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Introduction Let X and Y be Banach spaces, and let X⊗̂εY denote their injective tensor

product. In this paper, we shall study the behavior of those operators on X⊗̂εY that are

p-summing.

If X, Y and Z are Banach spaces, then every p-summing operator T : X⊗̂εY −→ Z

induces a p-summing linear operator T# : X −→
∏
p(Y, Z). This raises the following

question: given two Banach spaces Y and Z, and 1 ≤ p < ∞, for what Banach spaces

X is it true that a bounded linear operator T : X⊗̂εY −→ Z is p-summing whenever

T# : X −→
∏
p(Y, Z) is p-summing?

In [11], it was shown that whenever X = C(Ω) is a space of all continuous functions

on a compact Hausdorff space Ω, then T : C(Ω)⊗̂εY −→ Z is 1-summing if and only if

T# : C(Ω) −→
∏

1(Y, Z) is 1-summing. We will extend this result by showing that this

result still remains true if X is any £∞-space. We will also give an example to show that

the result need not be true if X is not a £∞-space. For this, we shall exhibit a 2-summing

operator T on `2⊗̂ε`2 that is not 1-summing, but such that the associated operator T# is

1-summing.

The case p > 1 turns out to be quite different. Here, the £∞-spaces do not seem to

play any important role. We show that for each 1 < p <∞, there exists a bounded linear

operator T : C[0, 1]⊗̂ε`2 −→ `2 such that T# : C[0, 1] −→
∏
p(`2, `2) is p-summing, but

such that T is not p-summing. We will also give an example that shows that, in general,

the condition on T# to be 2-summing is too weak to imply any good properties for the

operator T at all. To illustrate this, we shall exhibit a bounded linear operator T on

C[0, 1]⊗̂ε`1 with values in a certain Banach space Z, such that T# : C[0, 1] −→
∏

2(`1, Z)

is 2-summing, but for any given N ∈ N, there exists a subspace U of C[0, 1]⊗̂ε`1, with

dimU = N , such that T restricted to U is equivalent to the identity operator on `N∞.

Finally, we show that there is a compact Hausdorff space K and a bounded linear

operator T : C(K)⊗̂ε`1 −→ `2 for which T# : C(K) −→
∏

1(`1, `2) is not 2-summing.
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I - Definitions and Preliminaries

Let E and F be Banach spaces, and let 1 ≤ q ≤ p < ∞. An operator T : E −→ F

is said to be (p, q)-summing if there exists a constant C ≥ 0 such that for any finite

sequence e1, e2, . . . , en in E, we have

(
n∑
i=1

‖ T (ei) ‖p
) 1
p

≤ C sup


(

n∑
i=1

|e∗(ei)|q
) 1
q

: e∗ ∈ E∗, ‖ e∗ ‖≤ 1

 .

We let πp,q(T ) denote the smallest constant C such that the above inequality holds, and let∏
p,q(E,F ) be the space of all (p, q)-summing operators from E to F with the norm πp,q. It

is easy to check that
∏
p,q(E,F ) is a Banach space. In the case p = q, we will simply write∏

p(E,F ) and πp. We will use the fact that T ∈
∏
p,q(E,F ) if and only if

∑
n
‖Ten‖p <∞

for every infinite sequence (en) in E with
∑
n
|e∗(en)|q < ∞ for each e∗ ∈ E∗. That is

to say, T is in
∏
p,q(E,F ) if and only if T sends all weakly `q-summable sequences into

strongly `p-summable sequences. In what follows we shall mainly be interested in the case

where p = q and p = 1 or 2.

Given two Banach spaces E and F , we will let E⊗̂εF denote their injective tensor

product, that is, the completion of the algebraic tensor product E ⊗ F under the cross

norm ‖ · ‖ε given by the following formula. If
n∑
i=1

ei ⊗ xi ∈ E ⊗ F , then

‖
n∑
i=1

ei ⊗ xi ‖ε= sup

{∣∣∣∣∣
n∑
i=1

e∗(ei)x∗(xi)

∣∣∣∣∣ : ‖ e∗ ‖≤ 1, ‖ x∗ ‖≤ 1, e∗ ∈ E∗, x∗ ∈ F ∗
}
.

We will say that a bounded linear operator T between two Banach spaces E and F is

called an integral operator if the bilinear form τ defines an element of (E⊗̂εF ∗)∗, where

τ is induced by T according to the formula τ(e, x∗) = x∗(Te) (e ∈ E, x∗ ∈ F ∗). We will

define the integral norm of T , denoted by ‖ T ‖int, by

‖ T ‖int = sup

{∣∣∣∣∣
n∑
i=1

x∗i (Tei)

∣∣∣∣∣ : ‖
n∑
i=1

ei ⊗ x∗i ‖ε≤ 1

}
.
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The space of all integral operators from a Banach space E into a Banach space F will

be denoted by I(E,F ). We note that I(E,F ) is a Banach space under the integral norm

‖ ‖int.

We will say that a Banach space X is a £∞-space if, for some λ > 1, we have that

for every finite dimensional subspace B of X, there exists a finite dimensional subspace E

of X containing B, and an invertible bounded linear operator T : E −→ `dimE
∞ such that

‖ T ‖ ‖ T−1 ‖≤ λ.

It is well known that for any Banach spaces E and F , if T is in I(E,F ), then it is

also in
∏

1(E,F ), with π1(T ) ≤‖ T ‖int. But I(E,F ) is strictly included in
∏

1(E,F ). It

was shown in [12, p. 477] that a Banach space E is a £∞-space if and only if for any

Banach space F , we have that I(E,F ) =
∏

1(E,F ). We will use this characterization of

£∞-spaces in the sequel.

Finally, we note the following characterization of 1-summing operators (called right

semi-integral by Grothendieck in [5]), which will be used later.

Proposition 1 Let E and F be Banach spaces. Then the following properties about a

bounded linear operator T from E to F are equivalent:

(i) T is 1-summing;

(ii) There exists a Banach space F1, and an isometric injection ϕ : F −→ F1, such that

ϕ ◦ T : E −→ F1 is an integral operator.

For all other undefined notions we shall refer the reader to either [3], [7] or [10].
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II 1-Summing and Integral Operators

Let X and Y be Banach spaces with injective tensor product X⊗̂εY . For a Banach

space Z, any bounded linear operator T : X⊗̂εY −→ Z induces a linear operator T# on

X by

T#x(y) = T (x⊗ y) (y ∈ Y ).

It is clear that the range of T# is the space £(Y, Z) of bounded linear operators from Y

into Z, and that T# is a bounded linear operator.

In this section, we are going to investigate the 1-summing operators, and the integral

operators, on X⊗̂εY . We will use Proposition 1 to relate these two ideas together. First

of all, we have the following result.

Theorem 2 Let X,Y and Z be Banach spaces, and let T : X⊗̂εY −→ Z be a bounded

linear operator. Denote by i : Z −→ Z∗∗ the isometric embedding of Z into Z∗∗. Then

the following two properties are equivalent:

(i) T ∈ I(X⊗̂εY, Z);

(ii) î ◦ T ∈ I(X, I(Y, Z∗∗)), where î : I(Y, Z) −→ I(Y, Z∗∗) is defined by î(U) = i ◦ U for

each U ∈ I(Y, Z).

In particular, if T# ∈ I(X, I(Y,Z)), then T ∈ I(X⊗̂εY,Z).

Proof: First, we show that (X⊗̂εY )⊗̂εZ∗ and X⊗̂ε(Y ⊗̂εZ∗) are isometrically isomor-

phic to one another. To see this, note that the algebraic tensor product is an associative

operation, that is, (X ⊗ Y ) ⊗ Z∗ and X ⊗ (Y ⊗ Z∗) are algebraically isomorphic. Also,

they are both generated by elements of the form
n∑
i=1

xi⊗yi⊗z∗i , where xi ∈ X, yi ∈ Y and

z∗i ∈ Z∗. Now, if we let B(X∗), B(Y ∗) and B(Z∗∗) denote the dual unit balls of X∗, Y ∗

and Z∗∗ equipped with their respective weak∗ topologies, then the spaces (X ⊗ε Y )⊗ε Z∗

and X ⊗ε (Y ⊗ε Z∗) embed isometrically into C (B(X∗)×B(Y ∗)×B(Z∗∗)) in a natural

way, by

〈
n∑
i=1

xi ⊗ yi ⊗ z∗i , (x∗, y∗, z∗∗)〉 =
n∑
i=1

x∗(xi)y∗(yi)z∗∗(z∗i ),

4



where
n∑
i=1

xi ⊗ yi ⊗ z∗i is in (X ⊗ε Y )⊗ε Z∗ or X ⊗ε (Y ⊗ε Z∗), and (x∗, y∗, z∗∗) is in the

compact set B(X∗)×B(Y ∗)×B(Z∗∗). Thus both spaces (X⊗̂εY )⊗̂εZ∗ and X⊗̂ε(Y ⊗̂εZ∗)

can be thought of as the closure in C (B(X∗)×B(Y ∗)×B(Z∗∗)) of the algebraic tensor

product of X, Y and Z∗.

Now let us assume that T : X⊗̂εY −→ Z is an integral operator. Then the bilinear

map τ on X⊗̂εY × Z∗, given by τ(u, z∗) = z∗(Tu) for u ∈ X⊗̂εY and z∗ ∈ Z∗, defines an

element of
(
X⊗̂εY ⊗̂εZ∗

)∗, that is,

(*) ‖ T ‖int= sup

{
|
n∑
i=1

z∗i (T (xi ⊗ yi)) : ‖
n∑
i=1

xi ⊗ yi ⊗ z∗i ‖ε≤ 1

}
.

To show that for every x in X the operator T#x is in I(Y,Z), with

‖ T#x ‖int≤‖ x ‖ ‖ T ‖int,

is easy. This is because, for each x ∈ X, the operator T#x is the composition of T with

the bounded linear operator from Y to X⊗̂εY , which to each y in Y gives the element

x⊗ y.

If i : Z −→ Z∗∗ denotes the isometric embedding of Z into Z∗∗, it induces a bounded

linear operator î : I(Y, Z) −→ I(Y,Z∗∗) given by î(U) = i ◦ U for all U ∈ I(Y, Z).

