
APPLICATIONS OF THE BOUNDARY ELEMENT METHOD

FOR STRUCTURAL SHAPE OPTIMIZATION

A Dissertation 

Presented to 

the Faculty of the Graduate School

University of Missouri-Co 1umbia

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy

by

SHYUE-JIAN WU

Dr. ERIC SANDGREN Dissertation Supervisor

May, 1986



The undersigned, appointed by the Dean of the Graduate

Faculty, have examined a dissertation entitled

Applications of the Boundary Element Method 

for Structural Shape Optimization

Presented by Shyue-Jian Wu 

a candidate for the degree 

and hereby certify that in 

acceptance.

of Doctor of Philosophy 

their opinion it is worthy of

Dr. Eric S a n d g r e'n , Supervisor

Dr. R-^ger C. Duffielc/./

Dr. Donald L. C r e i g h t o /

Dr. John P. Barton

Dr . Ha r,6 1 d J. Salane



APPLICATIONS OF THE BOUNDARY ELEMENT METHOD

FOR STRUCTURAL SHAPE OPTIMIZATION

Shyue-Jian Wu

Dr. Eric Sandgren Dissertation supervisor

ABSTRACT

In this study, applications of the boundary element 

method for two- and three-dimensional structural shape 

optimization are presented. The displacements and stresses 

of the structure are computed using the boundary element 

method and substructuring analysis. The boundary element 

method provides the capability and advantages of modeling 

the varied shape of the boundaries during the optimization 

process. The substructuring analysis of the boundary 

element method produces better accuracy of the solution and 

reduces the computer time. The corresponding nonlinear 

programming problem for the optimization is solved by the 

generalized reduced gradient method (OPT program, Gabriele, 

Ragsdell, 1976). The Bezier and B-spline curves or surfaces 

are introduced to describe the shape of the design. The

control points on these curves or surfaces are considered as



design variables. The number of design variables is smaller 

than the number of the nodal points of the boundary element 

mesh. The optimal design objective is to minimize weight or 

peak stress of the structural element and to determine an 

optimum shape for the structure, subject to geometrical and 

stress constraints. The optimization method has been 

successfully applied to the structural shape optimization of 

plain stress, plain strain and three-dimensional elasticity

problems.
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CHAPTER 1

INTRODUCTION

Structural design optimization has generally been 

reduced to the weight minimization of frame or shell 

structures where the optimization is limited to resizing of 

structural members to obtain optimum cross sections or 

thicknesses. Shape optimization deals with continuous 

structural components where the optimum shapes of the 

boundaries and the surfaces of the bodies are determined. 

During the past fifteen years, the finite element method has 

been extensively used in structural optimization, including 

successful application to shape optimization. In contrast, 

the boundary element method has only recently been 

considered for shape optimization.

Application of the finite element method for shape 

optimal design of structural components has some 

disadvantages. One major difficulty is that shape changes 

during the optimization process may require the refinement 

of the finite element mesh because the initial configuration 

of the finite element mesh may result in very distorted 

elements for the new shape. Also accurate evaluations of 

stresses on the boundary are important for some problems 

which are subject to stress constraints on the boundary.

- 1 -



With the finite element method, it is difficult to obtain 

accurate information on the boundary. These difficulties 

with the finite element method can be overcome by using the 

boundary element method to discretize the structure. The 

solutions obtained through the use of the boundary element 

method for elasticity problems at the boundary are more 

accurate than the corresponding results using the finite 

element method. All the degrees of freedom are at the 

boundary in the boundary element model. There is no need 

for internal cells, so that the element mesh is updated 

easily during the optimization process.

In this dissertation, applications of the boundary 

element method for two- and three-dimensional structural 

shape optimization are presented. The displacements and 

stresses of the structure are computed using the boundary 

element method and substructuring analysis. The boundary 

element method provides the capability and advantages of 

modeling the varied shape of the boundary during the 

optimization process. The substructuring analysis of the 

boundary element method produces better accuracy and reduces 

the computer time. The corresponding nonlinear programming 

problem of the optimization is solved by the generalized 

reduced gradient method (OPT program, Gabriele, Ragsdell, 

1976). Bezier and B-spline curves or surfaces are 

introduced to describe the shape of the design. The control 

points on these curves or surfaces are considered as design 

variables. The number of design variables is smaller than

- 2 -



the number of the nodal points of the boundary element mesh. 

The optimal design objective is to minimize weight or peak 

stress of the structural element and obtain an optimum shape 

for the structure, subject to geometrical and stress 

constra i n t s .

To be specific, the purpose of this dissertation is as 

follows:

1. To develop a boundary element program for the 

analysis of two- and three-dimensional elasticity 

problems. The programs will have the capability to 

calculate the stresses and the displacements at any 

point in the structure.

2. To formulate the equations and develop a program for 

substructur i ng analysis by the boundary element 

m e t h o d .

3. To apply the boundary element method for structural 

shape optimization.

Chapter 2 reviews the literature concerning structural 

shape optimization. Chapter 3 explains the development of 

the two- and three-dimensional boundary element programs. 

The basic formulae and numerical integration are introduced 

in chapter 3 as well as some numerical results for several 

elasticity problems which were generated and compared with 

finite element solutions. Chapter 4 introduces the 

capability of substructuring analysis by the boundary 

element method. A program which implements substructuring 

analysis has been developed. The numerical examples for the

- 3 -



substructuring analysis by the boundary element method are

compared with the whole analysis of the boundary element 

method and the finite element method. Chapter 5 proposes 

the combination of the boundary element method and 

optimization. The model is applied to the shape optimal 

design of several elastic structural components. Chapter 6 

presents conclusions of the study.

- 4 -



CHAPTER 2

LITERATURE SURVEY

The literature regarding optimal structural design is 

quite extensive (Ovadia 1981), but only a limited amount 

deals with the area of shape optimization. One of the first 

treatments of the general problem of the selection of the 

shape of a structure as part of the design objective is 

presented by Zienkiewicz and Cambell (1973). They formulate 

the shape optimal design problem using a finite element 

model of complex structures and treat the location of the 

nodal points of the finite element model as design 

variables. Then they calculate derivatives of stiffness and 

load matrices with respect to design variables and obtain 

derivatives of structural response measures and employ 

sequential linear programing to generate a numerical 

solution. They present examples associated with dams and 

rotating turbine machinery.

Kristensen and Madsen (1976) formulate a class of shape 

optimal designs for planar problems, which generalize the 

approach presented by Tvergaard (1975). They use orthogonal 

polynomials to locate the boundary of the body and treat the 

coefficients in these polynomials as design variables. They 

employ a finite element model of the structural response to

- 5 -



obtain derivatives of stress with respect to their design 

parameters and employ sequential linear programing to solve 

the optimization problem. They solve an elementary problem 

of the optimum shape of a hole in a biaxial stress field 

analytically and numerically illustrate the method on more 

complex problems. A generalized steepest decent method of 

optimal design for the shape optimization of two dimensional 

elastic bodies has been presented by Chun and Haug (1978). 

The design objective in this work is weight minimization, 

with constraints on Von Mises yield stress and shear stress 

distribution on the boundary. Schnack, (1979) used a finite 

element formulation for stress calculation in the 

neighborhood of a stress concentration and iteratively 

modified the contour to minimize peak stress.

Optimality criteria have been developed for selected 

classes of shape-optima 1 design problems, which have been 

used for constructing solutions. Kunar and Chan (1976) use a 

fully stressed design criteria and select geometrical 

variables to minimize weight. Dems and Mroz (1978) present 

a quite general approach to the shape-optima 1 design of an 

unloaded boundary of a structure. A boundary perturbation 

analysis is used to derive optimality criteria and a finite 

element method is used to determine optimum boundaries. 

Conditions for the global minimum of the mean compliance are 

g e n e r a t e d .

Imam (1982) describes shape optimization of three 

dimensional structural components using the finite element

- 6 -



m e t h o d . The objective function, mass ,is minimized by the

direct use of the feasible direction method. The 

isoparametric representation of the surfaces and the 

numerical superposition of shape are discussed.

Braibant and Fleury (1984) have developed a model for 

shape-optima 1 design of two-dimensional elastic structures, 

based on isoparametric quadratic finite elements. Bezier 

curves and B-splines are introduced to describe the shape of 

the design. This technique reduces the number of design 

variables and avoids unrealistic designs. An analytical 

derivation of design sensitivity analysis with the finite 

element method used is presented. The objective function is 

to minimize the weight of the structure, with constraints on 

displacements and stresses. The model is applied to the 

design of several structural components.

The boundary element method has recently been applied 

to the shape-optima 1 design of solid and hollow shafts by 

Mota Soares, Rodrigues, Oliveria Faria and Haug (1983) The 

design objective is to minimize torsional stiffness. The 

problem is formulated by the constant boundary element.

Mota Soares, Rodriques and Choi (1984) present the 

shape-optima 1 design of two-dimensional elastic components 

using the boundary element method. The design objective is 

to minimize the compliance of the structure, subject to an 

area constraint. The nodal variables of the boundary 

elements are taken as design variables. The boundary 

elements are composed of both linear and quadratic elements.

- 7 -



In the articles reviewed above, the finite element 

method was used for the structural analysis of most 

structural shape optimization methods. Structural shape 

optimization had only been applied to limited classes of 

problems. In this research, the boundary element method is 

used for the structural analysis of structural shape 

optimization. The optimization method described herein can 

be applied to the structural shape optimization of plain 

stress, plain strain and three-dimensional elasticity 

problems.

- 8 -



CHAPTER 3

DEVELOPMENT OF THE BOUNDARY ELEMENT PROGRAM

3. 1 Introduct i on

One of the most popular numerical techniques which 

engineers and scientists everywhere are applying is the 

finite element method. This technique discretizes the domain 

of the problem under consideration into a number of 

elements. The governing differential equations of the 

problem are then approximated over the region by functions 

which fully or partially satisfy the boundary conditions. 

In addition, an alternative numerical technique has been 

developed in last few years. This technique is called the 

boundary integral method. The essence of the boundary 

integral method is the transformation of the differential 

equation into equivalent sets of integral equations. The 

transformation is from one over the domain to one over the 

boundary. It is sufficient for the solution of the problem 

to discretize only the boundary (hence the name, boundary 

element method), rather than the whole domain.

In recent years, the boundary element method has been 

increasingly used for solution of continuum mechanics 

problems. Applications include linear, non-linear,

- 9 -



s t e a d y - s t a t e  an d  t r a n s i e n t  p r o b l e m s  in s o l i d  an d  f l u i d 

m e c h a n i c s .  T h e  i m p o r t a n c e  of t h e  b o u n d a r y  e l e m e n t  m e t h o d  is 

t h a t  it r e d u c e s  the d i m e n s i o n a l i t y  of the p r o b l e m  by one, 

w h i c h  g r e a t l y  s i m p l i f i e s  th e  use of the c o m p u t e r  p r o g r a m , 

a n d  a l s o  g e n e r a t e s  m u c h  s m a l l e r  s y s t e m s  of s i m u l t a n e o u s 

e q u a t i o n s  for f i n a l  s o l u t i o n .

T h e  b o u n d a r y  e l e m e n t  m e t h o d  i n v o l v e s  m o d e l i n g  o n l y  the 

b o u n d a r y  g e o m e t r y  of th e  s y s t e m .  O n c e  t h e  n e c e s s a r y 

b o u n d a r y  i n f o r m a t i o n  has b e e n  o b t a i n e d ,  t h e n  th e 

d i s p l a c e m e n t  and s t r e s s  at a n y  p o i n t  in th e  d o m a i n  or on the 

b o u n d a r y  c a n  be c a l c u l a t e d  in t e r m s  of k n o w n  b o u n d a r y 

c o n d i t i o n s .

3.2 B a s i c  E q u a t i o n s  of th e  B o u n d a r y  E l e m e n t  M e t h o d

A c o m p l e t e  m a t h e m a t i c a l  d e v e l o p m e n t  of th e  b o u n d a r y 

e l e m e n t  m e t h o d  has b e e n  g i v e n  in a n u m b e r  of t e x t s  ( B a n e r j e e 

and B u t t e r f i e l d  1979, 1980; B r e b b i a  1 9 7 8  ,1 9 8 1 ,  1982, 1983; 

J a s w o n  a n d  S y m n  1978). T h e  b a s i c  e q u a t i o n s  of t h e  b o u n d a r y 

e l e m e n t  m e t h o d  for e l a s t i c i t y  a r e  b a s e d  on S o m i g l i a n a ’s 

i n t e g r a l  e q u a t i o n s .  T h i s  e q u a t i o n  for d i s p l a c e m e n t  in the 

a b s e n c e  of b o d y  f o r c e s  is g i v e n  by

C y J ( P ) U J ( P ) = { t f (Q)G,-j (P, Q)-u,- ( Q ) F , j ( P , Q ) l d s  (3-1)
s .- ' '

u j ( P )  is t h e  d i s p l a c e m e n t  v e c t o r  at a p o i n t  P in t h e

i n t e r i o r  of t h e  b o d y  or on th e  b o u n d a r y ,  a n d  u , ( Q )  a n d  t»-(Q)

- 10 -



are the values of displacement and traction at the boundary

point Q. C,-j(P) is a coefficient that depends on the 

geometry of the boundary at point P. If point P is in the 

interior of the body, C / j (P ) equals to S ̂ j . The tensors G ,- j 

and F,j are the fundamental Kelvin solutions for 

displacements and tractions due to a unit concentrated force 

in an elastic infinite body. For an isotropic plane strain 

problem:

G,-j(x'’,x’ ) = C 1 (C2 S,-jln-+----- ) (3-2)
r r 2

C 3 2yiVj
F,- j ( x^, x*» )=— I C A ( nj y,- - n,- yj )+ (C 4 5,- j+------ ) y*n fc 1 ( 3- 3)

r 2 r 2

For a plane stress problem, Y o u n g ’s Modulus E and P o i s s o n ’s 

ratio v are replaced by v ’=v/(l+v) and E ’= E / ( l - v ’2 ) 

respecti vely.

For the 3-D isotropic problem: 

Ci If y/Yj-l
G# j ( x^, x’ ) =----C 2 S,-j +------  (3-4)

2 r r 2 J

C 3 1 f y,- yj
F# j ( x**, x* )=—  —  C 4 (nj—  -n,- — ) 

2 r 2 r r

3y,yj ykiifci
+ (------ + C 4 S ,• j )------  ( 3- 5 )

r 2 r J

where

Ci= l/(8rep(1-v )

, C 2 — 3” 4 v

- 11 -



C ,= -  l / ( 4 r c ( l ~ v ) )

C4 = l - 2 v

ju = E /2 /(  1 + v ) 

y # = x / ’ - x , - /’ 

y j  = X j * - x j ' ’ 

r  2 = y ,• y » 

n j  i s  o u tw a rd  n o rm a l 

i , j  = l , 2  f o r  2-D  p ro b le m 

i , j = l , 2 , 3  f o r  3-D  p ro b le m 

H a v in g  o b ta in e d  th e  unknow n v a lu e s  o f  d is p la c e m e n ts  and 

t r a c t i o n s ,  t o g e t h e r  w i t h  th e  s p e c i f i e d  v a lu e s  o f 

d is p la c e m e n ts  and t r a c t i o n s ,  th e  i n t e r i o r  v a lu e s  o f  s t r e s s e s 

can be c a lc u la t e d  by th e  f o l l o w in g  e q u a t io n

<r,- j  ( x*“ ) = I [ Dfc ,• j  ( x ’  > x ^ l t ic C x ^ l - S f r ^ jC x ’ , x ^ J u ^ C x * )  Id s  ( x ’  ) 
J s ( 3 - 6 )

w h e re 

1 y j  y# y *  y / y j y *  1
D^ ,• j  =  [ ( l - 2 v ) { ^ * /  + S k  j  S f j  } + b------------ ] ------------------

r *  r  r  r  r 3 4arc ( 1- v )

and ( 3 - 7 )

2 M y m nm y j  y # y *  V iV ^ V k

S ^ i j = ---- [ b--------- { ( l - 2 v ) S  / j ------+ v ( S t k ----- +  s  J k ----- ) ~ c -----------------J
r fc r  r  r  r  r 3

y j V k  V iV k  y , y j
+ bv ( n ,• + n j  — ^ ~ ) + ( l - 2 v ) ( b n ^  ——— + v\ j  s  ■/ k ^  ^ i  ^ J k  )

r 2 r 2 r 2

1 
- ( l - 4 v ) n f c 5 , j  1-----------------  ( 3 - 8 )

4arr( 1- v )

The abo ve  fo rm u la e  a p p ly  f o r  tw o  and t h r e e  d im e n s io n a l 

c a s e s ,  i . e .
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(1) a=l,b=2,c=3, i,j,k,m=l,2 for 2-D problem

(2) a=2,b=3,c=5, i , j , k , m= 1, 2, 3 for 3-D problem.

3.3 Numerical Formulation of the Boundary Element Method

Except for a few simple problems, a closed-form 

solution for equation (3-1) is not available. Therefore a 

numerical method of solution has to be developed. The 

numerical solution of equation (3-1) is obtained by choosing 

a finite element approximation for the unknowns {u} and {t} 

on the boundary and employing a point collocation method for 

the integration. The boundaries may be represented by line 

elements in two-dimensional problems (Figure 3-1) and 

surface elements in three-dimensional problems (Figure 3-2), 

defined by their nodal coordinates. Within each element,the 

field variables such as geometry, displacement, and traction 

fields can be assumed to be constant, linear or quadratic 

depending upon the selection of the shape function. One has 

flexibility in discretizing the boundary and selecting the 

order of the expansion. The simplest boundary 

discretization is to employ straight elements. Curved 

elements allow more versatility in modeling complex shapes. 

In this dissertation, isoparametric linear and quadratic 

line elements (Figure 3-3) are selected for modeling the 

two-dimensional problem. The isoparametric linear and
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Figure 3-1 Boundary Element Mesh for a

Two-dimensional Problem

element

Figure 3-2 Boundary Element Mesh for one of the

Surfaces of a Three-dimensional Problem
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shape functions

(a) linear element

N x = ( 1 + 7 7 1 / 2

N2  = ( 1 - 7 7 1 /2

(b) quadratic element

^ = 7 7 ( 7 7 -  1 1 / 2

^  = 77(77+ 1 1 / 2

N , = 1 -7 ? 2

Figure 3-3 Isoparametric Linear and Quadratic

Line Elements and Their Shape Functions

-  1 5  -



shape functions

(A) linear element

N,= ( 1+77! ) ( 1+7? j )/4 N3 = ( l-7?i )( l-7?j )

N2 = ( 1-771 ) ( 1+7)2 )/4 N4 = ( 1+7)1 )( 1-7)2 )

(b) quadratic element

N1 = ( 1+7)1 ) ( 1+ 7)2 )(7)1 +7)2-l)/4

N2 =( 1-7)1 ) ( 1+ 7)2 ) (-7)1 + 7)j- 1 )/^

Nj=( l-7)i )( 1-7)2 ) (-7)1 -7)2-1)/^

N4 = ( l-7)i )( l + 7)i ) ( 1 + 7)2 1/2

N5 = ( 1-7)1 )( 1+7)2 ) ( 1'7)2 )/2

N6 = ( 1-7)1 ) ( 1+7)2 ) ( 1-7)2 )/2

N7 = ( 1+7)1 )( 1-7)1 ) ( 1-7)2 1/2

N8 = ( 1+7)1 )( 1-7)2 ) ( 1+7)2 1/2

Figure 3-4 Isoparametric Linear and Quadratic

Quadrilateral Elements and Their

Shape Functions
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quadratic quadrilatera 1 elements (figure 3-4) are used for 

solving the three-dimensional problem.

The value of the field variable over each element is in 

terms of nodal values and shape functions, the same as for 

finite element methods. Thus the field variable over the 

element is expressed in the form

S C ^ N *  ( T? ) ^  a = l , 2, . . . . n (3-9)

where

N a are shape functions of local coordinate 77, (-1<7?<1).

The shape functions of line and surface elements are 

shown in Figures 3-3 and 3-4.

S* are the values of the field variables at nodal points, 

n is the total number of nodes on every boundary element.

For example u in the x-direction over an isoparametric 

quadratic line element is given by Ui= N 1 Ui 1 + N 2 Ui 2 + N 3 Ui 3 , 

where U j 1 , Ui 2 , Ui 3 are nodal displacements at nodes 1,2,3 

respectively. N 1 , N 2 , N 3 are shape fuctions of the 

isoparametric quadratic line elements (Figure 3-3).

If nodal coordinate, traction and displacement are 

introduced as field variables in Equation (3-9), then 

Equation (3-1) becomes a discetized form as 

M n r 
C,-j(x^)Uj(xn= E E { {G / j[x^,x^(7 ? m )]N^(7? m )J(7? m )fc= i*= i J A S k

ds ( 7?m ) } 1 7- I  {Fj J [ x^, x* (7?m ) ]n* (i?m ) J (77m )ds(7?m )}u f *} 
JAs* (3-10)

where
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M is  t h e  t o t a l  n u m b e r o f  b o u n d a ry  e le m e n ts  and 

u j i s  t h e  v a lu e  o f  u j  a t  l o c a l  n o d e  a 

t j *  i s  t h e  v a lu e  o f  t j  a t  l o c a l  n o d e  a 

J ( T?) i s  th e  ja c o b ia n  o f  t h e  t r a n s f o m a t  i on o f  c o o r d in a t e s . 

77w i s  t h e  l o c a l  c o o r d in a t e  m= 1 f o r  2 -D  p r o b le m ,  m = l,2  f o r 

3 -D  p r o b le m .

i , j = l , 2  f o r  2 -D  p r o b 1em, i , j = 1 , 2 , 3 ,  f o r  3 -D  p r o b le m .

G ,J , F , J  f r o m  E q u a t io n  ( 3 - 2 ) , ( 3 - 3 )  f o r  2 -D  and  3 -D  c a s e s 

r e s p e c t  i v e l y .

The i n t e g r a l  e q u a t io n  ( 3 - 1 )  f i n a l l y  r e d u c e s  t o  an 

a l g e b r a i c  e q u a t io n  ( 3 - 1 0 )  b y  d i s c e t i z i n g  th e  b o u n d a ry  o f  t h e 

p ro b le m  and  s u b s t i t u t i n g  th e  f i e l d  v a r i a b l e s  w i t h  n o d a l 

v a lu e  and  s h a p e  f u n c t i o n .  N o t in g  t h a t  x^  r e f e r s  t o  one  o f 

t h e  e le m e n t  n o d e s ,  th e n  c o l l o c a t i o n  f o r  a l l  n o d e s  on th e 

b o u n d a ry  in  t u r n ,  a l lo w s  E q u a t io n  ( 3 - 6 )  t o  be e x p r e s s e d  in 

m a t r i x  fo r m  as f o l l o w s :

I C ] { U } + [ H ’ ] { U } = lG ] { T J  ( 3 - 1 1 )

o r 

[ H 1 { U } = [ G ] { T J  ( 3 - 1 2 )

W here [ H ] = [ C ] + [ H ’ l i s  o b t a in e d  f ro m  th e  l e f t  h an d  s id e  and 

th e  s e c o n d  te r m  o f  t h e  r i g h t  hand  s id e  o f  e q u a t io n 

( 3 - 1 0 ) , [ C l  i s  a t r i d i a g o n a l  m a t r i x ( 2 - D  p r o b le m ) ,  w h ic h  d o e s 

n o t  n e e d  t o  be d e te r m in e d  e x p l i c i t l y .  The t r i d i a g o n a l 

c o e f f i c i e n t s  in  th e  [H ]  m a t r i x  ( i n c l u d i n g  [C ]  ) ca n  be

o b t a in e d  b y  a p p ly in g  r i g i d  b o d y  c o n d i t i o n s .  I f  we a p p ly  a 

r i g i d  b o d y  d is p la c e m e n t  t o  th e  b o d y ,  th e n  t h i s  w i l l  g e n e r a te
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no traction on the boundary (that is T=0). Therefore we can 

write Equation (3-12) as

[HJ{U}={OJ (3-13)

In order to satisfy the above equation for any system 

of arbitrary rigid body displacements each coefficient of 

the 2x2 on diagonal blocks(2-D problem) must be numerically 

equal to the sum of the corresponding coefficients of all 

off diagonal blocks with a change in sign. The 2x2 diagonal 

blocks contain the terms involving [C] as well as strongly 

singular integrals. In Equation (3-12), [G] is from the 

first term of the right hand side, and {U},and {T} include 

all surface nodal displacements and nodal tractions.

Applying the known boundary conditions, Equation (3-12) 

is rearranged, so all prescribed values are on one side and 

the unknowns on the other side, leading to a set of linear 

algebraic equations in terms of unknown nodal values 

[A]{x}={fJ (3-14)

where {x} and {f} are the vectors of unknown and known 

quantities respectively.

Once the integral equations are solved, the 

displacements at interior points can be calculated by 

Equation (3-1) with Cjj^S^j, and the stresses at interior 

points can be calculated by Equation (3-6). The stress at 

any point on the boundary can be calculated as follow:

At any point X on the boundary, 15 quantities are 

defined: six stress components (?>• j and nine derivatives
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Uy,j where i,j=l,2,3. These quantities are described by 15

equat i o n s :

G j 3 = 2 ^ 1  j  + ----------8^ j E k k  (3-15)
l-2v 

t ,= cry j n j (3-16)

du, dXj
=Uy , j ---- (3-17) 

d^m------ d 77m

where 7?m , m=l,2 are the local coordinates of the boundary,

and t, i = l,2,3 and (dUy/d7?m ) are known quantities on the 

boundary. The values (dUy/d7?m ) can be calculated by finite 

differences or by directly differentiating the function u,.

The 15 equations lead to a regular linear system for 

the unknown quantities a , j  and u,j. In plane 2-D problems 

the number of unknowns is reduced from 15 to 7, then i,j=l,2 

and m = 1.

3.4 Numerical Treatment of Integral Equations

The integrals appearing in Equation (3-10) are 

evaluated using ordinary Gaussian quadrature formulae:

f (f )d?= E A,-f(G* ) (3-18)
J-l i=l

and

rl rl mi m 2
f ( f i ^ 2 ) d ^ d ? 2 = E E A y A j f ^ , - , ^ )  (3-19)

J - 1J - 1 i=l j=l
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for the line and surface area integrals respectively, where 

f=(G,F)NJ, 

A,-,Aj weight coefficients, and 

K t ’Kj are the coordinates of integration points, 

G,F are the kernel functions in Equation (3-2) to 

Equation (3-5) and 

N is a shape function.

Unfortunately, in contrast to the integrals arising in 

the finite element method for elasticity problems, some of 

the integrals in the boundary element method are singular. 

If a collocation point belongs to the element on which it is 

located, Equation (3-10) has a singularity in it s ’ integral 

form. These singular functions play a major role in all 

boundary element methods. The success of a boundary element 

program will greatly depend on the efficiency with which the 

calculation of the matrix elements in Equation (3-10) is 

performed and thus it is a crucial item in the whole 

p r o c e s s .

There are two different cases: 

(i). x^^AS^ and (ii) x^eAS^ 

Case (i) is a more straightforward case. We can use 

ordinary Gaussian quadrature formulae such as Equation 

(3-19), but the order of numerical integration to be used in 

the evaluation of the various boundary element integrals 

needs to be determined. The choice of the order of 

numerical integration is important, because the cost of 

analysis increases when a higher-order integration is
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e m p lo y e d . U s in g  a lo w e r - o r d e r  i n t e g r a t i o n  , th e  r e s u l t s  can 

be a f f e c t e d  by a v e ry  la r g e  a m o u n t. In  g e n e r a l ,  th e  o r d e r 

( 2 m - l )  i s  in t e g r a t e d  e x a c t l y  f o r  th e  c o m p le te  p o ly n o m ia l  o f 

d e g re e  m. B u t an i n v a r i a n t  i n t e g r a t i o n  fo rm u la e  is  w a s t e f u l 

o f  c o m p u ta t io n a l  t im e  e s p e c ia l l y  in  th e  ca se  o f  th e 

t h r e e - d im e n s io n a l  f o r m u la t io n .  The o r d e r  o f  i n t e g r a t i o n  can 

be v a r ie d  by d e t e r m in in g  th e  d is ta n c e  f ro m  th e  f i e l d  p o in t 

t o  th e  e le m e n t and th e  s iz e  o f  e le m e n t .  T h e r e fo r e  i t  i s 

n e c e s s a ry  t o  in c o r p o r a t e  in  th e  a lg o r i t h m  an a u to m a t ic 

c h o ic e  o f  th e  o r d e r s  o f  G a u s s ia n  q u a d r a tu r e  fo rm u la e  ( th e 

p a ra m e te rs  m ,m i,m 2 ) and t o  p r e s e r v e  th e  c o n v e rg e n c e  o f 

i n t e g r a t i o n .  T h is  has been a c c o m p lis h e d  by L a c h a t and 

W atson  1976

In  c a s e  ( i i ) ,  th e  i n t e g r a l  r e q u i r e s  s p e c ia l  t r e a tm e n t 

due t o  s i n g u l a r i t i e s  o f  th e  in te g r a n d s .  F o r 2 -D  p ro b le m s 

th e  i n t e g r a l  in v o lv i n g  G ; j  is  o f  th e  ty p e

r l
l n ( l / r ) f ( ? ) d ? 

J - l
( 3 - 2 0 )

I f  th e  s i n g u l a r i t y  is  on an end node o f  a l i n e a r  o r 

q u a d r a t i c  e le m e n t ( F ig u r e  3 - 5 a ) ,  t h i s  i n t e g r a l  can be 

t r a n s fo r m e d  to

r  1 1 r  1 1+C r i  1
l n - f ( f ) d 5 =  l n ( ------ ) f ( C ) d ? + 2  l n - f ( £ ) d £  ( 3 - 2 1 )

- - l r  J - 1 2 r

w h e re  p = ( l+ ? ) / 2  .
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If the singularity is on a middle node of a quadratic

element (Figure 3-5b), Equation (3-20) becomes

r 1 1 r 1 I d  r1 1

I ln-f(C)d<= In----f(?)d?+ I In---- f(C)dC#
J -1 r ->-1 r Jo |f|

r1 1

+ J In----f(-C)d£/ (3-22)
o i d

The integrand in the first integral of E q u a t i o n (3-21) 

or (3-22) can be easily shown to be bounded and therefore we 

use the ordinary Gaussian quadrature while the second and 

third integrals are evaluated numerically by formulas given 

by Stroud and S e c r e s t ( 1966 );

rl 1 m
I ln-f(?)d?= S BjfCfy) (3-23)
J 0 £ i = 1

where B,- are weight coefficients and C; are coordinates of 

integration points.

For 3-D problems the integrals corresponding to 

E q u a t i o n (3-10) present a 1/r singularity of the following 

type

T [ - f C C n C ^ d ^ d h  (3-24)
J - 1J - 1 r

For the quadrilateral element, the element is 

subdivided into triangular subelements, according to the 

location of the point x^ (Figure 3-6)

The subelement can be transformed to a local polar 

coordinate system (p,0), with origin at x'*’ where the element
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Figure 3-5 Field Point x^ is in a Line Element Itself

(a )X*" at End Node of the Element

(b ) x*" at Middle Node of the Element

Figure 3-6 Field point x^ is in a quadrilateral 

element itself, (a) x^ at corner node 

of element, (b) x** at mid-side node 

of element.
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area d £ x d £ 2 becomes pdpd^. Therefore the integral over the 

element is made up of integrals over each subelement. The 

integral Equation (3-2^) becomes

r 1a
E - f ( p , P ) p d p d P  (3-25)

i = lJAy r

where △, represents a triangular subelement. The 

singularity of Equation (3-25) is reduced by cancellation of 

P and r. Then the remaining integral form can be calculated 

by ordinary Gaussian formulae.

3.5 Description of the Program

Based on the mathematical theory and numerical 

treatment introduced earlier, the boundary element method 

has been implemented in a computer program. The logical 

sequence of steps is:

(1) Generation of input data defining the geometry of 

the boundary elements.

(2) Integration of kernel shape function products to 

generate the system matrix.

(3) Solution of the system of equations to get the 

unknown boundary data

(4) Calculation of interior information by obtained 

boundary data.
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A brief flow chart of the boundary element program is 

illustrated as Figure (3-7). The main program BEM calls 

subroutines GAUSS, INPUT, BEMAT, BSOLVE, BINSD, and BSD. 

Subroutine GAUSS forms the weights and integration points 

for the Gaussian formulae. Subroutine INPUT reads the data 

relating the geometry, boundary conditions, and material 

properties.

Subroutine BEMAT sets up the coordinates of the 

boundary nodes for point collocation and calls subroutine 

DINTEG to calculate the [G] and [H] matrices for each 

boundary collocation point. Subroutine DINTEG sets up the 

local axis system on the boundary elements, calculates the 

order of integration formulae, the jacobian, and integrates 

the kernel-shape function products to generate coefficients 

for the matrices [GJ and [H] for a specified boundary or 

interior field point. Subroutine SINTEG generates the 

coefficient matrices [D] and [SI to calculate stresses in 

the doma i n .

Subroutine BSOLVE assembles the final system of 

equations for the specified boundary conditions. The values 

of the boundary tractions and displacements are also 

calculated. Subroutine BSD transforms the boundary tractions 

to boundary stresses and calculates displacements and 

stresses on any seleted boundary point. Subroutine BINSD 

calculates displacements and stresses at interior points.
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BEM

INPUT

BEMAT
» DINTEG

calculate
[ G 1 
[H]

i ntegrat i on
4----  all element

BSOLVE

form lA]{x}={f} 
obta i n boundary 
tract ions and 
displacements

BINSD BSD

calculate 
stress and 
displacement 
in the doma i n

calculate stress 
and d i sp 1 acement 
at any point on 

the boundary

SINTEG DINTEG

stress 
kerne 1 

integration

displacement 
kernel

integration

* OUTPUT ^

STOP

Figure 3-7 Brief Flow Chart of the Boundary Element Method
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3.6 Numerical Results and Comparison to

the Finite Element Solution

Several different examples have been chosen to test the 

BEM program. The results are also compared to the 

corresponding finite element model which is solved by 

GTSTRUDL (1983). All the following computations were

performed on the same computer (VAX 11/780 ) which means 

that the results are comparable. The examples include:

(1) A thick wall cylinder under internal pressure

(2) Bending of a beam under uniform load

(3) A cylindrical cavity under internal pressure

(4) A three-dimensional rod subjected to a 

uniform axial tension

(5) Bending of a three-dimensional cantilever 

beam under end load

3.6.1 A Thick Wall Cylinder under Internal Pressure

The cross-sectional geometry and loading for the 

problem is illustrated in Figure (3-8). The material 

properties are taken as E = 1 . 0 x l 0 6 lb/in 2 and v = 0.3. Due to 

symmetry only one quarter of the structure has been modeled. 

This problem has been discretized using 12 isoparametric 

quadratic finite elements with 51 nodes. The isoparametric 

quadratic boundary elements with the same mesh on the 

boundary have 14 elements and 28 nodes. Figures (3-9) and
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Figure 3-8 Cross-section of

a= 10 in
b= 30 in
P=1000 psi(internal pressure)

Thick Nall Cylinder

14 i soparametr i c 
quadratic elements

28 nodes
54 d . o . f .

Figure 3-9 The Boundary Element Model for a Thick

Nall C y 1 i nder

12 i soparametr i c 
quadratic elements

51 nodes
102 d . o . f .

Figure 3-10 The Finite Elemet Model for a Thick

Nall Cy 1 i nder
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(3-10) represent the mesh used in the boundary element 

method and the finite element method. In Figure (3-9), all 

the elements are at the boundary of the boundary element 

model and there is no need for internal cells.

In Tables ( 3-1), ( 3-2 ), ( 3, 3 ) a comparison of results is 

presented. The finite element analyses with refinements on 

the boundaries similar to those of the boundary element 

discretizations involve rather large numbers of nodes 

without obtaining better accuracy in the calculated 

stresses. However, more information is generally provided 

about the stress and displacement fields in the domain. The 

displacement finite element method gives good results for 

displacements but less accurate results for stresses, which 

are in most cases of greater interest to the engineer. Also 

note that the calculated stress field is discontinuous 

across element interfaces. In the boundary element 

analysis, the stress and displacement at any selected point 

can be calculated directly after the boundary tractions and 

displacements have been solved. In Table 3-1 and 3-2, the 

boundary element method shows better results for stresses.

3.6.2 Bending of a Beam under a Uniform Load

This example is a deep, simply supported beam subject 

to a uniformly distributed load. The geometry and loading 

for the problem are shown in Figure 3-11. The beam was
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T h ic k  W a ll  C y l i n d e r

T a b le  3 -1  C o m p a r is o n  o f  t a n g e n t i a l  s t r e s s  f o r

r a d i a l
d i s t a n c e

( i n )

e x a c ts

( p s i )

FEM BEM
v a lu e 
( p s i )

e r r o r v a lu e 
( p s i )

e r r o r

10 1 2 5 0 .0 1 2 7 0 .7 1 1. 66 1 2 4 2 .0 0 . 6
14 6 9 8 . 9 7 1 6 .3 8 2 .4 7 6 9 9 .1 0 .0 3
22 3 5 7 .4 4 3 6 5 .4 3 2 . 27 3 5 7 . 3 0 . 04
30 2 5 0 . 0 2 5 2 .9 6 1. 18 2 5 0 . 0 0 . 0

* T im o s h e n k o  and  G o o d ie r  1970

f o r  T h ic k  W a ll C y l i n d e r

T a b le  3 -2  C o m p a r is o n  o f  R a d ia l  S t r e s s

r a d i a l 
d i s t a n c e

( i n )

e x a c t *

( p s i )

FEM BEM
v a lu e 
( p s i )

e r r o r v a lu e 
( p s i )

e r r o r

10 -  1 0 0 0 . - 9 2 5 . 6 6 7 . 43 -  1 0 0 0 . 0 .
14 - 4 4 8 . 9 8 - 3 8 7 .  21 1 3 . 75 - 4 4 8 . 7 0 . 06
22 -  1 0 7 .4 4 - 7 9 .  51 2 6 .5 9 - 1 0 7 . 3 0 .1 3
30 0. 1 0 .4 4 — 0. 0.

* T im o s h e n k o  and G o o d ie r  1970

f o r  T h ic k  W a ll  C y l i n d e r

T a b le  3 -3  C o m p a r is o n  o f  R a d ia l  D is p la c e m e n t

r a d i a l e x a c t * FEM BEM
d is t a n c e v a lu e e r r o r v a lu e e r r o r

( i n ) ( x l O - 2 i n ) ( x l 0 ’ 2 i n )  % ( x 1 0 - 2 i n )  X

10 1 .5 5 1. 549 0. 07 1. 549 0 . 07
14 1. 167 1. 167 0. 00 1. 166 0 . 09
22 . 857 . 857 0 . 00 . 856 0 . 09
30 . 75 . 749 0 . 15 . 749 0 .1 5

* T im o s h e n k o  and  G o o d ie r  1970
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1 Ib/in

— >| |<—  1 in

Figure 3-11 A Simply Supported Beam under Uniform Load

u  th i ckness

12 elements A8 elements

Figure 3-13 The Boundary Element Mesh of a Beam

Figure 3-12 The Finite Element Mesh of a Beam
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analyzed as a plane stress case for different finite element 

and boundary element meshes.

For the finite element method the beam is represented 

by 12 eight-node isoparametric quadratic elements with 53 

nodes and ^8 refined meshes with 177 nodes (Figure 3-12). 

The boundary element models have the same boundary nodes as 

the finite element models. The boundary of the beam was 

divided into 16 isoparametric quadratic elements with 32 

nodes and 32 refined meshes with 64 nodes (figure 3-13). 

The results are compared to an exact solution obtained from 

plane elasticity theory in Table 3-4.

From Figures 3-12 and 3-13, we can see the mesh 

refinement of the boundary element method is much easier 

than that for the finite element method. In Table 3-4, it 

is clear that as more elements are used the accuracy of both 

methods improves. The solution obtained using the 

32-element BEM mesh and 48-element FEM mesh are in close 

agreement with the values given by the exact solution. The 

32-element BEM mesh shows less data generation and computer 

time were required. Even the results obtained using a 

12-element BEM are resonable and save significant computer 

time.

3.6.3 A Cylindrical Cavity under Internal Pressure

The following example shows the application of the

boundary element method for the case of a cylindrical cavity
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Table 3-4 Comparison of Deflection , Stress and Computer

Time for a Simply Supported Beam under Uniform

Load

* Timoshenko and Goodier 1970

method
log i tud inal 
stress a x x 

(psi) 
at point A

vertical deflection CPU 
time 
(sec )

Uy
X10-* 1 

point A
tin) at 

point B

exact s o l u t i o n 1’ 6. 95 . 508 . 462 —
BEM ( 16 ) 7. 01 . 503 . 440 6. 50
BEM ( 32 ) 6. 957 . 505 . 443 32.43
FEM ( 12 ) 7. 048 . 496 . 432 24.83
FEM ( 48 ) 6. 966 . 505 . 442 98. 30
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under internal pressure in an infinite medium. The material 

properties are taken as E= 2 . 0 x l 0 5 lb/in 2 and v = 0. 1 . The 

boundary has been described by 48 linear and 24 quadratic 

elements (Figure 3.14)

In Table 3.5 and 3.6 exact results are compared to the 

boundary element solution and the agreement is satisfactory. 

The displacements and stresses decay with inceasing distance 

from the cavity. The radial stresses and tangential 

stresses at these internal points have the same absolute 

value but different sign which is correct. The solution 

generated using quadratic elements is better than the 

results with linear elements because the curved boundary is 

handled better by the higher order element.

3.6.4 A Three-dimensional Rod Subjected to a Uniform Axial 

Tension.

