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ABSTRACT

This dissertation delves into critical aspects of financial markets and intermediaries,

shedding light on optimal portfolio rebalancing strategies in the presence of cash distribu-

tions and transaction costs, as well as the simultaneous determination of deposit and loan

contracts within financial intermediaries.

The first chapter concentrates on optimizing portfolio rebalancing by considering cash

distributions and proportional transaction costs. It introduces sweep accounts as pivotal

components, exploring their roles and demonstrating how transaction costs influence in-

vestment choices. This chapter also investigates the impact of asset cash distributions and

investor investment horizons on asset demand, revealing shifts in liquidity premiums.

In the second chapter, the research presents a comprehensive framework where deposit

and loan contracts coexist in equilibrium, offering a deeper understanding of financial in-

termediaries’ dual roles. With a focus on managing repayment risk while having access

to a safe yet lower-yielding asset, this chapter examines how varying collateral fractions

influence loan terms and deposit contracts. The findings provide valuable insights into the

correlation between borrowers’ commitment and loan terms.

Through its multifaceted exploration of portfolio management, transaction costs, de-

posit, and loan contracts, this dissertation enhances our comprehension of financial inter-

mediation dynamics and contributes to the broader knowledge of financial markets.
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Chapter 1

Optimal Portfolio Rebalancing with

Sweep Under Transaction Cost

Absrtract

This paper investigates the optimal portfolio rebalancing strategy for assets with cash dis-

tributions and proportional transaction costs. A sweep account is an account that is used as

the default destination for coupon and dividend proceeds as they arrive. In this study, we

incorporate this account and investigate the optimal strategy for the sweep account man-

ager. Our results indicate that the "no-transaction" region is split into two sub-regions,

where the cash proceeds are either invested entirely in the riskless asset or in the risky as-

set, depending on the transaction costs. Additionally, we analyze the impact of the assets’

cash distributions and the investors’ investment horizon on the demand for the assets. Our

findings suggest that changes in the cash distribution of assets, depending on the relative

magnitude of transaction costs for risky and riskless assets, can have a varying impact on

asset demand. In particular, our results indicate that when the transaction cost for the risk-
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less asset is low, an increase in the cash distributions from the risky asset and an increase

in the investor’s investment horizon have a positive impact on the liquidity premium of the

risky asset.

1.1 Introduction

A sweep account is a type of cash management account that automatically transfers excess

cash balances into higher-yielding investment vehicles, such as money market funds or eq-

uity investment accounts. The function of a sweep account is to help investors manage the

cash received from their investments more effectively and gain higher returns on their cash

earnings without having to actively manage their cash balances. It’s also worth noting that

sweep accounts have become increasingly popular in recent years due to the low interest

rate environment and the need for investors to find ways to earn a higher return on their

cash. As a result, many banks and financial institutions now offer sweep accounts as a way

to help their customers manage their cash more effectively.

This study examines the effect of assets’ cash distributions on the optimal portfolio

rebalancing strategy. Specifically, this paper studies the problem of optimal portfolio al-

location of assets with cash distributions under the assumption of a constant relative risk

aversion (CRRA) investor facing proportional transaction costs when purchasing the asset.

In this economy, the CRRA investor maximizes their final wealth. We assume that the in-

vestor’s investment horizon is finite and stochastic. Following the literature, the economy

is modeled with two assets - a risky equity and a riskless bond. The investor’s portfolio,

in turn, consists of two accounts: a bond account that receives coupon payments and an

equity account that receives dividend payments.

However, in order to incorporate the impact of assets’ cash distribution on the investors’
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portfolio rebalancing strategy, we add a third account called the sweep account. All cash

distributions originating from the bond and equity accounts are automatically deposited

into the sweep account, which is then managed to optimize the allocation of cash balances

back into the bond and equity accounts. In the absence of liquidity shocks, optimal cash

allocation would entail the reinvestment of cash proceeds into either the bond or equity ac-

count. This study is designed to provide an analysis of the impact of cash distributions and

proportional transaction costs on the optimal portfolio allocation, and how they influence

the investment behavior of the investor. Notably, the study’s results reveal a binary optimal

sweep decision, where the sweep account’s entire balance is allocated to either bond or

equity purchases.

The results of this analysis indicate that an increase in the dividend payout ratio of

the equity asset leads to a rise in demand for equity and a decrease in demand for bonds,

assuming that the transaction cost associated with the bond is comparatively lower than

those associated with equity. However, beyond a critical ratio of transaction cost of bond

to equity, the impact of a higher dividend payout ratio reverses, and the demand for equity

starts to wane. Moreover, this paper delves into the impact of a higher coupon rate of bonds

on the investment decision of fund managers. We show that when the coupon rate on bonds

rises, as the transaction cost of the bond correspondingly increases, the sweep policy does

not change regardless of whether coupon rates are high or low. However, this increase in

the coupon rate leads to a decrease in the demand for both equity and bonds.

Another critical aspect of the proposed financial model lies in the consideration of the

time horizon of the investors. Although these investors are technically maximizing their

utility over an indefinite span of time, the assumption that the end of their investment

horizon is randomly arriving presents us with an opportunity to gain a deeper understanding

of the impact of the expected time horizon on their investment behavior. In this paper, we
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demonstrate that the relative size of the transaction cost of bonds and equity influences

investors’ tendency to change their investment behavior as they approach their investment

horizon. Specifically, as the investment horizon approaches, in an environment where the

transaction cost of bond is comparatively lower than the transaction cost of equity, investors

decrease their rate of equity purchases and increase the pace of bond purchases. This result

is consistent with the findings of Hopenhayn and Werner (1996), who demonstrated that as

investors’ investment horizons shorten and they desire to consume earlier, their demand for

a more liquid asset with a lower expected payoff would increase.

On the other hand, when the transaction cost of risk-free assets becomes relatively larger

compared to the transaction cost of equity, the behavior of investors changes in response to

the shortening of their expected time to their investment horizon. In this scenario, investors

tend to increase their allocation towards the risky asset and decrease their demand for the

risk-free asset, reflecting the impact of cash distribution associated with these assets on

the demand for these assets. Furthermore, the study demonstrates that the degree of risk

aversion among investors has an adverse effect on the demand for the equity and a positive

effect on the demand for the bond.

Finally, this paper builds upon previous studies on the liquidity premium of equities

and examines how it is affected by the equity dividend payout and the investment horizon

of investors. Constantinides (1986), defines liquidity premium as the extra return that an

investor earns as compensation for the lack of liquidity associated with a particular asset.

In other words, investors demand a higher rate of return for assets that are less liquid or

difficult to sell quickly, compared to assets that are highly liquid and easily tradeable.

Drawing from this definition, we demonstrate that higher dividends would have a pos-

itive impact on the demand for equities when the transaction cost for bond is low. This

increased demand would, in turn, result in higher transaction costs associated with acquir-
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ing the asset which leads to an increase in the asset’s liquidity premium to compensate

investors for their elevated expenditure on transaction costs.

In addition to exploring the relationship between cash payments and the liquidity pre-

mium of an asset, this study also examines the impact of investors’ investment horizons

on the liquidity premium for an asset with transaction costs. It is shown that as investors’

investment horizons shorten, their demand for the risky asset would decrease and their de-

mand for the riskless asset would increase, depending on the gap in the two transaction

costs. This decrease in demand for the risky asset would then reduce the investor’s expen-

diture on transaction costs associated with acquiring this asset. As the demand for the risky

asset decreases and the expenditure on transaction costs associated with acquiring the asset

decline, the asset would lose some of its liquidity premia.

Constantinides (1986) showed that transaction costs can increase the liquidity premium

of an asset. He asserted that investors in equilibrium should receive a higher mean return

for an asset with transaction costs, as compensation for the increased expenditure associ-

ated with acquiring the asset. Constantinides further claimed that the liquidity premium is

typically lower in magnitude than the transaction cost.

However, recent studies have challenged this view. Papers such as Lynch and Tan

(2011) have demonstrated that the liquidity premium can be of the same magnitude as the

transaction cost, in certain cases. Lynch and Tan showed that when predictable returns

and wealth shocks to labor income are introduced, transaction costs can result in liquid-

ity premia that are on the same order of magnitude as the transaction cost spread. Here,

we demonstrate that incorporating two additional factors, namely asset cash payouts and

investors’ average investment horizon, into the analysis can help explain some of the un-

derestimations of the liquidity premium observed in Constantinides’ research.

The findings of this research suggest that the coupon rate of bonds and the dividend
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payout ratio of equities play a crucial role in determining the optimal portfolio allocation

of assets. Furthermore, the results of this study can provide valuable insights for investment

decision-making regarding the benefits of sweep accounts. Additionally, it can contribute

to a deeper understanding of the impact of cash distributions and transaction costs on the

demand for assets within the economy.

1.2 Related Literature

The academic literature on optimal portfolio allocation in the presence of transaction costs

has been widely explored. Merton (1971) first addressed the issue of optimal portfolio allo-

cation when there are no transaction costs involved. He showed that there exists an optimal

ratio of bonds to equity in a portfolio that an investor should maintain by continuously

rebalancing the portfolio.

However, when transaction costs are considered, the problem becomes more complex.

The problem of optimal portfolio rebalancing when investors are facing transaction costs

has been studied under different specifications. Constantinides (1979) and Constantinides

(1986) analyzed the problem of optimal portfolio choice under the condition of maximiz-

ing infinite lifetime consumption and proportional transaction costs. Taksar et al. (1988),

Davis and Norman (1990), and Dumas and Luciano (1991) also tackled the issue using the

stochastic singular control problem and showed that proportional transaction costs create

three distinct regions in the allocation space.

The first region, referred to as the no-transaction (NT) region, is a convex cone in

the portfolio allocation space where investors do not rebalance their portfolio. The second

region is known as the Buy (B) region where the investor rebalances the portfolio by buying

the risky asset and selling the riskless asset. The boundary between the Buy region and the
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No-Transaction region is called the Buy-Boundary. The third region is known as the Sell

(S) region, where the investor rebalances the portfolio by selling the risky asset and buying

the riskless asset. The boundary between the Sell region and the No-Transaction region is

called the Sell-Boundary.

Liu and Wu (2001)further extended the literature and explored the impact of transaction

costs on an optimal consumption and investment decision, assuming that security returns

have bounded uncertainty. Some other papers studied the impact of fixed transaction cost

on optimal portfolio choice. Among them, Liu (2004) studied the optimal portfolio al-

location problem with fixed transaction costs and multiple risky assets for investors with

constant absolute risk aversion (CARA) utility, while Dybvig (2020) analyzed the prob-

lem for mean-variance utility maximizer investors. They found that with fixed transaction

costs, investors optimally maintain their portfolio allocation between two constant levels

and rebalance their positions as soon as their portfolio allocation reaches either boundary

to reach an optimal target.

Other research has focused on the optimal consumption and portfolio strategy when

taking into account labor income. Bodie et al. (1992) added to this body of research by

examining the influence of the labor-leisure choice on portfolio and consumption decisions

throughout an individual’s life cycle. Furthermore, Dybvig and Liu (2010) investigated

the optimal consumption and portfolio problem in the context of voluntary or mandatory

retirement and the presence or absence of a non-negative wealth constraint, which restricts

borrowing against future wages.

Several academic studies have explored the topic of optimal portfolio selection with

transaction costs and a finite investment time horizon. Gennotte and Jung (1994) and Boyle

and Lin (1997) are among the seminal works in this field, and they have demonstrated

that as the time horizon of investors increases, the no-transaction boundaries grow in a
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monotonic fashion, ultimately converging to the infinite horizon case in the limit.

The literature in this field has primarily focused on either self-financing portfolios or

assets that do not have any cash distribution. To the best of my knowledge, the only study

that has briefly mentioned the case of dividend-paying assets is Dumas and Luciano (1991),

who state that "the case of a dividend-paying asset would be an interesting case and the ex-

tension would require an additional state variable," but they do not provide any in-depth

examination. The importance of considering cash payments from assets in investment

portfolios was highlighted by Blume (1980), who conducted a survey revealing a strong

preference among individual investors for dividend-paying stocks.

This trend of dividend-paying stocks being more attractive than non-dividend-paying

stocks in the investment world is at odds with the findings of Modigliani and Miller (1958)

and Modigliani and Miller (1963), who showed that dividends are irrelevant under certain

stringent assumptions. To address this apparent contradiction, researchers have attempted

to explain why investors prefer dividend-paying stocks. Dybvig and Zender (1991) and

Ofer and Thakor (1987) proposed that information asymmetry models could help explain

the signals firms send to investors by paying dividends. Frankfurter and Lane (1992) sug-

gested that behavioral biases could also play a role in investors’ preference for dividends.

In Section 1.3.1, we present a solution to the allocation problem when the transaction

cost for bonds is zero. The solution is based on a free boundary ordinary differential equa-

tion, which is similar to the solution found in Davis and Norman (1990). In this scenario,

the boundary for the sweep falls on the boundary for buying equity, and the no-transaction

region is always the region where cash is transferred from the sweep account to the bond

account. The main difference between the solution in this paper and the solution in Davis

and Norman is the consideration of non-zero dividend payout ratios for equity.

In Section 1.3.2, we extend the analysis to the case where the transaction costs for
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both bonds and equity are non-zero. This paper shows that in this scenario, the sweep

boundary is strictly inside the no-transaction region. This means that the no-transaction

region splits into two sub-regions, and based on the transaction costs for bonds and equity,

the investor can transfer cash from the sweep account to either the bond or equity account.

By incorporating the impact of dividends in the model, we analyzes the effect of dividends

on the demand for the risky asset and it’s liquidity premia. And in section 1.4 we conclude.

1.3 The Continuous Time Model

In this economy, we assume there is a continuum of investors who live for a finite period,

but their investment horizon arrival is not deterministic. The investors can trade two assets,

one riskless (bond) and another risky (equity).

The shares of the assets are infinitely divisible. Investors take the price of the assets as

given and they can only long the assets with zero capital gain tax at the time of sale. Let the

equity price follows geometric Brownian motion with mean µ, standard deviation σ, and a

constant dividend yield of q. The bond pays a constant rate of return of r with a coupon

rate of c. We assume that µ− r > 0.

To formalize the investor’s portfolio holdings, we denote Hb
t as the dollar value of the

investor’s bond holdings at time t, and Hs
t as the dollar value of their equity holdings.

Assume the investor incurs proportional transaction costs of λb only when purchasing bond

and λs only when purchasing equity. Following the assumption that the sale of assets is free

of transaction costs, the investor’s wealth at time t is given byWt = Hb
t +H

s
t . Suppose that

Hb
0 = x is the initial endowment of bond, and Hs

0 = y is the initial endowment of equity.

Thus, the initial wealth of the investor is W0 = x + y. As a result, the law of motion for
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the investor’s holdings, in the absence of any transactions at time t, is as follows:

dHb
t = Hb

t (r − c)dt+ cHb
t dt (1.1)

dHs
t = (µ− q)Hs

t dt+ qHs
t dt+ σHs

t dzt (1.2)

Equation 1.1 reflects the investor’s bond holding law of motion at time t, and Equation

1.2 shows the investor’s equity holding law of motion at time t. In Equation 1.2, zt follows

standard Brownian motion, which represents the stochastic component of the risky asset. In

the absence of any transaction costs, changes to the coupon rate or dividend yield will not

affect the path of the accounts since these earnings can be reinvested in the same account

without incurring any costs.

Suppose the investor has a finite time horizon that is exponentially distributed with a

parameter value of η. Thus, the probability of the investor meeting their horizon at time

τ ∈ dt is ηe−ηt. Consequently, the expected arrival time of the investment horizon is 1
η
.

This assumption allows us to convert the current finite horizon problem to an infinite time

horizon problem, which will later help us to find the stationary solution to the problem.

Assumption 1.1. The investor has a finite horizon τ which arrives randomly and it follows

an exponential distribution with a parameter value of η. The investor also has a constant

relative risk aversion (CRRA) preference over their final wealth, W 1−γ
τ

1−γ
, where Wτ is the

investor’s wealth at time τ , and 0 < γ ̸= 1.

Following this assumption, the investors’ objective is to maximize their expected utility

over their final wealth. Thus, based on the investor’s horizon assumption, the expected

value of the investor’s utility over their final wealth can be transformed into an expected
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value over an infinite horizon.

E∗
[W 1−γ

τ

1− γ

]
= E

[ ∫ ∞

0

ηe−ηtW
1−γ
t

1− γ
dt
]

(1.3)

Expectation E∗ has measure on everything and the expectation E has measure on every-

thing other than the horizon arrival. This transformation of the objective function allows us

to study the stationary solution for the optimal portfolio rebalancing strategy. If we max-

imize Equation 1.3 in the absence of transaction costs subject to constraints of Equations

1.1 and 1.2, the solution would be similar to Merton (1971), where the investor’s optimal

portfolio allocation is a constant ratio of bonds to equity equal to γσ2

µ−r
− 1, and the investor

would continuously trade to maintain this optimal ratio of bonds to equity.

Lemma 1.1. Let η > (1 − γ)(r + (µ−r)2

2γσ2 ), x be the value of the bond account, and y be

the value of the equity account of the investor’s portfolio. If the investor’s objective is to

maximize Equation 1.3 subject to Equations 1.1, and 1.2, the investor’s optimal portfolio

rebalancing policy is x
y
= γσ2

µ−r
− 1, and the optimal value function is

v(x, y) = η
(
η − (1− γ)(r + (µ−r)2

2γσ2 )
)−1

(x+y)1−γ

1−γ

Proof. Merton (1971)

In this lemma, the assumption of η > (1 − γ)(r + (µ−r)2

2γσ2 ) ensures the concavity of

the optimal value function and it is necessary for the existence of an optimal solution.

In the next section, we extend Merton’s problem by introducing a positive proportional

transaction cost for purchasing equity. We show that this extension would transform the

problem into a similar one as discussed in Davis and Norman (1990). However, unlike

their study, this paper considers the existence of equity dividends that are transferred to the

bond account in the equilibrium.
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1.3.1 Optimal Portfolio When Only Equity is Subject to Transaction

Cost

To incorporate the transaction cost of purchasing the equity, we define non-decreasing,

adapted, and right-continuous processes Ut and Lt, where Ut represents the cumulative

dollar value of bond purchase and Lt represents the cumulative dollar value of equity pur-

chase from time 0 until time t.

To optimize the expected utility of the final wealth, investors must determine the opti-

mal bond, equity, and cash sweep values. Additionally, we define the Sweep account as a

repository in which the cash proceeds from bonds and equity accumulate. The fraction χt

denotes the proportion of the sweep account at time t, which the investor directs towards

the equity account, while 1−χt denotes the proportion directed towards the bond account.

Problem 1.1. Consider an investor facing a proportional transaction cost of λs > 0 when

purchasing equity and a zero transaction cost for bonds. Then, the investor seeks to choose

χt, Ut, Lt for t ∈ [0,∞] in order to maximize the following problem:

v(x, y) = max
Lt,Ut,χt

E
∫ ∞

0

[
ηe−ηtW

1−γ
t

1− γ

]
dt (1.4)

subject to:

dHb
t =

[
(r − c)Hb

t + (1− χt)
(
cHb

t + qHs
t

)]
dt− (1 + λs)dLt + dUt (1.5)

dHs
t =

[
(µ− q)Hs

t +
1

1 + λs
χt

(
cHb

t + qHs
t

)]
dt+ σHs

t dzt + dLt − dUt (1.6)

∀t Hb
t , H

s
t ≥ 0, Hb

0 = x, Hs
0 = y

In Problem 1.1, the investor seeks to maximize their expected utility of their final wealth
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over a random horizon that arrives at a rate of η by choosing the optimal equity strategy

Lt, bond strategy Ut, and sweep strategy χt. The first constraint, as stated in Equation 1.5,

is the law of motion for the bond account. Bonds held in this account earn a deterministic

interest rate of r and receive a coupon rate of c. To purchase dUt units of bonds, the investor

must sell dUt units of equity, as the sale of equity incurs no transaction costs. The second

constraint, as stated in Equation 1.6, is the law of motion for the equity account.

Equity is a risky asset that follows GBM with mean return µ and standard deviation

σ. The investor receives dividend payments from the equity at a rate of q at time t. To

add dLt units of equity to the equity account, the investor must sell (1 + λs)dLt units of

bonds to cover the transaction cost of purchasing the equity. The third condition reflects the

assumption that short selling of any asset is not allowed, and that investors can only hold

positive balances of each asset. It also ensures that the investment strategy set is compact.

At each time, the investor receives cash distributions from the bond and equity assets

held in their portfolio, which are automatically deposited into the sweep account as they

arrive. As a result, the cash balance in the sweep account at time t is given by the sum of

the cash distributions received from the bond account, which are represented by cHb
t , and

the cash distributions from the equity account, which are represented by qHs
t . Given the

sweep account balance, the investor reallocates a fraction χt of this account into the equity

account and a fraction 1− χt into the bond account.

Proposition 1.1 addresses the solution to Problem 1.1, which pertains to dividend-

paying assets and positive transaction costs for the equity asset, while the bond has zero

transaction costs (i.e., λb = 0). When the transaction cost of one asset is zero, investors

treat that account as a sweep account and deposit the cash proceeds from all accounts into

the account with zero transaction cost, which in this case is the bond account. As a result,

the boundaries of the sweep account and the zero-transaction cost account overlap in the
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portfolio allocation space.

The usual assumptions in the relevant literature, such as in Davis and Norman (1990),

are that assets do not pay dividends, or if they do, the dividend is assumed to be costlessly

reinvested in the same asset. The solution to Problem 1.1 is similar to that of Davis and

Norman, except for the presence of a sweep account to manage the dividend from the risky

asset. However, this difference leads to some variations in the no-transaction region.

Lemma 1.2. Assume that a solution to Problem 1.1 exists for all initial values x and

y > 0 , and that the value function is twice continuously differentiable with respect to x

and y. Then the value function is concave and has the following homothetic property:

v(x, y) = y1−γψ(x
y
), and ψ(x

y
) is a C2 function.

Proof. Davis and Norman (1990), Muzere (2001)

Proposition 1.1. In Problem 1.1, the optimal sweep decision of the investor is to always

transfer cash into the bond account. Having the optimal rebalancing conditions, setting

y = 1, there exists a unique sell boundary x0, and a unique buy boundary xT .

(i) There exists a boundary, called the sell boundary at x0, such that if x ≤ x0, the

investor’s optimal strategy is to sell equity and buy bonds until the portfolio reaches

the sell boundary. The region in the allocation space to the left of the sell boundary

is called the sell region. The investor’s value function in the sell region is given by,

ψ(x) = 1
1−γ

A(x+ 1)1−γ , for a constant value of A.

(ii) There exists a boundary, called the buy boundary at xT , such that if x ≥ xT , the

investor’s optimal strategy is to buy equity and sell bonds until the portfolio reaches

the buy boundary. The region in the allocation space to the right of the buy boundary
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is called the buy region. The investor’s value function in the buy region is given by,

ψ(x) = 1
1−γ

B(x+ 1 + λs)1−γ , for a constant value of B.

(iii) The region in between the sell boundary, x0, and the buy boundary, xT , is called the

no transaction region, where the investor would not trade. The value function in this

region is solved through the following free boundary differential equation.

β3x
2ψ′′(x) + (β2x+ q)ψ′(x) + β1ψ(x) +

η

1− γ
(x+ 1)1−γ = 0 (1.7)

Where, β1 = (µ− q − 1

2
σ2γ)(1− γ)− η, β2 = σ2γ + r − µ+ q, β3 =

1

2
σ2

Such that at the boundaries, x0, and xT , the following conditions hold:

ψ′(xT )

ψ(xT )
=

1− γ

xT + 1 + λs
ψ′(x0)

ψ(x0)
=

1− γ

x0 + 1
(1.8)

ψ′′(xT )

ψ′(xT )
=

−γ
xT + 1 + λs

ψ′′(x0)

ψ′(x0)
=

−γ
x0 + 1

Proof. See Appendix

Figure 1.1 displays the results of Proposition 1.1, which illustrates the asset allocation

space, where the horizontal axis represents the value of the bond account, and the vertical

axis represents the value of the equity account. The middle cone-shaped area denotes the

no-transaction (NT) region where investors refrain from trading until their portfolio value

reaches the boundaries of the cone. The boundaries are straight lines passing through the

origin and (x0, 1) and (xT , 1), respectively, owing to the homothetic property of the value

function and the boundary conditions.

The Merton line, located inside the shaded region, shows the portfolio where investors
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in bond
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1 + λs
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S

NT

B

Merton line

Figure 1.1: Space of Bond and Stock with regions of trading and no-trading λb = 0, λs > 0.

continuously rebalance their portfolios to remain on the line, given zero transaction costs.

However, the presence of transaction costs creates this wedge in the asset allocation space.

Within the wedge, the cost of rebalancing the portfolio exceeds the benefits, prompting

investors to let the portfolio deviate from the Merton line until it reaches either boundary

of the NT region. At the boundary, the investor is indifferent, and hence, only aims to

maintain the portfolio at the boundaries once it drifts out of the NT region.

The region on the left side of the no-transaction region, marked by S, is known as the

sell region where investors sell equity and buy bonds to maintain the sell boundary of the

no-transaction region. The value function in this region along the trading direction (a line

with a slope of −1) is constant. On the right side of the no-transaction region, the buy

region, labeled as B, represents the area where investors purchase equity and sell bonds to

stay on the buy boundary. In this region, the value function is constant along the trading

direction, which is a line with a slope of − 1
1+λs .
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Proposition 1.1 also demonstrates that the sweep boundary coincides with the buy

boundary. In the no-transaction region, the investor uses all the cash proceeds from bonds

and equities to buy bonds. In the region to the right of the buy boundary, the investor would

use the cash balance in the sweep account to buy equity. As the investor would never let

the portfolio drift out of the NT region, the sweep action always moves cash toward buying

bonds.

Proposition 1.2. Lets assume that η > (1 − γ)(r + (µ−r)2

2γσ2 ). The exact solution to the

ordinary differential equation in Proposition 1.1 is given by, ψ(x) = C1Ψ1(x)+C2Ψ2(x)+

ψp(x), where,

Ψi(x) = x−kiΦ(ai, bi;
q

β3
x−1)

ψp(x) = Ψ2(x)

∫ x

0

Ψ1(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)
−Ψ1(x)

∫ x

0

Ψ2(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)

W (x) = Ψ1(x)Ψ
′
2(x)−Ψ2(x)Ψ

′
1(x)

ki =
(β2 − β3)±

√
(β2 − β3)2 − 4β3β1
2β3

, i = 1, 2

ai = ki, bi = −β2
β3

+ 2ki + 2

Φ(a, b; y) = 1 + Σ∞
j=1

(a)j
(b)j

yj

j!
where, (a)j = a(a+ 1)...(a+ j − 1), (a)0 = 1.

Proof. See Appendix

Proposition 1.2 indicates that the exact solution to the ordinary differential equation that

governs the optimal value function in the no-transaction region (as introduced in Proposi-

tion 1.1) takes the form of Kummer’s confluent hypergeometric function. This Proposition

implies that the solution to Problem 1.1 is unique boundaries denoted by x0 and xT , such
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that it is optimal not to trade when the portfolio value lies between these boundaries.

The importance of this extension in our model is that it treats cash distribution opti-

mally, enabling us to examine the impact of the dividend payout ratio on the asset demand

in the economy or variations in the no-transaction region.

Studying the sensitivity of the no-transaction region is crucial because it determines

the optimal trading behavior of investors. For example, if the transaction region widens,

investors will trade less frequently to maintain the optimal level of portfolio selection. This,

in turn, reduces the demand for assets, which is relevant to the liquidity premium demanded

by investors in the economy. In the next subsection, we present the sensitivity of the no-

transaction region and the equity’s liquidity premium with respect to the dividend payout

ratio and investment horizon.

Comparative Statics

In this part, we show how different parameters such as the dividend payout ratio of equity,

and the investor’s horizon could affect the no-transaction region boundaries.

Figure 1.2 displays the no-transaction region boundaries’ shape concerning the trans-

action cost size for the following parameters: µ = 0.12, σ = 0.4, γ = 0.45, η = 0.05,

r = 0.065, q = 0.01. These parameters were selected to satisfy, 0 < γσ2

µ−r
− 1 < 1.

We adhere to this condition throughout the numerical exercises in the paper to maintain

the value of holdings in bonds and equities strictly positive in the absence of transaction

costs. Davis and Norman (1990) refer to this condition as the "hedging" condition, where

assets are divided between stocks and bonds to reduce volatility. Dumas (1991) demon-

strated the non-dividend paying equity version of this outcome. The result indicates that

the no-transaction region widens as the cost of trading equity increases.
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Figure 1.2: The effect of transaction cost on trading boundaries, λb = 0, λs > 0.

In this graph, the increasing line represents the sell boundary’s position in relation to

different equity transaction cost values, while the decreasing line represents the buy bound-

ary. The Merton line, which is the optimal bond-to-equity ratio when the transaction cost

is zero, is the straight line in the middle.

The graph demonstrates that as the cost of purchasing equity rises, investors decrease

their demand for both equity and bonds. The reduction in equity demand is apparent since

investors need a higher return on equity to purchase it when the cost of trading equity rises.

Therefore, they wait to buy equity at lower prices to earn a greater return. The decrease

in bond demand is less evident. However, as the cost of purchasing equity rises, investors

are less inclined to sell their current equity balance because it would be costly for them to

repurchase it later if doing so would be optimal. Since investors must sell equity to buy
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bonds, their demand for bonds also decreases.

Figure 1.3: The effect of transaction cost and dividend yield on trading boundaries, λb = 0,
λs > 0.

Figure 1.3 depicts the variation in the no-transaction (NT) region with respect to dif-

ferent equity transaction cost values for two distinct dividend payout ratios. It compares

the no-transaction region when the dividend payout ratio increases from 0.01 to 0.1. In this

graph, the purple line represents the buy boundary when the dividend payout ratio is 0.1,

the red line is the buy boundary when the dividend payout ratio is 0.01, the yellow line

corresponds to the sell boundary for a dividend yield of 0.1, and the blue line corresponds

to the sell boundary for a dividend payout ratio of 0.01. The graph demonstrates that in-

creasing the equity’s dividend payout ratio results in a downward shift in both the sell and

buy boundaries.
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Proposition 1.1 showed that in a scenario where the transaction cost on the bond is zero,

the best strategy is to convert all cash received from dividends into bonds in each period.

When the equity payout ratio increases, more cash flows from the equity account into the

bond account through the equity’s dividend payout channel. In other words, as the dividend

payout ratio rises, equity gets converted to bonds faster. This means that the investor would

want to buy the stock sooner, at any transaction cost value, so the buy boundary moves

down.

On the other hand, if the dividend yield goes up, the sell boundary should become more

relaxed. Because the equity payout ratio is converting equity to bonds faster, investors have

less reason to sell bonds and buy equity. So the sell boundary also moves down.

Another important aspect of the model is its consideration of the transformed expected

utility that assumes investors seek to maximize their utility over an infinite period of time.

However, the model also accounts for the fact that investors have a randomly arriving hori-

zon. This means that investors may have a certain expectation about when they will need

to use their investments.

Specifically, the model defines the probability of the horizon’s arrival as η. Since the

investment horizon is exponentially distributed, an increase in η leads to a decrease in the

expected time until the horizon’s arrival, which is represented as 1
η
. When the investor

expects their horizon to arrive sooner, they treat bonds and equity differently due to the fact

that trading equity incurs costs while trading bonds does not. As the investor approaches

their investment horizon, they convert bonds to equity at a slower pace and equity to bonds

at a faster pace. This anticipated behavior stems from the investor’s desire to spend less on

rebalancing their portfolio when they are closer to maturity.

It’s noteworthy to mention that the benefit for investing in the equity is forward-looking,

and the time to maturity is directly related to the investor’s marginal benefit from purchas-
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ing the equity. As the investor’s investment horizon approaches, the marginal cost of trading

equity remains fixed at any given equity price, but the marginal benefit of purchasing the

equity decreases. Therefore, the model suggests that the expected time until the investor’s

horizon arrival affects their trading behavior, which has important implications for portfolio

management.

Figure 1.4: The effect of transaction cost and investor’s horizon on trading boundaries,
λb = 0, λs > 0.

In Figure 1.4, the sensitivity of the no-transaction boundaries is depicted with respect to

the investors’ horizon. The graph highlights that as the η value increases from 0.05 to 0.5,

or in other words, as the expected time to maturity or investment horizon decreases, the buy

boundary of the no-trading region increases. This implies that the investor’s demand for

bond increases as they approach their investment horizon, which is in line with their goal
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of preserving their capital and reducing risk as they get closer to needing their investments.

Conversely, the sell boundary of the no-transaction region also increases as η increases.

This means that the investor’s demand for equity decreases as they approach their invest-

ment horizon. Therefore, as the investor approaches their investment horizon, they would

prefer to hold a more conservative portfolio with a higher allocation of bond, which has zero

transaction costs, and a lower allocation of equity, which has positive transaction costs.

Finally, the paper examines the impact of transaction costs on the liquidity premium,

following the work of Constantinides (1986). Constantinides suggests that transaction costs

have a second-order effect on the liquidity premium, which is defined as the excess in the

mean return of an asset subject to transaction costs compared to an asset that is exempt

from transaction costs.

To measure the liquidity premium, Constantinides considers the case of two assets with

perfectly correlated rates of return and equal standard deviations of their rates of return. In

this scenario, the expected rate of return of the asset with transaction costs must exceed that

of the exempted asset in equilibrium. The liquidity premium, denoted by δ(λ), represents

the additional return that investors require to be compensated for the transaction costs, λ,

and is given by the difference in the mean returns of the two assets.

Constantinides defines the liquidity premium, δ(λ), as the excess in the mean return

of the asset with transaction cost compared with the asset without transaction cost which

makes the investor indifferent between holding either of the assets at the optimal portfolio

allocation under no transaction cost, x∗ = γσ2

µ−r
− 1. In other words, in equilibrium the

liquidity premium, δ(λ) that the investors require to be compensated for the transaction

cost λ, must satisfy the following equation.

ψ(x∗) = η
(
η − (1− γ)(r +

(µ− δ(λ)− r)2

2γσ2
)
)−1 (x∗ + 1)1−γ

1− γ
(1.9)
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The left-hand side of Equation 1.9 represents the expected utility of the investor from hold-

ing portfolio x∗ under transaction cost, which we derived explicitly from Proposition 1.2.

On the other hand, the right-hand side of the equation represents the expected utility under

no transaction cost, which is derived in Lemma 1.1. This equation provides a measure of

liquidity premium that estimates the excess return required to maintain the optimal portfo-

lio inside the no-transaction region.

Figure 1.5: The effect of transaction cost and dividend yield on the stock’s liquidity pre-
mium, λb = 0, λs > 0.

Figure 1.5 illustrates the liquidity premium, δ(λ), under two distinct dividend payout

policies. The dashed line pertains to q = 0.1, whereas the solid line corresponds to q =

0.01. Subsequent to the rise in the transaction cost, the liquidity premium almost doubles.

As Constantinides (1986) argued, the liquidity premium is typically an order of magni-

24



tude below the transaction cost. Nevertheless, current literature suggests that the liquidity

premium may be of the same order of magnitude as the transaction cost spread.

This study aims to establish that dividend payout from the asset is one of the contribut-

ing factors that could escalate the liquidity premium. The rationale behind the increase in

premium lies in the fact that higher dividend payout leads to a surge in the demand for the

asset, which, in turn, lowers the buy boundary. Consequently, the investor ends up procur-

ing the asset more frequently, leading to higher transaction costs. Hence, the investor has

to be compensated for the amplified cost of buying the asset.

Figure 1.6: The effect of transaction cost and investor’s horizon on the stock’s liquidity
premium, λb = 0, λs > 0.

In Figure 1.6, we observe a positive association between the liquidity premium and

the investors’ horizon. Specifically, as the parameter η increases from 0.05 to 0.5, the
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expected time to maturity or investment horizon of the investors decreases. Consequently,

the liquidity premium decreases as the investor’s expected horizon shorten. The reason

for this positive correlation is rooted in the behavior of the investor as they approach their

investment horizon. Investor tends to reduce their demand for the asset and trade equity less

frequently. As a result of the decreased transaction cost, the investor would be required to

be compensated less for trading the asset.

We can conclude that in an environment where the transaction cost of bonds is zero,

high investment horizon and high dividend payout ratio are two potential contributing fac-

tors to the higher liquidity premium observed in empirical findings as compared to Con-

stantinides’ findings. The interplay between these factors leads to a shift in the demand for

the asset with transaction costs, ultimately influencing the liquidity premium.

However, these relationships may change when transaction cost of bond is positive. In

the next section, we will explore a comprehensive model that accounts for positive transac-

tion costs for both riskless and risky assets.

1.3.2 Optimal Portfolio When Bond and Equity are Subjected to Trans-

action Cost

In this section, we delve into the full problem that includes positive values of proportional

transaction costs for purchasing bonds and equity. As in the previous case, the transaction

cost is proportional to the size of the trade and is only incurred when the investor purchases

the asset. However, this time, the investor does not have a trivial sweep decision like in the

case of zero transaction cost of bond, where the investor always converts cash to the bond.

The presence of transaction cost of bond alters the investor’s sweep decision process and

influences their choice of asset.
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In this problem, the investor at time t chooses how much to buy/sell bond and equity

and also chooses how to reallocate the sweep account cash balance in the bond or the equity

account. As before, let Ut be the cumulative dollar value of bond purchase at time t, Lt be

the cumulative dollar value of equity purchase at time t, and χt be the fraction of the sweep

account at time t that the investor transfers from the sweep account into the equity account.

Problem 1.2. Consider an investor facing a proportional transaction cost of λs > 0 when

purchasing equity, and λb > 0 when purchasing bond. Then, the investor seeks to choose

χt, Ut, Lt for t ∈ [0,∞] in order to maximize the following problem:

v(x, y) = max
Lt,Ut,χt

E

∫ ∞

0

[
ηe−ηtW

1−γ
t

1− γ

]
dt (1.10)

Subject to:

dHb
t =

[
(r − c)Hb

t +
1

1 + λb
(1− χt)

(
cHb

t + qHs
t

)]
dt− (1 + λs)dLt + dUt

dHs
t =

[
(µ− q)Hs

t +
1

1 + λs
χt

(
cHb

t + qHs
t

)]
dt+ σHs

t dzt + dLt − (1 + λb)dUt

∀t Hb
t , H

s
t ≥ 0, x = Hb

0, y = Hs
0

Similar to Problem 1.1, the first constraint is the law of motion for the bond account. To

purchase dUt units of bonds, the investor must sell (1 + λb)dUt units of equity to cover

the transaction cost of purchasing the bond. The second constraint is the law of motion for

the equity account. To add dLt units of equity to the equity account, the investor must sell

(1 + λs)dLt units of bonds to cover the transaction cost of purchasing the equity.

In Problem 1.2 the cash proceeds from the equity account are given by qHs
t , while the

cash proceeds from the bond account are given by cHb
t . As a result, the cash balance that is
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held in the sweep account at time t is given by cHb
t + qHs

t . The investor must then decide

how to allocate this cash balance between the equity account and the bond account.

Specifically, the investor can allocate a fraction 0 ≤ χt ≤ 1 of the sweep account

balance to the equity account, incurring a transaction cost of λs in the process. The remain-

ing balance can then be allocated to the bond account, incurring a transaction cost of λb

proportional to the size of the transaction.

Proposition 1.3. Let λs, λb > 0, and assume there exists a solution to the Problem 1.2.

Under this specification,

(i) There exists a boundary, called the sell boundary at x0, such that if x ≤ x0, the

investor’s optimal strategy is to sell equity and buy bonds until the portfolio reaches

the sell boundary. The region in the allocation space to the left of the sell boundary

is called the sell region. The investor’s value function in the sell region is given by,

ψ(x) = 1
1−γ

A(x+ 1
1+λb )

1−γ , for a constant value of A.

(ii) There exists a boundary, called the buy boundary at xT , such that if x ≥ xT , the

investor’s optimal strategy is to buy equity and sell bonds until the portfolio reaches

the buy boundary. The region in the allocation space to the right of the buy boundary

is called the buy region. The investor’s value function in the buy region is given by,

ψ(x) = 1
1−γ

B(x+ 1 + λs)1−γ , for a constant value of B.

(iii) The region in between the sell boundary, x0, and the buy boundary, xT , is called

the no transaction region, where the investor would not trade. In this region there

exists a sweep boundary, xe, which x0 < xe < xT . In the region where x0 ≤ x ≤ xe

(NT0) the investor’s optimal strategy is to sweep the cash into the bond account. The

value function in this region is solved through the following free boundary differential
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equation,

β3x
2ψ′′

2(x) + (β2x+
q

1 + λb
)ψ′

2(x) + β1ψ2(x) +
η

1− γ
(x+ 1)1−γ = 0

Where, β1 = (µ−q− 1

2
σ2γ)(1−γ)−η, β2 = σ2γ+r− λb

1 + λb
c−µ+q, β3 =

1

2
σ2

(iv) In the region where xe ≤ x ≤ xT , (NT1), the investor’s optimal strategy is to sweep

the cash into the equity account. The value function in this region follows,

β3x
2ψ′′

1(x)+(β2x−
1

1 + λs
cx2)ψ′

1(x)+(β1+
1− γ

1 + λs
cx
)
ψ1(x)+

η

1− γ
(x+1)1−γ = 0

β1 =
(
−1

2
σ2γ+µ− λs

1 + λs
q
)
(1−γ)−η, β2 = σ2γ+r−c−µ+ λs

1 + λs
q, β3 =

1

2
σ2

(v) The following conditions hold at the boundaries:

ψ′
1(xT )

ψ1(xT )
=

1− γ

xT + 1 + λs
ψ′
2(x0)

ψ2(x0)
=

(1− γ)(1 + λb)

x0(1 + λb) + 1

ψ′′
1(xT )

ψ′
1(xT )

=
−γ

xT + 1 + λs
ψ′′
2(x0)

ψ′
2(x0)

=
−γ(1 + λb)

x0(1 + λb) + 1

ψ1(xe) = ψ2(xe) ψ′
1(xe) = ψ′

2(xe) ψ′′
1(xe) = ψ′′

2(xe)

Proof. See Appendix

Proposition 1.3 demonstrates that the optimal solution to Problem 1.2 is a unique buying

boundary of the equity, a unique selling boundary of the equity, and a unique boundary

for the sweep account. Similar to the previous case, the no-transaction region is a convex

cone, where the investor would not rebalance the portfolio in that area. However, the sweep

decision boundary for the investor, in this case, lies strictly inside the no-transaction region.
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As shown in Figure 1.7, there are two sub-regions in the no-transaction region. One

of the sub-regions is denoted by NT0, and the other line is denoted by NT1. In NT0, the

investor fully reinvests the cash balance in the sweep account into the bond account, and

in NT1, the investor fully reinvests the cash balance in the sweep account into the equity

account.

Holdings
in bond

Holdings
in stock

1 + λs

1

1
+
λ
b

1

S

NT0

NT1

B

Figure 1.7: Space of Bond and Stock with regions of trading, no-trading and sweep, λb > 0,
λs > 0.

The sweep boundary indicates that, in the area to the left of this boundary, the investor

would only purchase bonds with the cash balance in the sweep account, and in the region

to the right of the sweep boundary, the investor would reallocate the cash balance in the

sweep account into the equity account.

Proposition 1.4. Lets assume that η > (1 − γ)(r + (µ−r)2

2γσ2 ). The exact solution to
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the ordinary differential equation in Proposition 1.3 for the NT1 region is as followed,

ψ1(x) = C11Ψ11 + C12Ψ12(x) + ψ1p(x) where,

Ψ1i(x) = xkiΦ(ai, bi;
c

β3(1 + λs)
x)

ψ1p(x) = Ψ12(x)

∫ x

0

Ψ11(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)
−Ψ11(x)

∫ x

0

Ψ12(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)

W (x) = Ψ11(x)Ψ
′
12(x)−Ψ12(x)Ψ

′
11(x)

ki =
(β3 − β2) +

√
(β3 − β2)2 − 4β3β1
2β3

i = 1, 2

ai = ki − 1 + γ, bi =
β2
β3

+ 2ki

Φ(a, b; y) = 1 + Σ∞
j=1

(a)j
(b)j

yj

j!
where, (a)j = a(a+ 1)...(a+ j − 1), (a)0 = 1.

And the solution to the ordinary differential equation in Proposition 1.3 for the NT0 region

is as followed, ψ2(x) = C21Ψ21(x) + C22Ψ22(x) + ψ2p(x), where,

Ψ2i(x) = x−kiΦ(ai, bi;
q

(1 + λb)β3
x−1)

ψ2p(x) = Ψ22(x)

∫ x

0

Ψ21(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)
−Ψ21(x)

∫ x

0

Ψ22(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)

W (x) = Ψ21(x)Ψ
′
22(x)−Ψ22(x)Ψ

′
21(x)

ai = ki, bi = −β2
β3

+ 2ki + 2

Proof. See Appendix

Proposition 1.4 demonstrates that the exact solution to the ODE introduced in Proposi-
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tion 1.3 takes the form of Kummer’s Confluent Hypergeometric function. This proposition

indicates that the solution to the problem would be a unique set of boundaries denoted by

x0, xT , and xe, such that it is optimal not to trade when the portfolio value lies in the region

between x0 and xT . Additionally, it shows that it is optimal to reinvest the cash balance

from the sweep account into the bond account when the portfolio is in the region between

x0 and xe, and it is optimal to reinvest the cash balance from the sweep account into the

equity account when the portfolio is in the region between xe and xT .

Comparative Statics

In this section, we will be examining the results derived from Proposition 1.3. The first step

is to replicate the changes in the no-transaction region as the transaction costs of bonds and

equity are varied.

Figure 1.8: The effect of transaction cost of bond on trading and sweep boundaries, λb > 0,
λs > 0.
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Figure 1.8 depicts the changes in the boundaries with respect to variations in the trans-

action cost of bond while fixing transaction cost equity. In this section, the parameters are

µ = 0.12, σ = 0.4, γ = 0.45, r = 0.065, q = 0.01, η = 0.05, c = 0.02, λs = 0.01 unless it

is specified otherwise.

The buy boundary is increasing, which indicates that the investor’s demand for equity is

decreasing. This is because the investor is less inclined to sell their bond to purchase equity

since it would be more expensive to buy back their bond. The sell boundary is decreasing

as well, as the cost of bond purchases is increasing. That is because the investor would

want the price of equity to increase enough to cover the higher cost of bond purchase. The

straight line in the center is the Merton line.

The sweep boundary overlaps with the buy boundary when the transaction cost of bonds

is zero, as we learned in the first section. However, as the transaction cost of bonds in-

creases, the sweep boundary declines and creates two sub-regions within the NT region.

The first sub-region, labeled NT1, lies between the buy boundary and the sweep boundary,

where the investor invests the entire cash balance of the sweep account in the equity ac-

count. The second sub-region, labeled NT0, lies between the sell boundary and the sweep

boundary, where the investor invests the entire cash balance of the sweep account in the

bond account. The area of NT1 increases as the transaction cost for bonds increases, while

the area of NT0 decreases.

Figure 1.9 displays the changes in the boundaries as the transaction cost of bonds is

held constant at λb = 0.01, while the transaction cost of equity varies. Notably, the sweep

boundary starts at the sell boundary when the transaction cost of equity is zero and subse-

quently rises as the cost of purchasing equity escalates. This trend is attributed to investors

being more likely to allocate the cash balances of the sweep account to the bond account

when the cost of purchasing equity becomes high. Knowing the boundary variations with
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Figure 1.9: The effect of transaction cost of stock on trading and sweep boundaries, λb > 0,
λs > 0.

respect to changes in the transaction costs of assets, we can compare these graphs under

different asset characteristics.

Figure 1.10 depicts the boundaries under two different dividend payout policies as the

transaction cost of bonds increases. The solid lines indicate the buy, sell, and sweep bound-

aries for a dividend payout policy of 0.01, while the dashed lines represent the correspond-

ing boundaries for a dividend payout policy of 0.1.

From this graph, we can observe that at lower levels of bond transaction costs, the

demand for equity increases as the equity pays more dividends. A similar case was previ-

ously demonstrated the section when the transaction cost of bonds was zero. However, as

the transaction cost of bonds increases, the buy boundary for the higher dividend payout

case intersects with the buy boundary under the low dividend payout case at some level of

34



Figure 1.10: The effect of transaction cost of bond and dividend yield on trading and sweep
boundaries, λb > 0, λs > 0.

the bond transaction cost. This implies that if the bond transaction cost is relatively high

compared to the equity transaction cost, the demand for equity would decrease after an

increase in the equity payout.

At lower levels of bond transaction cost, investors sweep cash into bonds at low cost

and prefer to reinvest the cash in the equity account as the equity balance is declining due to

the high dividend level. This results in higher demand for equity. Once the transaction cost

of bonds surpasses a certain threshold, investors reduce their demand for both equity and

bonds as the dividend payout increases. At higher levels of bond transaction cost, investors

face high costs for sweeping cash into the bond account, which increases the likelihood of

transferring cash distribution into the equity account. In this case, the demand for equity
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would decrease for two reasons.

First, dividends are more likely to be reinvested in the equity account, resulting in a

lower need for purchasing more equity. Second, since the bond is more expensive, investors

hesitate to sell bonds and buy equity in return because they will have to pay high transaction

costs on that trade when they want to sell that equity in the future to buy bonds. To sum up,

the effect of the dividend payout ratio on demand for equity is ambiguous and depends on

the relative magnitude of the transaction cost of equity and bonds.

Figure 1.11 shows how a coupon bond affects asset demand under two scenarios: a low

coupon rate of 0.02 and a high rate of 0.06, with λb = 0.01. When equity transaction costs

are very low, investors demand more bonds to replace depleted bond balances due to high

coupon rates. But as equity transaction costs rise, investors demand fewer bonds due to

decreased likelihood of transferring cash to equity.

Figure 1.11: The effect of transaction cost of stock and coupon rate on trading and sweep
boundaries, λb > 0, λs > 0.
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Figure 1.12 shows the impact of investor horizon on asset demand. This figure shows

the position of boundaries under a high investment horizon, η = 0.05 and a low investment

horizon, η = 0.5, when transaction cost for equity, λs, is 0.01.

Figure 1.12: The effect of transaction cost of bond and investor’s horizon on trading and
sweep boundaries, λb > 0, λs > 0.

This figure shows that when the transaction cost of bond is low relative to equity in-

vestors demand the riskless asset more and demand the risky asset. This is consistent with

the literature. However, the controversial effect of investment horizon happens when the

transaction cost of equity gets elevated. Demand for bonds decreases and the demand for

equity actually increases under very high transaction costs for bonds.
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1.4 Conclusion

This paper explores the optimal allocation of cash precedes received from a portfolio of

dividend-paying equity and coupon bonds in the presence of proportional transaction cost.

Merton (1971) showed that the optimal allocation of non-dividend paying bonds and equi-

ties in the absence of transaction cost is a constant allocation in which investors continu-

ously trade assets to maintain the optimal allocation.

Davis and Norman (1990) showed that when investors face proportional transaction

cost and non-dividend-paying assets, the investors would not rebalance their portfolio in

a convex cone region in the allocation space around the Merton line. In this paper, we

argue that when investors are investing in dividend-paying stocks the optimal decision of

reinvesting the cash proceeds is determined by a boundary which is called Sweep boundary.

This paper illustrates that the No Transaction region when the assets pay higher dividends

shifts downward such that the buy boundary and the sell boundary decrease.

Additionally, this paper displays the impact of the investment horizon and illustrates

that when the investors’ investment horizon becomes shorter, they delay the portfolio re-

balancing by lowering their demand for the illiquid asset and they increase the pace at

which they purchase the more liquid asset. Furthermore, we show the impact of asset cash

payout and investors’ horizon on the liquidity premium. We argue that when the investor’s

investment horizon shortens they would decrease their demand to decrease their expendi-

ture on transaction costs. The investors’ lower expenditure on transaction costs translates

to lower liquidity premia in equilibrium.

We also show that when assets increase their cash distributions in terms of dividends

or coupons, investors would increase their demand for these assets and the increased de-

mand for the asset means that the investors’ expenses on transaction cost would increases
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therefore the liquidity premia would rise as a result.

This paper extends the literature on optimal portfolios with transaction cost by including

cash payments from the assets. This extension sheds light on the impact of dividends

and coupons on the portfolio optimization decision and subsequently demand and liquidity

premia for the assets with transaction cost.
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Chapter 2

Optimal Intermediary Contracts

Abstract

Financial intermediaries simultaneously engage in two key relationships: they accept de-

posits and extend loans. In this paper, we develop a theoretical framework in which deposit

contracts and loan contracts are determined simultaneously in equilibrium. Loan terms

consist of the interest rate, the loan amount, and the collateral value required by banks

when borrowers cannot commit to repayment. Across various trading protocols, we inves-

tigate how changes in borrower commitment affect the terms of the intermediary contract.

The primary contribution of our model is that loan interest rates can decrease (resulting

in declining spreads), and loan sizes can increase when borrower commitment declines.

We also provide evidence of bank loan terms responding in accordance with the model’s

predictions following the enactment of the Bankruptcy Abuse Prevention and Consumer

Protection Act of 2005 (BAPCPA). Our findings reveal that BAPCPA, which heightens the

commitment level among borrowers, leads to an increase in interest rates and a reduction

in loan sizes for a specific subset of borrowers within the U.S. economy.
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2.1 Introduction

Financial intermediaries simultaneously engage in two core relationships: accepting de-

posits and extending loans. These two relationships are intricately linked, as they directly

impact the bank’s balance sheet.1

Reserchers have traditionally concentrated on either deposit contracts or loan contracts.

On the deposit side, a substantial body of work has evolved since Diamond and Dybvig’s

seminal 1983 study, which introduced the concept of deposit contracts partially insuring

against consumption risk.2 On the loan side, researchers have examined optimal loan con-

tracts with varying information frictions. 3

In this paper, we explore the interplay between deposit contracts, addressing idiosyn-

cratic liquidity needs, and loan contracts, subject to repayment risk. While the existing

banking literature primarily models the relationship between a bank’s assets and liabili-

ties, we contribute to the field by introducing a depository institution that offers welfare-

improving risk-sharing opportunities to depositors. Our approach delves into the dynamics

of optimal contracts offered by this bank when borrowers cannot commit to loan repayment,

and depositors seek risk-sharing arrangements. In essence, we investigate how changes in

loan contract terms impact the risk-sharing options available to depositors.

Deposit contracts in our framework are constructed following the Diamond-Dybvig

model, incorporating idiosyncratic liquidity shocks. The bank has the capability to allocate

1We will discuss in greater detail below. The literature goes back to Bernanke, Bernanke et al. (1998) and
their study with costly state verification. Financial frictions take on a variety of forms, including withdrawal
shocks. In general, frictions illuminate the role that maturity transformation has on bank’s balance sheets.

2See, for example, papers by Bryant (1980), Jacklin (1987), Bhattacharya and Fulghieri (1987), Hellwig
(1994), Diamond (1997), Holmström and Tirole (1998), Von Thadden (1999), Allen and Gale (2003),Franklin
and Douglas (2004), Caballero and Krishnamurthy (2004), Farhi et al. (2009).

3See, for example work by Hester (1979), Williamson (1987), Besanko and Thakor (1987), Bernanke
et al. (1998), Berger and Udell (1990)Berger and Udell (1995), and Dowd (1992), Klapper (1999), and John
et al. (2003)for a summary of the literature on collateral in loan contracts.
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deposits across different technologies that vary in maturity, return, and risk. This includes

both short-term and long-term safe technologies, as well as loans where the borrower’s re-

turns exceed those of the safe technologies. It’s worth noting that borrowers lack the ability

to commit to repayment, necessitating self-enforcing loan contracts. The key components

of the loan contract consist of the interest rate, loan amount, and collateral requirements.

Changes in a borrower’s commitment capacity have a ripple effect, influencing the

terms of the loan contract, and consequently, the deposit contract. Furthermore, there ex-

ists an extensive margin that involves a delicate balance between the trade-off of repayment

risk and the returns generated from safe investments. Consequently, when borrower’s com-

mitment deteriorate, the risk of repayment can become substantial, prompting the bank to

diversify its asset portfolio.

Our primary experiment aims to investigate how changes in a borrower’s commitment

level impact the interplay between deposit contracts and loan contracts. In this paper,

commitment is assessed through the borrower’s ability to divert investments away from

loan repayment for their own benefit, as outlined in works such as Biais et al. (2007) or

DeMarzo and Fishman (2007). It serves as a summary metric encompassing a range of

factors. For example, this parameter can signifies the impact of strict bankruptcy laws in

deterring moral hazards through regulatory rules. Alternatively, we can view it as a measure

of how much collateral is required. In this context, commitment is linked to the extent to

which a borrower’s collateral can be pledged, as seen in Kiyotaki and Moore (1997). A

borrower’s capacity to pledge a larger fraction implies greater commitment level compared

to a borrower pledging a smaller fraction.4 Here, we concentrate on the connection between

4In models in which an existing security is pledged as collateral in say, a repurchase agreement, then the
association between pledgeability and haircuts are yet another link. Because we focus on direct lending, we
do not really have a model that speaks to haircuts. By modifying the model to consider a secondary market
for the loan, then the issue of the equilibrium haircut would be natural.
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the borrower’s commitment level and the terms offered by creditors to the borrower.

We examine the optimal contracts within competitive and over-the-counter (OTC) like

loan market structures, including bilateral bargaining and competitive search. In each mar-

ket structure, the equilibrium loan contract falls into one of three regions, contingent on

the borrower’s commitment level. In economies featuring highly committed borrowers, the

repayment constraint is not binding, resulting in unconstrained efficiency. As commitment

levels decline, the repayment constraint becomes binding, prompting banks to adjust loan

terms, such as collateral requirements, loan size, and loan rates, while still directing all

long-term resources towards loans. Finally, there exists a critical threshold of commitment

level below which banks allocate some of their resources to the lower-return, direct invest-

ment. These critical values that delineate the three regions are consistent across various

market structures.

A surprising finding emerges as the terms of the loan contract do not consistently

change with variations in commitment level across the three regions. In other words, the

comparative statics results vary with shifts in borrower’s commitment level. Additionally,

this relationship is influenced by changes in market structure and parameter values. With

multiple components of the loan contract affecting borrower repayment at different lev-

els, these interactions become intricate. This complexity becomes particularly apparent in

scenarios where the bank and borrower engage in Nash bargaining, illustrating that both

loan rates and collateral requirements can exhibit non-monotonic behavior in response to

changes in borrower’s commitment capacity.

The non-monotonicity presents three significant implications. Firstly, our results reveal

that the relationship between collateral and commitment is state-dependent. When bor-

rowers pledge a smaller fraction of their loans, the need for greater collateral diminishes

because other loan terms can effectively incentivize borrowers to repay. Secondly, our find-
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ings challenge conventional wisdom, particularly concerning whether rising spreads and

decreasing loan quantities uniformly signal deteriorating commitment intensity or credit

quality. Lastly, the connection between risk-sharing and commitment remains ambigu-

ous. Under Nash bargaining, risk-sharing demonstrates an inverse relationship with com-

mitment in certain regions, leading to increased payments for impatient consumers and

decreased returns for patient consumers.

Additionaly, considering competitive search allows us to explore several critical issues.

First, we examine the impact of entry costs on financial inclusion. A lower entry cost borne

by borrowers leads to improved financial inclusion, but it results in less favorable loan

terms for borrowers. Second, we analyze the consequences of an unforeseen reduction in

the returns on borrowers’ projects for financial stability. In regions where the repayment

constraint becomes binding, borrowers default due to the shock, potentially triggering a

bank run if the bank lacks alternative revenue sources. However, the occurrence of a bank

run may be mitigated if the bank has invested sufficiently in safe technologies. The key

takeaway is that the likelihood of a bank run decreases as the bank diversifies its portfolio,

particularly when borrowers are less reliable.

Regarding the impact of commitment on deposit contracts, we observe the following

result. Suppose borrower’s commitment intensity deteriorates. In a competitive loan mar-

ket, as loan demand tightens, the loan rate decreases, subsequently reducing both long-term

and short-term deposit rates. In an OTC market using Nash bargaining, the bank internal-

izes the effect of diminished long-term resources, influencing rates, loan size, and collateral

size. Consequently, the long-term deposit rate declines. However, the short-term deposit

rate can rise, partially compensating depositors in terms of their ex-ante expected utility.

This might give the impression of improved risk-sharing in bilaterally negotiated contracts.

Nonetheless, the reduced spread between long- and short-term rates doesn’t necessarily
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indicate welfare improvements; in reality, the commitment level worsens.

Furthermore, we also present empirical evidence of the impact of borrowers’ com-

mitment levels on loan terms in the United States. Specifically, we demonstrate that an

improvement in commitment levels has led to certain creditors raising interest rates and

reducing credit amounts for some debtors.

Our analysis capitalizes on a significant external shock to borrowers’ commitment ca-

pacity in the United States, specifically the enactment of the Bankruptcy Abuse Prevention

and Consumer Protection Act of 2005 (BAPCPA). This legislation, passed by the House

on April 14, 2005, and signed into law by the U.S. President on April 20, 2005, introduced

stricter bankruptcy regulations. It rendered cases filed on or after October 17, 2005, subject

to more stringent rules, making it notably more challenging for both consumers and busi-

nesses to file for Chapter 7 bankruptcy. Instead, it encouraged them to opt for Chapter 13,

a process that became more time-consuming and financially burdensome for those seeking

bankruptcy protection.

Under Chapter 7 bankruptcy, most of the debtor’s debts are discharged, while Chapter

13 mandates that the debtor repays a larger portion of the debt to the creditor through a

restructured payment plan. This change in bankruptcy law had significant implications for

borrowers’ commitment levels, subsequently affecting the terms of their loan agreements.

As our model illustrates, this change in bankruptcy law which lead to an enhancement of

the borrower’s commitment, effectively shifted bargaining power from debtors to creditors.

Our findings reveal that the BAPCPA legislation, aimed at reforming bankruptcy laws,

led to an increase in interest rates for some U.S. borrowers who were seeking loans with ma-

turities exceeding 55 months. On average, the interest rates on their loans surged by more

than 52 basis points, resulting in higher borrowing costs for these borrowers. Furthermore,

the legislation’s impact extended to the size of loans granted, which saw a noteworthy re-
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duction. On average, loan sizes decreased by a substantial $216 million. We also show

that the increase in interest rates is more significant among the subset of the borrowers with

lower S&P Quality Ranking. As described in our model, the option to abscond becomes a

bargaining tool for borrowers as they try to secure better loan terms from creditors. This

bargaining power becomes even more critical when borrowers are looking for loans with

longer maturities or have weaker credit profiles, as the risk of default rises with extended

loan duration, Leland and Toft (1996). As a result, borrowers who choose longer-maturity

loans are particularly affected by the consequences of this new legislation.

In practical terms, this effect translates into higher interest rates being charged to these

borrowers, and this, in turn, results in an increased cost of loans. As a consequence, the

demand for loans among these borrowers has declined, ultimately leading to a reduction in

the equilibrium loan sizes for this group.

Finally, in this paper, we utilize our model to investigate the impact of restricting inter-

mediaries to storage and lending activities. This particular inquiry pertains to the ongoing

debate on universal banking, particularly in relation to the Glass-Steagall Act.

Our findings in this simplified model indicate that regulations akin to Glass-Steagall

would primarily benefit borrowers but potentially come at the cost of depositors. If banks

were constrained in their investment options, they would likely extend more credit to bor-

rowers at lower interest rates. This, in turn, would increase the loan amounts on the banks’

balance sheets but may also expose banks to shocks in the return on borrowers’ invest-

ments. These findings may contrast with the main argument of Glass-Steagall supporters,

who believe that limiting banks’ direct investment activities would enhance financial sta-

bility.
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2.2 Related literature

Our main contribution lies in the explicit link between deposit contracts and loan contracts.

On the theoretical front, our paper lies at the intersection of the literature on deposit market

and the works on optimal loan contracts. Antinolfi and Prasad (2008) study the deposit

contract in a Diamond-Dybvig economy with depsitors-formed banks of limited commit-

ment. Individual depositors are constrained in the selling of long-term assets because they

may renege on the delivery of asset. Banks can allocate resources more effectively than

individuals by pooling collateral capacity. The debt-incentive constraint does not bind for

the bank, but would bind for individuals.

There is large literature that examines how a bank’s deposit and asset structure are

affected by various risks. Van den Heuvel (2008), for example, creates a need for a bank

by specifying a deposit-in-the utility function. Given these deposits, deposit insurance

creates moral hazard problem by encouraging banks to choose risky investment. The capital

requirement is the means by which regulators force the bank to have “skin in the game”

to mitigate the moral hazard problem. On the other hand, capital requirement limits the

bank’s capacity to accept deposits. Therefore, the welfare costs of capital requirement is

the focus of the paper.

More recently, Piazzesi and Schneider (2021) specify deposits-in-advance to explain

why banks are useful. These banks are subject to uncertain payment flows. In particular,

each bank faces an idiosyncratic deposit-flow shock; effectively, one can consider their

setup as a net negative payment shock realized in one bank is offset by net positive payment

shocks to all other banks. This setup accounts for why an interbank market is useful; that

is, a bank can obtain the necessary reserves when suffering large enough negative payment

shocks. Hence, reserves act as a form of collateral backing bank deposits.
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Bianchi and Bigio (2022) focus on monetary policy transmitted through banks also

subject to withdrawal shocks. Macroeconomic outcomes depend on how monetary policy

is implemented through two independent tools: interest rates on reserves and the central

bank’s balance sheet.5 Our point is that this literature specifies bank deposits as satisfying

a basic notion of maturity transformation and risk. Our goal is to incorporate risk sharing

into the analysis.

On the empirical side, our results bear on how theory overlaps with applications in two

ways. First, the literature has provided a basis for interpreting movements in interest rates

and loan quantities as indicators of changing commitment levels. For example, Boot and

Thakor (1991) develop a model predicting that the interest-rate spread between risky and

risk-free debt is monotonically declining in the value of collateral.

To illustrate its empirical implementation, note that the Federal Reserve Bank of Chicago

uses a multi-factor model to compute the National Financial Conditions Index (NCFI).6

From the list of 105 indicators, we count 30 different interest rate spreads used to con-

struct the NCFI. There are also 28 variables that measure quantities or ratios. The NFCI

tends to put negative weights on yield spreads while the index tends to put positive weights

on quantities. Our results suggest that the relationship between commitment and these

indicators–collateral value, loan rates and loan size–are non-monotone, varying with the

market structure. Our results raise questions that there is an unconditional statistical rela-

tionship between rates and commitment.7

Second, the literature commonly uses collateral intensity as an indicator of credit con-

5Bigio and Bianchi structure is an extension on the interbank market studied in Afonso and Lagos (2015).
6See Brave and Kelley (2017) for a complete description.
7There is an extensive literature on the role of collateral in the optimal loan contracts. For example, are

secured loans are riskier? See, for example, Hester (1979), Berger and Udell (1990), Berger and Udell (1995)
and Klapper (1999) provide empirical support for the hypothesis that less creditworthy borrowers tend to be
required to post collateral. John et al. (2003) provide additional empirical evidence supporting a negative
relationship between collateral and loan rates.
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dition. For example, Benmelech and Bergman (2009) use collateral redeployability as a

proxy for the intensity of collateral pledged, and present evidence that there is a negative

impact of collateral values on loan rates and size. Our model economy reports changes in

collateral and loan rates as both endogenous responses to change in commitment levels.

More generally, our model economy links risk sharing in the deposit market with limited

commitment in the loan market, which allows us to gain additional insight into the nature

of the correlations between the two markets.

There is a literature that has studied how pledgeability affects loan contracts following

Kiyotaki and Moore (1997). Capital production can be nonmonotone in pledgeability due

to two opposing effects: more capital reduces its marginal product making it less attractive.

Whereas the additional production allows for more borrowing. In related monetary models,

pledged capital is used as liquidity (see Lagos and Rocheteau (2008), and Venkateswaran

and Wright (2013), among others). Gu et al. (2022) shows as pledgeability increases, capi-

tal production first increases owing to the high marginal utility of liquidity. As pledgeability

increases further, capital production falls as liquidity becomes less scarce, and eventually

stays constant as the marginal utility flattens. Our paper also features multiple roles of cap-

ital but allows for more general preferences. We show that the nonmonotone patterns are

more intricate and they depend on the preference of the borrowers and other parameters.

The rest of the paper is organized as follows: Section 2.3 demonstrates the data and

presents empirical evidence. In Section 2.4, we introduce the model environment. Section

2.5 focuses on solving the equilibrium in the competitive loan market. Section 2.6 explores

Nash bargaining. Section 2.7 discusses competitive search. In Section 2.8, we study the im-

plications of the Glass-Steagall Act and universal banking on intermediary contract terms.

Finally, Section 2.9 provides the conclusion.
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2.3 Data and Empirical Evidence

In this section, we provide an overview of our dataset and present our empirical findings.

Loan data is obtained from the LPC’s Dealscan repository. This dataset encompasses pri-

vately issued loans, originating from both traditional banks, and spans the period from 2004

to 2006. According to Carey and Hrycay (1999), the Dealscan database encapsulates a sig-

nificant portion, estimated at 50% to 75%, of the total value of commercial loans within the

United States during the early 1990s. Additionally, we acquire credit ratings for borrow-

ing firms from the Compustat-CapitalIQ dataset and integrate these two datasets using the

methodology developed by Chava and Roberts (2008).

Our primary focus centers on loans issued to non-government U.S. borrowers within

the 60-day window before and after the signing of the Bankruptcy Abuse Prevention and

Consumer Protection Act by the US president which occurred on April 20, 2005.

It’s important to highlight that there was a grace period of about six months between

the law’s enactment and its enforcement. This time gap gives rise to a scenario in which

loans issued after the law’s enactment but before its enforcement could belong to either

the ’treated’ or ’not treated’ category. Let’s take the case of a loan issued on April 21,

2005. If the borrower of this loan filed for bankruptcy prior to October 17, 2005, they

would remain unaffected by the law’s changes. However, if the legal process occurred

after the enforcement date, they would become subject to the new bankruptcy regulations.

Therefore, loans that were originated in this period could be impacted by the law to a lesser

degree than the loans that are originated after the law’s implementation date.

To address this concern, we limit our analysis to loans with a maturity of 55 months

or more. In doing so, we assume that the likelihood of bankruptcy within six months of

the grace period between the law’s passage date and its implementation date is minimal
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for borrowers who are granted long-term loans. In essence, we are supposing that lenders

issuing these longer-term loans after the law was signed would consider the new bankruptcy

laws, even though the law was not enforced at the time of origination.

Moreover, we exclusively concentrate on loans linked to the London Inter-Bank Offered

Rate (LIBOR). LIBOR is the most prevalent reference rate in our dataset, and we make

this selection to shield our analysis from the fluctuations of other reference rates that may

influence loan terms. In Figure 2.1, we observe the relative stability of the LIBOR rate

throughout the data period, in contrast to the prime rate, another widely employed reference

rate, which displays greater variability. Between 2004 and 2006, the U.S. Federal Reserve

initiated a series of interest rate hikes in response to inflation and rising energy costs. This

difference between the LIBOR and the prime rate can be attributed to the Federal Reserve’s

policy during that period.

Figure 2.1: 3-month LIBOR and bank prime rate between 2004 and 2006.
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2.3.1 Results

Utilizing Regression Discontinuity Design in Time (RDDiT), we run the following regres-

sions to evaluate the impact of the new bankruptcy law on interest rates and loan size for

our borrowers of interest. In our analysis, we employ two distinct models to evaluate the

policy’s impact. In the first model, we assess the policy’s effects through the following

regression:

yit = β0 + β1 ∗ time_dummyt + β3 ∗ thresholdt + β4 ∗ time_dummyt ∗ thresholdt + ϵit

Which measures the average instantaneous change in the variable yit after the law’s enact-

ment across all loans in that period. In the second model, we run the following regression:

yit = β0 + β1 ∗ time_dummyt + β3 ∗ thresholdt + β4 ∗ time_dummyt ∗ thresholdt +

β5spcsrc.Bi,t + β6spcsrc.Ci,t + β7spcsrc.Bi,t ∗ thresholdt + β8spcsrc.Ci,t ∗ thresholdt + ϵit

This model assesses the same variable while accounting for heterogeneity across bor-

rowers with different qualities. First, our analysis focuses on the policy’s influence on loan

interest rates. In this context , we define "yi,t = Margin_bps" as the metric that quantifies

the additional spread above LIBOR for a given loan at a specific time, measured in basis

points.

To incorporate the temporal aspect, we employ the "time_dummy" variable. It starts at

zero on the reference date of ’2005-04-20’ and increases by one unit for each subsequent

day, decreasing by one unit for each preceding day. For example, the "time_dummy" for

’2005-04-01’ registers as -19. Simultaneously, the "threshold" functions as a binary vari-

able, assuming a value of 1 if the observation’s date falls after the reference date and 0 if it

occurs before.
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In our second regression model, we introduce the variable "spcsrc," representing the

S&P Quality Ranking for the borrower. This ranking assesses a company’s historical fi-

nancial performance, taking into account earnings, dividends, and its position concerning

the firm’s current fiscal year-end. The rankings range from "A+," signifying the highest

rank, to "C," representing the lowest rank. To address potential correlations in loan interest

rate residuals within the borrower group, we implement error clustering in both models,

enhancing the robustness of our analysis.

Table 2.1: The impact of BAPCPA on loan interest rate.

Model Model 1 Model 2

Intercept 224.46 (22.43) 300.20 (68.66)
Time Dummy −0.99 (0.77) 0.995 (1.42)
Threshold 52.45∗ (31.77) -116.44 (73.11)
Time Dummy × Threshold −0.33 (1.00) −1.20 (1.28)
spcsrc.B × Threshold - 119.43∗∗ (57.11)
spcsrc.C × Threshold - 145.86∗∗∗ (51.56)
No Observation 4321 1793

The left value is the coefficient, the right value in parentheses is the standard error, and
standard errors are clustered by borrower. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively.

In Table 2.1, Model 1, we pay particular attention to β3, the coefficient of Threshold.

This coefficient reveals an average increase of 52 basis points in the interest rate following

the policy’s enactment, applying universally across all credit rating categories.

In Model 2, β3 shows the policy’s impact on interest rates for loans obtained by borrow-

ers with an S&P Quality Ranking of "A" (highest ranking) at the time of origination. Table

2.1 illustrates that interest rates for borrowers with the highest ranking have decreased by
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116 basis points. Moreover, "β3+β7" characterizes the policy’s effect on loans acquired by

borrowers with an an S&P Quality Ranking of "B" (below-average), and ”β3 + β8” shows

the policy’s influence on loans for borrowers who held a ranking of "C" (lowest ranking) at

the time of loan origination. Table 2.1 demonstrates that the interest rate for borrowers with

below-average ranking has increased by 3 basis points, and the interest rate for borrowers

with the lowest ranking has increased by approximately 30 basis points.

These findings underscore the policy’s significantly stronger impact on borrowers with

lower rankings. Lax bankruptcy protection laws often offer advantages to borrowers in

the lower ranking spectrum or those who demand loans with longer maturities. Our re-

sults reveal that these borrowers are disproportionately affected by the stricter regulations,

resulting in a reduction in their bargaining power within this context.

Additionally, we have included a figure to emphasize the persistent effect of the policy

on interest rates. This figure illustrates the 10-day average interest rates both before and

after the policy implementation. We have categorized the data into short-term loans, which

are loans with a maturity of 12 months or less, and long-term loans, which have maturities

of 55 months or more. It’s worth noting that, in our dataset, the maximum maturity is 240

months.

In Figure 2.2, we observe that the policy has effectively stabilized the decreasing in-

terest rate trend for loans with maturities greater than 55 months. However, the trend for

shorter-maturity loans remains largely unaffected. This visual description clearly highlights

the policy’s varying impact on loans with different maturities.

In our model, we assume that borrowers all have similar preferences for loan maturity.

Therefore, offering a detailed analytical explanation for this phenomenon is beyond the

current scope of our model, and we defer it for future research.8

8One possible reason for this diverse behavior could be related to the concept of a ’preferred habitat,’
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Figure 2.2: Difference in the persistent impact of the BAPCPA on the loan interest rate
based on loan maturity.

Next, we examine the size of the loan that is extended to our set of borrowers. We

define "yit = Tranche_Amount" which is the size of the loan offer at the origination date

measured in millions of dollars.

In Table 2.2, Model 1 indicates an average decrease of $216 million in loan sizes fol-

lowing the enactment of BAPCPA, spanning all credit rating categories. Model 2 highlights

that the loan size for borrowers with the highest "A" ranking has increased by $537 million.

as discussed by Culbertson (1957) and popularized by Modigliani and Sutch (1966), which is also widely
recognized in practical applications. According to this perspective, there are groups of investors who have
preferences for specific loan maturities. The interest rate for a particular maturity is influenced by demand
and supply shocks specific to that maturity.
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Table 2.2: The impact of BAPCPA on loan size.

Model Model 1 Model 2

Intercept 396.30 (127.54) -241.65 (390.49)
Time Dummy -0.73 (5.61) -7.46 (8.41)
Threshold −216.91∗ (131.64) 537.68 (399.40)
Time Dummy × Threshold 4.11 (5.74) −1.20 (1.28)
spcsrc.B− × Threshold - −335.73∗∗ (188.23)
spcsrc.C × Threshold - −573.46∗∗∗ (240.94)
No Observation 4321 1793

The left value is the coefficient, the right value in parentheses is the standard error, and
standard errors are clustered by borrower. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively.

Furthermore, the loan size for borrowers with a lower "B-" ranking has increased by around

$200 million, while the loan size for borrowers with the lowest "C" ranking has decreased

by approximately $36 million.

As demonstrated in Table 2.1, the policy’s effect is notably seen in increased borrowing

costs for those with lower rankings. The elevated cost of credit leads to reduced demand

from these borrowers, consequently causing a decrease in the equilibrium loan sizes for

this specific group, as depicted in Table 2.2.

2.3.2 Policy Discussion

The BAPCPA law had a primary goal of preventing the misuse of bankruptcy regulations.

It’s important to note that although the banking lobby pushed for this law, its proponents

argued that it would benefit consumers and small businesses. They believed the benefits

of this law would pass to the borrowers by reducing credit costs and potentially increasing

credit availability. For instance, when President Bush signed the law, he explained that it
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would lead to "credit being extended to more people at better rates"9 (Bush, 2005).

However, this paper reveals that this argument is not entirely accurate, and the law

doesn’t uniformly benefit all types of debtors. Our model suggests that specific borrowers,

influenced by a combination of commitment, creditworthiness, and other factors, may face

higher credit costs and reduced access to credit due to the stricter bankruptcy regulations.

As we will explain in the model, borrowers effectively utilize their ability to abscond

as leverage to gain advantages over creditors. For example, our model demonstrates that

borrowers with high commitment capacity are fully exploited by the borrower. It’s impor-

tant to note that in this paper, our measure of commitment aligns more closely with the

legal bankruptcy powers granted to borrowers, rather than being solely about credit. This

is because we assume that, in the model, borrowers cannot manipulate their commitment

level to maximize their own utility. In our model, commitment is considered an exogenous

characteristic bestowed upon the borrower.

In summary, while this paper refrains from taking a specific stance on the welfare im-

plications of the BAPCPA law, we assert that the law did not achieve the intended results

for all consumers and businesses. Instead, we illustrate that a specific subset of debtors

ends up bearing the burden of the stricter bankruptcy regulations.

2.4 The Model

The model environment is based on Diamond-Dybvig. There are three time periods in-

dexed by t = 0, 1, 2. Two types of agents live for three periods; there is a measure one of

depositors and a measure n of borrowers. At date t = 0, all depositors are alike and all

9Press Release, George W. Bush, President Signs Bankruptcy Abuse Prevention, Consumer Protection
Act (April 20, 2005).
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borrowers are alike.

Each depositor is endowed with one unit of capital in t = 0 and nothing in t = 1, 2.

Depositors have the access to a long-term investment technology that turns 1 unit of capital

at t = 0 into R > 1 units of consumption good at t = 2 or 1 unit of consumption good at

t = 1. There is also a storage technology transforming capital into the consumption good at

a one-for-one rate in either period. At date t = 1, each depositor receives an idiosyncratic

preference shock. With probability λ, the depositor is impatient, meaning he derives utility

exclusively from consuming in t = 1. With probability 1 − λ, the depositor is patient,

meaning he values consumption in t = 2.

Let u(x1) and u(x2) denote the utility function of the impatient and patient depositors,

respectively, where xt is the consumption in period t, u′ > 0 > u′′ and u(0) = 0. The

coefficient of relative risk aversion (CRRA), −xu′′(x)/u′(x), is greater than 1 for x ≥ 1.

Whether a depositor is patient or impatient is his private information.10 By the law of large

numbers, λ is also the fraction of depositors in the population who are impatient.

Borrowers can access a technology that turns one unit of capital at t = 0 into R̄ > R

units of consumption good at t = 2 or one unit of consumption good at t = 1. They are

not endowed with capital. However, they can produce capital by incurring a utility cost at

t = 0. Let c(k) be the cost function of producing k units of capital, where c′, c′′ > 0 and

c′(0) = c(0) = 0. Borrowers consume xB units of consumption good at t = 2 with utility

function v(xB), where v′ > 0 > v′′ and v(0) = 0.

Following the literature, depositors have the incentive to form a coalition that acts like

a bank by providing themselves with a deposit contract to insure against the consumption

shock. Because R̄ > R, the bank would lend all their capital to the borrowers. However,

10The private information feature of the model is not important for our analysis since we do not focus on
bank runs. It only matters in Section 2.7.2.
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the borrowers cannot commit to repayment. When a borrower receives a loan, he can

liquidate the investment at t = 1, abscond with χ fraction of it, transform capital into the

consumption good at a one-for-one rate, and store it to consume at t = 2. For simplicity,

assume when the borrower absconds with the investment, the remaining 1 − χ fraction of

it is lost, which captures the loss from diverting investment. To reduce the severity of the

commitment problem, the borrower can pledge his own capital as collateral. So when the

borrower absconds with the investment, he loses a fraction of the collateral. For simplicity,

let this fraction be 1− χ as well.

In this environment, banks and borrowers can work together to economize on the in-

vestment and exploit the higher-return technology. We show that the gains from trade are

determined and are divided, depending on the market structure. To develop intuition, we

first study a competitive loan market where the banks and borrowers take the loan rate as

given and choose the loan size. We then consider bilateral trade where the terms of trade

are determined according to Nash bargaining. Lastly, we consider competitive search so

the trade surplus is divided according to the market tightness.

To set up the benchmark for comparison, we first calculate the autarky payoff of the

banks and the borrowers. Let borrowers solve:

ŴB = max
k

[
−c(k) + v

(
R̄k

)]
The first-order condition is c′(k) = R̄v′

(
R̄k

)
. Let the solution for capital be represented

by k̂. Borrowers consume x̂B = R̄k̂.

As a coalition of depositors, the bank seeks to maximize the expected welfare of its
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depositors. Let the bank solve

ŴD = max
x1,x2

[λu(x1) + (1− λ)u(x2)] (2.1)

st (1− λx1)R = (1− λ)x2 (2.2)

x2 ≥ x1 (2.3)

where (2.2) is the resource constraint and (2.3) is the incentive constraint so that patient

depositors withdraw at t = 2. The bank liquidates λx1 from its investment at t = 1

to pay the impatient depositors and leaves the rest until t = 2 with return R to pay the

patient ones. As standard, the solution to (2.1), denoted by (x̂1, x̂2) satisfies the first-order

condition u′(x1) = Ru′(x2) and (2.2). At (x̂1, x̂2), (2.3) does not bind.

2.5 Competitive loan market

In a competitive loan market, a borrower takes the market rate as given subject to pledg-

ing enough capital as collateral to satisfy the repayment constraint. By not reneging, the

borrower consumes

xB =
(
R̄− r

)
ℓ+ R̄k, (2.4)

where r is the loan rate and ℓ is the loan size. The consumption comes from two sources:

he borrows ℓ from the bank, invests it, gets return R̄ and pays r; in addition, his own capital

yields R̄. Conversely, by reneging, the borrower gets χ fraction of the total investment.

Formally, the repayment constraint is represented as

xB ≥ χ(ℓ+ k). (2.5)
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A borrower chooses loan quantity and collateral solving the following problem.11

max
k,ℓ

[−c(k) + v(xB)]

st (2.4) and (2.5)

The first-order conditions are

−
(
χ+ r − R̄

)
c′(k) + rχv′(xB) = 0 (2.6)

η −
(
R̄− r

)
v′(xB)

χ+ r − R̄
= 0 (2.7)

where η is the Lagrangian multiplier associated with (2.5). The shadow value of the repay-

ment constraint sets up two cases. First, if r = R̄, then k = k̂ and ℓ ≤
(
R̄− χ

)
k̂/χ,

where the last inequality describes the demand for loan given r = R̄. Second, with

R̄− χ ≤ r < R̄, the demand for loan solves (2.6) with binding (2.5). That is,

c′
(
χ+ r − R̄

R̄− χ
ℓ

)
=

rχ

χ+ r − R̄
v′
(

rχ

R̄− χ
ℓ

)
(2.8)

With (2.5) binding, the total investment versus capital (or leverage) is r/
(
χ+ r − R̄

)
.

The RHS of (2.8) says for a marginal unit of k, the borrower’s consumption increases

by rχ/
(
χ+ r − R̄

)
as he is paid χ fraction of total investment when (2.5) binds. So the

RHS is the marginal benefit of producing capital, which equals the marginal cost (the LHS)

in equilibrium.

The bank chooses loan quantity and the deposit contract (x1, x2), taking the loan rate

11This setup can also be interpreted as follows. Given the market loan rates for borrowers with different k,
the borrowers choose k and ℓ. The bank chooses markets to extend loans. As they always lend in the market
with the highest r, the equilibrium interest rate is unique.
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as given. The bank keeps λx1 in its own technology to pay the impatient depositors. It

can invest an additional amount of a in its own long-term technology, lending the rest. The

bank solves

max
x1,x2,a

[λu(x1) + (1− λ)u(x2)]

st (1− λ)x2 = (1− λx1 − a)r + aR (2.9)

and (2.3). Equation (2.9) is the feasibility constraint for the bank. The amount of loan

extended to the borrowers is 1 − λx1 − a. With loan repayment at date t = 2, the bank

is paid the interest rate r. The safe-haven investment, a, matures with return R. From its

revenues, the bank pays the patient depositors at t = 2.

The first-order condition with respect to x1 is

u′(x1)− ru′(x2) = 0 (2.10)

By (2.9), a = 0 if r > R, 0 < a < 1− λx1 if r = R, and a = 1− λx1 if r < R. With the

bank lending 1− λx1 − a, (2.10) also describes the loan supply as a function of r.

The loan-market clearing condition is

1− λx1 − a = nℓ (2.11)

which pins down equilibrium r. The equilibrium loan contract is in one of the three distinct

regions with respect to fraction of loan pledged, depending on whether (2.5) binds and

whether a > 0 or a = 0. We refer to the High commitment region for χ such that (2.5) does

not bind. As χ increases, the repayment constraint binds and a = 0, which we refer to as
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the Intermediate commitment region. Lastly the Low commitment region is characterized

by values of χ such that (2.5) binds and a > 0. The High region corresponds to the most

creditworthy borrowers (lowest χ), followed by the Intermediate region and ultimately by

the Low region as χ continues to increase. A more detailed discussion follows.

High commitment region: With η = 0, we solve (2.9)-(2.11) to get a = 0, r = R̄,

k = k̂, x1 = x∗1 and x2 = x∗2, where (x∗1, x
∗
2) satisfies u′(x1) = R̄u′(x2) and (1− λx1)R̄ =

(1− λ)x2. Total loan size is 1 − λx∗1. Each borrower gets ℓ∗ = (1− λx∗1)/n. The High

region applies for χ ≤ χC
1 , where χC

1 ≡ k̂R̄/
(
ℓ∗ + k̂

)
.12

In the High region, the bank takes full advantage of the borrower’s technology. The

marginal rate of substitution between x1 and x2 is equal to the marginal rate of technologi-

cal transformation implied by the borrower’s technology. The borrower’s capital production

and consumption are the same as in autarky.

Intermediate commitment region: With η > 0 and a = 0, the Intermediate region holds

for χ ∈ (χC
1 , χ

C
2 ]. (We derive χC

2 in the Appendix proof of Proposition 2.1.) In this region,

R < r < R̄.

Note that the bank’s loan supply does not depend on χ. In the Intermediate region, the

borrower’s demand for loan is constrained by (2.5). For a constant loan rate, r, an increase

in χ results in borrowers demand fewer loans. In this setting, borrowers could produce

more capital to borrow more, but an additional unit of loan requires more capital, with the

marginal cost equal to c′. Leverage declines and v′ is lower because of the additional loan

and capital. From (2.8), we find that the demand for loan decreases with χ, which results

in a lower loan rate. In equilibrium, the bank lends more to partially make up the loss in

long-term revenue, and the borrowers take advantage of lower r to borrow more.

12Our notational convention is as follows: the superscript C denotes the “competitive” market structure,
and the subscript “1” denotes the first cutoff.
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Given a lower loan rate, the borrowers get a higher return on the loan. Whether they

will produce more capital to pledge as collateral depends on the elasticity of intertemporal

substitution (EIS). If EIS is elastic (i.e., −v′/xv′′ > 1), a higher return encourages higher

consumption growth rate, which requires more capital production. If it is inelastic (i.e.,

−v′/xv′′ < 1), less capital will be produced as a weaker response to the change in the loan

rate.

Borrower’s consumption, xB, is not necessarily monotone in χ for two reasons: (1) the

production of collateral may go either way, and (2) the repayment constraint binds so the

borrowers cannot borrow freely in response to the change in r. However, when evaluated at

χC
1 , the borrower’s consumption and lifetime utility are strictly increasing as represented by

−c+ v. To understand this, assume first that the market rate r stays constant as χ increases

from χC
1 . Borrowers choose ℓ and k along the the envelope frontier of −c+ v as (2.5) just

binds. There is no first-order effect. However, r is not constant; it is lower, which improves

the loan terms and increases borrower’s welfare.

Low commitment region: With η > 0 and a > 0, we see that r = R. It follows imme-

diately that x1 = x̂1 and x2 = x̂2 as in autarky. The borrowers take full advantage of the

loan market as they pay bank’s reservation rate. This region requires χ > χC
2 . As r cannot

be lowered further, ℓ decreases with χ to satisfy (2.5). It follows that xB is decreasing in

χ and a is strictly increasing. Again, the change in k depends on −v′/xv′′. For elastic

intertemporal substitution, borrowers produce less capital as borrowing is more responsive

to changes in the return, which produces larger response in xB. For inelastic intertempo-

ral substitution, borrowers produce more capital to partially offset the effect of tightened

borrowing condition so consumption does not fall too much.

When χ increases and the economy moves from High to Intermediate and eventually
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to the Low region, the borrowing conditions can change in several dimensions in order to

alleviate the commitment problem: the borrower can provide more collateral, the market

loan rate can be lowered, and/or the banks can reduce lending by allocating more funds to

the safe-haven project. We find that banks invest in the safe-haven asset as a last resort.

This is because increasing k and lowering r at their interior optimum does not have a first-

order impact on efficiency. However, raising a from 0 (at the corner solution) reduces total

output, which does have a first-order impact.

The result is summarized in the following proposition.

Proposition 2.1 In a perfectly competitive loan market, there exists χC
1 and χC

2 , with

χC
1 < χC

2 such that (1) with χ < χC
1 , the equilibrium is in the high commitment region;

(2)with χC
1 ≤ χ < χC

2 , the equilibrium is in the Intermediate commitment region; (3) with

χ > χC
2 , the equilibrium is in the Low commitment region.

The top panel of Table 2.3 reports the comparative statics with respect to χ for each

region. Here, dk/dχ=̇v′′x/v′ + 1 in the Intermediate commitment region, sgn(dk/dχ) =

sgn[−(v′′x/v′ + 1)] in the Low commitment region, where sgn stands for the sign. In

addition, dxB/dχ|χC
1
> 0.

Table 2.3: Comparative Statics, Competitive Market

dx1
dχ

dx2
dχ

dxB
dχ

dk
dχ

dr
dχ

dℓ
dχ

da
dχ

High 0 0 0 0 0 0 N.A.
Intermediate - - ? ? - + N.A.
Low 0 0 - ? 0 - +

dx1
dn

dx2
dn

dxB
dn

dk
dn

dr
dn

dℓ
dn

da
dn

High 0 0 0 0 0 - N.A.
Intermediate + + - ? + - N.A.
Low 0 0 0 0 0 0 -
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To illustrate the equilibrium outcomes for different values of the borrower’s fraction of

loan pledged, we turn to a numeric example. In all examples in the paper, unless mentioned,

the following functions and parameters are used:

u(x) =
(x+ b)1−γ − b1−γ

1− γ
, c(k) = Bkα, v(x) = A

(x+ b)1−δ − b1−δ

1− δ

where b = 0.001, γ = 2, B = 1, α = 2, A = 0.2 and δ = 0.5 or 2. Other parameters are

R̄ = 1.5, R = 1.2, λ = 0.5, and n = 1. The results are plotted in Figure 2.3.13

We begin by discussing what happens in the intermediate commitment region. With

δ = 0.5, −v′/xv′′ > 1 (left column), collateral is inversely related to fraction of the loan

pledged. Note that the relationship changes sign when we move into the low commitment

region. The borrower’s consumption and lifetime utility (labeled by WB) follow the sign-

switching pattern observed in the analysis of collateral. Regarding the deposit contract,

both patient and impatient depositors are hurt with the greater loss suffered by patient

depositors. Their expected utility (labeled by WD) decreases in the Intermediate region

and stays at the autarky level in the Low region. In the Low region, we observe the floor on

the loan rate and loan size decreasing in χ.

With δ = 2, −v′/xv′′ < 1 (right column). The pattern of k is reversed in this case: it

decreases in χ in the Intermediate region and then increases in the Low region. There is no

significant change in the pattern of other variables. The results indicate how the elasticity

of intertemporal substitution matters for the quantity of collateral in the equilibrium loan

contract.

The competitive market raises questions about the quality of credit indicators. For the

case in which δ = 0.5, the loan rate and collateral intensity (i.e., k/ℓ ratio) decline and

13The dash blue curve in the top panel is x2, and the solid blue curve is x1.
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Figure 2.3: Experiments with Varying χ in Competitive Equilibrium: δ = 0.5 left, δ = 2
right

the loan size increases as the credit conditions deteriorates in the Intermediate commitment

region. It is only when the economy enters the Low commitment region that the indicators

begin to match with the interpretation of credit conditions behind summary indicators like

the NCFI.

We also conduct the comparative statics with respect to market tightness. For exoge-

nous changes in n, the results are reported in the bottom panel of Table 2.3. As n increases,

the competition for loans becomes more fierce. It is straight-forward to show that χC
1
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and χC
2 increase with n. In the High region of r = R̄, bank’s supply of loans is fixed

at 1 − λx∗1. As there are more borrowers, each gets a smaller loan, which makes the re-

payment constraint looser and expands the High region. In the Intermediate region, as n

increases, ℓ decreases, r increases, and banks receive higher return on the investment and

pay more to both types of depositors. The borrowers get lower xB and will pledge more

k if −v′/v′′x > 1. Our intuition is straightforward: as the demand for loans increases, the

market works in favor of the bank. The more borrowers, the less likely that the market will

be in the Low region where the borrowers take full advantage of the market. Consequently,

the Low region shrinks.

The overall point of both parameter settings is that the loan terms adjust so that there is

no default in equilibrium. Borrowers receive more attractive loan rates and possible larger

loans in the Intermediate region. The model economy predicts that indicator values–such

as loan rate, loan size and collateral values–need to be interpreted based on the state of

credit conditions in the economy.

2.6 Nash bargaining

Next, we consider bilateral trade. Our goal is to consider a market structure that resembles

the OTC market. Does the market structure affect the response to changes in fraction of

loan pledged?

Suppose a bank and a borrower decide on the terms of trade according to Nash bargain-

ing solution. Let θ be the bargaining power of the bank. The generalized Nash problem

is

max
x1,x2,xB ,r,k,a

[
λu(x1) + (1− λ)u(x2)− ŴD

]θ[
−c(k) + v(xB)− ŴB

]1−θ

(2.12)
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st (2.3), (2.9)

xB = (1− λx1 − a)
(
R̄− r

)
+ kR̄ (2.13)

xB ≥ χ(1− λx1 − a+ k) (2.14)

Trade only occurs if both parties agree on the terms of trade. Autarky is the alternative.

Once consumption, capital, loan size and rate are agreed upon, bank and borrower split the

trade surplus according to their bargaining power.

We write the efficiency conditions as follows:

u′(x1)[c
′(k)− χv′(xB)]−

(
R̄− χ

)
u′(x2)c

′(k) = 0 (2.15)

a[−u′(x1) +Ru′(x2)] = 0 (2.16)

θu′(x1)SB − (1− θ)c′(k)SD = 0 (2.17)

χη − (1− θ)SDc
′(k)

u′(x1)

[
R̄u′(x2)− u′(x1)

]
= 0 (2.18)

where SD ≡ λu(x1)+ (1− λ)u(x2)− ŴD is bank’s trade surplus, SB ≡ −c(k)+ v(xB)−

ŴB is borrower’s surplus, and η is the Lagrangean multiplier associated with (2.14). As in

the competitive equilibrium, there are three regions, depending on χ.

Because one’s surplus is not necessarily positively related to the bargaining set under

Nash (see Kalai (1977)), it is hard to derive unambiguous comparative statics for all vari-

ables in the three regions. In other words, when χ goes up, we cannot determine whether

the terms of trade improve for the borrower or not.

We do find that a is positively related to χ in the Low commitment region. Thus, there

exist a unique cutoff dividing the Intermediate and the Low regions. It also implies that

investing in the safe-haven long-term project is the last tool that the bank uses to cope with
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deteriorating credit conditions. The intuition is the same as in Section 2.5: by starting to

invest in the safe-haven long-term asset (a increasing from 0), there is a discrete drop in the

total resources for consumption. However, changing k, r and/or ℓ in the interior solution

moves the economy along the envelope frontier and does not have a first-order impact.

Figure 2.4: Experiments with Varying χ in Nash Bargaining: δ = 0.5 left, δ = 2 right

Figure 2.4 plots the numerical result with θ = 0.5. There are some differences in the

pattern of contract variables when compared with the optimal contracts in the competitive

market: for increases in χ, (i) x1 is monotonically increasing in the Intermediate commit-

ment region; (ii) r is strictly increasing in the Low commitment region; (iii) ℓ is strictly
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decreasing in the Intermediate and Low commitment regions, (iv) WB increases and then

decreases in the Intermediate commitment region, and (v) in the example of δ = 2, k

strictly increases in the Intermediate and the Low commitment regions. Notice that when

x1 increases and x2 decreases, risk sharing improves. The cost, however, is fewer resources

are invested in the high-return borrower’s project, and the bank offers more short-term con-

sumption and lower rate on long-term deposit as a compromise.

Now that banks and borrowers are bargaining over the terms of the loan contract, we

still see the non-monotonic relationship between changes in commitment level and changes

in capital; capital is positively related to commitment level in the Intermediate region and

negatively related to commitment level in the Low region. However, the elasticity of in-

tertemporal substitution no longer affects the sign of the comparative statics in the Inter-

mediate region.

2.7 Competitive search

Next, we consider a competitive search loan market. Suppose a bank can open a loan

market characterized by deposit and loan terms (x1, x2, xB, r, k, ℓ). Borrowers observe

those posted terms and pay an entry cost, denoted ϕ, choosing to go to a specific market. In

a market, banks and borrowers are matched according to the function M(nD, nB), where

nD and nB are the measures of the banks and borrowers, respectively. AssumeM is strictly

increasing, strictly concave, and homogeneous of degree 1 in both arguments. Let τ =

nB/nD be the market tightness. The probability that a bank meets a borrower is σ(τ) ≡

M(1, τ) and the probability that a borrower meets a bank is σ(τ)/τ .
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Banks post terms of trade to solve the following problem:

max
x1,x2,xB ,r,k,a,τ

σ(τ)[λu(x1) + (1− λ)u(x2)] + [1− σ(τ)]ŴD (2.19)

st (2.3), (2.9), (2.13), (2.14)

σ(τ)

τ

{
−c(k) + v

[
(1− λx1 − a)

(
R̄− r

)
+ kR̄

]}
+

[
1− σ(τ)

τ

]
ŴB = ϕ+ ŴB (2.20)

The LHS of (2.20) is the expected utility for a borrower in the market. A borrower is willing

to pay ϕ to enter the market as long as the expected trade surplus is larger than ϕ.

The first-order conditions are (2.15), (2.16) and

[1− ε(τ)]u′(x1)SB − ε(τ)c′(k)SD = 0 (2.21)

η − σ(τ)u′2(x2)

c′(k)− χv′(xB)

[
c′(k)− R̄v′(xB)

]
= 0 (2.22)

where ε(τ) = σ′(τ)τ/σ(τ) is the elasticity of the matching function and η is the Lagrangian

multiplier associated with (2.14).

Compared with Nash bargaining, the contracts obtained in competitive search are qual-

itatively similar. With competitive search, bargaining power is endogenous, owing to the

elasticity of the matching function. In general, he market tightness and trade surplus are

pinned down jointly by (2.20) and (2.21).14

As with the other economies, we find that there are three regions for the equilibrium

contracts varying with the borrower’s fraction of loan pledged when ε′ < 0. In the com-

petitive search economy, many comparative statics are ambiguous; however, dk/dχ < 0,

dr/dχ < 0 and da/dχ > 0 in the Low commitment region, and dr/dχ < 0 at χS
1 , where

14Note that when the matching elasticity is constant, the solution is the same as under Nash bargaining
and the market tightness is solely pinned down by (2.20).
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χS
1 is the cutoff χ between High and Intermediate regions.

Though not included in this paper, the numerical analysis are qualitatively similar to

those reported in the Nash bargaining economy.15 One key difference is how the bank alters

payments to impatient consumers relative to patient consumers in the Intermediate region.

Specifically, payments to impatient consumers increase when the bank meets borrowers in

bilateral matches and has some market power. Thus, the existence of market power matters

for risk sharing.

2.7.1 Changes to entry cost

Suppose the entry cost is lower in the competitive search economy. More borrowers enter

the market, and the market gets tighter, which lowers the matching probability of the bor-

rowers. Holding everything else constant, a tighter market lowers the expected utility of

entering. Whether the fall in the matching probability is sufficient to offset the fall in entry

cost depends on the elasticity of the matching function. With the assumption that ε′ < 0.

We have the following proposition.

Proposition 2.2 Suppose ε′ < 0. The cutoffs, χS
1 and χS

2 , strictly increase in ϕ.

If ϕ decreases, for example, the high commitment region characterized by χ ≤ χS
1

shrinks while the Low commitment region expands. Although low entry fee expands entry,

the contract is more likely to be in the Low commitment region. The implication is that

some deposits are allocated to the safe project. This finding may sound counter-intuitive.

But, as more borrowers enter the market, banks provide less favorable terms. With higher

rates and more collateral the borrower’s repayment constraint tightens.

15The working paper version of the paper has the plots. A notable difference is that the elasticity of
intertemporal substitution does not change the patterns of the contract variables.
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Table 2.4: Comparative Statics, Competitive Search, ε′ < 0, Changes in Entry Cost

dx1
dϕ

dx2
dϕ

dxB
dϕ

dk
dϕ

dr
dϕ

dℓ
dϕ

dτ
dϕ

da
dϕ

High − − + − − + − N.A.
Intermediate ? ? ? − − ? − N.A.
Low − − + − − + − −

Table 2.4 lists the comparative statics. As entry cost decreases, we see that the terms

of loan contracts worsen in the Low commitment region; in other words, borrowers in the

market are worse off, but depositors are better off. The result in the Intermediate region is

ambiguous.

Figure 2.5 plots equilibrium outcomes with A = 1.1 and δ = 1.05, using the same val-

ues for other parameters as previous experiments. In addition, let M(nd, nb) = ndnb/(nd+

nb). Set χ = 0.99.16 The borrowers do not enter if ϕ > 0.14. The economy moves from

the Low credit region to the Intermediate region at ϕ = 0.005 and then moves to the High

region at ϕ = 0.137. As the entry cost increases, market tightness and loan size increase,

loan rate, collateral, and depositor’s consumption decline.

Consider how a change in entry cost affects deposit and loan contracts. The results of

this experiment shed light on changes in the distribution of the gains and the mechanism

operating on welfare.17 In addition, we consider the impact of an unexpected change in the

return to borrower’s projects on bank stability.

16This extreme value of χ is used to show that the economy transits through all three regions when ϕ
increases. For smaller value of χ, the economy transits through two regions or stays in one region.

17Of course, we can model entry decision in competitive market or bilateral trading. However, free entry
in the competitive market will rule out the High region if borrowers enter or the Low region if banks enter.
While the terms of trade do not change under bilateral negotiation as the entry cost is sunk when the two
parties meet.
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Figure 2.5: Experiments with Varying ϕ in Competitive Search

2.7.2 Discussion on financial stability

Throughout the paper, we do not discuss bank runs because a demand deposit with suspen-

sion clauses can eliminate panic runs in the environment with no aggregate uncertainty. In

the following experiment, we consider an unexpected negative shock to the return on the

borrower’s project, providing some insight into the financial stability in our model econ-

omy.

To formalize the experiment, suppose there is an unanticipated decrease in the return of

borrower’s project. Let R̃ denote the new realized return, where R̃ < R̄. This information
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is revealed to the public at t = 1. The borrower honors the repayment if

ℓ
(
R̃− r

)
+ kR̃ ≥ χ(ℓ+ k). (2.23)

Otherwise, the borrower defaults. Because the shock is unexpected, default is not accom-

modated by the contract. Depositors learn the borrower’s repayment decision, and then

decide whether to withdraw at t = 1. Even with a suspension clause, the depositor’s with-

drawal decision depends on the resources available in t = 2. With fewer resources, patient

depositors are tempted to withdraw at t = 1.

In the high commitment region, (2.14) does not bind. As long as the fall in R̄ is not

too big, the borrowers honor the debt. In the Intermediate and Low commitment regions,

however, the repayment constraint binds. Consequently, a decrease in borrower’s return

violates (2.14) and triggers a default on the loan contract.

In the Intermediate commitment region, the bank opts to allocate all long-term assets

to the borrowers’ projects. With all-the-eggs-in-one basket, default triggers a bank run.

However, bank runs may not occur in the Low region where a > 0. The bank can pay

each patient consumer aR/(1− λ) from its own technology. If aR/(1− λ) ≥ x1, patient

depositor’s best response is to not withdraw at t = 1 if all other patient ones wait. So the

tipping point for run to occur is where aR/(1− λ) = x1. fraction of loan pledged affects

the tipping point through two channels. First, the bank’s direct investment, a is increasing

in χ. Second, the payments to impatient depositors, x1, is decreasing in χ. Through both

channels, a bank runs is less likely to occurs with deteriorating credit conditions.

We extend the numerical analysis with λ = 0.2, γ = 1.1, δ = 0.5 and A = 0.05. The

cutoffs are χS
1 = 0.29 and χS

2 = 0.44. For χ < χS
1 , lower χ can tolerate bigger negative

shocks. In the Low commitment region, aR ≥ (1− λ)x1 for χ ≥ 0.88, which means even
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if the borrowers renege, there is no bank run.

2.8 Glass-Steagall Act. And Universal Banking

There has always been an ongoing debate regarding the involvement of intermediaries,

particularly commercial banks, in direct investment activities and whether they should be

regulated. Supporters of these regulations argue that intermediary direct investments could

potentially pose a threat to the stability of financial markets.

The Glass-Steagall Act of 1933 stands as a significant legislative attempt to address the

division between intermediation and direct investment. This act, which restricted commer-

cial banks from participating in securities underwriting, played a pivotal role in shaping the

financial landscape. Kroszner and Rajan (1994) study conducted a comparative analysis

of the performance of commercial banks, which were constrained from direct investment,

and investment banks with the autonomy to invest directly. Their findings disclosed no

substantial disparities in the quality of securities underwritten by these institutions.

Furthermore, in the context of the German economy, Gorton and Schmid (2000) un-

veiled the positive influence of universal banking on the performance of firms under bank

holdings. Berlin et al. (1996) embarked on an exploration of the potential contributions

of bank equity investments in addressing the challenges faced by financially distressed

businesses. Additionally, Santos (1996) delved into the welfare implications arising from

restrictions on bank investments in non-financial enterprises.

In our basic model in section 2.5, we delve into the dynamics of bank loan contract

terms and deposit contract terms, both of which are affected by borrowers’ commitment

issues. Our model can serve as a valuable tool for comparing the implications of universal

banking versus non-universal banking and their impact on borrowers and depositors.
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In this section, we compare and contrast two different scenarios. The first scenario

involves an intermediary with the ability to universally allocate assets, allowing for storage,

risky direct investments, and lending to external borrowers. The second scenario considers

an intermediary limited to storing deposits or lending them to borrowers but not allowed

to make direct investments. It’s essential to clarify that our model does not consider moral

hazards in the banking system. This study focuses on how allocation differs when we either

restrict or grant banks universal autonomy in utilizing their liabilities.

To adapt our model for this task, we are introducing modifications to our competitive

equilibrium model. In this updated model, we incorporate an element of risk associated

with the bank’s direct investments. Specifically, we assume that the bank’s direct invest-

ment can lead to two possible outcomes: a desired return, denoted as Rh (where Rh > 1),

with a probability of ρ, and an undesired return, denoted as Rl (where Rl < 1), with a

probability of 1− ρ. Regarding the return on the borrower’s technology, denoted as R̄, we

maintain our initial assumption that Rh < R̄.

In the case of universal banking, we assume that the bank has the ability to utilize its

own direct investment, storage, and lending. In this scenario, the bank, which represents a

coalition of borrowers, seeks to solve the following problem within the competitive market:

max
x1,s,a

λu(x1) + (1− λ)
[
u(x2h)ρ+ u(x2l)(1− ρ)

]
st.

(1− λ)x2h = (s− λx1) + (1− s− a)r + aRh (2.24)

(1− λ)x2l = (s− λx1) + (1− s− a)r + aRl (2.25)

u(x2h)ρ+ u(x2l)(1− ρ) ≥ u(x1) (2.26)
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In this problem, the bank aims to optimize the expected utility of depositors by de-

termining the ideal deposit rate for impatient depositors (x1), the optimal storage amount

(s), and the optimal level of investment in the bank’s direct technology (a). The bank can

subsequently figures out the optimal deposit rate for patient depositors and the ideal loan

amount for borrowers, using the optimal values of x1, s, and a.

The first constraint, represented by equation 2.24, deals with how consumption is allo-

cated between patient and impatient borrowers when the direct investment results in a the

high outcome. The second constraint, equation 2.25, focuses on consumption allocation

when the direct investment yields the low outcome. The third constraint, equation 2.26,

plays a role in preventing patient investors from triggering a bank run when they discover

their type in time 1. The deposit contract ensures that the expected return from withdrawing

in time 2 exceeds that of withdrawing in time 1. This condition is essential for the stability

of the system. On the borrower’s side, they face a similar problem as described in Section

2.5. The market clearing condition, now considering storage, is given by 1− s− a = nℓ.

Solving the competitive problem reveals that the high commitment region remains the

same as described in Section 2.5. In this region, the lender fully exploits the borrowers.

This is because, in this region, the bank strategically chooses not to invest in direct in-

vestments, effectively keeping the riskiness of these investments separate from the bank’s

contracts.

In the Intermediate commitment region, the bank, as discussed in Section 2.5, begins

to reduce the interest rate on the loans. The interest rate on loans decreases from R̄ to

max{1, ρRh + (1 − ρ)Rl}. The optimal intermediary contract terms offered by the bank

are the same as those presented in Section 2.5, but the span of this region widens since

max{1, ρRh + (1− ρ)Rl} < Rh.

The Low commitment region becomes relevant when the expected return on the bank’s

79



direct investment surpasses the return on storage. We assume that 1 < ρRh + (1 − ρ)Rl,

indicating that the bank initiates investments in its direct investment in the low commitment

region. Within this region, the bank reduces loan sizes and allocates deposits into its direct

investment. This region further divides into two sub-regions.

In the first sub-region, the bank increases its investment in the direct investment and de-

creases its loan size. As the commitment level of the borrowers declines in this sub-region,

the bank diverts more deposits into the direct investment until the interest rate on the loan

reaches 1, which equals the storage return. In the second sub-region of the lower commit-

ment level, the bank begins reallocating funds towards storage, ceasing further allocation

to the direct investment.

In the High commitment region and intermediate commitment region, storage is bind-

ing, meaning that banks store just enough to fulfill the impatient withdrawals in time 1.

Although the bank faces risks from both the borrower and its own direct investment, it still

dominates storage in terms of expectations. In the low commitment region, banks initially

hold enough in storage technology to pay off the impatient withdrawals in time 1, but in

the second part of the low commitment region, banks increase their storage beyond the

impatient’s expected withdrawal amount. At this point, the bank’s return on the loan and

storage are equal, and the bank sets the loan size and collateral such that, at this rate, the

borrower doesn’t abscond.

In the Non-Universal Banking case, when banks are barred from direct investment they

would solve the following problem:

max
x1,s

λu(x1) + (1− λ)u(x2)

st. (1− λ)x2 = (s− λx1) + (1− s)r
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x1 ≤ x2

And borrowers are solving the usual problem. All the agents in the economy would face

the same allocation in the first region as they faced in the previous cases. However banks

allocation changes at the intermediate commitment level.

Figure 2.6: Experiments with Varying χ comparing universal banking and non-universal
banking.

Figure 2.6 compares intermediary contract terms when banks are allowed to invest di-

rectly versus when they are prohibited from direct investment. In this figure, we can observe
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how the consumption levels of depositors and borrowers differ between universal banking

and non-universal banking.

Universal banking primarily benefits depositors, while non-universal banking is more

favorable to borrowers. When banks face constraints on their investments, their return on

loans must account for their reduced investment capacity. As a result, banks may be willing

to extend more loans at more favorable rates to borrowers in certain commitment scenarios.

This figure also illustrates that borrower output increases under non-universal banking

when their relative risk aversion is less than one. However, if the relative risk aversion of

borrowers exceeds one, universal banking leads to higher borrower output.

Contrary to the beliefs of supporters of regulations like Glass-Steagall, our findings

suggest that restricting banks to storage and lending activities may not always improve

financial system stability. Although these restrictions can increase bank storage, they also

lead to expanded credit extension. Consequently, banks become more vulnerable to MIT

shocks to the private sector’s return, as explained in section 2.7.2, which can weaken their

balance sheets during periods of financial stress.

To sum up, our model explains the implications of restricting banks from direct invest-

ment in an environment where banks are not subjected to moral hazard. This limitation

is detrimental for depositors but beneficial for borrowers. We also demonstrate that, in

this simplified environment, output levels can either increase or decrease depending on the

risk preferences of borrowers when banks’ direct investment is limited. Furthermore, we

demonstrate that universal banking does not necessarily increase the riskiness of the finan-

cial system; it can reduce the risk associated with banks’ balance sheets due to lower loan

levels.

82



2.9 Summary and Conclusion

In this paper, we have developed a theoretical framework to derive equilibrium loan and

deposit contracts in an economy where borrowers lack the ability to commit to loan repay-

ment, while depositors seek risk sharing. Our results reveal that changes in commitment

levels impact loan terms and risk sharing differently, depending on the market structure and

the elasticity of intertemporal substitution.

One of the most intriguing findings pertains to the non-monotonic relationship between

commitment levels, loan contract terms, and risk sharing in deposit contracts. This non-

monotonicity has significant implications for interpreting financial indicators. Financial

analysts often interpret movements in indicators, such as increasing loan rates or credit-

constrained loan sizes, as signs of deteriorating borrower quality. However, in our model,

loan rates decrease as borrower’s commitment level worsen due to binding repayment con-

straints. Additionally, despite a decline in depositor’s expected welfare with commitment

levels, risk sharing is predicted to improve. The presence of a safe-return option introduces

another dimension to the relationship between commitment levels and loan contract terms,

shedding light on when and to what extent banks use outside options to diversify their

portfolios.

We examine these relationships within over-the-counter (OTC) market setups and search

and matching frameworks. We identify conditions in which aggregate shocks can lead to

borrower defaults on bank loans, potentially causing bank insolvency and runs. Interest-

ingly, the likelihood of bank runs is not monotonically related to borrower commitment

levels, as extensive asset margins allow banks to diversify their portfolios and reduce the

risk of runs, particularly under low-credit conditions.

To empirically illustrate this unexpected relationship between borrower commitment
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level and loan terms, we analyze the impact of the U.S. Bankruptcy Abuse Prevention and

Consumer Protection Act (BAPCPA) on borrowers. The enactment of this law, which can

be seen as improving the overall commitment levels of U.S. borrowers, led to increased

loan rates and decreased loan sizes for specific borrower segments.

In the final part of our study, we adapt our foundational model to investigate the effects

of Glass-Steagall and universal banking on intermediary contracts. Our findings indicate

that limiting banks’ direct investment opportunities can reduce returns for depositors while

increasing returns for borrowers. Since banks are restricted from diversifying their invest-

ments among a broader range of opportunities, they become more inclined to extend larger

amounts of credit at lower rates to borrowers with lower commitment levels. This, how-

ever, can make banks’ balance sheets riskier by exposing them to shocks in borrowers’

technology returns, contrasting the arguments of supporters of banking legislation such as

Glass-Steagall.

The theoretical insights provided in this paper offer valuable guidance, particularly in

understanding the interplay between limited commitment and bank portfolio diversifica-

tion. On a theoretical front, there are opportunities for building models that explore how

shocks operate in this interactive setup, potentially delving into the crisis amplification

mechanism in banking within a dynamic context.
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Appendix A

Appendix for Chapter 1

Proof of Proposition 1.1

Define the following Martingale,

Mt ≡
η

1− γ

∫ t

0

e−ηsw1−γ
s ds+ e−ηtv(x, y)

By the Ito formula,

Mt −M0 =
η

1− γ

∫ t

0

e−ηsw1−γ
s ds+

∫ t

0

e−ηsdv(x, y)− η

∫ t

0

e−ηsv(x, y)dt

dM = e−ηt
{[ η

1− γ
w1−γ

t − ηv +
1

2
σ2y2vyy + (µ− q)yvy +

(
rx+ qy

)
vx

]
dt

+
( 1

1 + λs
vy − vx

)
χt

(
cx+ qy

)
dt+

(
vy − (1 + λs)vx

)
dLt +

(
vx − vy

)
dUt + σyvydzt

}
The HJB to be solved for v in 1.4 is:

max
l,u,χ

{1

2
σ2y2vyy +

(
rx+ qy

)
vx +

(
µ− q

)
yvy +

η

1− γ
w1−γ − ηv
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+
( 1

1 + λs
vy − vx

)
χ
(
cx+ qy

)
+
(
vy − (1 + λs)vx

)
E[
dL

dt
] +

(
vx − vy

)
E[
dU

dt
]
}
= 0

Where vx = ∂v
∂x
, vy =

∂v
∂y
, vxx = ∂2v

∂x2 , and vyy =
∂2v
∂y2
.

To maximize the HJB, the choices of χ, L, and U are:

χ



= 1 if vy > (1 + λs)vx

∈ [0, 1] if vy = (1 + λs)vx

= 0 if vy < (1 + λs)vx

(A.1)

dL


> 0 if vy ≥ (1 + λs)vx

= 0 if vy ≤ (1 + λs)vx

(A.2)

dU


> 0 if vx ≥ vy

= 0 if vx ≤ vy

(A.3)

Thus, χ has a bang-bang solution. The No-Trade region, in this case, is exactly the

same as Davis and Norman’s NT, i.e., vx ≤ vy ≤ (1+λs)vx. Thus in the NT region χ = 0.

In the NT region, dL = dU = 0 and χ = 0. The partial differential equation that defines

the value function in the NT region is as followed:

1

2
σ2y2vyy +

(
rx+ qy

)
vx +

(
µ− q

)
yvy +

η

1− γ
(x+ y)1−γ − ηv = 0 (A.4)

By the homothetic property of the utility function,weconjecture the value function that

satisfies the above is, v(x, y) = y1−γψ(x
y
).

As v is constant along lines of slope −1 in region S and along −(1 + λs)−1 in region B,

At x ≤ x0, there is constant A such that:

ψ(x) =
1

1− γ
A(x+ 1)1−γ (A.5)
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And at x ≥ xT , there is a constant B such that:

ψ(x) =
1

1− γ
B(x+ 1 + λs)1−γ (A.6)

So that we can write the differentials at A.4 in terms of ψ as:

vy(x, y) = (1− γ)y−γψ(
x

y
)− y−γ x

y
ψ′(

x

y
), vx(x, y) = y−γψ′(

x

y
)

vyy(x, y) = −γy−γ−1
(
(1−γ)ψ(x

y
)−x

y
ψ′(

x

y
)
)
−y−γ−1

(
(1−γ)x

y
ψ′(

x

y
)−x

y
ψ′(

x

y
)−(

x

y
)2ψ′′(

x

y
)
)

vxx = y−γ−1ψ′′(
x

y
) vxy = −γy−γ−1ψ′(

x

y
)− y−γ−1x

y
ψ′′(

x

y
)

Setting y = 1, equation A.4 reduces to below for x ∈ [x0, xT ],

β3x
2ψ′′(x) + (β2x+ q)ψ′(x) + β1ψ(x) +

η

1− γ
(x+ 1)1−γ = 0 (A.7)

β1 = (µ− q − 1

2
σ2γ)(1− γ)− η, β2 = σ2γ + r − µ+ q, β3 =

1

2
σ2

Using A.2 at x = xT , or by the value matching property, at this boundary, the value of the

utility function in the direction of trade must be unchanged. The direction of trade at this

boundary is selling (1 + λs)dL bonds and buying dL stocks.

v(x, y) = v(x− (1 + λs)dL, y + dL)

Expanding above we get

vy = (1 + λs)vx ⇒ (1− γ)ψ(xT ) = (xT + 1 + λs)ψ′(xT ) (A.8)
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Similarly at x = x0 direction of trade is to sell dU stocks and buy dU bonds. By A.3 or by

the value-matching property at this boundary.

v(x, y) = v(x− dU, y + dU)

vy = vx ⇒ (1− γ)ψ(x0) = (x0 + 1)ψ′(x0) (A.9)

For optimality1, at the boundaries, the derivative of the value function must stay unchanged

in the direction of the trade. At x = xT the smooth pasting property dictates

vy(x− (1 + λs)dL, y + dL) = (1 + λs)vx(x− (1 + λs)dL, y + dL)

Expanding above

(1 + λs)vyx − vyy = (1 + λs)2vxx − (1 + λs)vxy ⇒ ψ′′(xT )

ψ′(xT )
=

−γ
xT + 1 + λs

(A.10)

And, based on the smooth pasting condition at x0;

vyx − vyy = vxx − vxy ⇒ ψ′′(x0)

ψ′(x0)
=

−γ
x0 + 1

(A.11)

Having the differential equation A.7, for ψ(x) as in A.6, we can find B at x = xT , and for

ψ(x) as in A.5, we can find A at x = x0.

1Harrison and Taksar (1983) named this condition ’smooth pasting’ or ’high contact’ when the opti-
mality requires the marginal utility before and after the regulation to be equal. Dumas (1991) names this
condition ’super contact’ when the optimality requires a higher degree of tangency which in this case the
second derivative is required for optimality.
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Proof of Proposition 1.2

To solve for the homogeneous solution of the above differential equation, let ψ(x) =

x−kw(x−1) where k is the root for the following quadratic equation, β3k2 + (β3 − β2)k +

β1 = 0 and w satisfied the following equation, (Polyanin and Zaitsev (2002)):

β3zw
′′(z)− [qz + β2 − 2β3(k + 1)]w′(z)− kqw(z) = 0

ki =
(β2 − β3)±

√
(β2 − β3)2 − 4β3β1
2β3

, i = 1, 2

Where k1 is the positive root and k2 is the negative root of the above equation. Note,

this quadratic function has two roots, one is negative and one is positive. To solve for the

solution of the transformed differential equation we use transformation y = − q
β3
x−1, and

for every ki, w(x−1) = Φ(ai, bi; y), where Φ is the Kummer’s confluent hypergeometric

function. Defining the parameters ai, bi for Kummer’s confluent hypergeometric function:

ai = ki, bi = −β2
β3

+ 2ki + 2 Φ(a, b; y) = 1 + Σ∞
j=1

(a)j
(b)j

yj

j!

where, (a)j = a(a+ 1)...(a+ j − 1), (a)0 = 1.

If b is not a non-positive integer, then the general solution has the following form:

ψ(x) = C1Ψ1(x) + C2Ψ2(x) + ψp(x) (A.12)

Ψi(x) = x−kiΦ(ai, bi;
q

β3
x−1)

ψp(x) = Ψ2(x)

∫ x

0

Ψ1(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)
−Ψ1(x)

∫ x

0

Ψ2(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)

W (x) = Ψ1(x)Ψ
′
2(x)−Ψ2(x)Ψ

′
1(x)
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Based on the optimal value function, A.12, and from the boundary conditions of A.8, A.9,

A.10, and A.11 we can find C1, C2, x0, and xT ,

Proof of Proposition 1.3

In this case the assumption is, λb > 0 λs > 0.

Define the following Martingale, Mt ≡ η
1−γ

∫ t

0
e−ηsw1−γ

s ds+ e−ηtv(x, y)

By the Ito formula,

Mt −M0 =
η

1− γ

∫ t

0

e−ηsw1−γ
s ds+

∫ t

0

e−ηsdv(x, y)− η

∫ t

0

e−ηsv(x, y)dt

dM = e−ηt
{[ η

1− γ
w1−γ

t −ηv+ 1

2
σ2y2vyy+(µ− q)yvy+

(
(r− λbc

1 + λb
)x+

q

1 + λb
y
)
vx

]
dt

+
( 1

1 + λs
vy−

1

1 + λb
vx

)
χt

(
cx+qy

)
dt+

(
vy−(1+λs)vx

)
dLt+

(
vx−(1+λb)vy

)
dUt+σyvydzt

}

The HJB becomes:

max
L,U,χ

{1

2
σ2y2vyy +

(
(r − λbc

1 + λb
)x+

q

1 + λb
y
)
vx + (µ− q)yvy +

η

1− γ
w1−γ − ηv

+
( 1

1 + λs
vy−

1

1 + λb
vx

)
χ
(
cx+qy

)
+
(
vy−(1+λs)vx

)
E[
dL

dt
]+

(
vx−(1+λb)vy

)
E[
dU

dt
]
}
= 0

Solving for the optimal χ :

χ


= 0 if 1+λs

1+λb vx > vy

∈ [0, 1] if 1+λs

1+λb vx = vy

= 1 if 1+λs

1+λb vx < vy

(A.13)

90



As 1
1+λb ≤ 1+λs

1+λb ≤ 1 + λs, Thus the optimal choice of χ in A.13 splits the NT region into

two sub-regions; NT0 where χ = 0, and NT1 where χ = 1.

Solving for the HJB at NT1:

1

2
σ2y2v1yy +(µ− λs

1 + λs
q)yv1y +

c

1 + λs
xv1y +(r− c)xv1x+

η

1− γ
(x+ y)1−γ − ηv1 = 0

(A.14)

As before, based on the homothetic property of the value function, We conjecture that the

value function has the following form: v1(x, y) = y1−γψ1(x/y).

Based on this transformation of the value function, equation A.14 reduces to below for

x ∈ [xe, xT ] :

β3x
2ψ′′

1(x) + (β2x−
1

1 + λs
cx2)ψ′

1(x) + (β1 +
1− γ

1 + λs
cx)ψ1(x) +

η

1− γ
(x+ 1)1−γ = 0

(A.15)

β1 =
(
− 1

2
σ2γ+µ− λs

1 + λs
q
)
(1−γ)−η β2 = σ2γ+r−c−µ+ λs

1 + λs
q, β3 =

1

2
σ2

The free boundaries in this region are:

χ


= 0 if 1+λs

1+λb v1x > v1y

∈ [0, 1] if 1+λs

1+λb v1x = v1y

= 1 if 1+λs

1+λb v1x < v1y

(A.16)
dL


> 0 if v1y ≥ (1 + λs)v1x

= 0 if v1y ≤ (1 + λs)v1x

(A.17)

A.17 reflects value matching property at x = xT . At this boundary, the trade occurs in

the direction of (1 + λs)dL bond sale and purchase of dL stocks. By the value matching
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property, the value function should be unchanged when this trade occurs at this boundary.

v1(x, y) = v1(x− (1 + λs)dL, y + dL)

v1y = (1 + λs)v1x ⇒ (1− γ)ψ1(xT ) = (xT + 1 + λs)ψ′
1(xT ) (A.18)

Equation A.16 reflects the value matching property at x = xe, where the Sweep regulator

must be indifferent between buying bonds or buying stock with the cash at the center.

v1(x+
1

1 + λb
(cx+ qy)dt, y) = v1(x, y +

1

1 + λs
(cx+ qy)dt)

Expanding above gives us the value-matching property at the Sweep boundary.

v1y =
1 + λs

1 + λb
v1x ⇒ (1− γ)ψ1(xe) = (xe +

1 + λs

1 + λb
)ψ′

1(xe) (A.19)

Based on the smooth pasting condition at x = xT , the derivative of the value function at

the boundary of x = xT must be fixed at the direction of trade by the regulator.

v1y(x− (1 + λs)dL, y + dL) = (1 + λs)v1x(x− (1 + λs)dL, y + dL)

2(1 + λs)v1yx = v1yy + (1 + λs)2v1xx ⇒ ψ′′
1(xT )

ψ′
1(xT )

=
−γ

xT + 1 + λs
(A.20)

Based on the optimality of smooth pasting condition at the Sweep boundary, x = xe,

derivative of the value function must stay unchanged at the direction of the trade at this

boundary.

v1y(x+
1

1 + λb
(cx+qy)dt, y) =

1 + λs

1 + λb
v1x(x+

1

1 + λb
(cx+qy)dt, y) ⇒ v1yx = (

1 + λs

1 + λb
)2v1xx
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v1y(x, y+
1

1 + λs
(cx+qy)dt) =

1 + λs

1 + λb
v1x(x, y+

1

1 + λs
(cx+qy)dt) ⇒ v1yy = (

1 + λs

1 + λb
)2v1xy

Thus

v1yy = (
1 + λs

1 + λb
)2v1xx ⇒ ψ′′

1(xe)

ψ′
1(xe)

=
−γ(1 + λb)

xe(1 + λb) + (1 + λs)
(A.21)

In the NT0 region the HJB is as followed:

1

2
σ2y2v2yy +

(
(r− λbc

1 + λb
)x+

q

1 + λb
y
)
v2x + (µ− q)yv2y +

η

1− γ
(x+ y)1−γ − ηv2 = 0

(A.22)

Based on the homothetic property of the value function, We conjecture that the value func-

tion has the following form, v2(x, y) = yγψ2(x/y).

Equation A.22 reduces to below for x ∈ [x0, xe],

β3x
2ψ′′

2(x) + (β2x+
q

1 + λb
)ψ′

2(x) + β1ψ2(x) +
η

1− γ
(x+ 1)1−γ = 0 (A.23)

β1 = (µ− q − 1

2
σ2γ)(1− γ)− η, β2 = σ2γ + r − λb

1 + λb
c− µ+ q, β3 =

1

2
σ2

The free boundaries in NT0 are:

χ


= 0 if 1+λs

1+λb v2x ≥ v2y

= 1 if 1+λs

1+λb v2x ≤ v2y

(A.24) dU


> 0 if 1

1+λbv2x ≥ v2y

= 0 if 1
1+λbv2x ≤ v2y

(A.25)

At the Buy boundary,x = x0, equation A.25 reflects the value matching property of v2 in

the direction of trade at this point.

v2(x, y) = v2(x+ dU, y − (1 + λb)dU)
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v2x = (1 + λb)v2y ⇒ (1− γ)(1 + λb)ψ2(x0) = (x0(1 + λb) + 1)ψ′
2(x0) (A.26)

Similar to A.19, the value matching of v2 at the sweep boundary, x = xe, is reflected by

A.24.

v2y =
1 + λs

1 + λb
v2x ⇒ (1− γ)ψ2(xe) = (xe +

1 + λs

1 + λb
)ψ′

2(xe) (A.27)

Based on the smooth pasting condition at x = x0, the derivative of the value function in the

NT1 region must be unchanged at the direction of trade at the buy boundary.

v2x(x+ dU, y − (1 + λb)dU) = (1 + λb)v2y(x+ dU, y − (1 + λb)dU)

−v2xx+(1+λb)v2xy = −(1+λb)v2yx+(1+λb)2v2yy ⇒ ψ′′
2(x0)

ψ′
2(x0)

= − γ(1 + λb)

x0(1 + λb) + 1

(A.28)

And similar to A.21, based on the smooth pasting condition at x = xe.

v1yy = (
1 + λs

1 + λb
)2v1xx ⇒ ψ′′

2(xe)

ψ′
2(xe)

= − γ(1 + λb)

xe(1 + λb) + (1 + λs)
(A.29)

Combining A.16 and A.24 at x = xe:

ψ′
1(xe) = ψ′

2(xe) (A.30)

Combining A.21 and A.29 at x = xe:

ψ′′
1(xe) = ψ′′

2(xe) (A.31)

Also, at x = xe:

ψ1(xe) = ψ2(xe) (A.32)
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Conditions of A.30, A.31, A.32 show that at the sweep boundary on top of the value match-

ing and the first derivative the second derivatives must be similar in the regions on both

sides of the sweep boundary.

We can find A at x = x0 for ψ(x) = 1
1−γ

A(x(1 + λb) + 1)1−γ in A.23.

We can find B at x = xT for ψ(x) = 1
1−γ

B(x+ 1 + λs)1−γ in A.15.

Proof of Proposition 1.4

To solve for the homogeneous solution of the above differential equation, using transfor-

mations ψ1(x) = xkw(x) where k is the root for the quadratic equation β3k2+(β2−β3)k+

β1 = 0. This leads to the following equation:

β3xw
′′(x) + [(

−c
1 + λs

)x+ 2β3k + β2]w
′(x) +

[
− (

1

1 + λs
)ck +

1− γ

1 + λs
c
]
w(x) = 0

ki =
(β3 − β2) +

√
(β3 − β2)2 − 4β3β1
2β3

i = 1, 2

Note, this quadratic function has two roots, one is negative and one is positive. To

solve for the solution of the transformed differential equation we use transformation, y =

− c
β3(1+λs)

x, and w(x) = e−yΦ(y), where Φ is the Kummer’s confluent hypergeometric

function.

Defining the parameters a, b for the Kummer’s confluent hypergeometric function, Φ(a, b; y)

as a particular solution;

ai = ki − 1 + γ, bi =
β2
β3

+ 2ki Φ(a, b; y) = 1 + Σ∞
j=1

(a)j
(b)j

yj

j!

where, (a)j = a(a+ 1)...(a+ j − 1), (a)0 = 1.

If b is not a non-negative integer, k1 being the positive root and k2 the negative root then

95



the general solution has the following form:

ψ1(x) = C11Ψ11 + C12Ψ12(x) + ψ1p(x) (A.33)

Ψ1i(x) = xkiΦ(ai, bi;
c

β3(1 + λs)
x)

ψ1p(x) = Ψ12(x)

∫ x

0

Ψ11(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)
−Ψ11(x)

∫ x

0

Ψ12(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)

W (x) = Ψ11(x)Ψ
′
12(x)−Ψ12(x)Ψ

′
11(x)

To solve for the homogeneous solution of the differential equation in NT0, using trans-

formations x = z−1, ψ2(x) = xkw(z) where k is the root for the quadratic equation

β3k
2 + (β3 − β2)k + β1 = 0. This leads to the following equation:

β3zw
′′(z)− [

q

1 + λb
z + β2 − 2β3(k + 1)]w′(z)− k

q

1 + λb
w(z) = 0

ki =
(β2 − β3)±

√
(β2 − β3)2 − 4β3β1
2β3

i = 1, 2

Note, this quadratic function has two roots, one is negative and one is positive. To solve for

the solution of the transformed differential equation we use transformation y = − q
(1+λb)β3

z,

and w(z) = e−yΦ(y), where Φ is the Kummer’s confluent hypergeometric function. Defin-

ing the parameters a, b for the Kummer’s confluent hypergeometric function, Φ(a, b; y) as

a particular solution:

ai = ki, bi = −β2
β3

+ 2ki + 2 Φ(a, b; y) = 1 + Σ∞
j=1

(a)j
(b)j

yj

j!

where, (a)j = a(a+ 1)...(a+ j − 1), (a)0 = 1.
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If b is not a non-negative integer, k1 being the positive root and k2 the negative root then

the general solution has the following form:

ψ2(x) = C21Ψ21(x) + C22Ψ22(x) + ψ2p(x) (A.34)

Ψ2i(x) = x−kiΦ(ai, bi;
q

(1 + λb)β3
x−1)

ψ2p(x) = Ψ22(x)

∫ x

0

Ψ21(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)
−Ψ21(x)

∫ x

0

Ψ22(z)
η(z + 1)1−γ

(1− γ)β3

dz

W (z)

W (x) = Ψ21(x)Ψ
′
22(x)−Ψ22(x)Ψ

′
21(x)

From A.18, A.20, A.26, A.28, A.30, A.31,and A.32 we can find C11, C12, C21, C22, x0, xT ,

and xe.
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Appendix B

Appendix for Chapter 2

Proof of Proposition 2.1

It is straight forward to show that if χ ≤ χ1, the equilibrium is in the Prime credit region,

which entails η = 0. Now consider χ > χ1. It follows that η > 0. Consider the Poor credit

region which requires a > 0 and r = R. By (2.10), x1 = x̂1 and x2 = x̂2. By (2.4)-(2.6),

the demand for ℓ is characterized by

−c′
(
χ+R− R̄

R̄− χ
ℓ

)(
χ+R− R̄

)
+ χRv′

(
χR

R̄− χ
ℓ

)
= 0 (B.1)

Take derivative wrt χ to get

dℓ

dχ
=
c′
(
R̄−R

)(
R̄− χ

)2
+ ℓRχ

[
c′′
(
χ+R− R̄

)
− v′′RR̄

]
χ
(
R̄− χ

)[
R2χ2v′′ −

(
χ+R− R̄

)2
c′′
] < 0

By (2.11) and since x1 is constant, da/dχ > 0. Thus, the cutoff of χ2 between Fair and

Poor credit regions is unique. At χ2, ℓ solving (B.1) satisfies nℓ = 1− λx̂1. ■
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Proof of Proposition 2.2

In the Prime credit region, the equations (2.9), (2.4), (2.20), (2.21) and c′(k) = R̄u′(x2),

which jointly solve (x1, k, r, τ). By the implicit function theorem, given ε′ < 0, dχS
1 /dϕ =

|A2|/|A1|, where |A1| =

σ
ε′

ε
u′1SE

∣∣∣∣∣∣∣∣∣∣
c′ R̄−χ

R
χλv′ χv′

c′′
(
χ+R− R̄

)
+Rχ2v′′ Rχ2λv′′ Rχ2v′′

−R(R̄−χ)
1−λ

u′′2 u′′1 +
λR(R̄−χ)

1−λ
u′′2 −R(χ+R−R̄)

1−λ
u′′2

∣∣∣∣∣∣∣∣∣∣
−(1− ε)ϕ×∣∣∣∣∣∣∣∣∣∣
u′2c

′(R̄− χ
)
+ εc′′SB c′u′2λ

(
χ+R− R̄

)
− (1− ε)u′′1SE u′2c

′(χ+R− R̄
)

c′′
(
χ+R− R̄

)
+Rχ2v′′ Rχ2λv′′ Rχ2v′′

−R(R̄−χ)
1−λ

u′′2 u′′1 +
λR(R̄−χ)

1−λ
u′′2 −R(χ+R−R̄)

1−λ
u′′2

∣∣∣∣∣∣∣∣∣∣
and

|A2| =
ε′

ε
τu′1SB

∣∣∣∣∣∣∣
c′′
(
χ+R− R̄

)
−Rχ2v′′ Rχ2λv′′

R(R̄−χ)
1−λ

u′′2 −u′′1 +
λR(R̄−χ)

1−λ
u′′2

∣∣∣∣∣∣∣
Given ε′ < 0, |A3| < 0 and da/dϕ < 0, which means given χ, if ϕ′ > ϕ and a > 0 under

ϕ′, then a > 0 under ϕ. Thus, the cutoff of χS
2 is higher for higher ϕ. ■
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