It is immediate that î is an isometry. We will now show that the operator î ◦ T# :

X −→ I(Y, Z∗∗) is integral. It is well known (see [3, p. 237]) that the space I(Y, Z∗∗)

is isometrically isomorphic to the dual space (Y ⊗̂εZ∗)∗. Thus to show that î ◦ T# :

X −→ (Y ⊗̂εZ∗)∗ is an integral operator, we need to show that it induces an element of(
X⊗̂ε(Y ⊗̂εZ∗)

)∗. For this, it is enough to note that, by our discussion concerning the

isometry of (X⊗̂εY )⊗̂εZ∗ and X⊗̂ε(Y ⊗̂εZ∗), that

(**) ‖ î ◦ T# ‖int= sup

{
|
n∑
i=1

î ◦ T#xi, yi ⊗ z∗i | :‖
n∑
i=1

xi ⊗ yi ⊗ z∗i ‖ε≤ 1

}
.
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But for each x ∈ X, y ∈ Y and z∗ ∈ Z∗, we have

〈̂i ◦ T#x, y ⊗ z∗〉 = 〈T (x⊗ y), z∗〉.

Hence, from (*) and (**), it follows that

‖ î ◦ T ‖int=‖ T ‖int .

Thus we have shown that (i)⇒ (ii). The proof of (ii)⇒ (i) follows in a similar way. If

î◦T# : X −→ I(Y,Z∗∗) is an integral operator, then one can show that i◦T : X⊗̂εY −→

Z∗∗ is integral, which in turn implies that T itself is integral (see [3, p. 233]).

Finally, the last assertion follows easily, since if T# : X −→ I(Y, Z) is integral, then

î ◦ T is integral (see [3, p. 232]).

Since the mapping î : I(Y,Z) −→ I(Y,Z∗∗) is an isometry, Proposition 1 coupled

with Theorem 2 implies that, if T : X⊗̂εY −→ Z is an integral operator, then T# :

X −→ I(Y, Z) is 1-summing. This result can be shown directly from the definitions. In

what follows we shall present a sketch of that alternative approach.

Theorem 3 Let X, Y and Z be Banach spaces, and let T : X⊗̂εY −→ Z be a bounded

linear operator. If T is integral, then T# : X −→ I(Y, Z) is 1-summing. If in addition

X is a £∞-space, then T : X⊗̂εY −→ Z is integral if and only if T# : X −→ I(Y, Z) is

integral.

Proof: First, we will show that, if T : X⊗̂εY −→ Z is an integral operator, then T#

is in
∏

1 (X, I(Y, Z)) with π1(T#) ≤‖ T ‖int. Let x1, x2, . . . , xn be in X, and fix ε > 0.

For each i ≤ n, there exists ni ∈ N, (yij)j≤ni in Y , and (z∗ij)j≤ni in Z∗, such that

‖
ni∑
j=1

yij ⊗ z∗ij ‖ε≤ 1, and

‖ T#xi ‖int≤
ni∑
j=1

z∗ij (T (xi ⊗ yij)) +
ε

2i
.
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Since T is an integral operator, and

‖
n∑
i=1

ni∑
j=1

xi ⊗ yij ⊗ z∗ij ‖ε≤ sup

{
n∑
i=1

|x∗(xi)| : ‖ x∗ ‖≤ 1, x∗ ∈ X∗
}
,

it follows that

n∑
i=1

ni∑
j=1

z∗ij (T (xi ⊗ yij)) ≤‖ T ‖int sup

{
n∑
i=1

|x∗(xi)| : ‖ x∗ ‖≤ 1, x∗ ∈ X∗
}
.

Therefore

n∑
i=1

‖ T#xi ‖int ≤‖ T ‖int sup

{
n∑
i=1

|x∗(xi)| : x∗ ∈ X∗, ‖ x∗ ‖≤ 1

}
+ ε.

Now, if in addition X is a £∞-space, then by [12, p. 477], the operator T# is indeed

integral.

Remark 4 If X = C(Ω) is a space of continuous functions defined on a compact Hausdorff

space Ω, one can deduce a similar result to Theorem 3 from the main result of [13].

Our next result extends a result of [16] to £∞-spaces, where it was shown that

whenever X = C(Ω), a space of all continuous functions on a compact Hausdorff space

Ω, then a bounded linear operator T : C(Ω)⊗̂εY −→ Z is 1-summing if and only if

T# : C(Ω) −→
∏

1(Y, Z) is 1-summing. This also extends a result of [14] where similar

conclusions were shown to be true for X = A(K), a space of continuous affine functions

on a Choquet simplex K (see [2]).

We note that one implication follows with no restriction on X. If X, Y and Z are

Banach spaces, and T : X⊗̂εY −→ Z is a 1-summing operator, then T# takes its values

in
∏

1(Y,Z). This follows from the fact that for each x ∈ X, the operator T#x is the

composition of T with the bounded linear operator from Y into X⊗̂εY which to each y in

Y gives the element x⊗ y in X⊗̂εY , and hence

π1(T#x) ≤‖ x ‖ π1(T ).
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Moreover, one can proceed as in [16] to show that T# : X −→
∏

1(Y, Z) is 1-summing.

Theorem 5 If X is a £∞ space, then for any Banach spaces Y and Z, a bounded linear

operator T : X⊗̂εY −→ Z is 1-summing if and only if T# : X −→
∏

1(Y,Z) is 1-summing.

Proof: Let T : X⊗̂εY −→ Z be such that T# : X −→
∏

1(Y, Z) is 1-summing. Since

X is a £∞-space, it follows from [14, p. 477] that T# : X −→
∏

1(Y, Z) is an integral

operator. Let ϕ denote the isometric embedding of Z into C (B(Z∗)), the space of all

continuous scaler functions on the unit ball B(Z∗) of Z∗ with its weak∗-topology. This

induces an isometry

ϕ̂ :
∏

1(Y, Z) −→
∏

1 ((Y,C(B(Z∗))) ,

ϕ̂(U) = ϕ ◦ U for all U ∈
∏

1(Y, Z).

Now, it follows from [15, p. 301], that
∏

1 (Y,C(B(Z∗))) is isometric to I (Y,C(B(Z∗))).

Hence we may assume that ϕ̂ ◦ T# : X −→ I (Y,C(B(Z∗))) is an integral operator.

Moreover, it is easy to check that (ϕ ◦ T )# = ϕ̂ ◦ T#. By Theorem 2 the operator

ϕ ◦ T : X⊗̂εY −→ C(B(Z∗)) is an integral operator, and hence T is in
∏

1

(
X⊗̂εY,Z

)
by

Proposition 1.

In the following section we shall, among other things, exhibit an example that illus-

trates that it is crucial for the space X to be a £∞-space if the conclusion of Theorem 5

is to be valid.

III 2-summing Operators and some Counter-examples.

In this section we shall study the behavior of 2-summing operators on injective tensor

product spaces. As we shall soon see, the behavior of such operators when p = 2 is quite

different from when p = 1. For instance, unlike the case p = 1, the £∞-spaces don’t seem

to play any particular role. In fact, we shall exhibit operators T on C[0, 1]⊗̂ε`2 which

are not 2-summing, yet their corresponding operators T# are. We will also give other

interesting examples that answer some other natural questions.
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We will present the next theorem for p = 2, but the same result is true for any

1 ≤ p <∞, with only minor changes.

Theorem 6 Let X,Y and Z be Banach spaces. If T : X⊗̂εY −→ Z is a 2-summing

operator, then T# : X −→
∏

2(Y,Z) is a 2-summing operator.

Proof: If T : X⊗̂εY −→ Z is 2-summing, then using the same kind of arguments that

we have given above, it can easily be shown that for each x ∈ X, that T#x ∈
∏

2(Y, Z),

with π2(T#x) ≤ π2(T ) ‖ x ‖.

Now we will show that T# : X −→
∏

2(Y,Z) is 2-summing. Let (xn) be in X such

that
∑
n
|x∗(xn)|2 < ∞ for each x∗ in X∗. Fix ε > 0. For each n ≥ 1, let (ynm) be a

sequence in Y such that

sup


( ∞∑
m=1

|y∗(ynm)|2
)1/2

: ‖ y∗ ‖≤ 1, y∗ ∈ Y ∗
 ≤ 1,

and

π2

(
T#xn

)
≤

( ∞∑
m=1

‖ T (xn ⊗ ynm) ‖2
)1/2

+
ε

2n
.

Then

[
π2

(
T#xn

)]2 ≤ ∞∑
m=1

‖ T (xn ⊗ ynm) ‖2 +
ε

2n−1

( ∞∑
m=1

‖ T (xn ⊗ ynm) ‖2
)1/2

+
ε2

22n
.

Now, consider the sequence (xn ⊗ ynm) in X⊗̂εY . For each ξ ∈
(
X⊗̂εY

)∗ ' I(X,Y ∗) we

have that ∑
m,n

|ξ(xn)(ynm)|2 =
∞∑
n=1

∞∑
m=1

|ξ(xn)(ynm)|2

≤
∞∑
n=1

‖ ξ(xn) ‖2 .

Since ξ ∈ I(X,Y ∗), it follows that ξ ∈
∏

2(X,Y ∗), and so

∞∑
n=1

‖ ξ(xn) ‖2<∞.
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Hence we have shown that for all ξ ∈ (X⊗̂εY )∗,

∑
m,n

|ξ(xn)(ynm)|2 <∞.

Since T ∈
∏

2

(
X⊗̂εY, Z

)
, we have that

∑
m,n

‖ T (xn ⊗ ynm) ‖2<∞,

and therefore ∑
n

[
π2

(
T#xn

)]2
<∞.

Remark 7 The above result extends a result of [1], where it was shown that if T :

X⊗̂εY −→ Z is p-summing for 1 ≤ p <∞, then T# : X −→ £(Y,Z) is p-summing.

Now we shall give the example that we promised at the end of section II.

Theorem 8 There exists a bounded linear operator T : `2⊗̂ε`2 −→ `2 such that T is not

1-summing, yet T# : `2 −→ π1(`2, `2) is 1-summing.

Proof: First, we note the well known fact that `2⊗̂ε`2 = K(`2, `2), the space of all compact

operators from `2 to `2. Now we define T as the composition of two operators.

