
A HIERARCHICAL TIME-INDEXED DATABASE FOR MULTI-MODAL

DERIVED SENSOR DATA USING GPU-ACCELERATED POSTGRESQL

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

JAMAL SAIED-WALKER

Dr. Grant J. Scott, Thesis Supervisor

DECEMBER 2023

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

A HIERARCHICAL TIME-INDEXED DATABASE FOR MULTI-MODAL

DERIVED SENSOR DATA USING GPU-ACCELERATED POSTGRESQL

presented by Jamal Saied-Walker,

a candidate for the degree of Master of Science and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Grant J. Scott

Dr. Alex Hurt

Dr. Yaw Adu-Gyamfi

ACKNOWLEDGMENTS

I want to sincerely thank Dr. Grant J. Scott, my advisor, for his support and

direction during my research. Over my master’s program, he continuously gave me

the resources I needed to complete my research.

Besides my advisor, I would like to thank Dr. Yaw Adu-Gyamfi for his invaluable

support during my early years at Mizzou, and Pallavi Gupta for helping me navigate

our lab’s research.

Finally, I am extremely grateful to my family, especially my parents, Diana Walker

and Abraham Saied, for their support. My godmother, Olga Walker, who has left

an indelible mark on my life and has been a guiding force. My cousin, Vasco Duke,

who has been an incredible mentor during my journey of graduate school. I am

also thankful to Maryann Castillo, my partner, whose emotional support has been

fundamental during this process of earning my master’s degree.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . ix

CHAPTER . x

1 Introduction . 1

1.1 Background and Related Work . 1

1.2 Contribution . 3

1.3 Outline . 4

2 Hierarchical Time Indexed Databases Designs and Implementations 6

2.1 Sensor Data . 7

2.2 Hierarchical Time-Indexed Database 11

2.2.1 Design . 11

2.2.2 Space Utilization & Characteristics 14

2.3 Summary . 17

3 Multi-modal derived features from bed sensor data 18

3.1 Derived Multi-Modal Feature Data 19

3.1.1 Restlessness . 19

3.1.2 Respiration . 20

3.1.3 Heart Rate . 23

3.2 Data Processing Pipeline . 23

3.3 Feature Big Data Database . 30
iii

3.4 Summary . 35

4 PostgreSQL Extensions with SPI and CUDA 36

4.1 SPI in PostgreSQL . 37

4.2 CUDA integration with SPI . 37

4.3 Heart Rate Estimation using SPI and CUDA 39

4.4 A Deep Dive into SPI Extensions with CUDA 41

4.5 Summary . 48

5 Applications . 49

5.1 Experiments . 51

5.1.1 Timing experiments for HTIDB access 51

5.1.2 Timing experiments for Multi-modal derived feature tables access 54

5.1.3 Timing experiments for PostgreSQL extension of CPU and GPU 56

5.2 Summary . 62

6 Conclusion . 63

6.1 Summary . 63

6.2 Future Work . 64

BIBLIOGRAPHY . 65

iv

LIST OF TABLES

Table Page

2.1 Example of the contents of each GPZIP file. 11

2.2 High-Frequency (100 Hz) Bed Data Example 14

2.3 Bed Data Storage Characteristics for one resident across two years. . 14

2.4 Bed Data Storage Characteristics . 15

3.1 Example of hierarchical restlessness feature data 32

v

LIST OF FIGURES

Figure Page

2.1 TigerPlace Sensor Network . 8

2.2 Hydraulic Bed Sensor Layout . 8

2.3 Bed Sensor Data Collection Diagram 9

2.4 Hierarchical file structure of CSV files. 10

2.5 Hierarchical Time-Indexing Design 12

2.6 Bed Sensor Data Table Layout . 13

2.7 Bar Chart Displaying Number of Records 16

3.1 1-Minute Intervals of Bed Sensor Data 19

3.2 Extracted restlessness feature time-series plot over one night 21

3.3 Extracted respiration feature time-series plot over one night 22

3.4 extracted heart rate feature time-series plot over one night 23

3.5 Data-processing pipeline for feature vectors 24

3.6 Global histograms for restlessness feature 25

3.7 Global histograms for respiration feature 25

3.8 Global histograms for heart rate feature 25

3.9 Example SQL query statement aggregating respiration data 27

3.10 Extracted multi-modal feature time-series plots 28

3.11 Feature space histograms . 29

3.12 HTI design for extracted multi-modal features 31

vi

3.13 Example SQL view showing decompressed bed sensor data 33

3.14 Example SQL showing grouped data in 1-minute intervals 34

4.1 High-Level diagram of the general integration of a DBMS accelerated

procedure using CUDA. 38

4.2 Data processing pipeline for physiological feature extraction 39

4.3 CUDA grid/block configuration . 40

5.1 The system demonstrates consistent linear growth with increasing time-

frame data access. Growth rate is modeled to 0.0296 seconds of query

execution time per minute of 100 Hz of high frequency data. 50

5.2 In-database analytics performed over various temporal windows. All

queries are aggregating statistics from one full day of HFBD for a single

resident. 51

5.3 In-database analytics (aggregate averages, min, max, and variance)

performed over 1-hour temporal windows, spanning differing number

of days. All queries are aggregating statistics of HFBD for a single

resident. 52

5.4 Daily in bed minutes approximated as sensor data for rapid snapshot

of data discovery task or synoptic view of health trend. 53

5.5 Growth of the query execution time over different time windows, e.g.,

pulling 1–100 days’ worth of feature data. (a) respiration timings &

(b) restlessness timings. The red line represents the query completion

time. The blue line represents the total execution time (Query Time

+ Network Time). 55

5.6 Growth of the query execution time over different growing time win-

dows, e.g., pulling 1–3600 minutes of bed sensor data (note Log-Y

scale). CPU vs 256 threads per block GPU. 57

vii

5.7 Growth of the query execution time over different growing time win-

dows, e.g., pulling 1–3600 minutes’ worth of bed sensor data. The

Graph compares the execution time across multiple threads configura-

tions. 59

5.8 Stacked bar chart comparing different timing metrics across different

threads configurations. 60

5.9 SQL procedure statement returning average respiration for each minute

of an entire night. 61

viii

ABSTRACT

With the vast influx of data captured by ubiquitous sensors, such as those in

wearable devices, smart sensors in long-term care facilities, and hydraulic bed sen-

sors, there exists an enormous potential for exploiting these multi-modal data using

advanced analytics. However, the ability to effectively utilize these growing datasets is

contingent upon high-performance data-handling systems that ensure high data scala-

bility and effortless data accessibility, especially in various fields demanding real-time

signal processing like healthcare, artificial intelligence, machine learning, and scientific

research.

In this context, this thesis aims to address the challenges associated with the

immense volume of sensor data by proposing an efficient database design system. This

system utilizes general purpose, high-scalability database systems and integrates them

with data analytics focused column stores that exploit hierarchical time indexing,

compression, and dense raw numeric data storage. The approach further includes

leveraging the capabilities of graphics processing units (GPUs) in conjunction with

database management systems (DBMS) using the server programming interface (SPI)

with PostgreSQL for accelerated signal processing.

We demonstrate robust design, developments, and techniques of a hierarchical

time-indexed database for decision support systems and propose an innovative database

system for multi-modal derived time-series featured data (e.g., respiration, restless-

ness, and heart rate). We also introduce a data-processing pipeline to enable Big Data

analytics for multi-modal time-series feature data and compare the performance of

CPU and GPU approaches for feature extraction from sensor data.

Our evaluations reveal the performance characteristics and tradeoffs of each com-

ponent, with special emphasis on data access latencies and storage requirements -

vital elements for capacity planning in scalable systems. The proposed database sys-

ix

tem is demonstrated to be extremely scalable and offers straightforward integration

with existing analytic tools via SQL interfaces. Furthermore, we discuss the usability,

adaptability, timing metrics, and precision differences between CPU and GPU code

in different thread and block configurations, thereby offering a comprehensive view

of real-time signal processing systems.

x

Chapter 1

Introduction

1.1 Background and Related Work

The continuous and increasing collection of data and advancements in healthcare has

led to significant efforts to develop scalable and high-performing database manage-

ment systems (DBMS) for smart sensor environments. DBMS provides a structured

and efficient platform to store, manage, and retrieve large amounts of data. This is

crucial for long-term care facilities, where there is a need to access time-series data in

arbitrary time windows. The ability to access arbitrary sliced time data is especially

important for time-series analysis as a monitoring tool and prognosis analytics in

long-term care facilities [1]. The use of smart sensors helps track the health deterio-

ration of chronic diseases. Cardiovascular, respiratory, and brain diseases are among

the chronic diseases that can be tracked using smart sensors like hydraulic bed sensors

[2, 3, 4, 5]. The hydraulic bed sensor data is particularly suited for scalable systems

due to the high-frequency nature of the data [6, 7].

While traditional data storage systems such as SQL and NoSQL can accommodate

large amounts of raw and computed data, their basic structure limits their efficiency

1

of access for algorithms and advanced analytics. Time-Series Databases (TSDBs) are

another traditional solution for time-series data that link sets of time with values.

While generally compatible with Internet-of-Things (IoT) devices, the unique char-

acteristics of non-wearable sensors such as hydraulic bed sensors make TSDBs less

suitable for integrating this type of data [8, 9, 10].

Moreover, the use of advanced algorithms to extract information from the hy-

draulic bed sensor signal for heart rate, respiration, and restlessness is crucial for

identifying and studying diseases. The ability to perform multi-modal, longitudinal,

and predictive health analysis is necessary as health conditions can span weeks to

years or even a lifetime. Health tracking is crucial for residents in long-term health

facilities, where sedentary behavior has increased in older adults. Smart sensors can

provide useful information to help caregivers or researchers identify earlier stages of

a disease, enhancing their ability to react to a health episode of the residents [11, 12,

13, 14].

Because of this, High-Performance Computing (HPC) has become increasingly

important and much research effort for analyzing and deriving physiological data

[15]. Utilizing HPC methods can accelerate the computation of signal-processing al-

gorithms. Graphic Processing Units (GPUs) have become increasingly dominant in

many scientific research applications, including artificial intelligence, machine learn-

ing, and data mining [16, 17, 18, 19]. Additionally, there has been an increase in the

popularity of GPUs in large-scale data center applications. GPUs’ increased popu-

larity in many fields has enriched the research for GPU-accelerated DBMS [20, 21,

22].

