z are Banach spaces, then (X®.Y)®.Z is
isometrically isomorphic to X®,.(Y®.Z). It is not hard to see that the same is true for
the projective tensor product. However, we can conclude from Theorem 12 that what is

known as the v;-tensor product is not an associative operation.

If £ and F are Banach spaces, and T': E —— F' is a bounded linear operator,
following [10], we say that 7" factors through a Hilbert space if there is a Hilbert
space H, and operators B: E — H and A: H — F such that T = Ao B. We let
v2(T) = inf{|| A || || B ||}, where the infimum runs over all possible factorization of T,
and denote the space of all operators T': E — F that factor through a Hilbert space by
[y (E, F). It is not hard to check that o defines a norm on I'y(E, F'), making I's(E, F') a
Banach space. We define the v3-norm || ||« on E® F' (see [9] or [10]) in which the dual of
E®F is identified with T'y(E, F*), and let E®.; F' denote the completion of (E®F, || |[.).

The operator T : C(K)&ysf; — {5 exhibited in Theorem 12, induces a bounded
linear functional on [(C(K)@W;&)@y;ég]*. Now we see that if C(K)®.z(£/1&4s03) were
isometrically isomorphic to (C(K)&-z£1)®+s 2, then the operator T# : C(K) —£({y,{s)
would induce a bounded linear functional on [C(K)®yz (L1843 Eg)}*, showing that T# €
[y (C(K), £(¢1,£5)), implying that T# would be 2-summing [10, p. 62]. This contradiction
shows that C(K)®.: ((1®:l2) and (C(K)®yzl1) @l cannot be isometrically isomor-

phic.

Another example showing that the v3-tensor product is not associative was given by

Pisier (private communication).
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