Let P : K(`2, `2) −→ c0 be the operator defined so that for each K ∈ K(`2, `2),

P (K) = (K(en)(en)) ,

where (en) is the standard basis of `2. It is well known [10, p.145] that the sequence (en⊗en)

in `2⊗̂ε`2 is equivalent to the c0-basis, and that the operator P defines a bounded linear

projection of K(`2, `2) onto c0.

Let S : c0 −→ `2 be the bounded linear operator such that for each (αn) ∈ c0

S(αn) =
(αn
n

)
.
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It is easily checked [7, p. 39] that S is a 2-summing operator that is not 1-summing.

Now we define T : K(`2, `2) −→ `2 to be T = S ◦ P . Thus T is 2-summing but not

1-summing. It follows from Theorem 6 that the induced operator T# : `2 −→
∏

2(`2, `2)

is 2-summing. Since `2 is of cotype 2, it follows from [10, p. 62], that for any Banach space

E, we have
∏

2(`2, E) =
∏

1(`2, E), and that there exists a constant C > 0 such that for

all U ∈
∏

2(`2, E) we have

π1(U) ≤ Cπ2(U).

This implies that T# is 1-summing as an operator taking its values in
∏

1(`2, `2).

Remark 9 We do not need to use Theorem 6 to show that T# is 1-summing in the

example above. Instead, we can use the following argument. First note that T# factors as

follows:

`2
T#

−−→ π1(`2, `2)
A

ỳ
2 ↗ B

Here A : `2 → `2 is the 1-summing operator defined by

A(αn) =
(αn
n

)
,

for each (αn) ∈ `2, and B : `2 −→ π1(`2, `2) is the natural embedding of `2 into the space

π1(`2, `2) defined by

B(βn)(γn) = (βnγn)

for each (βn), (γn) ∈ `2.

Now we will give two examples concerning the case when p > 1. We will show that we

do not have a converse to Theorem 8, even when the underlying space X is a £∞-space.
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First, let us fix some notation. In what follows we shall denote the space `p(Z) by `p,

and call its standard basis {en : n ∈ Z}. Thus if x = (x(n)) ∈ `p, then x(n) = 〈x, en〉, and

‖ x ‖`p=

( ∞∑
n=1

|〈x, en〉|p〉

) 1
p

.

For f ∈ Lp[0, 1], we let

‖ f ‖Lp=
(∫ 1

0

|f(t)|pdt
) 1
p

.

If Ω is a compact Hausdorff space, and Y is a Banach space, then C(Ω, Y ) = C(Ω)⊗̂εY

will denote the Banach space of continuous Y -valued functions on Ω under the supremum

norm.

We recall that since `2 is of cotype 2, we have that
∏

2(`2, `2) =
∏

1(`2, `2). We also

recall that, if u =
∞∑
n=1

αnen ⊗ en is a diagonal operator in
∏

2(`2, `2), then

π2(u) =

( ∞∑
n=1

|αn|2
) 1

2

= the Hilbert-Schmidt norm of u.

Theorem 10 For each 1 < p <∞, there is a bounded linear operator T : C([0, 1], `2)→ `2

that is not p-summing, but such that T# : C[0, 1] −→ Πp(`2, `2) is p-summing.

Proof: We present the proof for p ≤ 2. The case where p > 2 follows by the same

argument. For each n ∈ Z, let εn(t) : [0, 1] → C, εn(t) = e2π int denote the standard

trigonometric basis of L2[0, 1]. If f ∈ L1[0, 1], let f̂(n) =
∫ 1

0
f(t)εn(t)dt denote the usual

Fourier coefficient of f . For each λ = (λn), where |λn| ≤ 1 for all n ∈ Z, define the operator

Tλ : C ([0, 1], `2) −→ `2

such that for ϕ ∈ C ([0, 1], `2) we have

Tλϕ = (λn 〈ϕ̂(n), en〉 ) .

12



Here ϕ̂(n) = Bochner –
∫ 1

0
ϕ(t)εn(t)dt.

The operator Tλ is a bounded linear operator, with ‖ Tλϕ ‖`2≤‖ ϕ ‖. To see this,

note that for ϕ ∈ C ([0, 1], `2) we have

‖ Tλϕ ‖2`2 =
∑
n

|λn|2| 〈ϕ̂(n), en〉 |2

≤
∑
n

| 〈ϕ̂(n), en〉 |2

≤
∑
n

∫ 1

0

| 〈ϕ(t), en〉 |2dt

=
∫ 1

0

‖ ϕ(t) ‖2`2 dt

≤ sup
t
‖ ϕ(t) ‖2`2 .

Now, note that if f ∈ C ([0, 1]), and x ∈ `2, then

Tλ(f ⊗ x) =
(
λnf̂(n)〈x, en〉

)
,

and hence the operator T#
λ : C[0, 1]→£(`2, `2) is such that

T#
λ f(x) =

(
λnf̂(n)〈x, en〉

)
.

Thus

π2(T#
λ f) =

(∑
n

|λn|2|f̂(n)|2
) 1

2

.

