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ABSTRACT

Clay mineral materials have attracted attention due to their many proper-

ties and applications. The applications of clay minerals are closely linked to

their structure and composition. Here, we studied the electronic structure

properties of kaolinite, muscovite, and montmorillonite crystals, which are

classified as clay minerals, by using DFT-based ab initio packages VASP and

the OLCAO. This work aims to have a deep understanding of clay mineral

materials, including electronic structure, bond strength, mechanical proper-

ties, and optical properties. It is worth mentioning that understanding these

properties may help continually result in new and innovative clay products in

several applications, such as in pharmaceutical applications using kaolinite

for their potential in cancer treatment, muscovite used as insulators in elec-

trical appliances, and engineering applications that use montmorillonite as a
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sealant. In addition, our results show that the role played by hydrogen bonds

in O-H bonds has an impact on the hydration in these crystals. Based on

calculated total bond order density, it is concluded that kaolinite is slightly

more cohesive than montmorillonite, which is consistent with the calculated

mechanical properties.

Montmorillonite clay (MMT) has been widely used in engineering and

environmental applications as a landfill barrier and toxic waste repository

due to its unique property as an expandable clay mineral that can absorb

water easily. This absorption process rendered MMT to be highly exother-

mic due to electrostatic interactions among molecules and hydrogen bonds

between surface atoms. A detailed study of a large supercell model of struc-

tural clay enables us to predict long-term nuclear waste storage. Herein, a

large solvent MMT model with 4071 atoms is studied using ab initio den-

sity functional theory. The DFT calculation and analysis clarify important

issues, such as bond strength, solvation effect, elasticity, and seismic wave

velocities. These results are compared to our previous study on crystalline

MMT (dry). The solvated MMT has reduced shear modulus (G), bulk mod-

ulus (K), and Young’s modulus (E). We observe that the conduction band

(CB) in the density of states (DOS) of solvated MMT model has a single,

conspicuous peak at -8.5 eV. Moreover, the atom-resolved partial density of

states (PDOS) summarizes the roles played by each atom in the DOS. These
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findings illuminate numerous potential sophisticated applications of MMT

clay.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Computational science, an interdisciplinary field that acts as a crucial

link between scientific exploration and technological progress, has emerged

as a dynamic force. By harnessing the immense computational power of com-

puters and employing sophisticated algorithms, this field enables scientists

to simulate, analyze, and forecast intricate natural phenomena across diverse

scientific domains. Amongst these domains lies the study of clay materials.

Clay minerals have recently gained attention due to their numerous desir-

able properties, such as mechanical strength, optical absorption, and cation

exchange capacity. Studying the structure and composition of clay minerals

is expected to grow in the near future due to the discovery of new applica-

tions and refinement of existing ones [59, 72]. This is particularly relevant

for applications that require barriers for water movement, such as earthen

dams, leaks in ponds, and toxic waste landfills [36]. Furthermore, there is

a recent and fascinating application in the field of spectroscopy[25]. Clay

minerals are small crystalline granules that occur during the formation pro-

cess of silicate-bearing rocks. They can make up to 40% of the minerals

in sedimentary rocks and are a substantial part of soil. Additionally, they

are commonly classified as hydrous layer aluminum phyllosilicate particles
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with size less than 2µm[32, 7]. Moreover, they have highly reactive sur-

faces capable of altering soil properties [18]. Clay minerals have always been

of great interest to researchers, particularly in the interrelated disciplines

of physics, chemistry, and earth sciences. A comprehensive understanding

of their composition and physical characteristics is crucial to comprehend

fundamental aspects, such as bond strength, solvation effect, spectral char-

acterization, optical absorption, elasticity, and seismic wave velocities. This

requires a thorough understanding of the atomistic composition, electronic

structure, interatomic bonding, charge transfer, optical properties, and me-

chanical properties of these minerals. Even though clay minerals have been

the subject of extensive experimental research, they still lack detailed under-

standing of their structure and characteristics, particularly when it comes to

atomic bonding, density of states (DOS), and mechanical properties [74].

In this dissertation, we embark on an intriguing journey where computa-

tional science converges with clay material studies.

1.1 Outline of Dissertation

This dissertation is organized as follows. The second chapter focuses on

the background theory of the methodology. The third chapter is a com-

parative study between Kaolinite, Muscovite, and Montmorillonite, which is

reprinted (adapted) with permission from (Layla Shafei, Puja Adhikari, and
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Wai-Yim Ching. ”DFT Study of Electronic Structure and Optical Properties

of Kaolinite, Muscovite, and Montmorillonite” Crystals Journal 2021, 11(6),

618 Copyright (2021) by the authors. Licensee MDPI, Basel, Switzerland.

Chapter 4 is a study of salvated Montmorillonite clay structure using a large

scale which is reprinted with permission from (Layla Shafei, Puja Adhikari,

Saro San, and Wai-Yim Ching. ”Electronic Structure and Mechanical Prop-

erties of Solvated Montmorillonite Clay using Large-Scale DFT Method.”

Crystals Journal 2023, 13(7), 1120; Copyright 2023 by the authors. Licensee

MDPI, Basel, Switzerland. It is an open-access article distributed under the

terms and conditions of the Creative Commons Attribution (CC BY) license

(https:// creativecommons.org/licenses/by/ 4.0/). Chapter 5 concludes the

research with final remarks and recommendations.
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CHAPTER 2

THEORY AND METHODOLOGY

In this dissertation, we used first-principles methods based on Density

Functional Theory (DFT) to explore electronic structure, interatomic bond-

ing of materials, optimization, and mechanical properties. Even though DFT

calculations are conducted at the atomic level, they are capable of provid-

ing accurate and realistic predictions of material properties that are in line

with experimental values. In order to create new materials and improve their

qualities, computational technologies are essential. An overview of the fun-

damental concepts of reputable first-principles approaches will be given in

this chapter. It will next go into detail about the computational approaches

used in this work, which include the Vienna ab initio simulation package

(VASP) [77] and the orthogonalized linear combination of atomic orbitals

(OLCAO) package [10, 11]. These two computational packages were utilized

in our research.

2.1 Density Functional Theory

Density Functional Theory (DFT) is widely employed in the fields of com-

putational chemistry and condensed matter physics, thanks to its reasonable

accuracy, scalability, and computational efficiency. DFT is utilized for the
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atomic-level calculation of a material’s electronic structure, resolving intri-

cate N-electron wave functions through the electron density approach[63].

This method essentially treats a many-electron system as a functional of the

ground-state electron density, aiding in the solution of the Schrödinger equa-

tion and the description of various material properties, including those of

complex materials. By simplifying the many-body wave function problem

and reducing it to the ground-state electronic density, DFT finds extensive

application in diverse scientific disciplines, encompassing physics, chemistry,

biology, materials engineering, and mineralogy.

The foundation of DFT is built upon the Hohenberg and Kohn H − K

[30]. The first H − K theorem states that the ground-state electron density

ρ(r) uniquely determines the ground-state energy and the external potential

Vext(r) of a quantum system. The energy of the ground state for any system

subjected to an external potential Vext(r),the expression for the function of

the electron density ρ(r) as follows:

EV [ρ(r)] =

∫
ρ(r)Vext(r)dr + FHK[ρ(r)] (2.1)

where FHK represents a universal functional of an electron density distribu-

tion in a physical system ρ(r). This universal functional, denoted as FHK, is

the sum of two important components: the kinetic energy functional T [ρ(r)]

and the electron-electron interaction functional Vee[ρ(r)].FHK[ρ(r)] is known
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as a universal function because it can be used to describe the behavior of

electrons in any physical system, regardless of the external potential Vext(r)

acting on the system. As a result, the expression for FHK[ρ(r)] can be written

as follows:

FHK[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] (2.2)

where,

T [ρ(r)] =
〈
ψ0|T̂ |ψ0

〉
(2.3)

and

Vee[ρ(r)] =
〈
ψ0|V̂ee|ψ0

〉
(2.4)

Vee[ρ(r)] can be simplified as follows:

Vee[ρ(r)] = J [ρ(r)] + Encl[ρ(r)] (2.5)

with

J [ρ(r)] =
1

2

∫∫
ρ(r)ρ (r′)

|r − r′|
drdr′ (2.6)

J [ρ(r)] refers to the classical Coulomb repulsion component in equation (2.5),

while Encl denotes a non-classical term contributing to electron-electron in-

teraction, which is the central aspect of ”exchange-correlation energy”. This

elusive but critical quantity is important in describing electronic interactions

in the system.
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The second H-K theorem establishes a connection between the system’s

electron density and the minimal ground state energy. ”The energy func-

tional EV [ρ(r)] attains its minimum value, representing the ground state en-

ergy E0 when calculated for the correct ground-state electron density ρ0(r)”

i.e

E0 =

∫
ρ0(r)Vext(r)dr (2.7)

The solution to the equation (2.1) remains elusive until FHK [ρ(r)] is known.

Additionally, the functionals Encl[ρ(r)] and T [ρ(r)] lack precise definitions.

This necessitates the application of DFT to address complex problems involv-

ing many electrons, particularly due to the intractable nature of the quantity

FHK [ρ(r)]. Minimizing the functional of the three-dimensional density func-

tion within the given external potential aids in determining the precise form

of FHK [ρ(r)]for the electron density ρ(r). Since the H-K theorem doesn’t

offer a direct solution for the functionalFHK [ρ(r)], Kohn and Sham (K-S)

devised a method to find EV [ρ(r)] by solving the equation for the electron

density ρ(r), capable of yielding an unknown functional used in approxima-

tion. According to Kohn and Sham (K-S), the kinetic energy of a really

interacting reference system with the density of a non-interacting reference

can be stated as:

T = −1

2

N∑
i=1

⟨Ψi|∇2|Ψi⟩ (2.8)
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In this context, the kinetic energy Ts differs from the actual kinetic energy

of the genuinely interacting system. Expressed in terms of Ts, FHK[ρ(r)] can

be formulated as:

F [ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + EXC[ρ(r)] (2.9)

The solution to equations (2.2) and (2.9) is as follows:

EXC [ρ(r)] = [T [ρ(r)]− Ts[ρ(r)]] + [Vee[ρ(r)]− J [ρ(r)]] (2.10)

Utilizing equation (2.5), equation (2.9) transforms to:

EXC [ρ(r)] = [T [ρ(r)]− Ts[ρ(r)]] + Encl[ρ(r)] (2.11)

EXC [ρ(r)] = TR[ρ(r)] + Encl[ρ(r)] (2.12)

The first term of equation (2.12) TR[ρ(r)] represents the residual part of the

true kinetic energy, excluding the non-interacting system. Here, EXC [ρ(r)] is

the exchange-correlation energy functional, encompassing the residual part

of the true kinetic energy, the non-classical contribution of self-interaction,

and the effects of exchange and correlation in potential energy.