The integration of GPUs with DBMSs can improve the processing of large amounts

of data [23], and as mentioned, GPUs have been gaining the focus of attention for

many scientific computing tasks. An example of a GPU-accelerated database exten-

sion is presented in [24], where they designed a GPU framework for high-throughput

2

large-scale pattern matching as a PostgreSQL extension [25]. The authors of [26]

presented different algorithms for performing common SQL operations such as aggre-

gations, relational queries, and conjunctions on GPUs inside the database. As part

of their contribution, they highlight that some of the algorithms performed better

than others; demonstrating the important point that not every problem or algorithm

is going to benefit from GPU acceleration within databases.

1.2 Contribution

In this thesis, we present a comprehensive solution to address the challenges in

handling time-series Big Data by proposing a hierarchical time-indexed database

(HTIDB) design for scalable time-series data warehousing. This database design

incorporates a hierarchical time-index (HTI) structure, irregular sampling, irregular

timespans, and native numeric data in a segmented column-storage layout. The stor-

age of data in compressed dense numerical matrices not only saves space but also

enhances scalability. This approach facilitates efficient data access for analytics, al-

gorithms, and the integration of other data types such as relational records and sensor

data.

Our proposed data processing pipeline for processing multi-modal feature time-

series Big Data effectively supports Big Data analytics and allows researchers to uti-

lize signal-processing algorithms for extracting physiological features from bed sensor

data (i.e restlessness, respiration, and heart rate). We demonstrate a novel approach

to developing signal-processing algorithms, enabling seamless integration into GPU-

accelerated PostgreSQL. This approach is applicable to any algorithm that can benefit

from GPU-accelerated databases.

Lastly, we provide an overview of our solution to further foster a better under-

standing of the design concepts and implementation of the data processing pipeline of

3

multi-modal feature data from hydraulic bed sensors and GPU-accelerated databases.

To facilitate ease of implementation, we offer an open-source repository with exam-

ples of different GPU kernels, highlighting how to create PostgreSQL extensions using

Server Programmable Interface (SPI) in C++ and performing the computations on

the GPU. These contributions aim to provide a scalable and efficient solution for

handling time-series Big Data in various research and industry applications.

1.3 Outline

This thesis addresses the challenges in handling time-series Big Data by proposing

a hierarchical time-indexed database (HTIDB) design for scalable time-series data

warehousing, a data processing pipeline for deriving multi-modal feature data from

hydraulic bed sensors, and a comprehensive guide on how to create GPU-accelerated

databases for performing database operations on the GPU. Chapter 2 introduces

the concepts of time-series databases, hierarchical time-indexed databases (HTIDB),

the current layout system structure for long-term healthcare facilities, data storage

compression methods such as segmented storage and array compression, and the

benefits of a DBMS with HTIDB design in healthcare.

Chapter 3 introduces the data processing pipeline and Big Data management for

the derivation of multi-modal features from hydraulic bed sensors. Chapter 3 also

details how to store such derived features, and storage characteristics, as well as how

to construct the data for Machine Learning (ML) applications.

Chapter 4 introduces and delves into how to create database extensions in Post-

greSQL with SPIs and GPUs, core SPI concepts, and how to create kernels and

applications within the GPU using Compute Unified Device Architecture (CUDA).

Furthermore, Chapter 4 details how to design and integrate SPI and CUDA to create

PostgreSQL extensions that run computations on the GPU.

4

Chapter 5 introduces health applications, timing experiments for accessing raw

data, multi-modal derived feature table access times, CPU and GPU timing com-

parisons for heart rate estimation from bed sensors, and different thread and block

configurations for the heart rate kernel. Furthermore, Chapter 5 highlights the results

and provides an analysis. Lastly, Chapter 6 explains future directions, summarizes

the work, and highlights the accomplishments of this thesis.

5

Chapter 2

Hierarchical Time Indexed
Databases Designs and
Implementations

The need to access time-series data in arbitrary time windows has become increas-

ingly important in long-term care facilities, as they continue to adopt more sensor

networks and technologies. Arbitrary sliced time data offers an easily accessible mech-

anism for time-series analysis, which can be employed as a monitoring tool and for

prognosis analytics in these facilities. This is particularly relevant when identifying

associations between sensor data streams and medical events documented in elec-

tronic health records (EHRs), as well as human activity captured by other ambient

sensing modalities. Consequently, this chapter aims to highlight the necessity and

propose a solution for a DBMS in PostgreSQL design, tailored to accommodate the

needs of irregular time-series data, such as hydraulic bed sensor data.

6

2.1 Sensor Data

The data source used in the entire thesis is from a hydraulic bed sensor that collected

data at long-term facilities for older adults. Center for Eldercare and Rehabilitation

Technology (CERT) works together with Americare aging-in-place facilities, such as

TigerPlace, to advance the creation of innovative smart healthcare technologies de-

signed for elderly care [27]. TigerPlace is an aging-in-place facility for older adults

where numerous smart sensors are in place for passive older adult resident monitoring

established in 2005 at the University of Missouri.

As shown in Fig. 2.1, TigerPlace consists of a sensor network of both wearable and

non-wearable sensors. Figure 2.1 shows how the smart sensors are used for constant

monitoring and detection of the residents’ activity. Wearable sensors like smart-

watches may be challenging for older adults who are unfamiliar with the device and

require active management. Therefore, non-wearable sensors like hydraulic bed sen-

sors are preferred in long-term care facilities. Tracking residents’ health information

via a hydraulic bed sensor is challenging for researchers for two reasons: the amount

of continuous data collected per day per person, and the way data produced from

hydraulic bed sensors is stored.

The hydraulic bed sensor is a collection of four transducers (flexible water-filled

tubes) that are positioned under the resident mattress as seen in Fig. 2.2 [29]. The

hydraulic sensors are pressure sensitive to capture bio-physiological changes in bed.

These changes in pressure translate into a change in the voltage signal. Moreover,

the voltage signals undergo hardware filtering. Hence, for every captured timestamp,

each one of the four transducers generates one raw reading (denoted with the letter

r) and one filtered reading (denoted with the letter f).

The purpose of using four dispersed transducers is to cover the largest possible

surface area on the bed for effective data gathering. As a result, typically at any

given moment, only one of the four transducers will have a maximum reading, unless
7

Figure 2.1: Sensor Network consists of wearable and non-wearable sensors (bed, gait,
motion activity) [28]

Figure 2.2: Hydraulic bed sensors monitor cardiovascular activity during sleep.
Pressure-sensitive hydraulic transducers capture bio-physiological changes in bed

8

Figure 2.3: Sensor data logger at TigerPlace collects transducer data in 10-minute
intervals and saves as compressed CSV files.

the resident shifts their position or turns to their side on the bed, causing the load

to transfer to another transducer.

The current data pipeline for storing hydraulic bed sensor data from the long-term

health facility, TigerPlace, is using GZIP (compressed) comma separated value (CSV)

files as shown in Fig. 2.3. Figure 2.3 is a visual representation of how the data goes

from the hydraulic bed sensor to the server. The hydraulic bed sensor takes readings

at 100 Hz measurements, saving the eight features every 0.01 s, and saving the data

in chunks of ten-minute intervals in the compressed GZIP formats.

Aside from having a good compression ratio, saving data in this flat file storage

format is inefficient for researchers to conduct later analysis and any subsequent data

processing. Furthermore, since the local controller stores the file directly on the server,

each smart sensor has a directory in the file system associated with a resident. This

hierarchical file structure of CSV files is depicted in Fig. 2.4.

Figure 2.4 demonstrates that for each resident, there is a folder containing multiple

sensor folders. These sensor folders are then organized into subsequent folders by

year, month, and day, with the GZIP files located beneath them. This means that a

record taken at 2017-09-17 21:55:15 would reside in /<resident_id>/beddata/

2017/09/17/2017_09_17_21_50_44.bd3.gz.

As we can see, analyzing a specific temporal window of hydraulic bed sensor

data requires researchers to undertake several inefficient steps. Firstly, they must

9

Figure 2.4: Hierarchical file structure of CSV files.

10

Table 2.1: Example of the contents of each GPZIP file.

tstamp r1 r2 r3 r4 f1 f2 f3 f4
08-14 10:58:41.795 24 619 31 688 2027 2028 2042 2062
08-14 10:58:41.805 24 619 30 688 2030 2042 2042 2050
08-14 10:58:41.815 24 620 32 688 2032 2037 2044 2049
08-14 10:58:41.885 24 624 31 689 2033 2032 2045 2048

..................

..................

..................
08-14 11:08:44.025 25 619 32 534 2036 2040 2041 2042
08-14 11:08:44.035 26 619 32 530 2033 2038 2045 2041
08-14 11:08:44.045 24 622 32 528 2043 2037 2041 2042
08-14 11:08:44.055 25 619 28 529 2034 2037 2048 2047

convert the temporal window into a path-like string to locate the relevant directories

containing the data. Secondly, they must unzip each individual GZIP file and convert

it into a numerical representation. Finally, they need to manipulate timestamps for

each row to determine the actual timestamp as shown in Table 2.1.

Table 2.1 illustrates the contents of a GZIP file. As can be seen from Table 2.1,

the tstamp column does not contain valid timestamps. To convert the tstamp column

into a valid format, the year must be appended to each tstamp entry. While this

approach may be feasible for narrow temporal windows, it becomes impractical when

analyzing data spanning multiple months or years.

2.2 Hierarchical Time-Indexed Database

2.2.1 Design

As mentioned in section 2.1, the current design requires inefficient steps for using the

bed sensor data. The required characteristics of an improved data storage and access

solution for bed sensors must support the following: a) native (binary) storage of the

numerical data; b) indexing mechanisms for arbitrary access to temporal ranges of

11

Figure 2.5: Hierarchical Time-Indexing uses blocks of records, with each block having
a timestamp base, then each record block is a partial column store of dense numerical
data, compressed and indexed by sub-second offsets.

the data; and c) the ability to integrate the data access with other modalities, such

as relational data. With this in mind, we have developed a hierarchical time-indexed

database (HTIDB) design for scalable time series data.

Figure 2.5 presents a diagram of the HTIDB design. The top-level record structure

comprises an index based on non-time-series data, such as sensor ID (i.e., relational

Primary Key), as well as a timestamp base value. This base value provides an absolute

time reference for a time series column store segment with time indexing, measured

in partial seconds relative to that base.

Each top-level record contains a column store segment with secondary time index-

ing associated with the timestamp base. While this secondary indexing introduces

storage overhead, it eliminates the need for assumptions regarding measurement sam-

pling rates and continuity, thereby enabling reliable access to irregular time-series

data. The column store segments always maintain temporal order; however, the

timestamp base does not necessarily follow this order, as they are indexed in both

(temporal order) and (Key, temporal order) at the higher database layer.

12

Record (1.15 MB)
Field Data Type (Size)

Enabled Sensor ID integer (4 B)
Timestamp Base timestamp (8 B)

Timestamp Offset float array (234.4 KB)
Bed Sensor Data dense 2-D array (937.5 KB)

Indices
Index Scope→Unit

SensorID Table→Partition
(SensorID,TimeStampBase) Partition→Record

(Timestamp Offset) Record→Dense Array

Figure 2.6: Bed sensor data table layout. The Timestamp Base is an index into
10-minute segments (records). Each record has 10-minute span column store of the
bed sensor data, which is indexed in floating point seconds from the base. DB and
column store segment indices accelerate analytics.

Figure 2.6 provides an overview of the record size and breakdown within the

HTIDB used for high-frequency bed data. As noted, a record consists of 60,000 time

series measurements across eight features, which is packed into 1.15 MB. The major-

ity of this is a) the timestamp offset array, floating point seconds, using 234.4 KB,

and b) the 2-D dense numerical array (60,000×8) of measurements, using 937.5 KB.

However, these two arrays are compressed in storage, allowing the total data use to

be significantly smaller than 1.15 MB per record. The 2-D dense numerical array is

organized as a column store segment, whereby retrieval and ordering by the records’

timestamp base allows the concatenation of arbitrary-sized time series data.

Finally, one of the key important aspects of the HTIDB is that it is integrated

into a traditional DBMS. In this way, the Key referenced in Fig. 2.5, or the Enabled

Sensor ID in Fig. 2.6 example, can be incorporated into traditional join semantics of

database queries.

Table 2.2 displays an exemplary layout, with a base time of August 5, 2019, at

2:19:20.210 AM. The first row in the dense numeric 2-D array is indexed at 0.0 seconds,

followed by the second row at 0.015 seconds from the timestamp base, the third row

at 0.025 seconds, and so on. It is important to note that there is no requirement
13

Table 2.2: Example of hierarchical raw high-frequency (100 Hz) bed data with internal
arrays, set at timestamp (TS) base and temporal indexing offsets in seconds.

TS Base Offset Bed Sensor Data (tensors)
2019-08-05 0.000 27, 816, 24, 994 2031, 2024, 2031, 2041
02:19:28.210 0.015 30, 822, 23, 994 2032, 2034, 2030, 2040

0.025 30, 819, 24, 999 2030, 2027, 2026, 2037
0.035 30, 822, 22,1000 2042, 2034, 2027, 2047
0.045 28, 820, 22, 995 2038, 2018, 2030, 2048
0.055 28, 818, 21, 999 2040, 2027, 2037, 2045
0.065 28, 815, 24, 996 2041, 2026, 2026, 2044
0.075 27, 816, 24, 995 2045, 2013, 2029, 2044
0.085 30, 818, 24, 993 2044, 2021, 2030, 2034
0.095 28, 823, 24, 996 2035, 2020, 2026, 2036

Table 2.3: Bed Data Storage Characteristics for one resident across two years.

Schema Size Index Size Number Rows
RAW BD3 8.9 GB

-
182,822,164

GZIP 1.9 GB 4098 (files)
PostgreSQL 16.0 GB 5.5 GB 182,822,164
HTIDB 2.4 GB 144 KB 4098 (recs)

for measurement sampling intervals to be uniform within the offset indexing of the

column store segment. In the tested implementation, the column store segments

consist of 60,000 time series measurements (rows), which is approximately 10 minutes

of 100 Hz bed data. For the sake of brevity, we have truncated the data in Table 2.2.

2.2.2 Space Utilization & Characteristics

Table 2.3 shows the characteristic disk utilization for 182 million measurements

across the eight features, which are agglomerated from 4098 10-minute bed data

files of 100 Hz readings. Most notable are the various trade-offs between the storage

paradigms. The raw data in CSV format is nearly 9 GB but requires parsing from

row-based text into numerical columns each time data is loaded. Furthermore, to

process data spanning multiple 10-minute data files or captures, file concatenation

either during or after parsing into memory structures is required.

14

Table 2.4: Bed Data Storage Characteristics

Residents Nights Hours Readings Storage (GB)
27 9568 205,655 32.7 Billion 632.17

The GZIP CSV files generated from the sensor system are the most space-efficient

but the least efficient for subsequent analysis and processing. Data extraction and

processing require decompression, parsing, and concatenation. When the data is

staged into a relational database table, the space utilization amounts to 16 GB, but

it is easy to access and perform aggregations.

In this scenario, the data is structured into numerical storage; however, row-

based access for high-frequency time series is sub-optimal, especially when not all

features are needed, such as only the four filtered measures. Nevertheless, the pro-

posed HTIDB (implemented in PostgreSQL) occupies only 2.4 GB and supports both

simple access and aggregation analytics. Due to its smaller size, the HTIDB is sig-

nificantly more efficient for access and analytics from a performance perspective, as

discussed in the next subsection. The storage size of a record (60,000 rows in a col-

umn store segment) averages 0.6 MB. In the case of both the flat PostgreSQL and the

HTIDB, standard DBMS indexing is applied. Although these indices create a space

overhead, they drastically improve data access performance.

After loading the GZIP files from 27 residents, the PostgreSQL HTIDB displays

the bed storage characteristics as presented in Table 2.4. Table 2.4 demonstrates the

bed data storage features for all hydraulic bed sensor tables. Specifically, it surpasses

32 billion measurement points in the time-series and utilizes approximately 632 GB

of storage in the HTIDB.

The hydraulic bed sensor tables continuously expand as more residents are added

and as existing residents keep sleeping each night. The data collection period varies

among residents, ranging from a few months to over two years, spanning from January

2017 to July 2022.

15

Figure 2.7: Bar chart displaying the number of data records (in billions) for each
resident in the database. Each data record consists of four raw and four hardware-
filtered measurements from the bed sensor system.

Figure 2.7 displays the number of records taken from each resident’s hydraulic

bed sensor tables. The red points on Fig. 2.7 show the number of nights of hydraulic

bed sensor data for each resident, indicating a close correlation between the number

of records and night period counts.

16

2.3 Summary

This chapter has provided an overview of the existing sensor network layout at Tiger-

Place. It has explained the concept of hydraulic bed sensors, their importance

in research, and the challenges researchers currently face with the existing sensor

pipeline. Moreover, this chapter has proposed a design for Hierarchical Time-Indexed

Databases (HTIDB). The design supports irregular time sampling, queries, and an-

alytics over arbitrary temporal windows, as well as high-performance linear growth

in data storage requirements and query performance. Lastly, we have discussed the

various space utilization and storage characteristics of the proposed system.

17

Chapter 3

Multi-modal derived features from
bed sensor data

Hydraulic bed sensors have been instrumental in deriving physiological components

such as respiration, restlessness, and heart rate that can be used for the early di-

agnosis of numerous chronic diseases, including respiratory and heart diseases [30].

For example, abnormal patterns in a patient’s respiration rate derived from hydraulic

bed sensors can be indicative of pulmonary diseases like Chronic Obstructive Pul-

monary Disorder (COPD), respiratory diseases, or blood pressure-related diseases

[31]. Moreover, early detection of heart failure in older adults can be achieved by

monitoring ballistocardiogram (BCG) signals deconvolved from hydraulic bed sen-

sor data [32] [33]. In light of the critical role that multi-modal derived feature data

plays in healthcare, it is essential to have this information available for researchers.

However, managing and storing such vast amounts of data presents a challenge. This

thesis aims to propose a design for the multi-modal feature time-series Big Data

management system tailored to hydraulic bed sensor data. Furthermore, the pro-

posed design enables signal-processing algorithms to efficiently extract physiological

features from bed sensor data.

18

Figure 3.1: Grouped data in 1-minute intervals retrieved from raw bed sensor table
with all the raw readings for restlessness computation.

3.1 Derived Multi-Modal Feature Data

As mentioned before, from the hydraulic bed sensor data, various physiological signals

are extracted that may be associated with resident health conditions. For example,

the bed sensor signal is a combination of physical movement, breathing, and cardio-

vascular activity while the resident is sleeping. Depending on the extracted feature,

(respiration, restlessness, or heart rate), different parts of the bed sensor data are

extracted and processed for computing derived features from the bed sensor.

3.1.1 Restlessness

The restlessness feature is gathered by taking the raw readings from the bed sensor

table discussed earlier, using the PostgreSQL procedure shown in Fig. 3.13. Fig-

ure 3.13 is a stored PostgreSQL procedure that takes any bed sensor table in a

column-storage layout and converts it back into a traditional row layout, which is

then ready for grouping. Once the data is in the row layout, it can be grouped into

19

1-minute intervals by using the stored procedure shown in Fig. 3.14. Figure 3.14 takes

in the result from the stored procedure described earlier and truncates the tstamp to

the minute using the DATE TRUNC built-in PostgreSQL function. Each raw value

is then aggregated back into arrays using the ARRAY AGG built-in PostgreSQL

function. The result of the procedure in Fig. 3.14 is shown in Fig. 3.1. As we can see

from Fig. 3.1, each row represents an array of values for a given minute for all four

raw readings from the bed sensor, as well as their corresponding tstamp values. Next,

a sixth-order bandpass filter is taken and applied to all the raw bed sensor arrays.

After applying the filter, a maximum value for every second is computed alongside

the mean value, and then the motion values are assigned based on a constant motion

threshold (1.5). This constant motion threshold was selected empirically to provide

high enough sensitivity for movement detection. After the motion strength has been

calculated for each minute interval, the computed matrix is used to extract the start

times and end times of restless motion.

Figure 3.2 shows the extracted restlessness values for resident 54005 over one

night. As we can see from Fig. 3.2, it shows the motion values started at around

22:27, and the last recorded motion value was recorded at 06:27.

3.1.2 Respiration

Features related to respiration are gathered using the method mentioned in Heise et

al. [34]. It begins with the extraction of respiration signals from bed sensor data by

applying a butter-worth low-pass filter with a cut-off frequency of (0.7 Hz). From

respiration signals, peak points, valley points, and the associated time stamps are

extracted. Before processing the data, the first step is to select the best, i.e., most

responsive, transducer for feature extraction. The best transducer can be derived by

computing the sum of each of the raw readings and then selecting the filtered reading

that aligns to the raw reading signal (r1 with f1, r2 with f2, and so on). Once the
20

Figure 3.2: Example of extracted multi-modal feature time-series plot over one night.
The plot shows the motion in seconds for the entire night.

21

Figure 3.3: Example of extracted multi-modal feature time-series plot over one night.
The plot shows the respiration rate for the entire night.

transducer filter reading has been selected and the butter-worth low-pass filter has

been applied, the processed data is used to get peak points labeled as normal peak,

noisy peak, apnea peak, or hypopnea peak. Noisy peaks are the respiration peaks that

are outside of normal bounds (and thus likely caused by motion rather than respira-

tion). We disregard the noisy peaks, apnea peaks, and hypopnea peaks. We consider

only the normal peaks to calculate the respiration rate. Due to the computational

complexity of the algorithm, the respiration cycles had to be partitioned into one-hour

intervals for efficient processing. The respiration cycles are partitioned into one-hour

intervals for efficient processing to accommodate computational complexities.

22

Figure 3.4: Example of extracted multi-modal feature time-series plot over one night.
The plot shows the beats per minute (bps) for a two hour period.

3.1.3 Heart Rate

The cardiovascular feature (heart rate) component is computed using a short-time

energy algorithm [35]. The algorithm first applies the Butterworth low-pass filter

with an order of 6 to remove the respiration and high-frequency noise component

from the transducer signals. The cutoff frequencies are set to 0.7 Hz to 10 Hz. Next,

outlier removal is performed and the final estimate is then computed.

3.2 Data Processing Pipeline

Once the extracted feature data has been computed for every resident, the data-

processing pipeline shown in Fig. 3.5 can be performed. Figure 3.5 shows the main

23

Figure 3.5: Data-processing pipeline for creating 12-dimensional feature vectors for
each night on every resident.

steps for generating the vectors for each night per resident, per feature space (respi-

ration and restlessness). This process is done identically for both extracted features.

We generate a 12-dimensional feature vector for each resident for each night, and

here the choice of 12 dimensions is arbitrary and can be adapted for particular down-

stream analytical needs. We first determine the global, equal area histogram cut

lines for each feature space (based on all residents) to create a normalized nightly

12-dimension histogram per resident. To do this, we fetch all the data for all nights

for the extracted feature and group them in 15-minute intervals. Next, a global his-

togram with 1000 bins is computed from this grouped data. The global histogram is

then used to generate a cumulative distribution function (CDF) to find the histogram

cuts for the 12 equal-volume buckets for the feature space. The histogram cuts are

chosen using cuts of 8.333% steps based on the CDF. Once the bin cuts are defined

for the entire feature space, the process can generate individual night histograms per

resident using the global bin cuts.

Figure 3.6, 3.7, and 3.8, shows the cumulative distribution for restlessness, respi-

ration, and heart rate for all nights for all residents. Each bin of the restlessness global

24

Figure 3.6: Global histograms for restlessness using all 27 residents. The histogram
is normalized, and 1000 bins are used. Red lines represent the 12 bin cuts from the
data-processing pipeline.

Figure 3.7: Global histograms for respiration using all 27 residents. The histogram
is normalized, and 1000 bins are used. Red lines represent the 12 bin cuts from the
data-processing pipeline.

Figure 3.8: Global histograms for heart rate using all 27 residents. The histogram
is normalized, and 1000 bins are used. Red lines represent the 12 bin cuts from the
data-processing pipeline.

25

histogram represents the accumulated seconds of motion within a 15-minute duration.

This histogram in Fig. 3.6 shows a right-skewed distribution with the middle 50% of

the extracted feature data lying between 111 and 400 seconds of accumulated motion

duration during any 15-minute interval for every night. The median motion duration

for any 15-minute interval for all 19 residents was recorded at 218 seconds. The global

histogram for respiration shown in Fig. 3.7 shows the average respiration rate within

a 15-minute duration for all 27 residents. The respiration global histogram shows a

near Gaussian distribution with most of the values lying between 15 and 20 breaths

per minute, which closely aligns with the average respiratory range (between 12 to 20

breaths per minute) for a healthy adult during sleep [36]. Understanding “normal”

sleeping respiration patterns and being able to create derived features that measure

respiration distribution over a night for an individual is a key capability to detect

breathing and respiratory abnormalities in future research. The global histogram for

the heart rate shown in Fig. 3.8 shows the average beats per minute within a 15-

minute duration. The heart rate global histogram shows a near Gaussian distribution

with most of the values lying between 60 and 96 beats per minute.

Once the processing pipeline has processed the derived feature values from all

residents, a query statement for decompressing and aggregating the data can be

applied as shown in Figure 3.9. Figure 3.9 shows how to aggregate the extracted

feature data and how we can leverage the Structured Query Language (SQL) for

advanced data aggregations and data analytics.

Furthermore, SQL aggregation statements can be performed over one night of

data to generate time-series data plots such as breaths per minute or motion duration

(Fig. 3.10) of residents. The multi-modal derived features from Fig. 3.10 are taken

and converted into the vector feature space (described in Fig. 3.5) to produce the

individual night histograms shown in Fig. 3.11.

We can use the 12-dimensional vectors under the same time window to further

26

Figure 3.9: SQL query statement aggregating respiration data in 15-minute intervals
for the specified time window. The initial step is to unnest the compressed column
segments into an absolute time-series of measurements (WITH clause) then aggregate
with traditional SQL syntax. The 900 seconds is used to group into 15-minute inter-
vals.

27

(a) (b)

(c)

Figure 3.10: Extracted multi-modal feature time-series plots over one night for resi-
dents (a) 1, (b) 2, and (c) 3. It can be seen that there are characteristic differences
in the time series of measurements and clear distinctions between residents. The ag-
gregation to 12-D feature vectors facilitates comparisons between residents or even
different nights of the same resident. We can also see that the time in bed is drasti-
cally different between the three residents.

28

(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Feature space histograms for residents 1, 2, and 3. (a) & (c) & (e) are
the restlessness one-night histograms of residents 1, 2, and 3. (b) & (d) & (f) are the
respiration one-night histograms of residents 1, 2, and 3. The histograms are created
using the individual 12-dimensional vector of one night for each extracted feature for
each of the residents. We can see clear signature differences between motion from
restlessness (a) & (c) & (e) and breathing patterns (b) & (d) & (f) among each of
the residents, as well as differences between residents.

29

study whether a correlation between the respiration and restlessness features exists.

Figure 3.11 shows the 12-dimensional feature space vector for both extracted fea-

tures over one night for the same three residents. Resident 1 presents higher motion

throughout the recorded night as seen in Fig. 3.11a and a low-valued respiration his-

togram (Fig. 3.11b) describing lower respiration values for that night compared to

the global distribution of respiration in the residents. As seen in Fig. 3.11c, resident

2 presents an overall low-value restlessness histogram describing a night with low

motion. Moreover, the respiration 12-dimensional vector in Fig. 3.11d shows a high-

valued feature vector representing higher breaths per minute over the same window

night. In resident 3, we see restlessness that is more Gaussian-shaped, and the respi-

ration is clearly bimodal. This preliminary work leads us to believe that we will be

able to mine these feature spaces for multi-modal physiological correlations related to

resident health. While we have illustrated just one particular night for only three res-

idents, we expect to be able to mine patterns from the data to, for example, discover

anomalous nights for particular residents or discover associations between sleeping

respiration, restlessness, and heart rate associated health conditions. Additionally,

due to the performance and scalability of the system, researchers will be empowered

to accelerate such research.

3.3 Feature Big Data Database

The design for all derived feature data follows similar patterns to the current way the

raw bed sensor data are stored (see extended details in [37] or in Chapter 2). Likewise,

all the extracted features discussed are to be stored in a column-storage segment

layout, as shown in Fig. 3.12. The feature data table design shown in Fig. 3.12 is

a logical representation of a resident feature data structure for a specific row, which

holds a segment of time-series measurements at any time interval (e.g., both regular

30

Figure 3.12: HTI having a block of feature data (respiration, restlessness, or heart
rate) and each individual record having a start motion offset and their corresponding
feature value for the specified offset.

and irregular). Each table row represents the derived feature data computed for one

night. Each row is uniquely identified by a composite primary key with a residents’

id, start time, and end time. All the derived feature values are stored in a dense

array as a column-store segment, with each value inside the dense array representing

the feature value at a given range specified by the start time and time offset. The

column-storage segment layout allows the storage of the extracted features in dense

arrays, which allows the PostgreSQL DBMS to compress the data efficiently. For all

feature extraction tables (respiration, restlessness, and heart rate), for each resident,

each feature is calculated in one-minute intervals, with the start and end of when

the extracted feature was detected. The aggregated minutes are grouped by night

for every resident starting from 19:00 to 10:00 of the following day, (up to 15 hours

of data). After processing the nightly data aggregations, the timestamp offsets are

calculated given the first recorded timestamp. With this layout in place, every row

for every resident is one night of the specified feature data.

Table 3.1 is an example of how two rows would look for the restlessness feature

sensor data table. The first row values for Table 3.1 have the timestamp base value

31

Table 3.1: Example of hierarchical restlessness feature data with dense feature arrays,
a base timestamp, and temporal indexing offsets in seconds.

TS Base Offset Motion duration in seconds
2017-09-16 0.00 1.35
20:49:00 4.21 2.47

23.56 10.12
132.39 16.74
435.33 32.91

2017-09-17 0.00 5.02
21:55:15 10.05 3.01

22.07 1.13
29.11 5.21
42.14 1.00

2017-09-18 0.00 7.02
22:27:06 8.02 2.03

11.03 3.00
15.06 5.02
26.10 4.01

at 2017-09-16 20:49:00, meaning for this row, the initial motion was initially en-

countered on September 16, 2017, at 8:49 p.m. In the second column, array values

of the time range are calculated by adding the timestamp base with the second off-

set (4.21 s), the third time range with the third offset (23.56 s), and so on. The

respective motion duration value for the nth range is going to be located at the nth

position in the motion array. This means for the first-time range (20:49:00), the

motion duration value is 1.35 s. The second row starts at 2017-09-17 21:55:15,

the third row 2017-09-18 22:27:06, and both rows follow the same pattern. Even

though Table 3.1 is a specific example of two rows for the restlessness table, the

respiration feature follows the same design patterns but with different dense array

values. Additionally, the dense array length within the rows can vary greatly from

row to row, depending on the original bed sensor data and the physiological features

that are extracted.

32

Figure 3.13: SQL view decompressing the raw bed sensor table with all the raw
readings for computation.

33

Figure 3.14: Grouped data in 1-minute intervals retrieved from raw bed sensor table
with all the raw readings for restlessness computation.

34

3.4 Summary

This chapter has provided an overview of the data processing pipeline for multi-

modal feature extraction from hydraulic bed sensor data. Specifically, this chapter

has explained in depth the feature derivation of respiration, restlessness, and heart

rate. Moreover, this chapter has proposed a database design greatly influenced by the

HTIDB from Chapter 2. The data processing pipeline facilitates machine learning

research such as pattern mining for cohort discovery within the resident population,

and temporal analysis of evolving sleep and health patterns in residents. Lastly,

this chapter has discussed various examples of multi-modal features across multiple

residents.

35

Chapter 4

PostgreSQL Extensions with SPI
and CUDA

With the exponential growth in computational tasks across all areas of computer

science, such as ML and AI, the necessity to customize DBMS to enable GPU accel-

eration has become increasingly significant. In this light, PostgreSQL stands out due

to its capacity to adapt and evolve. This powerful DBMS has the ability to incorpo-

rate user-defined functions written in the C programming language and execute SQL

commands within these functions or procedures. In this chapter, we will delve into

how we can leverage the Server Programmable Interface (SPI) and Compute Unified

Device Architecture (CUDA) extensions to improve PostgreSQL’s performance and

handle more intensive computation tasks efficiently. Moreover, we will present a set of

CUDA wrappers to easily develop PostgreSQL extensions utilizing GPU acceleration

all through SPI.

36

4.1 SPI in PostgreSQL

PostgreSQL SPI allows C/C++ code to interact with PostgreSQL DBMS [38]. This

interface is important because it extends the functionality of PostgreSQL by creating

custom C/C++ functions that can be called directly from SQL functions or triggers.

Moreover, the SPI provides various functions, including executing SQL statements,

retrieving data from the database, managing transactions, access to the parser, plan-

ner, executor, and more. Another benefit of using the SPI is PostgreSQL’s ability

to allocate memory within memory contexts, which offers a practical way of man-

aging allocations made in different places with different scopes inside the code. All

the memory allocated in a context is released when the context is destroyed. Hence,

the SPI reduces the individual objects needed to be freed, avoiding memory leaks;

instead, only a few contexts need to be manually managed.

4.2 CUDA integration with SPI

In this research, we use the SPI to enable the integration of GPUs inside DBMS by

using CUDA within PostgreSQL. CUDA is a general-purpose GPU (GPGPU) frame-

work and programming model developed by NVIDIA to solve complex computational

problems more efficiently than on a CPU in C/C++ [39]. By utilizing PostgreSQL

SPI, CUDA code can be called from within PostgreSQL functions and triggers, en-

abling GPU-accelerated computations to be performed directly inside the DBMS. We

must first use the SPI connect function to establish a connection to the SPI. This

function creates and opens a connection to the SPI manager, creates memory con-

texts for the current procedure, enters the newly created stack level, initializes the

SPI executor, and connects to the PostgreSQL database. We must create a Portal

to call the SPI cursor to execute different SQL queries inside the SPI. A Portal is

an abstraction that represents the execution state of a running or runnable query.
37

Figure 4.1: High-Level diagram of the general integration of a DBMS accelerated
procedure using CUDA.

Finally, we fetch and process each result to compute the final results. Independent of

the type of PostgreSQL server extensions built with the SPI, the same process must

be followed to interact with the SPI and PostgreSQL successfully.

Figure 4.1 presents a high-level diagram illustrating the integration of the GPU

into the DBMS within PostgreSQL using SPI. The code is segregated into two parts:

host code and device code. The CPU compiles and executes the host code, while the

device code is first compiled into Parallel Thread Execution (PTX). CUDA uses PTX

as an intermediary assembly code in its compilation process [40]. The PTX code is

then optimized and translated into the actual machine code for the targeted GPU

architecture. The host and device codes are treated differently and kept separate,

as shown in Fig. 4.1 where the gray and green boxes in the library details section

join them. The SPI Context and CUDA connection operates by linking the two

within a CUDA wrapper intermediary header file. This header file holds the function

declarations and macros that can be compiled and read by regular C/C++ code.

The CUDA wrapper functions defined in the intermediary header file are responsible
38

Figure 4.2: Data processing pipeline for physiological feature extraction. Data is
taken from the raw tables, specific feature extraction algorithms are applied, and
features are generated.

for allocating resources on the device, transferring data from host memory to device

memory, calling the kernel, and collecting the results from device memory to host

memory. The following and final link is the kernel’s device functions, which are only

linked to the CUDA kernel files, as shown in Fig. 4.1.

4.3 Heart Rate Estimation using SPI and CUDA

The heart rate estimation algorithm, as previously described, is derived from the

transducer signal measurements and computed within PostgreSQL using SPI. The

SPI session and context manager abstract much of the work involved in working with

C/C++ code. The specified algorithm for a physiological feature is computed, and

the algorithm results are populated and sent back to the application. This process

constitutes an improvement from the prior feature extraction methods conducted in

Python and Matlab, which exhibited decreased processing times due to the compu-

tational overhead of high-level language calls.

Figure 4.2 shows the data processing pipeline for heart rate feature extraction

from hydraulic bed sensor data. The pipeline starts with selecting the best transducer

signal from the four f readings by calculating the cumulative sum of the amplified

39

Figure 4.3: CUDA grid/block configuration for deriving and computing the different
features. Each block computes the feature values of an entire minute.

readings (r) over a one-minute period. The transducer (1-4) with the highest sum-

mated count of readings is the best signal representative. The next step is to apply

the feature extraction algorithm to the bed sensor data. For the heart rate algorithm,

a short-time energy algorithm is used [35]. This algorithm applies a 6 order Butter-

worth band-pass filter to remove the respiration and high-frequency noise components

from the transducer signals, with the cutoff frequencies set to 0.7 Hz to 10 Hz. Outlier

removal is performed, followed by a 1-D convolution to smooth the signal. Finally,

the estimate for the heart rate is computed. Now that we have established a data

processing pipeline that builds signal processing algorithms inside the SPI, a solution

using a GPGPU can be described and constructed more efficiently. When design-

ing the algorithm inside a GPU, the main steps are clearly defining the thread and

block configuration, data layouts, memory configuration, and thread synchronization,

among others.

40

The thread and block configuration of the CUDA kernel is shown in Fig. 4.3.

Each block in the CUDA kernel can consist of 64, 128, 256, 512, or 1024 threads,

with a dynamic number of blocks per grid based on the number of minutes needed to

compute. Each block estimates the heart rate of an individual minute, with threads

inside a block communicating and dividing the work using shared memory and syn-

chronization barriers, such as syncthreads. The shared memory sizes will vary based

on the graphics card model. For this particular study, an NVIDIA RTX 2080 GPU

was utilized. Due to the shared memory size limitations per block, only a single

minute of bed sensor data can be processed for each block, given that a minute of

bed sensor data is composed of 6000 elements with a limit of 49 Kbytes of shared

memory. Therefore, each block is only responsible for one minute of heart rate esti-

mation. Figure 4.3 illustrates how each thread is responsible for computing a subset

of the signal array.

4.4 A Deep Dive into SPI Extensions with CUDA

We have discussed in previous sections, the overall benefits of building PostgreSQL

extensions using SPI and CUDA. In this section, we will dive into how to create such

extensions with actual code examples and pseudo-code.

When a user-defined function from a specific loadable object file is called for the

first time, PostgreSQL’s dynamic loader pulls that object file into memory. This

ensures the function is accessible and ready to be executed. The CREATE FUNCTION

statement is used to define a user-defined C function and requires two pieces of es-

sential information:

• The name of the loadable object file.

• The C name (link symbol) represents the specific function within the aforemen-

tioned object file.
41

To work with PostgreSQL extensions, we need to use specific data types and

macros. Two of the most common are Datum and PG FUNCTION ARGS. ‘Da-

tum‘ is a PostgreSQL generic data type that can represent any value, be it an integer,

a float, an array, or even a complex data type like a text string or a row. PostgreSQL

uses this unified approach to handle function arguments and return values in a con-

sistent manner, regardless of their actual data type. PG FUNCTION ARGS is a

macro used in the declaration of user-defined functions in PostgreSQL extensions. It

represents the arguments passed to the function. It simplifies the function signature

and ensures that the function can seamlessly accept any number or type of arguments,

as PostgreSQL handles the actual argument extraction internally.

The standard procedure to create a PostgreSQL extension involves a particular

calling convention, primarily depending on macro calls. For instance, the C declara-

tion for defining an extension function is expressed as:

Datum funcname(PG FUNCTION ARGS) (as shown on line 15 in Listing 4.1).

Listing 4.1 shows a basic template to create a simple vector addition extension

using SPI. In lines 17 and 18, the function calls the PG GETARG ARRAYTYPE P macro,

which allows you to retrieve the actual array value from the function’s argument

list and work with it in your C-language-based PostgreSQL extension. The macro

PG RETURN ARRAYTYPE P on line 24 is used to return an array type value from a C-

language function. Now that there is a basic understating of how to create extensions,

we can dive in on how to build SPI extensions with CUDA.

The pseudo-code in Algorithm 1 outlines an SPI/CUDA procedure for integrating

the GPU into the DBMS. The procedure starts by creating a TupleDesc object (line

2), which describes the tuple format returned by the function. If it is the first call to

the function, the current function context is saved, and the procedure switches to a

multi-call memory context. One-time setup code is executed, such as initializing the

Set-Returning Function (SRF) for the first call, connecting to the SPI, and preparing

42

1 #include <string.h>

2 #include "postgres.h"

3 #include "fmgr.h"

4 #include "utils/geo_decls.h"

5 #include "funcapi.h"

6 #include "utils/array.h"

7 #include "vector_add_funcs.h"

8

9 #define GET_PARAMETER_AT_INDEX(n) \

10 PG_ARGISNULL(n) ? NULL : PG_GETARG_ARRAYTYPE_P(n)

11

12 PG_MODULE_MAGIC;

13 PG_FUNCTION_INFO_V1(vector_addition);

14

15 Datum vector_addition(PG_FUNCTION_ARGS)

16 {

17 ArrayType *pg_signature1 = GET_PARAMETER_AT_INDEX (0);

18 ArrayType *pg_signature2 = GET_PARAMETER_AT_INDEX (1);

19

20 // Get regular float[] references

21 float *a = (float *) ARR_DATA_PTR(pg_signature1);

22 float *b = (float *) ARR_DATA_PTR(pg_signature2);

23 int *dmns = ARR_DIMS(pg_signature1);

24 PG_RETURN_ARRAYTYPE_P(perform_vector_addition(a, b, dmns));

25 }

Listing 4.1: SPI extension example for vector addition on the CPU

43

Algorithm 1 SPI/CUDA procedure(PG FUNCTION ARGS)

1: procedure CUDA procedure(PG FUNCTION ARGS)
2: TupleDesc← create TupleDesc
3: if SRF FIRST CALL then
4: oldContext← current function context
5: switch to multi call memory Context
6: /* One-time setup code appears here: */
7: SRF first call init
8: SPI Connect
9: prepare function context
10: prepare Cursor
11: currentContext← oldContext
12: end if
13: funcCtxContext← current function context
14: if SPI Processed = 0 then
15: SPI Finish
16: clear context
17: SRF RETURN DONE
18: else
19: fetch results /* compute results with CUDA */
20: HeapTuple← results
21: Datum← HeapTuple
22: SRF RETURN NEXT
23: end if
24: end procedure

44

the cursor. Once the one-time setup is complete, the procedure returns to the old

context (lines 3-12). For subsequent calls to the function, the current function context

is retrieved (line 13) and checks if the procedure has finished processing. If it has, the

procedure cleans up the context and returns done (SRF RETURN DONE). Other-

wise, the procedure fetches results computed in the CUDA functions. It then creates

a HeapTuple object (line 20) from the results, converts the HeapTuple object into

their respective Datum representation (line 21), and returns (SRF RETURN NEXT)

for further processing. An important aspect of the SPI/CUDA procedure described

in Algorithm 1 is the utilization of the CUDA wrapper (line 19). The CUDA wrapper

allows the code to remain dynamic on the SPI side, enabling the use of the same SPI

structure, whether retrieving the results from the CPU or GPU. The CUDA wrapper

acts as an intermediary layer that abstracts away the complexities of GPU integration

with SPI. Developers can then write SPI code as if they were only targeting the CPU

while also writing their GPU kernels as if they were not running them inside SPI.

Using the CUDA wrapper, developers can create highly optimized GPU-accelerated

applications that integrate seamlessly with PostgreSQL [41].

Listing 4.2 displays the wrapper header file used in the main SPI file where it’s

compiled using PostgreSQL’s internal libraries. As observed, there are no internal

CUDA API macros or data types present. This is a crucial consideration when linking

SPI with CUDA.

Listing 4.3 provides an in-depth overview into the CUDA code responsible for the

heart rate estimation, where it actually invokes the GPU kernel. This CUDA wrapper

starts by translating host vectors into thrust::device vector, allowing for efficient

memory management on the GPU. The function then launches the actual GPU kernel

to perform computations using CUDA’s parallel processing capabilities. After the

kernel execution, the function ensures synchronization with cudaDeviceSynchronize.

Before exiting, the function copies the results from the device memory back to the host

45

1 #ifndef CUDA_WRAPPERS_H /* Include guard */

2 #define CUDA_WRAPPERS_H

3 #include <vector >

4

5 void cuda_wrapper_heart_rate_estimation(

6 std::vector <std::vector <unsigned short int >>

selected_filter_vector ,

7 float *heart_rate ,

8 int heart_rate_size ,

9 int num_of_threads ,

10 float *time_elapsed);

11

12 #endif // CUDA_WRAPPERS_H

Listing 4.2: CUDA wrapper header example for heart rate estimation.

using thrust::copy. From Listing 4.3, we see the GPU memory management, kernel

invocation, and error handling in CUDA. Additionally, it underscores the utility of

the thrust library, a powerful C++ template library for CUDA built on the Standard

Template Library (STL), in simplifying GPU-related operations.

46

1 void cuda_wrapper_heart_rate_estimation(

2 std::vector <std::vector <unsigned short int >>

selected_filter_vector ,

3 float *heart_rate ,

4 int heart_rate_size ,

5 int num_of_threads ,

6 float *time_elapsed

7)

8 {

9 thrust :: device_vector <int > d_offset_vector = h_offset_vector

;

10 thrust :: device_vector <T> d_heart_rate(heart_rate_size);

11

12 // === CUDA ===

13 hr_kernel <T, 6000, 500> <<<blocks , num_of_threads >>>(

14 d_selected_filter_vector_ptr ,

15 d_offset_vector_ptr ,

16 d_global_output_with_padding_ptr ,

17 d_heart_rate_ptr

18);

19 cudaDeviceSynchronize ();

20

21 // get last CUDA error

22 cudaError_t err = cudaGetLastError ();

23 if (err != cudaSuccess){

24 std::cerr << "Error: " << cudaGetErrorString(err) << "

Name: " << cudaGetErrorName(err) << std::endl;

25 }

26

27 // Copy the result back to the host

28 thrust ::copy(d_heart_rate.begin(), d_heart_rate.end(),

heart_rate);

29 }

Listing 4.3: CUDA wrapper example for heart rate estimation.

47

4.5 Summary

This chapter has provided an in-depth explanation of the integration of GPU within

DBMSs like PostgreSQL using the Server Programming Interface (SPI). It has specif-

ically detailed the process and presented a real-world scenario, showcasing how GPU

acceleration can be harnessed in a database setting to derive critical insights. As

an example, we have examined heart rate estimation based on hydraulic bed sensor

data, a topic explored in Chapters 2 and 3. By enabling GPU acceleration within

a DBMS, we can facilitate computation-intensive research in areas such as machine

learning, significantly improving processing speeds and overall efficiency. Finally, this

chapter delineated the necessary steps and configurations required to create a GPU-

accelerated PostgreSQL extension. These steps include preparing the development

environment, modifying the PostgreSQL configuration, and implementing the exten-

sion. In doing so, we have set the stage for more advanced applications, pushing the

boundaries of what PostgreSQL, coupled with GPU acceleration, can accomplish.

48

Chapter 5

Applications

In the context of a data warehouse solution capable of supporting robust analytics,

several primary factors dictate its viability and efficiency. These determinants in-

clude usability, ease of incorporation into existing workflows, efficient data access,

scalability, and the capacity to handle high-volume data analytics.

The HTIDB, a design implemented in PostgreSQL DBMS and utilizing structured

query language (SQL) for data access and analytics, provides a user-friendly and

scalable solution. The design extends to incorporate the extracted feature data from

the raw bed sensor data, creating an effective data structure for enhanced usability.

Furthermore, efficient data access is critical, especially for data-intense computations

and Big Data analytics, a capability demonstrated by HTIDB.

The system’s scalability characteristics and stable, predictable performance over

increasing spans of data are demonstrated through a series of results. Our evaluations

involved running particular SQL statements 50× in all timing-based experiments to

facilitate statistical analysis. We collected numerous timing statistics to illustrate the

different performance characteristics essential to assessing the viability of the data

solution.

A more detailed analysis of the system’s performance involves the evaluation of
49

Figure 5.1: The system demonstrates consistent linear growth with increasing time-
frame data access. Growth rate is modeled to 0.0296 seconds of query execution time
per minute of 100 Hz of high frequency data.

both CPU and GPU approaches for computing the heart rate feature from hydraulic

bed sensor data within PostgreSQL. This examination sheds light on the performance

enhancements achieved through GPU acceleration for PostgreSQL with SPI, showing

its ability to efficiently process large datasets, such as bed sensor data.

All timing experiments were conducted on an AMD Radeon 5600X CPU oper-

ating at 3.8 GHz with 32 GB of DDR4 RAM, utilizing the Ubuntu 20.04 operating

system. Notably, the GPU is an NVIDIA RTX 2080 running with CUDA 11.4. The

PostgreSQL version used was 14.1. Together, these results provide a comprehensive

overview of our data warehouse solution, demonstrating its robustness, efficiency, and

scalability for various applications.

50

Figure 5.2: In-database analytics performed over various temporal windows. All
queries are aggregating statistics from one full day of HFBD for a single resident.

5.1 Experiments

5.1.1 Timing experiments for HTIDB access

Generally, the data access time is dominated by the network transfer time of the data,

and therefore the query result size. We conducted data access timing experiments,

retrieving successively larger time series data. Each query pulled all 8 features, at full

100 Hz measurement frequency, for an increasing number of minutes. This ranged

from 1 minute, up to 500 minutes of data, and Fig. 5.1 shows the linear growth access

time to pull data from the HTIDB. The experimentation showed a linear growth

rate of query time versus data requested, such that the typical performance can be

expected at 0.0296 s per minute of 100 Hz data (8 features). That is, 6000 rows of

eight time series in 0.03 s.

Figure 5.2 shows the distribution of query execution time for in-database analytics.

In these experiments, the minimum, maximum, average, and variance of the four

filtered measurements were computed simultaneously using built-in, standard SQL

aggregations. We see from the box and whisker plots for five different time intervals

(1-min, 10-min, 20-min, and 1-hour) the query execution time of aggregating over
51

Figure 5.3: In-database analytics (aggregate averages, min, max, and variance) per-
formed over 1-hour temporal windows, spanning differing number of days. All queries
are aggregating statistics of HFBD for a single resident.

one day. That is, the 1-minute window (first column) is the distribution of query

execution time for simultaneously computing 1-minute minimum, maximum, average,

and variance of 100 Hz bed sensor readings within the database over the course

of a day for a particular resident. This corresponds to a standard SQL Group By

statement with aggregation. The range of each query execution is very minimal,

usually less than 0.2 seconds. For this set of query timing tests, the range among all

query execution times is [13.2, 14.1]. This tight range across particular analytic tasks

indicates that the system is quite consistent when it comes to the query performance

and indicates characteristics of stability and scalability.

These experiments were extended from single-day analysis to multi-day, in-database

statistics. In Fig. 5.3, the timing of in-database 1-hour time interval aggregates, per-

formed over 1-day to 10-days. This scatter plot depicts the query execution time for

the 1-hour in-database aggregates over a set of one to ten days. The range of each

day-span’s query timing exhibited low variability, within a range of 0.12 seconds for

1-day, then 1.0 seconds for 10-days. It should be noted, in both cases the range is less

than 1% as a ratio of the median time for the respective test. It is also important to

note the linear query execution growth in time. This query execution growth pattern
52

Figure 5.4: Daily in bed minutes approximated as sensor data for rapid snapshot of
data discovery task or synoptic view of health trend.

fits a linear model with a coefficient of 14.50 s, p−value < 5.461e−12 and R2 value

of 0.9979. Meaning, the rate of query time growth closely follows 14.50 seconds of

query execution for each day worth of 100 Hz bed data processed. The fitted linear

regression model demonstrates a strong linear relationship between the query execu-

tion time and the amount of data aggregated within the database. This strong linear

relationship reinforces the evidence that our system is, indeed, not only consistent,

but also highly scalable for query performance.

One of the most critical needs of researchers and clinicians in a connected health

setting is data discovery. Figure 5.4 shows an example of a data discovery rendering

for SQL query results, whereby an approximate number of minutes of bed sensor

53

per day for a resident is rendered. This facilitates a quick monthly snapshot of the

resident, and the associated queries are extremely efficient at leveraging the first-level

indexing within the database. That is, the column store segments do not need to

be accessed for this analysis of the relational data. The query efficiency for this plot

ranges is in [0.0011,0.0024] s, and an average of 0.0014 s.

5.1.2 Timing experiments for Multi-modal derived feature
tables access

Some determining factors like usability and data access time can ultimately decide

whether a data solution is viable or not. The HTI structure design for the extracted

feature data achieves usability by extending the existing design of the raw bed sensor

data that utilizes the HTIDB. The data solution must also provide efficient data access

times for data-intense computing tasks and Big Data analytics. We have collected

multiple timing statistics to show the different performance characteristics for this

important factor.

Network transfer is often the bottleneck when querying data from database sys-

tems. In Fig. 5.5a, we perform timing experiments, retrieving respiration data for

increasing time intervals. All the timing experiments performed are done using a Dell

Precision-5820-Tower-X-Series with an Intel Processor i9-10980XE CPU running at

3.8 GHz with 64 GB of DDR4 RAM using the operating system Ubuntu 22.04. The

data transfer throughput is limited to the workstation network card, which is rated

at 1 Gbps. Moreover, the PostgreSQL version for storing and retrieving the data is

v14.

In-database statistics are performed over 1-day to 100-days of respiration data.

The timing analysis depicted in Fig. 5.5a shows a linear growth rate of execution time.

A regression analysis of query + network transfer time grows linearly (Fig. 5.5a blue

dots) at a rate of 15.17 ms per day of aggregated data, with a regression fit of p-

54

(a)

(b)

Figure 5.5: Growth of the query execution time over different time windows, e.g.,
pulling 1–100 days’ worth of feature data. (a) respiration timings & (b) restlessness
timings. The red line represents the query completion time. The blue line represents
the total execution time (Query Time + Network Time).55

value < 1.04e−141 and R2 value of 0.9986. Fig. 5.5a red dots are the plot of just the

query timing, showing an in-database aggregation rate of 9.23 ms per day of data

aggregated, with a regression fit of p-value < 2.646e−159 and R2 value of 0.9993. The

data pulled was all the respiration values of an entire night of a resident (around 1500

data records), aggregated in 15-minute intervals, with the average breaths per minute

computed.

The same timing experiment was performed on the restlessness data, shown in

Fig. 5.5b. The query + network transfer time grows linearly (Fig. 5.5b blue dots)

at a rate of 10.24 ms per day of aggregated restlessness data, with a regression fit

of p-value < 1.09e−124 and R2 value of 0.9968. Moreover, the red dots in Fig. 5.5b

show an aggregation rate of 5.59 ms per day of aggregated restlessness data, with a

regression fit of p-value < 4.18e−154 and R2 value of 0.9992. An additional timing test

was performed on the multi-modal feature data, randomly accessing 1000 different full

days of data, showing a mean execution time of 14.3 ms (standard deviation 1.6 ms),

and a median of 14.4 ms. Based on these timing and regression analyses, we can

expect the system to scale sufficiently for very Big Data, maintain query performance

across different temporal windows, and generally, perform as necessary for a scalable

Big Data system.

5.1.3 Timing experiments for PostgreSQL extension of CPU
and GPU

This section provides a comprehensive overview of the performance metrics used to

evaluate the efficiency of both CPU and GPU approaches for computing the heart

rate from hydraulic bed sensor data inside PostgreSQL. The findings presented in

this section provide a detailed analysis of the performance improvements achieved

by using GPU acceleration for PostgreSQL with SPI. They highlight its potential to

process complex datasets, such as bed sensor data, efficiently. All timing experiments

56

Figure 5.6: Growth of the query execution time over different growing time windows,
e.g., pulling 1–3600 minutes of bed sensor data (note Log-Y scale). CPU vs 256
threads per block GPU.

57

were performed on an AMD Radeon 5600X CPU running at 3.8 GHz with 32 GB of

DDR4 RAM, using the Ubuntu 20.04 operating system. As mentioned, the GPU is

an NVIDIA RTX 2080 running with CUDA 11.4. Our PostgreSQL version was 14.1.

In-database statistics compare the heart rate estimation execution time from bed

sensor data over growing time windows, ranging from 1 to 3600 minutes. The timing

analysis in Fig. 5.6 shows that the execution time increases at a constant rate for

both the CPU and GPU versions. A regression analysis of GPU using 256 threads, as

seen in Fig. 5.6 (green line), demonstrates a linear growth rate of 2.83 ms for every 60

minutes of bed sensor data. The regression fit has a p-value of < 1.530e−51 and an R2

value of 0.98088. In contrast, the CPU timing, depicted by the blue line in Fig. 5.6,

exhibits a rate of 198.84 ms for every 60 minutes of bed sensor data. The regression

fit for the CPU timing has a p-value of < 5.7534e−119 and an R2 value of 0.9999. The

regression analysis indicates that the CPU version has a significantly higher growth

rate of execution time, 70 times higher than the GPU version using 256 threads. This

confirms our hypothesis that using GPUs in the DBMS can significantly enhance

the performance of in-database statistics for processing large amounts of bed sensor

data. Additionally, it is important to highlight the percentage difference between

the CPU and GPU versions. When using an L1-norm to calculate correctness, the

GPU version produced a difference of 0.01% compared to the ‘gold standard’ CPU

version. This slight difference is attributed to the fact that the CPU and GPU

versions are executed on distinct hardware platforms with varying precision. The

difference, however, is negligible and does not affect the overall output of the heart

rate estimation algorithm.

In Figure 5.7, the same experiment is conducted to compare the execution time

for heart rate estimation from bed sensor data using different thread configurations.

The experiment is performed over different growing time windows ranging from 1 to

3600 minutes. Despite slight differences in execution time, the figure demonstrates

58

Figure 5.7: Growth of the query execution time over different growing time windows,
e.g., pulling 1–3600 minutes’ worth of bed sensor data. The Graph compares the
execution time across multiple threads configurations.

59

Figure 5.8: Stacked bar chart comparing different timing metrics across different
threads configurations.

that the various configurations yield similar results. Notably, the configuration using

256 threads is slightly faster.

Figure 5.8 provides further insight into the execution times metrics across thread

configurations. The chart depicts the performance of the GPU when computing

3600 minutes (4 nights) of heart rate estimation from bed sensor data. The kernel bar

shows the time it took for the kernel to execute from launch to end. The cudaMalloc

bar represents the aggregated time for all GPU memory allocations. In contrast, the

MemCpy-HTD bar represents the aggregated time for all memory API calls to copy

data from host to device memory. By comparing the timings of these various metrics

across different thread configurations, we can better understand the best thread and

block configuration for the specific use case.
60

Figure 5.9: SQL procedure statement returning average respiration for each minute
of an entire night.

An example SQL query statement for calling the SPI procedure to estimate the

heart rate from the resident’s hydraulic bed sensor data using SPI-wrapped CUDA

kernels is shown in Fig. 5.9. Although the given function is written in C/C++ using

SPI and CUDA, it is called as a regular SQL procedure to retrieve the algorithm

derived heart rate measurements. In this particular example, the SQL procedure

retrieves the timestamp and the average heart rate value for every minute for the

entire night from 2018-06-15 19:00:00 to 2018-06-16 10:00:00 for resident 3118.

61

5.2 Summary

This chapter offered an in-depth look into various applications and timing experi-

ments associated with HTIDB, multi-modal feature access, and the SPI extension

timing experiment for both CPU and GPU. The advantages of utilizing an HTIDB

are evident in terms of access time, space utilization, and query efficiency. Sub-

section 5.1.2 showcases the usability of multi-modal derived feature tables and their

respective access times.

Furthermore, the emphasis on how different computational platforms can impact

performance is a highlight of this chapter. Sub-section 5.1.3 presents performance

metrics, contrasting the efficiency of CPU and GPU extensions when computing the

heart rate feature from hydraulic bed sensor data. In this analysis, the GPU show-

cased its capability to significantly outperform the CPU. Specifically, by computing

the heart rate feature on the GPU, we showed a decrease in execution time — more

than 70 times faster than its CPU counterpart. This finding underscores the potential

of GPUs in processing and analyzing data swiftly, offering researchers a channel for

faster results and more efficient computations.

62

Chapter 6

Conclusion

6.1 Summary

This thesis presents a method for creating a highly scalable DBMS designed for stor-

ing, querying, and analyzing hydraulic bed sensor data. Furthermore, it demonstrates

efficient techniques for computing and extracting physiological features from this data.

We developed a GPU-Accelerated DBMS that leverages GPUs, achieving a perfor-

mance rate 70 times faster than CPUs in extracting these physiological features. For

data storage and querying, we implemented HTIDB (based on PostgreSQL). This

system supports irregular time sampling, SQL-based queries, data compression, an-

alytics over arbitrary temporal windows, and exhibits linear growth in data storage

requirements and query performance. Additionally, we introduced a data process-

ing pipeline tailored for multi-modal feature extraction from hydraulic bed sensor

data. We also proposed a GPU-accelerated DBMS utilizing SPI and CUDA to create

PostgreSQL extensions. This facilitates the extraction of features from hydraulic bed

sensor data directly on the GPU. The methodology presented paves the way for easier

integration of future signal processing algorithms that capitalize on GPU capabilities

63

within DBMS.

6.2 Future Work

The results from our various research areas point to several promising directions for

further exploration and improvement.

1. Database Scalability and Performance: The design of hierarchical time-

indexed databases (HTIDB) has shown promise in addressing irregular time

sampling and analytics over arbitrary temporal windows. Implementing the

HTIDB design into NoSQL databases like MongoDB could be explored for fur-

ther scalability. Additionally, the HTIDB and GPU-accelerated signal pro-

cessing can be integrated into Kubernetes clusters, such as the NSF Nautilus

hyper-cluster, to facilitate an open-source data warehouse solution for broader

research communities outside the University of Missouri.

2. Feature Expansion and Refinement: The application of HTI and column-

storage segment layouts to store multi-modal derived feature data has been

beneficial. Extending this work would include expanding multi-modal feature

data by extracting the restlessness and respiration component from the hy-

draulic bed sensor data. This would assist in the identification of heart-related

diseases.

3. GPU Acceleration and Optimization: Our research demonstrated signif-

icant acceleration in the computation of physiological features through GPU

integration with PostgreSQL extensions using SPI and CUDA. We plan to ex-

pand our signal-processing library using GPUs to include multi-modal features

like restlessness and respiration.

64

Bibliography

[1] W. O. de Morais, J. Lundström, and N. Wickström. Active In-Database Process-

ing to Support Ambient Assisted Living Systems. Sensors (Basel, Switzerland),

14:14765–14785, 2014.

[2] P. Gupta, O. Ibrahim, M. Skubic, and G. J. Scott. Leveraging Unsupervised

Machine Learning to Discover Patterns in Linguistic Health Summaries for El-

dercare. In: 2021 43rd Annual International Conference of the IEEE Engineer-

ing in Medicine Biology Society (EMBC). 2021, 2180–2185.

[3] E. E. Stone and M. Skubic. Fall Detection in Homes of Older Adults Using

the Microsoft Kinect. IEEE Journal of Biomedical and Health Informatics,

19(1):290–301, 2015.

[4] P. Heidenreich, J. Trogdon, O. Khavjou, J. Butler, K. Dracup, M. Ezekowitz,

E. Finkelstein, Y. Hong, s. C. Johnston, A. Khera, D. Lloyd-Jones, S. Nelson,

G. Nichol, D. Orenstein, P. Wilson, and Y. Woo. Forecasting the Future of

Cardiovascular Disease in the United States: A Policy Statement From the

American Heart Association. Circulation, 123:933–44, Feb. 2011.

[5] D. Yach, C. Hawkes, C. L. Gould, and K. J. Hofman. The global burden of

chronic diseases: overcoming impediments to prevention and control. JAMA,

291(21):2616–2622, June 2004.

65

[6] L. A. Despins, G. Guidoboni, M. Skubic, L. Sala, M. Enayati, M. Popescu, and

C. B. Deroche. Using sensor signals in the early detection of heart failure: A

case study. Journal of Gerontological Nursing, 46(7):41–46, 2020.

[7] I. Sadek, J. Biswas, and B. Abdulrazak. Ballistocardiogram signal processing:

a review. Health information science and systems, 7(1):1–23, 2019.

[8] M. Last, Y. Klein, and A. Kandel. Knowledge discovery in time series databases.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

31(1):160–169, 2001.

[9] L. Deri, S. Mainardi, and F. Fusco. tsdb: A Compressed Database for Time

Series. In: Traffic Monitoring and Analysis. 2012.

[10] I. Garćıa-Magariño, R. Lacuesta, and J. Lloret. Agent-Based Simulation of

Smart Beds With Internet-of-Things for Exploring Big Data Analytics. IEEE

Access, 6:366–379, 2018.

[11] L. J. Phillips, C. B. DeRoche, M. Rantz, G. L. Alexander, M. Skubic, L. Despins,

C. Abbott, B. H. Harris, C. Galambos, and R. J. Koopman. Using embedded

sensors in independent living to predict gait changes and falls. Western journal

of nursing research, 39(1):78–94, 2017.

[12] M. Skubic, R. D. Guevara, and M. Rantz. Automated Health Alerts Using In-

Home Sensor Data for Embedded Health Assessment. IEEE Journal of Trans-

lational Engineering in Health and Medicine, 3:1–11, 2015.

[13] E. E. Stone and M. Skubic. Unobtrusive, Continuous, In-Home Gait Measure-

ment Using the Microsoft Kinect. IEEE Transactions on Biomedical Engineer-

ing, 60(10):2925–2932, 2013.

[14] T. Banerjee, M. Yefimova, J. M. Keller, M. Skubic, D. L. Woods, and M. Rantz.

Exploratory analysis of older adults’ sedentary behavior in the primary living

66

area using kinect depth data. Journal of Ambient Intelligence and Smart Envi-

ronments, 9(2):163–179, 2017.

[15] D. Sierra-Sosa, B. Garcia-Zapirain, C. Castillo, I. Oleagordia, R. Nuño-Solinis,

M. Urtaran-Laresgoiti, and A. Elmaghraby. Scalable Healthcare Assessment for

Diabetic Patients Using Deep Learning on Multiple GPUs. IEEE Transactions

on Industrial Informatics, 15(10):5682–5689, 2019.

[16] D. Steinkraus, I. Buck, and P. Simard. Using GPUs for machine learning algo-

rithms. In: Oct. 2005, 1115–1120 Vol. 2.

[17] N. Bandi, C. Sun, D. Agrawal, and A. Abbadi. Hardware Acceleration in Com-

mercial Databases: A Case Study of Spatial Operations, Oct. 2004.

[18] P. Bakkum and K. Skadron. Accelerating SQL Database Operations on a GPU

with CUDA. In: GPGPU-3. Pittsburgh, Pennsylvania, USA: Association for

Computing Machinery, 2010, 94–103. isbn: 9781605589350. url: https://

doi.org/10.1145/1735688.1735706.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, and K. Skadron. A Perfor-

mance Study of General-Purpose Applications on Graphics Processors Using

CUDA. J. Parallel Distrib. Comput., 68:1370–1380, Oct. 2008.

[20] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake. GPU-Accelerated

Database Systems: Survey and Open Challenges. In: vol. 8920. Dec. 2014, 1–35.

isbn: 978-3-662-45760-3.

[21] S. Breß. The Design and Implementation of CoGaDB: A Column-oriented GPU-

accelerated DBMS. Datenbank-Spektrum, 14(3):199–209, 2014.

[22] A. Meister, S. Breß, and G. Saake. Toward GPU-accelerated Database Opti-

mization. Datenbank-Spektrum, 15(2):131–140, 2015.

67

[23] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl. Pump Up the Volume:

Processing Large Data on GPUs with Fast Interconnects. Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data, 2020.

[24] G. Scott, M. England, K. Melkowski, Z. Fields, and D. T. Anderson. GPU-Based

PostgreSQL Extensions for Scalable High-Throughput Pattern Matching. In:

2014 22nd International Conference on Pattern Recognition. 2014, 1880–1885.

[25] PostgreSQL Manual. https://www.postgresql.org/docs/current/intro-

whatis.html. Accessed: 2023-05-18.

[26] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast Com-

putation of Database Operations Using Graphics Processors. In: Proceedings

of the 2004 ACM SIGMOD International Conference on Management of Data.

SIGMOD ’04. Paris, France: Association for Computing Machinery, 2004, 215–

226. isbn: 1581138598. url: https://doi.org/10.1145/1007568.1007594.

[27] M. J. Rantz, K. D. Marek, M. A. Aud, R. A. Johnson, D. Otto, and R. Porter.

TigerPlace: a new future for older adults. J Nurs Care Qual, 20(1):1–4, 2005.

[28] B. Y. Su, M. Enayati, K. C. Ho, M. Skubic, L. Despins, J. Keller, M. Popescu,

G. Guidoboni, and M. Rantz. Monitoring the Relative Blood Pressure Using a

Hydraulic Bed Sensor System. IEEE Transactions on Biomedical Engineering,

66(3):740–748, 2019.

[29] D. Heise and M. Skubic. Monitoring pulse and respiration with a non-invasive

hydraulic bed sensor. Annu Int Conf IEEE Eng Med Biol Soc, 2010:2119–2123,

2010.

[30] W. Wu, J. M. Keller, M. Skubic, M. Popescu, and K. R. Lane. Early Detection

of Health Changes in the Elderly Using In-Home Multi-Sensor Data Streams.

ACM Trans. Comput. Healthcare, 2(3), July 2021. issn: 2691-1957. url: https:

//doi.org/10.1145/3448671.
68

[31] B. Y. Su, M. Enayati, K. Ho, M. Skubic, L. Despins, J. Keller, M. Popescu,

G. Guidoboni, and M. Rantz. Monitoring the relative blood pressure using a

hydraulic bed sensor system. IEEE Transactions on Biomedical Engineering,

66(3):740–748, 2018.

[32] L. Rosales, B. Y. Su, M. Skubic, and K. Ho. Heart rate monitoring using hy-

draulic bed sensor ballistocardiogram 1. Journal of Ambient Intelligence and

Smart Environments, 9(2):193–207, 2017.

[33] L. Despins, G. Guidoboni, M. Skubic, L. Sala, M. Enayati, M. Popescu, and C.

Deroche. Using Sensor Signals in the Early Detection of Heart Failure: A Case

Study. Journal of gerontological nursing, 46:41–46, July 2020.

[34] D. Heise, R. Yi, and L. Despins. Unobtrusively Detecting Apnea and Hypopnea

Events via a Hydraulic Bed Sensor. In: 2021 IEEE International Symposium on

Medical Measurements and Applications (MeMeA). 2021, 1–6.

[35] K. Lydon, B. Y. Su, L. Rosales, M. Enayati, K. C. Ho, M. Rantz, and M.

Skubic. Robust heartbeat detection from in-home ballistocardiogram signals of

older adults using a bed sensor. In: 2015 37th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015, 7175–

7179.

[36] A. Rodŕıguez-Molinero, L. Narvaiza, J. Ruiz, and C. Gálvez-Barrón. Normal

Respiratory Rate and Peripheral Blood Oxygen Saturation in the Elderly Pop-

ulation. Journal of the American Geriatrics Society, 61:2238–2240, Dec. 2013.

[37] G. J. Scott, J. Saied-Walker, N. Marchal, H. Yu, and M. Skubic. HTIDB: Hi-

erarchical Time-Indexed Database for Efficient Storage and Access to Irregular

Time-series Health Sensor Data. In: 2022 44th Annual International Confer-

ence of the IEEE Engineering in Medicine Biology Society (EMBC). 2022,

2972–2975.

69

[38] E. Geschwinde and H.-J. Schönig. PostgreSQL developer’s handbook. Sams Pub-

lishing, 2002.

[39] C. Nvidia. Nvidia cuda c programming guide. Nvidia Corporation, 120(18):8,

2011.

[40] L. F. Cupertino, C. P. Silva, D. M. Dias, M. A. C. Pacheco, and C. Bentes.

Evolving CUDA PTX programs by quantum inspired linear genetic program-

ming. In: Proceedings of the 13th annual conference companion on Genetic and

evolutionary computation. 2011, 399–406.

[41] J. Saied-Walker. CUDA integration with PostgreSQL. https://github.com/

MU-HPDI/postgres-extensions-with-cuda. 2023.

70