Hence, by Hölder’s inequality,

π2(T#
λ f) ≤‖ (λn) ‖`r‖ (f̂(n)) ‖`q ,

where
1
r

+
1
q

=
1
2

. By the Hausdorff-Young inequality, we have that

‖ (f̂(n)) ‖`q≤‖ f ‖Lp ,

where 1 ≤ p ≤ 2 and
1
p

+
1
q

= 1. Thus

π2(T#
λ f) ≤‖ (λn) ‖`r ‖ f ‖Lp ,

13



for 1 ≤ p ≤ 2, 2 ≤ r ≤ ∞ and
1
p

=
1
r

+
1
2

. This shows that if ‖ (λn) ‖`r<∞, then

(1) T#
λ (C[0, 1]) ⊆ π2(`2, `2) = πp(`2, `2);

(2) T#
λ : C[0, 1] −→ πp(`2, `2) is p-summing.

Now, let U ⊂ C ([0, 1], `2) be the closed linear span of {εi ⊗ ei, ai ∈ Z}. Then U is

isometrically isomorphic to `2. This is because

‖
∑
i

µiεi ⊗ ei ‖ = sup
t∈[0,1]

‖ (µnεn(t)) ‖`2

=‖ (µiεi(t0)) ‖`2 ,

for some t0 ∈ [0, 1], and hence

‖
∑
i

µiεi ⊗ ei ‖=

(∑
i

|µi|2
) 1

2

.

Moreover

Tλ(εi ⊗ ei) = λiei for all i ∈ Z,

Therefore, we have the following commuting diagram

U
Tλ|U−−−→ `2

Q

y ↗ Sλ

`2

where Q : U → `2 is the isomorphism from U onto `2 such that Q(εn ⊗ en) = en for

all n ∈ Z, and Sλ : `2 −→ `2 is the operator given by Sλ(en) = λnen. So to show that

Tλ is not p-summing, it is sufficient to show that one can pick λ = (λn) such that Sλ

is not p-summing. To do this, we consider two cases. If p = 2, we take λn = 1 for all

n ∈ Z. Then the map Sλ induced on `2 is the identity map which is not s-summing for

any s < ∞. If 1 < p < 2, let λn =
1

|n+ 1| 1r log |n+ 1|
, so that ‖ (λn) ‖`r< ∞. Then

the map Sλ : `2 −→ `2 is not s-summing for any s < r. To show this, we may assume,

without loss of generality, that s ≥ 2. Let xn = en for all n ≥ 1, and note that

sup
x∗∈B(`2)

(∑
n

|x∗(xn)|s
) 1
s

≤‖ x∗ ‖`2≤ 1,

14



whilst (∑
n

‖ λnxn ‖s
) 1
s

=∞.

While the operators Tλ in the previous example failed to be p-summing, they were all

(2,1)-summing. This suggests the following question: suppose T : C ([0, 1], Y ) −→ Z is a

bounded linear operator such that T# : C[0, 1] −→
∏

2(Y, Z) is 2-summing. What can we

say about T? Is T (2, 1)-summing? The following example shows that T can be very bad.

Theorem 11 There exists a Banach space Z, and a bounded linear operator

T : C ([0, 1], `1)→ Z such that T# : C[0, 1]→
∏

2(`1, Z) is 2-summing, with the property

that, for any N ∈ N, there exists a subspace U of C ([0, 1], `1) with dimU = N , such

that T restricted to U behaves like the identity operator on `N∞. In particular T is not

(2,1)-summing.

Proof: If X and Y are Banach spaces, we denote by X⊗̂πY the projective tensor product,

that is, the completion of the algebraic tensor product of X and Y under the norm

‖ u ‖π= inf{
n∑
i=1

‖ xi ‖‖ yi ‖, u =
n∑
i=1

xi ⊗ yi}.

It is well known that (X⊗̂πY )∗ is isometrically isomorphic to the space £(X,Y ∗) of all

bounded linear operators from X to Y ∗.

Let Z = C ([0, 1], `1) + L2[0, 1]⊗̂π`2 be the Banach space with the norm

‖ x ‖Z= inf{‖ x′ ‖ε + ‖ x′′ ‖π: x = x′ + x′′},

where ‖ ‖ε denotes the sup norm in C ([0, 1], `1), and ‖ ‖π denotes the norm of the projective

tensor product L2[0, 1]⊗̂π`2. Let

T : C ([0, 1], `1) −→ Z

15



be the identity operator.

We first see that for each f ∈ C[0, 1], the operator T#f : `1 → Z is 2-summing with

π2(T#f) ≤ π2(I) ‖ T#f ‖£(`2,Z),

where I : `1 −→ `2 is the natural mapping. This is because, for each f ∈ C[0, 1], and each

x ∈ `1, we have that

‖ T (f ⊗ x) ‖≤‖ f ⊗ x ‖L2⊗̂π`2≤‖ f ‖L2 ‖ x ‖`2 .

To see that T# : C[0, 1] −→
∏

2(`1, X) is 2-summing, note that ‖ T#f ‖£(`2,Z)≤‖ f ‖L2 ,

and hence if f1, . . . , fn ∈ C[0, 1], then(
n∑
k=1

[
π2(T#fk)

]2) 1
2

≤ π2(I)

(
n∑
k=1

‖ fk ‖2L2

) 1
2

≤ π2(I)π2(J) sup
t∈[0,1]

∥∥∥∥∥∥
(

n∑
K=1

|fk(t)|2
) 1

2

∥∥∥∥∥∥ .
Here J : C[0, 1] −→ L2[0, 1] denotes the natural mapping.

Now we define the space U , a closed linear subspace of C ([0, 1], `1). Let {fij : 1 ≤

i, j ≤ N} be disjoint functions in C[0, 1], for which 0 ≤ fij ≤ 1, ‖ fij ‖= 1, each fij is

supported in an interval of length
1
N2

, and

∫ 1

0

fijdt =
1

2N2
and

∫ 1

0

f2
ijdt =

1
3N2

.

Let {eij : 1 ≤ i, j ≤ N} be distinct unit vectors in `1. We let U = {
∑
i,j

λifij⊗eij , λi ∈ R}.

Now we consider T restricted to U . If
∑
i,j

λifij ⊗ eij ∈ U , then

‖
∑
i,j

λifij ⊗ eij ‖ε≤ sup
i
|λi|,

and hence

‖
∑
i,j

λifij ⊗ eij ‖Z≤ sup
i
|λi|.
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Let y∗i = N
∑
j

fij ⊗ eij , and set x =
∑
i,j

λifij ⊗ eij . Then whenever x = x′ + x′′, with

x′ ∈ C ([0, 1], `1) and x′′ ∈ L2[0, 1]⊗̂π`2, we know that

|y∗i (x)| ≤ |y∗i (x′)|+ |y∗i (x′′)|.

Hence

|y∗i (x)| ≤‖ y∗i ‖C([0,1],`1)∗ ‖ x′ ‖ε + ‖ y∗i ‖(L2[0,1]⊗̂π`2)∗ ‖ x
′′ ‖π .

But

‖ y∗i ‖C([0,1],`1)∗ = N
N∑
i=1

∫
supp fij

|fij |dt

= N · N

2N2
=

1
2
,

and, since
(
L2[0, 1]⊗̂π`2

)∗ is isometric to £(L2[0, 1], `2),

‖ y∗i ‖(L2[0,1]⊗̂π`2)∗ = sup

[
N∑
j=1

(N
∫ 1

0

fijgdt)2]
1
2 : ‖ g ‖L2≤ 1


≤ sup

N [
N∑
j=1

∫ 1

0

f2
ijdt ·

∫
supp fij

|g|2dt] 1
2 :‖ g ‖L2≤ 1


=

1√
3

(
N∑
j=1

∫
supp fij

|g|2dt) 1
2 :‖ g ‖2≤ 1


=

1√
3
.

Therefore

|y∗i (x)| ≤ 1
2
‖ x′ ‖ε +

1√
3
‖ x′′ ‖π,≤

1√
3
‖ x ‖ .

However,

y∗i (x) = N
N∑
j=1

λi

∫ 1

0

f2
ijdt

= N2λi
1

3N2
=
λi
3
.

Therefore
‖
∑
i,j

λifij ⊗ eij ‖Z ≥
√

3 sup
i
|y∗i (x)|

≥ 1√
3

sup |λi|.
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Thus the space U is isomorphic to `N∞, and we have the commuting diagram

U
T|U−−−−→ T (U)

A

y xA−1

`N∞
id
`N∞−−−−→ `N∞

where A : U → `N∞ is the isomorphism between U and `N∞.

IV Operators that factor through a Hilbert space

It is well known that £(X, `2) =
∏

2(X, `2) whenever X is C(K) or `1. One might

ask whether this is true when X = C(K, `1). Indeed one could ask the weaker question: if

T : C(K, `1) −→ `2 is bounded, does it follow that the induced operator T# is 2-summing?

We answer this question in the negative.

Theorem 12 There is a compact Hausdorff space K and a bounded linear operator

T : C(K, `1) −→ `2 for which T# : C(K) −→
∏

1(`1, `2) is not 2-summing.

Proof: First, we show that there is a compact Hausdorff space K, and an operator

R : C(K) −→ `∞ that is (2,1)-summing but not 2-summing. To see this, let K = [0, 1],

and consider the natural embedding C[0, 1] −→ L2,1[0, 1], where L2,1[0, 1] is the Lorentz

space on [0, 1] with the Lebesque measure (see [6]). By [11], it follows that this map is

(2,1)-summing. To show that this map is not 2-summing, we argue in a similar fashion to

[8]. For n ∈ N, consider the functions ei(t) = f(t+ 1
i mod 1) (1 ≤ i ≤ n), where f(t) = 1√

t

if t ≥ 1
n and

√
n otherwise. Then it is an easy matter to verify that for some constant

C > 0, (
n∑
i=1

|e∗(ei)|2
) 1

2

≤ C
√

log n

for every e∗ in the unit ball of C[0, 1]∗, whereas(
n∑
i=1

‖ei‖2L2,1[0,1]

) 1
2

≥ C−1 log n.
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Finally, since L2,1[0, 1] is separable, it embeds isometrically into `∞.

Define T : C(K, `1)→ `2 as follows: for ϕ = (fn) ∈ C(K, `1), let

T (fn) =
∑
n

Rfn(n)en.

Then T is bounded, for

‖ T (fn) ‖2 =

(∑
n

|Rfn(n)|2
) 1

2

≤

(∑
n

‖ Rfn ‖2`∞

) 1
2

≤ π2,1(R) sup
t∈K

∑
n

|fn(t)|.

