Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Glioma cells influence the migration of neuralized mouse embryonic stem cells in vivo [abstract]

    Engel, Laura
    Rath, Prakash
    Kirk, Mark D.
    View/Open
    [PDF] Glioma cells influence the migration of neuralized mouse.pdf (16.80Kb)
    Date
    2007
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Of the 200,000 brain tumors diagnosed in the United States each year, approximately 23% of them are glioblastomas (Brain Tumor Society 2004). These aggressive tumors spread rapidly and are resistant to standard treatment, and the average survival rate of patients diagnosed with glioblastomas is approximately one year. Current research suggests there is great potential for neural stem cells (NSCs) to be used as a delivery vehicle for therapeutic agents against tumors. Studies have shown NSCs have an innate attraction to tumors and other inflammatory diseases of the brain. This NSC pathotropism is due in part to inflammatory signals, angiogenesis, reactive astrocytosis, and tumor cytokines (M&uumlller, et al. 2006). By harnessing their natural tropism, NSCs engineered with chemotherapeutic properties can be used to track and target tumors for destruction. To demonstrate the therapeutic potential of NSCs as a transplantable, therapeutic delivery system, we are investigating the in vivo migratory behavior and cellular fate of neuralized mouse embryonic stem cells (mESCs) in the presence of glioma cells. In this study, neuralized mESCs and SF767 human glioblastoma cells were injected into opposite hemispheres of the mouse cortex, and frozen sections of the brain tissue were examined to determine the extent of mESC migration and survival. After 3 days in vivo, co-localization of tumor and neuralized mESCs was evident in multiple sections. Previously, we have seen co-localization of neuralized mESCs and tumor cells on organotypic mouse brain slices after approximately one week of migration. NSC migration to tumor cells in vivo lends support to current efforts to use stem cells as a therapeutic deliver system. Furthermore, the neuralized mESCs' proximity to the tumor cells will allow for the specific delivery of chemotherapeutic agents to tumor sites. Expanding our knowledge of fundamental characteristics and behaviors of neural stem cells will facilitate the development of novel and effective stem cell therapies for glioblastomas.
    URI
    http://hdl.handle.net/10355/1005
    Collections
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems