Drying Fruits and Vegetables

FLORA L. CARL and LETHA O. KNIGHT

Drying is the simplest and cheapest method of preserving foods. Although freezing and canning usually are more desirable, drying becomes an important method of preserving surplus foods when freezer lockers are lacking, canning equipment inadequate, or containers and storage space are limited.

A variety of ways of preserving food is desirable at any time and especially when home produced foods make up a large part of the family meals. Dried foods have a flavor and texture that is different from the flavor of the same kind of food canned, brined, or preserved by some other method. To have a pleasing variety of meals from home produced foods it is advisable to dry some fruits and vegetables even when these products might be canned or preserved in some other way.

The underlying principles of drying fruits and vegetables are to remove sufficient moisture from food to prevent spoilage and to do this by methods that retain the maximum food value, natural flavor, color, and texture of the fresh product.

Products Best Suited for Drying

All fruits and vegetables do not lend themselves to the drying process. Fruits can be dried with a greater degree of success than vegetables; dried corn, herbs, and mature beans and peas being possible exceptions. Apples, peaches, and pears are the fruits usually dried in Missouri. Some people have dried blackberries, dewberries, cherries, and plums. The vegetables, in addition to corn, herbs, and mature beans and peas, which may be dried with some degree of success are snap beans, new peas, okra, pumpkin, squash, kale, and other leafy green vegetables. When immature vegetables are properly dried they may be satisfactory in appearance, flavor, and texture for several weeks but they gradually lose their palatability and develop an unpleasant hay-like odor. These changes occur more rapidly if they are not held in sealed, moisture-proof containers.
Drying Methods

There are two main methods of drying—sun drying and drying with artificial heat. With either method, the success of the drying process depends; (1) on stopping the changes which begin to occur as soon as the food is cut into pieces, (2) on using a temperature high enough to prevent the growth of organisms which cause spoilage; the temperature should not be high enough to burst the cells, spill their juice and cook or scorch the food, and (3) on having good circulation of dry air to remove the moisture from the food to be dried. The dryness of the air, the temperature of the air, and the circulation of the air are very important factors in drying food.

For sun drying, the food should be placed on a frame so the air will flow under as well as over it and some protection against insects, dust, rain, and dew should be provided. When the sun is very hot there is little difficulty from flies and other insects but at such times the food needs to be stirred frequently to prevent overheating. A sloping roof with a south exposure makes an excellent place for sun drying. The food should be placed in the shade an hour or so before it is first placed in the sun. It should not be taken out in the sun until the dew is well dried in the morning. It should be removed before the dew starts forming in the evening.

Drying with a drier and controlled heat, rather than sun drying, has several advantages. It goes on continually, even after sun down, or when the weather is damp or rainy. It takes less time to dry. It extends the time one can dry foods into the fall when late varieties of fruits and vegetables are maturing. Quick drying protects food values, color, and flavor but it requires close watching.

Food may be dried in the oven. Place the food on large cookie sheets and keep heat low and constant and stir the material often to insure even drying. The oven door is left open to allow escape of moisture and to keep the temperature low. If the oven does not have a heat regulator use a thermometer and try to keep the food at the desired temperature.

Equipment Needed for Drying

Expensive drying equipment is not necessary. A drier which will fit over the stove or other unit of heat, which favors rapid circulation of air over and under the food, and protects the food from dust and insects is highly desirable. The two driers shown in Figures 1 and 2 are very easily constructed and most farm homes will have scraps of material that can be used for making either.

A reliable thermometer is an insurance against damaged products. A dairy thermometer, which costs about 50c, is satisfactory for this purpose.

To prevent discoloration of acid fruits use stainless steel knives, cut the food on a wooden board and avoid use of iron containers.
A sulphuring chamber is necessary if apples or peaches are to be dried. This may be a tight box, a large stone jar, or a barrel.

A large kettle or wash boiler with rack, a steamer or a pressure cooker are preferable for blanching or steaming the vegetables before the drying process begins. Containers that will exclude air, light, and moisture are desirable for storing the dried products.

BILL OF MATERIAL

1-1"x4"x8' White Pine
1-1"x2"x8' White Pine
2 Pieces lattice 10' long
8-¼" Dia. x ½" Round head stove bolts
8-½" Dia. x 1½" flat head stove bolts
20 No. 6 Common nails
18-⅝" Gauge 5 flat head screws
86-1" Flat head nails
36 Carpet tacks
1 Piece galv. wire 24"x30"
1 Piece cheese cloth 24"x60"
1 Piece flat bar steel ⅛"x1⅛"x8'

Fig. 1.—Fruit and Vegetable Drier with adjustable legs. Plans shown in this and succeeding sketch were prepared by Ralph L. Ricketts, Extension Agricultural Engineer.

Fruit and Vegetable Drier with Adjustable Legs.—Cheese cloth is spread over the lattice supports and is held in place by the two end lattices fastened to the frame by screws. The lattice pieces in the center are supported by a ripped lattice nailed on each side of the frame. It is advisable to nail small lengths of ripped lattice across the corners of the bottom of the frame similar to those shown on the screen top cover frame. The legs are made of flat bar steel with the holes shown for adjustment of the length of legs. The bolts used to fasten the legs on the frame should be flat heads and the holes countersunk to allow the lower section of the legs to pass over the bolt head when the legs are adjusted. If considerable fruit is to be dried the screen top cover may be used as a second tray and other trays stacked over it if the drying is done over a stove.

BILL OF MATERIAL

1-1"x2"x8' White Pine
4 Pieces galv. tin 7¾"x6"
1 Piece galv. screen wire 24"x30"
1 Piece ½" mesh hardware cloth 24"x30"
36-¾" galv. poultry netting staples
8 No. 6 Common nails
36-¾" Gauge 5 round head screws

Fig. 2.—Simplified Fruit and Vegetable Drier.

Simplified Fruit and Vegetable Drier.—The poultry netting is stapled on the bottom of the frame. Small cross braces are not
necessary. The galvanized tin legs are fastened to the frame by means of screws. The screen wire is simply laid on top and not nailed. It may be temporarily tacked if necessary. To prevent No. 6 nails from splitting pine, grind points off before driving. Two or three trays may be made and stacked on top of each other.

Preparation of Food for Drying

Select only fresh, sound fruits and vegetables that are in ideal condition for table use. Drying cannot improve the quality of the food, at most it can only preserve it without deterioration. Vegetables that are not tender or are too old for immediate use should not be dried. Vegetables that are over-heated or wilted will not make a good dried product. All products should be handled carefully to prevent bruising. Gather the fruits or vegetables in the cool of the morning, begin the drying immediately and allow no delay in the various steps. Cut the food in thin, even slices or uniform pieces with a stainless steel knife on a wooden board.

As soon as fruits and vegetables are peeled, cut, and exposed to the air, a number of chemical changes in the tissues immediately begin. Some products darken and discolor; some pigment breaks down and fades; while other chemical changes affect the flavor and odor due to partial destruction of the sugar and protein. To retard and to prevent these chemical changes the fruits should be placed in salt water (3-5 teaspoons per gal.), or they should be sulphured. Vegetables should be steamed or blanched.

Steaming or Blanching.—The quick heating of a vegetable sets the color, coagulates some of its soluble constituents and makes it easier for the moisture to escape. Vegetables heated in steam are higher in food value than those precooked in boiling water. They keep better and have a better flavor and appearance when served.