The energy functional for a real interacting system is constructed by
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utilizing equations (2.1) and (2.9), which:

EV [ρ(r)] =

∫
ρ(r)Vext(r)dr + Ts[ρ(r)] + J [ρ(r)] + EXC [ρ(r)] (2.13)

In the case of a non-interacting system, the energy expression consists solely

of two components: the kinetic energy, denoted as KETs, and the energy

resulting from the interaction with the external potential Vext(r). Thus, we

can express it as:

EV [ρ(r)] =

∫
ρ(r)Vext(r)dr + Ts[ρ(r)] (2.14)

The equation (2.14) can be minimized without any conditions. To create a

conditional minimum problem, we introduce a functional G[ρ(r)] as:

G[ρ(r)] = EV [ρ(r)]−
λ

2

∫
|ρ(r)|2dr (2.15)

Where λ represents the Lagrange multiplier associated with constraints.

Referring to equations (2.14) and (2.15), we obtain:

G[ρ(r)] =

∫
ρ(r)Vext(r)dr + Ts[ρ(r)]−

λ

2

∫
|ρ(r)|2dr (2.16)
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The principle of stationary for the ground-state density provides

δ

{
EV [ρ(r)]− λ

[∫
ρ(r)dr −N

]}
= 0 (2.17)

By solving equation (2.17), we obtain:

λ =
δEY [ρ(r)]

δρ(r)
(2.18)

Equations (2.13) and (2.18) yield:

λ = Vext(r) +
δTs[ρ(r)]

δρ(r)
+

∫
ρ(r′)

|r − r′|
dr′ + VXC(r) (2.19)

λ = Veff (r) +
δTs[ρ(r)]

δρ(r)
(2.20)

Veff (r) = Vext(r) +

∫
ρ(r′)

|r − r′|
dr′ + VXC(r) (2.21)

The exchange-correlation potential, commonly denoted as K-S potential,

is determined as the functional derivative of the exchange-correlation energy

EXC with respect to the electron densityρ(r):

VXC(r) =
δEXC [ρ(r)]

ρ(r)
(2.22)
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By solving the one-electron Schrödinger equation for a given Veff (r), we

can obtain the electron density ρ(r) that satisfies:

[
−1

2
∇2 + Veff (r)

]
ψi(r) = εiψi(r) (2.23)

The solution obtained from equation (2.23), represented by the value of

the wave function ψi(r), is utilized in determining the electron density:

ρ(r) =
N∑
i=1

|Ψi|2 (2.24)

The K-S equations, encapsulated in Equations (2.21) to (2.24), form the

foundation of the K-S approach. Initiated with an initial estimate of the

electron density, the effective potential is computed, and the K-S equation

is iteratively solved. Subsequently, the electron density ρ(r) is recalculated.

This iterative process continues until self-consistency is achieved, upon which

quantities such as force and energy are computed. If self-consistency is not

attained, the effective potential is recalculated, and the process is reiterated.

Despite the exactness of the K-S approach, the presence of the indeter-

minate exchange-correlation functional (EXC) poses challenges in solving the

equations. The determination of this functional remains a focal point even in

contemporary Density Functional Theory (DFT). The exchange-correlation

energy EXC arises from the interaction among electrons, influenced by the
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Coulomb interaction and their quantum numbers. EXC can be decomposed

into exchange and correlation components. The exchange interaction arises

from the Pauli exclusion principle, which dictates that two electrons occu-

pying the same region cannot possess identical sets of four quantum num-

bers. The correlation energy arises from the correlated movement of electrons

with opposite spins. One commonly employed approximation for solving the

exchange-correlation functional is the local density approximation (LDA). In

LDA, the density at a specific point r is utilized to calculate the exchange-

correlation energy at that point. The LDA expression is given by:

EXC [ρ(r)] =

∫
ρ(r)ϵXC [ρ(r)]dr (2.25)

Here, ϵXC represents the exchange-correlation energy of an electron in

a homogeneous electron gas with density ρ(r). LDA, being simple, accu-

rate, and computationally economical, is extensively employed in solid-state

physics for describing the ground-state properties of many-electron systems.

However, when dealing with rapidly varying densities, LDA may need

correction. LDA assumes uniform density at a point r, but real systems

often exhibit spatial non-uniformity. In such cases, the spatial variation

of electron density must be considered in the exchange-correlation energy

functional. This leads to the formulation of the generalized gradient approx-

imation (GGA) expressed as:
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EGGA
XC [ρ(r)] =

∫
f(ρ(r),∇ρ(r))dr (2.26)

where the integral is a function of the local density ρ(r) and its gradient.

Equation (2.26) represents a generalized gradient approximation (GGA), and

various GGAs, such as PBE by Perdew, Burke, and Ernzerhof[64], B3LYP

by Becke’s three-parameter hybrid method[5], and Lee, Yang, and Parr[43],

exist. The choice between PBE and B3LYP often depends on the discipline,

with PBE being more prevalent in Physics and B3LYP in Chemistry. Further

details on the computational packages VASP and OLCAO will be elaborated

in subsequent sections.

2.2 Vienna Ab Initio Simulation Package (VASP)

VASP, developed by Kresse and colleagues in 1993[38, 39], stands as a

prominent quantum mechanical computational package. Widely acclaimed

for first principles and ab initio molecular dynamics calculations, VASP finds

extensive use in exploring electronic structure and dynamic properties, par-

ticularly in the realms of condensed matter physics and material engineering.

VASP exhibits remarkable flexibility in computational capabilities, em-

ploying various approaches to solve the Schrödinger equation, including the

Density Functional Theory (DFT) method using the Kohn-Sham (K-S) equa-

tion, the Hartree-Fock (H-F) approximation with Green functions using the
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Roothaan equation, hybrid functionals combining H-F with DFT, and many-

body perturbation theory.

To efficiently handle wavefunction operations between real and recipro-

cal space, VASP employs a plane-wave basis set, implemented through two

techniques: the projector augmented wave (PAW) method[42, 6] and the

ultra-soft pseudo-potential method[83, 40]. While the PAW method is more

accurate, it comes at the expense of increased computational time.

The challenge of solving the all-electron plane wave is practically miti-

gated by using pseudopotential approximations, focusing on chemical bond

formation regions and ignoring some core level nodal features. VASP em-

ploys three types of potentials: norm-conserving pseudopotential[41], ultra-

soft Vanderbilt pseudopotential[83, 40], and PAW[42, 6]. This study adopts

the PAW-PBE method[65], known for its accuracy within the Generalized

Gradient Approximation (GGA) in VASP.

For calculations of the self-consistency cycle (SCF), VASP allows itera-

tive matrix diagonalization methods like the conjugate gradient scheme[8],

blocked Davidson algorithm[14], and residual minimization with direct inver-

sion of the iterative subspace (RMM-DIIS)[89, 26]. This study efficiently em-

ploys RMM-DIIS and blocked Davidson for matrix diagonalization, utilizing

the stability of the blocked Davidson algorithm and the speed of RMM-DIIS

in a combined approach. Efficient charge density mixing in VASP is achieved
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through the Broyden and Pulay mixing scheme[67, 34].

VASP’s parallelization enhances its efficiency for parallel calculations,

enabling the analysis of larger systems with several hundred or 1000 atoms.

Within the scope of this study, VASP is utilized for the purpose of optimizing

the geometry of the system, in addition to assessing its mechanical and elastic

properties.

2.3 Geometry Relaxation

The relaxation of material structures through geometric adjustments is

a critical precursor for in-depth property analysis. To comprehensively eval-

uate the desired properties of a system, it is crucial to establish a realistic

and nearly perfect structural model initially. The structure obtained through

Density Functional Theory (DFT) optimization often diverges from the ex-

perimental structure, particularly in lattice characteristics. Therefore, the

initial geometric relaxation serves as a fundamental step for the subsequent

analysis of properties. VASP is primarily composed of four input files IN-

CAR, KPOINTS, POSCAR, and POTCAR essential for simulating any sys-

tem. The INCAR file governs calculation parameters, the KPOINTS file

specifies the number of K-points based on the system size, the POSCAR file

contains initial position and lattice vector information, and the POTCAR file

consolidates potential information for all atoms in the same order as outlined
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in the POSCAR file.

2.4 Elastic and Mechanical Properties Calculation

The assessment of a material’s elastic and mechanical properties is cru-

cial for its various applications. Advances and refinements in computational

methods have significantly enhanced the precision of ab initio calculations

for these properties. Typically, two approaches are employed in ab initio

calculations of mechanical properties.

The first method is to analyze the total energy of a crystal as a function

of volume or pressure:

E(V, ε) = E(V0) + V
∑
i=1

σiεi +
V

2

∑
ij

Cijεiεj + . . . (2.27)

εi denotes strain components, σi stress components, and Cij elastic ten-

sors. The total energies obtained for different strains are fitted to a parabola

near the minimum energy, facilitating the derivation[75] of elastic constants.

The second approach employs the ab initio stress-strain relationship de-

fined by the Nielsen and Martin scheme[61]. Hooke’s law can be solved by

applying a small strain ε to a fully relaxed system:

σi =
∑
j=1

Cijεj (2.28)
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The stress components σi here exhibit linear dependence on the applied strain

εj. By solving this equation, the values of elastic tensors Cij and their inverse

compliance tensors Sij can be obtained. Bulk mechanical parameters are then

evaluated using these values, along with the Voigt-Reuss-Hill approximation

for polycrystals[85, 29, 70]. The upper limit of the bulk modulus KV oight

and the shear modulus GV oight are given by Voigth’s method, and the lower

limit o of bulk modulus KReuss and shear modulus GReuss is given by Reuss’s

approximation.

KVoigt =
1

9
(C11 + C22 + C33) +

2

9
(C12 + C13 + C23) (2.29)

GVoigt =
1

15
(C11 + C22 + C33 − C12 − C13 − C23) +

1

5
(C44 + C55 + C66)

(2.30)

KReuss =
1

(S11 + S22 + S33) + 2(S12 + S13 + S23)
(2.31)

GReuss =
15

4(S11 + S22 + S33)− 4(S12 + S13 + S23) + 3(S44 + S55 + S66)

(2.32)

Hill’s approximation utilizes the average value of the Voigt and Reuss ap-

proaches, yielding bulk modulus (K) and shear modulus (G) values.

K =
KVoigt +KReuss

2
(2.33)
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G =
GVoigt +GReuss

2
(2.34)

Based on the values of K and G, Young’s modulus (E) and Poisson’s

ratio (η) can be determined in the following :

E =
9KG

3K +G
(2.35)

η =
3K − 2G

2(3K +G)
(2.36)

2.5 Orthogonalized Linear Combination of Atomic Orbitals

(OLCAO)

In the analysis of VASP simulated structures, OLCAO is employed to

assess electronic structure and optical properties. Developed by Professor

Ching, the OLCAO package is an in-house tool systematically refined for

the study of complex electronic structures. The amalgamation of VASP

and OLCAO presents an optimal blend, balancing accuracy, efficiency, and

cost-effectiveness, making it a preferred choice for exploring various complex

systems. OLCAO is utilized to compute electronic structure, interatomic

bonding, partial charge, and optical properties of simulated models. OLCAO

is a method that considers all- electrons in its calculations and functions

based on the Local Density Approximation (LDA) within Density Functional
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Theory (DFT). It employs atomic orbitals for basis expansion, providing

flexibility with minimum basis (MB), full basis (FB), and extended basis

(EB) sets. This flexibility is particularly advantageous in electronic structure

calculations for materials of varying characteristics and dimensions. OLCAO,

coupled with VASP, has demonstrated success in studying large biological

systems[3, 33, 66],liquids[4, 46],and amorphous solids[90, 44, 86].

The OLCAO method is an extension of the traditional LCAO method,

utilizing solid-state wave functions Ψnk(r) in atomic orbitals with Bloch func-

tions. It involves Gaussian Type Orbitals (GTO) and spherical harmonics

associated with the angular momentum quantum number, expressed as

Ψnk(r) =
∑
i.γ

Cn
iγ(k)biγ(k, r) (2.37)

The band index (n) represents the orbital quantum number (i), while

γ represents the atom’s serial number. The Bloch sum (bi.γ(k, r)) can be

formed of:

biγ(k, r) =
1√
N

∑
v

ei(k·Rv)ui(r −Rv − tγ) (2.38)

where Rv indicates the lattice vector, and tγ represents the position of the

γth atom in the cell. Also ui(r) indicates the linear combination of atomic

orbitals which includes both radial and angular components, represented as:
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ui(r) = [
N∑
j=1

Ajr
le(−αjr

2)]Y m
l (θ, ϕ) (2.39)

The symbol i denotes the principal quantum numbern, as well as the angular

momentum quantum numbers(l,m). The parameter N indicates the number

of Gaussian Type Orbitals (GTOs), while αj is a set of predefined variables

based on previous experiences. The values of αj are in the geometric series

αmin to αmax.

The initial term,
∑N

j=1Ajr
le(−αjr

2), contributes to the radial aspect of the

equation and signifies a linear combination of GTO. The utilization of GTO

is advantageous since the product of two GTOs results in a new GTO, sim-

plifying the evaluation of orbital interaction integrals. This simplification

streamlines the mathematical processes of integration and differentiation.

The subsequent term Y m
l (θ, ϕ) pertains to the angular component, compris-

ing real spherical harmonics.

The set of atomic orbitals, denoted as ui(r) in Equation (2.39), encom-

passes core, occupied valence, and additional unoccupied orbitals. Depending

on the material’s nature and the system’s dimensions, three types of basis

sets—MB (Minimum Basis), FB (Full Basis), and EB (Extended Basis)—are

chosen. The MB set, involving only core and valence shell orbitals, is par-

ticularly suitable for large amorphous systems. Conversely, FB set, which

encompasses the MB plus empty orbitals from the next unoccupied shells,
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is adequate for smaller systems to yield accurate results. For calculations

involving spectral properties, where unoccupied states of higher energy are

of interest, an additional level of unoccupied orbitals is incorporated into the

FB set to create an EB set. This flexibility in selecting an atomic basis set

allows for a balance between accuracy and computational time in OLCAO.

OLCAO constructs its potential based on LDA of DFT. It follows an itera-

tive process to solve the K-S equation for a single electron, with all quantities

given in atomic units.

[−∇2 + Ve−n(r) + Ve−e(r) + Vxc[ρ(r)]]Ψnk(r) = En(k)Ψnk(r) (2.40)

Where −∇2 represents the kinetic energy. while Ve−n is the electron-

nuclear, Ve−e is electron-electron Coulomb, and Vxc[ρ(r)]] is exchange-correlation

part of potential energy. The Vxc[ρ(r)]] depends on electron density ρ(r)

which defined as ρ(r) =
∑

occ |Ψnk(r)|2 ,which allows the above equation to

be solved in a self-consistent consistently.

In the context of Density Functional Theory (DFT) and the Local Den-

sity Approximation (LDA), the exchange and correlation components of

the potentialVxc are essential in explaining the complex dynamics of many-

electron interactions. The exchange-correlation functional εxc, a mathemati-

cal construct that depends on the electron density and captures the complex

exchange-correlation energyExc(r), is the source of these intricately derived
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components. The following is the mathematical expression for this energy:

Exc(r) = (r)

∫
ρ(r)εxc[ρ(r)] dr (2.41)

This expression can be further elucidated:

Vxc(r) =
d(ρεxc[ρ])

dρ
= −3

2
α

[
3

π
ρ(r)

]1/3
(2.42)

In the context of OLCAO under LDA, the total energy (ET ) of the system

is formulated as:

ET =
occ∑
n,k

En(k) +

∫
ρ(r)

(
εxc − Vxc −

Ve−e

2

)
dr +

1

2

∑
γ,δ

ZγZδ

Rγ −Rδ

(2.43)

The initial term signifies the aggregation over one-electron states, while

the ultimate term pertains to the summation over the lattice. The incorpo-

ration of a factor of 1
2 is implemented to rectify the double-counting issue

associated with Coulomb potential. The total energy assumes paramount

importance as a fundamental physical parameter within the framework of

OLCAO, playing a pivotal role as a criterion for achieving energy conver-

gence in the self-consistent potential.

The OLCAO method is well-suited for computing a wide range of elec-

tronic properties, including band structure, density of states, bond order,

effective charge, dielectric function, and optical properties. The evaluation
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of effective charge enables a thorough examination of charge transfer phe-

nomena within the system. The effective charge (Q∗) is the number of

electronic charges associated with an atom calculated using the Mulliken

scheme[58, 57, 56]. In the Mulliken scheme, the partial charge associated

with the i-th orbital of the α-th atom in the normalized state is defined as:

n∑
i,α

ρni,α =

∫
|Φn(r)|2 dr = 1 (2.44)

ρni,α =
∑
j,β

Cn∗

iαC
n
jβSiα,jβ (2.45)

Here n denotes the band index, and i and j represent the orbital quantum

numbers of atoms α,β respectively. Siα,jβ are the overlap integrals between

the ith orbital in the αth atom and jth orbital in the βth atom. The Cn
jβ are

eigenvector coefficients of the nth band and jth orbital in the βthatom.

The density of states (DOS), denoted as G(E), provides the count of

electron states per unit energy in the material. It is expressed as:

G(E) =
Ω

(2π)3
d

dE

∫
BZ

dk =
Ω

(2π)3

∫
(
dS

|∇E|
) (2.46)

where Ω represents the volume of the unit cell, S is the overlap matrix, and

the integral is taken over the constant energy surface on the Brillouin Zone

(BZ).
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In the context of simulated crystals, the inter-band optical properties are

elucidated through the frequency-dependent complex dielectric functionε(hω) =

ε1(ℏω)+iε2(ℏω) The real and imaginary parts, ε1(ω) and ε2(ω), are obtained

from the following equations:

ε2(ℏω) =
e2

πmω2

∫
BZ

dk3
∑
n.l

|⟨ψn(k, r) |−iℏ∇ |ψl(k, r)⟩|2

× fl(k) [1− fn(k)] δ [En(k)− El(k)− ℏω] .

(2.47)

ε1(ℏω) = 1 +
2P

π

∫ ∞

0

sε2(ℏω)
s2 − ω2 ds (2.48)

In the given context, where l denotes occupied states and n represents un-

occupied states, the Fermi distribution functions fl(k) and fn(k) characterize

the electron occupation probabilities. The refractive index n is then derived

by taking the square root of ε1 at zero frequency, expressed as n =
√
ε1(0).

The subsequent computation of the energy loss function (ELF) F (ω) relies

on the imaginary part of (1/ε).

F (ω) = IM

(
− 1

ε(ω)

)
=

ε2(ω)

ε21(ω) + ε22(ω)
(2.49)
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CHAPTER 3

DFT STUDY OF ELECTRONIC STRUCTURE AND OPTICAL

PROPERTIES OF KAOLINITE, MUSCOVITE, AND

MONTMORILLONITE

3.1 Introduction

Ab initio computational research seems to be the most suitable way to

get bonding information, total density of states (TDOS), partial density of

states (PDOS), and mechanical properties due to recent developments in

supercomputing technology, in contrast to the costly experimental trial-and-

error approach in the laboratory. Some examples of clay minerals, for which

the electronic structure and bonding information are kind of unknown and

ripe for such investigation, include kaolinite, muscovite, and montmorillonite

(MMT). Kaolinite, Al2Si2O5(OH)4 , is one of the most common clay miner-

als. It comprises the principal ingredients of kaolin (china clay). The kaolin

group includes nacrite, dickite, halloysite, and kaolinite. All of them have an

identical chemical composition but in a different crystalline form. Kaolin-

ite, a classification from the phyllosilicate group, is composed of alternating

sheets of silicates and aluminum hydroxide, as shown in Figure 1. The lattice

parameter, number of atoms, and space group of kaolinite is shown in Table
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1. Studying kaolinite can aid in many important areas such as geology, agri-

culture, construction, and engineering applications [60]. Additionally, the

world mining production of kaolin in 2016 was 37.0 Mt, making it the most

mined clay [15]. Kaolinite is used in the adsorption of some heavy metals;

furthermore, it is used to remove pollutants from water[92]. It is extensively

used in the field of paper production, plastics, paints, adhesives, insecticides,

medicines, food additives, bleach cement, fertilizers, cosmetics, crayons, pen-

cils, detergents, paste, floor tiles, textiles, and many more [23]. One of the

most important potential applications uses kaolinite in pharmaceutical ap-

plications, especially for cancer treatment[24]. Additionally, kaolinite has a

much simpler crystal structure that is not easily decomposable and has been

studied in different aspects, such as its fiber mechanical properties, kinetics

of metal adsorption [53], and far more. However, to further improve its ap-

plication, it is important to conduct a thorough study of the electronic and

mechanical properties.

Muscovite, KAl2 (Si3Al)O10(OH)2[45], consists of two tetrahedral sheets

to one octahedral sheet, as shown in Figure 1. The lattice parameter, num-

ber of atoms, and space group of muscovite is shown in Table 1. Muscovite

crystal has layered structures that enable nearly perfect cleavage that allows

for the formation of a smooth surface at an atomic scale. Layer proper-

ties provide information on the surface interactions and related properties.
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There have been only a few studies related to layering so far [87]. Muscovite

is present in metamorphic, igneous, and sedimentary rocks, and is among

the most common minerals of the mica family. It is slightly larger than clay

minerals and has a platy shape similar to clay minerals. It can be easily

identified by its bright silvery sparkle and used to add ”glitter” to paints and

cosmetics. Since it can resist electricity and heat, it is also used as an insu-

lator in electrical appliances and in ovens. Moreover, its slightly transparent

nature allows for its high usage in windows and other construction industries.

Montmorillonite (MMT), Al2Si4O10(OH)2 [49], is a clay mineral of the smec-

tite group that consists of two tetrahedral sheets to one octahedral sheet,

as shown in Figure 1. The lattice parameter, number of atoms, and space

group of MMT is shown in Table 1. Weathering of eruptive rock materials

leads to the formation of MMT. It is capable of absorbing cations and is

one of the most expandable clay minerals that can absorb a large quantity

of water. Therefore, it can be used in numerous fields such as oil refining,

pharmaceutical preparations, sugar refining, as a catalyst, and as a binder

in many fields such as insulating materials. The major uses of MMT are as

a sealant in many engineering applications, and as a barrier for landfills and

toxic waste repositories [59]. In addition, montmorillonite is used to design

polymer-clay nanocomposites, which are capable of changing their strength

and resistance [82]. It can also form composites to biological entities such as
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proteins and amino acids. Computational modeling may be the only venue

that can provide useful information about this clay mineral with extremely

complex structures. A deep analysis of the electronic structure in kaolin-

ite, muscovite, and MMT can help to understand and modify clay minerals,

which may significantly improve their surface properties and consequently

increase their capacities and efficiencies in many applications, such as en-

vironmental cleanup applications [72]. This work presents a computational

study of the structure and properties of these minerals. A fundamental un-

derstanding of the electronic structure and physical properties will have a

broader impact on scientific advances in many frontiers. They range from

medical applications such as kaolinite’s use in cancer diagnosis and treatment

and electrical applications, muscovite’s use as an insulator and in engineering

applications, and MMT’s use as a sealant. Additionally, they can be used

to improve cements, as data for seismic wave velocities for geoscience, and

much more.
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Figure 1: Shows ball and stick figures using Vesta [54] for (a) kaolinite, (b)
muscovite, and (c) montmorillonite. The color used to represent the elements
are shown in the top left side.

Table 1: The optimized lattice parameter, No of atoms, and space group of
kaolinite, muscovite, and montmorillonite.

Crystal Chemical Formula
No. Atoms
(Space Group)

a, b, c(Å)
α, β, γ

Kaolinite Al2Si2O5(OH)4 17(P1)

5.19, 5.18, 7.54
77.84◦, 84.31◦, 60.10◦

a. 5.15, 5.15, 7.41
75.14◦, 84.12◦, 60.18◦

Muscovite 8 [KAl2 (Si3AlO10) (OH)2] 168(C12/c1)

10.47, 9.10, 20.68
90◦, 96.20◦, 90◦

b. 5.19, 9.0020.10
90◦, 95.18◦, 90◦

MMT 2 [Al2Si4O10(OH)2] 40(C121)

5.21, 9.06, 10.27
90◦, 99.46◦, 90◦

c. 5.18, 8.97, 10.07
90◦, 99.50◦, 90◦

Unoptimized lattice parameters of a. kaolinite[28], b. muscovite [69], and

c. montmorillonite [76]
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3.2 Computation Methods

In this study, we used two computational packages, VASP and OLCAO.

VASP is utilized for the optimization of the structures and for the calculation

of elastic and mechanical properties as discussed in section 2.2 and section 2.4.

A relatively high energy cutoff of 600eV, with electronic force convergence at

10−5eV, was used. The KPOINTS used were 6×6×4, 2× 2×1, and 2×1×1

for kaolinite, muscovite, and MMT, respectively. We used the optimized

structure obtained from VASP as input into OLCAO for the calculation of

the electronic structure, interatomic bonding, and optical properties. We

used a full basis (FB) for the self-consistent potential, total density of state

(TDOS), partial DOS (PDOS), and band structure calculations. For the

bond order (BO) calculation, we used a minimal basis (MB) based on the

Mulliken scheme. A summation of all BOs of the crystal results in a total

bond order (TBO), and by normalizing the TBO by the crystal’s volume, the

total bond order density (TBOD) is generated. TBOD is a single metric that

can be used for the evaluation of the interior cohesion of a crystal and can be

further divided into the partial bond order density (PBOD) for different types

of bond pairs. For optical properties, we used an extended basis (EB), which

includes a shell of unoccupied orbitals in addition to the FB. The effective

charge Q∗ and the partial charge (PC) for every atom in these systems were
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obtained by using the following equation.

∆Q = Q0 −Q∗ (3.1)

For the calculation of the elastic and mechanical properties, a stress (σj) vs.

strain (εi) response analysis [61, 91] scheme is applied to the fully relaxed

structure to obtain the elastic coefficients Cij(i, j = 1, 2, 3, 4, 5, 6).

3.3 Results and Discussion

3.3.1 Electronic Structure

We obtained the atomic coordinates for kaolinite, muscovite, and MMT

from Hess et al. [28], Radoslovich et al. [69], and Subramanian et al.[76], re-

spectively. The calculated band structures of those three clay minerals’ crys-

tal structures are shown in Figure 2. The bandgap results clearly show that

they are insulators. According to the calculations, the bandgaps of kaolinite,

muscovite, and MMT were 4.84eV, 4.67eV, and 5.11eV, respectively. Our

band gap results are consistent with a theoretical study [71] for kaolinite,

which was 4.8eV. In addition, for the muscovite, our findings are following

a DFT study [94] with values ranging from 3.96eV to 5.02eV, which is sig-

nificantly lower than the experimental value of 7.85eV [13]. For MMT, our

bandgap value was close to two other calculations, which were about 5.35eV
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Figure 2: shows band structures for (a) kaolinite, (b) muscovite, and (c)
montmorillonite. Muscovite and MMT show a direct bandgap whereas kaoli-
nite shows an indirect bandgap.

[49] and 5.52eV [19]. All of them had a direct bandgap except for kaolinite.

Among the three crystals, MMT had the widest bandgap.In muscovite, the

bottom of the conduction band (CB) has a curvature whilst the top of the

valence band (VB) is very flat. The calculated TDOS and further resolved

PDOS for the three crystals in the energy range from −25eV to 25eV and

are shown in Figure 3. The PDOS shows the relative contribution of each

element to the TDOS, which helps to understand the bonding. Among the

three crystals, kaolinite and MMT have same set of four elements, H,O, Si,

and Al. Besides these four elements, muscovite also consists of K, which was

responsible for the sharp peak at energy −11eV, which was due to semi-core

nature of the K-3p orbital. Most of the states and peaks in the TDOS for

the three crystals were from O atoms. The states of Al, Si,H, and K in the
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same energy range with O atoms showed their bonding.

3.3.2 Interatomic Bonding

The interatomic interaction as BO vs. bond length (BL) distribution of

these three crystals is shown in Figure 4. All of these three clay mineral crys-

tals had O−H, Si−O, and Al−O, whereas O−K bonding was only present

in muscovite, as depicted in Figure 4 b. O-H bonds were the strongest bond

in the three crystals, with a BO of 0.29e and a BL of around 0.94 A. Si- O

bonds had a higher BO in muscovite at 0.30e and MMT at 0.29e, in compari-

son to kaolinite. Al-O bonds in muscovite were more scattered in comparison

to kaolinite and MMT. In addition, there were some O−H bonds in the range

between 2.8 and 3.4Ȧ, which represented hydrogen bonding. The PBOD and

TBOD of these three crystals are shown in Table 2. The TBOD is the sum of

the BO values of all bond pairs divided by the volume of the crystal. TBOD

is a good parameter to gauge the internal cohesion in the system [16]. The

TBOD values for these three crystals were similar. However, kaolinite was

slightly more cohesive than MMT and muscovite. TBOD can be further re-

solved into PBOD to identify the impact of different bonding in the system.

Si-O bonds had higher contribution, which was followed by Al−O bonds in

the three crystals. The O−H bonds in muscovite and MMT showed the same

PBOD value of 0.003e/Å3 and a much lower value of 0.007e/Å3 in kaolinite.
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Figure 3: TDOS, PDOS of three clay minerals crystals for (a) kaolinite, (b)
muscovite, and (c) montmorillonite.
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Figure 4: BOvs.BL of three clay minerals crystals for (a) kaolinite, (b) mus-
covite, and (c) montmorillonite.

Table 2: TBOD, and PBOD for kaolinite, muscovite and MMT

Crystal Vol
(
Å3

)
Bond

PBOD(
electron/ Å3

) TBO TBOD

Kaolinite 171.91 O-H 0.007
Si-O 0.013 5.446 0.032
Al-O 0.012

Muscovite 1957.66 O-H 0.003
Si-O 0.015
Al-O 0.013 57.096 0.031
O-K 0.001
Al-H 0.000

MMT 478.36 O-H 0.003
Si-O 0.019
Al-O 0.008 14.273 0.030

The PC of each atom is defined as the deviation of the effective charge

from the neutral charge. The PC for every atom of the three crystals is

shown in Figure 5. It is noted that had a negative PC in all three crystals
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Figure 5: Distribution of partial charge ∆Q* for (a) kaolinite, (b) muscovite,
and (c) montmorillonite.

and the other elements had a positive PC, as expected. It simply means that

the oxygen gained more electrons from the other positively charged atoms.

Minor variations in the PC of O,Al, and Si represent site variation.

3.3.3 Optical Properties

The optical behavior of the real (ε1) and imaginary (ε2) dielectric func-

tion of these three minerals is shown in Figure 6. We can obtain the static

dielectric constant from the calculated dielectric functions by taking the zero-

frequency limit of the real parts of the dielectric function. The refractive

index ( n ) is calculated by taking the square root of ε1(0). The refrac-

tive indexes for kaolinite, muscovite, and MMT are 1.60, 1.58, and 1.52,

respectively. Figure 6 presents the calculated energy-loss functions (ELF)

for all three crystals. It shows the collective excitation of electrons at high

frequency. The main peak of ELF is defined as the plasma frequency (ωp).
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Figure 6: Optical dielectric function for the crystals from (a) kaolinite, (b)
muscovite, and (c) montmorillonite. The black curve is for the real part
(ε1); the red curve is for the imaginary part (ε2). (d-f) show the energy-loss
function for kaolinite, muscovite, and montmorillonite, respectively.

Among the three crystals, muscovite had the highest ωp at 23.59eV and

kaolinite had lowest ωp at 21.38eV.

3.3.4 Mechanical Properties

One of the important factors in clay mineral study is obtaining the elastic

properties and the sound velocity, which will help to understand the seismic

and sonic log [55]. We calculated the elastic coefficients from VASP relaxed

structures for the three crystals. From the elastic coefficients, the mechanical

parameters for these crystals were obtained. They were the bulk modulus

37



(K), shear modulus (G), Young’s modulus (E), Poisson’s ratio ( η ), Pugh’s

modulus ratio ( k = G/K), and Vicker’s hardness (Hv) and are summa-

rized in Table 3. The calculated bulk modulus for kaolinite was 46.93 GPa,

which falls in the experimentally obtained range of 21 to 55 GPa[84, 88].

The higher the bulk modulus, the less compressible the crystal is. The shear

modulus represents the modulus of the rigidity of the material and Young’s

modulus represents the stiffness of the material. Among the three crystals,

muscovite had the highest bulk modulus, Young’s modulus, and shear mod-

ulus. Pugh’s modulus ratio (G/K) estimates the brittleness or ductility of

the material from comparative analysis. In Pugh’s modulus ratio approx-

imation, an empirical boundary value of 0.571 could be defined to classify

metallic materials as brittle (> 0.571) or ductile (< 0.571) [79]. The calcu-

lated Pugh’s modulus ratio (G/K ratio) for kaolinite, muscovite, and MMT

was 0.678, 0.715, and 0.745, respectively. MMT is more brittle than kaolin-

ite or muscovite. This could be a result of the difference in composition and

structure. Vicker’s hardness for the three crystals was calculated using Tian

et al.’s [81] equation HV = 0.92k1.137G0.708. Muscovite had a higher Vicker’s

hardness in comparison to kaolinite and MMT (shown in Table 3). Young’s

modulus and shear modulus are further shown in a three-dimensional plot in

Figure 7. The Young’s modulus for the three crystals showed an anisotropic

nature and the shear modulus showed a more complex nature, with both
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translucent blue and green colors.

Figure 7: 3D representation surfaces of Young’s modulus for (a) kaolinite,
(b) muscovite, and (c) montmorillonite, (d-f) show Shear modulus for kaoli-
nite, muscovite, and montmorillonite crystals respectively. Green: minimum
positive, translucent blue: maximum positive[22].

Table 3: The calculated bulk modulus (K), shear modulus (G), Young’s
modulus (E), Poisson’s ratio (η), Pugh’s modulus ratio (k = G/K), and
Vicker’s hardness (HV) in GPa for kaolinite, muscovite, and MMT.

Crystal K(GPa) G(GPa) E(GPa) η G/K HV(GPa)
Kaolinite 46.93 31.83 77.88 0.2235 0.6782 6.853
Muscovite 53.47 38.24 92.64 0.2112 0.7152 8.293
MMT 31.85 23.74 57.049 0.2015 0.7453 6.198

Once we obtained the elastic tensors for the three kaolinite, muscovite,

and MMT minerals, it was also imperative to obtain the sound velocities. We
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obtained the transverse sound velocity VT and longitudinal sound velocity VL

by using the following equations.

VT =

√
G

ρ
, VL =

√√√√K +
4

3
G

ρ
(3.2)

where ρ is density. The calculated VL, VT , and ρ values for those minerals

are listed in Table 4. Both VL and VT were greater in muscovite than the

other two. These values could be useful in the geosciences area and used for

seismology databases.

Table 4: Values of density and sound velocities VL and VT.

Crystal ρ (g/cm3) VL(m/s) VT(m/s)
Kaolinite 2.58 5885 3512
Muscovite 2.71 6208 3756
MMT 2.76 4797 2933

3.4 Conclusion

We presented detailed results on the first-principles calculation of the

electronic structure, interatomic bonding, partial charge, optical properties,

and mechanical properties. The three crystals had wide band gaps, showing

their insulating nature. The O-H bonds were the strongest bond, with the

largest BO of around 0.29 e in the three crystals. In addition, Si-O bonds were
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reasonably strong and had the highest percentage contribution of the three

crystals. Based on TBOD, kaolinite was slightly more cohesive than MMT

or muscovite. Muscovite had the highest plasmon frequency of 23.59 eV.

Despite similar compositions specifically in kaolinite and MMT, we obtained

somewhat different results for their mechanical properties. Muscovite had

a higher bulk, shear, Young’s modulus, and Vicker’s hardness. As a result

of the higher Pugh’s modulus ratio, MMT was more brittle than kaolinite

or muscovite. The presented work is the first step in understanding the

structure and properties of these three clay minerals. We plan to extend this

study to include the influence of dopant Mg and Na.
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CHAPTER 4

ELECTRONIC STRUCTURE AND MECHANICAL PROPERTIES OF

SOLVATED MONTMORILLONITE CLAY USING LARGE-SCALE DFT

METHOD

4.1 Introduction

In recent years, ab initio approaches have grown increasingly prominent

in material research. They have led to a number of impressive discoveries [93,

62] and successful applications of DFT to study the electronic structure and

properties of atoms, molecules, and solids. For example, DFT calculations

have been used to predict the stability and reactivity of transition metal

catalysts, which are widely used in chemical reactions.

MMT clay is a type of smectite clay mineral. It is naturally abundant

and can be chemically modified through the cation exchange [47, 50, 21].

Weathering of eruptive rock materials leads to the formation of MMT. MMT

is considered to be a valuable model for studying the properties of smec-

tite clay minerals, owing to its high swelling capacity and ability to produce

stable suspensions [48]. Crystalline MMT has a layered structure that is

characteristic of smectites, consisting of two tetrahedral sheets sandwiching

a central octahedral sheet, as shown in Figure 8. Its layer charge and ex-
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changeable cations are easily modifiable, making it a versatile material for

investigating the properties of smectite clay minerals. Moreover, crystalline

MMT has been widely studied in the literature, and its properties and be-

haviors are well documented, making it an excellent reference material for

exploring other smectites. MMT is a class of materials that is hydrophilic

and is capable of absorbing cations [2]. Therefore, it can be used in numer-

ous fields, such as oil refining, pharmaceutical preparations, sugar refining,

catalyst, and as a binder for insulating materials [27]. Moreover, MMT is

used to design polymer-clay nanocomposites, which are capable of changing

its strength and resistance . Furthermore, it can form composites of biologi-

cal entities, such as proteins and amino acids [35]. Computational modelling

can provide valuable information to gain insight into the complex structures

of clay minerals, including solvated montmorillonite (MMT). In comparison

to crystalline MMT, the solvated MMT is far more challenging to study due

to the presence of water [31, 80] and other elements, such as Na,Mg, and

Cl between these layers. Na+has been identified as the main electric charge

carrier [78] of the MMT layer. When a divalent metal ion takes the place

of an aluminum ion in octahedral structure of MMT, it results in having a

net negative charge. This layer attracts or binds to positively charged ions

(also known as exchangeable cations), such as sodium, potassium, calcium,

and magnesium, leading to the formation of an interlayer hydrated phase.

43



Figure 8: Polyhedral structure for crystalline MMT model.
SiO4tetrahedraandAlO6octahedraareshowninblueandlightblue, respectively.

These changes to the structure may have environmental impacts since they

affect the mineral’s ability to adsorb and release ions and molecules, which

can influence soil fertility, nutrient cycling, and water retention.

Understanding and predicting MMT clay’s interactions with water and

other environmental fluids is a critical topic in geotechnical engineering, geo-

environmental engineering, industrial applications, such as muds for oil well

drilling, and water treatment. MMT clay possesses a remarkable capacity

to absorb water into its interlayer spaces. This water absorption triggers

a reaction within the clay, leading to its swelling. Due to the significant

interest in understanding and predicting the swelling behavior of MMT clay,
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it becomes essential to develop and study a precise model that can effectively

explain and forecast this phenomenon.

To gain a deeper understanding of various material properties, researchers

can employ a range of approaches, such as theoretical simulations and exper-

imental studies. These methods can establish meaningful correlations and

comparisons between different properties, providing valuable insights and a

wider perspective. Nevertheless, performing experimental research can be an

expensive undertaking in terms of time and money due to the requirement for

multiple physical fabrication attempts and practical limitations while compu-

tational simulations, such as the orthogonalized linear combination of atomic

orbitals (OLCAO) [10] and molecular dynamic (MD), supported by robust

algorithms and valid theoretical models, have emerged as a crucial element in

contemporary research. These simulations serve as a bridge between theory

and experiments [20]. OLCAO is a powerful computational tool for studying

the electronic structure and properties of materials. This method can cal-

culate complex systems with up to mote than 4000 atoms, making it useful

for investigating a wide range of materials, including complex minerals and

alloys. By combining these approaches, researchers can gain a comprehen-

sive understanding of the relationships between different material properties,

paving the way for new discoveries and applications in materials science.

In this work, we performed detailed DFT calculations on the solvated
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MMT model. The model consists of 4071 atoms with metallic elements, such

as Na,Mg and Cl. Details of the solvated model are described in Section

2. We focus on the electronic structure, interatomic bonding, mechanical

properties, and partial charge distributions of the solvated MMT. The elec-

tronic structure and properties of materials have been altered by the presence

of both metallic elements and water molecules, leading to the possibility of

unexpected applications. From the interatomic bonding, we have provided

critical parameters, such as total and partial bond order density (TBOD and

PBOD). The bond order can provide information about the internal cohe-

sion of a material. Additionally, these parameters can be utilized to compare

dissimilar materials and identify similarities and differences in their bonding

behavior, thereby facilitating the design and optimization of materials with

specific properties and functions.

4.2 Model Construction

The original model, created by N. Subramanian et al. [71] was constructed

with five layers of MMT clay stacked on top of each other. This unit cell

is then replicated in the a − b plane, followed by isomorphic substitution

of Mg2+ for Al3+ in the octahedral sheet to produce a MMT layer with

hydroxyl groups in places compatible with experimental results for Wyoming-

MMT with a charge of −0.57e− per unit cell
(
O20(OH)4[9].Na

+was added to
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neutralize the net structural charge of the MMT layer. N. Subramanian et al.,

created the molecular structure of MMT using HRTEM lattice parameters

as a monoclinic unit cell in the C121 space group; the lattice constants

a = 5.25Å, b = 9.03Å, c = 10.07Å, and β = 99.5◦ from Douillard et al. [17].

The solvated MMT layer used in this work was extracted from the model of

N. Subramanian et al, as illustrated in Figure 9. The solvated MMT model

of N. Subramanian et al. mainly has one layer, that is replicated five times

to form a large model. We chose to extract only one layer since we have a

periodic boundary condition in our model. One of the major difficulties we

encountered during the extraction for the solvated MMT layer was the cell

size, which needs to be optimized. This has been successfully resolved by

optimization via VASP code [39, 38]. The optimized lattice parameters are

a = 51.29Å, b = 49.12Å, and c = 18.27Å. The final large supercell model

has 4071 atoms including 1057 water molecules.

4.3 Computation Methods

The VASP package is employed to thoroughly optimize the structure of

large solvated MMT model (see section 2.2). We used an energy cut-off of

600eV, with electronic force convergence at 10− 5eV, and single KPOINTS

for the large solvated MMT model. The optimized structure obtained from

VASP is used as input in the OLCAO calculation for electronic structure
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Figure 9: Two-dimensional (2D) structure sketch of (a) N. Subramanian et
al. model with five layers of MMT. The (b) extracted layer for solvated MMT
model in ball and stick form.

and interatomic bonding. OLCAO method uses atomic orbitals in the basis

expansion [11]. The combination of OLCAO method with VASP has been

very successful in electronic property calculations, especially for large and

complex systems. This success is due to the flexibility and economic use of

the basis set [12, 1, 37].

48



4.4 Results and Discussion

4.4.1 Electronic Structure and interatomic Bonding

Total density of states (TDOS) and atom-resolved partial DOS (PDOS)

are the most effective ways to summarize the electronic structures of a ma-

terial. In this investigation, the DOS computation was carried out using

minimal basis (MB). These results for solvated MMT are compared with crys-

talline MMT [73] and shown in Figure 10. We also calculated the TDOS and

PDOS for both models within an energy range from −20.21eV to 15.88eV.

In the crystalline MMT, the valance band (VB) DOS has the highest peak at

−1.5eV, while the highest peak in solvated MMT is at −8.5eV. In crystalline

MMT, the DOS in the conduction band (CB) has multiple peaks ranging from

6eV to 15.88eV, which mostly originates from O, Si, and Al atoms. Whereas

in solvated MMT, there is a single prominent peak at 8.5eV, which originates

from O. The atom-resolved PDOS summarizes the contributions from each

atom to the VB and CB. In both cases, it shows the lower part of the VB

DOS mainly originating from the O atoms. There is a clear HOMO-LUMO

band gap ( Egap ) of 5.11eV in the crystalline model, but no band gap in the

solvated model due to the presence of water molecules. Both oxygen and hy-

drogen atoms are filling the gap with further interaction to Si and Al atoms.

It is important to note that the location of 0eV is not the same. The 0eV is
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Figure 10: Calculated TDOS and PDOS of the (a) crystalline MMT model,
(b) solvated MMT model with inset focused on -5 eV to 5 eV. The atom-
resolved PDOS is shown in color. O: green; H: red; with inset focused on −5
eV to 5 eV. The atom-resolved PDOS is shown in color. O: green; H: red;
Si: blue; Al: light blue; Mg: purple; Cl: yellow; Na: brown.

at the highest occupied state at HOMO-LUMO. In the solvated model, the

water molecules occupied those states. Furthermore, solvation refers to the

process of dissolving a material in a solvent, which can result in the formation

of a solvated shell around the material. The solvation shell can interact with

MMT’s electronic orbital, leading to changes in their energy levels or charge

distribution. As a result, we can claim that when the size of the alkali ions

increases, the band gap decreases as in the hydrated MMT.

The most critical component of the electronic structure is interatomic
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bonding. Crystalline MMT has only four types of bonds: O−H, Si−O,Al−O,

and O · · ·H, which are also in the solvated model. The solvated MMT is sig-

nificantly more complicated. It has a total of fifteen types of bonds: Al-

H,Al − O,Cl − H,Cl − Na,Cl − O,H − H,H −Mg,H − Na,O − H,O · · ·H,

H− Si,Mg−O,Na−O,O−O, and Si−O. In crystalline MMT, the O−H

bond exhibits a strong bond with a bond order (BO) value of approximately

0.29e−, as depicted in Figure 11a. Additionally, there are some hydrogen

bonds (HB) O · · ·H with very low BO and larger bond length (BL) between

2.47 and 3.49Å. The Si-O and higher BO are followed by Al-O bonds and

both bonds act as a unit in the crystalline MMT. In solvated MMT, there is

a wide range of BO for O−H, Si−O, and Al−O bonds. It is worth noting

that the bond length has lower variation, while the bond order fluctuates sig-

nificantly. This fluctuation in bond order could be explained by the presence

of water molecules. Additionally, there is a notable presence of weak O · · ·H

bonds ranging from 1.50Å to 3.49Å. In solvated MMT, O-O bond has the

strongest BO value of around 0.51e−, followed by the H−H bond with a BO

value of approximately 0.47e−, as shown in Figure 11b . Interestingly, there

are short H − H bonds with higher BO in the solvated MMT. These short

H−H bonds are from two different H2O molecules. Mg−O and Na−O have

bonds with noticeable BO. Cl − H has higher BO of around 0.28e−in com-

parison to Al−H,H−Mg,H−Na, and H−Si bonds. Al−H,H−Mg,H−Si,
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Figure 11: (a) BO vs. BL distributions for all atomic pairs in the (a) crys-
talline MMT model and (b) solvated MMT with inset focused on BL from
1.5 Å to 2.7 Å.

and H − Na have lower BO at higher BL and are overlapped by other data

in Figure 11b. There is one Cl−Na bond with BO of 0.06e−at 2.69Å. These

bonds may not have a strong effect in the solvated MMT.

TBOD is a useful metric to study the crystal cohesiveness. The TBOD

for the crystalline MMT is 0.033e−/Å3, whereas for the solvated MMT, it is

0.022e−/Å3. To identify the reason behind lower TBOD in solvated MMT,

we further analyzed the percentage contribution from the PBOD for each

type of bond as shown in Figure 12. Si-O bonds with 62.29% contribu-

tion in TBOD of crystalline MMT is significantly higher. Si-O bonds form

a strong three-dimensional network of tetrahedral sheets, providing struc-

tural stability and cohesiveness. On the other hand, solvated MMT contains

52



water molecules and exchangeable cations between the layers, which create

weaker electrostatic interactions with the mineral, reducing its overall co-

hesiveness. Although the Si-O bonds in solvated MMT are also covalent

in nature, they contribute less to the stability than in crystalline MMT.

Therefore, understanding the difference in the contribution of Si− O bonds

between the two types of MMT is essential for understanding their distinct

physical and chemical properties. We observe that the Al-O bonds also

make higher contribution of 29.67% in crystalline MMT in comparison to

solvated MMT with modest contribution of 12.34%. The presence of water

in solvated MMT leads to the formation of a strong hydrogen [95] bonding

network between the absorbed water in the interlayer, which is energetically

favorable and exothermic. These findings have significant implications for

applications, such as nuclear waste storage. In addition, the strong O − H

bonds found in water molecules as well as in the hydroxyl groups have key

contribution of 44.17% in the solvated MMT. Whereas the O−H bonds have

only 7.72% contribution in crystalline MMT. Following a similar pattern, the

solvated MMT has higher O · · ·H contribution in comparison to crystalline

MMT. Higher O − H and O.H contribution in the solvated MMT is clearly

due to water molecules, since MMT is known to be hydrophilic and this

notable characteristic differentiates it from crystalline MMT and other clay

minerals. Furthermore, there is a very low contribution of Mg − O,O − O,
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Figure 12: Pie chart for the pair contributions of (a) Crystalline MMT model
and (b) solvated MMT model.
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and H − H bonds as shown in Figure 12 b. The lower BO contribution of

Al− H,Cl− Na,H− Na,H−Mg, and H− Si bonds leads to negligible per-

centage contribution in TBOD. Solvated MMT leads to a significantly more

complicated bonding arrangement and a wide range of BO values. A com-

prehensive explanation of interatomic bonding in a complex system, as this

large model shows, is a challenging endeavor.

4.4.2 Mechanical Properties

The study of mechanical properties of clay minerals is critical, particularly

for engineering[68, 52]. However, due to their tiny particle size the mechan-

ical properties of clay minerals are difficult to evaluate directly. It is hard

to isolate a large enough individual crystal of clay and impossible to directly

measure their acoustic properties. However, we employed a computational

approach using VASP to calculate the elastic coefficients for both crystalline

and solvated MMT. Table 5 shows the calculated mechanical properties of

crystalline and solvated MMT. The calculated mechanical properties are bulk

modulus (k = G/K), and Vicker’s hardness (Hv). Shear modulus (G) mea-

sures how resistant a material is to shear deformation. On the other hand,

bulk modulus (K) measures a material’s resistance to volume compression.

The compressibility of a material increases as its K decreases. Additionally,

the sound velocity is closely related to the G and K, making it a useful pa-
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rameter for analyzing the seismic and sonic log data [51]. Finally, Young’s

modulus (E) measures how stiff a material is or how well it can resist deform-

ing in the direction of an applied force. This study compares the mechanical

properties of the solvated model to the crystalline model and reveals a signif-

icant decrease in the G, K, and E of solvated MMT. This implies that water

solvation in MMT reduces the mechanical strength. However, the Poisson’s

ratio of both models remains similar, exhibiting only slight variations in their

values. This means that water has no effect on the material’s ability to con-

tract laterally while being stretched longitudinally. It is also interesting to

note that Pugh’s modulus ratio and Vicker’s hardness are slightly lower for

solvated MMT. This indicates that solvated MMT is less stiff and less resis-

tant to deformation than crystalline MMT. We were unable to find any exper-

imental data on the mechanical properties of solvated MMT for compositions

analogous to those used in this study. In order to visualize the anisotropy of

the Young’s and shear moduli, we have plotted the three-dimensional (3D)

anisotropic surface figures using ELATE [22] software for both crystalline and

solvated MMT in Figure 13. The surfaces of Young’s modulus are shown in

green color in both crystalline and solvated MMT, indicating the positive

values. The degree of deviation of the surfaces in Young’s and shear mod-

uli from the spherical shape determines the anisotropy. Figure 13a, b shows

that the degree of elastic anisotropy in Young’s and shear moduli is higher
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in crystalline MMT compared to solvated MMT, as shown in Figure 13c,d.

This can be attributed to the fact that crystalline MMT has a more spherical

shape in all three planes, which leads to a more isotropic distribution [96].

In solvated MMT, the presence of absorbed water molecules in the interlayer

region causes the clay to swell, resulting in a more elongated shape and a

higher degree of elastic anisotropy. In contrast, crystalline MMT has a more

compact and ordered structure, which leads to a lower degree of anisotropy

in its elastic properties.

Table 5: The calculated bulk modulus (K), shear modulus (G), Young’s
modulus (E), Poisson’s ratio (η), Pugh’s modulus ratio (k = G/K), and
Vicker’s hardness (HV ) for crystalline and solvated models.

Model K (GPa) G (GPa) E (GPa) η G/K HV (GPa)
Cryst-MMT∗ 31.85 23.74 57.05 0.2015 0.7453 6.201
Solv-MMT 21.55 16.03 38.53 0.2019 0.7438 4.685

∗ From reference [73].

It is crucial to determine the sound velocities once we have the elastic

tensors for the solvated MMT. In Table 6 , we compare the calculated den-

sities, VL and VT , of crystalline and solvated MMT. In the solvated MMT,

VL and VT are both larger than in the crystalline case. These results may

have applications in seismology and geosciences. The values of VL and VT

can be used to determine the elastic properties of a material and to infer

its geological structure. Compared with other clay minerals, such as illite,
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Figure 13: A 3D representation of (a) Young’s modulus and (b) shear mod-
ulus for crystalline MMT; (c) Young’s modulus and (d) shear modulus for
solvated MMT model.

it has been found that the elastic properties of MMT are highly dependent

on the layer charge density and the nature of the interlayer cations. This

makes them a potentially useful tool for exploring geological structures and

characterizing subsurface environments.

In particular, the high swelling capacity of MMT and its ability to form sta-

ble suspensions make it a promising candidate for use in drilling fluids, where

it can help in stabilizing boreholes and prevent blowouts.

Table 6: Density (ρ) and values of sound velocities (VL and VT).

Model ρ (g/cm3) VL(m/s) VT(m/s)
Cryst-MMT∗ 2.76 4797 2933
Solv-MMT 1.64 5115 3126

∗From reference [73].
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4.5 Conclusion

In this work, we explore the computational simulation of montmorillonite

(MMT) in both crystalline and solvated forms. Our study presents a com-

prehensive analysis of the electronic structure, interatomic bonding, and me-

chanical properties for solvated MMT clay mineral. This is the first study on

solvated MMT using large-scale supercell modelling based on density func-

tional theory (DFI). Our meticulous analysis involves bonds between each

pair of atoms in the solvated MMT model, which reveals the complexity of

covalent and hydrogen bonds. One of the key findings is that the presence

of water in this model leads to a strong hydrogen bonding network with ad-

sorbed water molecules in the interlayer. The O−H, Si−O,Al−O, and O.H

are important components of interatomic bonding, which is found in both

crystalline and solvated MMT. We can see that O−H and O · · ·H bonds have

a higher contribution in the solvated MMT compared to crystalline MMT

due to water molecules. Conversely, the Si− O and Al− O bonds have less

contribution in the solvated MMT compared to crystalline MMT. Moreover,

our analysis of the electronic structure revealed a single prominent peak in

the DOS in the conduction band (CB) located at −8.5eV in the solvated

MMT model. In addition, we analyzed the atom-resolved partial density of

states (PDOS) to determine the contributions made by each atom in the VB

and CB. We found that the majority of the lower part of the VB DOS origi-
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nates from the O atom, while the CBDOS is contributed by H atoms. One of

the most significant findings is that the solvation of montmorillonite (MMT)

leads to a significant decrease in its mechanical strength, as evidenced by

reduced values of G,K, and E. The presence of water does not affect the

material’s lateral contraction ability while being longitudinally stretched, as

indicated by similar Poisson’s ratios for solvated and crystalline MMT. These

results from mechanical properties also reveal important insights into sound

velocities. Comparing the densities, VL and VT , we observe that both values

of VL and VT are higher in solvated MMT compared to crystalline MMT,

while the converse is true in densities. Our findings have implications for the

potential application of MMT clay in environmental applications as a landfill

barrier and toxic waste repository. In summary, our study sheds light on the

electronic structure and bonding network of solvated MMT clay, which can

guide future research into its potential applications.
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CHAPTER 5

FINAL REMARKS AND FUTURE WORK

There are numerous opportunities to advance the study of clay minerals,

especially for Montmorillonite (MMT) clay. In the following, we outline po-

tential avenues for further exploration:

1- Enhance solvation models within VASP to better capture interactions be-

tween Montmorillonite clay and solvent molecules. we will consider utilizing

advanced solvation techniques like the embedded cluster method or explicit

solvent models available in VASP.

2- Thinking of exploring the use of hybrid functionals within VASP to en-

hance the accuracy of electronic structure predictions. Hybrid functionals,

combining the strengths of Hartree-Fock and DFT, offer a more precise de-

scription of electronic interactions.

3- Implement machine learning techniques to predict electronic and mechani-

cal properties based on results obtained from VASP and OLCAO simulations.

This approach can significantly expedite property evaluations and facilitate

high-throughput screening.

4- Improve accuracy in intermolecular interactions by incorporating advanced

dispersion corrections within VASP. This becomes particularly crucial when

studying solvated systems where dispersion forces play a pivotal role.
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5- Collaboration with Experimentalists: Foster close collaboration with ex-

perimental researchers to design experiments that complement and validate

computational findings. This collaborative approach enhances the applica-

bility and reliability of the results by combining insights from both compu-

tational and experimental perspectives.

These future work suggestions aim to refine and extend the understanding

of electronic structure and mechanical properties of solvated Montmorillonite

clay, leveraging the capabilities of VASP and OLCAO.
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APPENDIX A

Input files INCAR, KPOINTS and POSCAR used for VASP calculation are

listed.

INCAR file for Kaolinite.

System = Si2Al2O9H4

ISMEAR = -5 ! Use 0 for KPOINTS less than 4 otherwise -5.

PREC = Accurate ! low, medium, normal are other options. Use suitable

one.

ENCUT = 600 eV ! Decide considering the crystal size and accuracy you

want.

EDIFF = 1.0E-5 ! Enegy difference covergence limit for electronic optimiza-

tion.

EDIFFG = -1.0E-3 ! Enegy difference covergence limit for ionic optimiza-

tion.

IBRION = 1 ! 0 for MD, 1 best, 2 for diff relaxation problems. Othere

numbers for diffrent cases.

NSW = 3000 ! Total number of ionic steps.

ISIF = 3 ! 2 and 4 ionic, 7 volume and 3 both.

LREAL = Auto ! Projection on real space. use FALSE (default) for recip-

rocal space.

NPAR = 12 ! Best sqrt of NCPUs used. should be ¿= NCPUs/32.
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ALGO = Fast ! default is Normal.

LCHARG = F ! No writting in CHG and CHGCAR files

LWAVE = F

INCAR file for Muscovite.

System = Al24O96Si24K8H16

ISMEAR = 0 ! Use 0 for KPOINTS less than 4 otherwise -5.

PREC = Accurate ! low, medium, normal are other options. Use suitable

one.

ENCUT = 600 eV ! Decide considering the crystal size and accuracy you

want.

EDIFF = 1.0E-5 ! Enegy difference covergence limit for electronic optimiza-

tion.

EDIFFG = -1.0E-3 ! Enegy difference covergence limit for ionic optimiza-

tion.

IBRION = 1 ! 0 for MD, 1 best, 2 for diff relaxation problems. Othere

numbers for diffrent cases.

NSW = 3000 ! Total number of ionic steps.

ISIF = 3 ! 2 and 4 ionic, 7 volume and 3 both.

LREAL = Auto ! Projection on real space. use FALSE (default) for recip-

rocal space.

NPAR = 12 ! Best sqrt of NCPUs used. should be ¿= NCPUs/32.
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ALGO = Fast ! default is Normal.

LCHARG = F ! No writting in CHG and CHGCAR files

LWAVE = F ! No writting in WAVECAR file

INCAR file for Montmorillonite.

System = Al4Si8O24H4

ISMEAR = 0 ! Use 0 for KPOINTS less than 4 otherwise -5.

PREC = Accurate ! low, medium, normal are other options. Use suitable

one.

ENCUT = 600 eV ! Decide considering the crystal size and accuracy you

want.

EDIFF = 1.0E-5 ! Enegy difference covergence limit for electronic optimiza-

tion.

EDIFFG = -1.0E-3 ! Enegy difference covergence limit for ionic optimiza-

tion.

IBRION = 1 ! 0 for MD, 1 best, 2 for diff relaxation problems. Othere

numbers for diffrent cases.

NSW = 3000 ! Total number of ionic steps.

ISIF = 3 ! 2 and 4 ionic, 7 volume and 3 both.

LREAL = Auto ! Projection on real space. use FALSE (default) for recip-

rocal space.

NPAR = 12 ! Best sqrt of NCPUs used. should be ¿= NCPUs/32.
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ALGO = Fast ! default is Normal.

LCHARG = F ! No writting in CHG and CHGCAR files

LWAVE = F ! No writting in WAVECAR file

KPOINT file used for Kaolinite.

0

G

6 6 4

0 0 0

KPOINT file used for Muscovite.

G

0

G

2 2 1

0 0 0

KPOINT file used for Montmorillonite.

G

0

G

2 1 1

0 0 0

POSCAR file used for Kaolinite.
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System Si2Al2O9H4

1.00

5.15500000 0.00000000 0.00000000

2.56346200 4.47243600 0.00000000

0.75860800 1.75409000 7.15413900

Si Al O H

2 2 9 4

Direct

0.631600000000 0.638600000000 0.090900000000

0.314600000000 0.292800000000 0.091300000000

0.666700000000 0.783700000000 0.472100000000

0.326700000000 0.453300000000 0.469900000000

0.606000000000 0.568300000000 0.317000000000

0.373900000000 0.181100000000 0.317500000000

0.505400000000 0.000000000000 0.000000000000

0.973200000000 0.450100000000 0.024700000000

0.442800000000 0.530000000000 0.003200000000

0.996100000000 0.797900000000 0.322000000000

0.620600000000 0.066800000000 0.605100000000

0.382600000000 0.686300000000 0.608000000000

0.004800000000 0.445900000000 0.609400000000
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0.729100000000 0.022400000000 0.723200000000

0.011200000000 0.297500000000 0.728600000000

0.284200000000 0.744300000000 0.725800000000

0.998000000000 0.985900000000 0.329500000000

POSCAR file used for Muscovite.

System Al24O96Si24K8H16

1.00

10.37800000 0.00000000 0.00000000

0.00000000 8.99600000 0.00000000

-1.81436600 0.00000000 20.01392700

Al O Si K H

24 96 24 8 16

Direct

0.124200000000 0.087100000000 0.001600000000

0.624200000000 0.087100000000 0.001600000000

0.375800000000 0.087100000000 0.498400000000

0.875800000000 0.087100000000 0.498400000000

0.375800000000 0.912900000000 0.998400000000

0.875800000000 0.912900000000 0.998400000000

0.124200000000 0.912900000000 0.501600000000

0.624200000000 0.912900000000 0.501600000000
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0.374200000000 0.587100000000 0.001600000000

0.874200000000 0.587100000000 0.001600000000

0.125800000000 0.587100000000 0.498400000000

0.625800000000 0.587100000000 0.498400000000

0.125800000000 0.412900000000 0.998400000000

0.625800000000 0.412900000000 0.998400000000

0.374200000000 0.412900000000 0.501600000000

0.874200000000 0.412900000000 0.501600000000

0.731250000000 0.924200000000 0.137200000000

0.768750000000 0.924200000000 0.362800000000

0.768750000000 0.075800000000 0.862800000000

0.731250000000 0.075800000000 0.637200000000

0.981250000000 0.424200000000 0.137200000000

0.518750000000 0.424200000000 0.362800000000

0.518750000000 0.575800000000 0.862800000000

0.981250000000 0.575800000000 0.637200000000

0.232500000000 0.945000000000 0.052700000000

0.732500000000 0.945000000000 0.052700000000

0.267500000000 0.945000000000 0.447300000000

0.767500000000 0.945000000000 0.447300000000

0.267500000000 0.055000000000 0.947300000000
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0.767500000000 0.055000000000 0.947300000000

0.232500000000 0.055000000000 0.552700000000

0.732500000000 0.055000000000 0.552700000000

0.482500000000 0.445000000000 0.052700000000

0.982500000000 0.445000000000 0.052700000000

0.017500000000 0.445000000000 0.447300000000

0.517500000000 0.445000000000 0.447300000000

0.017500000000 0.555000000000 0.947300000000

0.517500000000 0.555000000000 0.947300000000

0.482500000000 0.555000000000 0.552700000000

0.982500000000 0.555000000000 0.552700000000

0.212500000000 0.260000000000 0.054200000000

0.712500000000 0.260000000000 0.054200000000

0.287500000000 0.260000000000 0.445800000000

0.787500000000 0.260000000000 0.445800000000

0.287500000000 0.740000000000 0.945800000000

0.787500000000 0.740000000000 0.945800000000

0.212500000000 0.740000000000 0.554200000000

0.712500000000 0.740000000000 0.554200000000

0.462500000000 0.760000000000 0.054200000000

0.962500000000 0.760000000000 0.054200000000
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0.037500000000 0.760000000000 0.445800000000