Thus

‖ T ‖≤ π2,1(R).

But T# : C(K) −→ £(`1, `2) is not 2-summing, because for each f ∈ C(K), the operator

T#f : `1 −→ `2 is the diagonal operator
∑
n
Rf(n)en ⊗ en. Hence the strong operator

norm of T#f is

‖ T#f ‖= sup
n
|Rf(n)| =‖ Rf ‖`∞ .

Thus T# : C(K) −→ £(`1, `2) is not 2-summing, because R : C(K) −→ `∞ is not

2-summing.

Discussions and concluding remarks

Remark 13 Theorem 12 shows that if X and Y are Banach spaces such that £(X, `2) =∏
2(X, `2) and £(Y, `2) =

∏
2(X, `2), then X⊗̂εY need not share this property. This

observation could also be deduced from arguments presented in [4] (use Example 3.5 and

the proof of Proposition 3.6 to show that there is a bounded operator T : (`1 ⊕ `1 ⊕ . . .⊕

`1)`∞ −→ `2 that is not p-summing for any p <∞).
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Remark 14 In the proof of Theorem 2 we showed that the injective tensor product is

an associative operation, that is, if X,Y and Z are Banach spaces, then (X⊗̂εY )⊗̂εZ is

isometrically isomorphic to X⊗̂ε(Y ⊗̂εZ). It is not hard to see that the same is true for

the projective tensor product. However, we can conclude from Theorem 12 that what is

known as the γ∗2 -tensor product is not an associative operation.

If E and F are Banach spaces, and T : E −→ F is a bounded linear operator,

following [10], we say that T factors through a Hilbert space if there is a Hilbert

space H, and operators B : E −→ H and A : H −→ F such that T = A ◦ B. We let

γ2(T ) = inf{‖ A ‖ ‖ B ‖}, where the infimum runs over all possible factorization of T ,

and denote the space of all operators T : E −→ F that factor through a Hilbert space by

Γ2(E,F ). It is not hard to check that γ2 defines a norm on Γ2(E,F ), making Γ2(E,F ) a

Banach space. We define the γ∗2 -norm ‖ ‖∗ on E⊗F (see [9] or [10]) in which the dual of

E⊗F is identified with Γ2(E,F ∗), and let E⊗̂γ∗2F denote the completion of (E⊗F, ‖ ‖∗).

The operator T : C(K)⊗̂γ∗2 `1 −→ `2 exhibited in Theorem 12, induces a bounded

linear functional on
[
(C(K)⊗̂γ∗2 `1)⊗̂γ∗2 `2

]∗. Now we see that if C(K)⊗̂γ∗2 (`1⊗̂γ∗2 `2) were

isometrically isomorphic to (C(K)⊗̂γ∗2 `1)⊗̂γ∗2 `2, then the operator T# : C(K)→£(`1, `2)

would induce a bounded linear functional on
[
C(K)⊗̂γ∗2 (`1⊗̂γ∗2 `2)

]∗, showing that T# ∈

Γ2 (C(K),£(`1, `2)), implying that T# would be 2-summing [10, p. 62]. This contradiction

shows that C(K)⊗̂γ∗2 (`1⊗̂γ∗2 `2) and
(
C(K)⊗̂γ∗2 `1

)
⊗̂γ∗2 `2 cannot be isometrically isomor-

phic.

Another example showing that the γ∗2 -tensor product is not associative was given by

Pisier (private communication).
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A.M.S. 16, (1955).

[6] R.A. Hunt, On L(p, q) spaces, L’Enseignement Math. (2), 12, (1966), p. 249–275.

[7] G.J.O. Jameson, Summing and Nuclear Norms in Banach Space Theory,

LMSST 8, Cambridge University Press (1987).

[8] G.J.O. Jameson, Relations between summing norms of mappings on `∞, Math. Z,

194, (1987), p. 89–94.

[9] S. Kwapien, On operators factorizable through Lp-spaces, Bull. Soc. Math. France,

Mém 31–32, (1972), p. 215–225.

[10] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces,

AMS CBMS 60, Providence RI (1986).

[11] G. Pisier, Factorization of operators through Lp∞ or Lp1 and non commutative gen-

eralizations, Math. Ann., 276, (1986), p. 105–136.

[12] J.R. Retherford, and C. Stegall, Fully Nuclear and Completely Nuclear Operators with

applications to £1 and £∞ spaces, T.A.M.S., 163, (1972) p. 457–492.

[13] P. Saab, Integral Operators on Spaces of Continuous Vector Valued Functions, Proc.

Amer. Math. Soc. (to appear).

[14] B. Smith, Some Bounded Linear Operators On the Spaces C(Ω, E) and A(K,E), Ph.D.

Dissertation, The University of Missouri-Columbia, 1989.

21



[15] C. Stegall, Characterization of Banach spaces whose duals are L1 spaces, Is. J. of

Math, 11, (1972) p. 299–308.

[16] C. Swartz, Absolutely summing and dominated operators on spaces of vector-valued

continuous functions, T.A.M.S., 179, (1973) p. 123–132.

University of Missouri

Dept. of Math.

Columbia, MO 65211

22


