NOVEL PCR-BASED RAPID DETECTION STRATEGIES FOR ESCHERICHIA COLI O157:H7 AND SALMONELLA IN MEAT PRODUCTS

Luxin Wang

Dr. Azlin Mustapha, Dissertation Supervisor

ABSTRACT

Accurate and fast detection methods for foodborne pathogens from various food samples have always been important goals for scientists from many research areas. DNA-based PCR techniques cannot differentiate between DNA from live and dead cells. Ethidium bromide monoazide (EMA) is a dye that can bind to DNA of dead cells and prevent its amplification by PCR. An EMA staining step prior to real-time PCR allows for the effective inhibition of DNA contamination from dead cells. With an optimized EMA staining step, the detection range was 10^3 to 10^9 CFU/ml for pure cultures, 10^5 to 10^9 CFU/ml for artificially contaminated poultry samples, and 10^8 to 10^4 CFU/g for ground beef samples. After a 12-h enrichment step, EMA combined real-time PCR could detect as low as 10 CFU/ml Salmonella from poultry products, as well as 10 CFU/g E. coli O157:H7 from ground beef. Quantum dots (QDs) are a family of nanosized particles with a 1 to 10 nm in radius. It has long-term stable photostability, high quantum yield, broad absorption spectra, narrow emission spectra and high signal-to-noise ratio. In this study, bead free QD facilitated detection method was used to detect Salmonella and E. coli O157:H7 cells from pure cultures, it can detect as low as 10 CFU/ml cells. When it was applied to artificially contaminated ground beef, it can detect 10^6 CFU/g cells. After enrichment, it can detect as low as 10 CFU/g Salmonella cells from ground beef.