When precooking, work with a small amount of food at a time so that it will all be heated to about the same temperature. If the vegetable is precooked in water use a large quantity of rapidly boiling water and ‘cook for the length of time that is recommended for that product. A wire basket or cheese cloth bag make a good containers for blanching. A steam cooker or a pressure cooker are ideal for precooking with steam. Put the prepared food in a wire basket and set the basket on a rack above the level of the water. Cover the cooker, leave the petcock open and keep the water boiling briskly for the time recommended. A wash boiler or other container having a tightly fitted cover and fitted with a wire basket for holding the material and a support to hold the basket above the level of the water, can be made to serve as a steamer. All pieces of food should be heated through to the center. When the vegetable is sufficiently steamed, spread it out on the racks and begin the drying process.
Sulphuring Fruit.—Sulphuring prevents discoloration of fruit, protects the vitamin content, and keeps insects away during the drying process. For sulphuring fruits one needs a small amount of sulphur, an open mesh basket or cloth sack to hold the fruit, and a barrel or box which will hold the sulphur fumes.

To sulphur fruit, peel or not as desired, cut in \(\frac{1}{4} \) to \(\frac{1}{2} \) inch slices or rounds, and place in the basket, cheese cloth bag or flour sack. Measure out one level teaspoon of sulphur for each pound of fruit or about 2 or 3 tablespoons for each peck of fruit. Wrap the sulphur in absorbant cotton or paper, light it, place in the bottom of the barrel or tight box, hang the basket of fruit in the top of the barrel, cover closely and let stand from 20 to 30 minutes depending on the kind of fruit and how it has been prepared. Remove the fruit and immediately place on the drier. A very hot stove lid or a pan of red coals may be used to heat the sulphur rather than the cotton or paper. To avoid loss of sulphur fumes it is important to have everything in readiness before the sulphur is heated and then to allow no delay in getting the box or barrel tightly covered.

Because sulphur fumes are very penetrating and because they retard chemical changes and repel spoilage organisms, apples which are left in the sulphur fumes for 3 or 4 hours instead of 20 to 30 minutes, will keep several months under favorable conditions, without the drying process. These sulphured apples should be packed in stone or other jars, covered tightly and stored in a cool place. They should be washed and then used as fresh apples.

The Drying Process

Drying should be done in such a way as to preserve the food value and as much as possible of the natural flavor, color, and cooking quality characteristic of the fresh material. Flavor and cooking qualities are best preserved by rapid drying. The more heat and the greater the circulation of air, the faster evaporation occurs. However, the product should dry from the inside out. If the temperature is too high the product will harden on the outside making it difficult for the inside moisture to escape. If the temperature runs to 175°F. or 185°F. the cell walls will break, the juice will leak out, and the product will be cooked rather than dried.

The best temperatures for drying are between 110°F. and 160°F. The temperature should be increased in the middle stage of drying and decreased toward the end. It is desirable to hold the drying fruits or vegetables at the temperature suggested for that particular product. If a thermometer is not available, learn to tell by the feel of the material on the tray whether or not it is drying satisfactorily. It should be moist to the touch and cooler than the air flowing over
it. If the food is virtually at air temperature and not moist to the touch it is drying too fast.

It is not desirable to dry different products at the same time as moisture is released at various rates and in various amounts from different foods. When drying over the stove the steam released from cooking or washing will retard the drying process and give a less desirable product.

Drying is not a difficult job but it does require attention throughout the process.

It is important to prepare only the amount of food which can be accommodated in the drier at one time. Load the trays evenly, and keep the temperature as even as possible. Care must be taken to prevent scorching which occurs rather easily when the product is about half dry.

Approximate Drying Time and Tests for Dried Fruit and Vegetables.—The time required to dry a food will vary with the type of food, the size of the pieces, the kind of drier used, the temperature, air movement, and the weather. Sun drying takes much longer than artificial heat drying. The less time it takes to dry the food the higher will be its vitamin value and the better its flavor, color, and texture.

Fruit.—Dried fruit should not be sticky; the pieces should spring back to their original shape and should separate from each other when a handful is pressed together firmly and then released. If the pieces shatter, the product has been dried too much. Fruit should be dried until leathery but not hard. By removing a piece of fruit occasionally and allowing it to cool, and testing it, the proper degree of dryness may be determined. Fruit, when hot, will always appear softer and less dry than when cool. The time required to obtain the proper degree of dryness will range from 6 to 24 hours.

Vegetables.—The time for drying vegetables will vary from 3 to 15 hours. The kind of vegetable to be dried and the size of the pieces make a great deal of difference in the length of time required for drying. Vegetables should be rigid, brittle, and "bone dry" when they are removed from the drier. If there is any doubt as to whether or not the vegetable is dry reduce the temperature and let it remain longer in the drier as there is little danger of drying vegetables too much if the temperature is low. Corn should be dried until it rattles on the tray when shaken. If it feels sharp to the touch usually it is dry.

To store well, dried fruit should not have more than 20% moisture while vegetables should have only 10% moisture.

Approximate Yield of Dried Food from Fresh

Twenty-five pounds of apples, peaches or pears will yield about 3 to 5 lbs. of dried fruit. Twenty-five pounds of vegetables will yield
about 2 to 3 pounds of dried vegetables. Twelve big ears of corn will yield about a pound of dried corn.

Directions for Drying Specific Fruits and Vegetables

Apples.—Select late maturing fruit of good dessert or cooking quality and make sure it is mature but not soft. Pare, trim, and cut in eighths, or cut in rounds about ½ inch thick. Sulphur 20 to 30 minutes, or hold in salt water (3 to 5 teaspoons salt to 1 gal. water) until placed in drier. Start drying at 130°F., increase to 175°F. Drying is completed when a handful of pieces has an elastic, springy feel and when pressed firmly into a ball will separate at once when pressure is removed, but will be soft enough to adhere slightly to the fingers. For variety, dip the peeled, cut apples into a thin boiling sugar sirup and dry quickly at about 150°F. These apples will often be as attractive and light in color as commercially dried apples. If beads of moisture appear on the apples and they become very sticky, the temperature is too high. From 2 to 2½ hours are sufficient for drying apples with artificial heat at the temperature given.

Peaches.—Dry any good table variety that is ripe but not soft. Uniform color and firmness are desirable. Handle carefully to prevent bruising. Wash, peel, as desired, stone, sulphur 20 to 30 minutes if peeled, 1 to 2 hours if unpeeled, place in layers on tray, pit side up. Same temperature as for apples and the same test for dryness.

Pears.—Bartlett or any fine-grained pear with a good flavor and high sugar content dries well. Pick when firm but readily loosened, store until ripe but still firm. Pare and core, slice or quarter. Sulphur or hold in salt water until placed in drier. Use same temperature and test for dryness as for apples.

Kiefer Pears.—After gathering, pears should be ripened at 60°F. for sufficient length of time to give them a good flavor. Peel, cut in sections and sulphur, dry as apples. When properly dried Kiefer pears are a product that is pliable, pale yellow in color, somewhat translucent and when cooked makes a table product that is mild and pleasing in flavor. If the pears are not ripened before drying, the product is hard, less flexible, and is greyish or white in appearance and when cooked is tough and lacking in flavor.

Berries.—The berries should be firm and not over ripe and should be placed in the trays without washing, sulphuring, or any other treatment. Taking time to pick leaves and stems from the berries before drying is not necessary as these are more easily removed after the product is dried. Start with an initial temperature of 135°F. to 145°F. and increase to 150°F. When the fruit is two-
thirds to three-fourths dry decrease the temperature. The berries are dry when they begin to rattle on the tray and when no moisture shows when they are crushed. It is not advisable to dry gooseberries, currants, or strawberries as the distinctive coloring and flavor of these fruits are driven off or broken down by heat.

Sweet Corn.—Select corn that is in the milk stage or when just right for eating as roasting ears. It is important to start drying the corn as soon as possible after gathering. Field corn may be used but the dried product is not as good.

Husk the ears and remove any worm injuries—silking is unnecessary. Hold in boiling water or steam 8 to 12 minutes to set the milk. Young corn will require more heat for this than old corn. Drain, cool, and cut the grains off the cob making sure that no cob is removed with the kernels. Spread the kernels evenly on trays $\frac{1}{2}$ to $\frac{3}{4}$ inches deep and start drying at a temperature of 165°F. and decrease the heat as the corn dries. Stir frequently to separate grains and break up masses. The corn shrinks rapidly in drying, and when partially dry, the contents of three or four trays can be put into one and the other trays made available for reloading with a fresh lot. In heating corn watch carefully as corn scorches easily.

When the corn is sufficiently dry, the kernels are hard, brittle, and semi-transparent and break like glass.

Some families have tried and liked the cream method of drying corn. In using the cream method the corn must dry very quickly to prevent mold and it must be stored in a cool dark place to prevent rancidity. For the cream method, clean, cook, and cut the corn as for the dry method. To each gallon of corn add $\frac{1}{2}$ cup of salt, $\frac{1}{2}$ cup of sugar and 1 cup of sweet cream. Mix thoroughly and dry as directed above. It should be dried in one day, conditioned 24 hours and immediately stored in sealed containers.

Mature Beans and Peas.—Navy beans, soy beans, lima beans, and mature peas are suitable for drying. Some varieties of pole beans make a desirable product if picked and dried when the beans are from 2/3 to 3/4 full grown. Gather when seeds are mature but before the pods are yellow and dry. Shell and dip 3 minutes in boiling water. Drain and spread on trays about 1 inch thick. Dry at 115°F. to 120°F. to begin the process, allowing temperature to rise to 140°F. Stir frequently at beginning. The process is complete when beans and peas are dry and brittle and will show no moisture at the center when split open.

Many families think it takes less effort and gives a satisfactory product to let the beans stay on the vines until the vines dry, then shell the beans and immediately treat them for storage.

Pumpkin and Squash.—Deep colored varieties of pumpkin and squash with firm, solid flesh are preferable for drying. If they
cannot be stored successfully or canned, dry them. Cut when ripe, in strips 1 to 2 inches wide, peel and cut in slices ¼ inch thick. Steam for about 5 minutes. Dry at moderate drying temperature 135°F. increased to 160°F. until leathery and there is no moisture when cut across. Good results are obtained also by steaming until done, running through a ricer or food chopper and then drying.

Soup Mixtures.—Choose available fall vegetables that will give a pleasing combination. Dry them separately according to instructions for that vegetable, then combine and store in one container for a soup mixture, chowder, or stew. Tomatoes with firm, meaty texture may be cut in ¼ inch slices and dried at a temperature of 125°F. and put into the soup mixture.

Seasonings.—Parsley leaves, mint, celery leaves, sage, dill, and other herbs, are not blanched before the drying process begins. Choose plants that are well developed, wash, spread out on trays and dry at a temperature of 115°F. to 130°F. The herbs may be broken up when dry to save storage space. The drying process may be done in a cool oven, 150°F., with the oven door open. Some people dry herbs by using the heat left in the oven after baking. Others dry herbs by hanging them in the shade. When “bone dry” they should be stored in containers that are air tight and moisture proof.

Okra.—Select young tender pods, wash, blanch whole for 2 minutes, cut in rings ½ inch thick and dry at a temperature 125°F. to 140°F. Dry until brittle.

Green Beans.—Dried green beans do not hold their flavor well so only the late varieties should be dried for winter use. Some varieties of late beans make very satisfactory dried products while others are always tough and woody in texture and deficient in flavor. Cut the beans in either of the following ways in 1 inch lengths, in long thin strips, shred them, or slice them on a kraut cutter, then steam or blanch 5 minutes and dry at a temperature of 120°F. to 130°F.

Leafy Green Vegetables.—Beet tops, kale, mustard greens, turnip greens, and spinach are satisfactory when dried if used within several weeks after drying. Wash, strip out the mid rib if it is quite prominent, steam or blanch the leaves for 5 or 7 minutes, spread out on trays nor more than one inch deep and dry at a temperature of 125°F. to 140°F. stirring frequently.

Conditioning the Dried Food

Since all pieces of food to be dried are not the same size and shape and consequently are not equally dry, it is necessary to expose the product to a low temperature so the moisture can redistribute itself throughout the pieces and thus obtain a product with uniform dryness. This process is called conditioning. Keep the dried food in
a shallow covered box, set in a warm place and shake the box or pour from one box to another two or three times a day. No definite amount of time can be given for conditioning or curing the dried product. Corn can be finished in a day or two, while fruit will require about a week.

After conditioning, place the dried food in shallow pans and heat to a temperature of 165°F to 185°F for 10 to 15 minutes to make sure it is free from all insect eggs and other organisms which might cause the food to spoil. If a thermometer is not available put the food in a slow oven and heat until it is too warm to handle comfortably with the bare hands. Stir the food frequently during the heating.

To Treat Dried Beans and Peas for Storage

Harvest beans and peas when they are mature and dry on the vines. Treat them soon after they are harvested so that all stages of insect pests will be killed. After treating, the beans and peas must be kept in a dry, tight container such as a lard can, other tin container, or glass jars, as they may become re-infested.

There are three general methods used for treating the dried beans. These are described by George D. Jones, extension entomologist, as follows:

1. **Dry Heat.**—This method is generally used when small quantities are involved. Spread the dry shelled beans or peas to a depth of one-half to three-fourths inch in shallow pans and place in an oven with a temperature of 120°F to 145°F for 3 or 4 hours. If the seeds are to be used for planting do not let the temperature rise over 135°F. If one does not have a thermometer the proper temperature may be judged by the hand. The pan or container should be just warm enough to handle comfortably.

2. **Fumigation or Using Carbon Disulphide.**—This method is used when large quantities of beans and peas are treated. Carbon disulphide is inflammable and all precautions against fire should be observed. Fill any air tight container, such as a tin pail, barrel, or tight box up to within a few inches of the top. Cover the seed with a cloth and pour carbon disulphide over the surface at the rate of one ounce or 3 tablespoons to each bushel of seed. Cover the container securely with paper and the lid and let it stand for 24 to 48 hours where the temperature is 70°F or above. Be sure to keep the container away from all fire. Remove the cloth and paper, put the lid on firmly and store in a cool dry place.

3. **Stored in Hydrated Lime.**—Beans treated by this method must be very thoroughly washed before cooking. Mix one pound of hydrated lime to each 2 pounds of dry shelled beans, if a small quantity is being treated. If a large quantity is being treated use one pound of hydrated lime to 4 pounds of beans.
Storage of Dried Food

Foods must be dry and cool before they are stored. They should be packed in containers that will exclude air, dust, light, moisture, insects, and rodents. Sirup buckets, tin cans, stout paper bags, and glass jars which are nicked or unfit for canning placed in paper sacks to exclude light are types of containers that might well be used for storing dried foods. Dried foods should be kept dry so cloth bags are not desirable for storing dried foods as they are not moisture proof. It is preferable to put the foods in small containers rather than in large ones since each time the container is opened to take out food some moisture will be absorbed by the rest of the food in the container. A number of small bags may be filled, sealed, and placed in a lard can or a stone crock to store.

Keep the dried foods in a cool, dark, dry place. The food should be examined frequently and if there is any sign of moisture reheat the dried products to 165° F. and reseal. After a long rainy season examine the dried products to make sure they are dry. A moldy piece may give a bad flavor to a whole bag of dried food. Dried fruits, owing to their high sugar content, have better keeping qualities than vegetables. Green growing vegetables, that are dried, lose flavor and texture and develop a hay-like odor in a few months. One should not attempt to keep these products more than 2 or 3 months and then only in sealed containers.

Cooking of Dried Fruits and Vegetables

The important principle involved in the successful cooking of dried fruits and vegetables is to replace in the food as nearly as possible the moisture that was removed during the drying process and then to begin the cooking process. Dried greens need very little soaking while some dried fruits require 3 or more hours of soaking in lukewarm or cold water. The product should be cooked in the same water in which it was soaked, adding more water if necessary. Dried foods should be simmered, not boiled. They should be cooked only until tender, since they lose flavor, texture, and color if they are over-cooked. Dried vegetables have been precooked; consequently the time for cooking them, with the exception of dried mature peas and beans, is quite short.

Food Value of Dried Foods

Dried fruits contain much sugar and consequently have good fuel or energy value. The sugar found in dried fruits is easily used by the body, therefore, using such food is the preferred way of including sugar in children's diets. Properly dried fruits contain all the food value of the fresh fruit with the exception of some of the vitamins C and B, and these are contained in a more concentrated form. Because they contain generous amounts of pectin, bulk, minerals, and vitamins dried fruits are excellent foods to help
keep the body in good running order. Dried fruits have lost the fresh flavor of raw fruit but they are high in flavor and are pleasing when added to cereals, breads, meats, and when used in pies, puddings, frozen desserts, whips, candies, or when served as a sauce or stewed fruit.

Dried vegetables contain most of the food elements found in the fresh vegetable. Some of the minerals and vitamins are lost in the blanching and steaming and also in the drying process. Since the minerals and vitamins are water soluble all the water in which the vegetables are cooked should be used. It is preferable to add just enough liquid so the vegetable will soak up all of it but any that is left should be served with the vegetable. Dried peas and beans are particularly high in food elements frequently lacking in Missouri diets, namely iron, thiamin, riboflavin, and niacin.

Using Dried Fruit

All dried food should be picked over and thoroughly washed before they are soaked or eaten. Dried fruits that are rather soft do not need to be soaked before they are cooked. Soaking the light dried fruits causes some darkening in color. Sugar may or may not be added to dried fruits according to the particular fruit and to the individual taste. If sugar is added usually ¼ cup of sugar per cup of fruit is sufficient for dried apples or peaches. Less sugar is needed for dried than for fresh fruit because in the drying process the starch in the fruit is changed to sugar. When sugar is used it should be added at the end of the cooking period so as not to interfere with the absorption of water by the fruit. Adding a few grains of salt helps to bring out the natural sweetness of the fruit. Lemon, orange, or grapefruit juice added to the dried fruit just before serving will give a fresh fruit flavor and add vitamin C to the dish.
<table>
<thead>
<tr>
<th>Source information</th>
<th>EC477-1942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Book</td>
</tr>
<tr>
<td>Content type</td>
<td>Text with</td>
</tr>
<tr>
<td>Source ID</td>
<td>page number on p.8 is slightly cut off on top</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capture information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date captured</td>
<td>2/27/2024</td>
</tr>
<tr>
<td>Scanner manufacturer</td>
<td>Fujitsu</td>
</tr>
<tr>
<td>Scanner model</td>
<td>fi-7460</td>
</tr>
<tr>
<td>Scanning system software</td>
<td>ScandAll Pro v. 2.1.5 Premium</td>
</tr>
<tr>
<td>Optical resolution</td>
<td>600 dpi</td>
</tr>
<tr>
<td>Color settings</td>
<td>8 bit grayscale</td>
</tr>
<tr>
<td>File types</td>
<td>tiff</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derivatives - Access copy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>Tiff: LZW compression</td>
</tr>
<tr>
<td>Editing software</td>
<td>Adobe Photoshop</td>
</tr>
<tr>
<td>Resolution</td>
<td>600 dpi</td>
</tr>
<tr>
<td>Color</td>
<td>grayscale</td>
</tr>
<tr>
<td>File types</td>
<td>tiff</td>
</tr>
<tr>
<td>Notes</td>
<td>Images cropped, straightened, brightened.</td>
</tr>
</tbody>
</table>