The geometry and loading for the problem are 

illustrated in Figure 3-15. The boundary of the beam was 

discretized by 10 isoparametric linear quadrilateral 4-node 

elements with 12 nodes and 36 degrees of freedom (Figure 

3-16). Figure 3-17 shows a 20-node mesh of 6 isoparametric 

quadratic quadrilateral 8-node elements or 1 isoparametric 

quadratic 20-node hexahedron finite element. The results of 

the three analyses (Table 3-7) are close and accurate when 

compared to the exact solution.
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internal pressure=100 psi
Figure 3-1^ A Cylindrical cavity under Internal Pressure

in an Infinite Medium

Table 3-5 Comparison of Interior Displacement for

Cylindrical Cavity under Internal Pressure

in an Infinite Medium.

d i stance to the 
center of the

displacement 1' i n )

cavity (in) exact* BEM ( 1 i n. ) BEM ( q u a d . )

3 1. 6 5 0 x 10- 3 1. 6 ^ x 1 0 -  3 1.650 x 1 0- 3

4 1. 2 3 7 x 1 0 - 3 1. 231 x 1 0- 3 1. 2 3 7 x 1 0 - 3

10 4. 950x l 0 - 4 4 . 9 2 1 x 1 0 - “ 4 . 9 5 0 x 1 0 - “
50 9. 900 x 1 0- 5 9.841x10-5 9.870x10-5

100 4 . 9 5 0 x l 0 - 5 4.921x10-5 4.935x10-5
1000 4.950x10-5 4.922x10-5 4.920x10-5

* Timoshenko and Goodier 1970
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T a b le  3 -6  C o m p a r is o n  o f  I n t e r i o r  S t r e s s  f o r

C y l i n d r i c a l  C a v i t y  u n d e r  I n t e r n a l  P r e s s u r e

in  an I n f i n i t e  M e d iu m .

d is t a n c e  t o  th e 
c e n t e r  o f  t h e

r a d i a l  s t r e s s  ( l b s / i n 2 )

c a v i t y ( i n ) e x a c t * BEM ( 1 i n . ) BEM (q u a d .  )

3 -  1 0 0 .0 0 0 0 - 9 9 .7 9 0 0 -  1 0 0 .0 0 0 0
4 -  5 6 .2 5 0 0 - 5 5 .9 5 0 0 - 5 6 .2 5 0 0

10 - 9 .  0000 - 8 . 9 5 0 0 - 9 . 0 0 0 0
50 - 0 . 3 6 0 0 - 0 . 3 5 8 1 - 0 . 3 6 0 0

100 - 0 . 0 9 0 0 - 0 . 0 8 9 5 - 0 . 0 9 0 0
1000 -  0 . 0009 -  0 .0 0 0 8 9 5 - 0 . 0 0 0 8 9 9 8

* T im o s h e n k o  and  G o o d ie r  1970

E = 1 .0  I b / i n 2 v = 0

b o u n d a ry  c o n d i t i o n s :

t x = 1 .0  a t  x = 2 .0

u x  = u y = ux =0 a t  x=0

t x = t y = t x =0 a t  o t h e r  n o d e s

F ig u r e  3 -1 5  A R e c t a n g u la r  C r o s s - s e c t i o n a l  Rod

F ig u r e  3 -1 6  The L in e a r  B o u n d a ry

is o p a r a m e t r i c  l i n e a r

q u a d ra  1 a t e r a  1 A -n o d e 

e le m e n ts

n o d e s  , 36 d . o . f .

E le m e n t  M o d e l

f o r  a R e c t a n g u la r  C r o s s - s e c t i o n a l  R od.
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6 i s o p a r a m e t r i c  q u a d r a t i c 

q u a d r a l a t e r a l  8 -n o d e 

b o u n d a ry  e le m e n ts

20 n o d e s  , 60 d . o . f .

o r  1 i s o p a r a m e t r i c  q u a d r a t i c 

2 0 -n o d e  h e x a h e d ro n 

f i n i t e  e le m e n ts

20 n o d e s  , 60 d . o . f .

F ig u r e  3 -1 7  The Q u a d r a t ic  B o u n d a ry  and  F i n i t e  e le m e n t 

M o d e l f o r  a R e c t a n g u la r  C r o s s - s e c t i o n a l  Rod.

T a b le  3 -7  C o m p a r is o n  o f  D e f l e c t i o n s  and  S t r e s s e s  f o r  a

R a c t a n g u la r  c r o s s - s e c t i o n a l  Rod u n d e r  U n ifo r m

T e n s io n .

m e th o d
d is p la c e m e n t  u x  ( i n ) s t r e s s  crx x  ( ps i )

a t  x= 1 i n a t  x= 2 i n a t  x= 0 i n a t  x= 1 i n

e x a c t  s o l u t i o n 4* 
BEM ( l i n .  ) 
BEM ( q u a d . ) 
FEM ( q u a d . )

1 .0 0 0 0 0 
0 .9 9 9 8 9 
1 .0 0 0 0 0 
.9 9 9 9 9 9

2 .0 0 0 0 
1 .9 9 9 7 
2 .0 0 0 0
1 .9 9 9 9

1 .0 0 0 0 0 
0 .9 9 9 8 9 
0 .9 9 9 9 8 
0 .9 9 9 9 9

1 .0 0 0 0 
0 .9 9 9 8 
0 .9 9 9 9 
1 .0 0 0 0

* B r e b b ia  1982
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3.6.5 Bending of a Three-dimensional Cantilever Beam under 

End Load

The dimensions and loading for the problem are shown in 

Figure 3-18. Three analyses have been carried out using 

both linear and quadratic elements. The boundary has been 

divided into 32 isoparametric linear quadrilateral boundary 

elements (Figure 3-19) and 10 isoparametric quadratic 

quadrilateral boundary elements (Figure 3-20). The finite 

element model has the same number of nodes for 2 

isoparametric quadratic 20-node hexahedron elements (Figure 

3-20).

In Table 3-8, the results for the linear element have 

large errors, but the results for the quadratic element for 

both methods are close to the exact solution. The 

computational time of the BEM is larger than that of the FEM 

with the same number of nodes. The evaluation of each 

component of the matrices in a BEM solution involves more 

arithmetic calculation than does its finite element 

counterpart, thus will offset some of the computer time 

saved by the reduction of system matrices for bigger 

problems.

3.7 CONCLUSION

A boundary element program has been developed using 

linear and quadratic line and quadrilateral boundary
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E=1.0 lb/in 2 v = 0
boundary conditions: 
ty = - 1.0 lb/in and 
t x =t^=0 at x=2. 0 
ux = Uy- U^=O at x=0 
t x = t y = t ^ O  at other 
surfaces.

32 isoparametric linear 

quadra lateral 4 - node 

elements

34 nodes , 102 d.o.f.

Figure 3-19 The Linear Boundary Element Model for a

Cant i lever Beam

10 isoparametric quadratic 

quadra lateral 8- node 

boundary elements

32 nodes , 96 d.o.f.

or 2 isoparametric quadratic 

2 0-node hexahedron

finite e lements

20 nodes , 60 d.o.f.

Figure 3-20 The Quadratic Boundary and Finite Element

Model for a Cantilever Beam
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a Cantilever Beam under End Load

Table 3-8 Comparison of Deflections and stresses for

method
deflection u x 
(in)
at x=4 in

stress a x x  (psi) 
at y=2 in and

x= 0 in x= 2 in

exact solution* - 0 . 7 6 2 X 1 0 - 2 12.0 6. 0
BEM (lin. ) - 0 . 5 8 1 x 1 0 ’ 2 9. 57 4. 39
BEM ( q u a d . ) - 0 . 7 2 2 x l 0 - 2 11. 78 6. 11
FEM (quad. ) -0.716x10-2 11.73 5. 99

* Brebbia 1982
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e 1e me n t s . Results for practical problems of two- and

three-dimensional elasticity without body forces have been 

presented and the usage of different element types has been 

demonstrated. In general, the results show that the 

quadratic element is more efficient and accurate than the 

linear element. For problems with curved boundaries the 

quadratic element allows for a good representation of the 

curve out 1 i ne.

If a boundary node is located at a corner, the 

tractions are specified by multiple values because of the 

discontinuity of the traction, but the displacements have 

unique values at each corner node. The stress at a node on 

a corner are the average values of the stresses at the same 

geometric point. The corner is defined so that the smaller 

angle of two connecting elements is less than 150 degrees. 

With this restriction the errors from boundary discontinuity 

are negligible. For example, the circular boundary of the 

problem in Section 3.6.1 was discretized by four quadratic 

elements to avoid the corners and the corner nodes 1,9,15,23 

were defined by two traction nodes for each geometric point. 

The results shown in Tables 3-1, 3-2 are satisfactory.

As seen from the numerical results presented in the 

last section we can summarize the following advantages and 

disadvantages of the boundary element method when compared 

to the finite element method.

Advantages:

(1) Dimensionality of the problem is reduced.
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(2) Less data is required to defined the problem and 

simple interpretation of results is possible.

(3) Accuracy is better with the same (even less) number 

of nodes.

(4) Transition from coarse to fine meshes is 

simplified.

(5) Ordering of nodes and elements is not important.

(6) Problem involving infinite domains are easy to 

solve.

Di s a d v a n t a g e s :

(1) The system matrices are fully populated.

(2) The increased computational time required can not 

be offset by the reduced number of nodes when the 

ratio of surface to volume of the structure is 

large.

(3) If the problem requires a large number of internal 

points to be evaluated, the advantage of reduced 

computer time is lost.

(4) Material properties must be constant.

(5) Application for structural analysis has less 

versat i1 i t y .

(6) Not knowing where peak stress is if it occurs in 

the i nter i o r .
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CHAPTER 4

SUBSTRUCTURING ANALYSIS BY THE BOUNDARY ELEMENT METHOD

4. 1 Introduct i on

The object of this chapter is to present the elastic 

analysis of structures using the substructuring concept with 

the boundary element method. The basic idea of 

substructuring analysis by the boundary element method comes 

from the substructuring analysis by the stiffness method 

(P r z e m i e n i e c k i ,1963 and Rosen, R u b i n s t e i n , 1970). The major 

difference between these two methods is the equilibrium 

equation of the structures, so the formulation of the final 

set of simultaneous equations is different. The 

substructuring analysis essentially consists of separate 

analyses of each substructure with all generalized 

displacements on common boundaries completely constrained. 

This is followed by the relaxation of these boundaries to 

ensure equilibrium and the calculation of the substructuring 

interfaced displacements.

In the substructuring concept, the final system 

equation is derived in terms of displacements of the 

interfaced nodes for the whole structure. Naturally, the 

system equation for the substructuring analysis involves a
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considerably smaller number of unknowns compared with that 

for the complete structure without partitioning. The 

interfaced displacements are obtained first, then each 

substructure can be analyzed separately, again, under known 

interfaced displacements. This can be achieved without much 

difficulty since the substructures analyzed would be of 

relatively small size.

^.2 The Formulation of Substructuring Analysis

In the present substructuring analysis ,the total 

structure is partitioned into component s u b s t r u c t u r e s . For 

each substructure the coefficient matrices [G] and [Hl are 

calculated separately by the boundary element method. The 

substructure is characterized by noninterfaced coordinates 

and interfaced coordinates where it is connected to adjacent 

s u b s t r u c t u r e s . The system of equations for a substructure 

may be written in a partitioned matrix form as

where subscripts i and b denote noninterfaced coordinates

and interfaced coordinates, respectively.

Equation (4-1) can be transformed into a new uncoupled 

system equation by the following decomposition 

transformat i on.
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r  I

H t  > H j  # ”  1

r  I
( 4 - 2 )

The f i r s t  m a t r ix  on b o th  s id e s  o f  th e  abo ve  e q u a t io n 

can be c a n c e l le d .  T he n , E q u a t io n  ( 4 - 2 )  can be w r i t t e n  as an 

u n c o u p le d  s y s te m  e q u a t io n .

w h e re

H4t
t  = H f ,--H 4 ,-H f f - 1 H/ t  ( 4 - 4 )

and 

ru ,* - )  r i  H ^ - ' H ^  ■ Uf + Ho - ‘ H# A UHr  n H  I ĉ -s)'-0 I  J  l u fcJ L ut  J

and

6? s t f  + G jt t f c  -i
( 4 - 6 )

( Gt  ,• -  Hfc ,• Hf  ,• - 1 G,- ) t ,  + ( Gt t -  Hfc ,• H, ,• - * G,- t  ) t j

The u n c o u p le d  s y s te m  e q u a t io n  f o r  each  s u b s t r u c t u r e 

r e la t e d  t o  th e  i n t e r f a c e  is

Hl i
t ut

fc = t t
1’ ( 4 - 7 )

i . e . 

(H t t -H t ,H ,  r ^ u J u ^ t G M - H H H / r ’ G H  ) t # 

+ C G ^-H fe H,-, - 1 G, i, ) t fc ( 4 - 8 )
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In  o r d e r  t o  s e p a ra te  th e  c o e f f i c i e n t s  o f  th e  in t e r f a c e d 

t r a c t i o n  t t , E q u a t io n  ( 4 - 8 )  is  p r e m u l t i p l i e d  by 

( Gb f c -H fc >■ H,-,• ” 1 G# b  ) - 1 w h ic h  r e s u l t s  in

Au t = B t , + t t  ( 4 - 9 )

w h e re

A=(G t l -H l iH / i ' I G# 4 ) - 1 (H t t ) -H t ;H f # -> H ( J 

B ^ G t i - H ^ H n - ^ G f t J - H G i r H t f H n ' - ' G H )

The m a t r ic e s  o f  th e  abo ve  e q u a t io n s  a re  known e x c e p t  f o r  th e 

in t e r f a c e d  t r a c t i o n  t b  and th e  in t e r f a c e d  d is p la c e m e n t  ub  . 

So E q u a t io n  ( 4 - 9 )  w i l l  be used to  a s s e m b le  th e  s y s te m 

e q u a t io n  f o r  th e  c o m p le te  s t r u c t u r e .  F o r e x a m p le . E q u a t io n 

( 4 - 9 )  f o r  th e  s u b s t r u c t u r e s  k and k + 1 is  w r i t t e n  in  th e 

f o l l o w in g  fo r m s :

A ^ U t ^ B ^ t ^  + t f e ^ + t j , * - ' * * 1 ( 4 - 1 0 )

and 

A * * l  U h ' f l r x B ^ t y ^ + t t * * 1 ( 4 - 1 1 )

w h e re  t b
fc > fc^ 1 i s  th e  e x t e r n a l  t r a c t i o n  a t  th e  i n t e r f a c e . 

Summing E q u a t io n s  ( 4 - 1 0 )  and ( 4 - 1 1 )  p ro d u c e s 

A ^ U t * * A * * 1 u t
k * 1 r B ^ t / ^ + B ^ * 1 t , * * 1 

t ^ t t f e * * 1 * ^ * , * * 1 ( 4 - 1 2 )

I f  th e  above  e q u a t io n  s a t i s f i e s  th e  c o m p a t i b i l i t y  and 

e q u i l i b r i u m  c o n d i t io n s ,  u4
k = u b

k * 1 and t b
fc + t b

fc * 1 + t b
fc» k  * 1 = 

t h * , * * 1 , th e n  th e  f i n a l  s y s te m  e q u a t io n  f o r  s u b s t r u c t u r e s  k 

and k + 1 is  w r i t t e n  as

(A * + A * * 1 ) u b *  = Bf c t / * + B * * 1 t / * * 1 + t b 'f > f c * 1 ( 4 - 1 3 )

o r
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(A*+A** x ) u ?  = T ? , fc* 1 (4-14)

where T ^  / k + l  is the combination of external tractions 

acting at the interface and boundary reactions between 

substructure k and k+1.

The system equation in terms of interfaced 

displacements for the complete structure can be written as

At U t =T t (4-15)

The displacement vector Ut is expanded into a column 

substructure displacement vector ufc
k , in the order in which 

they appear in each substructure. Where Afc,T fc are obtained 

by placing the submatrices Ak  and T t
k > k * x of each 

substructure respectively in their correct positions 

corresponding to Ufc and summing all the overlapping terms 

with the elimination of a sufficient number of displacements 

to restrain rigid body degrees of freedom for the complete 

structure. Therefore the unknown interfaced displacement Ut 

can be calculated. When the substructure stiffness matrices 

Ak are assembled into the larger stiffness matrix A^ for the 

complete structure, their relative positions in this larger 

matrix depend on the sequence in which the individual 

boundary displacements are selected in Equation (4-9). 

Since some of the substructures will not be physically 

connected, this means that their coupling stiffness matrices 

will be equal to zero. As the coupling matrices occur only 

on substructures which have common boundaries; it is 

therefore advantageous, when selecting numbering systems for
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substructures and displacements, to ensure that the 

component submatrices of A* would occur arround the 

principal diagonal matrix.

Once the interfaced displacements ut of each

substructure are computed, the interfaced tractions t^ of 

each substructure are calculated by Equation (4-9), that is 

t^Au^-Bt,- (4-16)

The noninterfaced displacements u, are derived from Equation 

(4-3) in the following form

u ^ H , - , - 1 (G,-,-tz + G ^ t ^  + H ^ u ^ )  (4-17)

Having determined the boundary displacements and tractions 

for each substructure, the interior stresses and 

displacements can be calculated independently for each 

substructure.

4.3 Description of the Computer Program 

Using Substructuring Analysis

The computer program for the substructuring analysis 

has been developed in terms of the mathematical formulation 

introduced above. The basic procedure used in the program 

i s :

(1) Generation of input data to define the geometry of 

the boundary elements for each substructure.

- 49 -



(2) Integration of kernel shape function products to 

generate the system matrices for each s u b s t r u c t u r e .

(3) Rearrangement of the system equation to get a new 

equation in terms of interfaced displacements,

(4) Solution of the assembly equation of the complete 

structure to get interfaced displacements.

(5) Calculation of interfaced tractions and interior 

information by obtaining interfaced displacements.

A brief flow diagram of the computer program is shown 

in Figure 4-1. The main program SUBBEM calls subroutine 

GAUSS, XINPU, XBEMAT, XFGBI, XSYSEQ, XSOL, XBSD and XBIPT. 

Subroutine GAUSS forms the weights and integration points of 

Gaussian formulae. Subroutine XINPUT reads the data 

defining the geometry, boundary conditions and material 

properties of each s u b s t r u c t u r e .

Subroutine XBEMAT sets up the coordinates of the 

boundary nodes for point collocation and calls subroutine 

DINTEG to calculate the G and H matrices for each 

substructure. Subroutine DINTEG and SINTEG have the same 

functions as described in the last chapter. Subroutine 

XFGBI partitions the system equation for each s u b s t r u c t u r e . 

Subroutine XSYSEQ forms Equation (4-9) for each 

substructure. Subroutine XSOL assembles the final system 

equation for the complete structure and calculates 

interfaced displacements and tractions for each 

substructure. Subroutine XBSD transforms the boundary
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SUBBEM

STOP

Figure 4-1 Brief Flow Diagram of the Substructuring

Analysis by the Boundary Element Method
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traction to boundary stresses and calculates interior

information for each substructure.

4.4 Numerical Examples

Three examples have been chosen to test the SUBBEM program 

and confirm the mathematical formulation. The numerical 

results from the substructuring analysis are compared to the 

solutions of whole structural analysis by the boundary 

element method and the finite element method. The examples 

a r e :

(1) A two-dimensional beam which has different 

materials in zones under axial load.

(2) Bending of a two-dimensional beam under uniform 

load.

(3) Bending of a three-dimensional cantilever beam 

under end load.

4.4.1 A Two-dimensional Beam Which Has Different Materials 

in Zones under Axial Load.

The geometry and loading of the problem are shown in 

figure 4-2. The material properties of the beam are

different in each zone. Sections 1 and 3 have the same

material properties with elastic modulus E = 3 . 0 x l 0 7 psi. The
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elastic modulus of substructure 2 is l.OxlO 7 psi. The

Poisson ratio is assumed to be zero in all regions.

The problem was divided into three substructures 

matching the three different regions. The boundary of each 

substructure was discretized by using 6 isoparametric 

quadratic boundary elements (Figure 4-3). The whole beam 

was discretized by 6 isoparametric 8-node quadratic finite 

elements (Figure 4-4).

The conventional boundary element method could not be 

used to solved the problem because of the different material 

properties in zones. The solutions of the substructuring 

analysis by the boundary element method produced the correct 

answer as did the finite element solution (Table 4-1). As 

seen from Figure 4-3, the substructuring analysis has the 

capability of solving the zoned body problems and providing 

additional interior information as compared to the 

conventional boundary element method.

It was assumed that there was a uniform load, q=l 

(Ib/in) acting on the cross-section x=2 (in) in the positive 

x— di recti on. The solution for the problem using the 

substructuring analysis were found to be correct (Table 

4-2). This means that the substructuring analysis by the 

boundary element method can solve the problem with a load 

applied in the domain.

4.4.2 Bending of a Two-dimensional Beam under Uniform Load.
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q = 1 Ib/i n

Figure A - 2 A Two-dimensional Beam Which Has Different

Materials in Zones under Axial Load

Figure 4-3 Substructuring Model of the Beam

Figure 4-4 The Finite Element Model of the Beam
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a Z o n e d  B e a m  u n d e r  U n i f o r m  T e n s i o n

T a b l e  4-1 C o m p a r i s o n  of D e f l e c t i o n s  a n d  S t r e s s e s  for

m e t h o d
at p o i n t  (1,1) at p o i n t  ( 2 . 5 , 1 )

Oxx psi u x  x 1 0 “ 7 i n Vxx psi u x  x 1 0 " 7 i n

e x a c t  s o l u t i o n * 
S U B B E M 
F E M

1 . 0 0 0 0 0
1 . 0 0 0 0 0
1 . 0 0 0 0 0

0 . 3 3 3 3
0 . 3 3 3 3
0 . 3 3 3 3

1 . 0 0 0 0 0
1 . 0 0 0 0 0
1 . 0 0 0 0 0

1 . 5 0 0 0
1 . 5 0 0 0
1 . 5 0 0 0

* B e e r  a n d  J o h n s t o n  1981

T a b l e  4 - 2  C o m p a r i s o n  of D e f l e c t i o n s  a n d  S t r e s s e s  for 

a Z o n e d  B e a m  u n d e r  U n i f o r m  T e n s i o n  a n d 

I n t e r i o r  L o a d i n g

m e t h o d
at p o i n t  ( 1,1) at p o i n t  ( 2 . 5 , 1 )

^xx Psi u x  x 1 0 “ 7 i n ffxx psi u x x 1 0 " 7 i n

e x a c t  s o l u t i o n * 2 . 0 0 0 0 0 0 . 6 6 6 7 1 . 0 0 0 0 0 2 . 8 3 3 3
S U B B E M 2 . 0 0 0 0 0 0 . 6 6 6 7 1 . 0 0 0 0 0 2 . 8 3 3 3
FE M 2 . 0 0 0 0 0 0 . 6 6 6 7 1 . 0 0 0 0 0 2 . 8 3 3 3

* B e e r  a n d  J o h n s t o n  1981
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The uniformly loaded beam has the same dimensions and 

boundary conditions as those in the problem discussed in 

Section 3.6.2 . The beam was divided into 3 substructures 

for this analysis. The boundary of each substructure was 

discretized using 8 isoparametric quadratic elements 

(Figure 4-5) and 16 isoparametric quadratic elements (Figure 

4-6) .

Comparison of the stress and displacement at point A 

calculated by using substructuring analysis with that 

obtained from the conventional boundary element method is 

shown in Table 4-3 . The results show close agreement 

between these two methods. The substructuring analysis 

reduces the computational time as the number of nodes 

increases. Moreover, if the dimensions and loading of 

substructure 3 change , we d o n ’t have to recalculate the 

coefficient matrices for the other two substructures during 

the reanalysis of the problem which can save two-thirds of 

the computer time. This is an important point in the 

following structural shape optimization.

4.4.3 Bending of a Three-dimensional Catilever Beam under

End Load.

The beam has the same dimensions and boundary 

conditions as those in the problem discussed in Section 

3.6.3 . Three analyses have been carried out using the 

boundary element method. The whole structural analysis of
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Figure 4-5 Eight Elements on Each Substructure for 

a Simply Supported Beam

Figure 4-6 sixteen Elements on Each Substructure for

a Simply Supported Beam

Table 4-3 Comparison of Deflection , Stress and Computer 

Time for a Simply Supported Beam under Uniform 

Load

method
log i tud i n a 1 
stress

^ x x  P s i

vertical 
def lect i on 
u y x 10“ 6 i n

CPU 
time 
(sec )

exact solution* 6. 95 . 508 —
BEM (16 ele. ) 7. 01 . 503 6. 50
BEM (32 ele. ) 6.957 . 505 32.43
SUBBEM (24 e l e . ) 7.013 . 502 7. 70
SUBBEM (48 e l e . ) 6. 933 . 504 26. 64

* Timoshenko and Goodier 1970
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the problem is modeled by 18 isoparametric quadratic 

q u a d r a l a t e r a 1 elements (Figure 4-7). In substructural 

analysis, the beam was divided into two and three 

substructures as shown in Figures 4-8 and 4-9 respectively. 

In Figure 4-8, the boundary of each substructure was 

dicretized using 10 isoparametric quadratic quadra latera 1 

elements. In Figure 4-9, the boundary of each substructure 

was discretized using 6 isoparametric quadratic 

quadra lateral elements.

Table 4-4 shows the results of the different analyses. 

The substructural method not only reduced the computational 

time but also improved the solution accuracy over that 

obtained without the subdivision.

4.5 Conclusion

The computer program for substructuring analysis by the 

boundary element method has been developed using 

isoparametric quadratic line and quadra latera 1 boundary 

elements. The results for practical problems of two- and 

three-dimensional elasticity have been successfully solved. 

As seen from the numerical examples of the last section we 

can summarize the following advantages and disadvantages of 

substructuring analysis as opposed to whole structural 

analysis.

Advantages:
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Figure 4-7 Eighteen Elements on a Whole Beam

Figure 4-8 Ten Elements on Each Substructure of a

Three-dimensional Beam

Figure 4-9 Six Elements on Each Substructure of a

Three-dimensional Beam
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Table 4-4 Comparison of Deflection and Stress for 

a Cantilever Beam under End Load

method
deflection uy 
at free end 

(in)

stress ax x 
at y=2 in , 
x= 2 in (psi)

CPU 
t i me 
(sec)

exact solution* -7.616x10-* 6. 000 —
BEM (18 ele. ) -7.469x10-* 6.110 105. 4
SUBBEM(2 subs. ) -7.645x10-* 6.111 97. 0
SUBBEM(3 subs. ) -7.589x10"* 6. 096 59. 2

* Brebbia 1982
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(1) Reduced computer time and i mproved solution

accuracy.

(2) The problem having different material properties in 

different zones can be solved.

(3) Loading not on the boundary can be applied

(4) The final system equation can be formulated once. 

Only slight changes in the coefficient matrix are 

necessary for the portion of the modified 

substructures during the optimization process.

D i s a d v a n t a g e s :

(1) More input data and more set up time is required.

- 61 -



CHAPTER 5 

COMBINING THE BOUNDARY ELEMENT METHOD 

WITH OPTIMIZATION

5.1 Introduct i on

Shape optimization problems seek the best boundary 

layout of structures or structural elements. The boundary 

element method provides the capability and advantages of 

modeling the varied shape of the boundaries during the 

optimization process. Because the boundary element method 

only models the boundary, it is possible to obtain a good 

representation of the boundary. Also, the shape of the 

boundary may easily be coupled with a general shape 

funct i on.

In the papers concerned with shape optimization, the 

design variables have often been the nodal coordinates of 

the finite element model. Such a choice exhibits many 

severe drawbacks which are: a large number of design 

variables, poor boundary representation, and the difficulty 

of maintaining an adequate finite element mesh during the 

optimization process. Imam 1982, and Braibant and Fleury 

1984 introduce a shape function to represent the boundary 

and consider independent shape variables as the design
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variables. The design variables have been reduced* but the 

difficulty of the finite element mesh refinement is still 

present. In this chapter, the region of structure that is 

to be modified during the optimization process is defined by 

one or more design patches which contain a portion of the 

boundary elements. The shape of the design patch is 

generated by a Bezier or B-spline technique and discretized 

by the boundary element mesh.

5.2 Method of Optimization

Mathematically, the structural optimization problem can

be stated as 

minimize f(x); Y= I Xi , x2 , x 3 , ...... x N 1 e R (5-1)

subject to ^ ( D ^ O  k = 1, 2, 3, . . . .K (5-2)

^ ( D s O  1=1, 2, 3, . . . . L (5-3)

where

7 = a column vector of design variables.

N = total number of design variables.

f(x) = the design criteria or objective function.

5^(7) = K inequality constraint functions. These

functions delimit regions in the design space.

4^(7) = L equality constraint functions. These

functions vastly reduce the number of candidate
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designs. because they require specific

combinations of the design variables.

The main goal of designing efficient structures, has 

been to minimize weight as the objective function. Other 

quantities, such as deflection, stiffness, energy, stress 

concentration and actual cost, have also been used as 

objective functions.

Design variables may be cross-sectional variables or 

other parameters which describe the structural configuration 

and the material properties. In shape optimization, the 

configuration parameters are nodal coordinates or control 

nodes of the shape function.

Constraints are generally restrictions that must be 

satisfied for the design to be acceptable or feasible. 

Constraints may be of two types. Equality constraints are 

mostly behavioral constraints such as equilibrium, 

compatibility, and constitutive relations. Inequality 

constraints usually represent limitations imposed on the 

stresses, deflections, etc. A particular kind of inequality 

constraint is a side constraint or bound which imposes a 

direct limit on the range of variation of a design variable.

In general, for structural shape optimization problems 

only certain explicit constraints are simple linear 

functions of the design variables, and both the objective 

function and implicit constraints (usually concerned with 

stresses and/or displacements in the structure) are 

dependent in a nonlinear manner on the design variables.
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The solution of such nonlinear structural optimization 

problems requires a special mathematical programming 

algorithm. The optimization code OPT has been used for 

solving the optimization problem. OPT is a program 

employing the generalized reduced gradient technique and was 

developed by Gabriele and Ragsdell 1976. The generalized 

reduced gradient method is introduced as following from 

Gabriele and Ragsdell 1976.

With no loss of generality, the optimization problem 

(equation 5-1 through 5-3) can be transformed into the 

following form which is handled by the reduced gradient 

m e t h o d .

Minimize f(x); x = [xi,x 2 ,x 3 , ..... x N ]T c  ^  (5-4)

Subject to * m (x)=0 m=l, 2, 3, . . . . M (5-5)

A<x<B (5-6)

The Nxl vectors A and B represent the upper and lower 

bounds on the design variables. The inequality constraints 

of (5-2) are included as equality constraints by using the 

following transformation,

^  ( x ) = 5k ( x )-Sk = 0 (5-7)

0<S k <«> k=l, 2, 3, . . . . , K

The variables S^ are nonnegative slack variables included in 

the original set of design variables. Hence, N now 

represents the total number of design variables plus the 

number of slack variables included to transform the 

inequality constraints. The parameter M represents the 

total number of constraints, equality and inequality. The
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constraints considered in (5-5) include only functional

constraints, variables bounds are contained in (5-6) and are 

handled separately.

Consider the following strategy. Divide the design

vector X into two classes, (1) decision variables. and (2)

state variables,

x = IE, 71T

z = [ Zx , z 2 , z 3 ........ z g IT ; decision variables

(5-8)

(5-9)

y = I y i » y 2 > yj ........ yMn 1 ; state variables (5-10)

Q = N-M (5-11)

The decision variables are independent, and the state 

variables are slaves to the decision variables used only to 

satisfy the constraints.

Let us examine the first variation of f(x) and ^(x"),

df = g(z)T dz + g ( y )T dy (5-12)

at at
d¥ = —  dZ + — 

az ay
dy = 0 (5-13)

where

dz = Qxl vector of differential displacements of z,

dy* = Mxl vector of differential displacements of y,

g(z) = Qxl vector of gradients of the objective

function with respect to Z

g(y) = Qxl vector of gradients of the objective

function with respect to y

3^/az = MxQ matrix of gradients of the constraints with 

rspect to z
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at/ay = MxM matrix of gradients of the constraints

with rspect to y"

Solving (5-13) for dy yields* 

a ? * 1 a^ 
dy = - —  — - dz (5-14)

ay az

Substituting (5-14) into (5-12) and rearranging will 

yield the following linear approximation to the reduced 

gradient

T T T a f 1 a^
gr (x) = gCz) - g(y) —  —  (5-15)

ay" a?

The generalized reduced gradient is the rate of change 

of the objective function with respect to the decision 

variables with the state variables adjusted to maintain 

feasibility. The word "generalized" is included to 

underscore the presence of nonlinear constraints. When the 

constraints are linear the state variable adjustment is 

significantly simplified. Geometrically the reduced

gradient can be described as a projection of the original N 

dimensional gradient onto the Q dimensional feasible region 

described by the decision variables. Hence the reduced 

gradient can be used in the same manner as a conventional 

gradient algorithm to search for a minimum.of f(x") in the 

reduced space. The state variables are adjusted during the 

course of the search to maintain feasibility.

From the discussion above* it is easy to see that an 

advantage of using the generalized reduced gradient method 

for constrained problems is the use of state variables to
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satisfy the constraints. To submit a problem to OPT the 

user must supply three basic elements, (1) a function 

subprogram defining the objective function, (2) a subroutine 

defining the constraints, and (3) a calling program. In 

this shape optimization, the design objective is to minimize 

the weight or the peak stress of a structural component, 

subject to geometry, displacement and stress constraints. 

The B-spline or Bezier method is introduced to describe the 

shape of the design. The control points on these curves are 

the design variables. The detailed optimization process is 

discussed in section 5.4 .

5.3 Selection of Shape-Design Function

The shape-design functions of the modified boundary are 

selected by using the blending functions of the Bezier or 

the B-spline technique. The shape of the design patch is 

determined by the locations of control points and the 

blending functions. The design patch may include several 

boundary elements. Therefore the design variables are no 

longer the position of the nodes of the boundary elements, 

but the points which control the shape of the design patch.

The characteristics of the Bezier methods and the 

B-spline methods are briefly shown as follows:

Bezier methods:

The mathematical form of the Bezier curves are
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n 
P(u)= E p,-B# ,„(u) (5-16)

3 = 0 

where B,-,„(u) is a blending function

B,-.„(u) = C(n, i ) u ’ (1 - u )"" f

C(n,i) is the binomial coefficient

C ( n , i ) = N ’/ ( i !( n - i )') 

p,- is the location of the control point 

u is the influence parameter 0<u<l

Figure 5-1 shows an example of a planar Bezier curve.

The curve shown uses five control points. The formulation 

of the Bezier curve extends easily to describe 

three-dimensional surfaces by generating the cartesian 

product of two curves. Two similar blending functions are 

used, one for each parameter: 

n m
P(u,v)= E E p,-, jB# . „ (u)Bj, „ (v) (5-17)

i=0 j=0

B-spline methods

The mathematical form of the B-spline curve is 

n 
P(u)= E p#N#, fc(u) (5-18)

’ = 0 .

where N,-,fc(u) is the B-spline blending function of 

degree k - 1 which may be defined recursively 

as fol l o w s :

N # . i (u) = l if t,<u<t# + 1

0 otherwise
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Figure 5-1 A Bezier Curve and the Five Control

Points Used to Define It

1st order 
d order 
3rd order 

4th order

Figure 5-2 Several B-s p l i n ‘e Curves Derived From

Five Control Points. Each of the Four 

Curves has a Different Order.
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(u-t,- )N,- . k -i (u) (t,-♦fc- u ) N # ♦ ! , k - l ( u )
N # . * ( u ) = ---------------------- + ----------------------------- ( 5 - 1 9 )

t / ♦ £ - ! “ £/ t f + * - t / * i

K n o t  v a l u e s  t ar e  c h o s e n  w i t h  th e  f o l l o w i n g  rule: 

t ,- = 0 i f i < k

= i- k+ 1 if k< i < n 

= n - k + 2  if i>n

T h e  p a r a m e t e r  u v a r i e s  f r o m  0 to n - k + 2

F i g u r e  5-2 s h o w s  an e x a m p l e  B - s p l i n e  c u r v e  in t h e 

p l a n e .  T h e  B - s p l i n e  c u r v e s  w e r e  d e r i v e d  f r o m  f i v e  c o n t r o l 

p o i n t s .  E a c h  of t h e  t h r e e  c u r v e s  has a d i f f e r e n t  o r d e r . 

B - s p l i n e s  e x t e n d  to d e s c r i b e  s u r f a c e s  by t h e  s a m e  c a r t i s i a n 

p r o d u c t  m e t h o d  u s e d  w i t h  B e z i e r  c u r v e s :

n m
P ( u , v )  = £ E P / , j N # ,f c( u ) N j , 2 ( v) ( 5 - 2 0 )

i=0 j=0

T h e  B - s p l i n e s  h a v e  t h e  s a m e  c h a r a c t e r i s t i c s  as t h e 

B e z i e r  c u r v e s :  the c o n t r o l  p o i n t s  a f f e c t  c u r v e  s h a p e  in a 

n a t u r a l  w a y  a n d  t h e  c u r v e  is v a r i a t i o n  d i m i n i s h i n g , 

a x i s - i n d e p e n d e n t  and m u l t i v a l u e d .  Th e  m a i n  a d v a n t a g e s  of 

t h e  B - s p l i n e s  a r e  f i r s t  t h a t  l o c a l  c o n t r o l  of t h e  c u r v e 

s h a p e  c a n  be a c h i e v e d  by u s i n g  a set of b l e n d i n g  f u n c t i o n 

t h a t  h a v e  l o c a l  s u p p o r t  o nly, an d  s e c o n d  t h a t  a d d i t i o n a l 

c o n t r o l  p o i n t s  c a n  be i n t r o d u c e d  w i t h o u t  i n c r e a s i n g  t h e 

d e g r e e  of t h e  c u r v e .  B - s p l i n e s  o f f e r  m o r e  p a r a m e t e r s  to the 

d e s i g n e r  t h a n  B e z i e r  c u r v e s :  th e  d e g r e e  c a n  be s e l e c t e d ,  as 

w e l l  as t h e  m u l t i p l i c i t i e s  of c o n t r o l  p o i n t s  or k n o t s .
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The formulation of Bezier and B— spli ne methods is 

easily extended to the generation of a modified shape. Once 

the new shape has been created, the boundary element mesh 

may be updated and the stresses and displacements on the 

boundary and/or selected interior points may be calculated.

5.^ The Process of Optimization

The region of the structure that is to be modified 

during the optimization process is defined by one or more 

design patches which contain a portion of the boundary 

elements. The curve of the design patch is generated by a 

B— spli ne curve. The change in geometry within a boundary 

element in the design patch for two-dimensional problems is 

described by the following equation.

x ’ i  r x i  rA x i  1 r x n  J r v * j
= + E N,-^)] + E Bj, k (u)j

y ’ J L y J L^yJ j = l Ly* J j = 0 LV y j .
(5-21)

where 

x,y are initial coordinates in direction x,y 

respect i v e l y .

x ' , y ’ are the updated coordinates. 

x>>y> are the i th nodal coordinate of each boundary

element.

J+l is total number of control points.

I is total number of nodes per element.
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N# are the corresponding shape functions described 

earlier.

77 is the local coordinate of each element, 

u is the influence parameter.

Bj , * is a blending function of B-spline or Bezier curve 

» subscript k is the order of continuity of the 

c u r v e .

The relation

J r ^ x J ]
= E Bj, k (u)| > (5-22)

j=0 LV y J J

forms the mathematical expression for the changes in the 

design patch geometry. Ax and Ay are defined by the n + 1 

blending functions B j ,^ whose coefficients are the 

variations vx j and vy j of the n + 1 vertices of the design 

patch which are taken as design variables. The variations 

of design variables v x j and vy j are represented in 

directions x and y respectively. Once the new shape has 

been created* the boundary element mesh may be updated and 

the stresses and displacements on the boundary and/or 

selected interior points may be calculated by the boundary 

element method.

The change of geometry within a boundary element in the 

design patch for a three-dimensional problem is described by 

the following equation.
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J M
+ E E 

j= 0  m=0

r ^ n

B j , ^ ( U x )Bw .i ( Uy ) S Vyj (5-23)

The stresses and displacements are calculated for every 

new design shape by the full boundary element method and the 

gradients of the stress and displacement are evaluated by 

the finite difference technique using the results of the 

boundary element method.

Separate analyses for each design variable vj for the 

approximation of acr/Zavj, auy/avj by a finite difference 

expression is an obvious possibility for computing 

gradients, but such an operation would require J+l complete 

analyses at each iteration. This can be avoided by 

differentiating the system equation (Equation 3-15) with 

respect to vj obtaining 

a 
---- ([F]{u}-[G]{t} ) = 0 j=l, 2 ......... n (5-24) 
a v j

3 1 F 1 rd U "I d-[ G 1 rdt n
ie. ----- { u } + [ F B ---- [------ {t}-IGJ ---- 1 = 0

dM J '-dVj-’ dVj '■JVjJ

where 

IF] and [G] are calculated from the first analysis of 

the problem.

{u} and {t} are known values from solutions of Equation 

(3-12).
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alFJ/avj and a[G]/avj are calculated by the finite 

difference method due to the variation of vj

n is the total number of design variables.

Equation (5-10) can be written in the following form in 

terms of unknown displacement gradients a{u}/avj and 

traction gradients a{t}/avj.

r * { u h

[ A H  = 
3{t}

a[Gl 
-----{tl +
dVJ

alF]
----- {u} = {f}j 
a v j

j  = 1 , 2 . .  . n (5-25)

The problem has thus been reduced to solving Equation (5-7) 

with J right hand sides, {fJi,{f} 2 , .....  {f}„, which will

consume only a fraction of the computer time needed for the 

method mentioned previously. Once the traction gradient 

with respect to the design variables vj is obtained, this 

information is used at the element level to calculate the 

stress gradient with respect to vj. The calculation of the 

boundary stress gradient is similar to the calculation of 

the boundary stress (Equation 3-15 to 3-17).

A brief flow chart of the process of optimization is 

illustrated in Figure 5-3. The main program MAIN 

initializes the program parameters and calls subroutine OPT 

and INPUT. Subroutine INPUT reads the data relating the 

geometry, boundary conditions, and material properties for 

the boundary element model. Subroutine OPT operates the 

process of optimization and calls the objective function
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MAIN

Figure 5-3 A Brief Flow Chart of the Optimization Process
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F(x) and the constraint subroutine, CONST. Funct ion F (x )

calls subroutine SHAPE and/or BEM and also evaluates the 

value of the objective function. Subroutine CONST calls 

subroutine SHAPE and BEM, while evaluating the values of the 

constraints. Subroutine SHAPE forms new coordinates by the 

Bezier or B— spline method due to the change of design 

variables. Subroutine BEM solves the problem by the 

boundary element method. The OUTPUT shows the minimum value 

of the objective function and optimum design shape.

5.5 Applications of the Boundary Element Method

for Structural Shape Optimization

Six examples were used for testing the optimization 

p r o c e d u r e :

(1) A square plate with a square hole under uniform 

tension.

(2) A thick wall pipe under internal pressure.

(3) Optimal shape design of a two-dimensional fillet.

(4) Optimal shape design of a ladle hook.

(5) Optimal tapering of a cantilever beam.

(6) Optimal shape design of a t h r e e - d i m e n s i o n a 1 fillet.

5.5.1 A Square Plate With a Square Hole under Uniform 

Tension.
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The i n i t i a l  g e o m e t r y  and  lo a d in g  f o r  t h e  p ro b le m  i s 

i l l u s t r a t e d  in  F ig u r e  5 - 4 .  The c o r n e r  o f  t h e  h o le  w i l l  le a d 

t o  l a r g e  l o c a l  s t r e s s e s .  The d e s ig n  o b j e c t i v e  i s  t o  f i n d 

t h e  o p t im u m  s h a p e  o f  t h e  h o le  w h ic h  h as  t h e  m in im u m  p e a k 

s t r e s s  on t h e  b o u n d a ry  f o r  s p e c i f i e d  d im e n s io n s  o f  t h e  h o le 

and  lo a d in g .  S t r e s s  c o n s t r a i n t s  a re  im p o s e d  w h ic h  r e q u i r e 

th e  s t r e s s  a lo n g  th e  h o le  be le s s  th a n  th e  p e a k  s t r e s s .

I n  t h e  q u a r t e r  p o r t i o n  o f  t h e  p l a t e  ( F ig u r e  5 - 5 ) ,  t h e 

r e g io n  i s  m o d e le d  b y  16 q u a d r a t i c  b o u n d a ry  e le m e n ts .  Edge 

AB i s  c o n s id e r e d  as a d e s ig n  p a t c h  w h ic h  c o n t a in s  4 e le m e n ts 

(9  n o d e s ) .  The c u r v e  o f  t h e  d e s ig n  p a t c h  i s  r e p r e s e n t e d  b y 

a 4 th  o r d e r  B e z ie r  c u r v e  o r  B - s p l i n e  w h ic h  h as  5 c o n t r o l 

p o i n t s .  I n  t h i s  e x a m p le ,  a l l  c o n t r o l  p o i n t s  a re  n o t 

r e q u i r e d  t o  be d e s ig n  v a r i a b l e s ,  as  t h e y  d e p e n d  on t h e 

f o l l o w i n g  c a s e s  f o r  t h e  d e s ig n  c o n d i t i o n .

Now t h e  o p t i m i z a t i o n  p r o b le m  ca n  be f o r m u la t e d  as 

f o l l o w s :

M in im iz e  a M O  x

I  d f f j
S u b je c t  t o  (crM a x - t f f j +  E ------  S v r- ) ) /< rm a x ^0  j  = l , 2 . . . n

i = l  av,- ( 5 - 2 6 )

and  c ,• > v ,- > d ,-

w h e re

a M a x  i s  t h e  p e a k  s t r e s s  a t  p o i n t  1 o r  5

s j  a r e  s t r e s s e s  a t  t h e  j t h  n o d e  o f  t h e  b o u n d a ry  e le m e n t 

in  t h e  d e s ig n  p a tc h

v,- a r e  v a r i a t i o n s  o f  t h e  d e s ig n  v a r i a b l e s .

n=9  i s  t h e  t o t a l  n u m b e r o f  n o d e s  in  t h e  d e s ig n  p a t c h .
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m u  t t ^ 2 I l l i u m

^2

*-----  10 0 mm ----- ►
a = 10 mm, b = 10 mm

Figure 5-4 A Square Plate With a Square Hole

under Uniform Tension

Figure 5-5 Boundary Element Mesh of the Quarter

Portion of the Plate
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I  i s  t h e  t o t a l  n u m b e r o f  t h e  d e s ig n  v a r i a b l e s . 

C f , d ;  a re  t h e  move l i m i t s  im p o s e d  on t h e  d e s ig n 

v a r i a b l e s .

T h e re  a r e  t h r e e  s e t s  o f  d e s ig n  c o n d i t i o n s  b a s e d  on d i f f e r e n t 

s p e c i f i e d  d im e n s io n s  and  l o a d in g s .

c a s e d ) :  C o n t r o l  p o i n t s  1 and  5 a re  f i x e d  (a = 1 0  mm, b = 10 

mm). C o n t r o l  p o i n t s  2 ,3  and  4 a re  d e s ig n  c o n t r o l 

p o i n t s ,  so  t h e r e  a re  s i x  d e s ig n  v a r i a b l e s  ( x and  y 

p o s i t i o n  o f  e a c h  c o n t r o l  p o i n t ) .  The lo a d in g s  f o r

t h e  p ro b le m  a re  <ri = f f2 = 120 N/mm 2 . The f i n a l  r e s u l t s 

g iv e  a p e a k  s t r e s s  o f  2 ^ 8 .8 7  N/mm2 . The o p t im u m 

s h a p e  o f  t h e  h o le  ( F ig u r e  5 - 6 )  i s  a c i r c l e .

c a s e ( 2 ) :  C o n t r o l  p o i n t  1 ca n  be m oved a lo n g  t h e  y - d i r e c t i o n 

( i . e .  9 mm<b<30 mm). C o n t r o l  p o i n t  5 ca n  be m oved

a lo n g  th e  x - d i r e c t i o n  ( i . e .  9 mm < a< 30 mm). T h us 

t h e r e  i s  a t o t a l  o f  e i g h t  d e s ig n  v a r i a b l e s .  The 

lo a d in g  f o r  t h e  p r o b le m  i s  t h e  same as f o r  c a s e 

( 1 ) .  The f i n a l  r e s u l t  p ro d u c e s  a p e a k  s t r e s s  o f 

2 ^ 7 .6 3  N/mm2 . The o p t im u m  s h a p e  o f  t h e  h o le 

( F ig u r e  5 - 7 )  i s  a lm o s t  a c i r c l e .  The r a d iu s  o f  t h e 

c i r c l e  i s  c lo s e  t o  9 mm ( a = 9 .0 5  mm, b = 9 .0 3  mm) 

w h ic h  i s  th e  s m a l le s t  d ia m e t e r  p o s s i b l e .  The

s m a l le s t  h o le  in  t h e  p l a t e  h a s  t h e  lo w e s t  p e a k 

s t r e s s .

c a s e ( 3 ) :  C o n t r o l  p o i n t  1 c a n  be m oved a lo n g  t h e  y - d i r e c t i o n 

( i . e .  5 mm<b<30 mm). C o n t r o l  p o i n t  5 ca n  be m oved

a lo n g  th e  x - d i r e c t i o n  ( i . e .  5 mm<a<30 mm). The
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Figure 5-6 Optimum Shape of the Hole for Case 1

Figure 5-7 Optimum Shape of the Hole for Case 2
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design variables for the problem are the same as 

for case (2). The loading of the problem is ^ ^ 1 2 0 

N / m m 2 and o-2 = 60 N / m m 2 . The final result for the 

peak stress is 183.62 N / m m 2 . The optimum shape of 

the hole (Figure 5-8) is an ellipse (where a=10.28 

mm, b= 5 m m ) .

The optimum shape has now been found, based on the 

assumption that the minimum peak stress in the plate is a 

constant tangential stress at the edge of the hole. The 

optimum shapes have been compared with the analytical shape 

in Figures 5-6 to 5-8. The numerical results for the peak 

stress and for the dimension of the hole are shown in Table 

5-1. Both the peak stress and the optimum shape are very 

close to the analytical solution.

5.5.2 A Thick Nall Pipe under Internal Pressure

C a s e d ) :

Figure 5-9 shows the initial cross-sectional geometry 

and loading for the problem. The design objective is to 

find the optimum shape of the outside boundary which has the 

minimum peak stress at the outside boundary, subject to a 

stress constraint on the inside boundary. One quarter of 

the section (Figure 5-10) has been modeled by 14 quadratic 

boundary elements. Edge AB is considered as a design patch 

which contains 4 elements (9 nodes). The curve of the 

design patch is represented by a 3rd order Bezier curve
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Figure 5-8 Optimum Shape of the Hole for Case 3

Table 5-1 Comparison of the Numerical Results

With Analytical Solutions (K=am ^ x /ai is

Stress Concentration Factor)

numer i c a 1 
results

analytical results* 
for infinite plate

case ^ 2  z < n b/a K b/a K shape of hole

case 1 1 1. 000 2. 074 1. 0 2. 0 c i rcular
case 2 1 0. 998 2. 064 1. 0 2. 0 ci r c u 1 ar
case 3 0. 5 0.486 1. 530 0. 5 1. 5 ellipse

* Timoshenko and Goodier 1970
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a = 10 in 
b= 30 in
E = l . x ! 0 ‘ psi
v=0. 3 
P/ = 1 000 psi

Figure 5-9 A Thick Wall Pipe under Internal

Pressure for Case 1

D B

x is control point

Figure 5-10 The Boundary Element Mesh for the

Quarter Portion of the Pipe (Case 1)
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w h ic h  h a s  4 c o n t r o l  p o i n t s .  P o in t s  1 and  2 a re  f i x e d . 

P o in t s  2 and  3 a re  a c t i v e  c o n t r o l  p o i n t s .  So th e  r e s u l t i n g 

o p t i m i z a t i o n  p ro b le m  h as  f o u r  d e s ig n  v a r i a b l e s .

The f o r m u l a t i o n  o f  t h e  o p t i m i z a t i o n  p ro b le m  i s  s i m i l a r 

t o  E x a m p le  5 . 5 . 1

M in im iz e  a e

I  a c j
S u b je c t  t o  (o ’o “ (o ’j+  E ------  ^ V y ) ) / a o 20 j = l , 2 . . . n

i = l  av,- ( 5 - 2 7 )

and  c y > v y > d y

w h e re

a e  i s  t h e  m axim um  s t r e s s  on t h e  e d g e  AB

oro = 1 2 5 0  p s i  i n s id e  t a n g e n t i a l  s t r e s s  o f  t h e  t h i c k  w a l l 

c y l i n d e r  ( i n s i d e  d ia m e t e r  2 a = 2 0  i n ,  o u t s id e  d ia m e t e r 

2 b = 6 0  i n )

vy a r e  t h e  v a r i a t i o n s  o f  t h e  d e s ig n  v a r i a b l e s

a j  a r e  t h e  s t r e s s e s  a t  t h e  j t h  n o d e  o f  t h e  b o u n d a ry 

e le m e n t  a t  e d g e  CD

I  i s  th e  t o t a l  n u m b e r o f  d e s ig n  v a r i a b l e s .

n=9 i s  t h e  t o t a l  n u m b e r o f  n o d e s  in  t h e  d e s ig n  p a tc h 

cy and  dy a re  th e  move l i m i t s  on t h e  d e s ig n  v a r i a b l e s 

The n u m e r ic a l  r e s u l t s  p ro d u c e  a p e a k  s t r e s s  o f  a e = 2 4 6 .6 

p s i  w h ic h  i s  c lo s e  t o  t h e  e x a c t  v a lu e  (2 5 0  p s i )  f o r  t h e 

c y l i n d e r .  The o p tim u m  s h a p e  a lm o s t  m a tc h e s  th e  e x a c t  s h a p e 

( F ig u r e  5 - 1 1 )  f o r  t h e  t h i c k  c y l i n d e r  w h ic h  h as  c o n s t a n t 

t a n g e n t i a l  s t r e s s  a t  b o th  t h e  i n s id e  and  o u t s id e  b o u n d a r y .

C a s e ( 2 ) :
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s t a r t  i ng p r o f  ile 
e x a c t  s o l u t i o n 
op t  i m u m  p r o f  ile

F i g u r e  5 - 1 1  O p t i m u m  S h a p e  for t h e  T h i c k  W a l l  P i p e

for C a s e  1

F i g u r e  5 - 1 2  A T h i c k  W a l l

a = 10 in 
b = 30 in 
E = l . x l O 6 psi 
v = 0 . 3 
P ,• = 1 0 0 0 psi

P i p e  u n d e r  I n t e r n a l  P r e s s u r e

for C a s e  2
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The initial cross-sectional geometry and loading for 

the problem are shown in Figure 5-12. The design objective 

is to find the optimum shape of the outside boundary which 

has the minimum weight for the pipe, subject to stress 

constraints on the inside boundary. The boundary element 

model (Figure 5-13) and the formulation of the problem are 

similar to Case (1), but the design objective is the area of 

the quarter section.

The optimum cross-sectional area of 62^.52 in2 is close 

to the exact solution of 628.3^ in2 for the thick cylinder. 

The optimum shape (Figure 5-1^) is also close to a circular 

shape for the thick cylinder.

5.5.3 Optimum Shape Design of a Two-dimensional Fillet.

The initial geometry and loading for the problem are 

shown in Figure 5-15. Only the upper section of the fillet 

is considered due to symmetry. The design objective is to 

find the optimum shape for edge AB to minimize the total 

area of the fillet. Stress constraints are imposed which 

require the stress along the edge AB to be less than a 

specified stress. The allowable stress for the problem was 

given three different values (135 psi, 125 psi and 115 psi) 

for three different cases.

The boundary of the problem is modeled by 21 quadratic 

boundary elements (Figure 5-16). Edge AB is considered as a 

design patch which contains 5 elements (11 nodes). The
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Figure 5-13 The Boundary Element Meshes for the

Quarter Portion of the Pipe (Case 2)

Figure 5-1^ Optimal Shape for the Thick Wall Pipe 

for Case 2
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Pi=100 Ib/in p 2 =-50 Ib/in

Figure 5-15 Upper Portion of the 2-D Fillet

under Axial Loading

x is control point
Figure 5-16 The Boundary Element Mesh for the

2-D fillet
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curve of the design patch is represented by a 4th order 

B-spline curve which has four control points. Points 1 and 

4 are fixed. Points 2 and 3 are active control points, so 

there are a total of six design variables.

