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ABSTRACT

We present 7–14mm Infrared Space Observatory (ISO) spectroscopy of 12 M-type evolved stars in the Large
Magellanic Cloud (LMC), in order to study the dust mineralogy and condensation process around these stars.
The sample stars show a broad dust feature in the 7–14mm region, which is seen in either emission or (self-)
absorption. The shape of the feature changes with increasing mass-loss rate, , suggesting a change in dustṀ
mineralogy as the central star evolves. At low mass-loss rates amorphous alumina and amorphous silicates are
observed, while at high mass-loss rates only amorphous silicates are seen, in agreement with the classical
condensation sequence expected for these materials. We find a clear correlation between and the peak wavelengthṀ
position of the broad dust feature. Our data suggest a strong dependence of the dust mineralogy on the temperature
at the dust condensation radius.

Subject headings: circumstellar matter — infrared: stars — stars: AGB and post-AGB — stars: late-type —
stars: mass loss — stars: winds, outflows

1. INTRODUCTION

Asymptotic giant branch (AGB) and red supergiant (RSG)
stars are the highly evolved descendants of low- to intermediate-
( ) and high-mass ( ) stars, respec-1 M ≤ M ! 8 M M ≥ 8 M, , ,

tively. These stars are luminous cool giants, which lose mass at
high rates (10�7 to ∼10�3 M, yr�1). The mass-loss rate is ex-
pected to increase over time (e.g., Lattanzio & Wood 2004; van
Loon et al. 2005). Mass loss leads to the formation of a circum-
stellar envelope, in which dust particles form in the outflowing
gas and help drive mass loss. The subsequent appearance of
different dust species from the outflowing gas is known as the
“dust condensation sequence.” The order in which condensation
of different species occurs depends on the physical conditions
within the envelope and is still poorly understood. Around M-
type stars, which have oxygen-rich atmospheres ( ), ox-C/O ! 1
ides and silicates are expected to form (e.g., Tielens 1990; Tielens
et al. 1997). Here amorphous alumina (an oxide) and amorphous
silicates may show broad spectral features near 10mm (see, e.g.,
Speck et al. 2000).

In this Letter we present the 7�14 mm Infrared Space Ob-
servatory (ISO; Kessler et al. 1996) spectra of 12 M-type AGB
and RSG stars in the Large Magellanic Cloud (LMC). We study
their 10mm features (defined in § 3) and the dust condensation
sequence around these stars as a function of their (circum)stellar
parameters. In § 2 we present theISO spectra, followed by a
description and discussion of our results in § 3.

2. OBSERVATIONS

Figure 1 shows the 7–14mm ISO spectra of our sample stars.
The spectra were observed using theISO Camera (ISOCAM,
2.5–18mm; Cesarsky et al. 1996) and Imaging Photo-Polar-
imeter (PHT, 2.5–11.6mm; Lemke et al. 1996); the ISOCAM
observations were first published by Trams et al. (1999). The

1 Based on observations withISO, an ESA project with instruments funded
by ESA Member States (especially the PI countries: France, Germany, the
Netherlands and the UK) and with the participation of ISAS and NASA.

PHT data were taken with its spectrophotometric subsystem,
PHT-S, and reduced using the ISOPHOT Interactive Analysis
tool (PIA; Gabriel et al. 1997). Here we used pipeline version
OLP 10 data from theISO data archive. We applied standard
reduction techniques, including two-threshold deglitching, or-
bital-dependent dark current subtraction, and dynamic response
calibration. Postprocessing was also applied, which included
additional deglitching, zodiacal background subtraction, and
empirical photometric correction. Memory and off-center cor-
rections were applied to individual sources when applicable.
Table 1 summarizes which data were used for each star.

Also shown in Figure 1 are spline-fit continua for theISO
spectra, which have been determined following a method out-
lined by Molster et al. (2002). Each continuum is required to
be smooth and to maximize the continuum flux. It is used only
to enhance the visibility of sharp features in the spectrum and
has no physical meaning. Note that the continua where deter-
mined using a larger wavelength range than shown here. The
spectra and continua for Mira and W Hya, which are Galactic
sources, where taken from Speck et al. (2000) and serve as
comparison objects.

3. RESULTS AND DISCUSSION

In Figure 2 we plot the continuum-divided spectra of our
sample stars as a function of increasing mass-loss rate, ,Ṁ
which is listed in Table 1 and taken from van Loon et al. (1999).
The sample stars show a broad dust feature in the 7–14mm
region (hereafter the 10mm feature), which is seen either in
emission or (self-)absorption. The shape of the 10mm feature
changes with increasing , suggesting a change in dust min-Ṁ
eralogy as the central star evolves.

Figure 2 also shows the continuum-divided spectra of W
Hya and Mira (not necessarily ordered according to an increas-
ing ). The spectrum of W Hya is representative for a mixtureṀ
of amorphous alumina (Al2O3), an oxide, and amorphous oli-
vine (MgFeSiO4), a silicate, while that of Mira is attributed to
amorphous silicates (Speck et al. 2000). It can be seen that, at
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Fig. 1.—ISO spectra of the sample stars and their continua (dashed lines). For details see § 2.

TABLE 1
Details of the ISO observations and derived (circum)stellar parameters.

No.
(1)

IRAS Name
(2)

Data
(3)

TDT No.
(4)

Teff
a

(K)
(5)

Rb
a

(R,)
(6)

Rin
a

(R�)
(7)

aṀ
(10�6 M, yr�1)

(8)

�3log (r [g cm ])c

(9)
log (T [K])c

(10)
log (P [bar])c

(11)

l10
b

(mm)
(12)

1 . . . . . . . 04545�7000 PHT 15700828 2890 850 12.0 280 �14.731 2.921 �4.255 9.94
2 . . . . . . . 04544�6849 CAM 75600751 2890 700 8.0 7 �15.812 3.009 �5.248 9.92
3 . . . . . . . 04553�6825 PHT 19100531 3126 2100 16.0 2800 �14.767 2.893 �4.319 9.81
4 . . . . . . . 05003�6712 PHT 19100438 2890 560 9.5 29 �15.150 2.972 �4.623 10.31
5 . . . . . . . 05042�6720 PHT 15701116 3574 1300 15.5 5 �17.071 2.958 �6.558 10.33
6 . . . . . . . SV* HV 2446 CAM 71601724 3434 540 13.3 1.5 �16.697 2.974 �6.169 10.13
7 . . . . . . . 05298�6957 CAM 69101729 2890 800 12.0 230 �14.764 2.921 �4.288 10.07
8 . . . . . . . 05327�6757 PHT 12500132 3574 950 16.5 13 �16.437 2.944 �5.938 10.34
9 . . . . . . . 05329�6708 PHT 12500285 2890 600 12.0 180 �14.620 2.921 �4.144 9.45
10 . . . . . . 05402�6956 CAM 74401132 2890 550 12.0 180 �14.545 2.921 �4.069 10.04
11 . . . . . . SV* HV 12070 CAM 74901933 3309 600 11.2 0.5 �17.117 2.995 �6.567 10.90
12 . . . . . . 05558�7000 PHT 17100395 2890 750 9.8 50 �15.195 2.965 �4.674 9.73
13 . . . . . . 05558�7000 CAM 74300934 2890 480 10.5 50 �14.867 2.950 �4.362 10.20

Note.—Parameters are defined in §§ 2 and 3. If noIRAS name (col. [2]) exists for a given source, an alternative is given. A TDT number (col. [4])
uniquely identifies anISO observation in theISO data archive.

a Data taken from van Loon et al. (1999).
b l10 is the peak wavelength position of the 10mm feature (see § 3).

low mass-loss rates, the 10mm feature of the LMC stars most
closely resembles that of W Hya. As mass loss increases, the
10 mm feature shifts to shorter wavelengths, more closely re-
sembling that of Mira, and eventually goes into self-absorption.
We thus find that with increasing mass-loss rate the dust min-
eralogy changes from an amorphous alumina and amorphous
olivine mixture into an amorphous silicate–only composition.

This is in agreement with the classical condensation sequence
proposed for these materials by Tielens (1990). Depending on
the density distribution in the envelope, the condensation se-
quence stops at different points in the envelope (Tielens 1990;
Tielens et al. 1997). If the density drops rapidly with distance
from the star, only various oxides (including Al2O3) are ex-

pected to form close to the star. If densities are somewhat higher
farther out in the envelope, Ca-Al silicates may also form
through gas-grain reactions. If densities are higher still further
out, Mg silicates may also form as mantles on the Ca-Al sil-
icates. An increasing provides increasing densities in theṀ
envelope. Therefore, while at low the mineralogy may beṀ
expected to be dominated by oxides, it will become increasingly
dominated by silicates as increases, naturally accounting forṀ
the trend in Figure 2.

Alternatively, Stencel et al. (1990) hypothesized the for-
mation of chaotic silicates, in which Al-O bonds form at the
expense of Si-O bonds. From this Sloan & Price (1998) con-
cluded that less-evolved stars with low C/O ratios should show
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Fig. 2.—Continuum-divided spectra (F/Fc) for the stars in Fig. 1 as a function
of increasing mass-loss rate ( increases from bottom to top). The spectra areṀ
normalized and offset for clarity. Horizontal and vertical dotted lines indicate
continuum levels and the peak wavelength positions for Mira (9.8mm) and
W Hya (11.2mm). Numbers are those listed in Table 1; 14 is W Hya, and 15
is Mira. An artifact near 9mm in the spectra of Fig. 1 has been removed from
the spectra plotted here.

Fig. 3.—Plots ofl10 as a function of , , , and . A˙log M log r log T log Pc c c

correlation coefficient (r), its two-sided significance (P), and least-squares
fitting coefficients (slopea, offset b) are given in the lower left part of each
panel.

silicate features, while more-evolved stars with higher C/O
ratios should show Al2O3-dominated spectra. Noting thaṫM
also increases as the stars evolves, our results clearly contradict
this scenario.

In Figure 3 we plot the peak wavelength position of the 10mm
feature,l10, which was estimated by eye and is assumed to be a
measure for the dust mineralogy, as a function of , and the massṀ
density,rc, temperature,Tc, and pressure,Pc, at the dust conden-
sation radius,Rin. Here,rc, Tc, andPc were calculated from ,Ṁ
Rin, and the effective temperature,Teff, and radius,Rb, of the central
star, derived through detailed radiative transfer modeling of our
ISO spectra by van Loon et al. (1999). Furthermore, we assumed
a gas outflow velocity of km s�1, and a �0.5v p 15 T(R) ∝ Rgas

temperature distribution, whereR is the distance to the central star.
This temperature distribution serves as an estimate only. It assumes
an optically thin envelope, which may be invalid for high mass-
loss rates. Finally, we assumed a mean molecular weight of

for the gas, wheremp is one proton mass and it ism p 2.3mp

assumed that all H is in H2 and that H2 and He are the dominant
gas species (Dijkstra et al. 2003). Table 1 summarizes the cal-
culations and measurements.

Least-squares fitting (Fig. 3) suggests an approximately
dependence ofl10 on , indicating the previously dis-�0.23˙ ˙M M

cussed change in dust mineralogy with mass-loss rate. This
probably explains the similar dependence ofl10. The�0.25rc

correlation betweenl10 and andrc is strong (Fig. 3; we findṀ
high correlation coefficients,r, and low two-sided significances,
P). Furthermore, there appears to be a very strong, approxi-
mately , dependence ofl10 on Tc, although the correlation5Tc

betweenl10 andTc is less clear (Fig. 3; we find a lowerr and
higherP value). The latter may be due to the fact thatTc covers
a relatively narrow range of values (∼800–1000 K) compared
to rc (which covers∼3–4 orders of magnitude), making it more
difficult to establish a clear relation in case ofTc.

We find that the dust mineralogy (when measured byl10)
depends strongly on the temperature at the dust condensation
radius. In contrast, the dependence on the mass density at this
radius is much weaker. The strong temperature dependence
supports the thermodynamic condensation sequence described
by Tielens (1990), and can be explained by the fact that in
order to form grains, nucleation sites (seeds) are needed. The
ease with which these are formed is mainly determined by the
temperature (Gail & Sedlmayr 1999). We speculate that once
seeds have been formed, the mass density at the dust conden-
sation radius become more important for the dust mineralogy
than the temperature. This is based on the work of Gail &
Sedlmayr (1999), who show that for grain at rest with respect
to the gas phase, its growth rate, which strongly influences the
observed dust mineralogy, is proportional to . Here�Z ∝ r Tgr c c

we ignore decomposition of the grain by chemical reactions
(Gail & Sedlmayr 1999).

If correct, the above scenario could provide a clue as to the
apparent absence of pure Al2O3 in the spectra of Figure 2.
According to Tielens (1990), Al2O3 condenses first from the
gas phase, and is consequently difficult to form. Next silicates
form on the Al2O3 seed by the addition of gas-phase SiO, Mg,
and Fe and consequent chemical reactions (Gail & Sedlmayr
1999). Since this process is more sensitive to the mass density
than the temperature, however, it should proceed far more
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efficiently. As a result, some silicate grains are always present.
At low densities (low ), the Al2O3 is not completely hidden,Ṁ
and thus we see a mixture of Al2O3 and silicates. At high
densities (high ), the Al2O3 is efficiently coated and the sil-Ṁ
icate feature dominates.

Finally, we note that van Loon et al. (1999) assumed an
amorphous olivine (i.e., amorphous silicate) composition for
all our sample stars while deriving their (circum)stellar param-
eters. We expect this assumption to have a minor effect on our
analysis, in particular for the silicate-dominated sources. Still,
for those objects showing a mixture of Al2O3 and silicates, in
principle two dust condensation radii must be specified, since
the two materials condense at different temperatures. Here, our
adopted dust condensation radius for Al2O3 is thus too large,
since Al2O3 condenses at a higher temperature than silicates
do. Therefore,rc, Tc, and Pc for the more Al2O3-dominated
sources in Figure 3 (i.e., those with largerl10 values) should

be larger. As a result, the dependence of the dust mineralogy
(as measured byl10) on temperature weakens, whereas the
dependence on density (and pressure) becomes stronger. How-
ever, despite this effect, we expect the dependence on tem-
perature to remain stronger than the dependence on density.
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