Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Resolution of phylogenetic patterns within monocots [abstract]

    Gray, Antionette
    Pires, J. Chris
    View/Open
    [PDF] Resolution of phylogenetic patterns within monocots.pdf (17.33Kb)
    Date
    2007
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Monocotyledons or monocots are one of two groups of angiosperms that comprise ca. 60,000 species, 92 families, and 12 orders. Exemplary monocots include agaves, grasses, sedges, bromeliads, palms, gingers, orchids, irises, lilies, yams, pondweeds, and aroids. Even the most comprehensive evolutionary phylogenetic studies leave numerous relationships unresolved and inadequately supported. Thus, various questions remain for monocots in regards to their origin, phylogeny, patterns of morphological divergence, geographic diversification, and ecological radiation. To address these questions, we will create new nuclear monocot multigene phylogenies and compare them to previously established chloroplast/mitochondrial multigene phylogenies. Since nuclear and plastid genes have different patterns of inheritance, we will analyze conflicts and sources of incongruence of gene trees before combining all the data into a consensus phylogeny. After tissue collections, DNA/RNA extractions, and synthesizing cDNA from taxa across 39 families of monocots, I will utilize conserved low copy nuclear genes generated by our lab to construct a nuclear multigene phylogeny. In previous analyses, we identified 13 challenging nodes found in a phylogeny of 125 monocots based on several chloroplast and mitochondrial plastid genes chloroplasts. Our primary experimental approach is to generate nuclear multigene phylogenies from sequence data to resolve these 13 ambiguous nodes. We have over 100 nuclear gene primers available to screen to find phylogenetic informative variation. Upon completion of all experimentation, I will construct gene tree phylogenies for each nuclear gene independently, conduct incongruence tests, and if appropriate combine all the nuclear genes into a single analysis. Ultimately, we will construct a resolved, strongly supported higher-level phylogeny for the monocots using data from all three genomic compartments (ncDNA, cpDNA, and mtDNA). This phylogeny will then be used to interpret morphological evolution and ecological/biogeographical patterns among monocot lineages.
    URI
    http://hdl.handle.net/10355/1020
    Collections
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems