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Mathematical Problems from Cryobiology

James Dale Benson

Professor Carmen Chicone and Professor John Critser, Dissertation Supervisors

ABSTRACT

Cryobiology is the study of life and death at low temperatures and provides a fas-

cinating setting for applied mathematics. The interdisciplinary nature of cryobiology

mirrors the diversity of applications ranging from animal agriculture to laboratory

cell and species preservation to critical human clinical applications for the preserva-

tion of life and for the killing of cells during cryosurgery. The work comprising this

thesis develops approaches for optimization of cryobiological protocols, and defines

a new model for common cryobiological procedures. The first step is to advance an

understanding of the optimal control of a classical ODE system describing the mass

transport that occurs during cryopreservation. This investigation leads to the descrip-

tion of exact solutions to this 70-year-old nonlinear system, a global stability result

for the generalized system with n-solutes, controllability and existence of optimal

controls in the n-solute case, and a complete synthesis of optimal controls in the 2-

solute case. After defining optimal controls, the question arises whether the predicted

continuous optimal control of the extracellular environment affects the hypotheses of

the ODE model, namely, perfect stirring inside and outside of the cell/tissue-media

boundary. We constructed a new model coupling the ODE mass transport at the

cell/tissue boundary of changing radius with convection-diffusion and potential flow

models and a numerical integration scheme to explore the effects of advection on the

cell-media interface.
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Chapter 1

Introduction

Although this is an ostensibly mathematics thesis, the application of mathematics

in cryobiology is rooted in an understanding of the biology, chemistry, engineering,

and physics of the process of freezing. Because of this I would like to spend the next

few sections developing the basic fundamentals of cryobiology as a science so that

the application of mathematics to this science in the following chapters will have a

context.

1.1 History and Fundamentals of Cryobiology

1 Before the discovery of cryoprotective agents and the successes that have been

attributed to their discovery, cryobiology was an investigative science and cryobiolo-

gists were interested in the so called “death points” of cells—“the definite temperature

at which an organism passes from the living to the dead state” [83]. These natural

philosophers used cold as another means to test the boundaries between life and death

and, as a model cell type, spermatozoa have been particularly useful subjects in this

study, in large part due to their motility, which imports an easy way to determine
1Parts of this work appeared in a submitted review with co-authors Erik J. Woods, Eric M.

Walters, and John K. Critser [15] and in a book chapter with co-authors Eric M. Walters, Erik J.
Woods, and John K. Critser [125]
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survival. References to investigations into sperm cryobiology date back to the 17th

century [116], and there are reports of the well known 18th century Italian natural

philosopher Lazzaro Spallanzani investigating the effects of cold on frog and human

sperm [23]. According to Luyet and Gehenio [83] more experiments were conducted

during the late 19th century, including cooling frog, turtle, rabbit, and dog sperm to

between -4 and -7◦C, with recovery of motility in the rabbit and dog. The 19th cen-

tury brought the suggestions of human and non-human sperm banking by Mantegazza

[116] who successfully cooled human sperm to -17◦C, and who also recognized much

of the utility in both agricultural and human sperm preservation. The first half of the

20th century produced similar work leading to moderate success and investigations

into the duration [113] and temperature of storage [58], cooling and warming rates

[117], and additives such as sucrose to aid in vitrification [81]. Shettles [117] noted

the wide variability of survival among specimens or freezing temperatures without

noting the effects of cooling rates. Parkes [101] compared survival after exposure to

-20, -79, and -196◦C in various sized freezing containers ranging from thin film loops

to 1 mm diameter glass tubes and concluded (we now know incorrectly) that cooling

rate was not an important factor.

Until 1949, research on the effects of low temperatures on spermatozoa was mostly

empirical, involving a few (competing) hypotheses about the importance of ice avoid-

ance. By the 1940s it was generally accepted that a rapid cooling, “vitrification”

technique was the most promising approach [101]. In 1949, the chance discovery by

Polge, Smith and Parkes [110] of glycerol, ethylene glycol and propylene glycol as per-

meating chemical protecting agents (CPAs) for freezing human and fowl spermatozoa

2



sparked a new era in research. The following decades of research remained mostly

empirical, testing combinations of CPAs, cooling, and warming rates, but in 1956

Meryman investigated the mechanics of freezing from a physical chemistry perspec-

tive [89], and in 1963 Mazur [85] introduced the concept of using simple differential

equations to describe the movement of water from cells as the surrounding media

froze, and related this water loss to survivability at different cooling rates. This was

followed by Mazur’s landmark work with Liebo and Chu in 1972 [86] outlining the

optimal “equilibrium” cooling rate that balanced the avoidance of damaging intra-

cellular ice formation with the reduction of exposure to high concentrations of salts,

shown to be deleterious by Lovelock [80] and Meryman [90].

The conclusions of these efforts and those of the next few decades were that there

are at least two fundamentally different approaches to cryopreserving cells: one where

cells are cooled rapidly in order to avoid all intracellular ice crystallization, typically

called a vitrification approach, and one where cells are cooled slowly, allowing the cell

to dehydrate at low temperatures to promote intracellular glass formation and avoid

deleterious intracellular ice formation (IIF), typically called an equilibrium approach.

Both approaches yielded success for various species, but until the 1980s and 1990s the

osmotic damage due to the process of the addition and removal of CPAs was often

overlooked [9, 8, 10, 107]. The following years produced work noting that all cells

undergo volume fluctuations during the addition and removal of CPAs but that the

limits to which cell volume can fluctuate without damage (called “osmotic tolerance

limits” (OTL)) are cell and species specific, varying even within a given species (e.g.

among strains) [8, 9, 10, 31, 34, 43, 50, 107]. This damage due to the addition and
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removal of CPAs is especially relevant to sperm cryopreservation due to their narrow

osmotic tolerance limits [48, 126]. Finally, several models describing the probability

of ice formation were developed in the 1990s by Toner, Cravalho, Bischof and others

[16, 59, 124] leading to a more detailed understanding of the mechanisms of cell death

due to ice formation during equilibrium cooling protocols.

1.1.1 Fundamentals of Equilibrium Freezing

The discovery of cryoprotective agents yielded new insights into the physics of freezing

living cells. Prior to this, successful cryopreservation protocols depended on suppress-

ing extracellular ice formation and were aided by both the addition of chemical agents

[81] and by cooling rapidly [83] to produce what was then called vitrification—the

transition of a liquid to an ice crystal-free meta-stable glass. Luyet and others un-

derstood that intracellular water content was the source of potentially damaging ice

formation, but Lovelock made the realization [79, 80] that permeating CPAs allow

the reduction of water without deleterious intra and extracellular concentrations of

salt ions, while enhancing the glass formation properties of the solution.

Specifically, the mechanism of protection by permeating CPAs is twofold. First, as

freezing media is cooled below zero degrees C and ice is nucleated (e.g. a microscopic

ice crystal has formed in the solution), pure water precipitates, or “freezes out,” as ice,

concentrating the remaining media and lowering its melting point. As temperatures

are further decreased, this process continues along the liquidus curve of the solution

defined by the phase diagram until the glass transition temperature or the eutectic

is reached, at which point the solution either crystallizes or vitrifies. The freezing

point depression of a solution is a multiple of its osmolality (1.86 ◦C/osm), and
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because of this, if a less toxic reagent such as a CPA accounts for the majority of

the osmolality at room temperature, as water precipitates as ice, the CPA to salt

ratio will remain fixed. For example cells cooled in an initially isotonic NaCl-water

solution to -10◦C, by Raoult’s law [95] will be exposed to a 5.6 Osm NaCl-water

solution, which is approximately a 2.8 molal saline solution. On the other hand,

if the initial ratio of CPA to NaCl was 8:1 (corresponding to an approximately 2.4

molal CPA in isotonic saline solution), the solution osmolality at -10◦C will still be

5.6 Osm, but only 0.7 Osm will be from NaCl, (corresponding to an approximately

0.35 molal salt solution) and the other 4.9 Osm will be from the CPA (see Pegg and

Diaper [106] for a more thorough treatment of this topic). The relationships between

molality and melting point (alternatively, freezing point depression) are described

by phase diagrams, and those with three components: salt, CPA and water, are

known as ternary phase diagrams [29, 36, 65, 115]. The second protection mechanism

is that the cryoprotective agents used most frequently (e.g. DMSO, glycerol, 1-2

propanediol (PG), and ethylene glycol (EG)) aid in the glass formation tendencies of

solutions [135]. This increase in glass formation tendency corresponds to a decrease

in the likelihood of ice nucleation, and a corresponding decrease in the likelihood of

intracellular ice formation.

According to the generally accepted “two factor hypothesis” of Mazur [86], the

likelihood of success at any particular freezing rate is dependent on two competing

factors. The first factor is the interaction between cooling rate and intracellular ice

formation. As mentioned above, the concentration of extracellular media increases

as the temperature is decreased. If the cooling rate is slow, the osmotic imbalance
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(the difference in the chemical potential of water inside and outside the cell) caused

by this increase in solute concentration can be rectified by the exosmosis of water

and the influx of CPA into the cell. This results in a net decrease in cell volume and

an increase in the intracellular osmolality. In theory this process can be continued

until the cell is sufficiently dehydrated that upon plunging into low temperature

envirionment (e.g. a liquid nitrogen bath), the cytoplasm will vitrify, because the

higher the concentration, the more likely a solution is to vitrify [19, 20, 21]. The other

side of the two-factor hypothesis is that prolonged exposure to high concentrations of

salts causes irreversible membrane damage, as described by Meryman [90]. Therefore,

cooling at very slow rates allows cells enough time to maintain the chemical potential

of water between the inter- and extra-cellular environments, concentrating solutes

in their cytoplasm; but, alternatively exposes them to high salt concentrations for

extended time periods. Therefore Mazur suggested that the optimal “equilibrium”

cooling rate is that which is as fast as possible to avoid solution effects, but slow

enough so that the cells can dehydrate sufficiently to avoid intracellular ice formation

(Figure 1.1). These competing phenomena have a characteristic inverted “U” shaped

temperature versus survival curve, and experiments have borne this out in a vast array

of cell types (Figure 1.2). Mazur suggested that in order to reduce the likelihood of

intracellular ice formation, the ambient temperature of the cells and media should be

no more than 2◦C colder than the melting point of the cytoplasm. This difference

between melting point and ambient temperature is called supercooling, meaning that

the solution is in an unstable state, at which if ice were to be nucleated, ice would

grow throughout the media. In other words, Mazur suggests that cells be subjected
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to no more than 2◦C of supercooling.

Solution effects injury Intracellular ice formation

Optimal cooling rate

Cell survival

Slow Cooling Cooling Rate Rapid Cooling

Figure 1.1: Plot of the interaction between cooling rate, “solution effects” injury,
ice formation injury and cell survival. At low cooling rates “solution effects” are
the dominant factor in cell damage, but as cooling rates increase and exposure time
decreases these effects are minimized. On the other hand, at high cooling rates
intracellular ice formation is the dominant factor in cell damage, and as cooling rates
are decreased, the likelihood of intracellular ice formation decreases. The combination
of these two effects imply that there will be an inverted “U” shaped survival curve
and an optimal cooling rate that minimizes both the solution effects and intracellular
ice formation. (Redrawn from [97]).

With these criteria in place, a model can be used to describe how water and solutes

cross the cell membrane at any given temperature to predict the solute concentration

inside the cell. If the concentration correlates to less than 2◦C of supercooling, we can

increase the cooling rate; if it is more, then we can decrease the cooling rate. Typically,

cryobiologists have dealt with linear cooling rates, most likely because these are the

easiest to repeat, calculate in a differential equation, and approximate with cooling

apparatus, but the natural cooling rates of objects exposed to low temperatures are
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Figure 1.2: Survival rates for various cell types cooled at different rates. In most cases
cell exhibit the classic “inverted U” shaped response, with relatively small ranges of
rates yielding optimal survival (redrawn and modified from [87]).
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exponential [82]. Although there have been several reports of success using non-linear

cooling rates [96], there was no firm basis for the theory of optimizing non-linear

cooling rates until very recently. In 2004, Woelders and Chaveiro [129] published a

theoretical development of non-linear cooling rates developed by fixing the amount of

supercooling at two degrees. This allowed them to calculate the cooling rates needed

to achieve this fixed amount of supercooling. This, in theory, should be the fastest,

“safe,” slow cooling rate, but there are many caveats. For example, the permeability

of the cell to water and solutes must be known at all subzero temperatures. This is

not a trivial measurement; only recently was a method for subzero water permeability

measurement published [33].

1.1.2 Rapid cooling approaches

Until now, I have mainly discussed the development of “slow” or “equilibrium” cooling

protocols. Vitrification, on the other hand, has always been the goal of cryobiologists.

Essentially, at high enough cooling rates (> 1000 ◦C/min) the intra- and extra-

cellular aqueous solution does not crystallize, and instead forms an amorphous glass, a

process called vitrification. This vitrification of the solution is associated with little if

any cell damage, it is the most appealing cryopreservation protocol because it is so fast

(compare this with a standard 1-10◦C/min protocol) and has the potential to require

no expensive equipment (i.e. plunge the sample directly into liquid nitrogen). The

downside to vitrification procedures is that although isotonic saline is theoretically

vitrifiable, the cooling rates needed to achieve vitrification are on the order of 105 to

106 ◦C/min. Alternatively, much work has been done investigating the vitrification

properties of many different solutions [38]. At higher concentrations, greater than four

9



or five molal, typical CPAs such as glycerol or propylene glycol become vitrifiable at

cooling rates on the order of 103◦C/min.

Unfortunately, as appealing as vitrification seems, there are several downsides.

First, the cooling rates are difficult to achieve. In order to achieve ultra-rapid cooling

rates, the surface area to volume ratio of the cell suspension (i.e. the container

that holds the cells and their suspending solute) must be very high. This has been

achieved using a “cryo-loop” [68]. The idea of the cryo-loop is to have a very thin

film of solution that maximizes the surface exposed to liquid nitrogen. Alternatively,

very thin straws also have a very high surface to volume ratio and have been used

successfully to vitrify oocytes [112]. The second problem is achieving the high molar

intracellular concentrations (4-5 molal) of permeating cryoprotectants. In the next

section I discuss the details of this challenge, which is the primary focus of this

dissertation.

1.1.3 CPA addition and removal

The beneficial effects of CPAs at subzero temperatures make them attractive for

use in both equilibrium and rapid cooling approaches, but their high concentrations

(typically greater than 1 molal) make them harmful to cells if added and removed

carelessly. For example, suppose a cell has been equilibrated with 1 molal glycerol

and prior to use, this glycerol must ultimately be removed. If the cell was abruptly

returned to non-CPA containing media, a 1 molal solute concentration difference

across the cell membrane would cause a rapid influx of water as the chemical potentials

were equilibrated. Depending on the volume of this influx, the cell will swell, perhaps

beyond its capacity causing lysis. An analog occurs during the addition of CPA, and

10



though the damaging action of minimal shrink volumes is unclear, the damage in

sperm may be linked to membrane fusion. The extents to which a cell can shrink

or swell without damage, called osmotic tolerance limits, have been described using

many different endpoints in spermatozoa from a variety of species (Figure 1.3) [3, 17,

45, 93, 118, 120, 126, 128], and the actions of some chemicals to expand these limits

have been tested on spermatozoa as well [4].
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Figure 1.3: Osmotic Tolerance of Spermatozoa from Rat, Boar, and Mouse. Redrawn
from Guthrie et al. (2002).

Damage due to these osmotic events can be avoided by adding CPA-containing

media either stepwise (e.g. moving cells from 0.25 M to 0.5 M then to 1 M media) or

dropwise (e.g. gradually dropping high concentration media into the cells while stir-

ring to achieve a gradual addition protocol) [45, 107, 103, 104, 105]. Similar methods

have been developed for CPA removal as well. Knowledge of these osmotic toler-
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ance limits in conjunction with knowledge of membrane water and solute transport

parameters has allowed the prediction of “more optimal” addition and removal proto-

cols (Figure 1.4), which allow for reduction of exposure time to CPAs or osmotically

induced volume flux [50, 72]. The remaining factor to consider is that high concentra-

tions of these permeating CPAs have been shown to be cytotoxic; therefore specific

testing of CPA toxicity can further aid the optimization of cryopreservation protocols

[38, 42, 134].

Figure 1.4: Mouse spermatozoa volume during cryopreservation. The four panels
(A-D) represent: addition of CPA (A), cooling (B), warming to the melting point (C)
and warming above 0◦C (D). Two cases are shown for ICR mouse spermatozoa: use of
a skim milk/sucrose medium (solid line) and a PBS medium containing 1 M glycerol
(dot-dashed line). The solid line near the bottom of panel B and C represents the cell
volume at which the sperm contain 10% of the initial intracellular water. If the cell
volume remains above this line, intracellular ice formation is likely to occur. (Data
from [109])

1.1.4 Archetypical experimental design for fundamental cry-
obiology

With all of this as background, I will conclude by outlining the typical fundamen-

tal cryobiological experiment in the following steps (examples of these experiments
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can be found in [1, 24, 48, 50, 108, 77, 131]). First, cells are exposed to various

anisosmotic salt solutions and their subsequent volume is measured. The reciprocal

of solute concentration versus normalized cell volume is plotted. This is to establish

that cell volume corresponds linearly with a change in osmotic pressure (i.e. they be-

have as linear or ideal osmometers, the Boyle-Van’t Hoff relationship). The intercept

of the regression (towards a theoretical infinite concentration) predicts the osmoti-

cally inactive fraction of the cell, which is the cell membrane, organelles, proteins,

and bound water which will not cross the plasma membrane. This establishes the

osmotically inactive portion of the cell (often referred to as Vb). In the case of mam-

malian sperm, for example, this value is usually between 60 and 70% of the isosmotic

volume [48, 61, 51].

The next step is to establish the biophysical parameters of solute and water per-

meability, usually indicated as Ps and Lp, respectively, at several temperatures. A

common tool for the determination of these parameters has been the use of the Coul-

ter Counter [14], which records electric pulses proportional to cell volume. This allows

the real-time measurement of thousands of cells exposed to various solutions. A sec-

ond method is the use of a stopped flow apparatus which takes advantage of the

relationship between average population volume and light refraction [75]. The advan-

tage of the stopped flow apparatus is its temporal resolution. The disadvantage of

the stopped flow apparatus is that the measurement of volume is indirect. Finally the

method employed by Jacobs in the 1930s [57], and still in use [25], is the measurement

of cell volume via light microscopy.

If the experiment were to stop here, I would have enough information to predict
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both an optimal CPA addition and removal protocol and a probable optimal cool-

ing rate. Alternatively, I can also establish the parameters of the intracellular ice

formation model of Karlesson et al.,[59]. This is done by monitoring cells under a

microscope while cooling and noting the percentage of cells that freeze intracellularly

at a given temperature and degree of supercooling. After these parameters are estab-

lished a theoretically optimized protocol can be developed that obeys the fundamental

principles outlined in Mazur et al., [86]), the optimal freezing protocol cools the cell

the fastest while avoiding a degree of supercooling associated with a high probability

of ice formation.

1.1.5 Empirical versus mathematical approaches to cryobio-
logical optimization

Although there is a large amount of work in establishing the values of cryobiologi-

cal parameters, the work is significantly less than that which would be involved in

developing a cryopreservation protocol entirely empirically, given the wide variation

in cryopreservation protocols. Mathematical applications of fundamental cryobiology

can give investigators a much narrower band of possibility for empirical experimen-

tation, saving valuable time and resources.

As a brief exploration, suppose one approached cryobiology from a purely empir-

ical perspective. Though the literature shows that optimal equilibrium cooling rates

range over 5 orders of magnitude, let us be optimistic and suppose that a researcher

would use comparable cell types to narrow down to one order of magnitude. I will

suggest that there should be 5 steps tested within this order of magnitude. There are

four typical CPAs used: DMSO, Glycerol, Ethylene Glycol, and Propylene Glycol.
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Moreover there is a range of optimal CPA concentrations published in the literature

from ≈ 0.5 M to ≈ 2 M. Let us choose 5 steps between 0.5 and 2 M. Optimal “plunge

temperatures”—the temperature at which equilibrium cooling has effectively dehy-

drated the cells so that intracellular ice formation during the plunging directly into a

liquid nitrogen bath is unlikely—range from -30◦C to -80◦C. Suppose we test at 10◦C

levels. Though there are other variables to check (for example CPA addition and

removal protocols), let us stop here, but each treatment must be repeated to control

for experimental error and cell population variability. Suppose we choose a typical

experimental design and repeat each treatment on three days with three replicates

per day. This experiment would require 5× 4× 6× 5× 3× 3 = 5400 data points. But

even with this many data points, the power to resolve specific differences between

treatment groups would unlikely be enough. Moreover, the vast proportion of the re-

sults will simply be negative: the protocol was unsuccessful. This sort of experiment

leaves the researcher with little to base a new hypothesis on.

We go into this detail only to justify the great deal of work and effort needed

to define optimal cryopreservation protocols using mathematical modeling. Even if

predicted responses do not match experimental results, hypotheses exist that can be

tested, and valuable information is gained with each experiment.

1.2 This thesis and fundamental cryobiology

The aim of this thesis is to take a more mathematical approach to one aspect of the

cryobiological problem, namely the CPA addition and removal process. I would argue

that the biggest impact in mathematical optimization of cryobiology can be made in

the addition and removal of CPA. If one could instantaneously add or remove a high
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concentration of CPAs, the avoidance of ice formation would be practically guaranteed

at most cooling rates. Of course this is not possible for the multitude of reasons listed

above. On the other hand, significant improvements to cryobiological protocols can

be achieved. In this thesis I first analyze the standard mass transfer equations alone

(Chapter 2). Though the mathematical techniques presented in this chapter are not

deep, they provide a setting and a preview of the remainder of this thesis. The critical

technique used in all chapters is the use of appropriate transformations that allow the

reframing of the model in a much simpler setting. This turns out to be a very powerful

technique in applied mathematics. For example, the classic mass transport model is

a nonlinear coupled ODE system, but, with the appropriate choice of rescaling, we

can transform the system to a linear ODE system solvable with classical techniques.

In the next chapters this transform is generalized and is utilized in the context

of optimal control theory. In Chapter 3, we show that the generalized cellular mass

transfer system, extended to n solutes, is globally asymptotically stable, significantly

extending a result in recent literature [55]. This global stability result has direct

implications in the controllability of the system (i.e. the ability to control a parameter

of the system so that the flow goes from an initial point in the state space to a final

point), which we prove. Because the system is controllable, and by the transformation

behaves identically to a linear system, there is in fact an optimal control. Finally,

I synthesize an optimal control in the case n = 2 and prove its optimality using a

classic theorem of Boltayanskii.

Next, in Chapter 4 I apply this optimization theory in the more realistic and

cryobiologically relevant case where there are cell volume constraints. The theoretical
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time improvements of the optimized protocols, though dependent on parameters,

range from five to fourty-fold over a standard protocol. These theoretically optimized

protocols are then applied to a clinically important cell type–human oocytes.

Finally, to implement the optimal control, continuous perfusion around cells must

be achieved. This requirement raises questions about the validity of assumptions in

the standard mass transport model used above. In Chapter 5 I thus investigate a

more complete model incorporating several phenomena that might have an impact

on the mass transport, namely convection due to the fluid velocity field around cells,

and diffusion due to concentration gradients generated both by the convection and by

the changing environments. I couple this convection-diffusion equation with the mass

transport equations in the form of Robin boundary conditions at the cell membrane.

Finally I allow the cell boundary to change radius as a function of the predicted cell

volume changes. I have begun the approach of this problem numerically, creating

a numerical integration scheme. Again using a transformation, I was able to ana-

lyze the equations in a much simpler setting, allowing an exact solution of the fluid

velocity vector field, reducing the system’s complexity and allowing numerics to be

performed in a much simpler domain. The numerics confirmed the “rule-of-thumb”

type predictions at the single-cell-size level, namely that at single cell levels, diffusion

is the dominant term and essentially there is no concentration gradient. However, at

larger cell radii and into small tissue sizes, there are significant effects of the advection

and diffusion terms on predicted cell and tissue responses.
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Chapter 2

Exact solutions of a two parameter
flux model and cryobiological
applications

2.1 Introduction

1Mass transport models are used extensively throughout the biological sciences with

applications ranging from plant biology and cryobiology to circulatory and kidney

physiology [69, 103, 122, 127]. The two parameter solute and solvent model developed

by Jacobs [57], and the related Kedem and Katchalsky [64] model have been used

for a half-century or more to model transmembrane flux in biological systems. A

discussion of the similarities and differences in the two formalisms can be found in

the excellent review by Kleinhans [66].

In particular, the Jacobs model has provided a simple and accurate description of

solute and solvent flux using a system of ordinary differential equations2:

V̇w = −LpART
(
M e

s +M e
n − δ1

ni
s

Vw
− δ2

ni
n

Vw

)
,

ṅis = PsA
(
M e

s − δ1
ni

s

Vw

)
,

(2.1)

where Vw and nis denote the intracellular water volume and moles of an intracellular
1Part of this chapter was published with co-authors John Critser and Carmen Chicone [13]
2Note that we use the mathematical convention ẋ = dx

dt , and the convention for the dilute
approximation of osmolality Πe := Me

s + Me
n and Πi := (δ1ni

s − δ2ni
n)/Vw. See Appendix A-1 for

more details
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permeating solute, respectively, and the other parameters are defined in Table 2.1.

We note that the extracellular solute concentrations are given in terms of osmolality,

and the intracellular solute concentrations are given as molality times a constant

temperature dependent conversion factor, δ1 and δ2, to yield osmolality.

Until very recently, the use of this system was almost exclusively limited to numer-

ical simulations—algorithms that approximate the solution of the differential equa-

tions [66]. Because of this, standard calculus techniques could not be applied to find

the maximum or minimum of water and cellular volume or the times at which they

occur. Additionally, algorithms for finding cell plasma membrane permeability coef-

ficients had to either be inaccurate or very complicated and difficult to implement

[119]. Furthermore, large scale calculations where hundreds of thousands of volume

calculations (as with finite element models of tissue transport) are needed become

exponentially computationally inefficient as the scale or accuracy is increased [78].

Recently a method for obtaining the volume maxima or minima using (2.1) was

developed using a technique that defines an implicit relation between volume and

concentration [63, 136]. However the method presented in these papers loses criti-

cal time information and thus cannot be used to accurately predict when these cell

volume maxima and/or minima occur. This time information is a key parameter

used in the development of protocols for addition or removal of high concentrations

of cryoprotective agents such as glycerol or dimethyl sulfoxide (Me2SO) [132], in the

prediction of macromolecular uptake by arteries [122], and in kidney transport [69].

These current problems are ameliorated with the existence of an exact solution

of (2.1); one that expresses the water volume, Vw, and the moles of solute nis, as
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Table 2.1: Definitions of major symbols and their test values
Symbol Test Value Units Description

i, e Superscripts (i, intracellular; e, extracellular)
n, s Subscripts (n, non-permeating; s, permeating)
Vb 0.4 unitless Osmotically inactive fraction
Viso 1000 µm3 Isosmotic cell volume
Vw µm3 Intracellular Water Volume
ni

s fmol Femtomoles intracellular permeating solute
ni

n fmol Femtomoles intracellular non-permeating solute
δ1 1 osmol L mol−1 kg−1 Osmolality conversion factor

for permeating solute
δ2 1.95 osmol L mol−1 kg−1 Osmolality conversion factor

for non-permeating solute
Lp 0.1 µm min−1 atm−1 Hydraulic Conductivity
Ps 10 µm min−1 Solute permeability coefficient
A 483.6 µm2 Cellular surface area (assumed fixed)
R 0.08206 L atm K−1 mol−1 Gas constant
T 295.16 Kelvin Temperature
t min Time
V .0730151 L mol−1 Partial molar volume of typical CPA
Me

s 1.0 osm kg−1 Extracellular permeating solute osmolality
Me

n 0.3 osm kg−1 Extracellular non-permeating solute osmolality
M i

s 0 osm kg−1 Initial intracellular permeating solute osmolality
M i

n 0.3 osm kg−1 Initial intracellular non-permeating solute
osmolality
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functions of time and initial conditions. That is, given a set of initial conditions

such as cell volume and surface area, intra- and extracellular concentration, etc., we

would like to have a formula for water volume and moles of solute as a function

of time. In this work, we present a method whereby the exact solution of (2.1)

(and thus the exact volume and intracellular solute concentration) can be determined

for all experimental time. We then apply this exact solution technique to classic

cryobiological problems involving solute and solvent transport such as finding cell

volume, cell water volume, and intracellular solute concentration maxima and minima,

determining cell membrane permeability parameters, and improving large scale tissue

transport models.

2.2 Methodology

2.2.1 A reparameterized solution to the Jacobs model

For most non-linear differential systems, it is impossible to express their solutions ex-

plicitly as a function of time and initial conditions [22]. The Jacobs model is a unique

case. To our knowledge, it cannot be solved as a function of the temporal variable

using traditional methods such as separation of variables or integration factors. This

is likely the reason why no exact solution has emerged since its inception. Our anal-

ysis is based on a result from the theory of ordinary differential equations (ODEs):

the qualitative behavior of a system of ordinary differential equations (e.g. its phase

portrait, orbit structure, maxima and minima, etc.) is the same with rescaled time.

In the same way that a logarithmic curve can be turned into a straight line using a

logarithmic scale on one axis, we can stretch and squeeze the solution of a differential

equation so that the solution appears to be linear.
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For example, if a system can be written in the form

u̇(t) = λ(u(t))F (u(t)), (2.2)

where λ : Rn → R is a nonzero scalar valued function, the qualitative behavior is

identical to that of the system

ẇ(τ) = F (w(τ)). (2.3)

More precisely, if u(t) is a solution of (2.2), then the function q(τ) given by

q(τ) :=

∫ τ

0

1

λ(u(s))
ds (2.4)

is invertible and w(τ) := u(q(τ)). Similarly, if w is a solution of (2.3), then u(t) :=

w(p(t)) is a solution of (2.2), where p := q−1. For a proof of this standard result, see

Chicone [26].

It is convenient to rename constants as a, b, c, α, and β (see Table 2.2) so that

(2.1) simplifies to

ṅis = β + α ni
s

Vw
,

V̇w = b+ a n
i
s

Vw
+ c 1

Vw
;

or, equivalently,

ṅis = 1
Vw

(αnis + βVw),

V̇w = 1
Vw

(anis + bVw + c).
(2.5)

Equation (2.5) is in the form of (2.2), where λ(nis(t), Vw(t)) = 1/Vw(t) and F (u) =

(αnis(t) + βVw(t), anis(t) + bVw(t) + c). Hence we can recover solutions of (2.5) from

the system

ṅ = αn+ βv,
v̇ = an+ bv + c.

(2.6)
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Table 2.2: Definitions of constants and their test values
Constant Test Value Parameters

a 1171.32 LpARTδ1
b -1522.72 −LpART (Me

s +Me
n)

c 210837 LpARTδ2n
i
n

ni
n 180 M i

n(0)Vw(0)
α -4836 −PsAδ1
β 4836 PsAM

e
s

γ -1.69935 ×106 −δ1PsLpA
2RTMe

n

ρ -6358.72 −δ1PsA+ LpART (Me
s +Me

n)
2r1 -12158.4 ρ−

√
ρ2 + 4γ

2r2 -559.072 ρ+
√
ρ2 + 4γ

c1 121.178 (2bcα− cr2α+ γ(c+ ax(0) + by(0)− r2y(0)))/γ(r1 − r2)
c2 -121.178 −(2bcα− cr1α+ γ(c+ ax(0) + by(0)− r1y(0)))/γ(r1 − r2)
c3 600 αc/γ

The linear differential equation (2.6) can be solved explicitly using standard ODE

techniques. In fact, the general solution is

n(τ) =
1

a

(
c1 (r1 − b) er1τ + c2 (r2 − b) er2τ + b

cα

γ
− c
)
, (2.7)

v(τ) = c1e
r1τ + c2e

r2τ +
cα

γ
, (2.8)

where r1 := 1/2
(
ρ−√ρ2 + 4γ

)
, r2 := 1/2

(
ρ+

√
ρ2 + 4γ

)
, ρ := (α + b), γ :=

(aβ − αb), and c1 and c2 are arbitrary constants. If we specify nis(0) and Vw(0), we

have

c1 =
2bcα− cr2α + γ(c+ anis(0) + bVw(0)− r2Vw(0))

γ(r1 − r2)
,

c2 = −2bcα− cr1α + γ(c+ anis(0) + bVw(0)− r1Vw(0))

γ(r1 − r2)
.

Thus, the equation for total cell volume can be written as

Vtotal(τ) = Vw + nisV + VbViso

= c1

(
V

a
(r1 − b) + 1

)
er1τ + c2

(
V

a
(r2 − b) + 1

)
er2τ

+ (
V

a
b− 1)

cα

γ
− V

a
c+ VbViso. (2.9)
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We can glean some information about the exponents r1 and r2. For example, since

our linear system (2.6) always has an asymptotically stable rest point in physiologic

conditions (see Chapter 3), we will assume that r1 and r2 are both negative (see

Chicone [26]). We also note that

cα

γ
=
M i

n(0)

M e
n

Vw(0). (2.10)

This is in agreement with the negative sign of r1 and r2, since, as time progresses, the

first two terms of (2.8) go to zero, leaving cα/γ equal to the ratio of initial intracellular

and extracellular concentrations. Hence,

lim
t→∞

v(0)− v(t) = c1 + c2. (2.11)

Note that if the non-permeating solute concentration is constant—a common situation

in cryobiology, then limτ→∞ v(τ) = v(0) implies c1 = −c2.

Similarly, the exponential terms of the solution n(τ) go to zero with time. Hence,

we have that

lim
τ→∞

n(0)− n(τ) =
1

a
(c1(r1 − b) + c2(r2 − b)). (2.12)

For (2.5), we have λ(n, v) = −1/v, thus, using (2.4), if q(0) = 0, then we have

q(t) =

∫ t

0

(
c1e

r1s + c2e
r2s +

αc

γ

)
ds

=
c1 (er1t − 1)

r1

+
c2 (er2t − 1)

r2

+
αc

γ
t. (2.13)

See Fig. 2.1 for a plot of q(t) for typical values of Lp and Ps, where v and n are defined

in (2.7) and (2.8). Thus, the desired exact solution of (2.5) is given by

Vw(t) = v(q−1(t)),
nis(t) = n(q−1(t)).

(2.14)
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Figure 2.1: Plot of q(τ) using the test values from Table 2.2. Note that the high
degree of linearity allows for an efficient transformation from the original time space
to the τ -space.

2.2.2 The inverse of q

So far we have an exact solution for the Jacobs model and the function that transforms

reparametrized time back to real time. We are now interested in finding the function

that transforms real time to the transformed time so that we can use the exact solution

methods to analyze experimental data.

We know that the time transform function q is invertible (see Chicone [26]), and

we have an explicit equation for Vw(t) and nis(t) (2.14)). The next challenge lies in

finding q−1(t). Define p(t) := q−1(t).

To find a formula for p(t) in terms of q(t) and its derivatives only, we can use the

Lagrange-Burman reversion formula [53] to obtain the power series representation

p(t) =
∞∑
n=1

tn

n!

[
dn−1

dtn−1

(
t

q(t)

)n
t=0

]
. (2.15)
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In other words, in the Taylor series

p(t) =
∞∑
n=1

p(n)(0)
tn

n!
, (2.16)

the derivatives are given by

p(n)(0) =
dn−1

dtn−1

(
t

q(t)

)n
t=0

.

To illustrate this result we list the first four derivatives:

p′(0) = q′(0)−1,

p′′(0) = −q′′(0)p′(0)3,

p′′′(0) = −q′′′(0)p′(0)4 − 3q′′(0)p′(0)3p′′(0),

p(4)(0) = −q(4)(0)p′(0)5 − 7q′′′(0)p′(t)4p′′(0)

− 6q′′(0)p′(0)3p′′(0)2 − 3q′′(0)p′(0)4p′′′(0).

In practice, it is easier to determine the Taylor coefficients by a recursion for-

mula derived from the chain rule. Since p(q(t)) = t, taking the derivative gives

p′(q(t))q′(t) = 1. Dividing by q′(t) gives p′(q(t)) = 1/q′(t). But since q(0) = p(0) = 0,

we have that p′(0) = 1/q′(0). The recursive formula

p(n)(q(t)) =

[
p(n−1)(q(t))

]′
q′(t)

(2.17)

gives p(n)(t) for n ≥ 2. Evaluating at t = 0, we see that the derivatives of q(t) at zero

are q(m)(0) = rm1 c1 + rm2 c2 for m > 1. Thus, this calculation is straightforward, and

can be done using an algebraic processor such as Mathematicar (Wolfram Research,

Champaign, IL). In this case, the inverse of q is given by the Taylor series of Eq. (2.16)

where p(1)(0) = q′(0)−1 and p(n)(0), for n ≥ 2, is given recursively by (2.17). While the
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power series representation of p(t) has a nonzero radius of convergence, the difficult

problem of determining this radius is beyond the scope of this work.

From a more practical standpoint, p(t) can be evaluated very efficiently using

numerical methods. Given t, we simply approximate the root τ of the function q(τ) =

t numerically. Efficiency gains can be made by noting the high degree of linearity

of the q(τ) function—especially as time increases—and using this information to

optimize the algorithm. For example, with one line of code in Mathematicar, we can

calculate the inverse of q for all data points.

2.3 Results and Discussion

2.3.1 Finding cell volume and intracellular solute concentra-
tion maxima and minima

The extrema of cell volume excursion, cell water volume, and intracellular solute

concentration are of great interest in a number of fields. For example, cells may lyse

if their volume exceeds physiological limits, and irreparable damage may occur if the

cells shrink below physiological limits [56, 91]. This is especially relevant in the field

of cryobiology, where cryoprotective agents such as glycerol cause the cell to shrink

upon addition and swell upon removal.

Using q(τ) and its inverse p(t) we have an invertible map between the original time

space and our new time-transformed space (τ -space) (see Fig. 2.2). Because we have

an exact solution, we can use standard calculus techniques to derive information from

our equations. For example, a common use for the exact solution—the one addressed

in [63, 136]—is the determination of the maxima and minima of cell volume excursion

and/or chemical concentration. The advantage of our approach is that we can also
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Figure 2.2: Diagram of time transform applications. To use the exact solution we
apply a time transform, p(t), to take data from the physical space on the left (panel
A) to the new space (τ -space) on the right (panel B). Note that the volume excursions
remain unchanged, and all analysis of the transformed system will apply to the original
system. To return to the original time, we use the inverse transform q(τ). In this
figure we show plots of both numerically integrated and exact solutions using the
appropriate transform function, e.g. the plot on the left shows an overlay of Vnumeric(t)
and Vexact(p(t)), and the plot on the right shows an overlay of Vnumeric(q(τ)) and
Vexact(τ).

determine the time at which the maxima and minima of total cell volume, cell water

volume, and moles of intracellular solute occur.

This can be done by setting the derivative of the solutions in τ -space equal to zero.

For example, maxima and minima of the water volume are given by the solution of

v′(τ) = c1r1e
r1τ + c2r2e

r2τ = 0. (2.18)

To determine τ , we multiply both sides of (2.18) by e−r1τ and rearrange the re-

sulting equation to get

e(r2−r1)τ = −c1r1

c2r2

. (2.19)

Because we have assumed that r1 and r2 are both negative, we know that c1c2 < 0.

Therefore, the term on the right-hand side of (2.19) is positive and we can take the
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logarithm of both sides to obtain the solution

τwater =
1

r2 − r1

ln

(
−c1r1

c2r2

)
. (2.20)

Thus, we have established an explicit solution for the time (τwater) when the maximum

or minimum of intracellular water volume occurs. The corresponding physical time

is simply t = q(τwater), given by (2.13).

We can repeat this technique for total cell volume using (2.9), or for intracellular

permeating solute content using (2.7) yielding the equations

τtotal =
1

r2 − r1

ln

(
−c1r1

(
r1 − b+ a/V

)
c2r2

(
r2 − b+ a/V

)) , (2.21)

τsolute =
1

r2 − r1

ln

(
−c1r1(r1 − b)
c2r2(r2 − b)

)
, (2.22)

where τtotal and τsolute are the τ -space times for the maximum or minimum of the total

cell volume and the number of moles of intracellular permeating solute, respectively.

These formulas are valid only if the argument of the logarithm is positive, which is

the case for our test values. Again, we can calculate the original time using the q

transform function. To illustrate the use of the exact solution in practice we choose

typical values for our parameters (as in Table 2.1) and use (2.9) to get

Vtotal(τ) = 86.76e−6079.18τ − 130.569e−279.536τ + 1043.81. (2.23)

A plot of cell volume versus time for both a numerically integrated solution and the

new, exact, solution with both time transport functions can be seen in Fig. 2.2. In

fact, one of the immediate advantages of this exact solution technique is that a plot

can be made quickly and easily—even with a graphing calculator—to see the dynamics

of the curve without the necessity of complex software. Additionally, a calculator can
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easily be programmed to give the cell volume maxima and minima and the times at

which they occur—a significant advantage at the bench top.

A numerical calculation of the minima of both of these plots yields the minima

found by calculating τ from(2.20): a minimal volume of 934.29 µm3. Using the exact

solution, we find that this volume occurs at τ = 0.000531. We now use our q(τ)

equation (2.13)) to convert back to real time. In this case, q(0.000531) = 0.277935

minutes, which agrees with the time obtained from the numerically integrated solu-

tion.

2.3.2 Curve fitting

The accuracy of the Jacobs model is dependent upon the accuracy of the parameters

in the model. The hydraulic conductivity Lp and solute permeability Ps coefficients

control the rate at which water and solute enter the cell. To determine these coeffi-

cients, cell volume is typically measured as a function of time while cells are exposed

to media containing a permeating solute. The resulting volume versus time data are

then fit using the model while varying the parameters Lp and Ps. Because the model

has until now only yielded a numerical solution, developing a curve fitting algorithm

has been quite difficult. Early investigators were able to fit data only by making

simplifying assumptions [119]. In recent years, as computer software and processing

power has improved, this range has been extended, but curve fitting has been rele-

gated to complicated software such as MLABr (Civilized Software, Inc., Bethesda,

MD), Mathematicar, or other specialty software, and there is still a trade off between

accuracy and speed.

A new curve fitting algorithm that does not involve numerical integration can be
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implemented by transforming data to the linearized space using the time transforma-

tion p(t, Lp, Ps), which depends on the time and the permeability parameters Lp and

Ps. We wish to minimize the sum of squares estimate:

SS(Lp, Ps) =
n∑
i=1

(Vtotal(ti, Lp, Ps)− Vi)2. (2.24)

Since p(ti, Lp, Ps) = τi and Vtotal(ti)) = vtotal(τi), (2.24) can be written in the trans-

formed time as

SS(Lp, Ps) =
∑n

i=1(vtotal(p(ti, Lp, Ps), Lp, Ps)− Vi)2

=
∑n

i=1(vtotal(τi, Lp, Ps)− Vi)2.

The minimization of this estimate can be made using the exact solution with common

software packages such as SASr (SAS Institute, Inc., Cary, NC) or Excelr (Microsoft

Corporation, Redmond, WA). An advantage of this methodology is that it will give

the most precise estimates of the sum of the squared error because there is no inherent

error caused by numerical integration. In many cases, this technique is also faster.

On the other hand the time transform must be applied for each data point in the

(Lp, Ps)-parameter space. Using the numerical inverse techniques described above,

however, this transformation takes a negligible amount of time.

For example, suppose our experimental data consist of ten points over a period of

ten minutes. In order to analyze this with the exact solution we only need to calculate

the transform function p(t) ten times to yield data analyzable with our exact solution

in the linearized space, and only make ten (exact) comparisons. On the other hand,

even though there are only ten points, in order to accurately calculate the volume

using the numerical solution of the differential equation we must discretize our ten

minute experimental time interval into a mesh fine enough to provide accurate esti-

mates. A reasonable time-step for this system (to retain accuracy) is approximately
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one second. Thus, we must perform approximately 600 calculations to obtain the vol-

ume, together with ten (non-exact) comparisons to yield our sum of squares. With

many data points, this computational advantage of speed is weakened due to the in-

creasing number of time transform calculations necessary, but the accuracy advantage

will remain.

2.3.3 Finite element models

When modeling mass transport in organs and tissues, necessary for simulating the

effects of freezing during cryosurgery, a common simulation tool is finite element

analysis. This processor intensive technique models solute and solvent flux through a

tissue by defining a mesh of points and generating a concentration field corresponding

to these points. This field is then used to estimate transmembrane flux for cells in a

region around each mesh point. Increased numbers of mesh points improve accuracy

but slow computations considerably. A solute solvent flux model must be used for

each group of cells surrounding the mesh points. The result of these solute solvent

equations generates a new field and the state of the tissue or organ is updated as time

is incremented. Current techniques use from a few hundred to hundreds of thousands

of mesh points with processing time increasing significantly as the number of mesh

points increases. Thus the significance of a slight improvement in the efficiency of

this modeling system is amplified with the complexity of the computation. We note

here that these finite element computations can be performed in the τ -space exactly

and efficiently, yielding significant improvements in both computational speed and

accuracy in cell volume versus time simulations.

A numerical experiment was performed in which 100,000 calculations of volume
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(Vtotal(.1)) were made for both the numeric and the exact solution of the Jacobs

system (2.1). A 1.2 GHz Intel Pentium 3 laptop carried out the numerical calculation

in 7.771 seconds and the exact calculation more than three times faster at a time of

2.073 seconds. Thus for very large finite element grids where multiple time points

are needed, the exact solution may be a significant improvement in efficiency. For

example, to describe the volume flux of a relatively small tissue model containing 5000

cells (such as an islet of Langerhans) over the course of 25 minutes (the time to load

islets of Langerhans with 1.5 M Me2SO [133]) one needs at least 1500 time-steps.

Thus 1500 time-steps at 5000 volume calculations each yields a total of 7.5 ×106

calculations. On the above laptop, this calculation would take approximately ten

minutes. On the other hand, using the exact solution techniques, the same calculation

could be carried out with no error in 2.6 minutes. This sort of large-scale solution

can be implemented to predict behavior of much more complicated systems.

2.4 Conclusions

We have presented an exact solution to a system of differential equations that has

been in continuous use in biology for more than 70 years to model solute and solvent

transmembrane flux in single cells, multicellular systems and tissues. Our method has

distinct advantages over traditional numerical integration techniques in both calcula-

tion time and numerical accuracy, which allow for expanded applications in optimizing

CPA addition and removal and in modeling solute and solvent flux in large multicel-

lular systems. Finally, we have presented simple formulas for the calculation of the

extrema of cellular water volume, intracellular solute concentration, total cell volume

and the times at which they occur without requiring numerical integration.
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Chapter 3

A general model for the dynamics of
cell volume, global stability, and
optimal control

3.1 Introduction

Recently, a general model of cell volume regulation was introduced that accounts for

active and passive transport of water and a solute across the cell membrane [55, 54].

This model is

x′ = α− βx/y,
y′ = −γ + σx/y + ε/y,

(3.1)

where y is a (positive) non-dimensional water volume variable, x is a non-negative non-

dimensional solute mass variable, α and γ are extracellular concentration variables,

and β, σ and ε are cell dependent rate parameters. As discussed by Hernandez

[55], this model is a general form for many existing in the literature, but is used,

in particular in cryobiology (e.g. in Chapter 2 and [62, 63, 66]). It is simple to

extend this model to multiple solute species by defining w1 = y to be the positive

non-dimensional water volume of the cell, and wi, i = 2, . . . , n to be the n − 1

non-negative solute species, and xnp to be the non-negative non-permeating solute

species analogous to ε [62]. In this case, we define Mi(t) ≥ 0, i = 2, . . . , n, to be
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extracellular concentration variables analogous to α from system (3.1), and let the

sum of the extracellular concentrations
∑n

i=1Mi be the analog of γ from system (3.1),

where M1 > 0 is the concentration of nonpermeating solute. Finally, define bi > 0,

i = 2, . . . , n, to be the rate constants analogous to β and σ. We then have the general

multispecies model,

ẇ1 =
xnp

w1

+
k∑
j=2

xj
w1

−
n∑
i=1

Mi,

ẇ2 = b2

(
M2(t)− w2

x1

)
,

...

ẇn = bn

(
Mn(t)− wn

x1

)
,

(3.2)

defined in the positive orthant.

Applications of our multispecies model can be applied to cryobiology in particular

[62] but since there are a large number of intracellular and extracellular chemical

species that permeate across the cell boundary, it is natural to assume that if cells

are placed in any non-physiologic environment, there will be transmembrane transport

of water and more than one solute.

We will investigate the dynamics of these physiologically relevant models. Hernan-

dez [55] showed that model (3.1) is locally stable at its rest point provided the rest

point resides in the physically relevant region (x > 0 and y > 0). One would expect

that this stability is in fact global asymptotic stability, and that a similar result is

true for the model (3.2). We are able to prove both results.

Additionally, it is often desirable to determine optimal protocols for the control of

intracellular concentrations of permeating reagents in cells governed by model (3.1)

or (3.2). Examples can range from pharmicokinetics [70] to cryobiology [73]. We give
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the conditions for a controllability result, show existence of an optimal control, and

synthesize an optimal control in the case of one permeating and one non-permeating

solute.

As in Chapter 2 our analysis hinges on the observation that we can factor out 1/w1

from the right-hand side of nonlinear system (3.2). We then again have a system of the

form ẇ(t) = λ(w(t))f(w(t)), where λ : Rn → R is a positive scalar valued function.

The qualitative behavior of the corresponding system

ẋ(τ) = f(x(τ))

is the same [26], and the invertible transformation

t = q(τ) =

∫ τ

0

1

λ(w(s))
ds =

∫ τ

0

w1(s) ds (3.3)

gives w(τ) := x(q(τ)). Thus, redefining ẋ = dx
dτ
, we will work with the linear system

ẋ1 = xnp +
n∑
j=2

xj −
n∑
i=1

Mix1,

ẋ2 = b2 (M2(t)x1 − x2) ,

...

ẋn = bn (Mn(t)x1 − xn) .

or, in vector form,

ẋ = f(x,M) := A(M)x+ xnpe1, (3.4)

where M := (M1,M2, . . . ,Mn) and A(M) is the matrix

A(M) =


−∑n

i=1 Mi 1 1 . . . 1
b2M2(t) −b2 0 . . . 0
b3M3(t) 0 −b3 . . . 0

...
...

... . . . ...
bnMn(t) 0 0 . . . −bn

 .
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and e1 is the first unit-basis vector. Note that system (3.4) is bilinear in x and M

in the sense of Mohler [94]: ẋ = (A +
∑m

k=1 ukBk)x + Cu where A,Bk and C are

constant matrices, and uk are scalar controls. In system (3.4), f(α(x1 + x2), y) =

αf(x1, y)+αf(x2, y) and f(x, α(y1 +y2)) = αf(x, y1)+αf(x, y2). We take advantage

of this fact by defining matrices

B1 =


1 1 1 1
0 b2 0 0
... 0

. . . 0
0 . . . 0 bn

 , B2 =


0 1 1 1
0 −b2 0 0
... 0

. . . 0
0 . . . 0 −bn

 .

such that

ẋ = x1B1M +B2x+ xnpe1.

3.2 Dynamics for M(t) ≡M

3.2.1 Stability

As mentioned in the introduction, the stability of our model in case n = 2 and function

Mi is constant with Mi(t) ≡ Mi, was investigated by Henandez [55]. This stability

analysis was performed for the nonlinear system (3.1) (i.e. ẋ = x−1
1 (A(M)x+ xnpe1))

by linearizing as usual at the steady state and showing that the spectrum of the

resulting matrix is in the left-half of the complex plane, resulting in local stability.

Because we have reparametrized to a linear system losing no information about the

qualitative dynamics of the original system, once we show that the spectrum lies in

the left half-plane, we have global asymptotic stability. In fact, we will show this

result in the general case n ≥ 2, and constant Mi.

The zeros of (3.4) must satisfy x1 = xnp/M1, and xj = Mjx1 for j = 2, . . . , n;

or, in other words, the rest point is x∗ = (xnp/M1)(1,M2, . . . ,Mn)T . We begin our
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proof with some lemmas. Let σ(X) denote the set of eigenvalues of the matrix X, let

R+ = [0,∞), and C the complex numbers.

Lemma 1. σ(A(M)) ∈ C \ R+. Moreover, the characteristic equation of A may be

written in two equivalent forms:

γA = (M1 + λ)Πn
i=2(bi + λ) + λ

n∑
j=2

MjΠ
n
i=2,i 6=j(bi + λ) (3.5)

and

γA(λ) =

(
n∑
j=1

Mj + λ

)
n∏
i=2

(bi + λ)−
n∑
j=2

bjMj

n∏
i=2,i 6=j

(bi + λ). (3.6)

Proof. The characteristic equation γA(λ) of A is given by

γ(λ) = det(A− λI)

= det


−∑n

i=1Mi − λ 1 1 . . . 1
b2M2 −b2 − λ 0 . . . 0
b3M3 0 −b3 − λ . . . 0
...

...
... . . . ...

bnMn 0 0 . . . −bn − λ

 .

Expanding in minors along the first column, and examining them one by one, the

first minor is

(−
n∑
i=1

Mi − λ) det


−b2 − λ 0 . . . 0

0 −b3 − λ . . . 0
...

... . . . ...
0 0 . . . −bn − λ


= (−

n∑
i=1

Mi − λ)
k∏
i=2

(−bj − λ)

= (−1)k(M1 + λ)
k∏
i=2

(bj + λ).
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The subsequent minors are all similarly constructed. To find the j-th minor, we note it

will be multiplied by (−1)j−1. We reorder the columns: (j, 2, 3, . . . , j−1, j+1, . . . , n),

an operation with j − 2 column switches producing an extra (−1)j−2 factor, giving

the product of (−1)(j−2)+(j−1) = −1. We now have

−bjMj det


1 1 . . . 1
0 −b2 − λ . . . 0
...

... . . . ...
0 0 . . . −bn − λ


= −bjMj

n∏
i=2,i 6=j

(−bi − λ)

= (−1)n−1bjMj

n∏
i=2,i 6=j

(bi + λ).

Adding all first column minors, we find that

γ(λ) = (−1)n(
n∑
i=1

Mi + λ)
n∏
i=2

(bi + λ) +
n∑
j=2

(−1)n−1bjMj

n∏
i=2,i 6=j

(bi + λ)

= (−1)n

(
(
n∑
i=1

Mi + λ)
n∏
i=2

(bi + λ)−
n∑
j=2

bjMj

n∏
i=2,i 6=j

(bi + λ)

)
. (3.7)

We have the characteristic equation (corresponding to (3.6))(∑
j=1

Mj + λ

)
n∏
i=2

(bi + λ)−
n∑
j=2

bjMj

n∏
i=2,i 6=j

(bi + λ) = 0.
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Expanding the first term, we get

0 = (M1 + λ)
n∏
i=2

(bi + λ)︸ ︷︷ ︸
1

+
∑
j=2

Mj

n∏
i=2

(bi + λ)−
n∑
j=2

bjMj

n∏
i=2,i 6=j

(bi + λ)

= 1 +
n∑
j=2

(
Mj(bj + λ)

n∏
i=2,i 6=j

(bi + λ)− bjMj

n∏
i=2,i 6=j

(bi + λ)

)

= 1 +
n∑
j=2

Mj(bj + λ− bj)
n∏

i=2,i 6=j

(bi + λ)

= 1 +
n∑
j=2

λMj

n∏
i=2,i 6=j

(bi + λ)

= (M1 + λ)
n∏
i=2

(bi + λ) +
n∑
j=2

λMj

n∏
i=2,i 6=j

(bi + λ),

which is Eq. (3.5), and thus (3.5)=(3.6). Because all Mj, and bj for j = 2, . . . , n, are

strictly positive, this equality is only satisfied if λ /∈ R+.

Define the matrix

B =


−∑n

i=1Mi

√
b2M2

√
b3M3 . . .

√
bnMn√

b2M2 −b2 0 . . . 0√
b3M3 0 −b3 . . . 0
...

...
... . . . ...√

bnMn 0 0 . . . −bn

 .

Lemma 2. σ(B) = σ(A(M)).

Proof. We will show that γA(λ) = γB(λ). We simply perform the same minor decom-

position as before on det(B − λI). Examining the first term, we have as before

(−M1 − λ)
n∏
i=2

(−bi − λ) = (−1)n(M1 + λ)
n∏
i=2

(bi + λ).

To find the j-th minor, we first note that it will be multiplied by (−1)j−1. Now,

we reorder the columns: (j, 2, 3, . . . , j − 1, j + 1, . . . , n). This operation has j − 2

column switches and thus produces an extra (−1)j−2 factor, giving the product of
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(−1)(j−2)+(j−1) = −1. This yields the equality

−√bjMj det


√
bjMj

√
b2M2 . . .

√
bnMn

0 −b2 − λ . . . 0
...

... . . . ...
0 0 . . . −bn − λ


= −bjMj

n∏
i=2,i 6=j

(−bi − λ)

= (−1)n−1bjMj

n∏
i=2,i 6=j

(bi + λ).

Adding all minors, and noting the characteristic equation of A in the form (3.7) it

follows that

γB(λ) = (−1)n

(
(M1 + λ)

n∏
i=2

(bi + λ)−
n∑
j=2

bjMj

n∏
i=2,i 6=j

(bi + λ)

)
= γA(λ).

Because of its symmetry, we immediately have that the matrix B has only real

eigenvalues, and in combination with the first lemma, we have the following result.

Theorem 3. If the function M(t) is constant, then the rest point

x∗ = (xnp/M1)(1,M2, . . . ,Mn)T

of the system ẋ = A(M)x+xnpe1 is globally asymptotically stable. Moreover, the rest

point x∗ of system (3.2) is globally asymptotically stable.

3.2.2 Rate of approach to the rest point

Proposition 4. For M1 near zero, λ1(M1) = −(1 +
∑k

j=2 Mj/bj)
−1M1 +O(M2

1 ).

Proof. By inspection of the characteristic equation of A in the form (3.5), if M1 = 0

there is a zero eigenvalue λ1 = λ1(M1). The remaining (negative) eigenvalues λj,
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(j = 2, . . . , k) are roots of

λ
n∏
i=2

(bi + λ) +
n∑
j=2

λMj

n∏
i=2,i 6=j

(bi + λ) = 0.

Apply the Implicit Function Theorem to the function γA(λ,M1) = (M1 + λΠn
j=2(bj +

λ) + λ
∑n

j=2 MjΠ
n
i=2,i 6=j(bj + λ) at (λ,M1) = (0, 0), and then compute the derivative

of the implicit function λ = h(M1).

This makes intuitive sense because limM1→0 x
∗ = (∞, . . . ,∞).

For the lower bound, we can employ a standard eigenvalue result (see [84])1

Theorem 5. Let A ∈Mn×n, then for any eigenvalue λ of A, we have |λ| ≤ maxi
∑

j |aij|.

Thus the minimal eigenvalue, λn is bounded below by

− max
i=2,...,k

{
n∑
i=1

Mi +
∑
j

√
Mjbj,

√
Mibi + bi}. (3.8)

3.3 Optimal Control

3.3.1 Controllability

Consider a control process

ẋ = f(x, u), x(0) = x0, (3.9)
1Note: Application of the Gershgorin Circle Theorem yields exactly the same result:

minλ = min∪k
i=1

z ∈ C : |z − aii| ≤
∑
j 6=i

|aij |


= min

{
z ∈ R− : ∪k

i=2

{
z ∈ C : |z + bi| ≤

√
biMi

}
∪ {z ∈ C : |z +M1| ≤

∑
i=2

√
biMi

}
= −max{M1 +

∑
j

√
Mjbj ,

√
Mibi + bi} for i = 2, . . . , k.

In fact, in general, if all diagonal entries are negative, these two results will always yield the same
minimal eigenvalue (or maximal in the case where all entries are positive).
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where f ∈ C1(Rn × Rm,Rn). We prescribe an m-tuple of numbers M̄i > 0 for

i = 1, 2, . . . ,m, the admissible control parameter set

CP = {M = (M1,M2, . . . ,Mm) ∈ Rm : 0 ≤Mi ≤ M̄i for i = 1, 2, . . . ,m}, (3.10)

and the state space S ⊂ (0,∞)× [0,∞)n (i.e. we do not allow x1 = 0). In addition,

we define x(t) = x(t;x0, u) to be the solution of the initial value problem (3.9) and

Cy(t) = {x0 ∈ S : x(t) := x(t;x0, u) = y},

the set of initial conditions that can be steered to y ∈ S at time t via a measurable,

admissible control function u : R → CP. Furthermore we define Cy = ∪t≥0Cy(t), and

say that our control system is null controllable if C0 = Rn. Finally, we define the

controllability matrix function G : Mn×n ×Mn×m →Mn×mn by

G(A,B) := [B|AB|A2B| . . . |An−1B].

The next theorem is a fundamental result in optimal control theory (see for exam-

ple [71]).

Theorem 6. For system (3.9), suppose that Ω ⊂ Rm, 0 ∈ int Ω, and f(0, 0) = 0.

Also, define Af = (∂f/∂x)(0, 0) and Bf = (∂f/∂u)(0, 0). If rankG(Af , Bf ) = n and

0 is an asymptotically stable rest point of the system ẋ = f(x, 0), then C0 = Rn.

For this chapter we adapt the notion of a bilinear control system defined by Mohler:

a system is bilinear in state x and control vector u ∈ Rm if

ẋ = f(x,M)

= Ax+
∑
j

Bjujx+ Cu (3.11)
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for appropriately sized matrices A, Bj and C. We apply Theorem 6 to the case of a

bilinear system with shifted coordinates.

Corollary 7. Suppose that f is bilinear as defined in 3.11, CP ⊆ Rm, and x∗ ∈ Rn

and u∗ ∈ int Ω are such that f(x∗, u∗) = 0. Define Āf = (∂f/∂x)(x∗, u∗) and B̄f =

(∂f/∂u)(x∗, u∗). If rankG(Āf , B̄f ) = n and x∗ is an asymptotically stable rest point

of the system ẋ = f(x, u∗), then Cx∗ = Rn.

Proof. Suppose f(x∗, u∗) = 0 and define f1(x, u) = f(x∗ − x, u∗ − u). We have that

f1(0, 0) = 0, and (by the bilinearity) f1(x, u) = f(x, u)−f(x, u∗)−f(x∗, u)+f(x∗, u∗).

Using the bilinearity again, it follows that

(Dxf1)(0, 0) = Af (0, 0)− Af (0, u∗) = Af (0,−u∗) = −Āf (x∗, u∗).

Similarly,

(Duf1)(0, 0) = Bf (0, 0)−Bf (x
∗, 0) = −Bf (x

∗, 0) = −B̄f (x
∗, u∗).

We have

n = rank[B̄f |Āf B̄f |Ā2
f B̄f | · · · |Ān−1

f Bf ]

= rank[−B̄f |Āf B̄f | − Ā2
f B̄f | · · · |(−1)n−2Ān−1

f B̄f ]

= rank[Bf |AfBf |A2
fBf | · · · |An−1

f Bf ].

and because x∗ is asymptotically stable for ẋ = f(x, u∗), the state 0 is asymptotically

stable for ẋ = f1(x, 0).

We apply this corollary to the bilinear system (3.4) by noting that Af (x∗, u∗) =

A(M∗) and Bf (x
∗, u∗) = x∗1B1. Since x∗1B1 is an n× n upper triangular matrix with
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non-zero diagonal entries, the first n columns are linearly independent and thus the

rank of G(A(M∗), x∗1B1) = n.

Finally, we combine Theorem 3 with Corollary 7 to obtain the following result.

Theorem 8. For system (3.4), Cx∗ = Rn.

3.3.2 Existence of an optimal control

The existence of an optimal control for systems of the form (3.11) with bounded

controls is a standard result, see Lee and Markus, Corollary 2, p. 262 [71].

3.3.3 A control problem

We will investigate the time-optimal control problem (for the special case of sys-

tem (3.9) given by system (3.2)) of steering an initial state xi to a final state xf in

minimal time using controls in the admissible set A which is the set of measurable

functions M : R → CP, and CP is defined in display (3.10). This control problem

has wide applications in biology because it is often desirable to implement the control

of an extracellular environment in such a way as to minimize exposure time.

Problem 9. Given an initial state xi in the state space S and final state xf ∈ S, the

set of admissible controls A and defining t∗ ∈ R to be the first time that x(t∗) = xf

for the solution of the previously defined initial value problem

ẋ = A(M)x+ xnpe1, x(0) = xi (3.12)

with state constraint g(x) ≤ 0, determine a control that maximizes the functional

P (M) := −
∫ t∗

0

x1(t) dt

over A.
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Our basic tool for attacking this time-optimal control problem is the Pontryagin

Maximum Principle (see Lee and Markus for example [71]), which is stated in the

form that we will use in Appendix A-2 for the convenience of the reader.

For our model system (3.12), we wish to minimize the payoff functional

P [M(·)] = −
∫ t∗

0

x1(s)ds, (3.13)

which is negative “real” time from our conversion formula (3.3).

For our control system (3.2), which we also view in the compact form ẋ = f(x,M)

with x ∈ Rn, we define the (control theory) Hamiltonian

H(x, p,M) = f(x,M) · p− x1.

The state of the system satisfies the differential equation ẋ = ∇pH(x, p,M) = f(x,M)

and the costate satisfies ṗ = −∇xH(x, p,M). In our case, the state equation has

the explicit form ẋ = A(M)x + xnpe1 and the costate equation is given by ṗ =

−A(M)Tp+ e1.

For Problem 9 (even in the n > 2 dimensional case), we can immediately deduce

the nature of the optimal controls by applying the maximum principal: we have the

Hamiltonian

H(x, p,M) = (A(M)x+ xnpe1) · p− x1 = (x1B1M +B2x+ xnpe1) · p− x1, (3.14)
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and we must find M ∈ A such that H(x, p,M) is maximized. Thus we maximize

H(x, p,M) = (A(M)x+ xnpe1) · p− x1

=

(
−

n∑
i=1

Mix1 +
n∑
i=2

xi + xnp

)
p1 +

n∑
i=2

(Mibix1 − bix2)pi − x1

= −
n∑
i=1

Mix1p1 + . . .+
n∑
i=2

(Mibix1 − bixi)pi + . . .

= −M1x1p1 + x1

n∑
i=2

Mi(bipi − p1) + . . . ,

where the ellipses represent terms that we may ignore because they are not affected

by the controls Mi. This expression is maximized when

M1(t) =

{
0, p1 > 0
M̄1, p1 ≤ 0

and Mi(t) =

{
0, bipi − p1 < 0
M̄i, bipi − p1 ≥ 0

. (3.15)

3.3.4 Synthesis of the optimal control in the case n = 2.

To synthesize the optimal control for n > 2 becomes a technical challenge due to the

number of state and costate cases one must consider. Therefore, we will construct the

optimal control in the commonly encountered and biologically important case where

there is one permeating and one non-permeating solute and n = 2.

In the unconstrained case, the maximum principle limits the synthesis to four

possible control schemes, M I , . . . ,M IV associated with four regions (ΠI , . . . ,ΠIV ) in

costate space:

ΠI := {p ∈ R2 : p1 < 0, b2p2 − p1 > 0},

ΠII := {p ∈ R2 : p1 > 0, b2p2 − p1 > 0},

ΠIII := {p ∈ R2 : p1 > 0, b2p2 − p1 < 0},

ΠIV := {p ∈ R2 : p1 < 0, b2p2 − p1 < 0},
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PIIIPIV

p1

p2

Figure 3.1: Plot of the costate regions ΠI ,ΠII ,ΠIII ,ΠIV , defined by the maximum
principle.

(see Fig. 3.1), and the control schemes for initial points in each region (Table 3.1).

Define S∗ := {x ∈ S : x1 > xnp/M̄1, 0 ≤ x2 < M̄2x1} to be the region in the

state space where xi and xf may reside, and define sets P 0 = {xf}, P 1 = ∪4
i=1σ

i, and

P 2 = S, where

σi := {x ∈ S : φλt (xf ) = x for some t < 0},

and φλt (xf ) is the solution of ẋ = f(x, λ) from initial point xf under control scheme

λ = M I ,M II ,M III , or M IV (see Fig. 3.2). We define regions A,B,C and D as

follows. Let A ⊂ S be the region bounded by ∂S ∪ σI ∪ σII ∪ {xf} that does not

contain σIII∪σIV . Let B ⊂ S be the region bounded by ∂S∪σII∪σIII∪{xf} that does

not contain σIV ∪σI . Let C ⊂ S be the region bounded by ∂S∪σIII ∪σIV ∪{xf} that

does not contain σI ∪σII . Let D ⊂ S be the region bounded by ∂S ∪σIV ∪σI ∪{xf}

that does not contain σII ∪ σIII .
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ΣIV
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x n
p
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1
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x 2=
M 2x 1

x1
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Figure 3.2: Typical plot of the state regions. The geometry of the regions changes as
a function of xf , the “source” of the σi, though the regions remain bounded by the
same σi. Also, S∗ is bounded on the left and above by the dashed lines x1 = M1xnp
and x2 = M2x1.

Using the notation just developed, we define v : S → U :

v(x) =


M I x ∈ σI
M II x ∈ C ∪ D ∪ σII
M III x ∈ σIII
M IV x ∈ A ∪ B ∪ σIV

, (3.16)

which defines control schemes (see Table 3.1) for initial points xi ∈ intS∗ in the

subregions (see Table 3.2).

Theorem 10. The trajectory defined by ẋ = f(x, v(x)) where v is defined by (3.16)

is optimal.

To prove this theorem below, we will use the classic result of Boltayanski, which

states that any “regular” and “distinguished” control is optimal [18]. The conditions

for regular and distinguished controls are listed in Section A-3.

Next we introduce what seem like two unexpected results. For initial points in

regions A and D there are simple formulas that describe the total transit time t∗ that
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Table 3.1: The Pontrya-
gin Maximum Principle along
with the Hamiltonian for the
n = 2 system define the pos-
sible optimal control schemes
M I ,M II ,M III , and M IV .

Control Scheme M1 M2

M I M̄1 M̄2

M II 0 M̄2

M III 0 0
M IV M̄1 0

Table 3.2: Control schemes in the subre-
gions of S. Our synthesis will be con-
structed for initial and final points xi and
xf in S divided into four regions A,B, C
and D. For each region the First Control
is used until a defined switching time τ af-
ter which the Second Control is used. In
the unconstrained case, the control M(t)
is piecewise constant.

Region First Control Second Control

A M IV M III

B M IV M I

C M II M I

D M II M III
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are not dependent on the maximal concentration; i.e. as long as the starting point

lies in either A or D the total transit time is solely determined by xi, xf , xnp, and b2!

Theorem 11. For xi ∈ D, the total optimal transit time under the associated control

scheme is t∗ =
xf
1−xi

1

xnp
+

xf
2−xi

2

b2xnp
. For xi ∈ A, the total optimal transit time under the

associated control scheme is t∗ = 1
b2

ln(xi2/x
f
2).

The proof of this theorem relies on Lemma 14 necessary to prove Theorem 10.

There may be similar formulae for other regions, but the equations become much

more complicated in these cases.

This first lemma shows that there are no rest points of the controlled systems in

the interior of S.

Lemma 12. For xf ∈ S∗, there are no rest points of system ẋ = f(x, v(x)) in

intS \ σI .

Proof. In regions C ∪ D ∪ σII ∪ σIII , M1 = 0, and there is no rest point. In regions

A∪B ∪ σIV , M2 = 0, and the rest point is at (xnp/M1)(1, 0)T . Region A is bounded

by σIII and σIV , for which M2 = 0, because of this, in negative time, ẋ2 > 0, and

thus for all xf ∈ S∗, A is bounded away from the x1-axis. For region B, because

σIV is bounded away from the x1-axis, it remains to show that if σI intersects the

x1-axis, it does so for x1 > xnp/M̄1 (e.g. B is bounded away from the associated rest

point). But, for xf ∈ S∗, x1 > xnp/M̄1 and x2 < M̄2x1. In this case, in negative time

ẋ1 = (M1 +M2)x1 − x2 − xnp > xnp +M2x1 −M2x1 − xnp = 0, thus σI intersects the

x1-axis at x1 > xnp/M̄1.

The next lemma states that at every point in the interior of S the vector fields

defined by the four controls are not parallel.
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Lemma 13. If x ∈ σIII ∩ intS, then f(x,M IV ) and f(x,M III) are not parallel.

If x ∈ σI ∩ intS, then f(x,M IV ) and f(x,M I) are not parallel.

If x ∈ σIII ∩ intS, then f(x,M II) and f(x,M III) are not parallel.

If x ∈ σI ∩ intS, then f(x,M II) and f(x,M I) are not parallel.

Proof. Let η ∈ R. If x ∈ ∂S∗ and x1 = M1xnp, then −f(x,M I) · (1, 0) > 0. Also

if x ∈ ∂S∗ and x2 = M2x1, then −f(x,M I) · (0, 1) < 0. Thus, for all xf /∈ ∂S∗,

σI ∩ (∂S∗ \ R × {0}) = ∅. Now suppose x ∈ R × {0}. Then −f(x,M III) · (0, 1) > 0,

therefore for all xf /∈ R × {0}, σIII ∩ R × {0} = ∅. The solution of f(x,M IV ) =

ηf(x,M III) is x1 = (xnp/M1)(1− η), x2 = 0. The solution of f(x,M IV ) = ηf(x, I) is

x1 = xnp/M1, x2 = (M2xnpη)/(M1(η−1)). This solution is not in intS for all η. There

is no solution of f(x,M II) = ηf(x,M III). The solution of f(x,M II) = ηf(x,M I) is

x1 = (xnp/ηM1)(1− η), x2 = (M2xnp/M1η)(η − 1). Factoring out (xnp/ηM1)(1− η),

we get (xnp/ηM1)(1 − η)(1,M2). This parametrizes the boundary x2 = x1M2 of Sf ,

and thus is not in intS for all η.

This next lemma states that given initial points in each region A,B, C,D, the flow

along the solution given by the associated control intersects the expected boundary

curve σi in finite time.

Lemma 14. (1) Given an initial point x ∈ A, there exists a time τ1 > 0 such that

φIVτ1 (x) intersects σIII . (2) Given an initial point x ∈ B, there exists a time τ1 > 0

such that φIVτ1 (x) intersects σI . (3) Given an initial point x ∈ C, there exists a time

τ1 > 0 such that φIIτ1 (x) intersects σI . (4) Given an initial point x ∈ D, there exists

a time τ1 > 0 such that φIIτ1 (x) intersects σIII .
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Proof. By Lemma 12 there are no rest points within any of the regions under the

control v. We claim that S is invariant for all controls. In fact, on the x1-axis, all

controls have ẋ2 ≥ 0, and on the x2-axis, all controls have ẋ1 ≥ 0. From Lemma 12

and Theorem 3, regions A and B are bounded away from the asymptotically stable

rest point associated with their control, and thus from any initial point in A or B,

the flow must cross ∂A or ∂B respectively. Because the control in both regions is

M IV , by the uniqueness of solutions of ODEs the flow will not cross σIV , and thus

(1) and (2) are proved. Now note that for x ∈ S∗, f(x,M I) and f(x,M II) have a

positive second component, thus σI and σII (which flow in negative time) will always

intersect the x1-axis, and region C will be bounded away from x2 > xf2 . Moreover, for

x ∈ S, the first component of f(x,M III) is positive, σIII must intersect the x2 axis,

and thus region D is bounded. Finally, for x ∈ S∗, f(x,M II) has a positive second

component. Thus for xi ∈ C ∪ D, φMII

t (xi), must intersect ∂C ∪ ∂D, and as above,

because the control in both regions is M II , by the uniqueness of solutions of ODEs

the flow will not cross σII , and thus (3) and (4) are proved.

Lemma 15. The transit time τ(xi) from xi to xf is a continuous function of the

initial point xi.

Proof. Let y ∈ σi, define τ2(y) to be the time to reach xf while flowing along σi,

and define F (t, x, y) := φ(t, x, λ) − y. By Lemma 14, for each xi ∈ G there exists

a τ1 such that φ(τ1, x, v(x)) ∈ σi. Thus, we have F (τ1, x, y) = 0. Because there

exist no rest points, d
dt
F (t, x, y)|t=τ1 6= 0 and we may apply the implicit function

theorem yielding τ 1(x) is C1 in a neighborhood of x, thus the transit time τ(x) =

τ1(x) + τ2(φ(τ 1(x), x, II)) is continuous.
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Next we examine whether there exists a costate that will satisfy the Pontryagin

Maximum Principle.

Lemma 16. The lines `II defined by the solution of H(x(0), p(0),M II) = 0 and `IV

defined by the solution of H(x(0), p(0),M IV ) = 0 are not parallel to the line b2p2 = p1.

Proof. Setting the initial Hamiltonian for control M II equal to zero, we get

H(x(0), p(0),M II) =

(−M2x
i
1 + xi2 + xnp

M2b2x
i
1 − b2x

i
2

)
·
(
p1

p2

)
+ xi1,

= (−M2x
i
1 + xi2 + xnp)p1 + (M2b2x

i
1 − b2x

i
2)p2 + xi1,

= 0.

We solve this for

b2p2 =
M2x

i
1 − xi2 − xnp
M2xi1 − xi2

p1 − xi1
M2xi1 − xi2

.

Note that M2xi
1−xi

2−xnp

M2xi
1−xi

2
= 1 if and only if M2x

i
1−xi2−xnp = M2x

i
1−xi2. But, reducing

this equation we get xnp = 0 in contradiction since xnp > 0. Next, for control M IV ,

we have

H(x(0), p(0),M IV )

(−M1x
i
1 + xi2 + xnp
−b2x

i
2

)
·
(
p1

p2

)
+ xi1

= (−M1x
i
1 + xi2 + xnp)p1 − b2x

i
2p2 + xi1

= 0.

We solve this for b2p2 = (−M1x
i
1+xi2+xnp)/x

i
2+xi1/x

i
2. Now (−M1x

i
1+xi2+xnp)/x

i
2 =

(xnp −M1x
i
1)/xi2 + 1 < 1, since xnp < M1x

i
1.

Proposition 17. Given Problem 9 with an initial point xi ∈ S∗ \ ∪IVi=Iσi, with its

associated optimal control scheme λ, switching time τ 1, and the control scheme’s
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associated initial and final costate regions (Πi and Πf , respectively), there exists a

costate p such that for all t > 0, the Hamiltonian H(x, p, λ) := f(x, λ) · p + x1 = 0,

and p(t) solves ṗ = −∇xH(x, p, λ) such that p(t) ∈ Πi for t < τ 1, p(τ 1) ∈ ∂Πi and

p(t) ∈ Πf for t > τ1.

Proof. We must show that for each control scheme and time τ 1 > 0, there exists

an initial costate such that p(t) ∈ Πi for t < τ 1, p(τ 1) ∈ ∂Πi and p(t) ∈ Πf for

t > τ 1. We need only consider Πi = ΠII and the Πi = ΠIV cases . In both cases

H(x(0), p(0), λ) = 0 defines a line ` in the costate space with non-infinite slope that,

by Lemma 16, also does not equal 1/b2. In the ΠII case, the costate dynamics are

governed by

(
ṗ1

ṗ2

)
=

(
M2p1 −M2b2p2 + 1
−p1 + b2p2

)
. (3.17)

It is easy to check that this system has an invariant line defined by p2 = p1/b2 +

1/(b2
2 + M̄2b2) that by Lemma 16 will intersect `. We claim that for p ∈ ΠII such

that p2 > p1/b2 + 1/(b2
2 + M̄2b2), there exists a t <∞ such that the solution of (3.17)

intersects the p2−axis at time τ 1.

We first let p2 > p1/b2 + 1/M2b2. In this case ṗ1 < 0 and ṗ2 > 0, so we must flow

toward the p2-axis, and since limp2→∞ ṗ2/ṗ1 = −1/M2, the flow will never “blow up” to

p2 =∞ before crossing the p2-axis. Now for p1/b2 +1/M2b2 > p2 > p1/b2 +1/(M2b2 +

b2
2), ṗ2 > 0. Thus for such p, p2 will increase until p2 > p1/b2 + 1/M2b2 and we are

done. Next let p2 < p1/b2 + 1/(M2b2 + b2
2). Taking limp1→∞ ṗ2/ṗ2 = −1/M2, and

limp1→∞ ṗ2 = −∞, therefore as p1 gets large, the direction of the flow is downward

and will cross the line p2 = p1/b2.
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For the ΠIV case, the costate dynamics are governed by

(
ṗ1

ṗ2

)
=

(
M1p1 + 1
−p1 + b2p2

)
.

We can check that this system has an invariant line at p1 = −1/M̄1. For p such that

p1 > −1/M̄1, ṗ1 > 0, and for p such that p1 < −1/M̄1, ṗ1 < 0 and limp1→−∞ ṗ2 = +∞

with limp1→−∞ ṗ2/ṗ1 = −1/M , therefore as −p1 gets large, the direction of the flow

is upward and will cross the p1-axis.

Thus, in both cases we can find an initial point along ` such that, following the

respective dynamics, p reaches ∂Πi at t = 0 and at t =∞. By continuity there exists

an initial point such that p reaches ∂Πi at t = τ 1.

We must show that once in Πf , we remain there for all time. For Πf = ΠIII , we

claim ΠIII is invariant because under control M III , along p2 = p1/b2, ṗ2 = 0, and

ṗ1 = 1, and along the p2 = 0 axis, ṗ1 = M2p1 + 1 > 0. Therefore for Πf = ΠIII , once

the costate flow enters Πf , it never leaves. For Πf = ΠI , the flow may approach ΠI

from either ΠII or ΠIV .

In the case Πi = ΠII , the system is governed by

(
ṗ1

ṗ2

)
=

(
(M1 +M2)p1 −M2b2p2 + 1

−p1 + b2p2

)
. (3.18)

From the above analysis we have shown that p2 > 1/M2b2 when the boundary is

traversed. For such p, ṗ1 < (M1 +M2)p1 < 0. Moreover, along the line p2 = 1/M2b2,

ṗ2 = −p1+1/M2 > 0 for p1 < 0. Therefore, if we enter ΠI from ΠII , we remain in it for

all time. Finally, if we enter ΠI from ΠIV , from the above analysis, p1 < −1/M1, and

p2 > p1/b2. In this case ṗ1 = (M1 +M2)p1−M2b2p2 + 1 < M1p1 +M2p2−M2p1 + 1 <

−1 + 1 = 0.
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We are now ready to prove that the control is optimal.

Proof of Theorem 10. We must show that the controlled trajectory satisfies all con-

ditions outlined in Section A-3.

For conditions (1) and (2): define P 0 = {xf} to be the lone zero-dimensional cell,

and it will be of the second kind. Likewise P 2 = intS will be made up of cells

A,B,C, and D of the first kind. Note that P 2 − (P i−1 ∪ N) = A ∪ B ∪ C ∪ D. Fi-

nally, let P 1 = {σi}IVi=I where the σi are 1-dimensional cells of the second kind. Since

v is constant in each cell A,B, C,D, and each σi, it is continuous and continuously

differentiable and can be extended as a continuously differentiable function into a

neighborhood of each cell.

For condition (3):

(a) We begin by showing that each point of the 2-dimensional cells A,B, C, and D has

a unique trajectory passing through it. Since v(x) is constant in each cell, uniqueness

is given; and by Lemma 12, for each cell, there are no rest points of the system.

(b) By Lemma 13 we show that the initial trajectories from regions A,B, C, and

D “pierce” their corresponding σi, and by Lemma 14, the trajectory leaves the cell

(A,B, C, or D) in finite time.

(c) By definition the trajectories in σi approach the zero dimensional cell, and by

Lemma 12 there is no rest point along any of the σi.

(d) We do not have any of these cases.

For condition (4): We have defined a unique distinguished trajectory such that only

two cells are traversed before reaching xf .

For condition (5): This is shown in Proposition 17.
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For condition (6): This is shown in Lemma 15.

Now that we know that the control is optimal, we can prove the total transit time

result.

Proof of Theorem 11. First, we address points in region D. By Theorem 10, the

control M II for 0 ≤ t ≤ τ and M IV for τ < t ≤ t∗ exists and is optimal. If we can

find s and t such that φMII

t (xi) = φM
IV

s (xf ). Then the total transit time is t∗ = t− s.

For M = M II we have the system

dx1

dt
= −M2x1 + x2 + xnp,

dx2

dt
= M2b2x1 − b2x2,

x1(0) = xi1,

x2(0) = xi2.

(3.19)

We solve ẋ = Ax+ (xnp, 0)T by variation of parameters:

x(t) = etAxi + etA
∫ t

0

e−τA
(
xnp
0

)
dτ.

where, letting a = (b2 +M2) the fundamental matrix solution is

etA =
1

a

(
b+ e−atM 1− e−at

bM − be−atM be−at +M

)
. (3.20)

We have

etA
∫ t

0

e−τA
(
xnp
0

)
dτ = a−2

(
(M − e−atM + abt)xnp

be−atM (1 + eat(at− 1))xnp

)

Therefore, the complete solution, after simplification is

x1(t) = a−2
(
Mxnp + a(xi2 + b2(xi1 + txnp)) + (aMxi1 − axi2 −Mxnp)e

−at),
x2(t) = a−2

(
M(−b2xnp + a(xi2 + b2(xi1 + txnp))) + b2(a(−Mxi1 + xi2) +Mxnp)e

−at).
(3.21)
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Next, for M = M IV , which is the solution along σIV , we have (noting that we

may solve backwards from xf ).

dy1

ds
= y2 + xnp,

dy2

ds
= −b2y2,

y1(0) = xf1 ,

y2(0) = xf2 .

(3.22)

By direct integration, the solution is

y1(s) = xnps+
xf2
b2

(1− e−b2s) + xf1

y2(s) = xf2e
−b2s.

Now, we solve x1(t) = y1(s) and x2(t) = y2(s) for s and t:

a−2
(
Mxnp + a(xi2 + b2(xi1 + txnp)) + (aMxi1 − axi2 −Mxnp)e

−at)
= xnps+

xf2
b2

(1− e−b2s) + xf1 , (3.23)

a−2
(
M(−b2xnp + a(xi2 + b2(xi1 + txnp))) + b2(a(−Mxi1 + xi2) +Mxnp)e

−at)
= xf2e

−b2s. (3.24)

Solving for e−b2s in equation (3.24) as a function of t we get

e−b2s = (xf2a
2)−1

(
M(−b2xnp+a(xi2+b2(xi1+txnp)))+b2(a(−Mxi1+xi2)+Mxnp)e

−at),
(3.25)

which we can substitute into equation (3.23) and upon simplification we get

t∗ = t− s =
xf1 − xi1
xnp

+
xf2 − xi2
b2xnp

. (3.26)

Therefore, if a solution of x1(t) = y1(s) and x2(t) = y2(s) exists, equation (3.26) is

valid. By Lemma 14, this solution exists for all initial points xi ∈ D.

Now we address the case where xi ∈ A. By Theorem 10, the control M IV for

0 ≤ t ≤ τ and M IV for τ < t ≤ t∗ exists and is optimal. If we can find s and t such

that φMIV

t (xi) = φM
III

s (xf ). Then the total transit time is t∗ = t− s.
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For M = M IV we have the system

dx1

dt
= −M1x1 + x2 + xnp,

dx2

dt
= −b2x2,

x1(0) = xi1,

x2(0) = xi2.

(3.27)

Again, we solve ẋ = Ax+ (xnp, 0)T by variation of parameters. This time the funda-

mental matrix solution is

etA =

(
e−Mt e−bt−e−Mt

−b+M
0 e−bt

)
and then

etA
∫ t

0

e−τA
(
xnp
0

)
dτ =

(
e−Mt(−1+eMt)z

M
, 0

)
Therefore the complete solution after simplification is

x1(t) =
e−btxi2
−b+M

+
xnp
M

+ e−Mt

(
xi1 +

xi2
b−M −

xnp
M

)
,

x2(t) = e−btxi2.

(3.28)

Using the solution for y from above, as before we must solve x1(t) = y1(s) and

x2(t) = y2(s) for s and t. But x2(t) = y2(t) implies

e−btxi2 = e−bsxf2

which, upon simplification, gives

t− s = ln(xi2/x
f
2).

By Lemma 14, this solution exists for all initial points xi ∈ A.

3.4 Conclusions

We have presented an analysis of a multi-solute extension of a previously published

general model of cell volume and concentration regulation and we have extended the
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local stability result in the case n = 2 presented in a previous work to global asymp-

totic stability in the case n ≥ 2. Moreover we have given an application of this result

in control theory, and provided a complete synthesis of an optimal control in a com-

monly encountered two solute biological system. Finally, we have demonstrated that

for initial points in two special cases, there are explicit and simple formulas that define

the total transit time. Although the implementation of an optimal control scheme

such as this in the biological setting is dependent on the sensitivity to parameters,

as long as it can be verified that the initial point is in one of the defined regions

above, this optimal control formulation gives an estimate of the minimal transport

time that can be achieved. Because of this, one can determine how much engineering,

biophysics, or biology is worth undertaking to achieve more optimal protocols.
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Chapter 4

An optimal method for the addition
and removal of cryoprotective agents

4.1 Introduction

The economic, scientific and even cultural impact of cryobiology is immense: billions

of dollars are invested each year in frozen cells and tissues for use in cell culture trans-

port [12], facilitation of agricultural and human reproduction [130], improvements in

human and animal transplantation and transfusion medicine [83], and bioengineering

[60]. Arguably more important than cooling and warming rates, the addition and

removal of cryoprotective agents (CPAs) to and from cells [45, 72, 73] is a critical

and limiting factor in cryopreservation success—current cryopreservation protocols

are limited by the inability to safely equilibrate cells with sufficient concentrations of

permeating CPAs to cause an intracellular glass to form while cooling. The transport

of CPAs across cell membranes is well described by a system of coupled ordinary

differential equations and is often limited by the existence of cell-specific volume or

concentration constraints [72, 73]. Currently, only heuristic optimizations of CPA

addition and removal protocols have been published [45, 72, 73]. Here we show that

optimal control theory can be applied to the introduction and subsequent removal of
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cryoprotective agents with far reaching implications to the field, and extend the gen-

eral optimization theory outlined in Chapter 3 by including the natural cell volume

and concentration constraints that are encountered in the process of cryoprotective

agent addition and removal [12]. Moreover we show that for a large set of parame-

ters, five- to fourty-fold time reductions can be made over classical techniques. We

then provide a specific application to human oocytes, reducing the time to equilibrate

oocytes with multimolar propylene glycol (PG) by a factor of ten. Because oocytes

are sensitive to the exposure time of CPAs [38, 98],this new protocol may facilitate

the cryopreservation of this clinically important cell type.

There are two conflicting factors in the development of a CPA addition or removal

protocol—the exposure time to multimolal concentrations of CPAs and damaging

cell volume excursions (Fig. 4.1)—that point to the existence of an optimal protocol

and necessitate an algorithm that provides the optimized CPA addition and removal

procedure when the membrane permeability characteristics and the osmotic or volu-

metric tolerance limits of a specific cell type are known. Often CPAs are added and

removed in gradual steps, whose times and concentrations are empirically based [44].

Heuristic arguments for the optimization of CPA addition and removal have also been

presented in the literature; for example, one may decrease osmotic stress by varying

the CPA concentration continuously [72, 73], producing improved but not optimal

protocols.

4.2 Problem

We wish to control the extracellular concentrations of permeating and non-permeating

solutes (M2 andM1, respectively) such that cells are equilibrated at a goal concentra-
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tion in the shortest time while remaining within predefined state-constraints. We will

use the solute-solvent transmembrane flux model used in previous chapters and comm-

monly used in cryobiology [66]. In fact, this model recently was noted to encompass a

vary large array of membrane transport phenomena [55]. After simplifying the osmotic

pressure and non-dimensionalizing to get an equation x′(τ) = x1(τ)−1f(x(τ),M(τ)),

we time-transform with τ =
∫ t

0
x1(s)ds, resulting in a system that is linear in the

concentration and the state variables (see Appendix A-1 for a derivation, and Table

4.1 for parameter definitions)1:

ẋ1 = (M1 +M2)x1 − x2 + xnp,

ẋ2 = b2(M2x1 − x2).

(4.1)

Time

C
el

lV
ol

um
e

Figure 4.1: Plot of the effects of two different CPA addition protocols. A hypothetical
cell is equilibrated with a goal concentration C of a permeating CPA. This cell has a
lower limit to which it can contract without damage. If the cell is exposed abruptly
to C, the efflux of water causes it to shrink below this limit, causing cell death.
Alternatively, if the cell is exposed to C/2 and then C, the cell does not exceed the
limit, but is exposed to the chemicals for a longer period of time. We wish to find an
optimal balance between these two competing effects.

1We use the convention ẋ := dx/dt.

64



Table 4.1: Definition of parameters

Variable Characteristic value Dimensional parameter discription

Vw Cell water volume
V iso
w Isosmotic cell water volume
Vb Osmotically inactive cell volume
s Intracellular moles of permeating solute
n Intracellular osmoles of non-permeating solute
miso 0.3 Isosmotic molality
Ps Permeating solute permeability
Lp Water hydraulic conductivity
Â Cell membrane surface area (assumed constant)
R 0.08205 Gas constant
T Temperature in Kelvin
V̄s Partial molar volume of the permeating solute

v∗ or v∗ Cell upper and lower volume bounds, respectively

Variable Formula Non-dimensional parameter description

x1 Vw/V
iso
w Cell water volume

x2 s/misoV
iso
w Cell permeating solute moles

xnp n/misoV
iso
w Cell non-permeating solute osmoles

xi or xf (x1, x2) Initial or final state values, respectively
M1 me

n/miso Extracellular non-permeating solute concentration
M2 me

s/miso Extracellular permeating solute concentration
M̄i m̄e

i/miso Maximal solute concentration
b Ps/LpRTm

iso Lumped cell permeability parameter
γ V̄s ∗miso Partial molar volume of the permeating solute
k∗ v∗ − Vb/V i

w Upper or lower cell volume limit, respectively
k∗ v∗ − Vb/V i

w Upper or lower cell volume limit, respectively
t LpÂRTmiso

V iso
w

t̄ Nondimensional time as a function of real time t̄

Variable Other parameters

pi Costate variables
A Admissible control set

τ and si Unitless switching times
`∗ and `∗ Lines defined by state constraints
φλt (y) Solution of equation (4.1) from initial point y at time t.

under control (M1,M2) = λ
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4.3 Theory

We utilize the unconstrained time-optimal control approach to equation (4.1) outlined

in general in Chapter 3, but allow state constraints of the form Γ·x+k ≤ 0, which may

represent water volume, total cell volume, or concentration constraints. The approach

can be generalized numerically to nonlinear and multiple state constraints and, due

to the high concentrations of permeating and non-permeating solutes required for

this theory, generalized to a more appropriate model (see Section A-1 and [36]) using

classical numerical optimal control techniques [94]. Here we analytically construct

the optimal control with the simple model (4.1) in the most commonly encountered

case where there are total cell volume constraints of the form k∗ ≤ x1 + γx2 ≤ k∗

corresponding to upper and lower osmotic tolerance limits, where the initial and final

water volumes are equal, i.e. xf1 = xi1 = x∗1, and either xi2 = 0 and xf2 = x∗2, or

xi2 = x∗2 and xf2 = ε for ε small (e.g. ε = 0.1, which corresponds to a 0.1×miso = 0.02

molal concentration). Finally we let γ = V̄smiso be the nondimensional molar volume

of permeating solute. These two cases correspond to the addition or the removal

of CPA, respectively. In the second case, theoretically, one must set xf = (x∗1, ε)

because the dynamics of the system only allow an asymptotic approach to the x1-

axis. Furthermore, we bound 0 ≤ M1(t) ≤ M̄1 and 0 ≤ M2(t) ≤ M2, where M̄i are

maximal physical or practical concentration limits2, and restrict xi and xf so that

xy2 ≤ xy1M̄2 and xnp ≥ xy1M̄1 (where y = i or f).

Define A := [0, M̄1] × [0, M̄2] and φλt to be the solution of (4.1) at time t with

φλ0(x) = x, with control λ = M j defined in Table 4.2. As in Chapter 3, we define
2For example, M̄1 may be limited by the salt or sucrose saturation point and M̄2 may be limited

by a maximum practical viscosity.

66



Table 4.2: Definition of
controls

Control M1(t) M2(t)

M II 0 M̄2

M III 0 0
M IV M̄1 0

the curves σj := {x ∈ (R+)2 : x ∈ φM
j

t (xf ), t < 0}, for j = II, III, andIV , define

the time τ > 0 to be the first time that φτ ∈ σj, and define the time t∗ > 0 to be

the total time to reach xf . Recall that the curves σj define regions A and D in the

state space S = (R+)2. In this application, xi ∈ D for CPA addition protocols, and

xi ∈ A for CPA removal protocols. These conditions must be checked in general,

though when M̄1 and M̄2 are large enough, the xi considered in this chapter are all

well within the appropriate regions. In Chapter 3 we synthesized optimal controls

based on the Pontryagin Maximum Principle (see Section A-2 and [111]) and proved

optimality using a theorem of Boltayanski (see Section A-3 and [18]) but did not show

how to handle constraints. For the unconstrained case we can define the optimal CPA

addition and removal controls, respectively:

MA(t) =

{
M II t ≤ τ
M III τ < t < t∗

, and MR(t) =

{
M IV t ≤ τ
M III τ < t < t∗

.

These controls are optimal, but come at the cost of possibly excessive volume

excursions. We wish now to optimize in the presence of constraints, which define lines

in the state space `∗ := {(x1, x2) ∈ (R+)2 : γx2 = −x1 + k∗} and `∗ := {(x1, x2) ∈

(R+)2 : γx2 = −x1 + k∗}, corresponding to the lower and uppser volume constraints,

respectively. It turns out that in practice, if M̄1 and M̄2 are large enough, it is

sufficient to only use constraints of the form k∗ ≤ x1 + γx2 for both CPA addition
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Figure 4.2: State trajectories for optimal and non-optimal controls at
several levels of constraints for CPA addition and removal. Black, or-
ange, and purple lines indicate unconstrained optimal, constrained opti-
mal, and standard controls, respectively. Regions a,b, c, and d indicate
four levels of state constraints. In row A, we show the possible con-
figurations for the optimal controls. Switching times are given by s1,
s2, and τ . The blue line indicates the optimal control with a different
constraint. In row B we show both the optimal and standard uncon-
strained controls. In row C we show both the optimal and standard
constrained controls. Note that in the CPA Removal case, the standard
control uses the constraint bounding region d, and the optimal control
uses the constraint bounding region b. Comparisons of equilibration
times can be found in Table 4.5
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and removal protocols3. In both cases we will define at most three times s1 < s2

and τ corresponding to the switching times for control schemes. There are three

possibilities for the dynamics of the optimal control problem: (1) the state constraint

is inactive and the “bang-bang” optimal control outlined above is optimal; (2) the state

constraint is active but φλt (xf ) /∈ `∗ for all t ≤ τ − t∗; (3) the state constraint is active

and φλt (xf ) ∈ `∗ for some t ≤ τ − t∗. These cases are shown in Fig. (4.2). Because

of the above argument, we can see that in cases (2) and (3) there are times s1 and s2

where the unconstrained optimal path intersects the constraint line. The constrained

Pontryagin Maximum Principal states that the optimal control for t ∈ (s1, s2) is given

by the maximizer, M(t) ∈ A, of

max
M∈A
{H(x∗, p∗,m) : c(x,m) = 0},

where

c(x,m) = ((1, γ)) · (A(M)x+ xnpe1)

= −(M1 +M2)x1 + x2 + xnp + γ(M2b2x1 + b2x2)

= x1(−(M1 +M2) +M2b2γ) + x2(b2γ + 1) + xnp.

We also have the costate equation for t ∈ (s1, s2):

ṗ(t) = −∇xH(x, p,M) + λ∇xc(x,M).

Moreover, from the theorem we must have the jump conditions

lim
t→s+1

p(t) = lim
t→s−1

p(t)

3In the CPA addition case, we only require M̄2 >
xnp

xi
1
. In the CPA removal case, if M̄1 >

xnp+xf
2

xf
1

,

ẋ1 < 0 for all t until x1 = xnp/M1, and thus for all t > 0, φMIII

t (xi) ∩ `∗ = ∅. If M̄1 <
xnp+xf

2

xf
1

, it

is more of a challenge to determine in what cases φMIII

t (xi) ∩ `∗ 6= ∅. Interestingly, for ε small and
M̄1 > xnp/x

i
1, it is easy to show that there is a t > 0 such that φMIII

t (xi) ∩ `∗ 6= ∅.
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and

lim
t→s+2

p(t) = lim
t→s−2

p(t) + λ∗(t)∇xc(x
∗(t),M(t)).

Because of these jump conditions, we are able to deduce the optimal controls. For

t /∈ (s1, s2) the controls are the same as for the unconstrained system. For t ∈ (s1, s2),

we must maximize H(x, p,M) with γx2 = −x1+k∗, which is equivalent to maximizing

max
M1,M2

{−M1p1(k∗ − γx2) +M2(b2p2 − p1)(k∗ − γx2)}. (4.2)

We now proceed first in the CPA addition and then the CPA removal cases.

Defining the CPA addition control while on the constraint

In the CPA addition case, from Chapter 3, p1(s1) > 0 and p2(s1) > p1(s1)/b2, so

p1, p2 > 0. Thus, since k∗ − γx2 > 0, in order to maximize (4.2) we must choose M1

as small as possible and M2 as large as possible to keep the path along x1 +γx2 = k∗.

Thus, if M̄2 is large enough, we may set M1 ≡ 0. Because of this, we can explicitly

solve system (4.1) with Γ · x = v∗ for M2(t). Since Γ · ẋ = 0, we have ẋ1 = −γẋ2, or

−M2x1 + x2 + xnp = −γ(M2b2x1 − b2x2),

which we solve for

M2 =
(1− γb2)x2 + xnp

(1− b2γ)x1

, (4.3)

and substitute this back into the system (4.1) with M1 = 0 to get the system

ẋ1 = γb2xnp/(b2γ − 1),

ẋ2 = b2xnp/(1− b2γ),

(4.4)

which has obvious solutions

x1(t) = γ(t− s1)b2xnp/(b2γ − 1) + x1(s1)

x2(t) = b2xnp(t− s1)/(1− b2γ) + x2(s1).
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utting these solutions into (4.3) and simplifying, we define the constrained optimal

CPA addition control:

MA
2 (t) =

(1− b2γ)x2(s1) + (1 + b2t)xnp
(1− b2γ)x1(s1)− b2γxnpt

. (4.5)

Thus for case (1) we have one switch, τ , for case (2) we have switches s1 < s2 < τ ,

and for case (3) we have switches s1 < s2. With these switching times we can define

the optimal controls in each scheme. For all three cases M1(t) ≡ 0, and in Cases

(1–3), we have

Case (1) Case (2) Case (3)

M2(t) =

{
M̄2 t ≤ τ
0 τ < t < t∗

,


M̄2, t ≤ s1

MA
2 (t), s1 < t < s2

M̄2, s2 < t < τ
0, τ < t < t∗

,


M̄2, t ≤ s1

MA
2 (t), s1 < t < s2

0, s2 < t < t∗
.

(4.6)

Defining the CPA removal control while on the constraint

In the CPA removal case, from Chapter 3, p1(s1) < 0 and p2(s1) < p1(s1)/b2, and in

order to maximize Eq. (4.2), we must maximize M1(t) and minimize M2(t). Now,

if M1 is large enough, we may set M2 ≡ 0. Because of this we can explicitly solve

system (4.1) for M1(t) as above to get

M1(t) =
x2(1− γb2) + xnp

x1

, (4.7)

and upon substituting into the equations (4.1) we get the system

ẋ1 = b2x2γ,
ẋ2 = −b2x2,

(4.8)

which has obvious solutions x1(t) = −γx2(s1)e−b2t + x1(s1) + γx2(s1) and x2(t) =

x2(s1)e−b2t. Putting these solutions into (4.3) and simplifying, we define the con-
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strained optimal CPA removal control

MR
1 (t) =

ebtxnp + x2(s1)− bx2(s1)γ

−x2(s1)γ + ebt(x1(s1) + x2(s1)γ)
. (4.9)

For case (1) we have one switch, τ . For case (2) we have switches s1 < s2 < τ , and

for case (3) we have switches s1 < s2. With these switching times we can define the

optimal controls in each scheme. For all t hree cases M2(t) ≡ 0, and in Cases (1–3),

we have

Case (1) Case (2) Case (3)

M1(t) =

{
M̄1 t ≤ τ
0 t > τ

,


M̄1 t ≤ s1

MR
1 (t) s1 < t < s2

M̄1 s2 < t < τ
0 t > τ

,


M̄1 t ≤ s1

MR
1 (t) s1 < t < s2

0 t > s2

.

(4.10)

4.4 Discussion

There is nothing new about using the non-permeating solute concentration to facili-

tate CPA addition and removal ([98]). The novelty of the approach outlined in this

chapter comes from the prescription of the optimal extracellular concentration func-

tions. The time improvements gained are dependent on the parameters (see Table

4.5), but because the system (4.1), and in particular parameter b, does not depend

on the cell surface area to volume ratio (i.e. Â/(Vw + V̄ss+Vb)), comparisons may be

made across a very diverse range of cell types and temperatures. Examples of b values

from the literature for a wide range of cell types are shown in Table 4.3. Because of

this, even though the osmotic behavior of cells varies dramatically, we may reduce

the parametric analysis to an order of magnitude in b, and instead focus on other

parameters such as k∗ and k∗.
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“Standard” or “equilibration” CPA addition or removal protocols, as mentioned

above, are heuristically and sometimes empirically determined. The basic idea has

been that cells are exposed to gradually increasing or decreasing steps, for CPA

addition or removal respectively, of CPA concentration M∗
2 while M1 is held fixed.

The value of M1 is out of convenience often set to be the isosmotic concentration

M iso
1 = 1, but some have taken advantage of the osmotic pressures generated by

setting M1 < 1 for CPA addition protocols (e.g.[98]), or by setting M1 > 1 for CPA

removal protocols (e.g. [73]). These strategies are similar to those employed here,

except that the values of M1 to our knowledge have not been as low as 0 nor as

high as M̄1. An interesting decision that must be made for these piecewise constant

M2 protocols is the calculation of optimal concentration steps M∗
2 and the duration

of each step. Optimal concentration steps have been traditionally calculated using

methods similar to those developed in Chapter 2, Section 2.3.1 or in [49].

Because of the nature of system (4.1) (see 3), each step asymptotically approaches

its rest point at each step. Therefore, the choice of duration of each step has a

dramatic effect on the total time the protocol will take. For CPA addition protocols,

it can be seen from Fig. 4.3 that increasing the number of steps will decrease the total

time, but also as the number of steps is increased, the stepwise protocol approximates

the optimal one. An objective rubric for ending one step and beginning a new one can

be obtained by using some function of the state variables and the step’s equilibrium

point. The rubric that we have adapted is letting the equilibrium time be the first t

such that x1(t) = χ lims→∞ x1(s), where χ ∈ (k∗, k
∗). In Table 4.7, three rubrics—

χ = 0.9, 0.95, 0.99—are given for each concentration. As the value of χ is reduced, the
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χ 0.97 .0.85 0.73
Steps 7 9 18

Total time 1690 1130 1110

Figure 4.3: Comparison of equilibration state plots for three
values of χ. As χ approaches the lower constraint value, the
number of steps increases and the total time decreases.

number of steps increases, but the total time is decreased. In fact, as χ approaches

k∗ the number of steps will dramatically increase and the piecewise constant protocol

will begin to approach the optimal control approach. Interestingly, the converse does

not occur in the CPA removal protocol. This is because the optimal control drives

x(t) to `∗, and the rubric given drives x(t) to `∗.

In Table 4.5 comparisons between optimal and standard protocols are made for

representative values of b, k∗ and k∗, for a CPA addition and removal protocol. We

examined cases at two unitless CPA concentrations: 1 and 10. The correspondence

of these concentrations with real-world concentrations is dependent on the value of

miso, but at the characteristic value miso = 0.3 defined in Table 4.1, the unitless

concentrations correspond to 0.3 and 3 molal CPA concentrations. Nominal xi and
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Table 4.4: Relative time improvement as a function of miso. For
all cases xi2 = 0, xf2 = 10, b = 0.1, and k∗ = 0.7. The correspond-
ing CPA molality and the total equilibration steps needed are also
presented.

miso Corresponding CPA molality tT t∗ tT/t∗ Steps

0.3 3 492 59.0 8.34 6
0.45 4.5 786 80.2 9.8 7
0.6 6 963 95.8 10.1 7
0.9 9 1289 110 11.7 7

xf were therefore set at (1, 0) and (1, 1) or (1, 10) for CPA addition, and (1, 1) or

(1, 10) and (1, 0.1) for CPA removal. To convert these values to “real” concentrations,

recall me
2 = misox2/x1. We are unable to draw direct conclusions about scaling

concentration with miso because γ = misoV̄s and thus the slope of `∗ and `∗ will be

affected. In Table 4.4 we fix xi2 = 0, xf2 = 10, b = 0.1, and k∗ = 0.7, and look

at changing values of miso. These values of miso then translate into higher CPA

concentrations. We can see that the non-optimal times scale nearly linearly, and

thus, the relative time improvements are nearly the same, with a slight increase as

miso is increased.

It is interesting to note that for CPA removal protocols, the location of both vol-

ume constraints is important, as opposed to just the upper constraint in standard

cryobiological protocols. In fact, for certain combinations of parameters, the up-

per constraint is not used at all. Because the upper constraint often has a definite

physical description—it is the limit to which the cell can swell without lysing—it is

theoretically more desirable to avoid this limit than the lower one.

The optimality of the protocols depends on the magnitude of M̄1 and M̄2. In
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the M1 case, M̄1 represents the maximal non-permeating solute molality. This max-

imum is determined by the makeup of the solution. If the solution only contains

salts, then the maximum is most likely limited by a cell’s tolerance to very high salt

concentrations (< 1.5 molal [92, 90]). On the other hand, if the solution contains

salts and, say, sucrose, then the maximum is most likely limited by the viscosity of

the sugar solution—because continuous control of concentration is needed, a solution

that is amenable to fluid flow is necessary. As in the sucrose example, M̄2 is likely

only limited by the viscosity of the solution. This discussion, however, only serves

to emphasize the benefit of outlining the complete optimization theory, as it allows

these decisions to be made objectively.

4.5 Application of optimal control to human oocyte
CPA addition.

There are significant advantages to oocyte cryopreservation. Oocyte cryopreservation

allows women who do not have a reproductive partner to preserve their unfertilized

gametes. This becomes especially relevant to children or women who may undergo

potentially sterilizing iatrogenic proceedures such as chemotherapy [40]. Nearly 17%

of couples experience fertility problems, and the use of cryopreserved embryos signif-

icantly reduces the costs associated with treatment [46]. The ethical and legal status

of cryopreserved embryos, however, is a significant complication. Successful cryop-

reservation of oocytes would alieviate these problems and would also provide time for

infectious disease screening that is not currently possible.

In the United States, the cost of all in vitro fertilization (IVF) and intracytoplasmic

sperm injection (ICSI) procedures is nearly $500 million per year, but the indirect
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costs of the multiple live births associated with multiple embryo transfers is well

over $600 million per year [30]. The social and psychological challenges of multiple

gestations is also of major concern [41]. One reason multiple embryos are transfered

per treatment is that ovarian stimulation and oocyte collection is an invasive and

expensive procedure [40]. If oocytes can be sucessfully cryopreserved, multiple oocytes

can be harvested and stored until needed. This would allow for the transfer of single

embryos, avoiding the ethical problems of cryopreserving embryos and the patient

problems of an invasive and expensive procedure. Transferring single embryos would

reduce the overall cost of fertility treatments by half in the United States.

To date, no practical and clinically acceptable cryopreservation protocol exists

for human oocytes despite these considerable advantages. Much of the failure is at-

tributed to the sensitivity of the meiotic spindle during CPA addition and removal and

while cooling from room temperature to subzero temperatures. Partly to avoid this

chilling sensitivity, Kuleshova and Lopata [67] have argued that vitrification of em-

bryos and oocytes is often favorable to equilibrium (slow) cooling techniques. O’Neil

et al. [99] have demonstrated that some human oocytes can be successfully vitrified,

but the concentrations of CPA required exposes cells to extreme osmotic stresses and

potential chemical toxicity due to a lengthy addition and removal procedure. Specif-

ically, to load human oocytes with 6 molar propylene glycol required for vitrification,

4 steps are needed using a standard protocol taking at least 122 minutes. On the

other hand, the osmotic stress can be managed and the effects of chemical toxicity

minimized by using the continuous addition protocols developed in this chapter.

Using published parameter values for human oocytes shown in Table 4.6, we com-
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pared optimal controls to classic controls for the addition of multimolar (6, 4.16, and

2.46 molar) propylene glycol, with results shown in Table 4.7. Calculations were made

with the assumption that the maximal external CPA concentration was 6.5 molar,

corresponding to M2 = 41, and a final concentration difference at the highest xf2 of

only 0.5 molar. This value was chosen because at much higher concentrations the

viscosity of the solution may be such that precisely controlling the extracellular CPA

concentration may be impossible. The impact of this concentration constraint can be

seen by the relative improvements at each goal concentration level. At the highest

goal concentration the improvement ratio values range from 4.7 to 11.1, whereas at

the lower concentrations the lowest time improvement is 6.5 and the greatest is 19.

Nevertheless, even when M̄2 − xf2/x
f
1 is small, the time improvements are at least

five-fold.

4.6 Problems with application of this model

One potential problem with the optimal protocol outlined here is its dependence

on parameters. In theory, the concentrations must switch instantaneously at time τ .

This is impossible physically and therefore actually achieving the optimal control may

be impossible. However, with continued advances in microfluidic and other related

engineering approaches, it is anticipated that it will become practical to utilize these

optimal controls in the near future. Moreover, due to natural biological variation,

knowledge of cell parameters at the individual cell level may be too imprecise for

predicted optimal controls to work. Perhaps the best choice is to use population

mean values for parameters, and expect the bulk of the population to achieve an

approximation of the goal state. At best some cells may not fully equilibrate at
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Table 4.6: Definition of parameters for oocyte propylene
glycol addition

Published and Defined Parametersa
Parameter Value (at 22◦C)

Lp
b 0.53 µm min−1 atm−1

Ps 16.68 µm min−1

V i 2,650,000 µm3

Vb 503,500 µm3

V i
w 2,146,500 µm3

A 92,539 µm2

v∗ 0.7 ×V i

T 295.15 K

Calculated (Unitless) Parameters
Parameter Equation Calculated Value

b Psj
/LpRTm

iso 4.48
xi1 V i

w/V
i
w 1

xi2 xi1C
i
s/m

iso 0
xf1 V f

w /V
i
w 1

xf2 xf1C
f
s /m

iso 10.34
k∗ v∗ − Vb/V i

w 0.51
a All values from [102] unless noted.
b Water and solute permeability values published in the
literature were determined using a different flux model. To
account for this, the conversion was made in a similar
manner to that described by Chuenkhum and Cui [28].

c This is about a 44% (w/w) solution
.
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the goal concentration. At worst, significant portions of the cell population may

exceed the constraints, causing damage or death. This latter problem however can

be overcome in at least two ways. First, one can build into the model a constraint

“buffer” by narrowing the volume constraint limits and in effect allowing for small

perturbations from the optimal trajectory to exist without damaging a large portion

of the cell population. Second, one can implement a sub-optimal control, where

optimal control paths are followed only when theory predicts that the population will

remain within the constraints for a broad range of parameters. An example of this is

presented in Fig. 4.6. With knowledge of the optimal control, construction of “safer”

sub-optimal controls is considerably simplified.

System (4.1) is based on several assumptions (see Appendix A-1). As presented

recently by Elmoazzen et al [37], there is no doubt that the linear approximation

of osmolality is inappropriate at the high concentrations used in the applications

described here. The contention of this chapter is that the theory developed here

should serve as a foundation for a numerical analysis using, for example, a more

precise relationship between concentration and osmolality. In this case, the governing

equation would be

ẋ1 = f(x1, x2),

ẋ2 = g(x1, x2),

where f is either a quadratic or cubic function of n/x1 and x2/x1, and g is either

a quadratic or cubic function of x2/x1. The complexity of this extension is only

significant analytically, and the analysis presented in this chapter will serve as an

“exact solution” of a future numerical optimization scheme involving f and g.

Finally, System (4.1) is based on the assumption of perfect stirring inside and
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Figure 4.6: Comparison of the standard CPA addition protocol with a predicted
optimal and suboptimal protocol where the optimal trajectory is followed for a period
of time, and then the traditional approach is followed. End times are given, and the
time advantage of even a suboptimal approach is still evident, and the suboptimal
approach does not have some of the parameter dependent time sensitivity that the
true optimal approach does.
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outside of the cell. Because applications of the optimal control to biological systems

requires the exposure of cells to varying extracellular fluid envirionments, the appro-

priateness of this assumption may be called into question. However, we shall see in

Chapter 5 that this assumption may be valid in the case of single somatic cells in

suspension.
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Chapter 5

The impact of diffusion and
extracellular velocity fields on cell,
tissue, and organ mass transport

5.1 Introduction

The transmembrane flux models for cellular mass transport used in cryobiology are

most often a two parameter [57] or a three parameter rate model [64] with the

assumption that the only concentration gradient occurs across the cell membrane

[2, 7, 62, 88, 109, 123] (see Figure 5.1). However, it has long been known that there

exist unstirred and boundary layers around cells that act as a permeation impediment,

decreasing the apparent membrane permeability of cells to water and solutes [11, 39].

This reduction is due to the reduction of the transmembrane gradient (Figure 5.1).

Thus, models of cellular transport in the literature may be experiment specific and

yield phenomenological parameter estimates. In other words, experimental conditions

may determine the values of measured permeability.

Measurements of cellular permeability parameters, achieved by fitting ordinary

differential equations (ODEs) to volumetric data, fall into one of two categories. In the

first, cells are exposed to an abrupt change in extracellular media without subsequent
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mixing [98]. In the second, cells are exposed to an abrupt change in extracellular

media and the media is either continuously passed over the cells (e.g. in a diffusion

chamber [88]) or cells are exposed to a turbulent environment while measurements

are made (e.g. by a Coulter counter [12]). In both cases the resulting volume change

is recorded and ODE models are fit to the data to determine permeability parameters

(e.g. Lp and Ps from previous chapters). In the first case, the cells may have unstirred

diffusion layers next to the membrane that are not disrupted by fluid flow around

the cells. In the second case, however, cells may have reduced diffusion layers due

to the fluid movement, but advective effects may alter the uniformity of the solute

distribution around the cell or tissue. In either case, it is desirable to understand

both stirred and unstirred conditions for each cell type because both conditions may

exist during cryobiological procedures.

The interest in these phenomena was specifically generated by the analysis of

Chapter 3 and Chapter 4 of this thesis. Specifically, in Chapter 4, we outlined a

method to optimally introduce or remove CPAs from cells, but these new protocols

require continual control of extracellular solute concentrations, a task requiring the

perfusion of media over cells along with precise concentration control at the cell

boundary, and one that may necessitate accounting for advective and diffusive effects.

If one could show that the effects of convection-diffusion are unimportant at the

typical single cell level, then the standard solute-solvent transport model and its

associated optimal control is sufficient for the CPA addition and removal protocols

outlined in Chapter 4. On the other hand, if these phenomena are important—

perhaps in certain cases—the applicability of the optimization would be limited, and
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new optimal controls would be required.

The behavior of solutes in water is well understood and can be modeled appropri-

ately using the diffusion equation [35]. This model has been applied to membranes,

both planar and cellular, and the resulting concentration profiles have been exten-

sively discussed [11, 39]. Additionally, measurements of apparent unstirred layers

around biological cells have been taken, revealing that even with the most vigorous

stirring these layers persist [11, 121]. These models have only been applied to cells at

equilibrium with the cell membrane modeled as a static object. Because the dynamics

of fluid transport in cells requires that the cell change volume, we believe that the

movement of the membrane within these unstirred layers may be an important effect.

Additionally the multimolar gradients generated during CPA addition and removal

protocols are much greater than those modeled previously. We are interested in inves-

tigating two related but different hypotheses: (1) diffusion significantly affects mass

transport in static environments (e.g. with little or no extracellular fluid velocity);

(2) convection significantly affects the concentration distribution around cells, tissues

and organs in non-static environments.

5.1.1 Characteristic quantities of the system

Other authors in the cryobiological literature have noted that the important quan-

tities when determining whether diffusion plays an important role are the diffusion

length scale and the Péclet number [74, 100]. The diffusion length LD :=
√

4Dtc is a

measure of the length scale at which diffusion acts. If the diffusivity D is small and

the characteristic time scale tc is large, the effect of diffusion can act at a longer dis-

tance than if diffusivity is large and the time scale is small. We are most interested in
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the ratio of the characteristic length L of the system and this diffusion length, which

is determined in the Péclet number: Pé = 4L2/L2
D = L2/Dtc. If Pé � 1 gradients

may exist. If Pé � 1 diffusion is dominant and gradients may not exist. The precise

characteristic length scale is debatable—one could use the radius, diameter or some

multiple of these values, but ultimately this length will approximate the diameter

of the cell, tissue or organ. The characteristic time scale is determined by the sys-

tem biophysics—the transmembrane mass transport occurs on the 100 to 102 second

scales, depending on the surface area to water-volume ratio, relative water and solute

permeabilities, and temperature. Interestingly, the surface area to volume ratio, and

thus to a certain extent the characteristic time scale, increases linearly with radius,

but the Péclet number has the square of length scale in the numerator. Thus for larger

cells and tissues, it is natural that Pé > 1. In Table 5.1, we show Péclet numbers

for several combinations of lengths and times. At typical single cell scales, the Péclet

number is much smaller than unity, especially as time increases. This suggests that at

the typical single cell scale, diffusion occurs faster than the cell can react, and there

will be little to no diffusion induced gradient. This is an observation made previously

[73, 72, 100]. On the other hand, on the oocyte scale where a characteristic time is on

the order of 10 seconds, Pé is within an order of magnitude of unity, and the Péclet

number is indeterminant, requiring numerical investigation.

In the convection diffusion case, we can rewrite the Péclet number as P = LV/D,

where V is the characteristic fluid velocity. In this case the Péclet number is the

unitless number that indicates whether convection or diffusion are the dominant terms

in the convection diffusion equation. Again, if Pé� 1, then diffusion is the dominant
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Table 5.1: Péclet numbers at characteristic time, fluid velocity,
and length scales.

Length Scale

Typical Cell Oocyte Tissue Organ
Time (s) 10 µm 100 µm 103 µm 105 µm

1 1.7×10−2 1.7×100 1.7×102 1.7×106

10 1.7×10−3 1.7×10−1 1.7×101 1.7×105

100 1.7×10−4 1.7×10−2 1.7×100 1.7×104

Velocity (µm/s)

1 1.7×10−3 1.7×10−2 0.17 17
10 1.7×10−2 1.7×10−1 1.7 170
103 1.7 17 170 1.7×104

106 1700 17000 1.7×105 1.7×107

term and particles equilibrate with their surroundings faster than they can be “pushed

around” by the fluid movement. Alternatively, if Pé � 1, then advection is the

dominating term, meaning that the fluid “pushes” the particles around faster than

diffusion can distribute them. From Table 5.1, again at typical single cell scales, unless

the characteristic velocity is enormous, one would expect diffusion to dominate, but

at oocyte and larger scales advection may play a role in the concentration distribution

around the cell, tissue, or organ.

One of the key decisions when choosing a fluid dynamics model is whether the

flow under consideration is laminar or turbulent. This decision is helped by analysis

of the Reynolds number, Re := ρV L/η, where ρ is the mass density of the fluid and

η is the dynamic viscosity of the fluid—in this case ρ = 1000 kg/m2 and η = 10−3

Pa·s since the fluid is water. Thus Re = 106V L, where V and L are the fluid

velocity and characteristic length with length units in meters, respectively. If the

Reynolds number, Re is “small,” we may use a laminar flow model. The definition of
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Table 5.2: Reynolds numbers at characteristic fluid velocity
and length scales.

Length Scale

Typical Cell Oocyte Tissue Organ
Velocity (µm/s) 10 µm 100 µm 103 µm 105 µm

1 10−5 10−4 10−2 101

10 10−4 10−3 10−1 102

103 10−3 10−2 100 103

106 10−2 10−1 101 104

“small” depends on many conditions, but in most cases for Re < 2000, laminar flow

is appropriate. From Table 5.2, we see that the Reynolds number is “small” at all

cases but the organ size with meter per second fluid velocities. We will thus assume

non-turbulent, laminar flow.

5.2 Model Construction

Our basic model is constructed by coupling a solute-solvent transmembrane flux model

with a convection-diffusion model for the solute concentrations in the unstirred layer

(cf. [11]). For simplicity and continuity from previous chapters, we choose the Jacobs

[57] solute-solvent flux model (i.e. system (2.1) from Chapter 2). The model is defined

on an open set Ω ∈ R3, with three subregions, D1, D2 and D3 (see Figure 5.2).

Region D1 represents the interior of the cell, D2 its exterior, and the semipermeable

cell membrane is represented by the boundary of D1 (denoted ∂D1). Furthermore, we

will assume that the shape of D1 is rotationally invariant or axially symmetric (for

example, spherical or cylindrical), which is often the correct geometry for the first

approximation of the shape of the cell types that will be investigated. The cell radius is

94



D1

D2

D3

Vw
s

∂D1 ∂D3

x

r(Vw, s)

D1

D2

D3

∂D1 ∂D3

x

r(Vw, s)

Js + Jw

z

b

b

0

ρ(t)

φ

r

0 π

Jw + Js

0
φ

0 π

Jw + Js

1

R

A. B.

C. D.

Ωs Ωt

Figure 5.2: A. Diagram of the general system used in modeling. D1 is the interior
of the cell D2 is the exterior of the cell. D1 and D3 are assumed to have perfect
mixing (i.e. concentration is invariant with time). B. The system is assumed axially
symmetric, and the region of interest is in an annulus around the cell of radius b. The
flux Js +Jw is normal to the cell. C. We transform the space to spherical coordinates
with a time dependent cell radius ρ(t). D. Finally we transform the space to spherical
like coordinates with a fixed domain.
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directly proportional to the intracellular water and solute volumes. Finally, we define

D3 ⊆ D2 to be the stirred extracellular region where we assume no concentration

gradients exist.

The state variables are the water volume Vw and the number of moles of per-

meable solute s from previous chapters, the fluid velocity vector field u, the space

and time dependent concentrations C and c of the intracellular and the extracellular

permeating solute, respectively, and the concentrations K and k of the intracellu-

lar and extracellular non-permeating solute, respectively. Note that k|∂D1 and c|∂D1

correspond to M1 and M2, respectively, from Chapters 3 and 4. By modeling the

transport phenomena associated with a semi-permeable membrane, C and Vw are

determined by system (2.1). Additionally, because most cells can be appropriately

approximated by a spherical model, it will be advantageous to assume a spherical

region D3. Finally, although we will present the most general model, we will simplify

our model to that where the intracellular concentrations C and K are uniform within

the cell. In the future we may apply the same theory to the interior of the cell, gen-

erating concentration gradients on both sides of the membrane, though applications

to tissues and organs requires different models [52].

5.2.1 The basic model

We first present the solute solvent flux model.

Solute-solvent transmembrane flux

Transport models have the general form

V̇w = f(Vw,Φ|∂D1 , λ, T ),
ṡ = g(Vw,Φ|∂D1 , λ, T ),

(5.1)
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where S is the permeating solute volume,

Φ(x, t) = (C(x, t) K(x, t) c(x, t) k(x, t))T ,

and λ is a vector of parameters.

We have chosen to work with the Jacobs two parameter model (see Chapter 2 and

Appendix A-1), repeated here for convenience:

V̇w = −LpART (c+ k − C −K)
∣∣∣
∂D1

,

ṡ = PsA(c− C)
∣∣∣
∂D1

,
(5.2)

where, as before, s denotes the number of moles of the intracellular permeating so-

lute, A is the area of the cell membrane, R is the gas constant, T is the absolute

temperature, Lp is the hydraulic conductivity, and Ps is the solute permeability. Be-

cause we assume C(x, t) = C(t) for all x ∈ D1, the intracellular permeating solute

concentration C is measured in moles per water volume Vw; that is, C = s/Vw.

The volume V of the cell is given by the sum of the water and solute volumes

V = Vw + Vss + constant, and we have the relation VwK = constant. This system

will have initial conditions Vw(0) = Vw0 and C(0) = C0, where Vw0 is the initial cell

(water) volume and C0 is the initial intracellular permeating solute concentration.

Extracellular fluid flow model

From our discussion of Reynolds numbers above along with the reasonable assumption

that the fluid flow is irrotational, it is appropriate to use potential flow; that is, we

will assume that the fluid velocity field is the gradient of a potential Ψ. In this case

the continuity equation is the Laplace equation given by

∆Ψ = 0. (5.3)
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We can recover the fluid velocity by taking the gradient of the solution of (5.3) and

using this velocity to solve for the pressure in Euler’s steady state fluid equation.

Thus, the fluid flow is completely determined by solving the Laplace equation. It

remains to define the boundary conditions. In fact for analysis and numerics it is

simpler to work solely with the fluid velocity vector u.

The solute volume flux Js (volume/area/time) leaving the cell is given by the

negative right hand side of the ṡ term of system (5.2) divided by area A1:

Js = Vs
ṡi

A
= VsPs(C − c)

∣∣∣
∂D1

, (5.4)

where Vs is the molecular weight of the solute. The water volume flux Jw is equal to

the negative right hand side of the V̇w term of the Jacobs system divided by the area

A:

Jw := LpRT (c+ k − C −K)
∣∣∣
∂D1

,

thus the total fluid velocity vector on the cell boundary will be given by Jw + Js.

We define the fluid velocity into the region D2 to be utop and note that Jw and Js

by definition are in the direction of the normal (e.g. directly away from the cell).

We will have space and transmembrane flux dependent Dirichlet conditions for the

fluid velocity u(x) = f(x, Jw, Js, utop) along x ∈ ∂D3, which we discuss in more detail

below. Along ∂D1 the fluid velocity is simply the sum Jw+Js in the direction normal

to the membrane.
1Note that the classic Jacobs model is defined in one dimension, that is the concentration is

assumed uniform in the cell and outside of the cell. Here we must consider that the concentrations
will not be uniform outside of the cell (we assume for simplicity that the concentration is uniform
inside the cell), we will address this later below.
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Extracellular diffusion model

The convection-diffusion process for the intracellular and extracellular permeating

solute concentration in the unstirred layers inside and outside of the cell is modeled

by the mass transport equation and Fick’s constitutive law. We let Dc and Dk be the

diffusivity of the permeating and non-permeating solutes, respectively,

ct = εu · ∇c+Dc∆c,
kt = εu · ∇k +Dk∆k.

(5.5)

System (5.5) is supplemented with initial and boundary conditions. The initial con-

centration distributions are c(x, 0) = c0(x), and k(x, 0) = k0(x) for x ∈ D2. The

concentrations at the outer boundary of the unstirred layer ∂D3 are fixed by the

concentrations of the bulk solution (cb(t) and kb(t)); that is, we have the Dirichlet

boundary conditions

c(x, t) = cb(t), k(x, t) = kb(t),

whenever x ∈ D3 and t ≥ 0.

The concentration model boundary conditions at x ∈ ∂D1 depend on the fluxes

Jw and Js. At a point with unit normal η, a fluid with concentration c and velocity

v has convective solute flux of c(v · η), and a diffusive (osmotic) solute flux of −D ∂c
∂η
,

where ∂c
∂η

is the normal derivative of c in the direction η, which can be written as

−D(∇c · η). The sum of these solute fluxes gives the total normal solute flux

∂n

∂t
= −D(∇C · η) + C(v · η). (5.6)

As discussed above, we note that Jw and Js by definition are in the direction of the

normal. Thus, since Js = ∂n
∂t
, equation (5.6) reduces to

−D(∇C · η) + CJw = Js. (5.7)
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If the solute is non-permeating, then Js = 0. Thus, for the non-permeating solute,

−D(∇k(x, t) · η) + k0Pw(c(x, t)− C(t) + k(x, t)−K(t)) = 0

for x ∈ ∂D1, and for the permeating solute:

−D(∇c(x, t) · η) + c0Pw(c(x, t)− C(t) + k(x, t)−K(t)) = Ps(c(x, t)− C(t))

for x ∈ ∂D1.

5.2.2 Basic model after a change of coordinates

We define the original (x, y, z) coordinate domain Ω as the axisymmetric annulus

around the cell extending from the cell boundary at ρ(t) =
√
x2
r + z2

r , defining ∂D1,

to a predefined outer boundary b =
√
x2
b + z2

b , defining ∂D3. It is natural to work in

spherical coordinates, so we define the domain Ωs = {(r, φ) : ρ(t) ≤ r ≤ b and 0 ≤

φ ≤ π}, where b ∈ (1,∞), and φ ∈ (0, π) is the angle away from the z axis. We

assume that the fluid enters D2 parallel to the z-axis. Because we want to work in an

unchanging domain, we wish to reparameterize this domain to become Ωt such that

Ωt = {R, φ : 0 ≤ R ≤ 1, and 0 ≤ φ ≤ π}, i.e. we map r = ρ(t) to 0 and r = b to 1

(see Fig. 5.2).
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Transform function and operators in a new coordinate system

We define two transformation functions and their inverses—G(x, z) from Ω to Ωs and

H(r, φ) from Ωs to Ωt as follows:

G(x, z) =

(√
x2 + z2, cos−1

(
z√

x2 + z2

))
,

G−1(r, φ) =
(
r sinφ, r cosφ

)
,

H(r, φ) =
(r − ρ
b− ρ , φ

)
,

H−1(R, φ) =
(
(b− ρ)R + ρ, φ

)
.

Next, define L = H ◦G and L−1 = G−1 ◦H−1. These functions are given by

L(x, z) =

 √
x2+z2−ρ
b−ρ

cos−1
(

z√
x2+z2

) ,

and

L−1(R, φ) =

(
(R(b− ρ) + ρ) sinφ
(R(b− ρ) + ρ) cosφ

)
.

Note that the principal part of a vector field in Ω, f(x, z) := (f1(x, z), f2(x, z)), can

be translated into the principal part of a vector field Ωt, F (R, φ) := (F1(R, φ), F2(R, φ)),

by applying the Jacobian of L or L−1 as follows:

F (r, φ) = JL(L−1(R, φ))f(L−1(R, φ))

= JL−1(R, φ)f(L−1(R, φ)).

In order for the transformation to be invertible, the Jacobian determinant must be

non-singular. We have

|JL(L−1(R, φ))| = −1

(R(b− ρ) + ρ)(b− ρ)
.
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By assumption, b ≥ R ≥ ρ > 0 and |JL(L−1(R, φ))| 6= 0. Now, since we have both

choices, we may evaluate both to check our algebra. Define q(R) := R(b−ρ) +ρ, and

note q′(R) = b− ρ. Then,

JL−1 =

(
q′(R) sinφ q(R) cosφ
q′(R) cosφ q(R) sinφ

)
,

(
JL−1

)−1
=

(
sinφ
q′(R)

cosφ
q′(R)

cosφ
q(R)

− sinφ
q(R)

)
,

JL(x, z) =

(
x√

x2+z2q′(R)
z√

x2+z2q′(R)
z

x2+z2
− x
x2+z2

)
,

JL(L−1(R, φ)) =

(
sinφ
q′(R)

cosφ
q′(R)

cosφ
q(R)

− sinφ
q(R)

)
.

By inspection, JL(L−1(R, φ)) =
(
JL−1

)−1 and our algebra is correct. Finally,

multiplying on the right by f(L−1(R, φ)) = (f1, f2), we get

F (r, φ) =

(
f2 cosφ+f1 sinφ

q′(R)
f1 cosφ+f2 sinφ

q(R)

)
.

Gradient and Laplacian in new Domain

The gradient and Laplacian take a new form in the new coordinates. It turns out

that the new basis is orthogonal and with knowledge of the Jacobian JL−1 we have a

shortcut. In fact, in this case the metric tensor is diagonal and we can define positive

scaling factors (hr(r, φ), hφ(r, φ)) that describe the dependence of a unit vector on the

position in space [6]:

(
h2
r(r, φ)
h2
φ(r, φ)

)
I = (JL−1)T JL−1 ,
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where I is the identity matrix. In our case, then

(
hr(r, φ)2

hφ(r, φ)2

)
I = (JL−1)T JL−1

=

(
(b− ρ)2

(bR + ρ−Rρ)2

)
I

=

(
q′(R)2

q(R)2

)
I.

The gradient in the new coordinates is ∇f = (h−1
r fr, h

−1
φ fφ) or

∇f =
(
(q′(R)−1)fR, q

−1(R)fφ
)
,

and the divergence is

divf = (det JL−1)−1

(
∂

∂r
(hφf1) +

∂

∂φ
(hrf2)

)
.

In our case

divf =

(
f1 + f2φ

q(r)
+

f1r

q′(r)

)
.

Finally, the Laplacian can be found by taking the divergence of the gradient, and

simplifies to

∆f = (det JL−1)−1

(
∂

∂r

(
(det JL−1)

h2
r

∂f

∂r

)
+

∂

∂φ

(
(det JL−1)

h2
φ

∂f

∂φ

))
=

1

q(r)2
fφφ(r, φ) +

1

q(r)q′(r)
fR +

1

q′(r)2
fRR. (5.8)

The fluid model in transformed coordinates

For fluid velocity equations, we are using potential flow with fluid velocity potential Ψ.

The fluid velocity is given by the gradient, ∇Ψ =
(
ur(r, φ), uφ(r, φ)

)
. The continuity

equation is ∆Ψ = 0. Because the boundary conditions are all given in terms of

fluid velocity, it is natural to simply work with fluid velocities. This has the added
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advantage of eliminating the necessary numerical differentiation of the fluid potential

as a source of error.

We start with the PDE defined in Ωt, ∆Ψ = 0.

0 = ∆Ψ

=
1

q
Ψφφ +

1

qq′
ΨR +

1

q′2
ΨRR,

Clearing fractions to remove the R dependence of the first term, we get

Ψφφ +
q

q′
ΨR +

q2

q′2
ΨRR = 0.

Taking the gradient, we get ∇∆ψ = 0 = (∆ur,∆uφ) = (q′(∆Ψ)R, q(∆Ψ)φ). Thus, we

have

0 = ∆ur

= q′(ΨφφR +
1

q′
q′ΨR +

1

q′
qΨRR +

1

q′2
2qq′ΨRR +

q2

q′2
ΨRRR)

= q′urφφ + q′ur + 3qurR +
q2

q′
urRR

and

0 = ∆uφ

= q(Ψφφφ +
q

q′
Ψrφ +

q2

q′2
Ψrφ).

Dividing through by q, we have

0 = uφφφ +
q

q′
uφR +

q2

q′2
uφRR.

The fluid velocity vector along the R = 0 boundary is in Ωs given by (Jw(t) +

Js(t), 0), i.e. the radial component is φ-independent. To determine the principal part
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of the fluid velocity vector field in Ωt we have

[JH−1 ](Jw(t) + Js(t), 0) =

(
(b− ρ)−1 0

0 1

)(
Jw(t) + Js(t)

0

)
,

=

( Jw(t)+Js(t)
b−ρ
0

)
.

The fluid velocity vector in Ω due to the external fluid source along the boundary

R = 1 is given by (0, uztop(t)). Hence, the principal part of the fluid velocity vector

field in Ωt is given by

u(1, φ) =

(
utop

z (t) cosφ
b−ρ

utop
z (t) sinφ

b

)
. (5.9)

Finally we rectify the mass balance across both the R = 0 and R = 1 boundaries.

The total flux across the R = 0 boundary is given by
∫
R=0

Jw(t) +Js(t) dS. The total

flux across the R = 1 boundary due to the exterior flow into Ωt is
∫
R=1

u(1, φ) dS.

The flow into the region must equal the flow out of the region, so∫
R=0

(Jw(t) + Js(t)) · η(0, φ) dS +

∫
R=1

u(1, φ) · η(1, φ) dS = 0.

Let A :=
∫
R=0

dS and B :=
∫
R=1

dS. Because Jw(t) + Js(t) is φ independent, we can

rewrite the above equation as∫
R=1

(
A

B
(Jw(t) + Js(t)) · η(0, φ) + u(1, φ) · η(1, φ)

)
dS = 0. (5.10)

Since η(0, φ) = (b− ρ, 0)T and η(1, φ) = (b− ρ, 0), Eq. (5.10) holds only when

0 =
A

B
(Jw(t) + Js(t)) · η(0, φ) + u(1, φ) · η(1, φ)

=
A

B
(Jw(t) + Js(t)) · η(0, φ) + u(1, φ) · η(1, φ).

Therefore our R = 1 boundary condition must be

u(1, φ) =

(
(utop

z (t) cosφ)
b−ρ − A

B
(b− ρ)(Jw(t) + Js(t))

utop
z (t) sinφ

b

)
.

105



The concentration model in transformed coordinates

We are assuming that the concentrations c and k in Ω are modeled by ct = εu · ∇c+

D∆c and kt = εu · ∇k+D∆k, where u is the fluid velocity given by the above PDE,

ε is a constant of proportionality, and Dc and Dk are the diffusion constants.

Using the conversions outlined above, our permeating solute advection-diffusion

PDE in Ωs is defined by

ct = εu ·
(

cR
q′(r)

,
cφ
q(r)

)
+

D

q(r)2
cφφ(r, φ) +

D

q(r)q′(r)
cR +

D

q′(r)2
cRR

=
εurcR
q′(r)

+
εuφcφ
q(r)

+
D

q(r)2
cφφ(r, φ) +

D

q(r)q′(r)
cR +

D

q′(r)2
cRR

=
εuφ

q(r)
cφ +

(
εur

q′(r)
+

D

q(r)q′(r)

)
cR +

D

q(r)2
cφφ +

D

q′(r)2
cRR,

and the nonpermeating solute advection-diffusion PDE is Ωs is defined by

kt =
εuφ

q(r)
kφ +

(
εur

q′(r)
+

D

q(r)q′(r)

)
kR +

D

q(r)2
kφφ +

D

q′(r)2
kRR.

Boundary conditions On the R = 1 boundary, we have assumed c(1, φ, t) = f(t),

where f is some known function of time. On the φ = 0 and φ = π boundaries, because

of axial symmetry, we have ∂c
∂φ

= 0. For x ∈ ∂D1 ∈ Ω, i.e. R = 0, φ ∈ (0, π) in Ωs,

−D(∇C · η) + CJw = Js.

5.2.3 Nondimensionalization of our model

Finally, it is advantageous to nondimensionalize the complete system.

Solute solvent transmembrane flux equations

First we look at the flux equations, Jw and Js as they play a role in the boundary

conditions for both the fluid and concentration PDEs. We have Jw = −LpRT (c+k−

106



C − n/w) and Js = V Ps(c − C). Note the units [Js] = [Jw] = µm
min

. Let Lp = L̄pL
∗
p,

A = ĀAiso, T = T̄ T ∗, Ps = P̄sL
∗
pRT0Kiso, Jw = J̄wu

∗, Js = J̄su
∗ and all concentrations

equal to their unitless value times Kiso. Then the water flux equation becomes

Jw = −LpRT (c+ k − C − n/w),

J̄wu
∗ = −L̄pL∗pRT̄T ∗Kiso(c̄+ k̄ − C̄ − a1/W̄ ),

J̄w = −L
∗
pRT

∗Kiso

J∗w
L̄pT̄ (c̄+ k̄ − C̄ − a1/W̄ )

= −a2L̄pT̄ (c̄+ k̄ − C̄ − a1/W̄ ),

where a1 = ni
n

KisoWiso
and a2 =

L∗pRT
∗Kiso

u∗
. For the solute flux,

Js = VsPs(c− C),

J̄su
∗ = VsP̄sL

∗
pRT0K

2
iso(c̄− C̄),

J̄s = a3P̄s(c̄− C̄),

where a3 =
VsL∗pRT0K2

iso

u∗
= VsKisoa2 := a6a2.

Cell volume and concentration

Next we examine the ODE governing interior concentration and water volume. From

some manipulation of system (5.2), we obtain

V̇w = −LpART (c+ k − C − n/w)|∂D1 ,

Ċ = −PsA
Vw

(c− C)− C

Vw
LpART (c+ k − C − n/w)|∂D1 .

Using the same reparametrizations as before, along with Vw = V̄wVwiso
, A = ĀAiso,

and letting dτ
dt

= LpAisoRTKiso

wiso
, we get

w̄τ = L̄pĀT̄ (c̄+ k̄ − C̄ − a1

w̄
)|∂D1 ,
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and

C̄τ =
P̄sĀ

W̄
(c̄− C̄)− L̄pĀT̄

W̄
(c̄+ k̄ − C̄ − a1

w̄
)|∂D1 .

Fluid velocity vector field

In Ω, we have ∆u = 0 for both the x and z parts of the vector field. Thus we note

that since u = ū u∗ and x = x̄ riso, we have that

∂u

∂x
=
∂ū

∂x̄

∂x̄

∂x

∂u

∂ū
=
∂ū

∂x̄

u∗

riso

,

∂2u

∂x2
=

∂

∂x

∂ū

∂x̄

u∗

riso

=
∂2ū

∂x̄2

∂x̄

∂x

u∗

riso

=
∂2ū

∂x̄2

u∗

r2
iso

,

and similar formulas for the z-direction. Because the factors are the same for both

the x and z terms, we can divide and retain the original equation without any modi-

fications in our nondimensional space: ∆ū = 0.

Define u to be the nondimensional fluid velocity in the φ direction, and v to be

the nondimensional fluid velocity in the R direction:

0 = uφφ +
q(r)

q′(r)
ur +

q(r)2

q′(r)2
urr,

0 = vφφ + v +
q(r)

q′(r)
vr +

q(r)2

q′(r)2
vrr.

Fluid Boundary Conditions

We have the boundary conditions

u(0, φ) = 0, v(0, φ) = Jw(t)+Js(t)
b−ρ ,

u(1, φ) = utop sinφ

b
, v(1, φ) = utop cosφ

b−ρ − A
B

(b− ρ)(Jw + Js),

u(R, 0) = 0, vφ(R, 0) = 0,
u(R, π) = 0, vφ(R, π) = 0.

Using u = ūu∗, v = v̄u∗, and our aforemetioned Jw = J̄wu
∗ and Js = J̄su

∗, we get

ū(0, φ) = 0, v̄(0, φ) = J̄w(t)+J̄s(t)
b−ρ ,

ū(1, φ) = utop

u∗
sinφ
b
, v̄(1, φ) = utop

u∗
cosφ
b−ρ − A

B
(b− ρ)(J̄w + J̄s),

ū(R, 0) = 0, v̄φ(R, 0) = 0,
ū(R, π) = 0, v̄φ(R, π) = 0.
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Permeating and non-permeating solute concentration

Finally, we have the system ct = εu · ∇c + D∆c on Ω. The same approach will

apply for both the permeating and non-permeating concentration equations, with the

exception of different boundary conditions. Using a similar approach as above and

noting that c = c̄Kiso, we see that

∂c

∂x
=
Kiso

riso

∂c̄

∂x̄
,

∂2c

∂x2
=
Kiso

r2
iso

∂2c̄

∂x̄2
,

∂c

∂z
=
Kiso

riso

∂c̄

∂z̄
,

∂2c

∂z2
=
Kiso

r2
iso

∂2c̄

∂z̄2
.

Then our PDE is c̄sKisoα = εutopKiso

riso
ū · ∇̄c̄+ DKiso

r2iso
∆̄c̄. Dividing and defining

ε∗ :=
εutopWiso

risoLpAisoRTKiso

and

D∗ :=
DutopWiso

r2
isoLpAisoRTKiso

,

we get

c̄s = ε∗ū · ∇̄c̄+D∗∆̄c̄

on Ωs; and renaming everything without bars, we get

cs = ε∗u · ∇c+D∗∆c.

At this point we can proceed as before, and the reparametrized equations will be

(again with no “barred” variables),

cs =
ε∗u

q(r)
cφ +

(
ε∗v

q′(r)
+

D∗

q(r)q′(r)

)
cr +

D∗

q(r)2
cφφ +

D∗

q′(r)2
crr.
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Finally, for the nondimensional boundary conditions we have the Dirichlet con-

dition at R = 1, c(1, φ, t) = f(t), where f is the time-dependent nondimensional

external concentration, the Neumann condition at φ = 0 and φ = π, cφ(r, 0, t) =

cφ(r, π, t) = 0, and the Robin type boundary condition at R = 0, −D∗∗cr+a5cJw = Js,

where D∗∗ = D
risoKisoL∗pRT0

, a5 = utop

L∗pRT0Kiso
= 1/a2.

It is interesting to note that except for a1, all constants are either multiples or

inverses of a2. Thus, letting a6 = KisoV , we have

a1 =
nin

KisoWiso

, a2 = L∗pRT0Kiso/utop, a3 = a6a2, a4 = (a6a2)−1, a5 = a−1
2 .

5.2.4 Exact solutions of the fluid and concentration models

It turns out that we can solve the fluid model in general exactly in Ωs. This proves

extremely useful in both analysis and numerical simulations. We may also solve the

concentration model in a special case. This allows accurate testing of the independent

parts of the numerical scheme. The derivation of these solutions is given in Appendix

A-5.

5.3 Numerical analysis

Although we are able to find an exact solution for the fluid model, a general exact

solution of the concentration model is unlikely to exist. Therefore we must pursue a

numerical scheme to approximate the solution of the PDE system in Ω. Because we

have transformed the state space to a rectangle, the simplest and fastest numerical

integration scheme is the finite difference method. Without this transformation much

work must be done to use finite differences on curved and changing boundaries (see

Appendix A-6). There are several different finite difference schemes for parabolic dif-
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ferential equations, but we will use the second order implicit Crank-Nicolson method,

which utilizes a centered difference method for spatial differentials, and a “trapezoidal”

method for temporal differentials. This method has the advantage of being uncondi-

tionally stable, meaning that we do not have to worry about the relative spatial and

temporal step sizes.

The numerical method uses the mean concentration around the cell and Euler

integration to calculate the intracellular water volume Vw and concentration C. The

original transmembrane flux model assumes uniform flux and concentration along the

membrane. We either need to develop a different flux model, or assume that the flux

is uniform along the membrane and is generated by the mean concentration along the

boundary. The first would be fairly simple. For example the water flux at any given

point along the membrane is Jw = f(c, k, C,K)|R=0, for some function f . Then the

total water volume flux is
∫
R=0

Jw dS. We can then either be more precise and suppose

that the membrane is a locally moving object, or suppose that the membrane retains

its spherical shape and moves as a function of total volume flux. We use the latter

calculation and assume a mean concentration along the cell boundary. Because we

assume the intracellular concentration is uniform, the local and mean concentration

methods are, in fact, the same.

The numerical method depends on several key arbitrary and unknown parameters.

The first and most important is b, the size of the domain where diffusion takes place.

The parameter b should be some multiple of the cell radius, but it is unclear physically

what this multiple should be. The second and much less influential parameter is the

intramembrane diffusion constant. Here we simply choose the same diffusion constant
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as through water, but this potentially needs refinement. The numerical method is

given in Fig. 5.3. Note that the “bottom” (R = 0) points are calculated from the

Robin boundary condition, and are a function of the other points. This technique is

similar to the following example: If we have a Dirichlet condition, for points next to

the boundary we may either build the known values into the difference scheme for

these cases, or we may add extra (identity) equations for the points on the boundary.

The downside to the latter method is that extra equations are added, though these

equations do not significantly affect the solvability of the linear system of equations

generated by the difference method, as they only contribute points along the main

diagonal. For a Neumann boundary condition, one is generally not interested in the

value of the point at the boundary, and thus builds the derivative into the centered

difference method for points next to but not on the boundary. One could do this as

well for the Robin boundary condition as well, using the Robin condition to solve for

the concentration next to but not on the boundary, except that we are specifically

interested in the value of the concentration at the boundary. In this case, we simply

add the relationship as another set of equations that must be satisfied in order for

the system to be valid. In particular for the points such that R = 0, we use a third

order left hand numeric method: Define points ri = i dr + r0, where r0 is a point

on the boundary and dr is the step size between the ri, and associate with each ri a

concentration ci. Then with a Robin boundary equation D∗cr + a∗Jwc0 = Js, we are

interested in a high order accuracy left-hand finite difference approximation for cr.

We use

∂c

∂r
(r0) =

1

dr

(
25

12
c0 − 4c1 + 3c2 − 4

3
c3 +

1

4
c4

)
.
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This equation was derived using the techniques developed in Appendix A-6. Thus

the difference equation for points along the R = 0 boundary will be

D∗
1

dr

(
25

12
c0 − 4c1 + 3c2 − 4

3
c3 +

1

4
c4

)
+ a∗Jwc0 = Js,

which we can solve for c0.

5.4 Results

It is a challenge to quantify the results of our numerical code in a format that provides

objective analysis. Instead we may by inspection compare results of various numerical

experiments.

In Figs. 5.4, 5.5, and 5.6, we have plots of total cell volume using the perfect

stirring model (thick dashed gray lines), and the newer model (solid line) outlined in

this chapter with utop = 10µm/min. The mean concentration of permeating solutes

at the boundary is shown by the thin dashed line. In Figs. 5.4, 5.5, and 5.6 we set

the relative size of the annulus around the parameter b̄ = 2, 4, 10, respectively. In

each figure, we present three orders of magnitude for the relative permeability P̄s, and

four orders of magnitude for the initial radius r0 (where r0 = 10j/2, j = 1, 2, 3, 4, for

typical “cell,” “oocyte,” “tissue,” and “organ” sizes, respectively). Because utop is fixed,

we present two Péclet numbers for each initial radius size, recalling that we defined

the characteristic length as the diameter, 2r0. The Péclet number Pé1 is calculated

using the diffusional distance method,

Pé1 = 4(2r0)2/Dtc = 16r2
0/Dtc,

where tc is defined as the time for the cell to achieve its minimal volume under the

perfect stirring regime. The Péclet number Pé2 is calculated using the comparison of
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Update intracellular water
volume and solute concentration

with Euler’s Method
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to calculate permeating and

non-permeating concentrations

Figure 5.3: Flow chart of numerical method.
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diffusion and fluid velocity,

Pé2 = 2r0u0/D,

where we assign u0 = utop = 10µm/min.

From inspecting the volume response, it is clear that the analysis of Péclet numbers

from Section 5.1.1 is reasonably accurate and that the most important parameter is

the relative radius b̄ of the annulus. In particular, we can see that the differences in

almost all of the plots are due to the time it takes for the concentration around the cell

to increase to its maximal, perfect mixing, concentration. Because this is a gradual

increase, the cells at all time scales have time to equilibrate with their surroundings

and the volume response is delayed and reduced. At smaller length and time scales,

there is almost no effect of the concentration modeling other than the initial diffu-

sion: the interaction between the extracellular concentration and extracellular flux is

minimal.

On the other hand, as can be seen in particular at the organ scales, the efflux of

water out of the tissue does seem to have an effect on the extracellular concentration

profile. In particular, in Fig. 5.5, for P̄s = 1.4 at the organ scale there are three

concentration phases present. During the first phase, the local concentration around

the organ is not enough for the organ to produce a significant efflux of water into

the surrounding area. During the second phase, however, this efflux seems to have

slowed the effect of diffusion considerably. During the third phase, the influx back

into the organ actually causes the advective increase of local concentration around

the organ. A close-up view of phase three in one case is shown in Fig. 5.7, where the

concentration of the bulk solution is given by the solid line, and the concentration at
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Figure 5.7: Close up view of membrane
boundary concentration versus time (dashed
line) for an organ sized radius. The influx
of water advectively carries the solutes to the
membrane boundary, and increases this con-
centration past the bulk concentration (solid
line). This effect is present but is less pro-
nounced at smaller radii.

the cell is given by the dashed line. The “overshoot” of concentration has the effect

of speeding up the equilibration process. Interestingly, the first phase outlined above

has the opposite effect, so the net effect is diminished over time.

In Fig. 5.8 we show the effects of changing the fluid velocity into the region on

the volume response of a cell at the oocyte scale. At the radius characteristic of an

oocyte, the volume response at fluid velocities of three orders of magnitude difference

are very slight.

Plots of the extracellular concentration profiles are given in Fig. 5.9. Here the cell

radius is set to the tissue scale, and P̄s is set to 1.4. The figure shows concentration

profiles both along the R = 0 boundary and in Ωs at time t = 0.5. As the fluid velocity

is increased, the concentration distribution is altered. These results raise the question

of whether the cell will shrink with radial symmetry. If the membrane is allowed to

be free in more than the radial dimension, then one might expect that in some of
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Figure 5.8: Plot of total volume in two cases under the full
model and r0 = 50µm. Simulations with utop = 1µm/min
(solid line) and utop = 1000µm/min (dashed line) show that
at the extremes of reasonable fluid velocity oocyte sized cell
volume response is not affected.

the cases shown in Fig. 5.9 the membrane would not shrink spherically. This sort

of aspherical shrinkage is sometimes encountered in laboratory observation of cells

undergoing the typical volume fluxes modeled here, and the non uniform distribution

of concentrations may play a role in this aspherical shrinking.

Additionally, the non-uniformity of the concentration distribution along the cell

membrane also indicates that for larger tissues and organs, significant concentration

gradients may exist along the membrane, causing stress. This membrane stress may

cause cell, tissue or organ damage. Interestingly, the intuitive method one might

employ to reduce these gradients would be to increase the fluid velocity. As seen in

Fig. 5.9, this approach in fact has the negative effect of increasing the concentration

gradient along the cell boundary.
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Figure 5.9: Plots of CPA concentration at two fluid velocities. In the left
column, the plot is of the concentration profile at each node along the R = 0
boundary. The right column shows the concentration distribution in Ωt.
In each case there is approximately a 0.5 molal concentration difference
between the top and bottom of the cell. This difference will generate a
significantly different water flux profile at the top and bottom of the cell,
causing stress along the membrane. (Recall that the “top” of the cell is at
φ = 0.)
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5.5 Discussion and Conclusions

The results of the construction of this model were mixed, and the dependence on the

unknown parameter b̄ indicates that there are some physical questions that must be

addressed before this model may be utilized uniformly. At the single somatic cell

scale of approximately 10 µm diameter, clearly there is little benefit to accounting for

the advection and diffusion effects at room temperature. Thus the optimal controls

devised in Chapter 4 are not influenced by the fluid velocity field needed to achieve

continuous control of concentrations M1 and M2. However, it is clear that as cell

sizes increased to even single cells the of the oocyte scale, some effects, and most

notably the reduction in total cell volume flux, are found independent of b̄. Ulti-

mately, it seems that the radius does not change enough to effect the concentration

distribution. Though the advection due to the transmembrane flux does seem to alter

the immediate concentration distribution around the cell, but this is on the order of

at most 1%, and thus alone does not significantly influence the volume versus time

response of cells. It would be very interesting to investigate these phenomena in a

real biological system. To that aim a continuous perfusion chamber was developed to

mimic the conditions assumed in the model. The design of this chamber is outlined

in Appendix A-4.

The effects of advection due to higher fluid velocities become important at longer

characteristic length scales. These effects may be important when devising CPA

addition or removal protocols for tissues and organs. One might most effectively avoid

the concentration gradients along the cell, tissue, or organ boundary by altering the

fluid velocity field, either by stirring so that the fluid velocity field is random, or by
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altering the direction of the velocity source so that no region of the cell, tissue, or

organ is in the “lee” of the flow.

The relevance of the characteristic length scale is of special interest in the case of

spermatozoa, a cell type that is challenging to freeze for many species. In the case of

sperm, in the “width” dimension, perpendicular to the tail, the length scale is quite

small–less than 3 µm diameter (see Fig. 5.10). On the other hand, for different species

the length scale ranges from 50 to 150 µm. Because sperm orient themselves in the

direction of the fluid velocity, there may be a chance that at some concentrations and

fluid velocities, there is a concentration gradient along the tail, inducing membrane

stress. In fact, when sperm are exposed to high concentrations of non-permeating

solutes, we see tail looping effects that may be caused by concentration gradients.

It is relatively straightforward to modify the code used in this chapter to aspherical,

sperm-shaped, cells. It is beyond the scope of this chapter and thesis to analyze

the effects of a swimming spermatozoa, but we note that in the high concentrations

of sugars used in cryopreservation of spermatozoa, sperm are rendered temporarily

immotile.

The utility of this model extends beyond the basic applications outlined in the

preceding chapters. Most notably, at subzero temperatures, diffusion of solutes and

water significantly affects the rate at which water can form ice [5], called constitu-

tional supercooling [32]. Because the diffusion constant decreases exponentially with

temperature, the Péclet number increases exponentially, indicating that significant

gradients and advective effects may form at subzero temperatures.
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Figure 5.10: Morphological comparison of mam-
malian spermatozoa. Redrawn and modified from
[61].
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A-1 Derivation of solute-solvent flux model

Here we present the derivation of the model used in this manuscript (and by oth-

ers in the cryobiology literature [66, 63, 62], and also in general by Hernandez [55]).

We begin by noting that there are a multitude of transmembrane flux models to

choose from. Models exist that accurately describe the movement of water and so-

lutes through individual transmembrane pores, but these models deal with mostly

equilibrium or near-equilibrium flux, which is not relevant to the purposes of cry-

obiological modeling. In the cryobiological modeling regime, there tend to be two

competing models, but Kleinhans [66] makes the Occam’s razor argument that the

simpler one defined by Jacobs [57] is sufficient for cryobiological applications:

V̇w = −LpART (πe − πi) ṡ = PsA(M e
s −M i

s) (11)

Where Vw is the intracellular water volume, s is the moles of intracellular permeating

solute, Lp and Ps are the hydraulic conductivity (related to the water permeability)

and solute permeability,A is the cell surface area, assumed constant, R is the gas con-

stant, T is the temperature, πe,i are the extra- and intracellular osmotic pressures,

respectively, and M e,i
s are the extra- and intracellular molalities of the permeating

solute, respectively. Extracellular terms are assumed known, but to have a closed sys-

tem, we must define πi and M i
s. Molality is moles per solvent volume, so M i

s = s/Vw.

Osmolality is a nonlinear function of molality or mole fraction [95], and much effort

has been spent determining this relationship in the literature, and the cryobiological

literature in particular. Some have taken a purely experimental approach, defining

phase-diagrams that describe osmolality (in the form of freezing point depression) for

combinations of cryoprotective agents and salts [47, 76, 114, 115], and others have
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take a theoretical approach, either derived heuristically [65], or from thermodynamics

[36].

Elliott et. al [36] show that osmotic pressure π is described naturally by the

osmotic virial equation with a Gugenheim’s Naïve Approximation mixing term:

π = p(χnp, χ2, . . . , χn) =
∑
i

χi +
∑
i

∑
j

Bi +Bj

2
χiχj, (12)

where χj is the molality of solute j, and χnp is the molality of the non-permeating

solute. The intracellular molality of the jth solute, is given by the function

χj =
nj
Vw

=
niso
V iso
w

xj
x1

=
misoV

iso
w

V iso
w

xj
x1

= miso
xj
x1

.

Thus, with an assumed non-permeating osmolyte molality misoxnp/x1 (i.e. ẋnp ≡ 0),

πi(x) = p

(
miso

xnp

x1

,miso
x2

x1

, . . . ,miso
xk
x1

)
.

Furthermore, with extracellular media concentrations me
j(t) for j = 2, . . . , k and

me
np(t), forming the extracellular non-permeating osmolyte concentration, we have

πe(t) = p(me
np(t),me

2(t), . . . ,me
k(t)).

The model proposed by Mazur and Keinhans [65] is not based on a thermodynamic

theory, but it has a similar form when Bj = 0 and was accurate when compared to ex-

isting measured phase diagrams. For many solutes Bi � 1, and thus for the purposes

of analysis we will use the assumption Bi = 0, allowing a significant simplification

of our system and analytic solutions of our system of equations. This is an assump-

tion often used in cryobiology [62, 66], though the error induced by this assumption

increases dramatically at higher concentrations [36], and thus may be inappropriate
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for some cryobiological applications. In the future, we may return to the case Bj 6= 0

and perform the optimization numerically. This assumption yields

πi(x) = miso

(
xnp

x1

+
k∑
i=2

xi
x1

)
,

=
miso

x1

(
xnp +

k∑
i=2

xi

)
,

and

πe(t) = me
np(t) +

k∑
i=2

me
j(t).

Finally, in our dimensionless variables, we note that with our Bj = 0 assumption

miso = πiso yielding

P i(x) =
1

x1

(
xnp +

k∑
i=2

xi

)
,

and

P e(t) = M e
np(t) +

k∑
i=2

M e
j (t).

A-2 Pontryagin Maximum Principle

Recall from Section 3.3.3, using controls M ∈ A such that M : R+ → CP, we wish

to control the system ẋ = f(x,M), with x(0) = xi and x(τ) = xf such that the

payoff functional P (M) = − ∫ τ
0
x1(t)dt is maximized. Also recall that we defined the

control theory Hamiltonian H(x, p,M) := f(x,M) ·p+x1. In Section 3.3.3, we utilize

a classic result in optimal control theory, the Pontryagin Maximum Principle [111],

in which necessary conditions for optimality are defined. Suppose the constraint is

defined by g(x) ≤ 0, where g : Rn → R. Then we define c(x,M) := ∇g(x) · f(x,M)

and note that if the constraint is active for t ∈ (s1, s2), then c(x(t),M(t)) = 0.
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Theorem 18 (Pontryagin Maximum Principle). If M∗ maximizes the payoff func-

tional P , and x∗ ∈ intS is the corresponding state, then there exists a costate p∗ such

that

H(x∗, p∗,M∗) = max
M∈CP

H(x∗, p∗,M),

and t 7→ H(x∗(t), p∗(t),M∗(t)) = 0. If for some s ∈ [τ1, τ2] we have g(x(s)) = 0, M∗

maximizes P , and x∗ ∈ ∂S is the corresponding state, then there exists a costate p∗

and λ∗ : [τ1, τ2]→ R such that

ṗ∗ = −∇xH(x∗, p∗,M∗) + λ∗∇x(c(x
∗,M))

and

H(x∗, p∗,M∗) = max
M∈A
{H(x∗, p∗,M) : c(x∗,M) = 0}.

Moreover, p(τ−1 ) = p(τ+
1 ) and p(τ−2 ) = p(τ+

2 ) + λ∗∇xc(x
∗,M).

In Chapter 3 we have no constraints, but in Chapter 4, the constraint portion of

the theorem is used.

A-3 Boltayanskii Sufficiency Theorem

This theorem, critical to Chapters 3 and 4, is from Chapter 4, Section 12, Paragraph

45 of Mathematical Methods of Optimal Control, V.G. Boltyanskii, 1971. We add

subitems to make some statements more concrete.

We first introduce the concept of regular synthesis for the system ẋ =

f(x, u) for which the continuity of the derivatives ∂f i/∂xj and ∂f i/∂uk
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will not be assumed. Suppose that a piecewise smooth set N of dimension

≤ n− 1, piecewise smooth sets

P 0 ⊂ P 1 ⊂ . . . ⊂ P n−1 ⊂ P n = S,

and a function v : S → A are given. We will say that the sets P i and the

function v realize a regular synthesis for ẋ = f(x, u) in the region S if the

following conditions are satisfied:

1. The set P 0 contains the point a = x1 but does not have limiting

points in the open set S. Each component of the set P i − (P i−1 ∪

N)(i = 1, 2, . . . , n) is a smooth i−dimensional manifold in S; these

components will be called i-dimensional cells. The points of the set

P 0 will be called zero-dimensional cells. The function v(x) is contin-

uous and continuously differentiable on each cell and can be extended

as a continuously differentiable function into a neighborhood of the

cell.

2. All cells are grouped into cells of the first and second kind. All

n−dimensional cells are cells of the first kind, all zero-dimensional

cells are cells of the second kind.

3. (a) If σ is an i−dimensional cell of the first kind, then each point of

this cell has a unique trajectory of the equation

ẋ = f(x, v(x)) (13)

passing through it.
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(b) There exists an (i − 1)−dimensional cell Π(σ) such that each

trajectory of the system (13) traversing the cell σ leaves this cell

after a finite time, arrives at the cell Π(σ) at a nonzero angle,

and approaches the latter with a nonzero phase velocity.

(c) If σ is a one dimensional cell of the first kind, then it is a piece

of a phase trajectory of (13) approaching a zero-dimensional cell

Π(σ) with a nonzero phase velocity.

(d) If σ is an i−dimensional cell of the second kind distinct from the

point a, then there exists an (i+1)−dimensional cell Σ(σ) of the

first kind such that from any point of the cell σ there emanates

a unique trajectory of (13) traversing the cell Σ(σ); moreover,

the function v(x) is continuous and continuously differentiable

on σ ∪ Σ(σ).

4. The above conditions make it possible to continue the trajectories of

(13) from cell to cell: from the cell σ to the cell Π(σ) if Π(σ) is of the

first kind, and from the cell σ to the cell Σ(Π(σ)) if Π(σ) is of the

second kind. It is required that each such trajectory traverse only

a finite number of cells (that is, each such trajectory “pierces” only

a finite number of cells of the second kind). Moreover, each such

trajectory terminates at the point a. The above trajectories will

be called “distinguished” trajectories. Thus, a single distinguished

trajectory (leading to the point a) emanates from every point of the

set G−N . It is also required that a (possibly non-unique) trajectory
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of system (13) leading to the point a emanates from every point of

the set N . These will also be called “distinguished” trajectories.

5. All distinguished trajectories satisfy the maximum principle (see Sec-

tion 18).

6. The value of the transition time from the point x0 to the point a, cal-

culated along distinguished trajectories (terminating at the point a),

is a continuous function of the initial point x0. (In particular, if sev-

eral distinguished trajectories emanate from the point x0 ∈ N , then

the value of the transition time is the same for these trajectories.)

Theorem 19. If a regular synthesis is realized in G for ẋ = f(x, u)

(assuming the existence of continuous derivatives ∂f i

∂xj and ∂f i

∂uk ), then all

distinguished trajectories are optimal (in G).

A-4 Design of an apparatus to measure the effects
of fluid velocity fields and diffusion on cell per-
meability

In order to estimate values of water and solute membrane permeability (Lp and Ps

respectively) that account for the diffusion and advection in the extracellular envi-

ronment, experiments must be conducted that allow for the measuremtent of cell

volume as a function of time when exposed to various extracellular conditions. Our

experimental apparatus can be described as follows (see figure 11). A 3 mm diameter

cylindrical chamber is divided into upper and lower parts by a permeable membrane

with 3-5 µm pores randomly distributed across the membrane. We assume that at the

flow rates used, the membrane is perfectly permeable; it offers no resistance and adds
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Figure 11: Diagram of the system and device schematic D1 is the interior of the cell
D2 is the exterior of the cell and D3 is the region assumed to have perfect mixing (i.e.
concentration is invariant with time, i.e. concentration is equal to cb). Cells are fixed
at the permeable membrane boundary, and fluid flows from the top to the bottom of
the chamber at a constant rate. The concentration of this fluid can be changed either
in stepwise fashion, or continuously.

no turbulence to the media. The height of the cylinder is 10 mm total, with ports at

the top and bottom for the addition and removal of cells and media, and the top and

bottom of the cylinder are capped with glass coverslips. Fluid and cells are loaded

into the apparatus from the top and both gravity and fluid motion carry the cells to

the membrane where they are suspended. We assume that the fluid flow around the

cells at the membrane is strictly perpendicular to the membrane, is axially symmetric

around the cells, and has zero vorticity. Thus, with this apparatus we are able to

control the extracellular environment by altering flow rates and fluid concentrations.
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Consider the spherical region D1 to represent a cell with (variable) radius rc im-

mersed in the experimental chamber where it is bathed with fluid containing per-

meable and nonpermeable solutes. In our apparatus (see Figure systemdiagram2),

the fluid flow is from top to bottom. Because we assume the flow is axisymmetric

with respect to a vertical axis passing through the center of our spherical cell, it is

convenient to use cylindrical coordinates; for each cell, we set the origin at the cell

center with 0 ≤ r ≤ L denoting the radius away from the center of the cell along the

membrane axis, and −H ≤ z ≤ H, the height measured from the center of the cell.

We let L and H denote bounds for the region where the fluids are axially symmetric

with zero vorticity.

A-5 Exact solutions of fluid and concentration mod-
els

A-5.1 Solutions for the φ component of u.

We solve vφφ + h(r)vr + h(r)2vrr = 0 with boundary conditions v(0, φ) = 0, v(1, φ) =

1
b
utop
z (t) sinφ, v(r, 0) = 0, and v(r, π) = 0. We can solve by assuming v(r, φ) =

F (φ)R(r). This yields two ODEs: F ′′(φ)/F (φ) = c and

h(r)R′(r)/R(r) + h(r)2R′′(r)/R(r) = −c.

Because of the boundary conditions the equation F ′′(φ)− cF (φ) = 0 must have a

solution of the form F (φ) = c1 cos
√−c φ + c2 sin

√−c φ. If F (0) = 0, then we have

c1 = 0. Since F (π) = 0,
√−c = n for n ∈ Z, and so c = −n2, and Fn(φ) = c2 sinnφ.

Next we solve h(r)R′(r) +h(r)2R′′(r) + cR(r) = 0. We note that h(r) = r+ ρ(t)
b−ρ(t)

,

and that h′(r) = 1. If we assume that the solution is of the form R(r) = h(r)m, we
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get

h(r)m(m(m− 1) +m+ c) = 0,

thusm2−m+m−n2 = m2−n2 = 0, and thusm = ±n. Define Sn(r) = hn and Tn(r) =

h−n(r). In this case the solution will be v(r, φ) =
∑

n anFn(φ)(bnSn(r)+cnTn(r)), and

we automatically satisfy the v(r, 0) = v(r, π) = 0 conditions. Since v(0, φ) = 0, we can

solve for bn in terms of cn: we have bnSn(0) + cnTn(0) = 0 thus bn = −cnTn(0)/Sn(0).

Combining terms, we then have

v(r, φ) =
∑
n

anFn(φ)
(−Tn(0)Sn(r)

Sn(0)
+ Tn(r)

)
.

If we take only the n = 1 term, we have

v(r, φ) = a1F1(φ)
(−T1(0)S1(r)

S1(0)
+ T1(r)

)
= a1 sinφ

(
− h−1(0)h(r)

h(0)
+ h−1(r)

)
.

Finally, if we set

a1 =
utop
z (t)

b

1

−h−1(0)h(1)
h(0)

+ h−1(1)
,

we can satisfy all boundary equations, and the complete solution is

v(r, φ) =
utop
z (t)

b

1

−h−1(0)h(1)
h(0)

+ h−1(1)
sinφ

(
− h−1(0)h(r)

h(0)
+ h−1(r)

)
.

A-5.2 Solutions for the r component of u

Let us solve uφφ+u+h(r)ur+h(r)2urr = 0 with boundary conditions u(0, φ) = u0(t),

u(1, φ) = utop
z (t) cosφ
b−ρ(t)

− Au0(t) := u1(t) cosφ− Au0(t), uφ(r, φ) = uφ(r, 0) = 0. We will

solve the system with three sets of boundary conditions and add the solutions to find
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the complete solution. The first, w1(r, φ) is chosen to satisfy

w1φφ + w1 + h(r)w1r + h(r)2w1rr = 0,

w1(0, φ) = 0,

w1(1, φ) = u1(t) cosφ,

w1φ(r, 0) = w1φ(r, π) = 0.

The second function w2(r, φ), is the solution of the boundary value problem

w2φφ + w2 + h(r)w2r + h(r)2w2rr = 0,

w2(0, φ) = 0,

w2(1, φ) = Au0(t),

w2φ(r, 0) = w2φ(r, π) = 0.

And, the third function w3(r, φ) solves

w3φφ + w3 + h(r)w3r + h(r)2w3rr = 0,

w3(0, φ) = u0(t),

w3(1, φ) = 0,

w3φ(r, 0) = w3φ(r, π) = 0.

Let us these in order by separation of variables. Assuming w1(r, φ) = F (φ)R(r),

we get

F ′′(φ)

F (φ)
+ 1 + h(r)

R′(r)

R(r)
+ h(r)2R

′′(r)

R(r)
= 0.
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In order to keep track of the 1-term, we separate this into two ODE’s as follows:

F ′′

F
+ 1 = c,

h(r)
R′(r)

R(r)
+ h(r)2R

′′(r)

R(r)
= −c.

For reasons that will become clear, we solve first with c = 0. This gives us two simple

ODEs F ′′+F = 0 which has solution F (φ) = c1 cosφ+c2 sinφ, and h(r)2R′′+h(r)R′ =

0 which has a solution R(r) = c3 + c4 lnh(r). In view of the boundary conditions,

we see that F ′(0) = F ′(π) = 0, which means c2 = 0. Thus collecting and combining

terms we have the solution w1(r, φ) = a1 cosφ(c3 + c4 lnh(r)). Since w1(0, φ) = 0, we

must have c3 = −c4 lnh(0). To satisfy w1(1, φ) = u1(t) cosφ, we set a1 = u1(t)
lnh(1)−lnh(0)

.

Then the solution is

w1(r, φ) =
u1(t)

lnh(1)− lnh(0)
cosφ(lnh(r)− lnh(0)).

For the w2(r, φ) case, we solve the system again. This time setting c = 1 yields

the solution F (φ) = c1 + c2φ. The boundary conditions F ′(0) = 0 and F ′(π) = 0

mean c2 = 0, thus F (φ) = c1. Next, we solve h(r)2R′′(r) + h(r)R′(r) + R = 0.

Approaching this as before, we find the indicial equation is m2 + 1 = 0, meaning

m = i, yielding the solution R(r) = c3 cos(lnh(r)) + c4 sin(lnh(r)). As before we now

combine to get w2(r, φ) = a1 cos(lnh(r)) + a2 sin(lnh(r)). Since w0(0, φ) = 0, a1 =

−a2 tan(ln(h(0))). Thus w2(r, φ) = a2(− tan(ln(h(0))) cos(lnh(r)) + sin(lnh(r))). Fi-

nally, since w2(1, φ) = −Au0(t), we can solve for a2 = −(− tan(ln(h(0))) cos(lnh(1))+

sin(lnh(1)))−1Au0(t), and upon substitution,

w2(r, φ) = −Au0(t)(− tan(ln(h(0))) cos(lnh(r)) + sin(lnh(r)))

(− tan(ln(h(0))) cos(lnh(1)) + sin(lnh(1))

=
Au0(t)(− tan(ln(h(0))) cos(lnh(r)) + sin(lnh(r)))

(tan(ln(h(0))) cos(lnh(1))− sin(lnh(1))
.

138



Finally, for the w3(r, φ) case, we note that the solution will be very similar to the

w2 case, with slightly different boundary conditions. We have as above, w3(r, φ) =

a1 cos(lnh(r)) + a2 sin(lnh(r)), but here w3(1, φ) = 0 implies a1 = −a2 tan(ln(h(1)).

Next, w3(0, φ) = u0(t) implies a2 = u0(t)/(− tan(ln(h(1))) cos(ln(h(0)))+sin(ln(h(0)))).

Combining and collecting, we get

w3(r, φ) =
u0(t)

(− tan(ln(h(1) cos(ln(h(r))) + sin(ln(h(r)))
)

− tan(ln(h(1))) cos(ln(h(0))) + sin(ln(h(0)))
. (14)

The complete solution is

u(r, φ) = w1(r, φ) + w2(r, φ) + w3(r, φ)

=
u1(t)

lnh(1)− lnh(0)
cosφ(lnh(r)− lnh(0))

+
Au0(t)(− tan(ln(h(0))) cos(lnh(r)) + sin(lnh(r)))

(tan(ln(h(0))) cos(lnh(1))− sin(lnh(1))

+
u0(t)

(− tan(ln(h(1) cos(ln(h(r))) + sin(ln(h(r)))
)

− tan(ln(h(1))) cos(ln(h(0))) + sin(ln(h(0)))
.

A-5.3 An exact solution of the concentration model in a spe-
cial case.

Finally, for testing of numerics, it is advantageous to have a non-trivial exact solution

of the concentration model. We have the system

ct =
εuφ

q(r)
cφ +

(
εur

q′(r)
+

D

q(r)q′(r)

)
cR +

D

q(r)2
cφφ(r, φ) +

D

q′(r)2
cRR.

Let us assume that u = 0, D = 1, b = 1, and ρ = 0 to obtain the PDE

ct =
1

R
cR +

1

R2
cφφ + cRR.

If we assume cφφ = 0, we can solve via separation of variables. Letting c(r, t) =

T (t)R(r), we find that we have two ODEs: T ′/T = −λ and rR′′ + R′ + rλR = 0.
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Solving these ODEs with λ = 1, we get c(r, t) = J0(r)e−t as a solution, where J0(r)

is the Bessel J function. Multiplying by an affine function of φ, we have the solution

c(r, φ, t) = (k1 + k2φ)J0(r)e−t.

A-6 Numerical analysis of a curved boundary condi-
tion: a general approach to Dirichlet and Neu-
mann conditions and uneven grid spacing

When deriving difference equations for numerical integration, if the grid is evenly

spaced, regular, and boundaries are aligned with the grid (e.g. rectangular on a rect-

angular grid), standard difference equations are available that allow solutions to many

linear differential equations. When boundaries are not aligned with the grid, if grid

spacing is inconsistent, if differential equations involve mixed or higher order deriva-

tives, or if a higher order of accuracy is desired, a different method for determining

appropriate difference equations is required. The techniques used in this section do

take advantage of modern computer algebra systems to develop completely gener-

alized finite difference schemes, but are most assuredly not new, as finite difference

schemes have existed for a very long time.

Let u be a vector in a function space Cn(R2,R) of u and its spatial derivatives (e.g.

{u, ux, uy, uxx, uxy, uyy, . . .}). Define L as a linear functional that acts on u. Then

any linear non-evolution type differential equation can be written as Lu = a, where

a is some function. Note that for evolution type PDEs, the same process can be used

along with a time differencing scheme (e.g. forward Euler, Crank-Nicolsen, etc.).

Suppose we wish to find a difference equation for L(u) = 0 at the point (w, z).

In order to do this, we must define a “halo” of points around (w, z). In a standard
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centered differencing scheme with second order non-mixed derivatives, this “halo” will

be the two points dx away from (w, z) in the x direction, and the two points dy away

from (w, z) in the y direction. In our scheme, it is enough to have (n + 1) points

including (w, z) where n is the number of differentials in the differential equation(e.g.

ux+uxx+uyy gives n = 4 because there are two derivatives in the x direction and two

in the y direction. Note, it is possible to use more points to find higher order methods.

Let c = (c1, . . . , c(n+1)!) be the vector of Taylor expansions of u at each point around

u(w, z), (including the point (w, z). The goal of any differencing scheme is to find n!

linear equations of these ci that can be solved simultaneously. Typically, for i 6= 1,

the ci are either known as Dirichlet boundary conditions, or solved for as part of a

larger system of equations. Note that each ci can be written as a function of the

vector u. Because of this we can combine all equations into an (n + 1)! × (n + 1)!

system of equations with (n+ 1)! unknowns:

Au = c (15)

Where A is a matrix of the Taylor coefficients. If we solve this linear system, we have

found a linear combination of the surrounding points of (w, z) that describe each

element of u. If detA is non-zero, then the solution to our differential equation at

(w, z) is

LA−1c(w, z) = 0. (16)

The difficulty is in finding A−1, but for reasonably small (i.e. n < 10), this is quite

possible with the aid of a computer algebra package such as Mathematica.
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A-6.1 A simple example: Laplace’s Equation

Let us look at a simple example: Find a difference formula for u at (w, z) that solves

uxx + uyy = 0 in terms of u(w± dx, z± dy). Let {c1, c2, c3, c4, c5} = {u(x, y), u(x, y+

dy), u(x + dx, y), u(x, y − dy), u(x − dx, y)}. Classically we could either derive or

simply look up the second order (e.g. O(dx2)) centered difference formulas:

uxx =
c5 − 2c1 + c3

dx2

uyy =
c4 − 2c1 + c2

dy2
.

To solve for u(x, y), we substitute our difference formulas into the differential equation,

yielding

c5 − 2c1 + c3

dx2
+
c4 − 2c1 + c2

dy2
= 0, (17)

and solve for the coefficients of each u term:

c1

(− 2
(
dx−2 + dy−2

))
+ c5dx

−2 + c3dx
−2 + c4dy

−2 + c2dy
−2 = 0

Using our generalized method we define c = {c1, c2, c3, c4, c5}, and define u =

{u, ux, uxx, uy, uyy}. Performing Taylor expansions around u(x, y) on c yields the

matrix equation Au = c, i.e.
1 0 0 0 0

1 0 0 dy dy2

2

1 dx dx2

2
0 0

1 0 0 −dy dy2

2

1 −dx dx2

2
0 0




u(x, y)
ux(x, y)
uxx(x, y)
uy(x, y)
uyy(x, y)

 =


c1

c2

c3

c4

c5

 (18)

As long as A is nonsingular, A−1 can be calculated and we can solve for u. Doing so
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in this case yields

u(x, y) = c1,

ux(x, y) =
c3 − c5

2dx
,

uxx(x, y) =
c3 − 2c1 + c5

dx2
,

uy(x, y) =
c2 − c4

2dy
,

uyy(x, y) =
c2 − 2c1 + c5

dy2
.

Substituting this back into the differential equation yields the same result as the

classic method, with the added benefit that we’ve already calculated the difference

equations for ux and uy. The downside of this technique is that because we’ve only

expanded our Taylor series to O(dx3), dividing by the requisite dx2, yields a O(dx)

method. Standard techniques take advantage of the symmetry of points in the “halo”

to realize that the method derived is in fact O(dx2). Therefore, any technique derived

in this fashion will be of order at least 1 and may be higher if symmetries are involved,

but without post-hoc analysis, this is unknown.

A-6.2 A more complicated example: Laplace’s Equation on a
non uniform grid

The real power of this method is when the grid spacing is non-uniform. Suppose we

have the same equations with the same u. Let c be any 6 points (including c1 =

u(x, y)) near (x, y). Then there is a set of values {ai, bi}6
i=2 denoting the respective

distances in the x and y directions such that the Taylor expansion matrix equation
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Au = c is

1 0 0 0 0 0

1 a2
a2
2

2
b2

b22
2

a2b2

1 a3
a2
3

2
b3

b23
2

a3b3

1 a4
a2
4

2
b4

b24
2

a4b4

1 a5
a2
5

2
b5

b25
2

a5b5

1 a6
a2
6

2
b6

b26
2

a6b6




u(x, y)
ux(x, y)
uxx(x, y)
uy(x, y)
uyy(x, y)
uxy

 =


c1

c2

c3

c4

c5

c6.

 (19)

If A is non-singular, we can solve for x linearly in terms of c, do the appropriate sub-

stitutions into our PDE and we have now found an at least first order non-uniform

difference equation for u(x, y). It is worth noting that writing down a general differ-

ence formula for the above equation is impractical because the solution to the above

equation in its entirety and generality is many pages of expressions. In practical cases,

A will be entirely numerically expressed. This will allow significant improvements in

the speed of calculation and expression of the result. For a more concrete example,

we let {ai, bi}6
i=2 be equal to random numbers between 0 and 1.

1 0 0 0 0 0
1 0.0276 0.0008 0.6985 0.4879 0.01935
1 0.6143 0.3774 0.5764 0.3322 0.3541
1 0.5137 0.2639 0.7241 0.5244 0.3720
1 0.2585 0.0668 0.05711 0.0032 0.0147
1 0.1014 0.01029 0.4337 0.1881 0.0440




u(x, y)
ux(x, y)
uxx(x, y)
uy(x, y)
uyy(x, y)
uxy(x, y)

 =


c1

c2

c3

c4

c5

c6.

 (20)

u(x, y) = c1

ur(x, y) = −4.5818c1 − 0.7368c2 − 2.5097c3 + 2.1926c4 + 5.4995c5 + 0.1363c6

urr(x, y) = 3.8250c1 + 4.749c2 + 9.1990c3 − 8.1726c4 − 3.8834c5 − 5.7175c6

uz(x, y) = −2.2160c1 − 0.9652c2 + 1.5632c3 − 2.0024c4 − 1.7335c5 + 5.3541c6

uzz(x, y) = 1.2386c1 + 3.6905c2 − 1.9784c3 + 2.5251c4 + 2.3659c5 − 7.8417c6

urz(x, y) = 3.4933c1 − 5.6750c2 − 3.3142c3 + 5.7964c4 − 4.7999c5 + 4.4995c6
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A-6.3 An example with Neumann boundary conditions

When Neumann conditions are encountered in a case where derivative directions

are not orthogonal to the standard grid, or where grid spacing is non-uniform, or

where nonstandard derivatives are known (e.g. uxy) the above techniques are quite

useful. Let us consider the case where the Neumann condition at the boundary is

aux + buy = α, where a, b, and α are constants (e.g. on a circle with radius r where

the boundary condition is that the normal derivative is equal to α, a = x
r
and b = y

r
).

This equation fits into our structure above by replacing one of the above equations,

say cn for c6. Note that in this case, we actually solve for the value u on the boundary

itself.

The general form will then be

1 0 0 0 0 0

1 a2
a2
2

2
b2

b22
2

a2b2

1 a3
a2
3

2
b3

b23
2

a3b3

1 a4
a2
4

2
b4

b24
2

a4b4

1 a5
a2
5

2
b5

b25
2

a5b5

0 a 0 b 0 0




u(x, y)
ux(x, y)
uxx(x, y)
uy(x, y)
uyy(x, y)
uxy(x, y)

 =


c1

c2

c3

c4

c5

cn

 ,

which we can solve in a similar fashion to the other equations.
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