[-] Show simple item record

dc.contributor.advisorMitrea, Dorina, 1965-eng
dc.contributor.authorSteenblock, Heidi, 1984-eng
dc.date.issued2009eng
dc.date.submitted2009 Falleng
dc.descriptionTitle from PDF of title page (University of Missouri--Columbia, viewed on February 22, 2011).eng
dc.descriptionThe entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.eng
dc.descriptionThesis advisor: Dr. Dorina Mitrea.eng
dc.descriptionM. S. University of Missouri--Columbia 2009.eng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Let S be an ([lowercase nu ? 1)-dimensional bounded surface of class C[superscript 2] in [double-struck R][superscript n] and let [uppercase delta]S be the Laplace-Beltrami operator on S. In this thesis, under suitable geometric assumptions, we prove a priori estimates in the W[superscript 2,2] (S) Sobolev space for solutions u to the Poisson problem [uppercase delta][subscript S]u = f in S and u satisfying homogeneous Dirichlet, Neumann, or mixed type boundary conditions, in terms of the L[superscript 2] norm of the datum f. The geometric assumptions S has to satisfy are related to the mean curvatures of the boundary of the surface S.eng
dc.description.bibrefIncludes bibliographical referenceseng
dc.format.extentv, 86 pageseng
dc.identifier.oclc703919842eng
dc.identifier.urihttps://doi.org/10.32469/10355/10133eng
dc.identifier.urihttps://hdl.handle.net/10355/10133
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Graduate School. Theses and Dissertations. Theses. 2009 Theseseng
dc.rightsAccess is limited to the campus of the University of Missouri--Columbia.eng
dc.subject.lcshDifferential equations, Ellipticeng
dc.subject.lcshSurfaces, Algebraiceng
dc.subject.lcshBoundary value problemseng
dc.subject.lcshSobolev spaceseng
dc.subject.lcshLaplacian operatoreng
dc.subject.lcshPoisson's equationeng
dc.subject.lcshDirichlet problemeng
dc.subject.lcshNeumann problemeng
dc.titleA priori estimates for solutions of elliptic partial differential equations on surfaceseng
dc.typeThesiseng
thesis.degree.disciplineMathematics (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record