The formulation of the optimization problem is given as 

follows:

Minimize A

I d O j 
Subject to (ff0 ‘ ^ j + E ---- Sv,))/o-o ^0 j=l,2...n

i = l a v 7- (5-28)

and (xj-9)/9>0 

(yj-4.5)/4.5>0 

and c , > v 7- > d 7-

where

A is the area of the fillet

ff0 is the specified stress (135 psi or 125 psi or 115 

psi).

o j are stresses at the jth node of boundary elements in 

the design patch.

v, are the variations of the design variables 

I is the total number of design variables.

n=ll is the total number of nodes in the design patch

c 7- and dy- are the move limits on the design variables

xj and yj are the coordinates of the design patch

Table 5-2 shows the results of the optimization. The

higher the stress specified, the more the area is reduced. 

In Figure 5-17, the optimum shape is a continuous curve and
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for Different Allowable Stress Limits

Table 5-2 Comparison of the Area of the 2-D Fillet

spec i f i ed stress 135 psi 125 psi 115 psi

area of the fillet 
(in 2 )

132.612 133.824 134.326

Figure 5-17 Optimum Shape for the 2-D Fillet
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very smooth. In this example, the different optimum shapes 

can be obtained by specifying a different stress 

concentration factor. The total computer time required for 

the optimization process is about 63 minutes.

5.5.4 Optimal Shape Design of a Ladle Hook

This example concerns the design of a hook for lifting 

hot-metal ladles with a minimum weight of 150 tons. The 

dimension of the critical elements of the hook (Figure 5-18) 

on the basis of stress is presented by Dieter, 1983. These 

dimensions have been based on keeping the nominal stress at 

a level below 12,500 psi. The remaining dimensions such as 

the bight section are set by engineering common sense. In 

the example, the design objective is to minimize the 

cross-sectional area of the ladle hook in order to get the 

optimal bight section. Stress constraints are imposed which 

require the stress along the hole (curve EF) to be less than 

the nominal stress.

The problem is analyzed by the substructuring analysis 

method with the boundary element method. The ladle hook is 

divided into two substructures (Figure 5-19). Substructure 

1 is discretized by 47 quadratic boundary elements. 

Substructure 2 is discretized by 46 quadratic boundary 

elements. The curve between points A and B is considered as 

a design patch which is created by 17 boundary elements (35 

nodes). The design patch is generated by a 7th order
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a= 8 in 
b = 4 i n 
c = 10.5 in 
P=75 tons 
thickness=7.1 in

Figure 5-18 The Dimensions and Loading for the

Ladle Hook
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x i s contro 1 point 

Figure 5-19 The Boundary Element Mesh for the 

Ladle Hook
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B-spline curve which has 9 control points. So there is a 

total of 18 design variables.

The formulation of the optimization problem is 

described as follows:

Minimize A

I a <r _j
Subject to (or0 “ (o’j+ E ---  S v / H Z a o ^ O  j=l,2...n

i = l av,- (5-29)

and c / > v , > d ,*

A is area of fillet

do is the specified stress (12,500 psi)

arj are stresses at the jth node of boundary elements on 

curve CD

Vy are the variations of the design variables

I is the total number of design variables.

Cf and dy are the move limits on the design variables 

n=17 is the total number of nodes on curve CD

The optimum shape of the bight section of the ladle 

hook is shown in Figure 5-20. The area of the bight section 

was reduced by 244.82 in2 . In this example, the coefficient 

matrix of substructure 2 was changed during every boundary 

element analysis because of the variation of the boundary. 

Combining the new coefficient matrix of substructure 2 with 

the fixed coefficient matrix of substructure 1 can produce a 

relatively small order system equation in terms of the 

interfaced boundary only. This substructuring analysis 

saved two-thirds of the computer time required for the whole 

analysis for every evaluation. The reason that the whole
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..........  initial profile 
-----------  optimum profile

Figure 5-20 The Optimum Shape for the Ladle Hook
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boundary element method w a s n ’t used for the optimization was 

because the solutions generated were poor, even when the 

double precision version of the program was used.

The design process took 209 function analyses and 229 

constraint evaluations. The total computer time for the 

optimization process was twelve hours and thirty minutes on 

a VAX 11-780. The final shape for the ladle hook was 

verified by the finite element method. The finite element 

mesh is shown in Figure 5-21. The problem was discretized 

using 53 quadratic quadrilatera 1 8-node elements with 211 

nodes. The maximum stress computed for the problem was 

12,380 psi which is lower than the nominal stress.

5.5.5 Optimum Tapering of a Cant ilever Beam.

This example is concerned with finding the optimum 

tapering of a cantilever beam with a rectangular 

cross-section of given uniform width. The dimensions and 

loading for the beam are shown in Figure 5-22. This 

optimization problem with stress constraints imposed has a 

simple closed-form solution (Imam 1982). Based on the 

assumption of constant boundary stress, the minimum mass 

shape is given by

(5-30)

where
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Figure 5-21 The Finite Element Mesh for the

Ladle Hook
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F ig u r e  5 -2 2  The D im e n s io n s  and  L o a d in g  f o r  th e

C a n t i l e v e r  Beam

x i s  c o n t r o l  p o i n t
F ig u r e  5 -2 3  The B o u n d a ry  E le m e n t  Mesh f o r  t h e  Beam

x x x  n u m e r ic a l  r e s u l t 
-----------  a n a l y t i c a l  r e s u l t 

F ig u r e  5 - 2 ^  The O p tim u m  T a p e r in g  S hape  f o r  t h e

C a t i  l e v e r  Beam
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y i s  t h e  d e p th  o f  t h e  beam o f  a n y  c r o s s - s e c t i o n  a t  a 

d is t a n c e  x f ro m  th e  f r e e  end  o f  t h e  beam .

b i s  t h e  w id t h  o f  t h e  beam , 

a i s  t h e  v a lu e  o f  t h e  m axim um  a l lo w a b le  b o u n d a ry 

s t r e s s .  (cr=30 p s i  in  t h i s  e x a m p le ) 

P i s  t h e  f o r c e  a c t i n g  a t  t h e  f r e e  e n d . ( p = l  I b f ) 

The b o u n d a ry  e le m e n t  m o d e l i s  show n in  F ig u r e  5 - 2 3 .

The t h r e e - d im e n s io n a l  beam i s  d i s c r e t i z e d  b y  22 q u a d r a t i c 

q u a d r i l a t e r a l  8 -n o d e  e le m e n ts .  U s in g  s y m m e try  and  c o n s t a n t 

w id t h  c o n d i t i o n s ,  t h e  s h a p e  o f  c u r v e  b e tw e e n  p o i n t s  A and  B 

i s  d e f in e d  b y  a ^ t h  o r d e r  B - s p l i n e  c u r v e  w i t h  5 c o n t r o l 

p o i n t s .  C o n t r o l  p o i n t s  2 t h r o u g h  5 a re  m o v a b le  in  th e 

y - d  i r e c t  i o n .

The o p t im u m  t a p e r i n g  f o r  t h e  beam i s  show n  in  F ig u r e 

5 - 2 ^ .  The n u m e r ic a l  r e s u l t s  a re  in  c lo s e  a g re e m e n t  w i t h  th e 

t h e o r e t i c a l  o p t im u m  s h a p e . The d i f f e r e n c e  in  th e  s h a p e  a t 

t h e  end  i s  due  t o  g e o m e t r y  c o n s t r a i n t s  w h ic h  w e re  im p o s e d  t o 

a v o id in g  d i s t o r t i n g  th e  e le m e n ts .

5 . 5 . 6  O p t im a l  S hape  D e s ig n  o f  a T h r e e - d im e n s io n a l  F i l l e t .

T h is  e x a m p le  i s  c o n c e rn e d  w i t h  t h e  o p t im u m  s h a p e  o f  t h e 

t r a n s i t i o n  s u r f a c e  c o n n e c t in g  tw o  s u r f a c e s  o f  d i f f e r e n t 

d e p th s  u n d e r  an a x i a l l y  d i s t r i b u t e d  c o n s t a n t  lo a d in g  ( F ig u r e 

5 - 2 5 ) .  The d e s ig n  o b j e c t i v e  i s  t o  m in im iz e  t h e  w e ig h t  f o r 

t h e  p r o b le m  b y  g e n e r a t i n g  an o p t im u m  s h a p e  f o r  t h e  f i l l e t 

w h ic h  h a s  a m axim um  s t r e s s  le s s  th a n  t h e  a l lo w a b le  s t r e s s .
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uniform y-axial loading;
Pj=100 lb/in 2 at y=2 in
p 2 =-50 lb/in 2 at y=0 in

Figure 5-25 The Dimensions and Loading for the

3-D Fillet
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The problem is modeled by 26 quadratic quadrilateral 

8— node boundary elements (Figure 5-26). The surface ABCD is 

considered as a design patch which has 5 elements (28 

nodes). The surface of the design patch is defined by 4 

control points in the x-direction and 2 control points in 

the y-direction.

The formulation of the problem is similar to that of 

the two-dimensional fillet. The specified maximum allowable 

stress for the problem is 135 psi (i.e. the stress 

concentration factor is 1.35). Starting from an initially 

straight plane, the design process took 212 constraint 

evaluations and finally achieved the optimum shape (Figure 

5-27). The minimum volume of the fillet is 17.63 in3 out of 

20.5 in 3 .

5.6 Conclusion

In the examples discussed above, the order of the 

B-spline curves that define the design patch was selected to 

have the same order as the Bezier curves. The higher order 

B-splines provide a very smooth curve and/or surface for the 

design shape. A lower order for the B-splines could be used 

to represent the design shape, but the order should not be 

so low as to allow for an unrealistic design. The basic 

concern is that the independent movements of a control node
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x is control point 

Figure 5-26 The Boundary Element Mesh for the 

3-D Fillet
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.........  initial prof ile
opt i mum prof ile

Figure 5-27 The Optimum Shape for the 3-D Fillet
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in the boundary element mesh would provid local control only 

which could allow the design shape to have a ripple.

The B-spline and Bezier techniques can be easily used 

to discretize the boundary element mesh by specifying the 

value of the influence parameter u. The boundary element 

mesh for the new shape is generated by line elements for the 

B— spli ne curve and by surface elements for the B-spline 

surface. They merge well together because no internal 

boundary element mesh is required.

In the shape design for the three-dimensional problem, 

the neighboring boundary should be carefully monitored in 

order to avoid distorted elements during the optimization. 

Such a problem with the three-dimensional boundary element 

mesh is still much easier to handle than the same problem 

using a three-dimensional finite element mesh. The 

possibility of distorted elements dosen't arise in the shape 

design of two-dimensional problems using the boundary 

element method.

In the examples presented, the design variables for the 

optimization problem are not necessarily the nodal points of 

the boundary element mesh. The design variables are defined 

by the moving direction of the control points. The distance 

between neighboring control points does not need to be 

equally spaced. The region defining a complex shape can be 

specified by more control points. In addition to the shape 

representation using B-splines, the parametrical 

representation of the shape optimization of structures such
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as the radius of a circle, position or length of straight 

line segments,etc can also be considered as design variables 

in the optimization process.

The numerical results for the examples are satisfactory 

when compared with either exact results or finite element 

solutions, but there is one thing which is a cause for some 

concern. The computer time required for the optimization 

process is large. Even though the analysis of a single case 

is efficient, more than a hundred evaluations of the 

boundary element analysis requires a fairly large amount of 

computer time during the optimization process. This 

condition can be improved by formulating the problem using 

the substructuring analysis technique and also by 

calculating the gradients by Equation 5-10. In Equation 

5-10, the gradient of the coefficient matrices are computed 

using the finite difference method which still takes 

considerable time during the formation of the matrices 

especially for a big problem. The possible ways to reduce 

computer time are to find the gradient of the problem by an 

analytical method instead of the finite difference method 

and also to minimize the number of boundary element analyses 

by using approximate methods such as a Taylor series 

expansion of the constraints. These methods have been 

applied to structural optimization using the finite element 

analysis.
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CHAPTER 6

CONCLUSION

The boundary element programs have been developed using 

linear and isoparametric quadratic line elements for solving 

plane strain and plane stress problems and using linear and 

isoparametric quadratic quadri latera 1 surface elements for 

solving three-dimensional elasticity problems. Results for 

practical elasticity problems without body forces have been 

presented and the usage of different element types has been 

demonstrated. The boundary element solutions offer several 

advantages over the domain type solution procedures, such as 

the finite element method. These advantages include the 

possibility of defining only the surface of the body and the 

accuracy of the solutions are especially well suited to 

shape optimization.

The computer program for substructuring analysis by the 

boundary element method has been developed using 

isoparametric quadratic line and quadrilatera 1 boundary 

elements. The results for practical problems of two- and 

three-dimensional elasticity have been successfully solved. 

The substructuring analysis by the boundary element method 

provides a versatile tool for the optimization process. The 

boundary element analysis for the unmodified substructure
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only needs to be formulated once. The final system equation 

for the whole structure is assembled by the system equation 

for each substructure in terms of the interfaced 

displacements. The solution for the substructures generate 

the displacements and stresses on the interface. Additional 

solution information is calculated for each substructure 

independently. It is not necessary to calculate all the 

displacements and stresses on each substructure. Selected 

information is available for the objective function and/or 

the constraints needed during the optimization.

As seen from the numerical examples of structural shape 

optimization, the design objective of the optimization 

problem is to minimize either the weight or the peak stress 

of a structure, subject to geometrical and stress 

constraints. The B-spline and the Bezier techniques are 

introduced to describe the shape of the design. The control 

points on these curves are the design variables. The 

formulation of the boundary element method is accomplished 

through the use of quadratic line and quadrilatera 1 

elements. The numerical results for practical plain strain, 

plain stress and three-dimensional problems have been 

successfully generated by combining the boundary element 

program with the optimization code OPT. The major

advantages of this optimization process are:

(1) The boundary element method provides very accurate 

boundary response, especially for the boundary 

s t r e s s .
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(2) There is no need for an internal mesh in the 

boundary element model, so the element mesh is 

updated easily during the optimization process.

(3) The number of design variables can be reduced by 

applying B— spli ne or the Bezier techniques to 

represent the boundaries.

(4) The computer time is reduced by applying a 

substructuring analysis in conjunction with the 

boundary element method.
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