0.537500000000 0.760000000000 0.445800000000

0.037500000000 0.240000000000 0.945800000000

0.537500000000 0.240000000000 0.945800000000

0.462500000000 0.240000000000 0.554200000000

0.962500000000 0.240000000000 0.554200000000

0.226500000000 0.558000000000 0.052000000000

0.726500000000 0.558000000000 0.052000000000

0.273500000000 0.558000000000 0.448000000000

0.773500000000 0.558000000000 0.448000000000

0.273500000000 0.442000000000 0.948000000000

0.773500000000 0.442000000000 0.948000000000

0.226500000000 0.442000000000 0.552000000000

0.726500000000 0.442000000000 0.552000000000

0.476500000000 0.058000000000 0.052000000000

0.976500000000 0.058000000000 0.052000000000

0.023500000000 0.058000000000 0.448000000000

0.523500000000 0.058000000000 0.448000000000

0.023500000000 0.942000000000 0.948000000000

0.523500000000 0.942000000000 0.948000000000

0.476500000000 0.942000000000 0.552000000000
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0.976500000000 0.942000000000 0.552000000000

0.204000000000 0.096000000000 0.168000000000

0.704000000000 0.096000000000 0.168000000000

0.296000000000 0.096000000000 0.332000000000

0.796000000000 0.096000000000 0.332000000000

0.296000000000 0.904000000000 0.832000000000

0.796000000000 0.904000000000 0.832000000000

0.204000000000 0.904000000000 0.668000000000

0.704000000000 0.904000000000 0.668000000000

0.454000000000 0.596000000000 0.168000000000

0.954000000000 0.596000000000 0.168000000000

0.046000000000 0.596000000000 0.332000000000

0.546000000000 0.596000000000 0.332000000000

0.046000000000 0.404000000000 0.832000000000

0.546000000000 0.404000000000 0.832000000000

0.454000000000 0.404000000000 0.668000000000

0.954000000000 0.404000000000 0.668000000000

0.122500000000 0.802000000000 0.162000000000

0.622500000000 0.802000000000 0.162000000000

0.377500000000 0.802000000000 0.338000000000

0.877500000000 0.802000000000 0.338000000000
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0.377500000000 0.198000000000 0.838000000000

0.877500000000 0.198000000000 0.838000000000

0.122500000000 0.198000000000 0.662000000000

0.622500000000 0.198000000000 0.662000000000

0.372500000000 0.302000000000 0.162000000000

0.872500000000 0.302000000000 0.162000000000

0.127500000000 0.302000000000 0.338000000000

0.627500000000 0.302000000000 0.338000000000

0.127500000000 0.698000000000 0.838000000000

0.627500000000 0.698000000000 0.838000000000

0.372500000000 0.698000000000 0.662000000000

0.872500000000 0.698000000000 0.662000000000

0.131450000000 0.371300000000 0.167400000000

0.631450000000 0.371300000000 0.167400000000

0.368550000000 0.371300000000 0.332600000000

0.868550000000 0.371300000000 0.332600000000

0.368550000000 0.628700000000 0.832600000000

0.868550000000 0.628700000000 0.832600000000

0.131450000000 0.628700000000 0.667400000000

0.631450000000 0.628700000000 0.667400000000

0.381450000000 0.871300000000 0.167400000000
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0.881450000000 0.871300000000 0.167400000000

0.118550000000 0.871300000000 0.332600000000

0.618550000000 0.871300000000 0.332600000000

0.118550000000 0.128700000000 0.832600000000

0.618550000000 0.128700000000 0.832600000000

0.381450000000 0.128700000000 0.667400000000

0.881450000000 0.128700000000 0.667400000000

0.231250000000 0.924200000000 0.137200000000

0.268750000000 0.924200000000 0.362800000000

0.268750000000 0.075800000000 0.862800000000

0.231250000000 0.075800000000 0.637200000000

0.481250000000 0.424200000000 0.137200000000

0.018750000000 0.424200000000 0.362800000000

0.018750000000 0.575800000000 0.862800000000

0.481250000000 0.575800000000 0.637200000000

0.229650000000 0.255000000000 0.136500000000

0.729650000000 0.255000000000 0.136500000000

0.270350000000 0.255000000000 0.363500000000

0.770350000000 0.255000000000 0.363500000000

0.270350000000 0.745000000000 0.863500000000

0.770350000000 0.745000000000 0.863500000000
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0.229650000000 0.745000000000 0.636500000000

0.729650000000 0.745000000000 0.636500000000

0.479650000000 0.755000000000 0.136500000000

0.979650000000 0.755000000000 0.136500000000

0.020350000000 0.755000000000 0.363500000000

0.520350000000 0.755000000000 0.363500000000

0.020350000000 0.245000000000 0.863500000000

0.520350000000 0.245000000000 0.863500000000

0.479650000000 0.245000000000 0.636500000000

0.979650000000 0.245000000000 0.636500000000

0.000000000000 0.101600000000 0.250000000000

0.500000000000 0.101600000000 0.250000000000

0.000000000000 0.898400000000 0.750000000000

0.500000000000 0.898400000000 0.750000000000

0.250000000000 0.601600000000 0.250000000000

0.750000000000 0.601600000000 0.250000000000

0.250000000000 0.398400000000 0.750000000000

0.750000000000 0.398400000000 0.750000000000

0.210750000000 0.604600000000 0.006400000000

0.710750000000 0.604600000000 0.006400000000

0.289250000000 0.604600000000 0.493600000000
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0.789250000000 0.604600000000 0.493600000000

0.289250000000 0.395400000000 0.993600000000

0.789250000000 0.395400000000 0.993600000000

0.210750000000 0.395400000000 0.506400000000

0.710750000000 0.395400000000 0.506400000000

0.460750000000 0.104600000000 0.006400000000

0.960750000000 0.104600000000 0.006400000000

0.039250000000 0.104600000000 0.493600000000

0.539250000000 0.104600000000 0.493600000000

0.039250000000 0.895400000000 0.993600000000

0.539250000000 0.895400000000 0.993600000000

0.460750000000 0.895400000000 0.506400000000

0.960750000000 0.895400000000 0.506400000000

POSCAR file used for Montmorillonite.

System Al4Si8O24H4

1.00

5.18000000 0.00000000 0.00000000

0.00000000 8.97000000 0.00000000

-1.66202900 0.00000000 9.93189600

Al Si O H

4 8 24 4
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Direct

0.000000000000 0.000000000000 0.000000000000

0.500000000000 0.500000000000 0.000000000000

0.000000000000 0.654000000000 0.000000000000

0.500000000000 0.154000000000 0.000000000000

0.432000000000 0.333000000000 0.270000000000

0.568000000000 0.333000000000 0.730000000000

0.932000000000 0.833000000000 0.270000000000

0.068000000000 0.833000000000 0.730000000000

0.432000000000 0.662000000000 0.270000000000

0.568000000000 0.662000000000 0.730000000000

0.932000000000 0.162000000000 0.270000000000

0.068000000000 0.162000000000 0.730000000000

0.489000000000 0.496000000000 0.335000000000

0.511000000000 0.496000000000 0.665000000000

0.989000000000 0.996000000000 0.335000000000

0.011000000000 0.996000000000 0.665000000000

0.173000000000 0.725000000000 0.335000000000

0.827000000000 0.725000000000 0.665000000000

0.673000000000 0.225000000000 0.335000000000

0.327000000000 0.225000000000 0.665000000000

77



0.170000000000 0.268000000000 0.320000000000

0.830000000000 0.268000000000 0.680000000000

0.670000000000 0.768000000000 0.320000000000

0.330000000000 0.768000000000 0.680000000000

0.334000000000 0.976000000000 0.105000000000

0.666000000000 0.976000000000 0.895000000000

0.834000000000 0.476000000000 0.105000000000

0.166000000000 0.476000000000 0.895000000000

0.417000000000 0.656000000000 0.109000000000

0.583000000000 0.656000000000 0.891000000000

0.917000000000 0.156000000000 0.109000000000

0.083000000000 0.156000000000 0.891000000000

0.343000000000 0.347000000000 0.109000000000

0.657000000000 0.347000000000 0.891000000000

0.843000000000 0.847000000000 0.109000000000

0.157000000000 0.847000000000 0.891000000000

0.934000000000 0.376000000000 0.105000000000

0.066000000000 0.376000000000 0.895000000000

0.434000000000 0.876000000000 0.105000000000

0.566000000000 0.876000000000 0.895000000000
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APPENDIX B

Input files INCAR, and KPOINTS used for VASP calculation are listed for

solvated Montmorillonite.

. INCAR file .

System = N199C727O235H1135S7

ISMEAR = 0 ! Use 0 for KPOINTS less than 4 otherwise -5.

PREC = normal ! low, medium, normal are other options. Use suitable one.

ENCUT = 500 eV ! Decide considering the crystal size and accuracy you

want.

EDIFF = 1.0E-4 ! Enegy difference covergence limit for electronic optimiza-

tion.

EDIFFG = -1.0E-2 ! Enegy difference covergence limit for ionic optimiza-

tion.

IBRION = 2 ! 0 for MD, 1 best, 2 for diff relaxation problems. Othere

numbers for diffrent cases.

NSW = 250 ! Total number of ionic steps.

ISIF = 3 ! 2 and 4 ionic, 7 volume and 3 both.

LREAL = Auto ! Projection on real space. use FALSE (default) for recip-

rocal space.

NPAR = 64 ! Best sqrt of NCPUs used. should be ¿= NCPUs/32. ALGO

= Fast ! default is Normal.
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LCHARG = F ! No writting in CHG and CHGCAR files

LWAVE = F ! No writting in WAVECAR file

KPOINT file.

G

0

G

1 1 1

0 0 0

80



REFERENCE LIST

[1] Adhikari, P., Jawad, B., Rao, P., Podgornik, R., and Ching, W.-Y.

Delta Variant with P681R Critical Mutation Revealed By Ultra-Large

Atomic-Scale Ab Initio Simulation: Implications For The Fundamentals

Of Biomolecular Interactions. Viruses 14, 3 (2022), 465.

[2] Al-saeedi, A. A. Clay Basics and Their Physical and Chemical Prop-

erties. Iaetsd Journal for Advanced Research In Applied Sciences 10

(2022).

[3] Baral, K., Adhikari, P., Jawad, B., Podgornik, R., and Ching, W.-Y.

Solvent effect on the structure and properties of RGD peptide (1FUV) at

body temperature (310 K) using ab initio molecular dynamics. Polymers

13, 19 (2021), 3434.

[4] Baral, K., San, S., Sakidja, R., Couet, A., Sridharan, K., and Ching,

W.-Y. Temperature-dependent properties of molten Li2BeF4 Salt using

Ab initio molecular dynamics. ACS omega 6, 30 (2021), 19822–19835.

[5] Becke, A. D. Density-functional exchange-energy approximation with

correct asymptotic behavior. Physical review A 38, 6 (1988), 3098.

81
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