STEPFAMILY RELATIONSHIPS AND
ATTACHMENT IN YOUNG ADULTHOOD

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

BRAQUEL R. EGGINTON

Dr. Chelsea Garneau-Rosner and

Dr. Melissa Herzog, Dissertation Supervisors

DECEMBER 2023
The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled

STEPFAMILY RELATIONSHIPS AND ATTACHMENT IN YOUNG ADULTHOOD

presented by Braquel R. Egginton,

a candidate for the degree of doctor of philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Chelsea Garneau-Rosner

Professor Melissa Herzog

Professor Kale Monk

Professor Wes Bonifay
ACKNOWLEDGEMENTS

I would like to take this space to express my appreciation to Alan Hawkins and his unending support both in my education and career. He and Erin Holmes helped me not only start on the path I am on now but have continued to provide me with new opportunities I would never have been able to find on my own. Thank you also to Wes Bonifay for your consistent support through a process that I was ready to give up on.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

ABSTRACT ... vii

Chapter

1. INTRODUCTION ... 1

2. THEORETICAL PERSPECTIVE ... 5

 Family Systems Theory

 Attachment Theory

 Integrating Theories

3. LITERATURE REVIEW ... 14

 (Step)Parent-(Step)Child Relationship Quality

 (Step)Parent-(Step)Child Relationships in the Larger Family System

 (Step)Parent-(Step)Child Relationships and Young Adult Attachment

4. CURRENT STUDY ... 40

5. METHODS .. 43

 Sample

 Measures

6. ANALYSIS PLAN ... 51

7. RESULTS ... 54

 Correlation of All Study Variables
Latent Class Identification

Multinomial Regression

Adult Attachment Anxiety and Avoidance

8. DISCUSSION...65

Classes of (Step)Parent-(Step)Child Relationship Quality

Stepfamily Relationships and Class Membership

Adult Attachment Outcomes

9. LIMITATIONS..89

10. CONCLUSIONS AND FUTURE RECOMMENDATIONS...........93

Latent Classes of (Step)parent-(Step)child Relationship Quality

Class Predictors

Attachment Outcomes

REFERENCES...100

APPENDIX

1. TABLES...119

2. FIGURES...133

VITA...138
LIST OF TABLES

Table 1. Family complexity with sibling types as subcategories of stepfamily structure…………………………………………………………………………………110

Table 2. Young adult current demographic characteristics……………………………………………………111

Table 3. Stepfamily characteristics during childhood and adolescence………………………………112

Table 4. Correlation coefficients for all study variables……………………………………………………113

Table 5. Model fit statistics for determining the number of classes……………………………………114

Table 6. Coefficients of predictors direct effects on individual class indicators……………..115

Table 7. T-test of class differences between individual class indicators……………………………116

Table 8. Multinomial logistics probabilities for family complexity predictors………………117

Table 9. Multinomial logistic regression coefficients for coparenting predictors……………119

Table 10. Multinomial logistic regression coefficients for stepcouple happiness………………120

Table 11. Multinomial logistic regression coefficients for the presence of a nonresident parent………………………………………………………………..121

Table 12. Coefficients of direct effects between class predictors and attachment outcomes………………………………………………………………………..122

Table 13. Means and standard errors of class differences on attachment outcomes…………………………………………………………………..123
LIST OF FIGURES

Figure 1. Analysis model ... 124
Figure 2. (Step)Parent-(step)child relationship classes before test of direct effects … 125
Figure 3. (Step)Parent-(step)child relationship classes before test of direct effects … 126
Figure 4. Final 5-class latent class solution of (step)parent-(step)child relationship quality ... 127
Figure 5. Probabilities of class membership for the full x half siblings interaction term ... 128
STEPFAMILY RELATIONSHIPS AND ATTACHMENT IN YOUNG ADULTHOOD

Braquel R. Egginton

Dr. Chelsea Garneau-Rosner and Dr. Melissa Herzog, Dissertation Supervisors

ABSTRACT

Research exploring the influence of parent-child relationships in stepfamilies has primarily focused on internalizing and externalizing behaviors, and academic outcomes. The purpose of this study is to build on previous research by exploring how parent-child relationship quality influences emerging adult reports of attachment anxiety and avoidance. However, the relationships between a child and their caregiver do not exist in isolation. Due to the interconnected nature of family relationships, it is likely that the relationships between siblings, biological parents, and stepparents will all collectively impact the development of the caregiver-child relationship and subsequently their reports of attachment anxiety and avoidance. Thus, the purpose of this study is to (a) explore how parent-child relationship quality influence emerging adult attachment and (b) examine how family relationships, such as those between siblings and parents, might impact reports of parent-child relationship quality.
CHAPTER 1: INTRODUCTION

Adult attachment anxiety and avoidance influence young adults’ experiences within their social environment (Mikulincer & Shaver, 2016). This includes their experiences and choices when it comes to friends, partners, work, and their community. Specifically, young adults with more secure attachment are more confident in seeking out and maintaining romantic relationships (Mikulincer & Shaver, 2016) and more willing to teach partners how to be responsive to their needs (Clark & Beck, 2011). Unfortunately, some researchers have indicated that there appear to be fewer college students with secure attachment styles (Konrath et al., 2014). This is alarming as insecure attachment has been associated with many negative relationship outcomes including negative views of partners’ actions, oversharing, and pessimistic views of relationships (Mikulincer & Shaver, 2016).

Notably, parent-child relationships in particular play a critical role in the development of adult attachment and other relationship outcomes in young adulthood. Evidence shows that teens who have higher quality interactions with their parents are less likely to experience adult attachment anxiety and avoidance as young adults (Dinero et al., 2008; 2022). Further, in a recent systematic review, River and colleagues (2022) found that higher quality parent-child interactions (i.e., more parental warmth, more parental sensitivity, and lower parent-child conflict) in childhood and adolescence were related to higher romantic relationship quality and more positive interactions between partners in young adulthood. The current study aims to further examine the link between parent-child relationship quality and adult attachment, focusing specifically on young adults who grew up in stepfamilies.
The role that parent-child relationships play in adult attachment development may be uniquely important in the context of stepfamilies, yet it remains a large gap in the stepfamily literature. Attachment theory (Bowlby, 1969; Hazen & Shaver, 1994) asserts that the development of both parental and adult romantic attachment is influenced by interactions with caregivers in childhood. However, in post-dissolution stepfamilies, experiences of parental relationship dissolution and repartnering have the potential to alter or disrupt existing caregiver-child relationships, making children in stepfamilies more vulnerable to developing attachment anxiety or avoidance in young adulthood (Hayashi & Strickland, 1998; Smith-Exteberria et al., 2020; Washington, 2012). The primary aim of the current study is to examine whether higher quality (step)parent-(step)child relationships (i.e., relationships with the resident biological parent, resident stepparent, and nonresident biological parent) may reduce the potentially negative impact of these stepfamily transitions and, by doing so, also reduce the likelihood of attachment anxiety or avoidance for young adults from stepfamilies.

The (step)parent-(step)child subsystems within post-dissolution stepfamilies are more complex than other non-stepfamily systems as there are a minimum of three parental figures including the resident biological parent, resident stepparent, and nonresident biological parent. Much of the existing literature exploring the influence of (step)parent-(step)child relationships on young adult outcomes have examined only one or two (step)parent-(step)child dyads at a time. Although these findings have been informative, they do not fully acknowledge the interdependent nature of all three (step)parent-(step)child dyads and how they work together to impact child outcomes.

Fully illuminating the link between (step)parent-(step)child relationship quality and
children’s later adult attachment in stepfamilies requires a more holistic approach acknowledging the interconnected influences of all three (step)parent-(step)child relationships. A few studies have taken this more holistic approach by using reports of children’s relationship with all three parental figures in person-centered analyses to explore the influence of diverse patterns of (step)parent-(step)child relationship on adolescent (Jensen, 2017) and young adult (Amato et al., 2016; Egginton et al., 2021; Jensen & Lippold, 2017) outcomes. Findings from these studies indicate that different (step)parent-(step)child relationship patterns uniquely predict the adolescent or adult children’s internalizing and externalizing outcomes. For example, a previous study found that higher quality resident parent-child relationship quality (i.e., resident biological parent and resident stepparent) was associated with lower depression even if the relationship with the nonresident biological parent was of lower quality (Egginton et al., 2021). In the current study I will use a similar person-centered approach to identify classes of (step)parent-(step)child relationship quality and subsequently examine class membership as a predictor of children’s later adult attachment.

Finally, (step)parent-(step)child relationships do not develop in isolation but are influenced by other individuals and relationships within the larger family system in which they are embedded. Although the presence of a stepparent is what differentiates stepfamilies from other family structures, stepfamilies themselves consist of many diverse combinations of step relations. Four different types of stepfamily structures have been identified within stepfamily literature including simple, step-nuclear, complex, and hybrid (see Garneau-Rosner & Egginton, 2019). Each type of stepfamily structure contains slightly different arrangements of family members, with the primary differences
being the types of siblings (e.g., full, half, and/or stepsiblings) present in the system. In addition to complex sibling configurations, the relationships between biological parents and the presence of nonresident step relations will also influence the development of (step)parent-(step)child relationships. Exploring the impact other individuals and relationships within the stepfamily system have on young adult reports of (step)parent-(step)child relationship quality is necessary to more fully understand how the larger family systems influences the membership in different classes of (step)parent-(step)child relationship quality and the subsequent impact of parental relationships on young adult attachment.

The current study aims to expand previous research by utilizing latent class analysis to (a) identify patterns of (step)parent-(step)child relationship quality among young adults in stepfamilies, (b) explore how the presence of different types of siblings and quality of other dyadic stepfamily relationships influence the development of identified (step)parent-(step)child relationship quality patterns, and (c) examine (step)parent-(step)child relationship quality patterns as predictors of young adult attachment anxiety and avoidance (see Figure 1 for the analysis model).
CHAPTER 2: THEORETICAL PERSPECTIVE

Family Systems Theory

Family systems theory asserts that family members are interdependent as they influence each other’s thoughts, feelings, and behaviors (Minuchin, 1985; Whitechurch & Constantine, 1993). In other words, the presence and interaction among individuals and subsystems (i.e., combinations of individuals within the family system) will collectively and individually influence the development and quality of other relationships within the family system. This means that (step)parent-(step)child relationships develop in the context of the larger family system within which their interactions are embedded, suggesting that relationships in other subsystems (e.g., the sibling and parental subsystems) will influence the (step)parent-(step)child relationship quality because they have an impact on the parent’s ability to develop or maintain a quality relationship with their child(ren). Additionally, for post-dissolution stepfamilies, subsystems stretch across households to include the nonresident parents and potentially other nonresident stepfamily members. By exploring multiple stepfamily subsystems this study allows researchers and practitioners a more holistic perspective on the stress and resiliency within stepfamily systems.

Attachment Theory

According to attachment theory, interactions with caregivers during infancy and childhood teach individuals important lessons about relationships (Bowlby, 1969). Bowlby (1969) claimed that during infancy children develop attachment systems to protect themselves from potential danger by ensuring proximity to attachment figures, typically a child’s parent. When threats, potential or real, arise in an infant’s environment
they will respond by enacting proximity and security seeking behaviors to promote the physical closeness of their attachment figure. This is motivated by a child’s desire to achieve felt security (i.e., feeling safe despite threats in the environment). Threats could include anything from being hungry to being frightened by the presence of a stranger. Proximity seeking behaviors include actions such as crying, calling out to, or reaching for their attachment figure. The sensitivity and consistency with which parents react to their infant’s needs and proximity seeking results in the development of different attachment styles that reflect the connections children develop with their attachment figures.

In childhood, Bowlby (1969) proposed three attachment styles: secure, anxious-ambivalent, and avoidant. These attachment styles are characterized by the internal working models children develop based on the interactions between the child and their attachment figure over time, and thus also by the attachment strategies children display. Attachment strategies include if and how children use proximity seeking behaviors to achieve felt security (Mikulincer & Shaver, 2003). Caregiver responses and the attachment strategies children use motivate the development of working models which are the mental representations children create for themselves, others, and relationships. This includes personal worth, others’ trustworthiness, and positive or negative perceptions regarding whether relationships with others will meet personal needs. These working models act as foundational scripts or beliefs that follow an individual from childhood into adulthood.

For example, children with secure attachment generally had caregivers who were dependable and warm when responding to their needs (Bowlby, 1969). As a result, when new threats were introduced into their environment, these children would seek proximity
and were more easily comforted and calmed by the caregiver. Because their primary attachment strategy succeeded in gaining consistent, positive parental responses and thus reducing stress experienced in the environment, these individuals were more likely to develop a positive view of self, others, and relationships. Thus, securely attached children also tend to bond with, rely on, and trust others more than those other attachment styles.

Conversely, insecure attachment develops when something in the interactions with attachment figures consistently sabotages the child’s ability to achieve felt security (Bowlby, 1969). This leads to the development of either anxious-ambivalent or avoidant attachment. Because their primary attachment strategies (i.e., their initial attempts to acquire their caregiver’s attention or comfort) did not succeed, insecurely attached children tend to use secondary attachment strategies including hyperactivation and deactivation when attempting to achieve felt security (Mikulincer & Shaver, 2003).

As children grow into adolescence and young adulthood, peers and romantic partners become a more prominent part of their lives with the potential to become adult attachment figures (Hazan & Shafer, 1987). While parents generally move to a lower placement in the hierarchy of attachment figures during this time, the history of interactions with parents creates foundational working models that adults will use to evaluate relationships across the lifespan (Fraley & Shaver, 2000). These models influence the development of positive and negative perceptions of self, others, and relationships and the development of relational patterns associated with attachment strategies that manifest in adult relationships.

Two lines of study explore attachment in adulthood (Bartholomew & Shaver, 1998; Ravitz et al., 2010). The first explores how parent-child interaction in childhood
influences caregiver attachment in adulthood. The second explores how relationships with parents in childhood influence adult romantic attachment. The current study utilized the latter approach to explore how (step)parent-(step)child relationship quality during childhood influences young adult romantic attachment. Three important differences exist between caregiver attachment (i.e., attachment developed during infancy and childhood based on interactions with a parental caregiver) and adult attachment. One key difference is the attachment figure (Hazan & Shaver, 1994). Adult attachment figures can include family members, selective friends, therapists, and even pets, but the most frequently explored adult attachment figures are romantic partners (Sable, 2008). Secondly, infant attachment is generally unidirectional while adult attachment is more bidirectional (Hazan & Shaver, 1994). During infancy, the attachment figure provides care and security without receiving either from the child. Conversely, adult attachment is generally established between two adults who both provide and receive care within the context of their relationship, making the attachment relationship more of a mutual exchange.

Finally, the motivations for proximity seeking in adults can be their attempt to find felt security, but may also be based on a simple desire to be near their adult attachment figure.

In examining the different adult attachment styles, Bartholomew (1990; 1997) identified two important underlying dimensions: attachment anxiety and attachment avoidance. He argued that rather than categorize attachment into four styles they should be characterized by high or low attachment anxiety and avoidance. Each dimension is related to an underlying fear associated with an individual’s working models; their perceptions of themselves and relationships with others. Attachment anxiety is rooted in a
fear of abandonment. Adults who are high on this attachment dimension fear that their attachment figure (i.e., their romantic partner) will leave them and often become overly preoccupied with their relationships to prevent that from happening. On the other hand, attachment avoidance encompasses a fear of intimacy. This means that they fear the vulnerability that is associated with romantic relationships and often struggle to fully invest in them. Each dimension acts as a continuum from low to high and it is the combination of low or high attachment anxiety and low or high attachment avoidance that characterizes different adult attachment styles (secure, pre-occupied, dismissive, and fearful; Bartholomew, 1990; 1997).

Securely attached adults are characterized as having low attachment anxiety and low attachment avoidance (Bartholomew, 1990; 1997). Because they are less concerned with experiencing fears of abandonment and intimacy, these individuals are more confident in finding and maintaining relationships. Their past experience has created the expectation that adult attachment figures (i.e., romantic partners) should respond consistently and warmly to proximity seeking behaviors. This expectation may increase the likelihood that they seek out partners who are responsive to their needs or that they teach partners how to be more responsive (Clark & Beck, 2011). Securely attached individuals tend to have a more positive view of their relationships, are more likely to reach out to their partners for help, exhibit higher flexibility, have better emotional regulation, and are more honest in self-disclosure (Mikulincer & Shaver, 2016).

In contrast, adults with insecure attachment styles, such as those with preoccupied, dismissive, or fearful attachment are high on at least one attachment dimension (Bartholomew, 1990; 1997). Adults with preoccupied attachment experience
high attachment anxiety and low attachment avoidance. That is, they are fearful of being abandoned, but do not fear vulnerability. Their fear of abandonment developed from inconsistency in the responsiveness of attachment figures (Bowlby, 1969). This inconsistency resulted in the use of hyperactive attachment strategies wherein they intensified their proximity seeking behaviors to elicit a response from their attachment figure. For preoccupied adults, connection to their attachment figure (i.e., their romantic partner) is their highest priority and they often over-share information and emotions in order to achieve that feeling of connection (Hazan & Shaver, 2016). Preoccupied adults tend to fall in love easily, have more negative views of partners’ actions, overshare information and emotions, and assert their own feelings and needs without regard for their partners. They are also subject to feelings of fear, anxiety, loneliness, and low self-esteem.

The dismissive attachment style (Bartholomew, 1990) overlaps with Bowlby’s (1969) avoidant attachment style and is characterized as having high attachment avoidance and low attachment anxiety. Dismissive attachment develops in response to consistent unresponsiveness or begrudging responsiveness from an attachment figure (Hazan & Shaver, 2016; Mikulincer & Shaver, 2013). Individuals with a dismissive attachment style do not fear abandonment, but they do fear the intimacy of close relationships; they enact deactivating attachment strategies such as avoiding social contact to offset intense negative emotions. Where preoccupied adults may fall in love too easily, dismissively attached individuals may be less inclined to enter relationships at all because of their desire to avoid the vulnerability of becoming dependent on another person (Hazan & Shaver, 2016). This attachment style is associated with a pessimistic
view of relationships, avoidance of self-disclosure, and in some cases feelings of discomfort with partner’s self-disclosure.

Fearfully attached individuals are high in both attachment anxiety and attachment avoidance (Bartholomew, 1990). This means they experience both a fear of abandonment and a fear of intimacy. The development of a fearful attachment style is assumed to be a result of an individual's failure to achieve felt security using either primary or secondary attachment strategies (Mikulincer & Shaver, 2016). Because neither strategy worked, they become unclear on how to respond to stressful situations, often implementing an incoherent blend of approach and avoidance. In the end, fearfully attached individuals want to be close to their romantic partner, but assume that if they seek proximity, they will most likely be rejected and thus they avoid proximity seeking to avoid that fear of rejection (Mikulincer & Shaver, 2016). Research on adult attachment generally agrees that fearfully attached individuals are “the least secure, least trusting, and most troubled of...adults” (Mikulincer & Shaver, 2016, pp. 40).

Integrating Theories

Both family systems theory and adult attachment theory are relevant guides for the current examination of (step)parent-(step)child relationship quality. (Step)parent-(step)child relationships consistently have been found to be an important protective factor for children who experience stepfamily life. However, according to family systems theory (Minuchin, 1985; Whitechurch & Constantine, 1993), these (step)parent-(step)child relationship dyads do not develop in a vacuum, but rather in the context of a larger family system and the other subsystems located therein. In understanding the impact of other subsystems within the stepfamily, researchers and practitioners can better
understand the family relationship factors that promote or deter the development of quality (step)parent-(step)child relationships.

It is important to understand the context in which (step)parent-(step)child relationships develop because of the potential impact they may have on the development of adult attachment. Attachment researchers have noted that although parents are no longer central attachment figures in adulthood, they still hold an important place in the attachment hierarchy (Fraley & Shaver, 2000). This is because they influence young adults’ expectations and experiences in their later life relationships. Young adults’ experiences with parents teach them important lessons about their perceptions of self and others that will create the foundation from which their adult attachment (i.e., attachment to a romantic partner) will develop.

Yet little is known about the influence (step)parent-(step)child relationships have on young adult attachment. Even within the broader attachment research, few studies directly address the influence of mothers’ nurturing behaviors on adult attachment (Chopik et al., 2014; Fraley et al., 2013; Salo et al., 2011; Zayas et al., 2011). Biological parent-child relationships in post-dissolution stepfamilies are likely to experience some disruption due to both the biological parents’ relationship dissolution and the entrance of step relations into the family system. Each transition and new member adds to the complexity of these family systems as more individuals create a new array of subsystems within the overall family system. Such disruption may potentially result in challenges to achieving felt security and thus the development of attachment anxiety and avoidance which can manifest in their adult attachment.
To fill this gap, I will first identify patterns of (step)parent-(step)child relationship quality based on young adult retrospective reports of their experience in living with their stepfamily. Then I draw from family system theory’s assumption of interdependence to examine how the presence and quality of relationships shared by other family members influence young adult reports of (step)parent-(step)child relationship quality. Finally, I use attachment theory to explore how patterns of (step)parent-(step)child relationship quality are associated with the development of adult attachment anxiety and avoidance.
(Step)Parent-(Step)Child Relationships Quality

Parent-child relationships are consistently found to be the most important protective factors when it comes to child adjustment in stepfamilies (Bronstein, 2002; Coleman et al., 2013). A growing pool of studies have begun to simultaneously explore how reports of relationship quality across multiple (step)parent-(step)child dyads (i.e., with resident biological parents, resident stepparents, and nonresident biological parents) in post-divorce stepfamilies differentially influence adolescent (Berg, 2004; Jensen, 2017) and young adult well-being (Amato et al., 2016; Egginton et al., 2021; Hornstra et al., 2022; Jensen et al., 2017; Jensen & Harris, 2017; Jensen & Lippold, 2017; Pentren et al., 2018). Findings from these studies support the idea that a close relationship with multiple parental figures helps reduce the development of internalizing and externalizing behaviors in children. Taking this collective approach has contributed to our understanding of important factors related to stepfamily success, such as the idea that residency may hold more weight over behavioral outcomes than biological relatedness (Amato et al., 2016; Egginton et al., 2021; Jensen, 2017; Jensen & Harris, 2017; Jensen & Lippold, 2017). Additionally, the findings of these researchers have provided an exploration of nonresident parents, particularly nonresident fathers, within the stepfamily context.

Of the seven studies mentioned above, four used latent class analysis (LCA) to identify patterns or constellations of (step)parent-(step)child relationships and their influence on adolescents (Jensen, 2017) and on young adults (Amato et al., 2016; Egginton et al., 2021; Jensen & Lippold, 2017). LCA is a person-centered statistical
method used to identify heterogeneity within a group of individuals rather than exploring how the characteristics of those individuals relate to one another. Person-centered approaches help to combat the deficit-comparison approach that continues to pervade stepfamily research, as scholars can explore variations within this frequently stigmatized family structure. Stepfamilies are regularly compared to other family forms, particularly first-marriage two-parent families, and have consistently been associated with more negative child outcomes (Ganong & Coleman, 2017). However, the actual experiences of stepfamilies are diverse and by understanding within-group differences scholars and practitioners can identify and promote protective factors that promote positive outcomes for children, adolescents, and young adults in stepfamilies.

Of the LCA studies noted above, one was a cross-sectional exploration of adolescent (step)parent-(step)child relationships (Jensen, 2017), one was a retrospective study of young adult reports of stepfamily relationships during childhood (Egginton et al., 2021), and two were longitudinal studies that followed adolescents into young adulthood (Amato et al., 2016; Jensen & Lippold, 2017). As stated previously, there were subtle differences in the class indicators of each study. Three studies included reports of closeness with (step)parents in stepfamily families (Amato et al., 2016; Jensen, 2017; Jensen & Lippold, 2017). Additionally, Amato et al. (2016) included an indicator acknowledging whether or not the adolescents had known their nonresident father. Both of Jensen’s studies (Jensen, 2017; Jensen & Lippold, 2017) also included the quality of the stepcouple relationships as a class indicator. Finally, Egginton et al., (2021) utilized young adults’ retrospective reports of closeness, satisfaction with parenting, and communication as indicators of (step)parent-(step)child relationship quality. They were
also the only researchers to include both stepmother and stepfather families in their sample.

Class Indicators of (Step)Parent-(Step)Child Relationship Quality

For this study, I follow the example of Egginton et al. (2021) and create latent classes based on young adults’ retrospective reports of (step)parent-(step)child relationship quality which includes three features of (step)parent-(step)child relationships within stepfamilies: warmth and closeness, satisfaction with parenting, and communication. Until their study, child reports of warmth and closeness were the primary measure used to explore (step)parent-(step)child relationships (Amato et al., 2011; Baxter et al., 2006; Faber & Wittenborn, 2010; Hornstra et al., 2022; Jensen, 2017; Jensen et al., 2017; Jensen & Lippold, 2017). This is likely because perceptions of warm, close (step)parent-(step)child relationships are related to a host of positive outcomes, including more satisfaction with (step)parent-(step)child relationships (Sanner et al., 2022). However, warmth and closeness are not the only indicators of positive (step)parent-(step)child relationships.

Egginton et al. (2021) used the term involved parenting to describe the second feature of (step)parent-(step)child relationship quality. However, it is more appropriate to refer to this concept as satisfaction with parenting because the item used to measure this feature is focused more on young adults’ perceptions on whether or not their (step)parent was a good parent to them. Thus, the focus is on children’s satisfaction with the parenting they received, rather than any specific parenting behavior. Children prefer consistency in biological parents’ parenting behaviors through the transition into a stepfamily (Sanner et al., 2022), and that biological parents maintain primary authority in parenting decisions
and behaviors (Cartwright & Seymour, 2002; Coleman et al., 2013; Sanner et al., 2022). In other words, consistency and involvement in parenting tasks appear to be a key factor in children’s satisfaction with the parenting behaviors of biological parents. Stepparents, on the other hand, are more successful in establishing positive stepparent-stepchild relationships when they begin with more permissive parenting approaches and focus on creating a foundation of friendship and respect with their stepchildren (Coleman et al., 2013; Ganong & Coleman, 2017; Golish, 2003; Sanner et al., 2022). Because stepparent’s involvement in parenting is likely to shift over time, the amount of stepparent involvement that aligns with the idea of “good stepparenting” is also likely to change. Once this foundation is established children tend to be more open to stepparents shifting to more authoritative parenting patterns and greater engagement in active parenting, which promotes the development of positive stepparent-stepchild relationships. Children who are more satisfied with the parenting behaviors of their different parental figures also are likely to report feeling closer and more satisfied in each of these (step)parent-(step)child relationships (Sanner et al., 2022).

Egginton and colleagues’ (2021) final feature of positive (step)parent-(step)child relationships was communication. Communication is key to reducing boundary ambiguity, which is one of the biggest threats to adjustment in stepfamily systems as it creates confusion regarding who is and is not counted as part of the family system (Ganong & Coleman, 2017; Stewart, 2005). Although a parent may regard their new partner as part of the family system, their child may not. Similarly, a stepparent may be less likely to view a child as part of their own family system, especially if they do not share residence with that child (Doodson & Morley, 2006). Communicating expectations
about roles and relationships within stepfamilies can help to reduce this ambiguity and increase cohesion in stepfamilies (Ganong & Coleman, 2017). Furthermore, when children feel they can communicate safely and openly with their parents about what is going on in their lives they feel a greater sense of belonging in their stepfamily system (King et al., 2015) and that their parents notice and care about them (Schenck et al., 2009). This is true across all three (step)parent-(step)child relationships (Sanner et al., 2022).

In the current study, I build on the work of Egginton et al. (2021) by using young adult retrospective reports of warmth and closeness, satisfaction with parenting, and communication to identify latent classes of (step)parent-(step)child relationship quality in stepfamilies. Because the sample and class indicators are the same, I anticipate that the classes identified in this study will be similar to those identified in Egginton et al. (2021). However, because this study incorporates different predictors and outcomes than Egginton et al. (2021), it is requisite to rerun the classes to verify there are no large changes in class dispersion (Asparouhov & Muthen, 2021).

Once the classes of (step)parent-(step)child relationship quality have been identified, I will expand on previous LCA studies by exploring how family complexity, parental relationships, and the presence of a nonresident stepparent predict young adults’ membership in classes of (step)parent-(step)child relationship quality. As a final step I will explore how membership in classes of (step)parent-(step)child relationship quality influences young adult reports of adult attachment anxiety and avoidance (see Figure 1 for the analysis model). This will be the first LCA study to examine the role of (step)parent-(step)child relationship quality during childhood and adolescence on
attachment orientations in young adulthood, as prior studies have focused primarily on internalizing and externalizing outcomes. (Amato et al., 2016; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2017).

Step-Parent-(Step)Child Relationships and the Larger Stepfamily System

(Step)parent-(step)child subsystems are embedded within the larger family system, and due to the interdependent nature of family members, other family relationships will influence young adults’ membership in classes of (step)parent-(step)child relationship quality. Predictors of class membership include family complexity (i.e., the presence of full, half, and/or stepsiblings), biological parents’ coparenting, stepcouple relationship happiness, and the presence of a nonresident stepparent.

Family Complexity

The family complexity, or the presence or absence of full, half, and/or stepsiblings, is the first predictor for the current analysis (see Figure 1 for a full list of class predictors). In a recent review of sibling relationships in stepfamilies, Sanner and Jensen (2021) argue that most research tends to over-simplify the stepfamily experience by only accounting for the presence of a stepparent, and that studies should consider the combination of both parent and sibling relationships to achieve a more realistic understanding of stepfamily systems. Brown et al. (2015) also drew attention to this gap and coined the term *family complexity* to describe sibling configurations that include diverse combinations of full-, half-, and stepsibling relationships. This is separate from *family structure* which is usually defined by the number of parents in the family system and/or their relation to the children (i.e., single parent, stepparent, foster family).
In an attempt to understand stepfamily experience based on the relatedness of parents and children, stepfamily researchers have provided terms for different types of stepfamily structures including simple, complex, and hybrid stepfamilies (Garneau-Rosner & Egginton, 2019). Up to this point each of these is defined by the relationship between the parents and children within the family system (i.e., biological, shared, and stepchildren). However, these subgroups of stepfamily structure primarily focus on the parents’ perspective. If one takes a family complexity approach each substructure can be further broken down based on diverse types of sibling relationship configurations that form in these systems. For example, simple stepfamilies could include individuals with no sibling relationships and those with only full sibling relationships. Similarly, complex stepfamilies could include individuals with only stepsiblings or individuals who have both full and stepsiblings (see Table 1 for a reference).

The use of family complexity to define the family system shifts researchers focus from a parental resource and investment perspective (Ganong & Coleman, 2017; Sanner et al., 2018; Sanner & Jensen, 2021) to a sibling structure and stress perspective (Ganong & Coleman, 2017). According to the parental resource and investment approach, parents in stepfamilies are limited in the resources they can invest in (step)children (Ganong & Coleman, 2017). Essentially, the more children present in the stepfamily system, the more parental resources become diluted resulting in lower quality (step)parent-(step)child relationships. The sibling structure and stress perspective asserts that it is the combination of both the number and type of siblings in the stepfamily that influences parental investment, and thus influence the quality of the (step)parent-(step)child relationship (Ganong & Coleman, 2017). For example, two full siblings are likely to have a different
experience than two stepsiblings because the full sibling dyad developed prior to the transition into stepfamily, yet the stepsibling dyad was not created until after that transition. Whereas full siblings work to maintain their existing relationship, stepsiblings must develop one. Acknowledging the role of sibling type creates more opportunity to explore the heterogeneity of children’s experiences across different types of stepfamily systems.

Although the acknowledgement of this complexity is increasing in frequency, research directly exploring family complexity is still in its infancy (Brown et al., 2015). In a recent systematic review, Sanner et al. (2018) identified multiple studies exploring the influence of resident half- and stepsiblings on a diverse range of outcomes including family dynamics, internalizing and externalizing behaviors, family transitions, well-being, and friendships. However, few studies specifically explored how the presence of half- and/or stepsibling relationships influences parent-child relationship outcomes (Baxter, 2012; Ganong & Coleman, 1988; Leake, 2007; Schlomer et al., 2010; Stewart, 2005), and only one also included full siblings in their analysis (King et al., 2014). In general, the presence or absence of half and/or stepsiblings was not significantly related to resident (step)parent-(step)child relationship quality (Ganong & Coleman, 1988; King et al., 2015; Stewart, 2005), though one study did find that fifth grade children reported higher conflict with resident mothers who gave birth to half siblings compared to those who had mothers give birth to full siblings (Schlomer et al., 2010). When exploring only the presence or absence of stepsiblings, children reported spending less time with biological parents and reduced feelings of belonging (Leak, 2007). Findings regarding the impact of full siblings, though rare, were more positive compared to the
influence of other sibling types, such that having more full siblings was associated with closer stepfather-stepchild relationships (King et al., 2014).

The current study expands research on family complexity by exploring how the combined presence of different types of sibling relationships (i.e., full and half siblings, stepsiblings only, etc.) are associated with young adults’ retrospective reports of (step)parent-(step)child relationship quality. This expands on previous research which has primarily used the presence or absence of different sibling types to explore these relationships (Baxter, 2012; Ganong & Coleman, 1988; King et al., 2015; Leake, 2007; Schlomer et al., 2010; Stewart, 2005). With few research findings on family complexity and (step)parent-(step)child relationship quality to inform specific directional hypotheses, the current study utilizes an exploratory approach to better understand how the combined presence of different sibling relationships is associated with (step)parent-(step)child relationship quality in stepfamilies.

Biological Parents’ Coparenting Relationship

The next predictors of class membership include three facets of biological parents’ coparenting (see Figure 1 for a full list of class predictors). Coparenting occurs when two individuals share responsibility for raising and caring for a particular child or children and is typically assessed in research based on how well or poorly parents support and coordinate their childrearing tasks (Feinberg, 2003). Biological parents’ coparenting behaviors are key to successfully navigating the disequilibrium that pervades family systems in the wake of parental relationship dissolution (Jamison et al., 2014; Sobolewski & King, 2005). Although the couple may no longer consider themselves as a ‘couple’ subsystem, they are still connected as a parental subsystem. This subsystem will continue
to influence child outcomes even after one or both parents enter a new relationship (Beckmeyer et al., 2019; 2021; Ganong et al., 2017; Taanila et al., 2002). Margolin and colleagues (2001) identified three underlying dimensions of coparenting: coparenting cooperation, coparenting conflict, and triangulation. Even though these dimensions are related, each has a unique impact on child adjustment to family reconfiguration.

Coparenting cooperation and conflict. Biological parents’ implementation of cooperative coparenting strategies can act as a protective factor following their relationship dissolution. Coparenting cooperation includes (a) the degree to which parents share tasks and information related to child rearing and (b) their ability to create a context of mutual respect and loyalty (Lamela & Figueiredo, 2016; Teuber & Pinquart, 2010). This is not to say parents must be friends following their relationship dissolution, but that their actions should reflect respect for the role they each play in their child’s life (Ahrons, 2007). Cooperative coparenting requires parents to focus on their children, regulate their emotional responses, and be more particular in choosing when and how to address sensitive issues such as time with children or money (Jamison et al., 2014). According to stepfamily literature, when biological parents engage in cooperative coparenting their children experience fewer internalizing and externalizing behaviors (Amato et al., 2011; Lamela et al., 2016; Rejaan et al., 2022) and have more positive self-concept, more academic success, and fewer psychological problems (Bronstein et al., 1994). Furthermore, children reported that they felt closer to their biological parents, stepparent, grandparents, and siblings when their parents used cooperative coparenting (Ahrons, 2007).
Unlike cooperative coparenting, increased coparenting conflict has consistently been linked to poor child outcomes (Dunn, 2002; Musick & Meier, 2010). Coparenting conflict includes arguments related to childrearing as well as any actions one parent may take to undermine, criticize, or blame their child’s other parent. In a recent meta-analysis exploring the impact of coparenting following divorce, van Dijk and colleagues (2020) found that coparenting conflict was associated with multiple poor outcomes including more internalizing and externalizing behaviors, and lower social adjustment and self-esteem. Additionally, coparenting conflict was found to negatively impact the interactions between parents and children. Specifically, highly conflictual parents were more likely to be less supportive of and more hostile towards their children (van Dijk et al., 2020). They were also more likely to participate in intrusive parenting and engage in more parent-child conflict. Unsurprisingly, parents who frequently engaged in coparenting conflict also were found to have poorer parent-child relationship quality.

Though there are some findings linking biological parents’ coparenting cooperation and conflict to the resident (step)parent-(step)child relationships (i.e., resident biological parent and stepparent) within stepfamilies, it is the nonresident parent-child relationships that is both the most frequently studied parent-child relationship in stepfamily systems and the most likely to be significantly associated with coparenting cooperation and conflict (Adamsons & Johnson, 2013; Ahrons, 2007; Amato et al., 2011; Sobolewski & King, 2005; Taanila et al., 2002). More limited time spent with nonresident parents makes the quality of interactions in these parent-child dyads particularly important to developing and maintaining higher quality relationships (Adamsons & Johnson, 2013). As inferred from findings in the previous paragraph,
coparenting conflict generally is associated with lower quality parent-child interactions and may thus result in poorer nonresident parent-child relationship quality (van Dijk et al., 2020). Conversely, when parents use cooperative coparenting, nonresident fathers are more likely to remain involved with their children (Ahrons, 2007; Amato et al., 2011; Taanila et al., 2002), develop higher quality father-child relationships, and enact more responsive fathering regardless of gender, race, parents’ pre-dissolution marital status, presence of a stepfather, and socioeconomic status (Sobolewski & King, 2005).

Levels of coparenting cooperation and conflict are also found to influence the amount of access a nonresident parent has to their child. When mothers indicate that their relationship with ex-partners is characterized as having higher coparenting cooperation and low coparenting conflict, they were more likely to promote and facilitate visitation opportunities for nonresident fathers (Walper et al., 2020). Furthermore, fathers reported that they were more likely to remain involved with their children if they had cooperative coparenting relationships with the child’s mother (Emery et al., 2001; McHale et al., 2012). This means that higher coparenting conflict and higher cooperative coparenting is not only associated with less positive (step)parent-(step)child interactions, but also with more access to the child for nonresident parents.

Triangulation. Another important dimension of coparenting is triangulation. Triangulation is closely associated with coparenting conflict in that its presence is an indication of negative coparenting behaviors. However, whereas coparenting conflict primarily focuses on the conflictual interactions between parents, triangulation is a boundary violation wherein children are inappropriately drawn into parents’ conflict (Minuchin, 1974). This is reflected in behaviors such as children being used to convey
messages between parents and is generally associated with children’s feelings of being caught in loyalty binds. Children who experience triangulation are at risk of parentification and spousification by parents, both of which are developmentally inappropriate roles that are linked with a host of negative internalizing, externalizing, and relational outcomes (Kerig & Swanson, 2010). Fosco and Grych (2010) have suggested that triangulation results from poorly managed interparental conflict and that it does not require any particular level of closeness between parents and children to initiate this negative coparenting strategy.

Findings exploring the influence of triangulation on child, adolescent, and adult outcomes come primarily from divorce literature. Like other coparenting dimensions, triangulation has a significant impact on the development of internalizing and externalizing behaviors of adolescents and young adults (Schrodt & Afifi, 2007; Teubert & Pinquart, 2010). Additionally, triangulation negatively influences parent-child relationships (Afifi & Schrodt, 2003; Fosco & Grych, 2010; Teubert & Pinquart, 2010). Experiences of being caught between parents during parental conflict are associated with lower family satisfaction and mental health (Schrodt & Afifi, 2007), a higher likelihood of avoiding parents (Afifi & Schrodt, 2003), feelings of self-blame, and diminishing parent-adolescent relationships (Fosco & Grych, 2010).

The association between triangulation and parent-child relationships is likely to continue into stepfamily life in ways similar to coparenting conflict (Ganong, Coleman, & Jamison, 2011). The entrance of a stepparent has been linked to an increase in conflict between biological parents (Ganong & Coleman, 2017). This increase in coparenting conflict may lead them to be more likely to use their children as messengers to avoid
interactions with the other parent. Such actions may exacerbate the negative impact that triangulation had on parent-child relationship quality before parental repartnering (Afifi & Schrodt, 2003; Fosco & Grych, 2010; Schrodt & Afifi, 2007; Teubert & Pinquart, 2010) resulting in children pulling further away from their biological parents and reporting lower quality biological parent-child relationships.

The influence of the triangulation on the resident stepparent-stepchild relationship is more difficult to determine. However, stepfamily literature posits that the resident biological parent-child relationship quality has a strong, positive association with the resident stepparent-stepchild relationship (Ganong & Colemen, 2017; Garneau-Rosner & Egginton, 2019). This can also be seen in the literature using LCA where no class existed wherein a child reported being closer/having a higher quality relationship with their resident stepparent in comparison to their resident biological parent (Amato et al., 2015; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2017). For example, if you explore Figure 2 which reflects the classes reported by Egginton and colleagues (2021), each of the resident (step)parent-(step)child relationships were generally similar to each other with the stepparent-stepchild relationship always having lower reported quality than the resident biological parent-child relationship. It may be that triangulation negatively influences a child's perception of their stepparent-stepchild relationship because their experience with triangulation has created within them an expectation that relationships with parents are unsafe.

Additionally, children who have experienced spousification and/or parentification, both of which are linked to triangulation (Kerig & Swanson, 2010), are often enmeshed with the parent who is spousifying or parentifying them (Love &
Robinson, 1990). Enmeshment will often exacerbate the perception that stepparents are a threat to the resident biological parent-child relationship. Especially if parents very suddenly distance themselves from their children as they pursue their relationship with their new partner. However, it is possible that over time a stepparent may become a protective factor by doing things such as advocating for the child to be left out of conflict, promoting strong ties between the biological parents and their children when appropriate and safe, or developing their own higher quality relationship with the stepchild over time.

The current study will explore how the coparenting dimensions of cooperation, conflict, and triangulation among biological parents influence the relationship quality young adults report having had with their resident biological parent, resident stepparent, and nonresident biological parent. I hypothesize that young adults who report more cooperative coparenting between biological parents will also be more likely to report higher quality relationships with all three parental figures. I also hypothesize that young adults who report lower coparenting conflict will be more likely to report higher quality relationships with all three parental figures. Finally, I hypothesize that, similar to coparenting conflict, lower reports of triangulation will be associated with higher quality relationships with all three parental figures.

Stepcouple Relationship Happiness

The next predictor of class membership is stepcouple relationship happiness (see Figure 1 for a full list of class predictors). Clinicians argue that a strong stepcouple bond is fundamental to a successful stepfamily experience (Ganong & Coleman, 2017), yet establishing and maintaining a strong couple relationship can be particularly challenging in stepfamilies. Partners with children in non-stepfamilies have a period of time together
to establish their couple relationship and identity before children enter the family system. Conversely, in stepcouple relationships, it is the biological parent-child relationships that have existed the longest. As a result, stepcouples face unique challenges as they work to balance the development and maintenance of (step)parent-(step)child relationships with the development of their own couple identity.

Research shows that stepcouple relationship happiness (King, 2006), relationship quality (Ganong et al., 2019; King et al., 2014; King & Lindstrom, 2016), and relationship closeness (King et al., 2014) positively influences the development of stepparent-stepchild relationships. Marsiglio (2004) indicated that a positive relationship with a new partner may motivate stepfathers to establish stronger stepparent-stepchild ties. Additionally, children in stepfather families who observe a positive relationship between their stepfather and mother are more accepting of the stepfather (Ganong, Coleman, & Jamison, 2011). Although most prior research in this area has primarily focused on stepfather families, Jensen and Ganong (2020) found that greater stepcouple relationship quality also benefited the stepmother-stepchild relationship.

Unlike the stepparent-stepchild relationship, there is no research directly linking the quality of the resident biological parent-child relationship to perceived happiness in the stepcouple relationship. This gap is not altogether surprising considering the resident biological parent-child relationship has received little direct attention in the stepfamily literature (Coleman et al., 2013). However, due to both the circular causality of interactions within the family system and the interconnected nature of its individuals and dyads, factors that positively impact stepparent-stepchild relationships are also likely to have a positive impact on resident biological parent-child relationships. Similar to non-
stepfamily specific research, a strong bond between members of the stepcouple may motivate resident biological parents to have more positive interactions with their children and thus better maintain or improve their parent-child relationship quality (Walper et al., 2020).

The impact of stepcouple relationship happiness on the nonresident biological parent-child relationship also is not well understood. However, King (2006) did explore the association between adolescents’ perceptions of stepcouple relationship happiness and their reported closeness to their father figures (i.e., their resident stepfathers and nonresident biological fathers). First, King (2006) divided their sample into four patterns based on the reported closeness to both father figures: close to both father figures, close to neither, close to biological father only, and close to stepfather only. They then tested to see if adolescent perceptions of stepcouple relationship happiness were associated with any particular patterns of (step)father-(step)child closeness. The findings indicate that stepcouple relationship happiness was significantly associated only with groups that included a close stepfather-stepchild relationship (i.e., close to both and close to stepfather only). These findings suggest that residence may be an important factor in the influence stepcouple relationship happiness may have on (step)parent-(step)child relationship in stepfamilies.

It is possible that the stepcouple relationship has greater influence on the resident (step)parent-(step)child relationship due to the proximity and overlapping membership of these subsystems. In other words, the resident (step)parent-(step)child relationships are being developed and maintained in the same space that the stepcouple is attempting to develop and maintain their own relationship. Interactions between individuals and dyads
in these subsystems (i.e., the child and their resident (step)parents) will be more frequent due to the shared residence and that proximity may result in a stronger association between stepcouple relationship happiness and resident (step)parent-(step)child relationship quality. Nonresident parents often interact with their children in a separate space. Additionally, the resident biological parent and resident stepparent are members of both the stepcouple subsystem and the resident (step)parent-(step)child subsystems. This overlapping membership in addition to the frequency of encounters between subsystems will likely result in resident (step)parent-(step)child relationships being more strongly influenced by stepcouple relationship happiness when compared to the nonresident parent-child relationship. This does not mean that the stepcouple relationship holds no influence over the nonresident parent-child relationship quality, rather that its influence may be weaker because the nonresident parent-child subsystem does not interact or overlap with the stepcouple system as frequently.

I hypothesize that stepcouple relationship happiness will significantly differentiate classes based on the relationship quality young adults report having with the resident (step)parents. In other words, reports of stepcouple relationship happiness will be significantly associated with resident (step)parent-(step)child relationship quality.

The Presence of a Nonresident Stepparent

The final predictor of class membership is the presence of a nonresident stepparent (see Figure 1 for a full list of class predictors). Research on nonresident stepparents has primarily, if not exclusively, focused on nonresident stepmother families (i.e., nonresident father and nonresident stepmother; Doodson & Morley, 2006; Henry & McCue, 2009; Weaver & Coleman, 2005). Although residency appears to be particularly
important for child outcomes in stepfamilies (Amato et al., 2016; Egginton et al., 2021; Jensen, 2017; Jensen & Harris, 2017), nonresident stepparents are part of the stepfamily system by virtue of their relationship with the nonresident parent. Thus, the presence of a nonresident stepparent may influence other (step)child-(step)parent subsystems, especially those involving the nonresident parent. For example, research indicates that when nonresident fathers remarry, they often focus more attention on the partner and children with whom they reside, whether or not they are biologically related to them (Ganong & Coleman, 2017). Unfortunately, this investment comes at the expense of their relationships with their nonresident biological child(ren).

On the other hand, nonresident stepmothers may play a positive role in their partner’s investment in his nonresident children. For example, adult children who were interviewed about their retrospective experience with nonresident stepmothers indicated that their stepmother took on a “kinkeeper” role (Weaver & Coleman, 2005), meaning she took responsibility for maintaining the relationship between her partner and his child(ren). Participant responses were mixed with some feeling that their nonresident stepmother was coming between them and their nonresident father, and others feeling their relationship with their nonresident father benefitted from their stepmother’s intercession (Weaver & Coleman, 2005).

The proximity of the nonresident stepparent to the nonresident biological parent-child relationship dyad may make their presence more likely to significantly influence the quality of the nonresident biological parent-child relationship. However, the dearth of research on nonresident stepfathers, and mixed findings in the research exploring nonresident stepmothers, make it difficult to develop a specific hypothesis regarding the
direction of that influence. Thus, the current study takes an exploratory approach to better understand how the presence of a nonresident parent influences (step)parent-(step)child relationship quality.

(Step)Parent-(Step)Child Relationships and Young Adult Attachment

Membership in different classes of (step)parent-(step)child relationship quality has been found to differentially influence adolescent (Amato et al., 2016; Jensen, 2017; Jensen & Lippold, 2017) and young adult (Egginton et al., 2021) behavioral outcomes. In this study, I will test to see if class membership, or in other words the quality of the relationship young adults report having with their (step)parents during childhood and adolescence, also differentially influences their reports of adult attachment anxiety and avoidance. Thus, at this point the classes shift from being outcomes in the model to being predictors (see Figure 1 for the analysis model).

The Impact of Attachment in Young Adulthood

As a developmental stage, young adulthood is a period of identity exploration beyond adolescence (Arnett, 2000). These years are a time to gain education, initiate or identify potential careers, and to explore romantic relationships and sexuality (Arnett, 2000; Halpern & Kaestle, 2014). Mikulincer and Shaver (2016) have asserted that attachment has an important influence on young adults’ experience with their social environment which includes their experiences with friends, partners, work, and community. Specifically, the cognitive elements of attachment styles (i.e., working models and attachment strategies) influence how individuals “...appraise themselves, relationship partners, social groups, and humanity in general” (Mikulincer & Shaver, 2016, pp. 147).
Securely attached adults have developed positive working models which result in more positive partner affect, more positive communication and conflict management skills and more satisfaction with their work life (Mikulincer & Shaver, 2013; Richard & Schat, 2011). On the other hand, adults who presented more attachment anxiety often fluctuate between feelings of unworthiness in relationships and a preoccupation with winning partner approval that result in feelings of fear, loneliness and anxiety, low self-esteem, and jealousy (Hazan & Shaver, 1994; Mikulincer & Shaver, 2016). Finally, attachment styles high in avoidance of intimacy increased the likelihood of self-exacerbating cycles wherein adults vacillate between self-criticism due to their inability to achieve unrealistic expectations of perfection and defensive self enhancement wherein they inflate themselves while repressing threats to their ideal image (Mikulincer & Shaver, 2016). This need to avoid threats to their self-image leads avoidant adults to focus on autonomy in their relationships, making them less likely to either seek out or offer intimacy and more likely to ignore partners’ input due to perceptions of partner inferiority. Taken together, research on the impact of adult attachment on one’s success and well-being illustrates the need for more research to understand factors that contribute to adult attachment style, particularly during the transition into adulthood.

Parent-Child Relationships and Young Adult Attachment

As stated above, attachment researchers have developed two distinct programs of research related to the exploration of attachment in adulthood (Bartholomew & Shaver, 1998; Ravitz et al., 2010). One explores how infant attachment (i.e., attachment to a childhood caregiver, most often a parent) influences the current experiences of adults. The second approach explores adolescent and adult attachment to adult attachment
figures (i.e., friends, mentors, romantic partners, etc.; Bartholomew & Shaver, 1998; Ravitz et al., 2010). The underlying assumption of the latter approach is that as children pass into adolescence and adulthood, their attachment figures shift to include friends and romantic partners. Although the attachment figures themselves may change, caregiver-child interactions in childhood are still likely to affect children as they continue into young adulthood (Fraley, 2019; Hazan & Shaver, 1994). A few researchers have explored this connection, though not within the stepfamily context. Four studies have examined the influence of mother-child interactions on young adult attachment anxiety and avoidance. Chopik et al. (2014) found that mothers’ self-reports of nurturing behaviors at age 3 were associated with larger declines in adult attachment avoidance between the ages of 14 and 23. Salo et al. (2011) similarly found that mother reports of nurturing behavior during infancy was associated with lower adult attachment avoidance 21 to 27 years later. The work of Zayas et al. (2011) further supports the connection between mother nurturance and adult attachment, though their findings indicate that more mother nurturance is significantly related to both lower attachment avoidance and lower attachment anxiety in young adulthood. Similarly, Fraley et al.’s (2013) findings indicate that adult attachment anxiety was associated with mothers’ depression, whereas attachment avoidance was associated with changes in mother sensitivity across time.

Kennedy (1999) explored how mothers’ and fathers’ promotion or dissuasion of independence behaviors and their acceptance of their child(ren) influenced their children’s adult attachment style. Results indicate that young adults were less likely to develop fearful adult attachment and more likely to develop secure adult attachment when their parents were accepting of and supported their independence. Finally, Dinero
et al. (2008; 2022) found that the quality of interactions between parents and teens predicted romantic attachment anxiety and avoidance in the transition from adolescence to young adulthood with more positive parent-child interactions being associated with lower adult attachment anxiety and avoidance. However, parent-child interactions did not significantly predict changes in attachment between the ages of 25 and 31.

Taken together, findings from prior studies suggest a connection between early parenting behaviors and adult romantic attachment. Additionally, of the studies listed in the previous paragraph, only two gave any indication of family structure in their study samples (Dinero et al., 2008; 2022). In both cases they indicated that their sample included two-parent and single parent families without exploration of transitions that preceded these family structures (e.g., divorce, parental death, first marriage, remarriage, etc.). The current study builds upon the extant literature by exploring how young adult reports of (step)parent-(step)child relationship quality (i.e., closeness, satisfaction with parenting, and communication) within the specific context of post-dissolution stepfamilies influence young adult attachment anxiety and avoidance in young adulthood.

Attachment and Stepfamilies

Although general research on parent-child relationships has established a connection between parent-child relationships and later life relational outcomes, including adult attachment, it remains important to examine the same connection within the context of the stepfamily. One reason is because the stepfamily parental subsystem is different from the parental subsystem of non-stepfamilies due to the presence of a non-biological parental figure (i.e., the stepparent). Stepparents can enter the family system at any point in a stepchild’s lifespan, including infancy, childhood, adolescence, and
adulthood. The timing of their entrance, especially when it occurs during childhood or adolescence, which are key development periods for social development and social learning, can result in the stepparent holding a lasting impact on stepchildren’s outcomes across the lifespan.

Furthermore, in the case of the present study, stepfamily formation was preceded by parental relationship dissolution, meaning that parents either dissolved a cohabiting relationship or divorced. Each additional transition has been associated with an increased likelihood that a child develops negative internalizing and externalizing behaviors (Hetherington et al., 1985). However, more nuanced research notes the impact of parents’ relationship dissolution on adult attachment is largely dependent on the post-divorce relationships, including the quality of the parent-child relationships (Amato, 2010; Brennan & Shaver, 1994; Hazan & Shaver, 1987; Smith-Exteberria et al., 2020). This is not surprising when considering the vast array of experiences that individuals have following biological parental relationship dissolution. It is likely that the ability of at least one parent to maintain a positive and connected relationship, or a stepparent’s efforts to develop and maintain such a relationship, may act as a protective factor in reducing young adults’ potential of developing attachment anxiety and avoidance (Hayashi & Strickland, 1998, Smith-Exteberria, 2020; Washington, 2012).

Thus far, research offers little information on the development of adult attachment anxiety and avoidance in stepfamilies. Of the existing studies, one included measures of infant attachment (Love & Murdock, 2004), two explored adult attachment but used measures that did not identify a specific attachment figure (Ganong et al., 2020; Planitz et al., 2009), and the final study explored both infant and romantic attachment (Stanish,
Ganong et al. (2020) focused on stepparents’ adult attachment rather than children’s adult attachment, which left only two studies that explored the attachment styles of young adults who lived in stepfamilies as children (Planitz et al., 2009; Stanish, 2016). Both studies compared adult children from stepfamilies to those from two-parent, non-stepfamily systems and found that adult children in stepfamilies were more likely to develop insecure attachment (Planitz et al., 2009; Stanish, 2016). However, neither of these studies have explored important differences within stepfamilies that may help both researchers and practitioners better identify factors that guard against the development of attachment anxiety and avoidance.

To address this gap, I explored how membership in different patterns of (step)parent-(step)child relationship quality influence young adult reports of adult attachment anxiety and avoidance. I hypothesize that reports of higher quality (step)parent-(step)child relationships will be associated with lower attachment anxiety and avoidance.

Class Differences on Attachment versus Behavioral Outcomes

Although each of the previously mentioned LCA studies took slightly different approaches to class indicators, each study identified a class in which adolescents or young adults reported close/higher-quality relationships with all three parental figures (i.e., resident biological, resident stepparent, and nonresident biological parent) and a class in which participants reported close/higher-quality relationships with only their resident parental figures (i.e., resident biological parent and resident stepparent; Amato et al., 2016; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2017). These two classes did not significantly differ from each other on any outcomes and both were
associated with the fewest internalizing and externalizing behavioral outcomes. In other
words, the quality of the nonresident parent-child relationship did not appear to hold as
much influence on these outcomes as the quality of the resident (step)parent-(step)child
relationships. However, the quality of relationships with nonresident parents may be
more strongly associated with relational outcomes like adult attachment, as the parent’s
absence or the decline of their involvement with their children may result in feelings of
abandonment which manifest in the development of attachment anxiety or avoidance

In one of the previously mentioned studies comparing attachment in stepfamilies
and two-parent, non-stepfamily systems, Planitz and colleagues (2009) found that reports
of biological father-child relationship quality mediated the relationship between family
type and child attachment. In other words, participant reports of insecure attachment
reflected their satisfaction with the relationship they had with their fathers, whether or not
they resided with them. This is also reflected in divorce literature, in which more contact
with nonresident fathers was associated with lower reports of attachment anxiety

My second hypothesis regarding attachment outcomes is that the all higher class
(i.e., the class with higher quality relationships with all three parental figures) and the
higher resident class (i.e., the class with higher quality relationships with only the
resident parents) will significantly differ from each other when it comes to adult
attachment outcomes. Specifically, young adults in the all higher class will report lower
adult attachment anxiety and lower adult attachment avoidance than those in the higher
resident class.
CHAPTER 4: CURRENT STUDY

This study uses cross-sectional, retrospective reports of young adults’ experiences in stepfamilies during childhood and adolescence. Retrospective reports may be considered less ideal than prospective study designs because of the potential bias created by current experiences (Scott & Alwin, 1998). For example, at the time a young adult responded to their survey, they might have a positive relationship with a (step)parent that affects how they interpret or remember the interactions with that (step)parent during childhood. However, there are instances where time, monetary, and ethical constraints make this type of data necessary for research (Scott & Alwin, 1998). Additionally, retrospective data is considered appropriate in studies where participants are asked to reflect on how previous behaviors influence current behaviors. This makes retrospective data appropriate for the current analysis given the interest in examining how experiences in childhood are affecting present assumptions and behaviors.

Stepfamily research exploring the impact of (step)parent-(step)child relationships on young adult outcomes is sparse and has generally failed to comprehensively consider the role of the broader stepfamily system in the development of these vital (step)parent-(step)child relationships. It has also primarily focused on behavioral and academic outcomes, leaving important questions regarding relational oriented outcomes unanswered. To fill these gaps, this study will address two important research questions:

RQ1: How do stepfamily complexity (e.g., the presence of full, half, and/or stepsiblings), biological parental relationships (e.g., cooperative coparenting, interparental conflict, and triangulation), stepcouple relationship happiness, and the presence of a nonresident stepparent influence membership in different classes
of (step)parent-(step)child relationship quality in stepfamilies? When past literature is sufficient to support proposed directions I explored directional hypotheses; for others, direction of effects were more exploratory.

RQ1a: How does family complexity (i.e., the presence of different sibling types) influence (step)parent-(step)child relationship quality?

H1a: Reports of higher coparenting cooperation will be associated with higher quality (step)parent-(step)child relationships with all three parental figures.

H1b: Reports of higher coparenting conflict will be associated with lower quality (step)parent-(step)child relationships with all three parental figures.

H1c: Reports of lower triangulation will be associated with higher quality (step)parent-(step)child relationships with all three parental figures.

H1d: Reports of higher stepcouple relationship happiness will be positively associated with higher quality resident (step)parent-(step)child relationships (i.e., resident parent and resident stepparent).

H1f: How will the presence of a nonresident stepparent influence the quality of the (step)parent-(step)child relationships in stepfamilies?

RQ2: How are patterns of (step)parent-(step)child relationships in stepfamilies associated with young adult reports of attachment avoidance and anxiety?

RQ2a: Reports of higher quality (step)parent-(step)child relationships will be associated with lower levels of attachment anxiety and avoidance.
RQ2b: Those who report higher quality relationships with only their resident parents will be more likely to report higher attachment avoidance and anxiety than those who report close relationships with all three parental figures.
CHAPTER 5: METHODS

Sample

Data were collected through the Stepfamily Experience Project (STEP; Jensen et al., 2015), a cross-sectional study exploring young adult retrospective reports of their lived experience in stepfamilies between the ages of 0 and 18. Qualtrics, an American research firm specializing in data collection for universities, non-profits, and corporations, procured the sample and has been confirmed to be a valid source for collecting data (e.g., Boas et al., 2020; Douglas et al., 2023). Qualtrics used a quota sampling method to ensure that the socio-demographics of the sample matched US Census estimates of young adult racial/ethnic composition and educational attainment. Having a large national quota sample allowed for the representation of young adults from diverse education experiences, incomes, racial backgrounds, stepfamily structures, including not only stepfather and stepmother families, but also both cohabiting and married stepfamilies.

The study sample (see Table 2) included 1,159 young adults, ages 18 to 30 ($M = 24.78, SD = 3.91$) from post-dissolution stepfamilies. Of the respondents, 675 were female (58%). Nearly half the sample reported having participated in some college (42.8%) or completing a college degree (31.8%). The sample primarily consisted of White, non-Hispanic young adults (60%), with 9% Black, 8% Hispanic, 2% Asian, 1% Native American, and 20% reporting mixed ethnicity. Many of the participants reported no income (11%), another 31% reported an annual income below $20,000, 43% were between $20,000 and $59,999, and the remainder made over $60,000 a year. More than half the participants reported being in a current romantic relationship with 334 (29%)
reporting that they are currently married and 406 (35%) reporting a committed relationship (e.g., engaged, exclusively dating, or living with a partner). The rest (36%) reported they were not currently in a relationship.

As seen in Table 3, all young adults transitioned into their stepfamilies between age 0 and 18 (\(M = 8.6, SD = 4.6\)) and resided in their stepfamilies for an average of 10.44 years (\(SD = 5.67\)). Sixty-nine percent reported having a resident stepfather versus a resident stepmother (31%), and 79% reported that their resident biological parent was married to their stepparent. Regarding resident family complexity (i.e., resident sibling relationships), eight categories of sibling relationships were found including: no siblings (8%), full siblings only (16%), stepsiblings only (7%), half siblings only (12%), full and half siblings (11%), full and stepsiblings (19%), half and stepsiblings (8%), and all sibling types (19%). On average participants reported spending about 24% of any given month with their nonresident parent. Additionally, 339 (29%) participants reported having a nonresident stepparent. Of those with a nonresident parent, 71% had a nonresident stepmother, and 75% reported their nonresident biological parent was married to their nonresident stepparent.

Measures

Latent Class (Step)Parent-(Step)Child Relationship Quality Indicators

Scales measuring parent-child relationship quality with (a) resident biological parents, (b) resident stepparents, and (c) nonresident biological parents were based on reports of important parental interaction or behaviors found to be particularly influential to parent-child relationships and child outcomes in stepfamilies. Specifically, I operationalized parent-child relationship quality using young adult’s perceptions of
warmth and closeness, satisfaction with parenting, and comfort related to communicating with parental figures. These behaviors have been used to understand parent-child relationships within stepfamilies and each has consistently been connected to more positive child, adolescent, and young adult outcomes (Ganong & Coleman, 2017; Sanner et al., 2022).

Many parenting researchers have identified parental warmth and closeness to be the most critical components of parenting (see Goa & Cummings, 2019; Nomaguchi & Milkie, 2020; Taraban & Shaw, 2018). Thus, it is unsurprising that warmth and closeness are frequently used as measures of parent-child relationships in a variety of research methodologies (Berg, 2004; Hornstra et al., 2021; Jensen & Harris, 2017; Jensen et al., 2017; Petren et al., 2018) including studies utilizing LCA (Amato et al., 2016; Jensen, 2017; Jensen & Lippold, 2017). However, perceptions of warmth and closeness are not the only important facets of parent-child relationships. Children’s perceptions of satisfaction with parenting are also influential to child outcomes (Cartwright & Seymour, 2002; Coleman et al., 2013; Coleman & Ganong, 2017; Sanner et al., 2022). Children who are more satisfied with their stepparents’ parenting are also more likely to report feeling closer and more satisfied in their parent-child relationships. Lastly, parent-child relationship quality is heavily influenced by communication (Sanner et al., 2022). When children feel they can communicate safely and openly with parental figures they are also more likely to experience reduced relationship ambiguity (Stewart, 2005), greater feelings of belonging (King et al., 2015), and feel parents notice and care about their well-being (Schenck et al., 2009).
Three separate 3-item scales were calculated to measure the relationship quality between young adults and their resident biological parents ($M = 3.72$, $SD = 1.21$), resident stepparents ($M = 3.19$, $SD = 1.34$), and nonresident biological parents ($M = 3.06$, $SD = 1.42$) respectively. Questions for the scales came from the Relationship Evaluation of the Individual, Family, Cultural, and Couple Contexts Study (RELATE; Busby et al., 2001). Each scale consisted of three one-item indicators reflecting the aforementioned dimensions of parent-child relationship quality: warmth/closeness, satisfaction with parenting, and communication. In reference to their experiences prior to age 18, young adults were asked to what degree they agreed with statements referring to each to their three parents in turn: “My [resident/nonresident biological/step] parent maintained/developed a close and warm relationship with me,” “My [resident/nonresident biological/step] parent was a good parent to me,” and “I was able to communicate openly and safely with my [resident/nonresident biological/step] parent.” Reporting a high quality relationship with a parental figure meant that the young adult perceived that their (step)parent worked to maintain/develop a close relationship with them, was a good parent, and was safe to communicate with. Response options ranged from $1 = strongly disagree$ to $5 = strongly agree$, and all items were coded such that higher values indicated higher quality parent-child relationships. Cronbach’s alpha reflected high reliability for young adults’ reports about the resident biological parent ($\alpha = .89$), resident stepparent ($\alpha = .93$), and the nonresident parent ($\alpha = .94$).

Predictors of (Step)Parent-(Step)Child Relationship Quality

Four predictors were included in this analysis: family complexity (i.e., the presence of full, half, and/or stepsiblings), coparenting between biological parents (i.e.,
cooperation, conflict, and triangulation), stepcouple happiness, and the presence of a nonresident stepparent.

Family complexity. In creating the family complexity variable, the first step was to create three dummy variables indicating the presence (1 = *yes*) or absence (0 = *no*) of full siblings, half siblings, and stepsiblings respectively. Next, the dummy variables were used to create two- and three-way interaction terms representing the possible sibling-type combinations (e.g., full and half siblings; full, half, and stepsiblings, etc.) to examine how each type of sibling configuration is associated with the likelihood of membership in each of the identified classes of (step)parent-(step)child relationship quality. This resulted in 3 two-way interactions (i.e., full and half siblings, full and stepsiblings, and half and stepsiblings) and 1 three-way interaction (i.e., full, half, and stepsiblings).

Coparenting. Margonlin et al.’s (2001) Coparenting Questionnaire was originally designed for parents currently in a relationship with one another (i.e., married or living together), thus modifications were made to wording so that young adults could report on the behaviors of their mothers and fathers in post-divorce stepfamilies. In some cases, this modification prompted the addition/repetition of questions so that young adults could respond based on both mother and father coparenting behaviors. For example, the statement “My spouse says cruel or hurtful things about me in front of this child” was reworded to two separate items: “My biological mother said cruel and hurtful things about my biological father in front of me” and “My biological father said cruel and hurtful thing about my biological mother in front of me.”

Participants were presented with a series of questions regarding coparenting interactions between their biological parents. Responses were given on a 5-point Likert
scale ranging from 1 = never true to 5 = always true. Seven statements on cooperation explored whether biological parents supported each other’s discipline decisions and asked each other opinions on issues related to parenting. Coparenting conflict was assessed via five statements about whether parents held different standards for the participant’s behavior as a child, argued about the participants, or attempted to undermine each other’s parenting. Finally, seven statements related to triangulation explored whether parents said hurtful things about each other or tried to get the young adult to take sides when they argued. All measures were coded so that higher scores reflected higher levels of the respective construct. Cronbach’s alpha reflected high reliability for cooperation (α = .93), conflict (α = .77), and triangulation (α = .90).

There were two important limitations with using the Co-Parenting Questionnaire (Margolin et al., 2001). First, this scale was designed to explore coparenting within first-married, two-parent family systems. As such, it falls short of exploring other family structures due to the underlying assumption that parents live together while performing some of the indicated tasks. Because it focuses on coparents who also co-reside with each other, it fails to capture unique challenges that often occur in a post-dissolution relationships, such as determining agreed upon rules and routines across households and the fact that ex-partners now know less about each other due to their relationship breakup. Additionally, although questions were adjusted to be presented to young adult children, it is possible that there are both subtle and not so subtle differences in the identification of coparenting behaviors when it comes to children evaluating parents versus parents evaluating each other.
Stepcouple relationship happiness. The stepcouple relationship happiness measure was calculated using three questions adjusted from the RELATE Questionnaire (Busby et al., 2011). The original questions explored adults’ perceptions of their biological parents’ relationship happiness. This was adjusted to inquire about the happiness of the resident biological parent and resident stepparent. Participants reported on a 5-point scale how much they agreed or disagreed with the following statements: “My biological parent was happy in his/her romantic relationship,” “My stepparent was happy in his/her relationship,” and “I would like my future/current romantic relationship to be like the relationship my bio-parent and stepparent have/had together.” Higher scores indicate more perceived happiness in the resident stepcouple relationship (α = .81).

Nonresident stepparent. For the final predictor participants were asked a single question about whether or not they had a nonresident stepparent (1 = yes; 0 = no).

Adult Attachment Outcomes

For the current study, participants were asked to answer on a 7-point scale how much they agreed or disagreed (1 = strongly disagree; 7 = strongly agree) with a list of 17 items from the original AAQ scale (Simpson et al., 1996). Nine items measured attachment anxiety, such as: “I often worry that my partner(s) don’t really love me,” “I often want to merge completely with others, and this desire sometimes scares them,” and “I usually want more closeness and intimacy than others do.” Eight items assessed attachment avoidance, such as: “I’m not very comfortable having to depend on other people,” “I don’t like people getting too close to me,” and “Others often want me to be more intimate than I feel comfortable being.” Items were coded so that higher values
indicated higher attachment anxiety or avoidance. Cronbach’s alpha reflected high reliability for both attachment anxiety ($\alpha = .81$) and attachment avoidance ($\alpha = .82$).
CHAPTER 6: ANALYSIS PLAN

This study used the three-step model of latent class analysis (LCA; Masyn, 2017). LCA is particularly useful in exploring heterogeneity within groups (McCutcheon, 1987). Using a top-down approach it breaks down the information (i.e., the reports of parent-child relationship quality) and uses calculated probabilities to identify patterns within the data. These patterns, or classes, help explain observed covariation between indicators. Estimations of the probability of class membership help account for uncertainty of classification in the between-class comparisons.

In the first step, a full enumeration process was conducted in Mplus with only the latent class indicators to determine a final unconditional latent class model (Masyn, 2017). This study builds on the work of a previous study conducted by Egginton et al. (2021). These researchers also conducted an LCA with the current study’s sample and (step)parent-(step)child relationship quality indicators. They used stepwise latent class modeling that employs BCH (Bolck et al., 2004) weights with fixed classification errors (Masyn, 2017). However, some BCH values resulted in negative weight solutions not admissible to LCA so instead they used the Mplus training command to use class probabilities instead of BCH weights to ascertain class membership. There was very little difference in outcomes using probabilities versus BCH weights. As similar negative values were present in the current analysis, I chose to follow their example by also using the training command.

Because predictors are included in this model it was necessary to test for direct effects between predictors and individual class indicators in order to ensure that the assumption of conditional independence was met for my model (Asparouhov & Muthen,
The addition of predictors has the potential to distort latent class formation and violate assumptions of conditional independence if there are direct effects between the predictors and the individual latent class indicators that are not controlled for in the model. Methodologists have emphasized that a failure to meet the assumption of conditional independence can lead to distorted findings related to both the dispersion of latent class membership, as well as the results related to both predictors and distal outcomes included in the model (Vermunt & Magidson, 2021). Additionally, the absence of tests for direct effects lead to instability in parameter estimates (Janssen et al., 2019) and ultimately result in biased estimates of class membership (Masyn, 2017). Although some researchers have found that including direct effects between covariates and latent class indicators has little influence on class identification and dispersion (Kim et al., 2016), it is prudent to use a more cautious approach in the current study in order to increase confidence in the class identification. Ultimately, I followed Vermunt and Magidson’s (2021) model building approach in which they broke step one of the three-step method into an additional three substeps.

Substep 1 included completing the full class enumeration process referenced above to determine the ideal number of classes. In substep 2, predictors were added to the model one at a time to identify any direct effects between the predictors and the individual class indicators. Then the class identification process was completed by running a final model that included all significant direct effects between predictors and latent class indicators. This final model was then used to complete the second step of the three-step LCA approach, which involves determining the final classifications for the latent classes. BCH weights and probabilities were then calculated and exported.
In the third and final step of the three-step LCA approach, latent classes of parent-child relationships were regressed on the independent and control variables (Masyn, 2017). These variables included family complexity, biological parental coparenting (cooperation, conflict, and triangulation), stepcouple relationship happiness, and the presence or absence of a nonresident stepparent. Due to the use of interaction terms for family complexity multiple models were tested at this point. The first included only main effects, the next model included main effects and two-way interaction and a final model included the main effects and two- and three-way interactions. Because the three-way interaction term was not significant, which will be discussed in more detail in the results, the final model included only the main effects and two-way interactions.

Next, attachment anxiety and attachment avoidance outcomes were added to the model, and I tested for direct effects between predictors and outcomes. All significant relationships between predictors and outcomes were added to the final model. To evaluate between-class differences in attachment outcomes, I constrained the means to be the same across all classes and used Wald’s test to determine if constraining resulted in worsened model fit. When the test indicated significant differences between classes I conducted more specific t-tests, once again using Wald’s test to explore differences between individual classes (e.g., differences between class 1 and class 4) in regard to attachment outcomes.
CHAPTER 7: RESULTS

Correlations of All Study Variables

A correlation analysis was run between class indicators, independent variables, and distal outcomes. Due to the number of variables included in this study, only significant correlations associated with class indicators (i.e., (step)parent-(step)child relationships quality) are described in this section, however all correlation coefficients can be found in Table 4. The presence of full siblings and the presence of a nonresident stepparent were the only two predictors not significantly associated with any class indicators.

Young adults with half siblings reported lower quality relationships with their resident biological parent ($r = -.103, p < .01$), resident stepparent ($r = -.084, p < .01$), and nonresident biological parent ($r = -.060, p < .05$). The presence of stepsiblings was also associated with higher nonresident biological parent-child relationship quality ($r = .106, p < .01$). Coparenting behaviors were significantly correlated with the quality of all three (step)parent-(step)child relationships. Higher coparenting cooperation was positively associated with the quality of the parent-child relationship between young adults and their resident biological parent ($r = .308, p < .001$), resident stepparent ($r = .278, p < .001$), and nonresident biological parent ($r = .547, p < .001$). Conversely coparenting conflict and triangulation were negatively associated with the resident biological parent-child relationship quality ($r = -.333, p < .001$; $r = -.378, p < .001$), the resident stepparent-stepchild relationship quality ($r = -.215, p < .001$; $r = -.202, p < .001$), and the nonresident biological parent-child relationship quality ($r = -.286, p < .001$; $r = -.085, p < .01$). Finally, higher stepcouple relationship happiness was associated with higher parent-
child relationship quality for the resident biological parent-child relationship \((r = .427, p < .001) \), the resident stepparent-stepchild relationship \((r = .599, p < .001) \), and the nonresident stepparent-stepchild relationship \((r = .158, p < .001) \).

Regarding the relationship between class indicators and attachment outcomes, attachment anxiety and attachment avoidance were negatively associated with resident biological parent-child \((r = -.288, p < .001; r = -.370, p < .001) \), resident stepparent-stepchild \((r = -.235, p < .001; r = -.296, p < .001) \), and nonresident biological parent-child \((r = -.136, p < .001; r = -.128, p < .001) \) relationship quality. In other words, higher (step)parent-(step)child relationship quality was associated with lower attachment anxiety and avoidance. Although these correlations indicate significant direct relationships between class indicators and attachment outcomes, it is still important to test if there were differences when all three reports of parent-child relationship quality were considered together based on patterns of parent-child relationship quality identified by the LCA. This allows for a more in-depth exploration regarding how the relationships between parents and children may collectively impact young adult attachment and further expanding on important questions related to the importance of biological and residential relationships.

Latent Class Identification

The enumeration process ranged from a 2-class solution to an 8-class solution. Multiple model fit indices were referenced including: Akaike’s information criterion (AIC), Bayesian information criterion (BIC), adjusted BIC, Vuong-Lo-Mendell-Rubin likelihood ratio (VLMR), likelihood ratio test (LRT), Low-Mendell-Rubin likelihood ratio test (LMR) and entropy. A lower score on information criteria which include the AIC, BIC, and adjusted BIC are all indicative of better model fit. When a model’s
information criterion begins to have higher numbers, it is an indication that model fit is worsening. For the likelihood ratio tests (e.g., VLMR, LRT, and LMR) significance is important, with nonsignificant scores signaling a potential for worsening model fit.

Finally, entropy scores are ideally expected to be above 0.80.

Information criteria (e.g., AIC, BIC, and adjusted BIC) lowered with each successive class solution. Entropy also remained relatively stable across all seven models. The first indication of reduced model fit was in the 4-class model when the VLMR and LMR were nonsignificant. However, because other indices still indicated good model fit, I tested a 5-class and 6-class model, both of which had good model fit across all indicators. It was not until the 7-class model that the VLMR and LMR became nonsignificant again. Because the other fit indices were still good, I tested an 8-class solution, but the VLMR and LMR remained nonsignificant. Additionally, when creating visual representations of the classes there were individual classes in the 7-class model that were harder to differentiate than the 5 or 6-class models. As class identification requires both statistical and theoretical support, the 6-class model was selected as the best model for the data. Figure 2 shows the 6-class solution before the test of direct effects between predictors and individual class indicators; model fit statistics are in Table 5.

Once the final classes were determined, individual predictors were entered into the model one at a time to see if they had any significant direct effects on the individual class indicators (e.g., resident biological parent-child relationship quality, resident stepparent-stepchild relationships quality, and nonresident biological parent-child relationship quality; Vermunt & Magidson, 2021). As shown in Table 6, presence of stepsiblings ($b = .31, p < .08$), the two-way interaction between full and stepsiblings ($b =$
.31, p < .08), and the three-way interaction between full, half, and stepsiblings (b = .10, p < .05) were all significantly related to higher reports of nonresident parent-child relationship quality. More cooperative coparenting was associated with higher resident biological (b = .12, p < .001), resident step (b = .12, p < .001) and nonresident biological (b = .73, p < .001) parent-child relationship quality. More coparenting conflict was associated with lower quality resident biological (b = -.17, p < .001), resident step (b = - .11, p < .001), and nonresident biological (b = -.38, p < .001) parent-child relationships. More triangulation was also associated with lower quality resident biological (b= -.22, p < .001), and resident step (b = -12, p <.001) parent-child relationships. Finally, higher stepcouple relationship happiness was associated with higher quality resident biological (b = .26, p < .001), resident step (b = .67, p < .001) and nonresident biological (b = .12, p < .001) (step)parent-(step)child relationship quality. Asparouhov and Muthen (2014) argue that as long as the number of direct effects is small, and the entropy remains high, the model is correctly estimating the relationships between classes and external variables. As the entropy after inclusion of the direct effects is 0.86, it appears safe to proceed with the adjusted 5-class model. Figure 3 below shows the 6-class solution after the test of direct effects between predictors and individual class indicators.

The addition of the direct effects resulted in significant changes to the originally defined classes from step 1a. Figure 3 shows the classes after the addition of the direct effects. Two of the classes labeled in Figure 3 as class 2 and class 3 were difficult to conceptually differentiate from one another. Because classes should be both statistically and conceptually supported, I decided to return to step 1a of the process and use the 5-class rather than the 6-class solution. There were no differences in the significant direct
effects between predictors and individual class indicators after this change was made. Furthermore, once the direct effects were added to the model, the previously difficult to distinguish classes (e.g., class 2 and class 3 from Figure 2) collapsed into one class as expected given prior research and theory (higher bio class).

The final classes for the current study are depicted in Figure 4. Class 1 (5.5%), the higher nonresident class, was characterized as having lower quality relationships with both resident parents (i.e., resident biological parent and resident stepparent) and a higher quality relationship with the nonresident parent. Class 2 (12.4%), the all lower class, reported a lower quality relationship with all three parental figures. Class 3 (15.7%), the higher bio class, reported higher quality relationships with both biological parents. This was followed by class 4 (57.7%), the all higher class, was characterized by higher quality relationships with their resident parents and a slightly lower quality relationship with their nonresident biological parent. The final class (3.7%), the higher step class, reported a higher quality relationship with the stepparent and a moderate/low quality relationship with the biological parents.

Following the class identification process, including the addition of the direct effects between predictors and class indicators, t-tests were used to examine if individual indicators significantly differed between classes. For example, I examined if the stepparent-stepchild relationship quality of the higher nonresident class was significantly different from the stepparent-stepchild relationship quality of the all lower class.

Although some individual indicators were significantly similar across classes (i.e., the resident (step)parent-(step)child relationship quality for the all lower and higher step classes), when all three indicators (i.e., resident biological parent-child relationship
quality, stepparent-stepchild relationships quality, and the nonresident biological parent-child relationship quality) were considered together, each class significantly differed from the others. See Table 7 for reports of means and mean differences in indicators across classes.

Multinomial Regression

Multinomial regression analyses were used to test the relationship between predictors and class membership. Predictors included family complexity, parental cooperation, interparental conflict, triangulation, stepcouple relationship happiness, and the presence of a nonresident stepparent. Interaction terms were used for the family complexity variable resulting in three main effects that represented the presence or absence of full, half, and stepsiblings respectively, followed by three two-way interaction, and one three-way interaction. Coefficients, standard errors, probabilities, and p-values are included in Tables 8-11.

Family Complexity

Multiple models were run due to the use of interaction terms to measure the association between family complexity and class membership. The first model included main effects only, the second main effects and two-way interactions, and the third model included main effects, two-way interactions, and one three-way interaction. For interpretability, findings are reported with probabilities and p-values rather than coefficients and standard errors. In the initial model, which included only the main effects of different sibling relationships (e.g., the presence of full, half, or stepsiblings), only half and stepsiblings were significantly associated with class membership. For reporting probabilities, classes are referred to by numbers in the order they appear on
Figure 4. For example, $c = 1$ is referring to the *higher nonresident* class. Young adults with half siblings had a significantly higher probability of being in the *all lower* class compared to the *higher nonresident* ($\Pr(c = 2 \mid x = 1) = .65, p = .02$), *higher bio* ($\Pr(c = 2 \mid x = 1) = .66, p = .002$), and *all higher* ($\Pr(c = 2 \mid x = 1) = .61, p = .03$) classes. Young adults with stebsiblings also had a significantly higher probability of being in the *higher nonresident* class compared to the *higher bio* ($\Pr(c = 1 \mid x = 1) = .67, p = .02$) class.

After the two-way interactions were added to the model (e.g., full and half siblings, full and stepsiblings, and half and stepsiblings) there were no longer any significant main effects between the original dummy coded variables and class membership. However, the interaction term for full and half siblings was significantly related to membership in the *all lower* versus the *higher bio* class ($p = .04$). Although an additional model was run that included a three-way interaction term, this interaction was not significantly associated with class membership. Thus, the final model for the analysis included only the two-way interactions. Probabilities for the final model, the main effects and two-way interactions can be found in Table 8.

The presence of a significant interaction term implies that the combined presence or absence of full and half siblings influences class membership when comparing the *all lower* versus the *higher bio* classes. To aid in the interpretation of the interaction I plotted the probability of class membership for young adults with no full or half siblings, those with full but no half siblings, those with half but no full siblings, and those with both full and half siblings. This plot is displayed in Figure 5 below. Note that the lines are only used as visual aids and do not suggest that there is a continuum between “no full siblings” and “yes full siblings”. The black line represents young adults with no half siblings and
the grey line represents young adults with half siblings. The x-axis represents whether a young adult has or does not have half siblings and the y-axis represents the probability of being in the higher bio class versus the all lower class. The closer to 1 on the y-axis the higher the probability that a young adult is in the higher bio class. It should be noted that the probabilities calculated for the plot are not reflected in Table 8.

From the plot it is evident that young adults with neither full nor half siblings \((Pr(c = 3 \mid x = 0, z = 0) = .67)\) and young adults with half siblings but no full siblings \((Pr(c = 3 \mid x = 0, z = 1) = .65)\) have a similar probability of being in the higher bio class. Young adults with full siblings but no half siblings had the highest probability of being part of the higher bio class compared to the all lower class \((Pr(c = 3 \mid x = 1, z = 0) = .78)\). Conversely, young adults with both full and half siblings had the lowest probability of being in the higher bio versus the all lower class \((Pr(c = 3 \mid x = 1, z = 1) = .57)\). In other words, when young adults had full siblings, the presence or absence of half siblings either raised or reduced their probability of being in the higher bio versus the all lower classes.

Biological Parents’ Coparenting

Cooperation. Interparental cooperation, conflict, and triangulation were all continuous variables. Findings for coparenting cooperation (see Table 9) were perhaps the most complex compared to the other two facets of coparenting. Young adults who reported more coparenting cooperation were more likely to be in the all higher class when compared to all other classes. In other words, young adults whose parents were more cooperative in their coparenting were also more likely to report higher quality relationships with all three (step)parents. Young adults who experienced more coparenting cooperation were also more likely to be in the higher bio class than either the
all lower or higher step classes, but not the higher nonresident class. Greater coparenting cooperation was also associated with the higher likelihood of young adults being in the higher nonresident class when compared to the higher step class. In fact, young adults who reported greater coparenting cooperation were least likely to be in the higher step class when compared to all other classes except the all lower class. See Table 9 for more information on coefficients and standard errors.

Conflict. Young adults who reported higher coparenting conflict were more likely to be in the higher nonresident class when compared to all but the higher step class. This seems to indicate that higher coparenting conflict is associated with lower quality relationships with the resident parents, particularly the resident biological parent. See Table 9 for more information on coefficients and standard errors.

Triangulation. Young adults who reported more triangulation were more likely to be in the all low class when compared to the higher nonresident, higher bio, and all higher classes. Higher triangulation also was associated with a higher likelihood of belonging to the higher step class compared to the all higher and higher bio classes. When combined these findings seem to indicate that the bio parent-child relationships are particularly likely to be of lower quality when young adults experienced triangulation during childhood. See Table 9 for more information on coefficients and standard errors.

Stepcouple Relationship Happiness

Stepcouple relationship happiness was also a continuous variable. Young adults who reported greater stepcouple relationship happiness were more likely to be in the all higher class when compared to all other classes. This indicates that stepcouple happiness contributes to young adults reporting higher quality relationships with all three parental
figures. Interestingly, young adults who reported higher stepcouple relationship happiness were also more likely to be in the higher step class when compared to the higher nonresident, all lower, and higher bio classes. This is interesting because the quality of the relationship with both biological parents is lower in the higher step class, which seems to imply that the stepcouple relationship happiness may be particularly important for stepparent-stepchild relationship quality even if the resident biological parent-child relationship is of lower quality. See Table 10 for coefficients and standard errors.

Nonresident Stepparent

The nonresident stepparent variable was a dichotomous measure exploring how the presence or absence of a nonresident stepparent influenced class membership. There was only one significant difference between classes based on this variable. Young adults who reported having a nonresident stepparent were more likely to be in the higher bio class than the higher nonresident class, suggesting that those with nonresident stepparents were more likely to report a higher quality relationship with both biological parents rather than only their nonresident parent. It should be noted that the significance was at 0.045 so caution should be used when considering these results. See Table 11 for coefficients and standard errors.

Adult Attachment Anxiety and Avoidance

To ensure that predictors were not influencing the relationship between class membership and attachment outcomes, predictors were added one-by-one to the model to test for direct effects (see Table 12 for coefficients and standard errors). The presence of half siblings ($b = .15, p < 01$), the three-way interaction term for full, half, and step
siblings \((b = .19, p < .01) \), greater coparenting conflict \((b = .20, p < .001) \), greater
triangulation \((b = .19, p < .001) \), and lower stepcouple relationship happiness \((b = -.13, p < .001) \) were associated with higher attachment anxiety. Coparenting cooperation \((b = -.10, p < .01) \), coparenting conflict \((b = .18, p < .001) \), triangulation \((b = .18, p < .001) \)
and stepcouple relationship happiness \((b = -.19, p < .001) \) were negatively associated
with attachment avoidance. These direct relationships were retained for the final model.

Examinations of class differences on attachment outcomes is noted in Table 13.
The *all lower* class was significantly more likely to experience attachment anxiety when
compared to all classes except the *higher nonresident* class. In other words, young adults
who reported a moderate to high relationship with at least one resident parent were more likely to report lower attachment anxiety when compared to those with lower quality relationships with all three parental figures. Interestingly, the *higher nonresident* class
was not significantly more or less likely to have attachment anxiety when compared to all other classes. This implies that the quality of the resident (step)parent-(step)child relationship may be particularly important to young adults’ attachment anxiety.

In the case of attachment avoidance, participants in the *all higher* and *higher bio*
classes both reported significantly lower attachment avoidance when compared to the
higher nonresident, all low, and higher step classes. This seems to indicate that while
attachment anxiety is particularly influenced by the parents with whom the young adult primarily resided, attachment avoidance is more strongly associated with a young adult’s relationship with both biological parents.
CHAPTER 8: DISCUSSION

The purpose of this study was to (a) identify potential latent classes of (step)parent-(step)child relationship quality in stepfamilies, (b) explore how the presence and quality of other stepfamily relationships are associated with identified classes of (step)parent-(step)child relationship quality, and (c) examine how membership in different classes of (step)parent-(step)child relationship quality are associated with adult stepchildren’s reports of romantic attachment anxiety and avoidance.

Classes of (Step)Parent-(Step)Child Relationship Quality

One of the most unexpected results of the current analysis occurred during the class identification process. Originally, it was expected that there might be some changes in class dispersion and membership after adding the test of direct effects into step 1 of the model, especially when considering the evidence linking coparenting to (step)parent-(step)child relationship quality in both divorce (Ahrons, 2007; van Dijk et al., 2020) and stepfamily (Ganong et al., 2022; Ganong & Coleman, 2017) literature. However, these changes were expected to be minor, as prior research has suggested that the test of direct effects does not appear to influence changes in class dispersion or membership (Minjung et al., 2016). Contrary to expectations, only three of the classes (e.g., all higher, all lower, and higher nonresident) were similar to, though not exact reflections of, the original classes identified by Egginton et al. (2021), who used the same sample and statistical methods as this study. These changes provide evidence supporting the necessity of performing the test for direct effects between predictors and individual class indicators to ensure that the assumption of conditional independence is met within the model (Asparouhov & Muthen, 2021).
The higher bio and higher step classes are not only absent in the classes identified by Egginton et al. (2021), but also are not identified in other LCA explorations of (step)parent-(step)child closeness (Amato et al., 2016; Jensen, 2017; Jensen & Lippold, 2018). None of these other studies indicate this test of direct effects in their analysis plans or in the statistical reports included in their results. One interesting commonality between the higher bio and higher step classes is the difference between the quality of the resident (step)parent-(step)child relationships. In other words, for both of these classes there was a clear difference in the quality of the resident biological parent-child relationship and the stepparent-stepchild relationship. Such differences in quality between these relationships contradicts much of the existing stepfamily literature, which is relatively consistent in espousing the idea that the quality of the stepparent-stepchild relationship is expected to reflect the quality of the resident biological parent-child relationship (Ganong & Coleman, 2017; Garneau-Rosner & Egginton, 2019). In other words, these two relationships are expected to be similar to each other in perceived quality. Considering these two parent-child subsystems exist within close proximity to each other, it is not surprising to assume there would be spillover between the two resulting in either positive or negative perceptions of both. Studies using LCA to explore (step)parent-(step)child relationships also consistently supported this idea (Amato et al., 2016; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2018), yet the presence of the higher bio and higher step classes, in which large discrepancies were found, suggest that there are some nuances that warrant further exploration.

The presence of the higher bio class is not altogether surprising. A higher quality resident biological parent-child relationship may increase the likelihood of a child
developing a higher quality stepparent-stepchild relationship, but it does not guarantee it. Other subsystems within the stepfamily will likely influence the quality of a stepparent-stepchild relationship. For example, there may be instances of enmeshment wherein biological parents, particularly the resident biological parent and their child(ren) have developed rigid family boundaries which do not provide space for the stepparent to enter (Baxter et al., 2006; Cartwright, 2012). There may also be times where despite the best efforts and intentions of stepparents, their stepchildren are simply uninterested in having a relationship with them. Whatever the reason may be, children may be less interested in adjusting their current family equilibrium to create space for the stepparent. Ganong, Coleman, and Jamison (2011) found that young adults whose parents repartnered during or after their adolescence were often less motivated to develop relationships with their stepparent and thus assumed this was due to having less interaction with stepparents. The age of the child at family formation was not taken into account in this study and future exploration of relationship patterns similar to the higher step class would benefit from exploring if this is a contributing factor that differentiates the membership in the higher step from other (step)parent-(step)child relationships patterns. Additionally, stepparents’ jealousy or attempts to come between children and their biological parents often lead young adults to feel antagonistic towards their parental figure (Ganong et al., 2011). These feelings of frustration were generally targeted toward the stepparent meaning that children may have disliked, and thus been more likely to report lower quality relationships with, their stepparents while still maintaining positive perceptions and relationships with their biological parents.
The presence of the *higher step* class is in direct contrast to much of the existing literature related to (step)parent-(step)child relationships in stepfamilies. The *higher bio* class depicts young adults who reported higher quality relationships with parents who were part of their family system before the stepparent was introduced. In contrast, young adults in the *higher step* class are reporting not only having a higher quality relationship with the new family member, but also having lower quality relationships with the individuals who were part of their previous family system. The existence of this class implies that there are instances in stepfamily relationships where children may be more inclined to have a higher quality relationship with only their stepparent. In other words, when something compromised young adults’ perceptions of their relationships with their biological parents during childhood, these young adults were still able to find a positive adult relationship in their stepparent.

Previous studies exploring the quality of stepparent-stepchild relationships support the idea that children and adolescents frequently develop higher quality relationships with their stepparents over time (Braithwaite et al., 2018; Ganong et al., 2011; King et al., 2014; Waldron et al., 2022; Visser, 2015). However, these studies either explored only the stepparent-stepchild relationships (Braithwaite et al., 2018; Ganong et al., 2011; Waldron et al., 2022; Vissert 2015) or present findings that indicate that a child’s higher quality relationship with a stepparent is associated with a higher quality relationship with the resident biological parent (King et al., 2014). Thus, it is difficult to draw conclusions about what stepfamily experiences may result in young adults reporting membership in the *higher step* class. To my knowledge, only one qualitative study conducted by Ganong, et al. (2011) indicated the potential for the *higher
step class when they found that some young adults reported feeling that their stepparent played the role of advocate or ally for them within their stepfamily system. Although there is not enough context to ascertain whether the relationship with the parents was actually of lower quality compared to the stepparent-stepchild relationship, the participants' use of vocabulary in that study, such as ‘advocate’ and ‘ally’, suggest some duress and need of support in their relationship with their resident biological parent.

In addition to identifying these new and unique classes of (step)parent-(step)child relationships, this study also made two other important contributions to stepfamily literature. First, the identification of multiple classes of (step)parent-(step)child relationship quality supports assumptions of heterogeneity within the stepfamily literature which better acknowledges diversity in the stepfamily experience. Furthermore, over 50% of our study participants reported membership in a class associated with the most positive behavioral outcomes in prior studies (i.e., the all higher class; Egginton et al., 2021). This aligns with previous studies which found that 50-55% of stepchildren reported being close to at least their resident parents (Amato et al., 2016; Jensen, 2017). Taken together, these findings make a meaningful contribution to the growing body of research illustrating a more positive perspective on stepfamily relationships than has historically been described in stepfamily literature.

Lastly, the inclusion of all three parent-child relationships has helped to draw both biological parents into the stepfamily research. This is particularly important for nonresident biological parents. Although the findings of this study indicate that having a higher quality relationship with only a nonresident biological parent does not appear to differentially benefit young adult outcomes, it is notable that over 50% of our sample
reported higher relationships with all three parental figures including their nonresident parent. Nonresident parents can experience many challenges in their attempts to remain close with their children. Thus, evidence that young adults perceived that their nonresident parents made an effort to maintain higher quality parent-child relationships is encouraging to the efforts of practitioners and researchers who work to support stepfamilies.

Stepfamily Relationships and Class Membership

What primarily differentiated the current study from prior research that explored all three parental figures in stepfamilies were the predictors and distal outcomes included in the model. In the case of predictors of class membership, previous studies have focused on demographic and other variables frequently associated with parent-child relationships in stepfamilies (e.g., young adult/adolescent gender, stepfamily duration, age at stepfamily formation, and so on; Amato et al., 2016; Berg, 2004; Egginton et al., 2021; Hornstra et al., 2022; Jensen, 2017; Jensen et al., 2017; Jensen & Harris, 2017; Jensen & Lippold, 2018; Petren et al., 2018). Findings from the current study make a unique contribution by exploring other family relationships as predictors of parent-child relationship quality, specifically: stepfamily complexity (i.e., the presence of full, half, and/or stepsiblings), biological parental relationship processes (i.e., biological parental cooperation, interparental conflict, and triangulation), stepcouple relationship happiness, and the presence of a nonresident stepparent.

Family Complexity

Due to the dearth of information on family complexity and its influence on (step)parent-(step)child relationship quality, no specific hypothesis was presented for this
predictor. There was only one significant association found between the family complexity interaction terms and (step)parent-(step)child relationship quality. However, the presence of this significant relationship indicates that, at least in the case of full and half siblings, family complexity does differentially influence young adult reports of (step)parent-(step)child relationship quality. The only significant association between family complexity and class membership was the interaction of full and half siblings and membership in the higher bio and all lower classes. When young adults reported they did not live with any full siblings, their probability of being in the higher bio class versus the all lower class was similar whether or not a half sibling was present in the household. However, when full siblings were present, the presence of half siblings reduced the probability of belonging to the higher bio class while the absence of half siblings increased the probability of belonging to the higher bio class.

The presence of this significant relationship between the full and half sibling interaction term and class membership supports the importance of acknowledging family complexity in addition to family structure (see Brown et al., 2015). It supports family systems theory's assumption of interdependence between family members (Minuchin, 1985; Whitechurch & Constantine, 1993) while also alluding to the importance of acknowledging the types of siblings present in the stepfamily system and how their presence may differentially influence the quality of the relationships they develop between young adults and their (step)parents. If family structure had been used instead of family complexity the findings would not have revealed the similarity or the nuance in how siblings influence the probability of class membership. This is because family
structure focuses more on the (step)parent’s relationships within the family rather than the child’s experience.

For example, young adults who reported no full or half siblings and those who reported having half but no full siblings are both part of two different family structures (i.e., simple and step-nuclear; see Table 1 for the overlap between family structure and family complexity). However, the probability of being in the higher bio class was similar for young adults with full but no half siblings and those with neither full nor half siblings. Conversely, the probability for membership in the higher bio class differed for young adults in these same family structures who also had full siblings. Young adults with full and no half siblings (i.e., simple stepfamilies) had a higher probability of being in the higher bio group than all other full and half sibling combinations while young adults with full and half siblings (i.e., step-nuclear families) had a lower probability of being in the higher bio group when compared to all other full and half sibling combinations. This may also be true for complex and hybrid stepfamily systems as the interaction between full and half siblings did not account for the presence of stepsiblings in the system. Thus, it is evident that the use of a family complexity approach can help to capture more of the nuance of children’s stepfamily experiences than does family structure.

Interestingly, it was only when young adults reported that they lived with full siblings that the presence or absence of half siblings raised or reduced their probability of belonging to the higher bio versus the all lower classes. To understand this association, it may be beneficial to explore the characteristics of the higher bio and all lower classes. The higher bio class is characterized as children having higher quality relationships with both biological parents whereas the all lower class represents young adults who have
lower quality relationships with all three parental figures. This means that young adults with full, but no half siblings have a higher probability or are more likely to have higher quality relationships with both biological parents than to have lower quality relationships with all three. On the other hand, young adults with both full and half siblings have a lower probability of being in the higher bio class and thus a higher probability of being in the all lower class.

Why might the presence or absence of full siblings affect the influence a half sibling has on a young adult’s biological parent child relationship quality? One reason may be that having even one full sibling increases the complexity of a family system. In family systems terms it creates additional systems and subsystems that differentiate the subcategories of family structure. This in turn may change how individuals who grew up in stepfamilies experience the transition into a step-nuclear family both at the time of transitioning into a stepfamily and at the birth of a half sibling. Additionally, the presence versus absence of full siblings will increase the number of siblings that were initially present at the formation of the stepfamily system, which may then influence the time and energy biological parents are able to invest in maintaining their relationships with their children (Ganong & Coleman, 2017). In the end, these findings support the importance of utilizing a family complexity approach when exploring sibling relationships from the child’s perspective. It also raises the importance of exploring full sibling relationships more specifically within the stepfamily literature as there is potential that they are influential to the impact of other sibling relationships, at least in regard to half siblings.
Biological Parents’ Coparenting

Cooperative coparenting. As hypothesized, using more cooperative coparenting between biological parents was associated with a greater likelihood of higher quality relationships with all three parental figures. Specifically, young adults who reported high cooperative coparenting were more likely to be in the *all higher* class when compared to all other classes. Essentially this means that young adults who perceived their biological parents as having enacted more cooperative coparenting were also more likely to perceive all three of their parents as being warm, good parents, with whom they were comfortable communicating. It may also suggest that cooperation has a positive influence on young adult reports of stepparent-stepchild relationship quality.

The positive influence of biological parents’ cooperative coparenting behaviors on young adult reports of (step)parent-(step)child relationship quality in stepfamilies is encouraging though not surprising. Family systems theory asserts that family relationships are interconnected meaning that the quality of one relationship will affect the quality of other relationships. This is evident within divorce literature, where findings demonstrate that cooperative coparenting is associated with a more positive family environment and higher quality relationships between children and biological parents (Lamela & Figueiredo, 2016; Teuber & Pinquart, 2010). Cooperative biological parents work as a team with their primary focus being the well-being of their children. Not only is a cooperative approach likely to make interactions between parents more positive, but it has also been associated with a higher likelihood of resident biological parents promoting and facilitating relationships with nonresident parents (Walper et al., 2020).
As children’s positive sentiment towards their parents rises, it is possible it may spillover into higher quality stepparent-stepchild relationships. Additionally, other individuals and relationships within the family system may work together to support the development of a higher quality relationship with a stepparent. For example, more cooperative interactions with ex-partners may also help give a resident biological parent more time and energy to promote positive relationships between the stepparent and stepchild. Furthermore, nonresident parents may feel less threatened by the presence of stepparent when participating in these more positive coparenting strategies making them less likely to sabotage and maybe even more likely to promote positive relationships between stepparents and stepchildren (Pasley & van Eeden-Moorefield, 2017).

More cooperative coparenting was also associated with a higher likelihood of belonging to the higher bio class when compared to both the all lower and the higher step classes. Additionally, young adults who reported more cooperative coparenting were more likely to be in the higher nonresident class than the higher step class. These findings suggest that coparenting cooperation is particularly influential to biological parent-child relationship quality. Considering the fact that the coparenting questions in the study explored only the biological parents’ coparenting relationship, it is not surprising that the individuals (e.g., child, resident biological parent, and nonresident biological parent) and dyads (e.g., biological parent dyad and parent-child dyads) that overlap within the coparenting subsystem are the most likely to be influenced by whether or not the parents use a cooperative approach to their coparenting. Thus as coparenting cooperation between biological parents increases, there is an associated benefit to
biological parent-child relationships. Positive spillover into the stepparent-stepchild relationship may occur as previously discussed, but it is not an inevitability.

Coparenting Conflict. Closely but inversely related to cooperative coparenting is coparenting conflict. The hypothesis that less coparenting conflict would be associated with a higher likelihood of young adults having a higher quality relationship with all three parental figures was partially supported. Less coparenting conflict was associated with a greater likelihood of being in the *all higher* class compared to the *higher nonresident* class. In other words, less coparenting conflict was linked to a higher likelihood of a higher quality relationship with all three parents versus only the nonresident parent.

Interestingly, more coparenting conflict was associated with a greater likelihood of being in the *higher nonresident* class when compared to all others except the *higher step* class. These findings were interesting considering much of the divorce literature supports that coparenting conflict is damaging to all parent-child relationships (van Dijk et al., 2020). Yet these findings imply that coparenting conflict, at least in the context of post-dissolution stepfamilies, is particularly impactful to the resident (step)parent-(step)child relationships, particularly the resident biological parent. Due to children’s proximity to their resident parents and the frequency with which they interact with each other, children may be exposed to coparenting conflict more often through interaction with their resident parent than with their nonresident parent. Put another way, both biological parents may instigate coparenting conflicts, but because the children are more frequently physically with their resident biological parent it may feel like that parent is participating in the coparenting conflict more often. After all, coparenting conflict is less
about triangulation, or putting the child in the middle, which will be addressed later, and more about disagreements with parenting. This increased exposure to the resident biological parent’s side of the argument may, in turn, negatively influence the resident (step)parent-(step)child relationships. As a result, children may seek out their nonresident parent for reprieve from the tension they experience in their primary residence.

Triangulation. The hypothesis that less triangulation would be associated with higher-quality relationships with all three parental figures was also only partially supported. Young adults who reported less triangulation were more likely to belong to the *all higher* class compared to the *all lower* and *higher step* classes, which suggests that, in some cases, low triangulation predicts more positive relationships with all three parental figures. Those in the *higher bio* class similarly characterized their biological parents as having lower triangulation when compared to young adults in the *all lower* and the *higher step* classes. It appears that, similar to coparenting cooperation, biological parent-child relationships are particularly susceptible to the level of triangulation children experience. In other words, as triangulation increases it increases the likelihood that young adults report lower quality relationships with their biological parents which, in some cases, may also impact their relationships with stepparents. The damage to biological parent-child relationships is unsurprising due to the nature of triangulation which occurs when children are inappropriately pulled into parental conflict (Minuchin, 1974). The feelings of guilt associated with being drawn into and forced to take sides in parental arguments is likely to dissuade the development of quality parent-child relationships, even if only one parent is participating in these behaviors (Minuchin, 1974; Fosco & Grych, 2010; Afifi & Schrodt, 2003; Teubert & Pinquart, 2010). The focus is more about gaining the child’s
favor than focusing on the child’s needs, and thus children may have withdrawn from parents in an attempt to alleviate the pressure (Afifi & Schrodt, 2003).

What is perhaps more noteworthy is that more triangulation is associated not only with the greater likelihood of being in the all lower class, but also greater likelihood of being in the higher step class when compared to both the all higher and higher bio classes. In other words, it appears that when triangulation is present the addition of a stepparent may upset the equilibrium of the family system in a way that is beneficial to children. Interactions with a stepparent may prompt children to seek out the stepparent in an attempt to cope with the pressures of triangulation. Though their study does not directly address triangulation, a qualitative study by Ganong, Coleman, and Jamison (2011) indicates the possibility of stepparent-stepchild alliances when a few participants referred to their stepparents as ‘allies’ and ‘advocates’. Participants’ use of these particular words suggests that during childhood these young adults required assistance from an adult to help them gain a stronger voice within their stepfamily. These stepparents may have enacted behaviors that increased their stepchildren’s confidence that they were a dependable parental figure to whom they could turn. However, the interactions within the stepfamily that prompted these young adults to turn to stepparents instead of withdrawing from all three parental figures has yet to be explored and is an important consideration of future research.

Stepcouple Relationship Happiness

As expected, young adult perceptions of higher stepcouple relationship happiness were positively associated with higher quality resident (step)parent-(step)child relationships. Young adults who reported higher stepcouple relationship happiness were
more likely to be in the *all higher* class when compared to all other classes. Stepcouples face unique challenges as they attempt to strengthen and maintain their relationship while also balancing the development or maintenance of their relationships with (step)children. However, these findings provide evidence that young adult perceptions of resident biological parents’ relationship happiness is associated with higher resident (step)parent-(step)child relationship quality (Ganong et al., 2011) which positively influences child outcomes (Amato et al., 2015; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2018). Stepcouple relationship happiness may act as a reassurance of stepfamily longevity. The stepcouple subsystem is the center of the stepfamily system. If the relationship lasts, so will the stepfamily, including the relationship to the stepparent and any other step relations. Thus, children perceiving that the stepcouple is happy may increase their confidence that the relationship will last and increase their motivation and willingness to invest in step relationships. Additionally, children may also be more likely to invest in a relationship with their stepparent when they view the stepparent as being beneficial to their resident biological parent’s wellbeing (Ganong et al., 2011).

Young adult perceptions of stepcouple relationship happiness appear to be particularly important to the stepparent-stepchild relationship as evidenced by greater perceptions of stepcouple relationship happiness being associated with an increased likelihood of being in the *higher step* group compared to all but the *all higher* group. It appears that even when young adults report poorer relationship quality with biological parents, stepcouple relationship happiness is still associated with a higher quality stepparent-stepchild relationship. This again suggests that there are cases where the stepparent-stepchild relationship quality may be more independent of the resident
biological parent-child relationship than has previously been discussed in stepfamily research. As stepchildren view positive interactions between the stepcouple it may prompt them to consider that the stepparent can be a resource for them in the same way they are a resource for their resident biological parents.

Nonresident Stepparent

The hypothesis that having a nonresident stepparent would be associated with lower nonresident parent-child relationship quality was partially supported by the current research findings. Young adults who reported having a nonresident stepparent were more likely to be in the *higher bio* class than the *higher nonresident* class, meaning they were more likely to have higher quality relationships with both biological parents than to have a higher quality relationship with only their nonresident parent. Although both of these classes indicate higher quality nonresident biological parent-child relationships, according to the t-test of individual class indicators, the quality of the nonresident parent-child relationship within the *higher bio* class was significantly lower than it was within the *higher nonresident* class. It should be noted that although nonresident parent-child relationship quality is lower in the *higher bio* class than it is in the *higher nonresident* class, it is still of higher quality than in the *all lower* and *higher step* classes. In other words, the relationship with the nonresident biological parent was not more likely to be of lower quality as depicted in the *all lower* class, but rather of lower quality in comparison to the *higher nonresident* class. That being said, the presence of a nonresident stepparent does appear to be associated with a slightly lower quality relationship with the nonresident biological parent.
Similar to the experience of resident parents, a nonresident stepparent adds complexity to the family system. When a nonresident biological parent repartners, they are pulled between their old family system, which they are bound to because of children they share with their previous partner, and the new family system they have created with their new partner. This can result in reduced investment in the nonresident biological parent-child relationship, not because of neglect, but because of the increasing complexity of the stepfamily system that result from the addition of the nonresident stepparent. The nonresident status may further complicate the impact of a new partner on the nonresident biological parent-child relationship because children often spend less time with their nonresident biological parent due to custody arrangements. As a result children may become more sensitive about time spent with their nonresident biological parent and thus more hurt or frustrated when they perceive that is being taken up by their nonresident stepparent.

Surprisingly the results of the current study indicated that the presence of a nonresident stepparent promotes higher quality relationships with both biological parents. Young adults with nonresident stepparents report having higher quality relationships with both biological parents versus having higher quality relationships with only nonresident parents. The reasoning behind this is difficult to identify as much of the previous research on nonresident parents has included qualitative analyses exploring the experience of nonresident stepparents, specifically nonresident stepmothers (Doodson & Morley, 2006; Henry & McCue, 2009; Weaver & Coleman, 2005). However, there is likely some overlap between how nonresident biological parents respond to the entrance of a resident stepparent and how resident biological parents respond to the entrance of nonresident
stepparent. For example, the entrance of a stepfather may prompt nonresident fathers to reaffirm their commitment to their children resulting in increased involvement (Coleman et al., 2013). It is possible that the presence of a nonresident stepparent may do the same for a resident biological parent, resulting in resident biological parents having increased motivation to improve or better maintain their relationship with their child. Research would benefit from a more thorough exploration of the influence a nonresident parent may have on parent-child relationships and the experience of having a nonresident stepfamily.

Adult Attachment Outcomes

Class Membership and Adult Attachment

The most unique contribution this study makes to stepfamily literature is its exploration of the link between (step)parent-(step)child relationships and adult attachment (i.e., attachment to romantic partners). As noted in the literature review, very little research has been conducted connecting parent-child relationships in childhood and later adult attachment (Chopik et al., 2014; Dinero et al., 2008; 2022; Fraley et al., 2013; Kennedy, 1999; Salo et al., 2011; Zayas et al., 2011). Additionally, no previous research had explored this connection in the context of stepfamilies, and thus has not considered the potential influence a stepparent might have on adult attachment anxiety and avoidance. Yet findings indicate that the link between (step)parent-(step)child relationship quality and adult attachment is one of the many mechanisms through which intergenerational continuity of family relationships patterns and development occurs.

Two primary patterns emerged from the findings. First, higher quality relationships with at least the two biological parents was associated with lower adult
attachment anxiety and avoidance. Second, higher quality relationships with resident parents, even if that parent was the stepparent, was also associated with lower adult attachment anxiety. Research (Chopik et al., 2014; Fraley et al., 2013; Salo et al., 2011; Zayas et al., 2011) and theory (Bartholomew & Shaver, 1998; Bowlby et al., 1969; Fraley & Shaver, 2000) support the idea that parent-child interactions influence the development of adult attachment anxiety and avoidance. Post-dissolution stepfamilies experience multiple transitions that have the potential to alter or disrupt parent-child relationships (Hetherington et al., 1985). Fortunately, the findings of the current study provide evidence that strong (step)parent-(step)child relationships with biological and stepparents during adolescence have the potential to act as protective factors against developing adult attachment anxiety and avoidance down the road.

As hypothesized, young adult reports of higher quality relationships with multiple parental figures were associated with less adult attachment anxiety and avoidance. Specifically, membership in the all higher, higher bio, and higher step classes was associated with less attachment anxiety when compared to the all lower class. Similarly young adults in the all higher and higher bio classes also reported lower attachment avoidance when compared to all other classes. According to these findings, the quality of the relationship with both biological parents appears to matter for predicting lower attachment anxiety and lower attachment avoidance. The only exception to this was the association between the higher step class and attachment anxiety. Young adults in the higher step class, or in other words a higher quality relationship with only the resident stepparent, were as likely to be characterized as having less attachment anxiety as both the all higher and higher bio classes.
As mentioned previously, biological parent-child relationship quality appears to be important to the development of adult attachment anxiety and avoidance. One reason for this may be the relative longevity of the biological parent-child relationships compared to stepparent-stepchild relationships. Biological parents are more likely than stepparents to have been the primary caregivers of their children during the earliest years of their initial attachment development. Parents’ early interactions with their children influence the development of their children’s working models, or the way they perceive others, themselves, and the world around them, and thus their fears related to attachment (Fraley & Shaver, 2000; Hazan & Shaver, 1987).

Although the current analysis examines young adult reports of romantic attachment, that attachment is rooted in and will likely be influenced by their childhood attachment (Hazan & Shaver, 1994). Transitions can be difficult experiences for children in stepfamilies and although the current study does not directly measure the quality of the parent-child relationship before or after their biological parents’ relationship dissolved and through their transition into stepfamily life, it is apparent from the findings that some young adults still viewed that they had higher quality relationships with their biological parents during their childhood and adolescence. The maintenance of these higher quality relationships is likely to reduce attachment fears (e.g., fears of abandonment and intimacy; Hayashi & Strickland, 1998, Smith-Exteberria, 2020; Washington, 2012) resulting in more secure adult romantic attachment.

The finding that membership in the higher step class was also associated with lower attachment anxiety when compared to the higher nonresident and all lower class was unexpected. At its heart, attachment anxiety is a fear of abandonment that has
developed as a result of inconsistency in relationships with attachment figures (Hazan & Shaver, 1994). In other words, when individuals reached out for help they were sometimes met with positive responses, sometimes met with negative responses, and sometimes simply ignored. The disequilibrium that results from the departure of the nonresident biological parent from the family home and the entrance of a stepparent into the family system creates change in stepfamily relationships that could increase children’s feelings of uncertainty and abandonment in regards to their relationships with their (step)parents. Expected interactions, especially with biological parents, may change or stop all together. Waters et al. (2000) found that experiencing parental divorce was one factor that explained why some study participants who had been classified as having secure attachment as infants were later classified with an insecure attachment style as young adults. However, it should be noted that the association between divorce and attachment is heavily influenced by the quality of the family relationships following the divorce (Amato, 2010; Brennan & Shaver, 1994; Hazan & Shaver, 1987; Smith-Exteberria et al., 2020). In other words, attachment may be less negatively affected by divorce based on the (step)parents’ attempts to maintain or develop higher quality relationships with their (step)children.

The proximity or residence of the stepparent may be an important factor in their individual influence on attachment anxiety, especially when considering that membership in the higher nonresident class (i.e., a higher quality relationship with only the nonresident parent) was not associated with attachment anxiety. Within both the higher step and higher nonresident classes, young adults reported higher quality relationships with at least one parental figure; however, the relationship with the resident stepparent
(e.g., membership in the higher step class) was the only class that was associated with less adult attachment anxiety. It is assumed that in post-dissolution stepfamilies children spend most of their time in their primary household. This means that these children are also likely to have more frequent interactions with the stepparents who share their primary residence than with their nonresident biological parents. When these interactions with stepparents are perceived positively, resulting in reports of higher quality stepparent-stepchild relationships, they may act as a protective factor specifically in the absence of higher quality biological parent-child relationships. A qualitative study conducted by Ganong and colleagues (2017) noted that for some young adults their stepparents’ willingness to step up and provide support in handling situations that biological parents typically took care of was an important part of their decision to embrace the stepparent as a parental figure. In another study, young adults noted that when stepparents stood up for their needs they viewed them as important allies and advocates with the family system (Ganong et al., 2011).

Resident Parents and Attachment

The final hypothesis for the current analysis was that young adults with higher quality relationships with only their resident parents would be more likely to report higher attachment anxiety and avoidance than those who report close relationships with all three parental figures. This hypothesis was determined before the new classes were identified when it was assumed that the classes would only be slightly different than those identified by Egginton and colleagues (2021). In the current analysis, there was no class in which young adults reported higher quality relationships with only resident parents, and thus no specific conclusions can be drawn in regard to these classes.
Although it was not possible to compare the *all higher* class to the expected *higher resident* class, there are still implications about the influence of residency in the current findings.

First, the resident biological parent-child relationship quality was significantly higher in the *all higher* and *higher bio* classes when compared to all other classes. These classes were more likely to be associated with lower adult attachment anxiety and avoidance when compared to all other classes with the exception of the *higher step* class and attachment anxiety. Although these classes were also characterized as having higher nonresident biological parent-child relationship quality, when the resident biological parent-child relationship was of lower quality (i.e., the *higher nonresident* class), the nonresident biological parent-child relationship was associated with higher attachment anxiety and avoidance. Second, in the absence of higher quality biological parent-child relationships, a higher quality stepparent-stepchild relationship was also associated with lower attachment anxiety. The shared residence between these stepparents and their stepchildren is likely an important factor in the influence they have on adult attachment outcomes.

However, it should be noted that it is the combination of resident and nonresident biological parent-child relationship quality that appears to be a key factor in reducing adult attachment anxiety and avoidance for young adults. This finding is of particular import to the nonresident parent literature as nonresident parents in stepfamilies have not previously been found to have significant impact on child outcomes when all three parent-child relationships have been explored together (Amato et al., 2016; Egginton et al., 2021; Hornstra et al., 2022; Jensen et al., 2017; Jensen & Harris, 2017; Jensen &
Lippold, 2017; Pentren et al., 2018). This is likely because the focus has primarily been on behavioral outcomes rather than relational outcomes. The connection between nonresident biological parent-child relationship quality and attachment outcomes is an important consideration for stepfamily practitioners as they assist children in their experience within their stepfamily.
CHAPTER 9: LIMITATIONS

Although making important contributions, the limitations of this study’s design and analysis warrant exploration. An important limitation of this study is that it is a cross-sectional, retrospective assessment of young adult experiences in stepfamilies. As such it is subject to bias (Scott & Alwin, 1998). This is because young adults’ reflections of their past experiences may be influenced by their current experiences. For example, a young adult may report a higher quality relationship with a nonresident parent because they currently have a positive relationship with them, not because their report was actually reflective of a higher quality relationship during the young adult’s childhood. Additionally, this data cannot capture change over time the way longitudinal data can.

Problems regarding the determination of residency create another important limitation for this study. Previous research has discussed the complicated nature of stepfamilies when it comes to both family structure and family complexity (e.g., Brown et al., 2015; Sanner & Jensen, 2021). However, one aspect of the stepfamily experience that was not captured in this study is related to the movement of children between households. Custody arrangements result in fluctuation within stepfamily households as children come and go according to their parents’ custody arrangements. Some researchers have even recommended the name accordion families since the families expand and contract as children move between households (Pryor, 2006). Although custody arrangements sometimes assist in determining a resident stepfamily system based on the time spent with each parent, the line between nonresident and resident households is not always clear. For example, the experience of a young adult who only saw their nonresident parent on the weekends while growing up will likely differ significantly from
an young adult whose parents live close to each other allowing the young adult to move back and forth between households more frequently during their childhood and adolescence. Because the results of this study indicate the importance of residency, it would be helpful to more fully explore factors related to identifying the resident family system such as custody and visitation arrangements. Additionally, it would be beneficial to explore how different approaches to custody like the examples mentioned above, may influence perceptions of parent-child and sibling relationships in stepfamilies.

Whereas residency does appear to be important to the impact (step)parent-(step)child relationship quality has on both attachment and behavioral outcomes (Amato et al., 2015; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2017), there is much more exploration needed regarding nonresident relationships. This includes an exploration on how the nonresident stepparent-stepchild relationships quality might influence the quality of the other (step)parent-(step)child relationships and outcomes. Simply exploring the presence or absence of a nonresident stepparent is an important first step to the process, but is likely not enough to produce a true understanding of the potential influence of a nonresident stepparent.

In considering residency within stepfamilies, another important limitation to consider is the absence of a custody measure. There is a wide array of custody arrangements in post-dissolution stepfamilies. For some children it may be difficult to determine residency based on custody arrangements (i.e., 50-50 custody arrangements). Additionally, the amount of time that young adults actually spend in their nonresident household, and thus with nonresident parents (i.e., nonresident biological parent and nonresident stepparent), will be influenced by custody arrangements. The increase or
decrease in the time spent with nonresident relations will likely spillover into the quality of their nonresident parent-child relationships and thus the impact they have on (step)parent-(step)child relationship quality.

There are also important limitations to consider related to family complexity. Although standard errors were not reported for the family complexity variable it should be noted that the standard errors were as high as .79 or some variables. It is thus prudent to exercise caution when attempting to generalize these findings across all stepfamilies. Additional exploration of family complexity will require larger samples and perhaps more qualitative analysis to better grasp the diverse experiences in sibling relationships.

A second limitation with family complexity was that the current study only addressed resident sibling relationships. Due to the complexity of the current model, the decision was made to focus on the resident sibling relationships. However, it would benefit future researchers to explore the influence of nonresident sibling relationships, particularly in regard to the nonresident (step)parent-(step)child relationships. Previous research suggests that nonresident biological fathers tend to be more involved with their resident children, even if they are not biologically related to them (Ganong & Coleman, 2017). Additionally, in a qualitative study by Henry and McCue (2009) the stepmother who appeared to have the least difficulty connecting with her stepchildren and accepting them as family was also the only stepmother with no biological children of her own. Much more could be explored regarding the influence of nonresident step relationships in addition to the resident ones.

As a final note on family complexity, although information regarding presence or absence is a helpful first step in understanding the influence of sibling relationships,
exploring only the presence or absence of sibling types is insufficient to understanding their influence within the family system. This is similar to previous discussions related to nonresident parents. Again, it would be beneficial to explore the quality of the relationships as well as to understand the underlying processes that are influencing young adult outcomes rather than the simple presence or absence of these sibling relationships.
CHAPTER 9: CONCLUSIONS AND FUTURE RECOMMENDATIONS

Latent Classes of (Step)parent-(Step)child Relationship Quality

Due to the extensive amount of results present in the analysis I found it prudent to focus the conclusions and future recommendation on the more unique or unexpected findings. This study builds on previous stepfamily literature by exploring the heterogeneity within parent-child relationships in stepfamily systems. The results of the LCA identified 5 distinct classes of parent-child relationships (see Figure 3), two of which have not been present in any previous literature using LCA to explore (step)parent-(step)child relationships in stepfamilies (Amato et al., 2015; Egginton et al., 2021; Jensen, 2017; Jensen & Lippold, 2017). The most unexpected of these was the higher step relationship which, though hinted at in research (e.g., Ganong et al., 2011), is contradictory to many of the claims related to resident (step)parent-(step)child relationships in stepfamily. Although literature is rich with the many ways stepparents attempt to develop higher quality relationships with their stepchildren (e.g., Ganong & Coleman, 2017; Ganong et al., 2022), the majority of the studies that have been conducted have taken a dyad approach that looks only at the stepparent-stepchild relationship without also considering the relationships with the biological parents. Considering the potential that a higher quality stepparent-stepchild relationship has to lower attachment anxiety, practitioners and researchers would benefit from further exploring the contexts within which a stepparent might succeed in developing a higher quality relationship despite the presence of lower quality biological parent-child relationships.
The identification of the higher step and higher bio classes also provides important evidence regarding the importance of testing for direct effects between predictors and class indicators during the LCA class identification process. Without the test of direct effects between predictors and class indicators during the class enumeration process (Vermunt & Magidison, 2021), the classes in this study would have reflected those in Egginton et al. (2021; see Figure 2) as they used the same sample in their analysis. Thus, the presence of these classes in the current study should be taken as a call to future researchers using LCA procedures to test for direct effects between predictors and class indicators when identifying latent classes (Vermunt & Magidison, 2021).

Class Predictors

Additionally, several significant associations between (step)parent-(step)child relationship quality classes and family predictors have implications for future scholarship and practice. Findings related to family complexity were some of the most informative due to the dearth of research in this area. First, the significant relationship between the full and half siblings and class membership offers evidence of the importance of using family complexity to understand the influence of sibling relationships. Future research would benefit from taking both the type and number of siblings into account to continue to expand our understanding of factors that contribute to nuances in stepfamily experiences. Scholars could examine such nuance even further by considering timing of transitions (e.g., birth of new half siblings) as well as the quality of the various sibling relationships. Second, the findings drew attention to the gap in stepfamily research related to full sibling relationships. Although half and stepsiblings are the more unique sibling relationships that have previously characterized stepfamilies (i.e., family
structure), full siblings also contribute and, in the case of the current findings, differentiate the influence other sibling types may have on children’s experiences. Utilizing a family complexity approach is thus more likely to assist in identifying unique processes by which sibling relationships create nuance in stepfamilies.

Parental relationships were also found to have significant impact on (step)parent-(step)child relationship quality. Findings demonstrating a positive relationship between cooperative coparenting and higher quality relationships with all three parental figures align with previous research (Amato et al., 2011; Beckmeyer, 2014; Ganong, Coleman, Markham, et al., 2011; Lamela et al., 2016; Walper et al., 2020). Less expected was that more coparenting conflict predicted a greater likelihood of being in the higher nonresident class compared to all other classes. Although coparenting conflict has frequently been associated with poorer biological parent-child relationships with both resident and nonresident parents (van Dijk et al., 2020), the current findings suggest that in the context of stepfamilies, coparenting conflict may be particularly harmful to the resident (step)parent-(step)child relationships. This suggests that coparenting conflict between biological parents may have a different impact on biological parent-child relationships within post-dissolution stepfamilies versus post-dissolution families where neither parent has repartnered. However, the specifics for why these differences occur are unclear and warrant further study. Additionally, practitioners would benefit from an exploration on how to reduce the within-house spillover between biological parental conflict and (step)parent-(step)child relationship quality.

Findings related to triangulation were the first to provide a potential context for the development of the higher step class. Although triangulation increased the likelihood
of young adults reporting lower quality relationships with biological parents, in some
cases young adults were still able to develop a higher quality relationship with only their
stepparent. This is noteworthy because much of the research on the development of the
stepparent-stepchild relationship asserts that the stepparent-stepchild relationship is
generally a reflection of the resident biological parent-child relationship (Ganong &
Coleman, 2017). Practitioners in particular would benefit from understanding what other
factors and interactions are at play within the family system to help promote the
development of a higher quality stepparent-stepchild relationship, despite the absence of
higher quality biological parent-child relationships.

Unsurprisingly, higher stepcouple relationship happiness was associated with
membership in the class where both resident (step)parent-(step)child relationships were
of higher quality. Less expected was that young adults who reported higher stepcouple
relationship happiness were more likely to be in the higher step class compared to all
other classes with the exception of the all higher class. This implies that when young
adults perceive their resident parents have more relationship happiness, they are also
more likely to develop a higher quality relationship with their stepparent, regardless of
the quality of their relationship with their biological parent. Positive interactions between
resident parents may spillover into the stepparent-stepchild relationship and boost
children’s motivation or openness to developing a higher quality relationship with
stepparent even when their relationship with biological parents is of lower quality. It is
likely that there are additional factors in the interactions among family members,
including interactions between the stepparent and stepchild, that are working together to
facilitate this relationship. Identifying these factors will expand knowledge of the
development stepparent-stepchild relationships and provide more information to practitioners who are working to help stepparents and children develop stronger relationships.

The last class, the presence of a nonresident stepparent, was the only predictor exploring nonresident step relations. Although the presence of a nonresident parent did result in a lower quality relationship with the nonresident parent, it was also associated with a higher likelihood that participants had higher quality relationships with both biological parents (i.e., *higher bio*). These findings, though informative, are insufficient in their ability to capture the influence a nonresident parent may have on (step)parent-(step)child relationship quality. Young adults are often varied in their views of nonresident stepparents with some seeing them as beneficial to their relationship with nonresident stepparents while others view them as detrimental or in the way (Ganong et al., 2011; Weaver & Coleman, 2005). The influence of the nonresident stepparent is more likely to be captured by measuring the quality of the stepparent-stepchild relationship rather than just the presence of the stepparent.

Attachment Outcomes

A final important contribution to the literature was the link between (step)parent-(step)child relationship quality and attachment outcomes. To my knowledge, this is the first study to explore this connection. Findings indicate that higher quality biological parent-child relationships were particularly important to reducing adult attachment anxiety and avoidance. Nearly 75% of young adults in our sample were in classes (i.e., *higher bio* and *all higher*) associated with the lowest levels of adult attachment anxiety and avoidance. Although this is encouraging, there are still many questions for
researchers to explore regarding how these biological parent-child relationships are developed or maintained even after family reconfiguration so that practitioners can have the information they need to support biological parents and their children through these transitions.

Although the importance of higher quality relationships with biological parents is apparent from these findings, a higher quality relationship with the stepparent alone was also more likely to result in lower adult attachment anxiety. This implies something important about the quality of resident (step)parent-(step)child relationships and the development of adult attachment anxiety. It also suggests that, in the face of lower quality relationships with biological parents, a stepparent's relationship with their stepchild can have a protective effect on their attachment anxiety. Previous research has provided evidence of the positive influence stepparents can have on children’s psychological, academic, and behavioral outcomes (Jensen et al., 2022). However, many of these studies explore only the dyadic relationship between stepparents and stepchildren without accounting for the biological parent-child relationship quality. Stepparents who successfully develop higher quality relationships with children despite the presence of lower quality relationships with biological parents may have a uniquely strong influence on child outcomes because children may need to depend on them more due to the poor nature of their relationship with biological parents. Additionally, they may be able to have a positive influence on the development of higher quality biological parent-child relationships (Weaver & Coleman, 2005). Research would benefit from a continued collective exploration of (step)parent-(step)child relationships in stepfamilies, especially
in regard to the influence the stepparent-stepchild relationship quality may have on
diverse outcomes and biological parent-child relationships.
REFERENCES

https://doi.org/10.1080/10510970600945923

https://doi.org/10.1111/fare.12086

https://doi.org/10.1111/fare.12504

https://doi.org/10.1177/0192513X18821395

detection and modeling of direct effects in latent class analysis. *Structural
https://doi.org/10.1080/10705511.2018.1541745

factor mixture model. *Journal of Family Psychology, 31*(8), 1051–1062.
https://doi.org/10.1037/fam0000355

https://doi.org/10.1177/10748407221097460

relationship quality: Stepfamily household type as a moderating influence.
Journal of Family Issues, 41(5), 589-610.
https://doi.org/10.1177/0192513X19881669

https://doi.org/10.1177/2167696816669901

adolescent short-term and long-term adjustment. *Journal of Family Psychology,
32*(8), 1130–1141. https://doi.org/10.1037/fam0000442

stepparenting issues: Couple relationship quality as a mediating factor. *Journal of
Divorce & Remarriage, 56(1), 80-94.
https://doi.org/10.1080/10502556.2014.972201

King, V., Thorsen, M. L., & Amato, P. R. (2014). Factors associated with positive relationships between stepfathers and adolescent stepchildren. *Social Science Research, 47*, 16-29. https://doi.org/10.1016/j.ssresearch.2014.03.010

Love, K. M., & Murdock, T. B. (2004). Attachment to parents and psychological well-being: An examination of young adult college students in intact families and

https://doi.org/10.2307/1129720

https://doi.org/10.1016/j.ssresearch.2010.03.002

https://doi.org/10.1111/jomf.12646

Waldron. V. R., Braithwaite, D. O., Oliver-Blackburn, B. M., & Avalos, B. L. (2022). Paths to positivity: Relational trajectories and interaction in positive stepparent-

APPENDIX

Table 1

Family complexity with sibling types as subcategories of stepfamily structure.

<table>
<thead>
<tr>
<th></th>
<th>One partner with at least one child from a previous relationship</th>
<th>Both partners have at least one child from a previous relationship</th>
<th>Partners have a shared child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No siblings</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full siblings only</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step nuclear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half siblings only</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Full and half siblings</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Complex</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stepsiblings only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full and stepsiblings</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Half and step siblings</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Full, half, and step siblings</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 2

Young adult current demographic characteristics.

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Age (1159)</td>
<td>24.78</td>
<td>3.91</td>
<td>18-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>484</td>
<td></td>
<td>42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>675</td>
<td></td>
<td>58%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>693</td>
<td></td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>99</td>
<td></td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latino</td>
<td>96</td>
<td></td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>23</td>
<td></td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>13</td>
<td></td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiracial</td>
<td>225</td>
<td></td>
<td>19%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No College</td>
<td>291</td>
<td></td>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some College</td>
<td>498</td>
<td></td>
<td>43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Degree</td>
<td>370</td>
<td></td>
<td>32%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Income (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No income</td>
<td>127</td>
<td></td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $20,000</td>
<td>359</td>
<td></td>
<td>31%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$20,000-$59,999</td>
<td>498</td>
<td></td>
<td>43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than $60,000</td>
<td>173</td>
<td></td>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship Status (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>419</td>
<td></td>
<td>36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Committed romantic relationship</td>
<td>406</td>
<td></td>
<td>35%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>334</td>
<td></td>
<td>29%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3

Stepfamily characteristics during childhood and adolescence.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Stepfamily Formation (1159)</td>
<td>8.62</td>
<td>4.63</td>
<td>0-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years Resided in Stepfamily Household (1159)</td>
<td>10.46</td>
<td>5.61</td>
<td>0-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepparent Gender (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepmother</td>
<td>354</td>
<td>31%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepfather</td>
<td>805</td>
<td>69%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepcouple Relationship Status (1156)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>916</td>
<td>79%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohabiting</td>
<td>240</td>
<td>21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resident Family Complexity (1152)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Siblings</td>
<td>86</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Siblings</td>
<td>182</td>
<td>16%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half Siblings</td>
<td>133</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>84</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full and Half Siblings</td>
<td>129</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full and Stepsiblings</td>
<td>220</td>
<td>19%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half and Stepsiblings</td>
<td>96</td>
<td>8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full, Half, and Stepsiblings</td>
<td>222</td>
<td>19%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresident Stepparent Present (1159)</td>
<td>339</td>
<td>29%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresident Parent Gender (339)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresident Stepmother</td>
<td>240</td>
<td>71%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresident Stepfather</td>
<td>99</td>
<td>29%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresident Parent Relationship Status (339)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>254</td>
<td>75%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohabiting</td>
<td>85</td>
<td>25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of Time Spent with the Nonresident</td>
<td>24.31</td>
<td>26.47</td>
<td>1-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Parent (1159)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

Correlation coefficients for all study variables.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Resident biological parent-child relationship quality</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2. Stepparent parent-child relationship quality</td>
<td>.583***</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3. Nonresident biological parent-child relationship quality</td>
<td>.161***</td>
<td>.138***</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Full siblings</td>
<td>.026</td>
<td>.006</td>
<td>.058</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Half siblings</td>
<td>-.103**</td>
<td>-.084**</td>
<td>-.060*</td>
<td>-.092**</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Stepsiblings</td>
<td>-.048</td>
<td>.026</td>
<td>.106**</td>
<td>.142***</td>
<td>.004</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Coparenting cooperation</td>
<td>.308***</td>
<td>.278***</td>
<td>.547***</td>
<td>.115**</td>
<td>-.071*</td>
<td>.144***</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Coparenting conflict</td>
<td>-.333***</td>
<td>-.215***</td>
<td>-.286***</td>
<td>-.005</td>
<td>.089**</td>
<td>.016</td>
<td>-.466***</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Triangulation</td>
<td>-.378***</td>
<td>-.202***</td>
<td>-.085**</td>
<td>.055</td>
<td>.085**</td>
<td>.139***</td>
<td>-.195***</td>
<td>.578***</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Stepcouple relationship happiness</td>
<td>.427***</td>
<td>.599***</td>
<td>.158***</td>
<td>.093**</td>
<td>-.078**</td>
<td>.092**</td>
<td>.243***</td>
<td>-.167***</td>
<td>-.119**</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Nonresident stepparent</td>
<td>.011</td>
<td>-.039</td>
<td>-.055</td>
<td>-.026</td>
<td>.044</td>
<td>-.007</td>
<td>-.072*</td>
<td>-.060*</td>
<td>.069*</td>
<td>-.033</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>12. Attachment anxiety</td>
<td>-.288**</td>
<td>-.235***</td>
<td>-.136***</td>
<td>-.033</td>
<td>.103**</td>
<td>-.006</td>
<td>-.129***</td>
<td>.244***</td>
<td>.265***</td>
<td>-.211***</td>
<td>.047</td>
<td>--</td>
</tr>
<tr>
<td>13. Attachment avoidance</td>
<td>-.370***</td>
<td>-.296***</td>
<td>-.128***</td>
<td>.033</td>
<td>.071*</td>
<td>-.001</td>
<td>-.201***</td>
<td>.243***</td>
<td>.263***</td>
<td>-.282***</td>
<td>.033</td>
<td>.547***</td>
</tr>
</tbody>
</table>

Note: *p < .05, **p < .01, ***p < .001
Table 5

Model fit statistics for determining the number of classes.

<table>
<thead>
<tr>
<th>Model Fit Statistics</th>
<th>2-Class</th>
<th>3-Class</th>
<th>4-Class</th>
<th>5-Class</th>
<th>6-Class</th>
<th>7-Class</th>
<th>8-Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>11130.13</td>
<td>10944.31</td>
<td>10799.01</td>
<td>10686.4</td>
<td>10597.1</td>
<td>10534.23</td>
<td>10426.93</td>
</tr>
<tr>
<td>BIC</td>
<td>11180.68</td>
<td>11015.09</td>
<td>10890.01</td>
<td>10797.62</td>
<td>10728.54</td>
<td>10685.89</td>
<td>10598.81</td>
</tr>
<tr>
<td>Adj. BIC</td>
<td>11148.92</td>
<td>10970.62</td>
<td>10832.83</td>
<td>10727.74</td>
<td>10645.96</td>
<td>10590.6</td>
<td>10490.81</td>
</tr>
<tr>
<td>VLMR LRT test (p-value)</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0.005</td>
<td>0.41</td>
<td>0.47</td>
</tr>
<tr>
<td>LMR Adj. LRT test (p-value)</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0.006</td>
<td>0.42</td>
<td>0.48</td>
</tr>
<tr>
<td>Parametric Bootstrapped (p-value)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Entropy</td>
<td>0.86</td>
<td>0.81</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.87</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Note: This same dataset was used in identifying latent classes in Egginton et al. (2021). Only minor differences are present in model fit statistics.
Table 6

Coefficients of predictors direct effects on individual class indicators.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Resident Parent-Child Relationship Quality</th>
<th>Stepparent-Stepchild Relationship Quality</th>
<th>Nonresident Biological Parent-Child Relationship Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological siblings</td>
<td>.05 (.05)</td>
<td>-.00 (.06)</td>
<td>.16 (.06)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>-.07 (.05)</td>
<td>-.07 (.05)</td>
<td>-.12 (.08)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>-.05 (.05)</td>
<td>.05 (.05)</td>
<td>.31 (.08)***</td>
</tr>
<tr>
<td>Biological and half siblings interaction</td>
<td>-.03 (.05)</td>
<td>-.04 (.06)</td>
<td>.01 (.09)</td>
</tr>
<tr>
<td>Biological and stepsibling interaction</td>
<td>-.10 (.05)</td>
<td>.04 (.05)</td>
<td>.31 (.08)***</td>
</tr>
<tr>
<td>Half and stepsibling interaction</td>
<td>-.05 (.05)</td>
<td>.03 (.06)</td>
<td>.16 (.09)</td>
</tr>
<tr>
<td>Biological, half, and stepsibling interaction</td>
<td>-.01 (.06)</td>
<td>.05 (.06)</td>
<td>.23 (.10)*</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>.12 (.02)***</td>
<td>.12 (.03)***</td>
<td>.73 (.03)***</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>-.17 (.03)***</td>
<td>-.11 (.03)***</td>
<td>-.38 (.05)***</td>
</tr>
<tr>
<td>Triangulation</td>
<td>-.22 (.02)***</td>
<td>-.12 (.02)***</td>
<td>-.06 (.04)*</td>
</tr>
<tr>
<td>Step夫妻 relationship happiness</td>
<td>.26 (.03)***</td>
<td>.67 (.03)***</td>
<td>.12 (.02)***</td>
</tr>
<tr>
<td>Nonresident stepparent</td>
<td>.05 (.05)</td>
<td>.01 (.06)</td>
<td>-.16 (.09)</td>
</tr>
</tbody>
</table>

Note: Predictors were tested in individuals models so each test represents a separate model where the individual indicators were regressed on individual class predictors; *p < .05, **p < .01, ***p < .001*
Table 7

T-test of class differences between individual class indicators.

<table>
<thead>
<tr>
<th>Class Indicators</th>
<th>Mean</th>
<th>Mean</th>
<th>Mean</th>
<th>Mean</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Nonresident</td>
<td>1.64<sup>a</sup></td>
<td>1.97<sup>b</sup></td>
<td>4.20<sup>c</sup></td>
<td>4.31<sup>d</sup></td>
<td>1.91<sup>b</sup></td>
</tr>
<tr>
<td>Resident Parent</td>
<td>1.45<sup>a</sup></td>
<td>1.71<sup>b</sup></td>
<td>1.77<sup>b</sup></td>
<td>4.20<sup>c</sup></td>
<td>4.26<sup>c</sup></td>
</tr>
<tr>
<td>Nonresident Parent</td>
<td>4.47<sup>a</sup></td>
<td>1.87<sup>b</sup></td>
<td>3.15<sup>cd</sup></td>
<td>3.26<sup>c</sup></td>
<td>2.72<sup>d</sup></td>
</tr>
</tbody>
</table>

Note: Different superscripts indicate significant difference between means. For example, in the resident parent row, superscripts indicate significant difference between the higher nonresident class and the all lower class, but no difference between the all low class and the high step class. If you reference Figure 2, it shows that the all lower and higher step classes both report low quality relationships with the resident parent, while the moderate to low class indicates a moderate relationship with the resident parent.
Table 8

Multinomial logistic regression coefficients for family complexity predictors.

<table>
<thead>
<tr>
<th>Reference Group</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>All Higher</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full siblings</td>
<td>.38 (.41)</td>
<td>.52 (.87)</td>
<td>.37 (.33)</td>
<td>.29 (.19)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>.43 (.64)</td>
<td>.41 (.53)</td>
<td>.45 (.72)</td>
<td>.39 (.52)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>.32 (.22)</td>
<td>.33 (.21)</td>
<td>.29 (.12)</td>
<td>.34 (.37)</td>
</tr>
<tr>
<td>Full and half sibling interaction</td>
<td>.70 (.15)</td>
<td>.49 (.92)</td>
<td>.60 (.47)</td>
<td>.63 (.49)</td>
</tr>
<tr>
<td>Full and stepsibling interaction</td>
<td>.42 (.62)</td>
<td>.40 (.55)</td>
<td>.48 (.87)</td>
<td>.57 (.74)</td>
</tr>
<tr>
<td>Step and half sibling interaction</td>
<td>.64 (.30)</td>
<td>.65 (.27)</td>
<td>.54 (.77)</td>
<td>.54 (.84)</td>
</tr>
<tr>
<td>All Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full siblings</td>
<td>.62 (.41)</td>
<td>.63 (.18)</td>
<td>.49 (.88)</td>
<td>.38 (.43)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>.57 (.34)</td>
<td>.48 (.86)</td>
<td>.52 (.86)</td>
<td>.45 (.75)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>.68 (.22)</td>
<td>.50 (.99)</td>
<td>.49 (.71)</td>
<td>.51 (.93)</td>
</tr>
<tr>
<td>Full and half sibling interaction</td>
<td>.30 (.15)</td>
<td>.29 (.04)*</td>
<td>.39 (.31)</td>
<td>.43 (.65)</td>
</tr>
<tr>
<td>Full and stepsibling interaction</td>
<td>.57 (.62)</td>
<td>.48 (.81)</td>
<td>.55 (.63)</td>
<td>.64 (.41)</td>
</tr>
<tr>
<td>Step and half sibling interaction</td>
<td>.35 (.30)</td>
<td>.51 (.92)</td>
<td>.40 (.29)</td>
<td>.39 (.51)</td>
</tr>
<tr>
<td>Higher Bio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full siblings</td>
<td>.48 (.87)</td>
<td>.37 (.18)</td>
<td>.35 (.06)</td>
<td>.26 (.07)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>.59 (.53)</td>
<td>.52 (.86)</td>
<td>.54 (.67)</td>
<td>.47 (.84)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>.67 (.21)</td>
<td>.50 (.99)</td>
<td>.46 (.64)</td>
<td>.51 (.93)</td>
</tr>
<tr>
<td>Full and half sibling interaction</td>
<td>.51 (.92)</td>
<td>.71 (.04)*</td>
<td>.62 (.19)</td>
<td>.64 (.36)</td>
</tr>
<tr>
<td>Full and stepsibling interaction</td>
<td>.60 (.50)</td>
<td>.52 (.81)</td>
<td>.57 (.41)</td>
<td>.66 (.32)</td>
</tr>
<tr>
<td>Step and half sibling interaction</td>
<td>.35 (.27)</td>
<td>.49 (.92)</td>
<td>.38 (.17)</td>
<td>.38 (.46)</td>
</tr>
<tr>
<td>All Higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full siblings</td>
<td>.63 (.33)</td>
<td>.51 (.88)</td>
<td>.65 (.06)</td>
<td>.40 (.44)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>.55 (.72)</td>
<td>.48 (.86)</td>
<td>.46 (.67)</td>
<td>.43 (.62)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>.71 (.12)</td>
<td>.54 (.71)</td>
<td>.54 (.64)</td>
<td>.55 (.71)</td>
</tr>
<tr>
<td>Full and half sibling interaction</td>
<td>.40 (.47)</td>
<td>.61 (.31)</td>
<td>.38 (.19)</td>
<td>.53 (.85)</td>
</tr>
<tr>
<td>Full and stepsibling interaction</td>
<td>.52 (.87)</td>
<td>.45 (.63)</td>
<td>.43 (.41)</td>
<td>.59 (.57)</td>
</tr>
<tr>
<td>Step and half sibling interaction</td>
<td>.46 (.77)</td>
<td>.60 (.29)</td>
<td>.62 (.17)</td>
<td>.50 (.99)</td>
</tr>
<tr>
<td>Higher Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full siblings</td>
<td>.72 (.19)</td>
<td>.62 (.43)</td>
<td>.74 (.07)</td>
<td>.60 (.44)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>.61 (.52)</td>
<td>.55 (.75)</td>
<td>.53 (.84)</td>
<td>.57 (.62)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>.66 (.37)</td>
<td>.49 (.93)</td>
<td>.49 (.93)</td>
<td>.45 (.71)</td>
</tr>
<tr>
<td>Full and half sibling interaction</td>
<td>.37 (.49)</td>
<td>.57 (.65)</td>
<td>.36 (.36)</td>
<td>.47 (.84)</td>
</tr>
<tr>
<td>Full and stepsibling interaction</td>
<td>.43 (.74)</td>
<td>.36 (.41)</td>
<td>.34 (.32)</td>
<td>.41 (.57)</td>
</tr>
</tbody>
</table>
Step and half sibling interaction | .46 (.84) | .61 (.51) | .62 (.46) | .50 (.99)

Note: This is the only table reporting probabilities and p-values instead of coefficients and standard errors. Larger probabilities indicate that the young adult is more likely to be in the comparisons group represented at the top of the column compared to their reference group at the beginning of the row; *p < .05, **p < .01, ***p < .001
Table 9

Multinomial logistic regression coefficients for coparenting predictors.

<table>
<thead>
<tr>
<th>Reference Group: Higher Nonresident</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>All Higher</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>-.22 (.16)</td>
<td>.16 (.15)</td>
<td>.48 (.15)**</td>
<td>-.45 (.23)*</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>.38 (.19)*</td>
<td>-.45 (.18)*</td>
<td>-.48 (.18)**</td>
<td>-.20 (.24)</td>
</tr>
<tr>
<td>Triangulation</td>
<td>.29 (.13)*</td>
<td>-.19 (.13)</td>
<td>-.20 (.12)</td>
<td>.28 (.19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: All Lower</th>
<th>Higher Nonresident</th>
<th>Higher Bio</th>
<th>All Higher</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>.22 (.16)</td>
<td>.38 (.13)**</td>
<td>.69 (.12)**</td>
<td>-.24 (.21)</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>.38 (.19)*</td>
<td>-.07 (.14)</td>
<td>-.09 (.15)</td>
<td>.18 (.20)</td>
</tr>
<tr>
<td>Triangulation</td>
<td>.29 (.13)*</td>
<td>-.49 (.12)**</td>
<td>-.49 (.11)**</td>
<td>-.01 (.18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: Higher Bio</th>
<th>Higher Nonresident</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>-.16 (.15)</td>
<td>-.38 (.12)**</td>
<td>.33 (.09)**</td>
<td>-.61 (.20)**</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>.45 (.18)*</td>
<td>.07 (.15)</td>
<td>-.03 (.11)</td>
<td>.25 (.21)</td>
</tr>
<tr>
<td>Triangulation</td>
<td>.19 (.12)</td>
<td>.49 (.11)**</td>
<td>-.01 (.09)</td>
<td>.48 (.18)*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: All Higher</th>
<th>Higher Nonresident</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>-.48 (.15)**</td>
<td>-.69 (.12)**</td>
<td>-.33 (.09)**</td>
<td>-.94 (.19)**</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>.48 (.18)**</td>
<td>.09 (.15)</td>
<td>.03 (.11)</td>
<td>.28 (.20)</td>
</tr>
<tr>
<td>Triangulation</td>
<td>.20 (.12)*</td>
<td>.49 (.11)**</td>
<td>.01 (.09)</td>
<td>.48 (.18)**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: Higher Step</th>
<th>Higher Nonresident</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>All Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>.45 (.23)*</td>
<td>.24 (.21)</td>
<td>.61 (.20)**</td>
<td>.94 (.19)**</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>.20 (.24)</td>
<td>-.18 (.22)</td>
<td>-.25 (.21)</td>
<td>-.28 (.20)</td>
</tr>
<tr>
<td>Triangulation</td>
<td>-.28 (.29)</td>
<td>.01 (.18)</td>
<td>-.48 (.18)*</td>
<td>-.48 (.18)**</td>
</tr>
</tbody>
</table>
Table 10

Multinomial logistic regression coefficients for stepcouple happiness.

<table>
<thead>
<tr>
<th>Reference Group: Higher Nonresident</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>All Higher</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Stepcouple relationship happiness</td>
<td>.15 (.14)*</td>
<td>.23 (.14)</td>
<td>1.29 (.14)***</td>
<td>.63 (.20)*</td>
</tr>
<tr>
<td>Higher Nonresident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Bio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Group: All Lower</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Stepcouple relationship happiness</td>
<td>-.15 (.14)</td>
<td>.08 (.12)</td>
<td>1.14 (.11)***</td>
<td>.47 (.19)*</td>
</tr>
<tr>
<td>Higher Nonresident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Group: Higher Bio</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Stepcouple relationship happiness</td>
<td>-.23 (.14)</td>
<td>-.08 (.12)</td>
<td>1.07 (.09)***</td>
<td>.40 (18)*</td>
</tr>
<tr>
<td>Higher Nonresident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Bio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Group: All Higher</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
<td>b(SE)</td>
</tr>
<tr>
<td>Stepcouple relationship happiness</td>
<td>-1.29 (.14)***</td>
<td>- (.11)***</td>
<td>-1.07 (.09)***</td>
<td>- .67 (.17)***</td>
</tr>
<tr>
<td>Higher Nonresident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Bio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A significant positive coefficient indicates that when young adults reported more stepcouple relationship happiness they were less likely to be in the class indicated as the reference group. Conversely, significant negative coefficients indicate that when young adults reported less stepcouple relationship happiness they were more likely to be in the class indicated as the reference group; $^*p < .05$, $^{**}p < .01$, $^{***}p < .001$.

Table 11

Multinomial logistic regression coefficients for the presence of a nonresident stepparent.

<table>
<thead>
<tr>
<th>Reference Group: Higher Nonresident</th>
<th>All Lower</th>
<th>Higher Bio</th>
<th>All Higher</th>
<th>Higher Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident stepparent</td>
<td>.50 (.31)</td>
<td>.63 (.32)*</td>
<td>.49 (.31)</td>
<td>-.06 (.43)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: All Lower</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident stepparent</td>
<td>-.50 (.31)</td>
<td>.13 (.22)</td>
<td>-.01 (.02)</td>
<td>-.56 (.36)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: Higher Bio</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident stepparent</td>
<td>-.63 (.32)*</td>
<td>-.13 (.22)</td>
<td>-.14 (.18)</td>
<td>-.69 (.36)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: All Higher</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident stepparent</td>
<td>-.49 (.31)</td>
<td>.01 (.20)</td>
<td>.14 (.18)</td>
<td>-.55 (.35)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Group: Higher Step</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
<th>b(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident stepparent</td>
<td>.06 (.43)</td>
<td>.56 (.36)</td>
<td>.69 (.36)</td>
<td>.22 (.65)</td>
</tr>
</tbody>
</table>

Note: A significant positive coefficient indicates that when young adults reported having a nonresident stepparent they were less likely to be in the class indicated as the reference group. Conversely, significant negative coefficients indicate that when young adults not having a nonresident stepparent they were more likely to be in the class indicated as the reference group; *p < .05, **p < .01, ***p < .001.
Table 12

Coefficients of direct effects between class predictors and attachment outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Attachment Anxiety</th>
<th>Attachment Avoidance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (SE)</td>
<td>b (SE)</td>
</tr>
<tr>
<td>Full siblings</td>
<td>-.03 (.06)</td>
<td>-.06 (.07)</td>
</tr>
<tr>
<td>Half siblings</td>
<td>.15 (.06)**</td>
<td>.08 (.06)</td>
</tr>
<tr>
<td>Stepsiblings</td>
<td>-.02 (.06)</td>
<td>-.01 (.06)</td>
</tr>
<tr>
<td>Full and half siblings interaction term</td>
<td>.11 (.06)</td>
<td>.03 (.06)</td>
</tr>
<tr>
<td>Full and stepsiblings interaction term</td>
<td>.03 (.06)</td>
<td>-.03 (.06)</td>
</tr>
<tr>
<td>Half and stepsiblings interaction term</td>
<td>.09 (.06)</td>
<td>.02 (.07)</td>
</tr>
<tr>
<td>Full, half, and stepsiblings interaction term</td>
<td>.19 (.07)**</td>
<td>.04 (.07)</td>
</tr>
<tr>
<td>Coparenting cooperation</td>
<td>-.04 (.03)</td>
<td>-.10 (.03)**</td>
</tr>
<tr>
<td>Coparenting conflict</td>
<td>.20 (.04)***</td>
<td>.18 (.04)***</td>
</tr>
<tr>
<td>Triangulation</td>
<td>.19 (.03)***</td>
<td>.18 (.03)***</td>
</tr>
<tr>
<td>Stepcouple relationship happiness</td>
<td>-.13 (.03)***</td>
<td>-.19 (.03)***</td>
</tr>
<tr>
<td>Nonresident stepparent</td>
<td>.07 (.07)</td>
<td>.05 (.07)</td>
</tr>
</tbody>
</table>

Note: Each line represents a separate model as the predictors were added one at a time to check for significant relationships; *p < .05, **p < .01, ***p < .001
Table 13

Means and standard errors of class difference on attachment outcomes.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Higher Nonresident Mean (SE)</th>
<th>All Lower Mean (SE)</th>
<th>Higher Bio Mean (SE)</th>
<th>All Higher Mean (SE)</th>
<th>Higher Step Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment Anxiety</td>
<td>3.72 (.19)^ab</td>
<td>3.94 (.17)^a</td>
<td>3.60 (.17)^b</td>
<td>3.50 (.17)^b</td>
<td>3.54 (.22)^b</td>
</tr>
<tr>
<td>Attachment Avoidance</td>
<td>4.62 (.22)^a</td>
<td>4.64 (.19)^a</td>
<td>4.20 (.19)^b</td>
<td>4.14 (.19)^b</td>
<td>4.51 (.24)^a</td>
</tr>
</tbody>
</table>

Note: Different superscripts indicate significant difference between means. For example, a superscript for both the higher nonresident and all lower classes indicate that these classes did not significantly differ from each other on either the attachment anxiety or attachment avoidance outcomes.
Figure 1

Analysis Model

- Family Complexity
- Bio Parent Coparenting Cooperation
- Bio Parent Coparenting Conflict
- Bio Parent Triangulation
- Stepcouple Relationship Happiness
- Nonresident Stepparent

Latent Classes of (Step)parent-(Step)child Relationships

- Attachment Anxiety
- Attachment Avoidance
Figure 2

(Step)parent-(step)child relationship classes before test of direct effects.
Figure 3

(Step)parent-(step)child relationship quality classes after test of direct effects.
Figure 4

Final 5-class latent class solution of (step)parent-(step)child relationship quality.
Figure 5

Probabilities of class membership for the full and half sibling interaction term.

Note: Lines between points do not indicate a continuum only a slope as all variables are dichotomous.
Braquel Egginton originally comes from Utah. From childhood she had always planned on pursuing higher education, though the original plan had been to obtain a master’s in social work and pursue a career working with children who had or were experiencing parental addiction. However, after a series of unexpected events she was provided an opportunity to join the department of Marriage, Family, and Human Development at Brigham Young University (BYU). Thus began her pursuit of a career in research, which she now deeply regrets. Having recently experienced both the divorce and repartnership of her parents, Braquel made the decision to begin her study of non-normative family experiences. Her specific area of research, as is likely evident from this paper, is stepfamilies. However, she continues to have an interest in other family structures and experiences.

Near the end of her time at BYU, Braquel had an opportunity to be the lead graduate student on a meta-analytic study exploring the effectiveness of fatherhood education programs. That study, in combination with the data management skills gained during her work with the Couple Relationships and Transition Experiences Project (CREATE) set her on the path toward community education and evaluation. It was her interest in stepfamily research and community education and her data manager skills that led her to pursue a doctorate at the University of Missouri (MIZZOU). During her time in the Human Development and Family Studies department at MIZZOU, she had a miserable experience. In the end, she decided to quit the program before completing her final dissertation defense and was away for a year before she made the decision to complete her degree.